1
|
Takada N, Hagiwara S, Abe N, Yamazaki R, Tsuneishi K, Yasuda K. Open-End Control of Neurite Outgrowth Lengths with Steep Bending Confinement Microchannel Patterns for Miswiring-Free Neuronal Network Formation. MICROMACHINES 2024; 15:1374. [PMID: 39597186 PMCID: PMC11596160 DOI: 10.3390/mi15111374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 11/11/2024] [Accepted: 11/13/2024] [Indexed: 11/29/2024]
Abstract
Wiring technology to control the length and direction of neurite outgrowth and to connect them is one of the most crucial development issues for forming single-cell-based neuronal networks. However, with current neurite wiring technology, it has been difficult to stop neurite extension at a specific length and connect it to other neurites without causing miswiring due to over-extension. Here, we examined a novel method of wiring neurites without miswiring by controlling the length of neurites in open-ended bending microchannel arrays connected beyond the maximum bending angle of neurite outgrowth. First, we determined the maximum bending angle of neurite elongation to pass through the bending point of a bending microfluidic channel; the maximum angle (the critical angle) was 90°. Next, we confirmed the control of neurite outgrowth length in open-ended microchannels connected at 120°, an angle beyond the maximum bending angle. The neurites stopped when elongated to the bend point, and no further elongation was observed. Finally, we observed that in bending microchannel arrays connected at an angle of 120°, two neurite outgrowths stopped and contacted each other without crossing over the bend point. The results show that the steep bending connection pattern is a robust open-end neurite wiring technique that prevents over-extension and miswiring.
Collapse
Affiliation(s)
- Naoya Takada
- Department of Pure and Applied Physics, Graduate School of Advanced Science and Engineering, Waseda University, Tokyo 169-8555, Japan; (N.T.); (S.H.); (N.A.); (R.Y.); (K.T.)
| | - Soya Hagiwara
- Department of Pure and Applied Physics, Graduate School of Advanced Science and Engineering, Waseda University, Tokyo 169-8555, Japan; (N.T.); (S.H.); (N.A.); (R.Y.); (K.T.)
| | - Nanami Abe
- Department of Pure and Applied Physics, Graduate School of Advanced Science and Engineering, Waseda University, Tokyo 169-8555, Japan; (N.T.); (S.H.); (N.A.); (R.Y.); (K.T.)
| | - Ryohei Yamazaki
- Department of Pure and Applied Physics, Graduate School of Advanced Science and Engineering, Waseda University, Tokyo 169-8555, Japan; (N.T.); (S.H.); (N.A.); (R.Y.); (K.T.)
| | - Kazuhiro Tsuneishi
- Department of Pure and Applied Physics, Graduate School of Advanced Science and Engineering, Waseda University, Tokyo 169-8555, Japan; (N.T.); (S.H.); (N.A.); (R.Y.); (K.T.)
| | - Kenji Yasuda
- Department of Pure and Applied Physics, Graduate School of Advanced Science and Engineering, Waseda University, Tokyo 169-8555, Japan; (N.T.); (S.H.); (N.A.); (R.Y.); (K.T.)
- Department of Physics, School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169-8555, Japan
| |
Collapse
|
2
|
Gao J, Li J, Luo Z, Wang H, Ma Z. Nanoparticle-Based Drug Delivery Systems for Inflammatory Bowel Disease Treatment. Drug Des Devel Ther 2024; 18:2921-2949. [PMID: 39055164 PMCID: PMC11269238 DOI: 10.2147/dddt.s461977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 06/25/2024] [Indexed: 07/27/2024] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic, non-specific inflammatory condition characterized by recurring inflammation of the intestinal mucosa. However, the existing IBD treatments are ineffective and have serious side effects. The etiology of IBD is multifactorial and encompasses immune, genetic, environmental, dietary, and microbial factors. The nanoparticles (NPs) developed based on specific targeting methodologies exhibit great potential as nanotechnology advances. Nanoparticles are defined as particles between 1 and 100 nm in size. Depending on their size and surface functionality, NPs exhibit different properties. A variety of nanoparticle types have been employed as drug carriers for the treatment of inflammatory bowel disease (IBD), with encouraging outcomes observed in experimental models. They increase the bioavailability of drugs and enable targeted drug delivery, promoting localized treatment and thus enhancing efficacy. Nevertheless, numerous challenges persist in the translation from nanomedicine to clinical application, including enhanced formulations and preparation techniques, enhanced drug safety profiles, and so forth. In the future, it will be necessary for scientists and clinicians to collaborate in order to study disease mechanisms, develop new drug delivery strategies, and screen new nanomedicines. Nevertheless, numerous challenges persist in the translation from nanomedicine to clinical application, including enhanced formulations and preparation techniques, enhanced drug safety profiles, and so forth. In the future, it will be necessary for scientists and clinicians to collaborate in order to study disease mechanisms, develop new drug delivery strategies, and screen new nanomedicines.
Collapse
Affiliation(s)
- Jian Gao
- Department of Gastrointestinal Nutrition and Hernia Surgery, The Second Hospital of Jilin University, Changchun, People’s Republic of China
| | - Jiannan Li
- Department of Colorectal and Anal Surgery, The Second Hospital of Jilin University, Changchun, People’s Republic of China
| | - Zengyou Luo
- Department of Gastrointestinal Nutrition and Hernia Surgery, The Second Hospital of Jilin University, Changchun, People’s Republic of China
| | - Hongyong Wang
- Department of Radiotherapy, The Second Hospital of Jilin University, Changchun, People’s Republic of China
| | - Zhiming Ma
- Department of Gastrointestinal Nutrition and Hernia Surgery, The Second Hospital of Jilin University, Changchun, People’s Republic of China
| |
Collapse
|
3
|
Tanaka Y, Watanabe H, Shimoda K, Sakamoto K, Hondo Y, Sentoku M, Sekine R, Kikuchi T, Yasuda K. Stepwise neuronal network pattern formation in agarose gel during cultivation using non-destructive microneedle photothermal microfabrication. Sci Rep 2021; 11:14656. [PMID: 34282174 PMCID: PMC8289850 DOI: 10.1038/s41598-021-93988-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 07/05/2021] [Indexed: 01/25/2023] Open
Abstract
Conventional neuronal network pattern formation techniques cannot control the arrangement of axons and dendrites because network structures must be fixed before neurite differentiation. To overcome this limitation, we developed a non-destructive stepwise microfabrication technique that can be used to alter microchannels within agarose to guide neurites during elongation. Micropatterns were formed in thin agarose layer coating of a cultivation dish using the tip of a 0.7 [Formula: see text]-diameter platinum-coated glass microneedle heated by a focused 1064-nm wavelength infrared laser, which has no absorbance of water. As the size of the heat source was 0.7 [Formula: see text], which is smaller than the laser wavelength, the temperature fell to 45 [Formula: see text] within a distance of 7.0 [Formula: see text] from the edge of the etched agarose microchannel. We exploited the fast temperature decay property to guide cell-to-cell connection during neuronal network cultivation. The first neurite of a hippocampal cell from a microchamber was guided to a microchannel leading to the target neuron with stepwise etching of the micrometer resolution microchannel in the agarose layer, and the elongated neurites were not damaged by the heat of etching. The results indicate the potential of this new technique for fully direction-controlled on-chip neuronal network studies.
Collapse
Affiliation(s)
- Yuhei Tanaka
- Department of Pure and Applied Physics, Graduate School of Advanced Science and Engineering, Waseda University, Tokyo, 169-8555, Japan
| | - Haruki Watanabe
- Department of Pure and Applied Physics, Graduate School of Advanced Science and Engineering, Waseda University, Tokyo, 169-8555, Japan
| | - Kenji Shimoda
- Department of Pure and Applied Physics, Graduate School of Advanced Science and Engineering, Waseda University, Tokyo, 169-8555, Japan
| | - Kazufumi Sakamoto
- Department of Pure and Applied Physics, Graduate School of Advanced Science and Engineering, Waseda University, Tokyo, 169-8555, Japan
| | - Yoshitsune Hondo
- Department of Pure and Applied Physics, Graduate School of Advanced Science and Engineering, Waseda University, Tokyo, 169-8555, Japan
| | - Mitsuru Sentoku
- Department of Pure and Applied Physics, Graduate School of Advanced Science and Engineering, Waseda University, Tokyo, 169-8555, Japan
| | - Rikuto Sekine
- Department of Physics, School of Advanced Science and Engineering, Waseda University, Tokyo, 169-8555, Japan
| | - Takahito Kikuchi
- Department of Pure and Applied Physics, Graduate School of Advanced Science and Engineering, Waseda University, Tokyo, 169-8555, Japan
| | - Kenji Yasuda
- Department of Pure and Applied Physics, Graduate School of Advanced Science and Engineering, Waseda University, Tokyo, 169-8555, Japan.
- Department of Physics, School of Advanced Science and Engineering, Waseda University, Tokyo, 169-8555, Japan.
| |
Collapse
|
4
|
Microfluidic and Microscale Assays to Examine Regenerative Strategies in the Neuro Retina. MICROMACHINES 2020; 11:mi11121089. [PMID: 33316971 PMCID: PMC7763644 DOI: 10.3390/mi11121089] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 12/03/2020] [Accepted: 12/05/2020] [Indexed: 12/15/2022]
Abstract
Bioengineering systems have transformed scientific knowledge of cellular behaviors in the nervous system (NS) and pioneered innovative, regenerative therapies to treat adult neural disorders. Microscale systems with characteristic lengths of single to hundreds of microns have examined the development and specialized behaviors of numerous neuromuscular and neurosensory components of the NS. The visual system is comprised of the eye sensory organ and its connecting pathways to the visual cortex. Significant vision loss arises from dysfunction in the retina, the photosensitive tissue at the eye posterior that achieves phototransduction of light to form images in the brain. Retinal regenerative medicine has embraced microfluidic technologies to manipulate stem-like cells for transplantation therapies, where de/differentiated cells are introduced within adult tissue to replace dysfunctional or damaged neurons. Microfluidic systems coupled with stem cell biology and biomaterials have produced exciting advances to restore vision. The current article reviews contemporary microfluidic technologies and microfluidics-enhanced bioassays, developed to interrogate cellular responses to adult retinal cues. The focus is on applications of microfluidics and microscale assays within mammalian sensory retina, or neuro retina, comprised of five types of retinal neurons (photoreceptors, horizontal, bipolar, amacrine, retinal ganglion) and one neuroglia (Müller), but excludes the non-sensory, retinal pigmented epithelium.
Collapse
|
5
|
Prytkova I, Goate A, Hart RP, Slesinger PA. Genetics of Alcohol Use Disorder: A Role for Induced Pluripotent Stem Cells? Alcohol Clin Exp Res 2018; 42:1572-1590. [PMID: 29897633 PMCID: PMC6120805 DOI: 10.1111/acer.13811] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 06/04/2018] [Indexed: 12/13/2022]
Abstract
Alcohol use disorder (AUD) affects millions of people and costs nearly 250 billion dollars annually. Few effective FDA-approved treatments exist, and more are needed. AUDs have a strong heritability, but only a few genes have been identified with a large effect size on disease phenotype. Genomewide association studies (GWASs) have identified common variants with low effect sizes, most of which are in noncoding regions of the genome. Animal models frequently fail to recapitulate key molecular features of neuropsychiatric disease due to the polygenic nature of the disease, partial conservation of coding regions, and significant disparity in noncoding regions. By contrast, human induced pluripotent stem cells (hiPSCs) derived from patients provide a powerful platform for evaluating genes identified by GWAS and modeling complex interactions in the human genome. hiPSCs can be differentiated into a wide variety of human cells, including neurons, glia, and hepatic cells, which are compatible with numerous functional assays and genome editing techniques. In this review, we focus on current applications and future directions of patient hiPSC-derived central nervous system cells for modeling AUDs in addition to highlighting successful applications of hiPSCs in polygenic neuropsychiatric diseases.
Collapse
Affiliation(s)
- Iya Prytkova
- Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA
| | - Alison Goate
- Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA
- Ronald M. Loeb Center for Alzheimer’s disease, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Department of Genetics and Genomic Sciences, Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Ronald P. Hart
- Department of Cell Biology and Neuroscience, Rutgers University, 604 Allison Road, Piscataway NJ 08854, USA
| | - Paul A. Slesinger
- Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA
| |
Collapse
|
6
|
Seshadri DR, Ramamurthi A. Nanotherapeutics to Modulate the Compromised Micro-Environment for Lung Cancers and Chronic Obstructive Pulmonary Disease. Front Pharmacol 2018; 9:759. [PMID: 30061830 PMCID: PMC6054931 DOI: 10.3389/fphar.2018.00759] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 06/22/2018] [Indexed: 11/13/2022] Open
Abstract
The use of nanomaterials to modulate the tumor microenvironment has great potential to advance outcomes in patients with lung cancer. Nanomaterials can be used to prolong the delivery time of therapeutics enabling their specific targeting to tumors while minimizing and potentially eliminating cytotoxic effects. Using nanomaterials to deliver small-molecule inhibitors for oncogene targeted therapy and cancer immunotherapy while concurrently enabling regeneration of the extracellular matrix could enhance our therapeutic reach and improve outcomes for patients with non-small cell lung cancer (NSCLC) and chronic obstructive pulmonary disease (COPD). The objective of this review is to highlight the role nanomedicines play in improving and reversing adverse outcomes in the tumor microenvironment for advancing treatments for targeting both diseases.
Collapse
Affiliation(s)
- Dhruv R. Seshadri
- Department of Biomedical Engineering, Cleveland Clinic, Cleveland, OH, United States
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States
| | - Anand Ramamurthi
- Department of Biomedical Engineering, Cleveland Clinic, Cleveland, OH, United States
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States
| |
Collapse
|
7
|
A compartmentalized culture device for studying the axons of CNS neurons. Anal Biochem 2017; 539:11-21. [DOI: 10.1016/j.ab.2017.09.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 08/25/2017] [Accepted: 09/20/2017] [Indexed: 12/27/2022]
|
8
|
Compartmentalized Microfluidic Platforms: The Unrivaled Breakthrough of In Vitro Tools for Neurobiological Research. J Neurosci 2017; 36:11573-11584. [PMID: 27852766 DOI: 10.1523/jneurosci.1748-16.2016] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 09/08/2016] [Accepted: 09/28/2016] [Indexed: 12/15/2022] Open
Abstract
Microfluidic technology has become a valuable tool to the scientific community, allowing researchers to study fine cellular mechanisms with higher variable control compared with conventional systems. It has evolved tremendously, and its applicability and flexibility made its usage grow exponentially and transversely to several research fields. This has been particularly noticeable in neuroscience research, where microfluidic platforms made it possible to address specific questions extending from axonal guidance, synapse formation, or axonal transport to the development of 3D models of the CNS to allow pharmacological testing and drug screening. Furthermore, the continuous upgrade of microfluidic platforms has allowed a deeper study of the communication occurring between different neuronal and glial cells or between neurons and other peripheral tissues, both in physiological and pathological conditions. Importantly, the evolution of microfluidic technology has always been accompanied by the development of new computational tools addressing data acquisition, analysis, and modeling.
Collapse
|
9
|
Fantuzzo JA, De Filippis L, McGowan H, Yang N, Ng YH, Halikere A, Liu JJ, Hart RP, Wernig M, Zahn JD, Pang ZP. μNeurocircuitry: Establishing in vitro models of neurocircuits with human neurons. TECHNOLOGY 2017; 5:87-97. [PMID: 28781993 PMCID: PMC5541685 DOI: 10.1142/s2339547817500054] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Neurocircuits in the human brain govern complex behavior and involve connections from many different neuronal subtypes from different brain regions. Recent advances in stem cell biology have enabled the derivation of patient-specific human neuronal cells of various subtypes for the study of neuronal function and disease pathology. Nevertheless, one persistent challenge using these human-derived neurons is the ability to reconstruct models of human brain circuitry. To overcome this obstacle, we have developed a compartmentalized microfluidic device, which allows for spatial separation of cell bodies of different human-derived neuronal subtypes (excitatory, inhibitory and dopaminergic) but is permissive to the spreading of projecting processes. Induced neurons (iNs) cultured in the device expressed pan-neuronal markers and subtype specific markers. Morphologically, we demonstrate defined synaptic contacts between selected neuronal subtypes by synapsin staining. Functionally, we show that excitatory neuronal stimulation evoked excitatory postsynaptic current responses in the neurons cultured in a separate chamber.
Collapse
Affiliation(s)
- Joseph A Fantuzzo
- Child Health Institute of New Jersey, 89 French Street, New Brunswick, NJ 08901, USA
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Road, Piscataway, NJ 08854, USA
| | - Lidia De Filippis
- Child Health Institute of New Jersey, 89 French Street, New Brunswick, NJ 08901, USA
- Department of Neuroscience and Cell Biology, Rutgers University, 675 Hoes Lane West, Piscataway, NJ 08854, USA
- Casa Sollievo della Sofferenza, Viale Cappuccini 1, 71013 San Giovanni Rotondo (FG), Italy
| | - Heather McGowan
- Child Health Institute of New Jersey, 89 French Street, New Brunswick, NJ 08901, USA
- Department of Neuroscience and Cell Biology, Rutgers University, 675 Hoes Lane West, Piscataway, NJ 08854, USA
| | - Nan Yang
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, 265 Campus Drive, Stanford, CA 94305, USA
| | - Yi-Han Ng
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, 265 Campus Drive, Stanford, CA 94305, USA
| | - Apoorva Halikere
- Child Health Institute of New Jersey, 89 French Street, New Brunswick, NJ 08901, USA
- Department of Neuroscience and Cell Biology, Rutgers University, 675 Hoes Lane West, Piscataway, NJ 08854, USA
| | - Jing-Jing Liu
- Child Health Institute of New Jersey, 89 French Street, New Brunswick, NJ 08901, USA
- Department of Neuroscience and Cell Biology, Rutgers University, 675 Hoes Lane West, Piscataway, NJ 08854, USA
| | - Ronald P Hart
- Department of Cell Biology and Neuroscience, Rutgers University, 604 Allison Road, Piscataway, NJ 08854, USA
| | - Marius Wernig
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, 265 Campus Drive, Stanford, CA 94305, USA
| | - Jefrey D Zahn
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Road, Piscataway, NJ 08854, USA
| | - Zhiping P Pang
- Child Health Institute of New Jersey, 89 French Street, New Brunswick, NJ 08901, USA
- Department of Neuroscience and Cell Biology, Rutgers University, 675 Hoes Lane West, Piscataway, NJ 08854, USA
- Department of Pediatrics, Robert Wood Johnson Medical School, Rutgers University, 1 Robert Wood Johnson Place, New Brunswick, NJ 08903, USA
| |
Collapse
|
10
|
Burbulla LF, Beaumont KG, Mrksich M, Krainc D. Micropatterning Facilitates the Long-Term Growth and Analysis of iPSC-Derived Individual Human Neurons and Neuronal Networks. Adv Healthc Mater 2016; 5:1894-903. [PMID: 27108930 DOI: 10.1002/adhm.201500900] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 02/27/2016] [Indexed: 11/08/2022]
Abstract
The discovery of induced pluripotent stem cells (iPSCs) and their application to patient-specific disease models offers new opportunities for studying the pathophysiology of neurological disorders. However, current methods for culturing iPSC-derived neuronal cells result in clustering of neurons, which precludes the analysis of individual neurons and defined neuronal networks. To address this challenge, cultures of human neurons on micropatterned surfaces are developed that promote neuronal survival over extended periods of time. This approach facilitates studies of neuronal development, cellular trafficking, and related mechanisms that require assessment of individual neurons and specific network connections. Importantly, micropatterns support the long-term stability of cultured neurons, which enables time-dependent analysis of cellular processes in living neurons. The approach described in this paper allows mechanistic studies of human neurons, both in terms of normal neuronal development and function, as well as time-dependent pathological processes, and provides a platform for testing of new therapeutics in neuropsychiatric disorders.
Collapse
Affiliation(s)
- Lena F. Burbulla
- Department of Neurology; Northwestern University Feinberg School of Medicine; Chicago IL 60611 USA
| | - Kristin G. Beaumont
- Departments of Biomedical Engineering; Chemistry, and Cell and Molecular Biology; Northwestern University; Evanston IL 60208 USA
| | - Milan Mrksich
- Departments of Biomedical Engineering; Chemistry, and Cell and Molecular Biology; Northwestern University; Evanston IL 60208 USA
| | - Dimitri Krainc
- Department of Neurology; Northwestern University Feinberg School of Medicine; Chicago IL 60611 USA
| |
Collapse
|
11
|
Controlled microfluidics to examine growth-factor induced migration of neural progenitors in the Drosophila visual system. J Neurosci Methods 2015; 262:32-40. [PMID: 26738658 DOI: 10.1016/j.jneumeth.2015.12.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 12/17/2015] [Accepted: 12/19/2015] [Indexed: 02/06/2023]
Abstract
BACKGROUND The developing visual system in Drosophila melanogaster provides an excellent model with which to examine the effects of changing microenvironments on neural cell migration via microfluidics, because the combined experimental system enables direct genetic manipulation, in vivo observation, and in vitro imaging of cells, post-embryo. Exogenous signaling from ligands such as fibroblast growth factor (FGF) is well-known to control glia differentiation, cell migration, and axonal wrapping central to vision. NEW METHOD The current study employs a microfluidic device to examine how controlled concentration gradient fields of FGF are able to regulate the migration of vision-critical glia cells with and without cellular contact with neuronal progenitors. RESULTS Our findings quantitatively illustrate a concentration-gradient dependent chemotaxis toward FGF, and further demonstrate that glia require collective and coordinated neuronal locomotion to achieve directionality, sustain motility, and propagate long cell distances in the visual system. COMPARISON WITH EXISTING METHOD(S) Conventional assays are unable to examine concentration- and gradient-dependent migration. Our data illustrate quantitative correlations between ligand concentration/gradient and glial cell distance traveled, independent or in contact with neurons. CONCLUSIONS Microfluidic systems in combination with a genetically-amenable experimental system empowers researchers to dissect the signaling pathways that underlie cellular migration during nervous system development. Our findings illustrate the need for coordinated neuron-glia migration in the Drosophila visual system, as only glia within heterogeneous populations exhibited increasing motility along distances that increased with increasing FGF concentration. Such coordinated migration and chemotactic dependence can be manipulated for potential therapeutic avenues for NS repair and/or disease treatment.
Collapse
|
12
|
Madhumitha G, Elango G, Roopan SM. Biotechnological aspects of ZnO nanoparticles: overview on synthesis and its applications. Appl Microbiol Biotechnol 2015; 100:571-81. [DOI: 10.1007/s00253-015-7108-x] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2015] [Revised: 09/17/2015] [Accepted: 10/16/2015] [Indexed: 12/06/2022]
|
13
|
Bradford AB, McNutt PM. Importance of being Nernst: Synaptic activity and functional relevance in stem cell-derived neurons. World J Stem Cells 2015; 7:899-921. [PMID: 26240679 PMCID: PMC4515435 DOI: 10.4252/wjsc.v7.i6.899] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 02/28/2015] [Accepted: 05/11/2015] [Indexed: 02/06/2023] Open
Abstract
Functional synaptogenesis and network emergence are signature endpoints of neurogenesis. These behaviors provide higher-order confirmation that biochemical and cellular processes necessary for neurotransmitter release, post-synaptic detection and network propagation of neuronal activity have been properly expressed and coordinated among cells. The development of synaptic neurotransmission can therefore be considered a defining property of neurons. Although dissociated primary neuron cultures readily form functioning synapses and network behaviors in vitro, continuously cultured neurogenic cell lines have historically failed to meet these criteria. Therefore, in vitro-derived neuron models that develop synaptic transmission are critically needed for a wide array of studies, including molecular neuroscience, developmental neurogenesis, disease research and neurotoxicology. Over the last decade, neurons derived from various stem cell lines have shown varying ability to develop into functionally mature neurons. In this review, we will discuss the neurogenic potential of various stem cells populations, addressing strengths and weaknesses of each, with particular attention to the emergence of functional behaviors. We will propose methods to functionally characterize new stem cell-derived neuron (SCN) platforms to improve their reliability as physiological relevant models. Finally, we will review how synaptically active SCNs can be applied to accelerate research in a variety of areas. Ultimately, emphasizing the critical importance of synaptic activity and network responses as a marker of neuronal maturation is anticipated to result in in vitro findings that better translate to efficacious clinical treatments.
Collapse
|
14
|
Renault R, Sukenik N, Descroix S, Malaquin L, Viovy JL, Peyrin JM, Bottani S, Monceau P, Moses E, Vignes M. Combining microfluidics, optogenetics and calcium imaging to study neuronal communication in vitro. PLoS One 2015; 10:e0120680. [PMID: 25901914 PMCID: PMC4406441 DOI: 10.1371/journal.pone.0120680] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 02/05/2015] [Indexed: 11/19/2022] Open
Abstract
In this paper we report the combination of microfluidics, optogenetics and calcium imaging as a cheap and convenient platform to study synaptic communication between neuronal populations in vitro. We first show that Calcium Orange indicator is compatible in vitro with a commonly used Channelrhodopsine-2 (ChR2) variant, as standard calcium imaging conditions did not alter significantly the activity of transduced cultures of rodent primary neurons. A fast, robust and scalable process for micro-chip fabrication was developed in parallel to build micro-compartmented cultures. Coupling optical fibers to each micro-compartment allowed for the independent control of ChR2 activation in the different populations without crosstalk. By analyzing the post-stimuli activity across the different populations, we finally show how this platform can be used to evaluate quantitatively the effective connectivity between connected neuronal populations.
Collapse
Affiliation(s)
- Renaud Renault
- MSC (Université Paris-Diderot, CNRS-UMR 7057), 5 Rue Thomas Mann, 75013 Paris, France
- Physicochimie Curie (Institut Curie, CNRS-UMR 168, UPMC), Institut Curie, Centre de Recherche, 26 rue d’Ulm, 75248 Paris Cedex 05, France
- Department of Complex Systems, Weizmann Institute, Rehovot, Israel
| | - Nirit Sukenik
- Department of Complex Systems, Weizmann Institute, Rehovot, Israel
| | - Stéphanie Descroix
- Physicochimie Curie (Institut Curie, CNRS-UMR 168, UPMC), Institut Curie, Centre de Recherche, 26 rue d’Ulm, 75248 Paris Cedex 05, France
| | - Laurent Malaquin
- Physicochimie Curie (Institut Curie, CNRS-UMR 168, UPMC), Institut Curie, Centre de Recherche, 26 rue d’Ulm, 75248 Paris Cedex 05, France
| | - Jean-Louis Viovy
- Physicochimie Curie (Institut Curie, CNRS-UMR 168, UPMC), Institut Curie, Centre de Recherche, 26 rue d’Ulm, 75248 Paris Cedex 05, France
| | - Jean-Michel Peyrin
- Biological Adaptation and Ageing (CNRS, UMR 8256), F-75005, Paris, France
- Sorbonne Universités, UPMC Univ Paris 06, UMR 8256, B2A, Institut de Biologie Paris Seine, F-75005, Paris, France
| | - Samuel Bottani
- MSC (Université Paris-Diderot, CNRS-UMR 7057), 5 Rue Thomas Mann, 75013 Paris, France
| | - Pascal Monceau
- MSC (Université Paris-Diderot, CNRS-UMR 7057), 5 Rue Thomas Mann, 75013 Paris, France
| | - Elisha Moses
- Department of Complex Systems, Weizmann Institute, Rehovot, Israel
| | - Maéva Vignes
- Physicochimie Curie (Institut Curie, CNRS-UMR 168, UPMC), Institut Curie, Centre de Recherche, 26 rue d’Ulm, 75248 Paris Cedex 05, France
- Biological Adaptation and Ageing (CNRS, UMR 8256), F-75005, Paris, France
- Sorbonne Universités, UPMC Univ Paris 06, UMR 8256, B2A, Institut de Biologie Paris Seine, F-75005, Paris, France
| |
Collapse
|
15
|
Siddique R, Thakor N. Investigation of nerve injury through microfluidic devices. J R Soc Interface 2013; 11:20130676. [PMID: 24227311 DOI: 10.1098/rsif.2013.0676] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Traumatic injuries, both in the central nervous system (CNS) and peripheral nervous system (PNS), can potentially lead to irreversible damage resulting in permanent loss of function. Investigating the complex dynamics involved in these processes may elucidate the biological mechanisms of both nerve degeneration and regeneration, and may potentially lead to the development of new therapies for recovery. A scientific overview on the biological foundations of nerve injury is presented. Differences between nerve regeneration in the central and PNS are discussed. Advances in microtechnology over the past several years have led to the development of invaluable tools that now facilitate investigation of neurobiology at the cellular scale. Microfluidic devices are explored as a means to study nerve injury at the necessary simplification of the cellular level, including those devices aimed at both chemical and physical injury, as well as those that recreate the post-injury environment.
Collapse
Affiliation(s)
- Rezina Siddique
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, , Baltimore, MD, USA
| | | |
Collapse
|