1
|
Goleij P, Sanaye PM, Alam W, Zhang J, Tabari MAK, Filosa R, Jeandet P, Cheang WS, Efferth T, Khan H. Unlocking daidzein's healing power: Present applications and future possibilities in phytomedicine. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 134:155949. [PMID: 39217652 DOI: 10.1016/j.phymed.2024.155949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 07/29/2024] [Accepted: 08/08/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Cancer is one of the leading causes of death and a great threat to people around the world. Cancer treatment modalities include surgery, radiotherapy, chemotherapy, radiochemotherapy, hormone therapy, and immunotherapy. The best approach is to use a combination of several types. Among the treatment methods mentioned above, chemotherapy is frequently used, but its activity is hampered by the development of drug resistance and many side effects. In this regard, the use of medicinal plants has been discussed, and in recent decades, the use of isolated phytochemicals came into the focus of interest. By critically evaluating the available evidence and emphasizing the unique perspective offered by this review, we provide insights into the potential of daidzein as a promising therapeutic agent, as well as outline future research directions to optimize its efficacy in clinical settings. PURPOSE To summarized the therapeutic potential of daidzein, an isoflavone phytoestrogen in the management of several human diseases with the focuses on the current status and future prospects as a therapeutic agent. METHODS Several search engines, including PubMed, GoogleScholar, and ScienceDirect, were used, with the search terms "daidzein", "daidzein therapeutic potential", or individual effects. The study included all peer-reviewed articles. However, the most recent publications were given priority. RESULTS Daidzein showed protective effects against malignant diseases such as breast cancer, prostate cancer but also non-malignant diseases such as diabetes, osteoporosis, and cardiovascular diseases. Daidzein activates multiple signaling pathways leading to cell cycle arrest and apoptosis as well as antioxidant and anti-metastatic effects in malignant cells. Moreover, the anticancer effects against different cancer cells were more prominent and discussed in detail. CONCLUSIONS In short, daidzein represents a promising compound for drug development. The comprehensive potential anticancer activities of daidzein through various molecular mechanisms and its therapeutic/clinical status required further detail studies.
Collapse
Affiliation(s)
- Pouya Goleij
- USERN Office, Kermanshah University of Medical Sciences, Kermanshah, Iran; Department of Genetics, Faculty of Biology, Sana Institute of Higher Education, Sari, Iran; PhytoPharmacology Interest Group (PPIG), Universal Scientific Education and Research, Network (USERN), Tehran, Iran.
| | - Pantea Majma Sanaye
- PhytoPharmacology Interest Group (PPIG), Universal Scientific Education and Research, Network (USERN), Tehran, Iran; School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Waqas Alam
- Department of Pharmacy, Faculty of Chemical and Life Sciences, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan
| | - Junmin Zhang
- School of Pharmacy, State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Mohammad Amin Khazeei Tabari
- PhytoPharmacology Interest Group (PPIG), Universal Scientific Education and Research, Network (USERN), Tehran, Iran; Student Research Committee, School of Medicine, Mazandaran University of Medical Sciences, Mazandaran, Iran
| | - Rosanna Filosa
- Department of Science and Technology, University of Sannio, Benevento 82100, Italy
| | - Philippe Jeandet
- Département de Biologie et Biochimie Faculté des Sciences Exactes et Naturelles Université de Reims BP 1039 51687, Reims CEDEX 02, France
| | - Wai San Cheang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR, China
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Mainz 55128, Germany
| | - Haroon Khan
- Department of Pharmacy, Faculty of Chemical and Life Sciences, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan.
| |
Collapse
|
2
|
Akyer SP, Karagur ER, Ata MT, Toprak EK, Donmez AC, Donmez BO. Verbascoside Inhibits/Repairs the Damage of LPS-Induced Inflammation by Regulating Apoptosis, Oxidative Stress, and Bone Remodeling. Curr Issues Mol Biol 2023; 45:8755-8766. [PMID: 37998727 PMCID: PMC10670241 DOI: 10.3390/cimb45110550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/24/2023] [Accepted: 10/27/2023] [Indexed: 11/25/2023] Open
Abstract
Osteocytes play an important role as regulators of both osteoclasts and osteoblasts, and some proteins that are secreted from them play a role in bone remodeling and modeling. LPS affects bone structure because it is an inflammatory factor, despite verbascoside's potential for bone preservation and healing. Osteocytes may also be involved in the control of the bone's response to immunological changes in inflammatory situations. MLO-Y4 cells were cultured in either supplemented -MEM alone with a low serum to inhibit cell growth or media with LPS (10 ng/mL) and/or verbascoside (50 g/mL) to show the LPS effect. In our research, LPS treatment increased RANKL levels while decreasing OPG and RUNX2 expression. Treatment with verbascoside reduced RANKL expression. In our work, verbascoside increased the expression of OPG and RUNX2. In MLO-Y4 cells exposed to verbascoside, SOD, CAT, and GSH activities as well as the expression levels of bone mineralization proteins like PHEX, RUNX2, and OPG were all elevated.
Collapse
Affiliation(s)
- Sahika Pinar Akyer
- Department of Anatomy, School of Medicine, Pamukkale University, Kinikli, Str. No. 11, 20160 Denizli, Turkey;
| | - Ege Rıza Karagur
- Department of Medical Genetics, School of Medicine, Pamukkale University, Kinikli, Str. No. 11, 20160 Denizli, Turkey;
| | - Melek Tunc Ata
- Department of Physiology, School of Medicine, Pamukkale University, Kinikli, Str. No. 11, 20160 Denizli, Turkey; (M.T.A.); (E.K.T.)
| | - Emine Kilic Toprak
- Department of Physiology, School of Medicine, Pamukkale University, Kinikli, Str. No. 11, 20160 Denizli, Turkey; (M.T.A.); (E.K.T.)
| | - Aysegul Cort Donmez
- Department of Medical Biochemistry, School of Medicine, Pamukkale University, Kinikli, Str. No. 11, 20160 Denizli, Turkey;
| | - Baris Ozgur Donmez
- Department of Anatomy, School of Medicine, Pamukkale University, Kinikli, Str. No. 11, 20160 Denizli, Turkey;
| |
Collapse
|
3
|
Rafiyan M, Sadeghmousavi S, Akbarzadeh M, Rezaei N. Experimental animal models of chronic inflammation. CURRENT RESEARCH IN IMMUNOLOGY 2023; 4:100063. [PMID: 37334102 PMCID: PMC10276141 DOI: 10.1016/j.crimmu.2023.100063] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 05/24/2023] [Accepted: 05/31/2023] [Indexed: 06/20/2023] Open
Abstract
Inflammation is a general term for a wide variety of both physiological and pathophysiological processes in the body which primarily prevents the body from diseases and helps to remove dead tissues. It has a crucial part in the body immune system. Tissue damage can recruit inflammatory cells and cytokines and induce inflammation. Inflammation can be classified as acute, sub-acute, and chronic. If it remained unresolved and lasted for prolonged periods, it would be considered as chronic inflammation (CI), which consequently exacerbates tissue damage in different organs. CI is the main pathophysiological cause of many disorders such as obesity, diabetes, arthritis, myocardial infarction, and cancer. Thus, it is critical to investigate different mechanisms involved in CI to understand its processes and to find proper anti-inflammatory therapeutic approaches for it. Animal models are one of the most useful tools for study about different diseases and mechanisms in the body, and are important in pharmacological studies to find proper treatments. In this study, we discussed the various experimental animal models that have been used to recreate CI which can help us to enhance the understanding of CI mechanisms in human and contribute to the development of potent new therapies.
Collapse
Affiliation(s)
- Mahdi Rafiyan
- Animal Model Integrated Network (AMIN), Universal Scientific Education & Research Network (USERN), Tehran, Iran
| | - Shaghayegh Sadeghmousavi
- Animal Model Integrated Network (AMIN), Universal Scientific Education & Research Network (USERN), Tehran, Iran
| | - Milad Akbarzadeh
- Animal Model Integrated Network (AMIN), Universal Scientific Education & Research Network (USERN), Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| |
Collapse
|
4
|
Bott KN, Feldman E, de Souza RJ, Comelli EM, Klentrou P, Peters SJ, Ward WE. Lipopolysaccharide-Induced Bone Loss in Rodent Models: A Systematic Review and Meta-Analysis. J Bone Miner Res 2023; 38:198-213. [PMID: 36401814 PMCID: PMC10107812 DOI: 10.1002/jbmr.4740] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 10/27/2022] [Accepted: 11/03/2022] [Indexed: 11/21/2022]
Abstract
Osteoporosis has traditionally been characterized by underlying endocrine mechanisms, though evidence indicates a role of inflammation in its pathophysiology. Lipopolysaccharide (LPS), a component of gram-negative bacteria that reside in the intestines, can be released into circulation and stimulate the immune system, upregulating bone resorption. Exogenous LPS is used in rodent models to study the effect of systemic inflammation on bone, and to date a variety of different doses, routes, and durations of LPS administration have been used. The study objective was to determine whether systemic administration of LPS induced inflammatory bone loss in rodent models. A systematic search of Medline and four other databases resulted in a total of 110 studies that met the inclusion criteria. Pooled standardized mean differences (SMDs) and corresponding 95% confidence intervals (CI) with a random-effects meta-analyses were used for bone volume fraction (BV/TV) and volumetric bone mineral density (vBMD). Heterogeneity was quantified using the I2 statistic. Shorter-term (<2 weeks) and longer-term (>2 weeks) LPS interventions were analyzed separately because of intractable study design differences. BV/TV was significantly reduced in both shorter-term (SMD = -3.79%, 95% CI [-4.20, -3.38], I2 62%; p < 0.01) and longer-term (SMD = -1.50%, 95% CI [-2.00, -1.00], I2 78%; p < 0.01) studies. vBMD was also reduced in both shorter-term (SMD = -3.11%, 95% CI [-3.78, -2.44]; I2 72%; p < 0.01) and longer-term (SMD = -3.49%, 95% CI [-4.94, -2.04], I2 82%; p < 0.01) studies. In both groups, regardless of duration, LPS negatively impacted trabecular bone structure but not cortical bone structure, and an upregulation in bone resorption demonstrated by bone cell staining and serum biomarkers was reported. This suggests systemically delivered exogenous LPS in rodents is a viable model for studying inflammatory bone loss, particularly in trabecular bone. © 2022 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Kirsten N Bott
- Department of Kinesiology, Brock University, St. Catharines, ON, Canada.,Centre for Bone and Muscle Health, Brock University, St. Catharines, ON, Canada
| | - Evelyn Feldman
- Lakehead University Library, Lakehead University, Thunder Bay, ON, Canada
| | - Russell J de Souza
- Department of Health Research Methods, Evidence, and Impact, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada.,Population Health Research Institute, Hamilton Health Sciences Corporation, Hamilton, ON, Canada
| | - Elena M Comelli
- Department of Kinesiology, Brock University, St. Catharines, ON, Canada.,Department of Nutritional Sciences, University of Toronto, Toronto, ON, Canada.,Joannah and Brian Lawson Centre for Child Nutrition, University of Toronto, Toronto, ON, Canada
| | - Panagiota Klentrou
- Department of Kinesiology, Brock University, St. Catharines, ON, Canada.,Centre for Bone and Muscle Health, Brock University, St. Catharines, ON, Canada
| | - Sandra J Peters
- Department of Kinesiology, Brock University, St. Catharines, ON, Canada.,Centre for Bone and Muscle Health, Brock University, St. Catharines, ON, Canada
| | - Wendy E Ward
- Department of Kinesiology, Brock University, St. Catharines, ON, Canada.,Centre for Bone and Muscle Health, Brock University, St. Catharines, ON, Canada.,Department of Nutritional Sciences, University of Toronto, Toronto, ON, Canada.,Department of Health Sciences, Brock University, St. Catharines, ON, Canada
| |
Collapse
|
5
|
Rocchi A, Ruff J, Maynard CJ, Forga AJ, Señas-Cuesta R, Greene ES, Latorre JD, Vuong CN, Graham BD, Hernandez-Velasco X, Tellez G, Petrone-Garcia VM, Laverty L, Hargis BM, Erf GF, Owens CM, Tellez-Isaias G. Experimental Cyclic Heat Stress on Intestinal Permeability, Bone Mineralization, Leukocyte Proportions and Meat Quality in Broiler Chickens. Animals (Basel) 2022; 12:ani12101273. [PMID: 35625119 PMCID: PMC9138156 DOI: 10.3390/ani12101273] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/12/2022] [Accepted: 05/13/2022] [Indexed: 12/10/2022] Open
Abstract
The goal of this research was to assess cyclic heat stress on gut permeability, bone mineralization, and meat quality in chickens. Two separate trials were directed. 320 day-of-hatch Cobb 500 male chicks were randomly assigned to four thermoneutral (TN) and four cyclic heat stress (HS) chambers with two pens each, providing eight replicates per treatment in each trial (n = 20 chicks/replicate). Environmental conditions in the TN group were established to simulate commercial production settings. Heat stress chickens were exposed to cyclic HS at 35 °C for 12 h/day from days 7−42. Performance parameters, intestinal permeability, bone parameters, meat quality, and leukocyte proportions were estimated. There was a significant (p < 0.05) reduction in body weight (BW), BW gain, and feed intake, but the feed conversion ratio increased in chickens under cyclic HS. Moreover, HS chickens had a significantly higher gut permeability, monocyte and basophil levels, but less bone mineralization than TN chickens. Nevertheless, the TN group had significant increases in breast yield, woody breast, and white striping in breast fillets compared to HS. These results present an alternative model to our previously published continuous HS model to better reflect commercial conditions to evaluate commercially available nutraceuticals or products with claims of reducing the severity of heat stress.
Collapse
Affiliation(s)
- Alessandro Rocchi
- Department of Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA; (A.R.); (J.R.); (C.J.M.); (A.J.F.); (R.S.-C.); (E.S.G.); (J.D.L.); (C.N.V.); (B.D.G.); (G.T.J.); (L.L.); (B.M.H.); (G.F.E.); (C.M.O.)
| | - Jared Ruff
- Department of Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA; (A.R.); (J.R.); (C.J.M.); (A.J.F.); (R.S.-C.); (E.S.G.); (J.D.L.); (C.N.V.); (B.D.G.); (G.T.J.); (L.L.); (B.M.H.); (G.F.E.); (C.M.O.)
| | - Clay J. Maynard
- Department of Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA; (A.R.); (J.R.); (C.J.M.); (A.J.F.); (R.S.-C.); (E.S.G.); (J.D.L.); (C.N.V.); (B.D.G.); (G.T.J.); (L.L.); (B.M.H.); (G.F.E.); (C.M.O.)
| | - Aaron J. Forga
- Department of Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA; (A.R.); (J.R.); (C.J.M.); (A.J.F.); (R.S.-C.); (E.S.G.); (J.D.L.); (C.N.V.); (B.D.G.); (G.T.J.); (L.L.); (B.M.H.); (G.F.E.); (C.M.O.)
| | - Roberto Señas-Cuesta
- Department of Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA; (A.R.); (J.R.); (C.J.M.); (A.J.F.); (R.S.-C.); (E.S.G.); (J.D.L.); (C.N.V.); (B.D.G.); (G.T.J.); (L.L.); (B.M.H.); (G.F.E.); (C.M.O.)
| | - Elizabeth S. Greene
- Department of Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA; (A.R.); (J.R.); (C.J.M.); (A.J.F.); (R.S.-C.); (E.S.G.); (J.D.L.); (C.N.V.); (B.D.G.); (G.T.J.); (L.L.); (B.M.H.); (G.F.E.); (C.M.O.)
| | - Juan D. Latorre
- Department of Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA; (A.R.); (J.R.); (C.J.M.); (A.J.F.); (R.S.-C.); (E.S.G.); (J.D.L.); (C.N.V.); (B.D.G.); (G.T.J.); (L.L.); (B.M.H.); (G.F.E.); (C.M.O.)
| | - Christine N. Vuong
- Department of Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA; (A.R.); (J.R.); (C.J.M.); (A.J.F.); (R.S.-C.); (E.S.G.); (J.D.L.); (C.N.V.); (B.D.G.); (G.T.J.); (L.L.); (B.M.H.); (G.F.E.); (C.M.O.)
| | - Brittany D. Graham
- Department of Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA; (A.R.); (J.R.); (C.J.M.); (A.J.F.); (R.S.-C.); (E.S.G.); (J.D.L.); (C.N.V.); (B.D.G.); (G.T.J.); (L.L.); (B.M.H.); (G.F.E.); (C.M.O.)
| | - Xochitl Hernandez-Velasco
- Departamento de Medicina y Zootecnia de Aves, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autonoma de Mexico, Mexico City 04510, Mexico;
| | - Guillermo Tellez
- Department of Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA; (A.R.); (J.R.); (C.J.M.); (A.J.F.); (R.S.-C.); (E.S.G.); (J.D.L.); (C.N.V.); (B.D.G.); (G.T.J.); (L.L.); (B.M.H.); (G.F.E.); (C.M.O.)
| | - Victor M. Petrone-Garcia
- Facultad de Estudios Superiores Cuautitlan, Universidad Nacional Autonoma de Mexico, Cuautitlan Izcalli 54121, Mexico;
| | - Lauren Laverty
- Department of Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA; (A.R.); (J.R.); (C.J.M.); (A.J.F.); (R.S.-C.); (E.S.G.); (J.D.L.); (C.N.V.); (B.D.G.); (G.T.J.); (L.L.); (B.M.H.); (G.F.E.); (C.M.O.)
| | - Billy M. Hargis
- Department of Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA; (A.R.); (J.R.); (C.J.M.); (A.J.F.); (R.S.-C.); (E.S.G.); (J.D.L.); (C.N.V.); (B.D.G.); (G.T.J.); (L.L.); (B.M.H.); (G.F.E.); (C.M.O.)
| | - Gisela F. Erf
- Department of Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA; (A.R.); (J.R.); (C.J.M.); (A.J.F.); (R.S.-C.); (E.S.G.); (J.D.L.); (C.N.V.); (B.D.G.); (G.T.J.); (L.L.); (B.M.H.); (G.F.E.); (C.M.O.)
| | - Casey M. Owens
- Department of Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA; (A.R.); (J.R.); (C.J.M.); (A.J.F.); (R.S.-C.); (E.S.G.); (J.D.L.); (C.N.V.); (B.D.G.); (G.T.J.); (L.L.); (B.M.H.); (G.F.E.); (C.M.O.)
| | - Guillermo Tellez-Isaias
- Department of Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA; (A.R.); (J.R.); (C.J.M.); (A.J.F.); (R.S.-C.); (E.S.G.); (J.D.L.); (C.N.V.); (B.D.G.); (G.T.J.); (L.L.); (B.M.H.); (G.F.E.); (C.M.O.)
- Correspondence:
| |
Collapse
|
6
|
Spray-Dried Plasma Improves Body Weight, Intestinal Barrier Function, and Tibia Strength during Experimental Constant Heat Stress Conditions. Animals (Basel) 2021; 11:ani11082213. [PMID: 34438670 PMCID: PMC8388371 DOI: 10.3390/ani11082213] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/01/2021] [Accepted: 07/04/2021] [Indexed: 01/16/2023] Open
Abstract
Simple Summary Broilers are especially heat sensitive because of the absence of sweat glands and their elevated metabolism. Under commercial conditions, extremely high temperatures (heat stress) reduce their performance. This research aimed to assess spray-dried feeding plasma (SDP) during constant heat stress (HS) on the performance, intestinal permeability, and bone strength in broilers. Chickens fed with a diet supplemented with SDP increased both their body weight and body weight gain compared to the HS control group. At the end of the study (d 42 of age), chickens fed with SDP significantly alleviated the increased gut leakage induced by HS and showed a significant increase in tibia strength compared with control HS chickens. The results in the present study suggest SDP mends gut integrity, hence reducing chronic systemic inflammation. Abstract The aim of this study was to see how spray-dried plasma (SDP) supplementation affected broiler chicken performance, intestinal permeability, and bone strength during persistent heat stress. One-day-old chicks (n = 480) were randomly assigned into twelve environmental corrals; four thermoneutral (TN-negative control, maintained at 24 °C from d 21–42); four heat stress (HS, exposed to 35 °C from d 21–42); and four heat stress treated with 2% SDP in the feed until d 28 followed by 1% SDP until d 42 (HS-SDP). The performance and serum levels of fluorescein isothiocyanate-dextran (FITC-d) were evaluated at d 21, 28, 35, and 42. The tibias strength was evaluated on d 21 and 42. The increment in chicken temperature (p < 0.05) was observed two h following the increase in environmental temperature in both HS groups and was associated with decreased performance parameters compared with the TN group. At d 42 of age, the chickens exposed to HS had an impaired gut permeability and decreased tibia strength compared to the TN group (p < 0.05). However, partially feeding SDP mitigated these adverse effects significantly. These findings imply that using SDP strategically during stressful times, such as prolonged heat stress, may help mitigate its negative consequences.
Collapse
|
7
|
Evaluation of Three Formulations of Essential Oils in Broiler Chickens under Cyclic Heat Stress. Animals (Basel) 2021; 11:ani11041084. [PMID: 33920255 PMCID: PMC8069685 DOI: 10.3390/ani11041084] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 04/06/2021] [Accepted: 04/07/2021] [Indexed: 12/18/2022] Open
Abstract
The objective of the present research was to assess the dietary supplementation of three formulations of essential oils (EO) in chickens under heat stress (HS). Day-of-hatch Cobb 500 chicks (n = 500) were randomly distributed into four groups: 1. HS control + control diets; 2. HS + control diets supplemented with 37 ppm EO of Lippia origanoides (LO); 3. HS + control diets supplemented with 45 ppm LO + 45 ppm EO of Rosmarinus officinalis (RO) + 300 ppm red beetroot; 4. HS + 45 ppm LO + 45 ppm RO + 300 ppm natural betaine. Chickens that received the EO showed significant (p < 0.05) improvement on BW, BWG, FI, and FCR compared to control HS chickens. Average body core temperature in group 3 and group 4 was significantly (p < 0.05) reduced compared with the HS control group and group 2. Experimental groups showed a significant reduction in FITC-d at 42 days, a significant increase in SOD at both days but a significant reduction of IFN-γ and IgA compared with HS control (p < 0.05). Bone mineralization was significantly improved by EO treatments (p < 0.05). Together these data suggest that supplemental dietary EO may reduce the harmful effects of HS.
Collapse
|
8
|
Bott KN, Yumol JL, Comelli EM, Klentrou P, Peters SJ, Ward WE. Trabecular and cortical bone are unaltered in response to chronic lipopolysaccharide exposure via osmotic pumps in male and female CD-1 mice. PLoS One 2021; 16:e0243933. [PMID: 33544708 PMCID: PMC7864436 DOI: 10.1371/journal.pone.0243933] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 11/30/2020] [Indexed: 12/05/2022] Open
Abstract
Chronic low-grade inflammation has been identified as an underlying cause of many diseases including osteoporosis. Lipopolysaccharide (LPS) is a potent inducer of the inflammatory response that can negatively affect bone outcomes by upregulating bone resorption and inhibiting bone formation. The objective of this study was to assess the longitudinal response of trabecular and cortical bone structure and bone mineral density to LPS continuously administered for 12 weeks in male and female CD-1 mice. Mice were assigned to one of four LPS groups at 8-weeks of age: placebo (0.0 μg/d), low (0.9 μg/d), mid (3.6 μg/d) and high (14.4 μg/d) dose. Trabecular and cortical bone outcomes were measured at 8, 12, 16, and 20 weeks of age using in vivo micro-computed tomography. The anticipated serum LPS dose-dependent response was not observed. Therefore, the low, mid, and high LPS groups were combined for analysis. Compared to the placebo group, endpoint serum LPS was elevated in both males (p < 0.05) and females (p < 0.05) when all LPS treatment groups were combined. However, there was no significant change in trabecular or cortical bone outcomes in the combined LPS groups compared to the placebo following the 12-week LPS intervention for either sex. This suggests that although serum LPS was elevated following the 12-week LPS intervention, the dosages administered using the osmotic pumps was not sufficient to negatively impact trabecular or cortical bone outcomes in either male or female CD-1 mice.
Collapse
Affiliation(s)
- Kirsten N. Bott
- Department of Kinesiology, Brock University, St. Catharines, ON, Canada
- * E-mail:
| | - Jenalyn L. Yumol
- Department of Kinesiology, Brock University, St. Catharines, ON, Canada
| | - Elena M. Comelli
- Department of Kinesiology, Brock University, St. Catharines, ON, Canada
- Department of Nutritional Sciences, University of Toronto, Toronto, ON, Canada
- Joannah and Brian Lawson Centre for Child Nutrition, University of Toronto, Toronto, ON, Canada
| | - Panagiota Klentrou
- Department of Kinesiology, Brock University, St. Catharines, ON, Canada
- Centre for Bone and Muscle Health, Brock University, St. Catharines, ON, Canada
| | - Sandra J. Peters
- Department of Kinesiology, Brock University, St. Catharines, ON, Canada
- Centre for Bone and Muscle Health, Brock University, St. Catharines, ON, Canada
| | - Wendy E. Ward
- Department of Kinesiology, Brock University, St. Catharines, ON, Canada
- Department of Nutritional Sciences, University of Toronto, Toronto, ON, Canada
- Centre for Bone and Muscle Health, Brock University, St. Catharines, ON, Canada
- Department of Health Sciences, Brock University, St. Catharines, ON, Canada
| |
Collapse
|
9
|
Hussain T, Murtaza G, Yang H, Kalhoro MS, Kalhoro DH. Exploiting Anti-Inflammation Effects of Flavonoids in Chronic Inflammatory Diseases. Curr Pharm Des 2020; 26:2610-2619. [PMID: 32268861 DOI: 10.2174/1381612826666200408101550] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 02/08/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND Inflammation is a complex response of the host defense system to different internal and external stimuli. It is believed that persistent inflammation may lead to chronic inflammatory diseases such as, inflammatory bowel disease, neurological and cardiovascular diseases. Oxidative stress is the main factor responsible for the augmentation of inflammation via various molecular pathways. Therefore, alleviating oxidative stress is effective a therapeutic option against chronic inflammatory diseases. METHODS This review article extends the knowledge of the regulatory mechanisms of flavonoids targeting inflammatory pathways in chronic diseases, which would be the best approach for the development of suitable therapeutic agents against chronic diseases. RESULTS Since the inflammatory response is initiated by numerous signaling molecules like NF-κB, MAPK, and Arachidonic acid pathways, their encountering function can be evaluated with the activation of Nrf2 pathway, a promising approach to inhibit/prevent chronic inflammatory diseases by flavonoids. Over the last few decades, flavonoids drew much attention as a potent alternative therapeutic agent. Recent clinical evidence has shown significant impacts of flavonoids on chronic diseases in different in-vivo and in-vitro models. CONCLUSION Flavonoid compounds can interact with chronic inflammatory diseases at the cellular level and modulate the response of protein pathways. A promising approach is needed to overlook suitable alternative compounds providing more therapeutic efficacy and exerting fewer side effects than commercially available antiinflammatory drugs.
Collapse
Affiliation(s)
- Tarique Hussain
- Animal Sciences Division, Nuclear Institute for Agriculture and Biology (NIAB), P.O. Box: 128, Jhang Road, Faisalabad, 38000, Pakistan,Pakistan Institute of Engineering and Applied Sciences (PIEAS) Nilore, Islamabad, Pakistan
| | - Ghulam Murtaza
- Shaheed Benazir Bhutto University of Veterinary & Animal Sciences (SBBUVAS), Sakrand, 67210, Sindh, Pakistan
| | - Huansheng Yang
- Hunan International Joint laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, Hunan, 410081, China
| | - Muhammad S Kalhoro
- Food Engineering and Bioprocess Technology, Asian Institute of Technology, Bangkok, 12120, Thailand
| | - Dildar H Kalhoro
- Department of Veterinary Microbiology, Faculty of Animal Husbandry and Veterinary Sciences, Sindh
Agriculture University, Tandojam, Sindh, 70050, Pakistan
| |
Collapse
|
10
|
Keirns BH, Lucas EA, Smith BJ. Phytochemicals affect T helper 17 and T regulatory cells and gut integrity: implications on the gut-bone axis. Nutr Res 2020; 83:30-48. [PMID: 33010588 DOI: 10.1016/j.nutres.2020.08.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Revised: 08/05/2020] [Accepted: 08/11/2020] [Indexed: 12/16/2022]
Abstract
The pathology of osteoporosis is multifactorial, but a growing body of evidence supports an important role of the gut-bone axis, especially in bone loss associated with menopause, rheumatoid arthritis, and periodontal disease. Aberrant T cell responses favoring an increase in the ratio of T helper 17 cells to T regulatory cells play a critical role in the underlying etiology of this bone loss. Many of the dietary phytochemicals known to have osteoprotective activity such as flavonoids, organosulfur compounds, phenolic acids, as well as the oligosaccharides also improve gut barrier function and affect T cell differentiation and activation within gut-associated lymphoid tissues and at distal sites. Here, we examine the potential of these phytochemicals to act as prebiotics and immunomodulating agents, in part targeting the gut to mediate their effects on bone.
Collapse
Affiliation(s)
- Bryant H Keirns
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK 74078.
| | - Edralin A Lucas
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK 74078.
| | - Brenda J Smith
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK 74078.
| |
Collapse
|
11
|
Ahn-Jarvis J, Lombardo E, Cruz-Monserrate Z, Badi N, Crowe O, Kaul S, Komar H, Krishna SG, Lesinski GB, Mace TA, Ramsey ML, Roberts K, Stinehart K, Traczek M, Conwell DL, Vodovotz Y, Hart PA. Reduction of inflammation in chronic pancreatitis using a soy bread intervention: A feasibility study. Pancreatology 2020; 20:852-859. [PMID: 32595109 PMCID: PMC7780088 DOI: 10.1016/j.pan.2020.04.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 04/20/2020] [Accepted: 04/27/2020] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Chronic pancreatitis is a chronic inflammatory disease, which progresses to fibrosis. Currently there are no interventions to delay or stop the progression to irreversible organ damage. In this study, we assessed the tolerability and feasibility of administering soy bread to reduce circulating inflammatory mediators. METHODS Subjects with chronic pancreatitis diagnosed using the American Pancreatic Association diagnostic guidelines were enrolled. During the dose escalation (DE) phase, subjects received one week of soy bread based using a 3 + 3 dose-escalation design, which was then followed by a maximally tolerated dose (MTD) phase with four weeks of intervention. Dose-limiting toxicities (DLTs) were monitored. Plasma cytokine levels were measured using a Meso Scale Discovery multiplex assay kit. Isoflavonoid excretion in 24-h urine collection was used to measure soy bread compliance. RESULTS Nine subjects completed the DE phase, and one subject completed the MTD phase without any DLTs at a maximum dosage of three slices (99 mg of isoflavones) per day. Reported compliance to soy bread intervention was 98%, and this was confirmed with urinary isoflavones and their metabolites detected in all subjects. There was a significant decline in the TNF-α level during the DE phase (2.667 vs 2.382 pg/mL, p = 0.039); other levels were similar. CONCLUSIONS In this feasibility study, there was excellent compliance with a short-term intervention using soy bread in chronic pancreatitis. Reduction was seen in at least one pro-inflammatory cytokine with short-term intervention. Larger cohorts and longer interventions with soy are warranted to assess the efficacy of reducing pro-inflammatory mediators of disease.
Collapse
Affiliation(s)
- Jennifer Ahn-Jarvis
- Department of Food Science and Technology, The Ohio State University, Columbus, OH, USA
| | - Erin Lombardo
- Department of Food Science and Technology, The Ohio State University, Columbus, OH, USA
| | - Zobeida Cruz-Monserrate
- Division of Gastroenterology, Hepatology, and Nutrition, The Ohio State University Wexner Medical Center, Columbus, OH, USA; The James Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Niharika Badi
- Division of Gastroenterology, Hepatology, and Nutrition, The Ohio State University Wexner Medical Center, Columbus, OH, USA; The James Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Olivia Crowe
- Division of Gastroenterology, Hepatology, and Nutrition, The Ohio State University Wexner Medical Center, Columbus, OH, USA; The James Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Sabrina Kaul
- Division of Gastroenterology, Hepatology, and Nutrition, The Ohio State University Wexner Medical Center, Columbus, OH, USA; The James Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Hannah Komar
- The James Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, OH, USA; Department of Hematology and Oncology, Winship Cancer Institute of Emory University, Atlanta, GA, USA
| | - Somashekar G Krishna
- Division of Gastroenterology, Hepatology, and Nutrition, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Gregory B Lesinski
- The James Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, OH, USA; Department of Hematology and Oncology, Winship Cancer Institute of Emory University, Atlanta, GA, USA
| | - Thomas A Mace
- Division of Gastroenterology, Hepatology, and Nutrition, The Ohio State University Wexner Medical Center, Columbus, OH, USA; The James Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Mitchell L Ramsey
- Division of Gastroenterology, Hepatology, and Nutrition, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Kristen Roberts
- Division of Gastroenterology, Hepatology, and Nutrition, The Ohio State University Wexner Medical Center, Columbus, OH, USA; Department of Medical Dietetics, The Ohio State University, Columbus, OH, USA
| | - Kyle Stinehart
- Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Madelyn Traczek
- Division of Gastroenterology, Hepatology, and Nutrition, The Ohio State University Wexner Medical Center, Columbus, OH, USA; The James Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Darwin L Conwell
- Division of Gastroenterology, Hepatology, and Nutrition, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Yael Vodovotz
- Department of Food Science and Technology, The Ohio State University, Columbus, OH, USA
| | - Phil A Hart
- Division of Gastroenterology, Hepatology, and Nutrition, The Ohio State University Wexner Medical Center, Columbus, OH, USA.
| |
Collapse
|
12
|
Targeting Inflammation by Flavonoids: Novel Therapeutic Strategy for Metabolic Disorders. Int J Mol Sci 2019; 20:ijms20194957. [PMID: 31597283 PMCID: PMC6801776 DOI: 10.3390/ijms20194957] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 09/28/2019] [Accepted: 09/30/2019] [Indexed: 12/16/2022] Open
Abstract
A balanced metabolic profile is essential for normal human physiological activities. Disproportions in nutrition give rise to imbalances in metabolism that are associated with aberrant immune function and an elevated risk for inflammatory-associated disorders. Inflammation is a complex process, and numerous mediators affect inflammation-mediated disorders. The available clinical modalities do not effectively address the underlying diseases but rather relieve the symptoms. Therefore, novel targeted agents have the potential to normalize the metabolic system and, thus, provide meaningful therapy to the underlying disorder. In this connection, polyphenols, the well-known and extensively studied phytochemical moieties, were evaluated for their effective role in the restoration of metabolism via various mechanistic signaling pathways. The various flavonoids that we observed in this comprehensive review interfere with the metabolic events that induce inflammation. The mechanisms via which the polyphenols, in particular flavonoids, act provide a promising treatment option for inflammatory disorders. However, detailed clinical studies of such molecules are required to decide their clinical fate.
Collapse
|
13
|
Ranneh Y, Akim AM, Hamid HA, Khazaai H, Fadel A, Mahmoud AM. Stingless bee honey protects against lipopolysaccharide induced-chronic subclinical systemic inflammation and oxidative stress by modulating Nrf2, NF-κB and p38 MAPK. Nutr Metab (Lond) 2019; 16:15. [PMID: 30858869 PMCID: PMC6391794 DOI: 10.1186/s12986-019-0341-z] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 02/13/2019] [Indexed: 01/21/2023] Open
Abstract
Background Epidemiological and experimental studies have extensively indicated that chronic subclinical systemic inflammation (CSSI) and oxidative stress are risk factors for several chronic diseases, including cancer, arthritis, type 2 diabetes, and cardiovascular and neurodegenerative diseases. This study examined the protective effect of stingless bee honey (SBH) supplementation against lipopolysaccharide (LPS)-induced CSSI, pointing to the possible involvement of NF-κB, p38 MAPK and Nrf2 signaling. Methods CSSI was induced in male Sprague Dawley rats by intraperitoneal injection of LPS three times per week for 28 days, and SBH (4.6 and 9.3 g/kg/day) was supplemented for 30 days. Results LPS-induced rats showed significant leukocytosis, and elevated serum levels of CRP, TNF-α, IL-1β, IL-6, IL-8, MCP-1, malondialdehyde (MDA) and 8-hydroxy-2'-deoxyguanosine (8-OHdG), accompanied with diminished antioxidants. Treatment with SBH significantly ameliorated inflammatory markers, MDA and 8-OHdG, and enhanced antioxidants in LPS-induced rats. In addition, SBH decreased NF-κB p65 and p38 MAPK, and increased Nrf2 expression in the liver, kidney, heart and lung of LPS-induced rats. Furthermore, SBH prevented LPS-induced histological and functional alterations in the liver, kidney, heart and lung of rats. Conclusion SBH has a substantial protective role against LPS-induced CSSI in rats mediated via amelioration of inflammation, oxidative stress and NF-κB, p38 MAPK and Nrf2 signaling.
Collapse
Affiliation(s)
- Yazan Ranneh
- 1Department of Nutrition and Dietetics, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, UPM, 43400 Serdang, Selangor Malaysia
| | - Abdah Md Akim
- 2Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, UPM, 43400 Serdang, Selangor Malaysia
| | - Hasiah Ab Hamid
- 2Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, UPM, 43400 Serdang, Selangor Malaysia
| | - Huzwah Khazaai
- 2Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, UPM, 43400 Serdang, Selangor Malaysia
| | - Abdulmannan Fadel
- 3School of Food Science and Nutrition, University of Leeds, Leeds, UK
| | - Ayman M Mahmoud
- 4Physiology Division, Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| |
Collapse
|
14
|
Ginwala R, Bhavsar R, Chigbu DI, Jain P, Khan ZK. Potential Role of Flavonoids in Treating Chronic Inflammatory Diseases with a Special Focus on the Anti-Inflammatory Activity of Apigenin. Antioxidants (Basel) 2019; 8:antiox8020035. [PMID: 30764536 PMCID: PMC6407021 DOI: 10.3390/antiox8020035] [Citation(s) in RCA: 242] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 01/21/2019] [Accepted: 01/30/2019] [Indexed: 12/18/2022] Open
Abstract
Inflammation has been reported to be intimately linked to the development or worsening of several non-infectious diseases. A number of chronic conditions such as cancer, diabetes, cardiovascular disorders, autoimmune diseases, and neurodegenerative disorders emerge as a result of tissue injury and genomic changes induced by constant low-grade inflammation in and around the affected tissue or organ. The existing therapies for most of these chronic conditions sometimes leave more debilitating effects than the disease itself, warranting the advent of safer, less toxic, and more cost-effective therapeutic alternatives for the patients. For centuries, flavonoids and their preparations have been used to treat various human illnesses, and their continual use has persevered throughout the ages. This review focuses on the anti-inflammatory actions of flavonoids against chronic illnesses such as cancer, diabetes, cardiovascular diseases, and neuroinflammation with a special focus on apigenin, a relatively less toxic and non-mutagenic flavonoid with remarkable pharmacodynamics. Additionally, inflammation in the central nervous system (CNS) due to diseases such as multiple sclerosis (MS) gives ready access to circulating lymphocytes, monocytes/macrophages, and dendritic cells (DCs), causing edema, further inflammation, and demyelination. As the dearth of safe anti-inflammatory therapies is dire in the case of CNS-related disorders, we reviewed the neuroprotective actions of apigenin and other flavonoids. Existing epidemiological and pre-clinical studies present considerable evidence in favor of developing apigenin as a natural alternative therapy against chronic inflammatory conditions.
Collapse
Affiliation(s)
- Rashida Ginwala
- Department of Microbiology and Immunology, and Center for Molecular Virology and Neuroimmunology, Center for Cancer Biology, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA 19129, USA.
| | | | | | | | | |
Collapse
|
15
|
Luo LY, Fan MX, Zhao HY, Li MX, Wu X, Gao WY. Pharmacokinetics and Bioavailability of the Isoflavones Formononetin and Ononin and Their in Vitro Absorption in Ussing Chamber and Caco-2 Cell Models. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:2917-2924. [PMID: 29504397 DOI: 10.1021/acs.jafc.8b00035] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Formononetin and its glycoside ononin are bioactive isoflavones widely present in legumes. The present study investigated the pharmacokinetics, bioavailability, and in vitro absorption of formononetin and ononin. After an oral administration to rats, formononetin showed a higher systemic exposure over ononin. The oral bioavailability of formononetin and ononin were 21.8% and 7.3%, respectively. Ononin was more bioavailable than perceived, and its bioavailability reached 21.7% when its metabolite formononetin was taken into account. Both formononetin and ononin exhibited better absorption in large intestine segments than that in small intestine segments. Formononetin displayed a better permeability in all intestinal segments over ononin. Transport of formononetin across Caco-2 cell monolayer was mainly through passive diffusion, while ononin was actively pumped out by MRP2 but not P-gp. The results provide evidence for better understanding of the pharmacological actions of formononetin and ononin, which advocates more in vivo evaluations or human trials.
Collapse
Affiliation(s)
- Li-Yu Luo
- School of Pharmaceutical Science and Technology , Tianjin University , Tianjin , China
| | - Miao-Xuan Fan
- Beijing Key Laboratory of Analysis and Evaluation on Chinese Medicine , Beijing Institute of Drug Control , Beijing 102206 , China
| | - Hai-Yu Zhao
- Institute of Chinese Materia Medica , China Academy of Chinese Medical Sciences , Beijing , China
| | - Ming-Xing Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy , Southwest Medical University , Luzhou , Sichuan , China
| | - Xu Wu
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy , Southwest Medical University , Luzhou , Sichuan , China
| | - Wen-Yuan Gao
- School of Pharmaceutical Science and Technology , Tianjin University , Tianjin , China
| |
Collapse
|
16
|
Cao JJ, Gregoire BR, Shen CL. A High-Fat Diet Decreases Bone Mass in Growing Mice with Systemic Chronic Inflammation Induced by Low-Dose, Slow-Release Lipopolysaccharide Pellets. J Nutr 2017; 147:1909-1916. [PMID: 28814530 DOI: 10.3945/jn.117.248302] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 03/03/2017] [Accepted: 07/18/2017] [Indexed: 11/14/2022] Open
Abstract
Background: Chronic inflammation is associated with increased bone resorption and is linked to osteopenia, or low bone mass. Obesity is also associated with low-grade chronic upregulation of inflammatory cytokines.Objective: This study investigated the effect of high-fat (HF) diet-induced obesity on bone structure changes in growing mice with existing systemic chronic inflammation induced by low-dose, slow-release lipopolysaccharide (LPS).Methods: Forty-eight 6-wk-old female C57BL/6 mice were randomly assigned to 4 treatment groups (n = 12/group) in a 2 × 2 factorial design-control (placebo) or LPS treatment (1.5 μg/d)-and consumed either a normal-fat (NF, 10% of energy as fat) or an HF (45% of energy as fat) diet ad libitum for 13 wk. Bone structure, serum biomarkers of bone turnover, and osteoclast differentiation were measured.Results: No alterations were observed in final body weights, fat mass, or lean mass in response to LPS treatment. LPS treatment increased serum concentration of tartrate-resistant acid phosphatase (TRAP, a bone resorption marker) and bone marrow osteoclast differentiation and decreased femoral and lumbar vertebral bone volume (BV):total volume (TV) by 25% and 24%, respectively, compared with the placebo. Mice fed the HF diet had greater body weight at the end of the study (P < 0.01) due to increased fat mass (P < 0.01) than did mice fed the NF diet. The HF diet increased serum TRAP concentration, bone marrow osteoclast differentiation, and expression of tumor necrosis factor α, interleukin 1β and interleukin 6 in adipose tissue. Compared with the NF diet, the HF diet decreased BV:TV by 10% and 8% at femur and lumbar vertebrae, respectively, and the HF diet was detrimental to femoral and lumbar vertebral bone structure with decreased trabecular number and increased trabecular separation and structure model index.Conclusion: Results suggest that HF diets and systemic chronic inflammation have independent negative effects on bone structure in mice.
Collapse
Affiliation(s)
- Jay J Cao
- USDA, Agricultural Research Service, Grand Forks Human Nutrition Research Center, Grand Forks, ND; and
| | - Brian R Gregoire
- USDA, Agricultural Research Service, Grand Forks Human Nutrition Research Center, Grand Forks, ND; and
| | - Chwan-Li Shen
- Department of Pathology, Texas Tech University Health Sciences Center, Lubbock, TX
| |
Collapse
|
17
|
Villa CR, Chen J, Wen B, Sacco SM, Taibi A, Ward WE, Comelli EM. Maternal vitamin D beneficially programs metabolic, gut and bone health of mouse male offspring in an obesogenic environment. Int J Obes (Lond) 2016; 40:1875-1883. [PMID: 27698344 DOI: 10.1038/ijo.2016.177] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 09/11/2016] [Accepted: 09/15/2016] [Indexed: 12/19/2022]
Abstract
BACKGROUND/OBJECTIVES Vitamin D is an anti-inflammatory nutrient and a determinant of bone health. Some prospective studies suggest that maternal vitamin D status is positively associated with offspring bone mass. We found that serum concentrations of lipopolysaccharide (LPS), an inflammatory molecule related to adiposity, insulin resistance and bone resorption, is lower in healthy mouse offspring exposed to high dietary vitamin D during pregnancy and lactation. LPS reaches the circulation via the gut. This study investigated whether maternal vitamin D programs metabolic, gut and bone health of male offspring in an obesogenic environment. METHODS C57BL/6J dams received an AIN-93G diet with high (H) or low (L) vitamin D during pregnancy and lactation. At weaning, offspring remained on their dam's vitamin D level (LL or HH) or were switched (LH or HL) and fed a high fat (44.2%) and sucrose (19.8%) diet. Glucose response, adiposity, systemic inflammation (LPS, cytokines), intestinal permeability and mass, strength and microarchitecture of trabecular and cortical bone were assessed in 7-month-old male offsprings. RESULTS Higher maternal dietary vitamin D resulted in lower intestinal permeability (fecal albumin, P=0.010) and benefited trabecular but not cortical bone structure at the distal femur (higher trabecular number, P=0.022; less trabecular separation, P=0.015) and lumbar vertebra 2 (bone volume/total volume%, P=0.049). Higher maternal and offspring vitamin D resulted in lower fasting glucose (HH versus LL, P=0.039) and serum LPS concentrations (dam diet, P=0.011; pup diet, P=0.002). Higher offspring vitamin D resulted in lower epididymal fat pad relative weight (P=0.006). The serum concentrations of IL-6 and TNF-α did not differ among groups. CONCLUSIONS Maternal dietary vitamin D beneficially programs intestinal permeability and systemic LPS concentration, which is accompanied by stronger trabecular bone in an obesogenic environment. Thus, the gut may mediate vitamin D effects. Moreover, optimizing vitamin D in early life may be critical for later health.
Collapse
Affiliation(s)
- C R Villa
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - J Chen
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - B Wen
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - S M Sacco
- Department of Kinesiology, Faculty of Applied Health Sciences, Brock University, St. Catharines, ON, Canada
| | - A Taibi
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - W E Ward
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, Canada.,Department of Kinesiology, Faculty of Applied Health Sciences, Brock University, St. Catharines, ON, Canada
| | - E M Comelli
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, Canada.,Centre for Child Nutrition and Health, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
18
|
Rendina-Ruedy E, Graef JL, Davis MR, Hembree KD, Gimble JM, Clarke SL, Lucas EA, Smith BJ. Strain differences in the attenuation of bone accrual in a young growing mouse model of insulin resistance. J Bone Miner Metab 2016; 34:380-94. [PMID: 26058493 DOI: 10.1007/s00774-015-0685-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Accepted: 05/09/2015] [Indexed: 12/24/2022]
Abstract
Skeletal fractures are considered a chronic complication of type 2 diabetes mellitus (T2DM), but the etiology of compromised bone quality that develops over time remains uncertain. This study investigated the concurrent alterations in metabolic and skeletal changes in two mouse strains, a responsive (C57BL/6) and a relatively resistant (C3H/HeJ) strain, to high-fat diet-induced glucose intolerance. Four-week-old male C57BL/6 and C3H/HeJ mice were randomized to a control (Con = 10 % kcal fat) or high-fat (HF = 60 % kcal fat) diet for 2, 8, or 16 weeks. Metabolic changes, including blood glucose, plasma insulin and leptin, and glucose tolerance were monitored over time in conjunction with alterations in bone structure and turn over. Elevated fasting glucose occurred in both the C57BL/6 and C3H/HeJ strains on the HF diet at 2 and 8 weeks, but only in the C57BL/6 strain at 16 weeks. Both strains on the HF diet demonstrated impaired glucose tolerance at each time point. The C57BL/6 mice on the HF diet exhibited lower whole-body bone mineral density (BMD) by 8 and 16 weeks, but the C3H/HeJ strain had no evidence of bone loss until 16 weeks. Analyses of bone microarchitecture revealed that trabecular bone accrual in the distal femur metaphysis was attenuated in the C57BL/6 mice on the HF diet at 8 and 16 weeks. In contrast, the C3H/HeJ mice were protected from the deleterious effects of the HF diet on trabecular bone. Alterations in gene expression from the femur revealed that several toll-like receptor (TLR)-4 targets (Atf4, Socs3, and Tlr4) were regulated by the HF diet in the C57BL/6 strain, but not in the C3H/HeJ strain. Structural changes observed only in the C57BL/6 mice were accompanied with a decrease in osteoblastogenesis after 8 and 16 weeks on the HF diet, suggesting a TLR-4-mediated mechanism in the suppression of bone formation. Both the C57BL/6 and C3H/HeJ mice demonstrated an increase in osteoclastogenesis after 8 weeks on the HF diet; however, bone turnover was decreased in the C57BL/6 with prolonged hyperglycemia. Further investigation is needed to understand how hyperglycemia and hyperinsulinemia suppress bone turnover in the context of T2DM and the role of TLR-4 in this response.
Collapse
Affiliation(s)
- Elizabeth Rendina-Ruedy
- Department of Nutritional Sciences, HSci 420 Oklahoma State University, Stillwater, OK, 74078, USA
| | - Jennifer L Graef
- Department of Nutritional Sciences, HSci 420 Oklahoma State University, Stillwater, OK, 74078, USA
| | - McKale R Davis
- Department of Nutritional Sciences, HSci 420 Oklahoma State University, Stillwater, OK, 74078, USA
| | - Kelsey D Hembree
- Department of Nutritional Sciences, HSci 420 Oklahoma State University, Stillwater, OK, 74078, USA
| | - Jeffrey M Gimble
- Stem Cell Biology Laboratory, Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA, USA
| | - Stephen L Clarke
- Department of Nutritional Sciences, HSci 420 Oklahoma State University, Stillwater, OK, 74078, USA
| | - Edralin A Lucas
- Department of Nutritional Sciences, HSci 420 Oklahoma State University, Stillwater, OK, 74078, USA
| | - Brenda J Smith
- Department of Nutritional Sciences, HSci 420 Oklahoma State University, Stillwater, OK, 74078, USA.
| |
Collapse
|
19
|
Equol suppresses inflammatory response and bone erosion due to rheumatoid arthritis in mice. J Nutr Biochem 2016; 32:101-6. [PMID: 27142742 DOI: 10.1016/j.jnutbio.2016.02.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Revised: 02/14/2016] [Accepted: 02/23/2016] [Indexed: 11/21/2022]
Abstract
Rheumatoid arthritis (RA) is a chronic and systemic autoimmune inflammatory disease. Typical pathological findings of RA include persistent synovitis and bone degradation in the peripheral joints. Equol, a metabolite of the major soybean isoflavone daidzein, shows superior bioactivity than other isoflavones. We investigated the effects of equol administration on inflammatory response and bone erosion in mice with collagen-induced arthritis (CIA). The severity of arthritis symptoms was significantly low in the equol-administered CIA mice. In addition, equol administration improved the CIA-induced bone mineral density decline. In the inflamed area of CIA mice, equol administration suppressed the expression of interleukin-6 and its receptor. Furthermore, equol reduced the expression of genes associated with bone formation inhibition, osteoclast and immature osteoblast specificity and cartilage destruction. These results suggest that equol suppresses RA development and RA-induced bone erosion by regulating inflammation and bone metabolism.
Collapse
|
20
|
King TJ, Shandala T, Lee AM, Foster BK, Chen KM, Howe PR, Xian CJ. Potential Effects of Phytoestrogen Genistein in Modulating Acute Methotrexate Chemotherapy-Induced Osteoclastogenesis and Bone Damage in Rats. Int J Mol Sci 2015; 16:18293-311. [PMID: 26258775 PMCID: PMC4581246 DOI: 10.3390/ijms160818293] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 08/03/2015] [Indexed: 02/02/2023] Open
Abstract
Chemotherapy-induced bone damage is a frequent side effect which causes diminished bone mineral density and fracture in childhood cancer sufferers and survivors. The intensified use of anti-metabolite methotrexate (MTX) and other cytotoxic drugs has led to the need for a mechanistic understanding of chemotherapy-induced bone loss and for the development of protective treatments. Using a young rat MTX-induced bone loss model, we investigated potential bone protective effects of phytoestrogen genistein. Oral gavages of genistein (20 mg/kg) were administered daily, for seven days before, five days during, and three days after five once-daily injections (sc) of MTX (0.75 mg/kg). MTX treatment reduced body weight gain and tibial metaphyseal trabecular bone volume (p < 0.001), increased osteoclast density on the trabecular bone surface (p < 0.05), and increased the bone marrow adipocyte number in lower metaphyseal bone (p < 0.001). Genistein supplementation preserved body weight gain (p < 0.05) and inhibited ex vivo osteoclast formation of bone marrow cells from MTX-treated rats (p < 0.001). However, MTX-induced changes in bone volume, trabecular architecture, metaphyseal mRNA expression of pro-osteoclastogenic cytokines, and marrow adiposity were not significantly affected by the co-administration of genistein. This study suggests that genistein may suppress MTX-induced osteoclastogenesis; however, further studies are required to examine its potential in protecting against MTX chemotherapy-induced bone damage.
Collapse
Affiliation(s)
- Tristan J King
- Sansom Institute for Health Research, School of Pharmacy and Medical Science, University of South Australia, Adelaide, SA 5001, Australia.
- Department of Physiology, School of Medical Sciences, University of Adelaide, Adelaide, SA 5001, Australia.
| | - Tetyana Shandala
- Sansom Institute for Health Research, School of Pharmacy and Medical Science, University of South Australia, Adelaide, SA 5001, Australia.
| | - Alice M Lee
- Sansom Institute for Health Research, School of Pharmacy and Medical Science, University of South Australia, Adelaide, SA 5001, Australia.
| | - Bruce K Foster
- Department of Orthopaedic Surgery, Women's and Children's Hospital, North Adelaide, SA 5006, Australia.
| | - Ke-Ming Chen
- Institute of Orthopaedics, Lanzhou General Hospital, Lanzhou Command of Chinese People's Liberation Army, Lanzhou 730050, China.
| | - Peter R Howe
- Nutritional Physiology Research Centre, School of Health Sciences, University of South Australia, Adelaide, SA 5001, Australia.
- Clinical Nutrition Research Centre, University of Newcastle, Callaghan, NSW 2308, Australia.
| | - Cory J Xian
- Sansom Institute for Health Research, School of Pharmacy and Medical Science, University of South Australia, Adelaide, SA 5001, Australia.
| |
Collapse
|
21
|
Chongwatpol P, Rendina-Ruedy E, Stoecker BJ, Clarke SL, Lucas EA, Smith BJ. Implications of compromised zinc status on bone loss associated with chronic inflammation in C57BL/6 mice. J Inflamm Res 2015. [PMID: 26203271 PMCID: PMC4508086 DOI: 10.2147/jir.s82261] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Compromised zinc status and chronic inflammation are independent factors that can contribute to bone loss. However, zinc’s role in regulating lymphoid and myeloid cell populations, combined with the interplay between the immune and skeletal systems raises the question as to the extent to which a low-grade inflammatory challenge in the context of marginal zinc deficiency would exacerbate bone loss. To address this question, young adult C57BL/6 male mice (n=32) were used in a 2×2 factorial design with dietary zinc (adequate or 35 ppm vs inadequate or −Zn =5 ppm) and lipopolysaccharide (LPS, 0 or 0.1 mg/kg body weight). Mice were fed their respective diets for 10 weeks. On the 6th week, mice had a slow release pellet implanted to induce a low-grade inflammation for the final 4 weeks of the study. −Zn induced a decrease in total white cell counts and peripheral lymphocytes, whereas LPS increased blood monocytes. LPS significantly reduced spine bone mineral density and trabecular bone volume and number of the vertebral body compared with both zinc adequate and inadequate without LPS groups. Likewise, the most pronounced effects on bone strength occurred with LPS, however, −Zn also had negative effects on the bone von Mises stresses. LPS induced an increase in TNF-α and this response was further increased with −Zn. Although the marginal zinc deficiency altered immune function, bone loss was not exacerbated with low-grade chronic inflammation in marginally zinc-deficient young adult mice. These findings demonstrate that in young adult animals an immune challenge modestly increases the inflammatory response and worsens bone biomechanics in the context of a marginal zinc deficiency, but not to the extent that more severe adverse outcomes are observed on bone structural parameters.
Collapse
Affiliation(s)
- Pitipa Chongwatpol
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK, USA
| | | | - Barbara J Stoecker
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK, USA
| | - Stephen L Clarke
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK, USA
| | - Edralin A Lucas
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK, USA
| | - Brenda J Smith
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK, USA
| |
Collapse
|
22
|
A Comparative Study of the Metabolic and Skeletal Response of C57BL/6J and C57BL/6N Mice in a Diet-Induced Model of Type 2 Diabetes. J Nutr Metab 2015; 2015:758080. [PMID: 26146567 PMCID: PMC4469802 DOI: 10.1155/2015/758080] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Revised: 05/08/2015] [Accepted: 05/12/2015] [Indexed: 12/15/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM) represents a complex clinical scenario of altered energy metabolism and increased fracture incidence. The C57BL/6 mouse model of diet-induced obesity has been used to study the mechanisms by which altered glucose homeostasis affects bone mass and quality, but genetic variations in substrains of C57BL/6 may have confounded data interpretation. This study investigated the long-term metabolic and skeletal consequences of two commonly used C57BL/6 substrains to a high fat (HF) diet. Male C57BL/6J, C57BL/6N, and the negative control strain, C3H/HeJ, mice were fed a control or HF diet for 24 wks. C57BL/6N mice on a HF diet demonstrated an increase in plasma insulin and blood glucose as early as 4 wk, whereas these responses were delayed in the C57BL/6J mice. The C57BL/6N mice exhibited more severe hepatic steatosis and inflammation. Only the C57BL/6N mice lost significant trabecular bone in response to the high fat diet. The C3H/HeJ mice were protected from bone loss. The data show that C57BL/6J and C57BL/6N mice differ in their metabolic and skeletal response when fed a HF diet. These substrain differences should be considered when designing experiments and are likely to have implications on data interpretation and reproducibility.
Collapse
|
23
|
Kim IS, Lee B, Yoo SJ, Hwang SJ. Whole Body Vibration Reduces Inflammatory Bone Loss in a Lipopolysaccharide Murine Model. J Dent Res 2014; 93:704-10. [PMID: 24810275 DOI: 10.1177/0022034514534856] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Accepted: 04/16/2014] [Indexed: 11/16/2022] Open
Abstract
Whole body vibration (WBV) stimulation has a beneficial effect on the recovery of osteoporotic bone. We aimed to investigate the immediate effect of WBV on lipopolysaccharide (LPS)-mediated inflammatory bone loss by varying the exposure timing. Balb/C mice were divided into the following groups: control, LPS (L), and LPS with vibration (LV). The L and LV groups received LPS (5 mg/kg) by 2 intraperitoneal injections on days 0 and 4. The LV group was exposed to WBV (0.4 g, 45 Hz) either during LPS treatment (LV1) or after cessation of LPS injection (LV2) and then continued WBV treatment for 10 min/d for 3 d. Evaluation based on micro-computed tomography was performed 7 d after the first injection, when the L group showed a significant decrease in bone volume (-25.8%) and bone mineral density (-33.5%) compared with the control group. The LV2 group recovered bone volume (35%) and bone mineral density (19.9%) compared with the L group, whereas the LV1 group showed no improvement. This vibratory signal showed a suppressive effect on the LPS-mediated induction of inflammatory cytokines such as IL-1β or TNF-α in human mesenchymal stem cells in vitro. These findings suggest that immediate exposure to WBV after the conclusion of LPS treatment efficiently reduces trabecular bone loss, but WBV might be less effective during the course of treatment with inflammatory factor.
Collapse
Affiliation(s)
- I S Kim
- Dental Research Institute, Seoul National University, Seoul, Republic of Korea
| | - B Lee
- Dental Research Institute, Seoul National University, Seoul, Republic of Korea
| | - S J Yoo
- Dental Research Institute, Seoul National University, Seoul, Republic of Korea
| | - S J Hwang
- Dental Research Institute, Seoul National University, Seoul, Republic of Korea Department of Oral and Maxillofacial Surgery, School of Dentistry, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
24
|
Dried plum's unique capacity to reverse bone loss and alter bone metabolism in postmenopausal osteoporosis model. PLoS One 2013; 8:e60569. [PMID: 23555991 PMCID: PMC3612052 DOI: 10.1371/journal.pone.0060569] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Accepted: 02/28/2013] [Indexed: 11/19/2022] Open
Abstract
Interest in dried plum has increased over the past decade due to its promise in restoring bone and preventing bone loss in animal models of osteoporosis. This study compared the effects of dried plum on bone to other dried fruits and further explored the potential mechanisms of action through which dried plum may exert its osteoprotective effects. Adult osteopenic ovariectomized (OVX) C57BL/6 mice were fed either a control diet or a diet supplemented with 25% (w/w) dried plum, apple, apricot, grape or mango for 8 weeks. Whole body and spine bone mineral density improved in mice consuming the dried plum, apricot and grape diets compared to the OVX control mice, but dried plum was the only fruit to have an anabolic effect on trabecular bone in the vertebra and prevent bone loss in the tibia. Restoration of biomechanical properties occurred in conjunction with the changes in trabecular bone in the spine. Compared to other dried fruits in this study, dried plum was unique in its ability to down-regulate osteoclast differentiation coincident with up-regulating osteoblast and glutathione (GPx) activity. These alterations in bone metabolism and antioxidant status compared to other dried fruits provide insight into dried plum's unique effects on bone.
Collapse
|
25
|
Arimura K, Aoshiba K, Tsuji T, Tamaoki J. Chronic low-grade systemic inflammation causes DNA damage in the lungs of mice. Lung 2012; 190:613-20. [PMID: 22965854 DOI: 10.1007/s00408-012-9414-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Accepted: 08/26/2012] [Indexed: 12/19/2022]
Abstract
BACKGROUND Whether systemic inflammation compromises the pulmonary system is largely unknown. We tested the hypothesis that chronic low-grade systemic inflammation damages alveolar wall cells. METHODS A chronic low-grade systemic inflammatory state was induced in 8-week-old male C57/BL6J mice by administration of lipopolysaccharide (LPS, 44.4 μg/day) for a 90-day period by subcutaneous implantation of a delayed-release pellet system. Acute systemic inflammation was induced in another group of mice by a single intraperitoneal injection of LPS (125 μg/body). The lungs of mice were examined for histologic changes and genetic damage to alveolar wall cells. RESULTS Chronic LPS exposure for a 30-day period or a 90-day period did not cause any obvious architectural changes in the lungs except for a mild level of alveolar macrophage infiltration. Despite the lack of architectural changes in the lung, immunofluorescence staining for γH2AX and phosphorylated 53BP1 showed that chronic LPS exposure resulted in an almost doubling of the number of DNA double-strand breaks (DSBs) in type 1 and type 2 alveolar epithelial cells and in alveolar endothelial cells. Acute LPS exposure also resulted in a doubling of the number of DSBs in type 1 and type 2 alveolar epithelial cells and in alveolar endothelial cells at 24 h, but the increased number of DSBs returned to the baseline level by 48 h. CONCLUSIONS These results suggest that chronic systemic low-grade inflammation induces persistent DNA damage in alveolar epithelial and endothelial cells before architectural changes in the lung become evident.
Collapse
Affiliation(s)
- Ken Arimura
- Pulmonary Division, Graduate School of Medical Science, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan
| | | | | | | |
Collapse
|
26
|
Cao JJ, Gregoire BR, Zeng H. Selenium deficiency decreases antioxidative capacity and is detrimental to bone microarchitecture in mice. J Nutr 2012; 142:1526-31. [PMID: 22739365 DOI: 10.3945/jn.111.157040] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Selenium (Se), an essential mineral, plays a major role in cellular redox status and may have beneficial effects on bone health. The objective of this study was to determine whether Se deficiency affects redox status and bone microarchitecture in a mouse model. Thirty-three male C57BL/6J mice, 18 wk old, were randomly assigned to 3 groups. Mice were fed either a purified, Se-deficient diet (SeDef) containing ∼0.9 μg Se/kg diet, or Se-adequate diets containing ∼100 μg Se/kg diet from either selenomethionine (SeMet) or pinto beans (SeBean) for 4 mo. The Se concentration, glutathione peroxidase (GPx1) activity, and GPx1 mRNA in liver were lower in the SeDef group than in the SeMet or SeBean group. The femoral trabecular bone volume/total volume and trabecular number were less, whereas trabecular separation was greater, in the SeDef group than in either the SeMet or SeBean group (P < 0.05). Bone structural parameters between the SeMet and SeBean groups did not differ. Furthermore, Serum concentrations of C-reactive protein, tartrate-resistant acid phosphatase, and intact parathyroid hormone were higher in the SeDef group than in the other 2 groups. These findings demonstrate that Se deficiency is detrimental to bone microarchitecture by increasing bone resorption, possibly through decreasing antioxidative potential.
Collapse
Affiliation(s)
- Jay J Cao
- USDA, Agricultural Research Service, Grand Forks Human Nutrition Research Center, Grand Forks, ND, USA.
| | | | | |
Collapse
|
27
|
Howard TD, Ho SM, Zhang L, Chen J, Cui W, Slager R, Gray S, Hawkins GA, Medvedovic M, Wagner JD. Epigenetic changes with dietary soy in cynomolgus monkeys. PLoS One 2011; 6:e26791. [PMID: 22046358 PMCID: PMC3201974 DOI: 10.1371/journal.pone.0026791] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Accepted: 10/03/2011] [Indexed: 12/22/2022] Open
Abstract
Nutritional interventions are important alternatives for reducing the prevalence of many chronic diseases. Soy is a good source of protein that contains isoflavones, including genistein and daidzein, and may alter the risk of obesity, Type 2 diabetes, osteoporosis, cardiovascular disease, and reproductive cancers. We have shown previously in nonhuman primates that soy protein containing isoflavones leads to improved body weight, insulin sensitivity, lipid profiles, and atherosclerosis compared to protein without soy isoflavones (casein), and does not increase the risk of cancer. Since genistein has been shown to alter DNA methylation, we compared the methylation profiles of cynomolgus monkeys, from multiple tissues, eating two high-fat, typical American diets (TAD) with similar macronutrient contents, with or without soy protein. DNA methylation status was successfully determined for 80.6% of the probes in at least one tissue using Illumina's HumanMethylation27 BeadChip. Overall methylation increased in liver and muscle tissue when monkeys switched from the TAD-soy to the TAD-casein diets. Genes involved in epigenetic processes, specifically homeobox genes (HOXA5, HOXA11, and HOXB1), and ABCG5 were among those that changed between diets. These data support the use of the HumanMethylation27 BeadChip in cynomolgus monkeys and identify epigenetic changes associated with dietary interventions with soy protein that may potentially affect the etiology of complex diseases.
Collapse
Affiliation(s)
- Timothy D Howard
- Center for Genomics and Personalized Medicine Research, Wake Forest School of Medicine, Winston-Salem, North Carolina, United States of America.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Rendina E, Lim YF, Marlow D, Wang Y, Clarke SL, Kuvibidila S, Lucas EA, Smith BJ. Dietary supplementation with dried plum prevents ovariectomy-induced bone loss while modulating the immune response in C57BL/6J mice. J Nutr Biochem 2011; 23:60-8. [PMID: 21414765 DOI: 10.1016/j.jnutbio.2010.10.010] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2010] [Revised: 07/13/2010] [Accepted: 10/12/2010] [Indexed: 10/18/2022]
Abstract
This study was designed to investigate the effects of dried plum on the changes in bone metabolism and the immune response associated with ovarian hormone deficiency. Adult female C57BL/6J mice were either sham-operated (Sham) and fed AIN-93 diet (control) or ovariectomized (OVX) and fed a control diet with 0%, 5%, 15% or 25% dried plum (w/w), corresponding to control, low- (LDP), medium- (MDP) and high (HDP)-dose dried plum. Four weeks of HDP supplementation prevented the decrease in spine bone mineral density and content induced by OVX. The OVX compromise in trabecular bone of the vertebra and proximal tibia was prevented by the higher doses of dried plum, and in the vertebra these effects resulted in greater (P<.05) bone strength and stiffness. In the bone marrow, OVX suppressed granulocyte and committed monocyte populations and increased the lymphoblast population, but the MDP and HDP restored these myeloid and lymphoid populations to the level of the Sham. Dried plum also suppressed lymphocyte tumor necrosis factor (TNF)-α production ex vivo by splenocytes, in response to concanavalin (Con) A stimulation. These data indicate that dried plum's positive effects on bone structural and biomechanical properties coincide with the restoration of certain bone marrow myeloid and lymphoid populations, and suppressed splenocyte activation occurring with ovarian hormone deficiency.
Collapse
Affiliation(s)
- Elizabeth Rendina
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK 74078, USA
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Green tea polyphenols avert chronic inflammation-induced myocardial fibrosis of female rats. Inflamm Res 2011; 60:665-72. [DOI: 10.1007/s00011-011-0320-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2010] [Revised: 12/13/2010] [Accepted: 01/05/2011] [Indexed: 12/13/2022] Open
|
30
|
Pinent M, Espinel AE, Delgado MA, Baiges I, Bladé C, Arola L. Isoflavones reduce inflammation in 3T3-L1 adipocytes. Food Chem 2011. [DOI: 10.1016/j.foodchem.2010.09.042] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
31
|
Shen CL, Yeh JK, Samathanam C, Cao JJ, Stoecker BJ, Dagda RY, Chyu MC, Dunn DM, Wang JS. Green tea polyphenols attenuate deterioration of bone microarchitecture in female rats with systemic chronic inflammation. Osteoporos Int 2011; 22:327-37. [PMID: 20306019 DOI: 10.1007/s00198-010-1209-2] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2009] [Accepted: 02/03/2010] [Indexed: 01/31/2023]
Abstract
UNLABELLED Green tea polyphenols (GTP) are promising agents for preventing bone loss. GTP supplementation sustained microarchitecture and improved bone quality via a decrease in inflammation. Findings suggest a significant role for GTP in skeletal health of patients with chronic inflammation. INTRODUCTION This study evaluated whether GTP can restore bone microstructure along with a molecular mechanism in rats with chronic inflammation. A 2 [placebo vs. lipopolysaccharide (LPS)]× 2 [no GTP vs. 0.5% GTP (w/v) in drinking water] factorial design was employed. METHODS Female rats were assigned to four groups: placebo, LPS, placebo + GTP, and LPS + GTP for 12 weeks. Efficacy was evaluated by examining changes in bone microarchitecture using histomorphometric and microcomputed tomographic analyses and by bone strength using the three-point bending test. A possible mechanism was studied by assessing the difference in tumor necrosis factor-α (TNF-α) expression in tibia using immunohistochemistry. RESULTS LPS lowered trabecular volume fraction, thickness, and bone formation in proximal tibia while increasing osteoclast number and surface perimeter in proximal tibia and eroded surface in endocortical tibial shafts. GTP increased trabecular volume fraction and number in both femur and tibia and periosteal bone formation rate in tibial shafts while decreasing trabecular separation in proximal tibia and eroded surface in endocortical tibial shafts. There was an interaction between LPS and GTP in trabecular number, separation, bone formation, and osteoclast number in proximal tibia, and trabecular thickness and number in femur. GTP improved the strength of femur, while suppressing TNF-α expression in tibia. CONCLUSION In conclusion, GTP supplementation mitigated deterioration of bone microarchitecture and improved bone integrity in rats with chronic inflammation by suppressing bone erosion and modulating cancellous and endocortical bone compartments, resulting in a larger net bone volume. Such a protective role of GTP may be due to a suppression of TNF-α.
Collapse
Affiliation(s)
- C-L Shen
- Department of Pathology, Texas Tech University Health Sciences Center, BB 198, 3601 4th Street, Lubbock, TX 79430-9097, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Shen CL, Yeh JK, Cao JJ, Tatum OL, Dagda RY, Wang JS. Synergistic effects of green tea polyphenols and alphacalcidol on chronic inflammation-induced bone loss in female rats. Osteoporos Int 2010; 21:1841-52. [PMID: 20069278 PMCID: PMC2919589 DOI: 10.1007/s00198-009-1122-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2009] [Accepted: 10/14/2009] [Indexed: 12/19/2022]
Abstract
UNLABELLED Studies suggest that green tea polyphenols (GTP) or alphacalcidol is promising agent for preventing bone loss. Findings that GTP supplementation plus alphacalcidol administration increased bone mass via a decrease of oxidative stress and inflammation suggest a significant role of GTP plus alphacalcidol in bone health of patients with chronic inflammation. INTRODUCTION Studies have suggested that green tea polyphenols (GTP) or alphacalcidol are promising dietary supplements for preventing bone loss in women. However, the mechanism(s) related to the possible osteo-protective role of GTP plus D(3) in chronic inflammation-induced bone loss is not well understood. METHODS This study evaluated bioavailability, efficacy, and related mechanisms of GTP in combination with alphacalcidol in conserving bone loss in rats with chronic inflammation. A 12-week study of 2 (no GTP vs. 0.5% GTP in drinking water) × 2 (no alphacalcidol vs. 0.05 μg/kg alphacalcidol, 5×/week) factorial design in lipopolysaccharide-administered female rats was performed. In addition, a group receiving placebo administration was used to compare with a group receiving lipopolysaccharide administration only to evaluate the effect of lipopolysaccharide. RESULTS Lipopolysaccharide administration resulted in lower values for bone mass, but higher values for serum tartrate-resistant acid phosphatase (TRAP), urinary 8-hydroxy-2'-deoxyguanosine, and mRNA expression of tumor necrosis factor-α and cyclooxygenase-2 in spleen. GTP supplementation increased urinary epigallocatechin and epicatechin concentrations. Both GTP supplementation and alphacalcidol administration resulted in a significant increase in bone mass, but a significant decrease in serum TRAP levels, urinary 8-hydroxydeoxyguanosine levels, and mRNA expression of tumor necrosis factor-α and cyclooxygenase-2 in spleen. A synergistic effect of GTP and alphacalcidol was observed in these parameters. Neither GTP nor alphacalcidol affected femoral bone area or serum osteocalcin. CONCLUSION We conclude that a bone-protective role of GTP plus alphacalcidol during chronic inflammation bone loss may be due to a reduction of oxidative stress damage and inflammation.
Collapse
Affiliation(s)
- C-L Shen
- Department of Pathology, Texas Tech University Health Sciences Center, BB 198, 3601 4th street, Lubbock, TX 79430-9097, USA.
| | | | | | | | | | | |
Collapse
|
33
|
Protective actions of green tea polyphenols and alfacalcidol on bone microstructure in female rats with chronic inflammation. J Nutr Biochem 2010; 22:673-80. [PMID: 21036589 DOI: 10.1016/j.jnutbio.2010.05.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2009] [Revised: 04/27/2010] [Accepted: 05/29/2010] [Indexed: 11/23/2022]
Abstract
This study investigated the effects of green tea polyphenols (GTP) and alfacalcidol on bone microstructure and strength along with possible mechanisms in rats with chronic inflammation. A 12-week study using a 2 (no GTP vs. 0.5%, w/v GTP in drinking water)×2 (no alfacalcidol vs. 0.05 μg/kg alfacalcidol orally, 5×/week) factorial design was employed in lipopolysaccharide (LPS)-administered female rats. A group receiving placebo administration was used to compare with a group receiving LPS administration only to evaluate the effect of LPS. Changes in tibial and femoral microarchitecture and strength of femur were evaluated. Difference in expression of tumor necrosis factor-α (TNF-α) in proximal tibia using immunohistochemistry was examined. Compared to the placebo group, the LPS-administered-only group had significantly lower femoral mass, trabecular volume, thickness and number in proximal tibia and femur, and lower periosteal bone formation rate in tibial shafts but had significantly higher trabecular separation and osteoclast number in proximal tibia and eroded surface in endocortical tibial shafts. Both GTP and alfacalcidol reversed these LPS-induced detrimental changes in femur, proximal tibia and endocortical tibial shaft. Both GTP and alfacalcidol also significantly improved femoral strength, while significantly suppressed TNF-α expression in proximal tibia. There were significant interactions in femoral mass and strength, trabecular separation, osteoclast number and TNF-α expression in proximal tibia. A combination of both showed to sustain bone microarchitecture and strength. We conclude that a protective impact of GTP and alfacalcidol in bone microarchitecture during chronic inflammation may be due to a suppression of TNF-α.
Collapse
|
34
|
Cao JJ, Gregoire BR, Sheng X, Liuzzi JP. Pinto bean hull extract supplementation favorably affects markers of bone metabolism and bone structure in mice. Food Res Int 2010. [DOI: 10.1016/j.foodres.2009.07.031] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
35
|
Egger G, Dixon J. Inflammatory effects of nutritional stimuli: further support for the need for a big picture approach to tackling obesity and chronic disease. Obes Rev 2010; 11:137-49. [PMID: 19656309 DOI: 10.1111/j.1467-789x.2009.00644.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The discovery of a form of low-grade systemic inflammation (called 'metaflammation'), and the close evolutionary link between the immune and metabolic systems, poses questions about the supposed antigens (inducers) of such an immune reaction. Initially, this was thought to be mediated through obesity. However, we have identified a number of lifestyle or environmentally related inducers that may cause metaflammation, even in the absence of obesity. In this paper, the third of a series linking obesity with broad environmental and evolutionary factors, we identify nutritional stimuli with evidence of an involvement in metaflammation. From this we propose that components of certain foods and beverages with which humans have not evolved, are more often the inducers of an inflammatory effect in the body than those with which humans have become more familiar, and to which a neutral, or anti-inflammatory response may be expected to have developed. The implications of such a finding are considered in relation to broader aspects of the environment, economic growth, policy change and current global financial issues.
Collapse
Affiliation(s)
- G Egger
- Health and Applied Sciences, Southern Cross University, Lismore, NSW, Australia.
| | | |
Collapse
|
36
|
Beavers KM, Jonnalagadda SS, Messina MJ. Soy consumption, adhesion molecules, and pro-inflammatory cytokines: a brief review of the literature. Nutr Rev 2009; 67:213-21. [PMID: 19335715 DOI: 10.1111/j.1753-4887.2009.00191.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Given the interest in the vascular effects of both soyfoods and soy isoflavones, the purpose of this short review is to evaluate clinical trials that have examined the effects of isoflavone-rich soy products on the novel cardiovascular risk factors, cellular adhesion molecules, and pro-inflammatory cytokines. A total of 14 randomized clinical studies were assessed. From the data evaluated, evidence suggests that neither soyfoods nor soy isoflavones affect IL-6 or TNF-alpha expression. In contrast, the effects of soy on cellular adhesion molecules are mixed. Study design characteristics possibly contributing to the inconsistent data are discussed and recommendations for future research in this area are presented.
Collapse
Affiliation(s)
- Kristen M Beavers
- Department of Health, Human Performance, and Recreation, Baylor University, Waco, Texas 76798-7313, USA.
| | | | | |
Collapse
|
37
|
Cao JJ, Gregoire BR, Gao H. High-fat diet decreases cancellous bone mass but has no effect on cortical bone mass in the tibia in mice. Bone 2009; 44:1097-104. [PMID: 19264159 DOI: 10.1016/j.bone.2009.02.017] [Citation(s) in RCA: 188] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2008] [Revised: 01/22/2009] [Accepted: 02/11/2009] [Indexed: 11/26/2022]
Abstract
Body mass has a positive effect on bone health. Whether mass derived from an obesity condition or excessive fat accumulation is beneficial to bone has not been established; neither have the mechanisms by which obesity affects bone metabolism. The aim of this study was to examine the effects of obesity on bone structure and osteoblastic expression of key markers involved in bone formation and resorption in a diet-induced obesity mouse model. Six-wk-old male C57BL/6 mice (n=21) were assigned to two groups and fed either a control (10 kcal% energy as fat) or high-fat diet (HFD, 45 kcal% energy as fat) for 14 weeks. Bone marrow stromal/osteoblastic cells (BMSC) were cultured. Osteoprogenitor activity [alkaline phosphatase (ALP) positive colonies] and mineralization (calcium nodule formation) were determined. Gene expression was measured using quantitative real-time PCR. Bone structure of proximal and midshaft tibia was evaluated by micro-computed tomography. Mice fed the HFD were 31% heavier (P<0.01) than those fed the control diet. There were more ALP positive colony forming units at d 14 and calcium nodules at d 28 of culture by BMSC from HFD mice than from control mice (P<0.01). Receptor activator of NF-kappaB ligand (RANKL) mRNA levels and the ratio of RANKL to osteoprotegerin expression in HFD animals was higher (P<0.01) than in control diet animals. Serum tartrate-resistant acid phosphatase levels were higher in HFD fed mice when compared to control diet fed mice (P<0.05). There were no significant differences in tibial fat-free weight, length, and cortical parameters of midshaft between the two groups. Compared with control mice, tibial trabecular bone volume was reduced, and trabecular separation was increased in HFD mice. Trabecular number was lower (P<0.05) and connectivity density tended to be less (P=0.07) in HFD mice than in control mice. In conclusion, our data indicate that obesity induced by a high-fat diet decreases cancellous bone mass but has no effect on cortical bone mass in the tibia in mice.
Collapse
Affiliation(s)
- Jay J Cao
- USDA, Agricultural Research Service, Grand Forks Human Nutrition Research Center, 2420 2nd Ave N, Grand Forks, ND 58202-9034, USA.
| | | | | |
Collapse
|
38
|
Flavonoids as anti-inflammatory agents: implications in cancer and cardiovascular disease. Inflamm Res 2009; 58:537-52. [PMID: 19381780 DOI: 10.1007/s00011-009-0037-3] [Citation(s) in RCA: 590] [Impact Index Per Article: 36.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2008] [Revised: 01/09/2009] [Accepted: 03/16/2009] [Indexed: 12/11/2022] Open
Abstract
Chronic inflammation is being shown to be increasingly involved in the onset and development of several pathological disturbances such as arteriosclerosis, obesity, diabetes, neurodegenerative diseases and even cancer. Treatment for chronic inflammatory disorders has not been solved, and there is an urgent need to find new and safe anti-inflammatory compounds. Flavonoids belong to a group of natural substances occurring normally in the diet that exhibit a variety of beneficial effects on health. The anti-inflammatory properties of flavonoids have been studied recently, in order to establish and characterize their potential utility as therapeutic agents in the treatment of inflammatory diseases. Several mechanisms of action have been proposed to explain in vivo flavonoid anti-inflammatory actions, such as antioxidant activity, inhibition of eicosanoid generating enzymes or the modulation of the production of proinflammatory molecules. Recent studies have also shown that some flavonoids are modulators of proinflammatory gene expression, thus leading to the attenuation of the inflammatory response. However, much work remains to be done in order to achieve definitive conclusions about their potential usefulness. This review summarizes the known mechanisms involved in the anti-inflammatory activity of flavonoids and the implications of these effects on the protection against cancer and cardiovascular disease.
Collapse
|
39
|
Blay M, Espinel AE, Delgado MA, Baiges I, Bladé C, Arola L, Salvadó J. Isoflavone effect on gene expression profile and biomarkers of inflammation. J Pharm Biomed Anal 2009; 51:382-90. [PMID: 19410411 DOI: 10.1016/j.jpba.2009.03.028] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2009] [Revised: 03/23/2009] [Accepted: 03/26/2009] [Indexed: 11/18/2022]
Abstract
The use of high throughput techniques to find differences in gene expression profiles between related samples (transcriptomics) that underlie changes in physiological states can be applied in medicine, drug development and nutrition. Transcriptomics can be used to provide novel biomarkers of a future pathologic state and to study how bioactive food compounds or drugs can modulate them in the early stages. In this study, we examine the expression pattern in order to determine the effect of the pathological-inflammatory state on the RAW 264.7 cell model and to ascertain how isoflavones and their active functional metabolites alleviate the inflammatory burst and the extent of gene modulation due to the presence of polyphenols. Results demonstrated that genistein (20 microM) and equol (10 microM) significantly inhibited the overproduction of NO and PGE(2) induced by LPS plus INF-gamma when a pre-treatment was performed or when administered during activation. Daidzein, however, did not exert similar effects. Moreover, both isoflavone treatments regulated gene transcription of cytokines and inflammatory markers, among others. The transcriptomic changes provide clues firstly into defining a differential expression profile in inflammation in order to select putative biomarkers of the inflammatory process, and secondly into understanding the isoflavone action mechanism at the transcriptional level. In conclusion, isoflavone modulates the inflammatory response in activated macrophages by inhibiting NO and PGE(2) and by modulating the expression of key genes defined by transcriptomic profiling.
Collapse
Affiliation(s)
- M Blay
- Department of Biochemistry and Biotechnology, Nutrigenomics Research Group, Universitat Rovira i Virgili, Tarragona, Spain
| | | | | | | | | | | | | |
Collapse
|