1
|
Pan YL, Wu RZ, Fu Y, Xin R, Wu YH. Protective effect of resveratrol on nickel-refining fumes-induced inflammatory damage. Cell Biochem Biophys 2024; 82:1121-1134. [PMID: 38589767 DOI: 10.1007/s12013-024-01263-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/25/2024] [Indexed: 04/10/2024]
Abstract
Nickel (Ni), a ductile and hard silver-white transition metal, is commonly found in occupational environments and can harm the human body. Since it is a toxic compound, long-term Ni exposure can cause pneumonia, rhinitis, and other types of respiratory inflammatory diseases. Resveratrol (Res) is a plant antitoxin polyphenol, which also has anti-cancer and anti-inflammatory properties. In this report, the toxicity of Ni-refining fumes on the human lung bronchial epithelial (BEAS-2B) cells, as well as the protective effects of Res were investigated in vitro, and the specific mechanism of its anti-inflammatory effect was explained. The experimental observations of this study revealed that Ni-refining fumes induce BEAS-2B cell damage, increase reactive oxygen species (ROS) content, activate NLRP3 (LRR-, NOD-, and pyrin domain-containing 3) inflammasome, and promote the secretion of the cytokine Interleukin (IL)-1β, leading to cellular inflammation and reducing cell activity. Resveratrol (20 μmol/L) activated sirtuin 1 (SIRT1) in BEAS-2B cells to increase protein and mRNA expression. SIRT1 was observed to inhibit the transcriptional activity of nuclear factor-kappaB (NF-κB), reduced the expression of NLRP3 protein and mRNA, and inhibited NLRP3 inflammation. The level of inflammasome activation and IL-1β overexpression could reduce the inflammatory damage caused by the Ni-refining fume particles on the BEAS-2B cells and exert anti-inflammatory protective effects. In vivo experiments further confirmed that resveratrol could effectively alleviate the acute inflammatory injuries caused due to exposure to the Ni-refining fume particles in the lung tissues of the Wistar rats, and verified that resveratrol could exert its anti-inflammatory impact through the SIRT1-NF-κB-NLRP3 pathway. These results provide an important theoretical basis for developing novel protective drugs and investigating the mechanism of action for inflammatory injury in occupational populations caused by exposure to nickel and other heavy metals.
Collapse
Affiliation(s)
- Yu-Lin Pan
- Department of Occupational Health, School of Public Health, Harbin Medical University, 157 Baojian Road, Harbin, 150086, Heilongjiang Province, People's Republic of China
| | - Rui-Ze Wu
- Department of Occupational Health, School of Public Health, Harbin Medical University, 157 Baojian Road, Harbin, 150086, Heilongjiang Province, People's Republic of China
| | - Yao Fu
- Department of Occupational Health, School of Public Health, Harbin Medical University, 157 Baojian Road, Harbin, 150086, Heilongjiang Province, People's Republic of China
| | - Rui Xin
- School of Medicine and Health, Harbin Institute of Technology, Harbin, 150001, Heilongjiang Province, People's Republic of China.
| | - Yong-Hui Wu
- Department of Occupational Health, School of Public Health, Harbin Medical University, 157 Baojian Road, Harbin, 150086, Heilongjiang Province, People's Republic of China.
| |
Collapse
|
2
|
Mo Y, Zhang Y, Zhang Q. The pulmonary effects of nickel-containing nanoparticles: Cytotoxicity, genotoxicity, carcinogenicity, and their underlying mechanisms. ENVIRONMENTAL SCIENCE. NANO 2024; 11:1817-1846. [PMID: 38984270 PMCID: PMC11230653 DOI: 10.1039/d3en00929g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
With the exponential growth of the nanotechnology field, the global nanotechnology market is on an upward track with fast-growing jobs. Nickel (Ni)-containing nanoparticles (NPs), an important class of transition metal nanoparticles, have been extensively used in industrial and biomedical fields due to their unique nanostructural, physical, and chemical properties. Millions of people have been/are going to be exposed to Ni-containing NPs in occupational and non-occupational settings. Therefore, there are increasing concerns over the hazardous effects of Ni-containing NPs on health and the environment. The respiratory tract is a major portal of entry for Ni-containing NPs; thus, the adverse effects of Ni-containing NPs on the respiratory system, especially the lungs, have been a focus of scientific study. This review summarized previous studies, published before December 1, 2023, on cytotoxic, genotoxic, and carcinogenic effects of Ni-containing NPs on humans, lung cells in vitro, and rodent lungs in vivo, and the potential underlying mechanisms were also included. In addition, whether these adverse effects were induced by NPs themselves or Ni ions released from the NPs was also discussed. The extra-pulmonary effects of Ni-containing NPs were briefly mentioned. This review will provide us with a comprehensive view of the pulmonary effects of Ni-containing NPs and their underlying mechanisms, which will shed light on our future studies, including the urgency and necessity to produce engineering Ni-containing NPs with controlled and reduced toxicity, and also provide the scientific basis for developing nanoparticle exposure limits and policies.
Collapse
Affiliation(s)
- Yiqun Mo
- Department of Epidemiology and Population Health, School of Public Health and Information Sciences, University of Louisville, Louisville, KY, USA
| | - Yue Zhang
- Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Qunwei Zhang
- Department of Epidemiology and Population Health, School of Public Health and Information Sciences, University of Louisville, Louisville, KY, USA
| |
Collapse
|
3
|
Wang X, Tian Z, He L, Meng H, Zhu J, Li Y, Wang J, Hua X, Huang H, Huang C. DNMT3a-mediated upregulation of the stress inducible protein sestrin-2 contributes to malignant transformation of human bronchial epithelial cells following nickel exposure. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 271:115954. [PMID: 38232523 DOI: 10.1016/j.ecoenv.2024.115954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 12/07/2023] [Accepted: 01/06/2024] [Indexed: 01/19/2024]
Abstract
BACKGROUND Nickel is a confirmed human lung carcinogen. Nonetheless, the molecular mechanisms driving its carcinogenic impact on lung tissue remain poorly defined. In this study, we assessed SESN2 expression and the signaling pathways responsible for cellular transformation in human bronchial epithelial cells (HBECs) as a result of nickel exposure. METHODS We employed the Western blotting to determine the induction of SESN2 by nickel. To clarify the signaling pathways leading to cellular transformation following nickel exposure, we applied techniques such as gene knockdown, methylation-specific PCR, and chromatin immunoprecipitation. RESULT Exposure to nickel results in the upregulation of SESN2 and the initiation of autophagy in human bronchial epithelial cells (HBECs). This leads to degradation of HUR protein and consequently downregulation of USP28 mRNA, PP2AC protein, β-catenin protein, and diminished VHL transcription, culminating in the accumulation of hypoxia-inducible factor-1α (HIF-1α) and the malignant transformation of these cells. Mechanistic studies revealed that the increased expression of SESN2 is attributed to the demethylation of the SESN2 promoter induced by nickel, a process facilitated by decreased DNA methyl-transferase 3 A (DNMT3a) expression, while The downregulation of VHL transcription is linked to the suppression of the PP2A-C/GSK3β/β-Catenin/C-Myc pathway. Additionally, we discovered that SESN2-mediated autophagy triggers the degradation of HUR protein, which subsequently reduces the stability of USP28 mRNA and inhibits the PP2A-C/GSK3β/β-Catenin pathway and c-Myc transcription in HBECs post nickel exposure. CONCLUSION Our results reveal that nickel exposure leads to the downregulation of DNMT3a, resulting in the hypomethylation of the SESN2 promoter and its protein induction. This triggers autophagy-dependent suppression of the HUR/USP28/PP2A/β-Catenin/c-Myc pathway, subsequently leading to reduced VHL transcription, accumulation of HIF-1α protein, and the malignant transformation of human bronchial epithelial cells (HBECs). Our research offers novel insights into the molecular mechanisms that underlie the lung carcinogenic effects of nickel exposure. Specifically, nickel induces aberrant DNA methylation in the SESN2 promoter region through the decrease of DNMT3a levels, which ultimately leads to HIF-1α protein accumulation and the malignant transformation of HBECs. Specifically, nickel initiates DNA-methylation of the SESN2 promoter region by decreasing DNMT3a, ultimately resulting in HIF-1α protein accumulation and malignant transformation of HBECs. This study highlights DNMT3a as a potential prognostic biomarker or therapeutic target to improve clinical outcomes in lung cancer patients.
Collapse
Affiliation(s)
- Xinxing Wang
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory, Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Zhongxian Tian
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory, Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Lijiong He
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory, Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Hao Meng
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory, Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Junlan Zhu
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory, Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Yang Li
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory, Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Jingjing Wang
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory, Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Xiaohui Hua
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory, Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Haishan Huang
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory, Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Chuanshu Huang
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory, Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.
| |
Collapse
|
4
|
Maddela NR, Ramakrishnan B, Kakarla D, Venkateswarlu K, Megharaj M. Major contaminants of emerging concern in soils: a perspective on potential health risks. RSC Adv 2022; 12:12396-12415. [PMID: 35480371 PMCID: PMC9036571 DOI: 10.1039/d1ra09072k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 04/06/2022] [Indexed: 12/16/2022] Open
Abstract
Soil pollution by the contaminants of emerging concern (CECs) or emerging contaminants deserves attention worldwide because of their toxic health effects and the need for developing regulatory guidelines. Though the global soil burden by certain CECs is in several metric tons, the source-tracking of these contaminants in soil environments is difficult due to heterogeneity of the medium and complexities associated with the interactive mechanisms. Most CECs have higher affinities towards solid matrices for adsorption. The CECs alter not only soil functionalities but also those of plants and animals. Their toxicities are at nmol to μmol levels in cell cultures and test animals. These contaminants have a higher propensity in accumulating mostly in root-based food crops, threatening human health. Poor understanding on the fate of certain CECs in anaerobic environments and their transfer pathways in the food web limits the development of effective bioremediation strategies and restoration of the contaminated soils and endorsement of global regulatory efforts. Despite their proven toxicities to the biotic components, there are no environmental laws or guidelines for certain CECs. Moreover, the information available on the impact of soil pollution with CECs on human health is fragmentary. Therefore, we provide here a comprehensive account on five significantly important CECs, viz., (i) PFAS, (ii) micro/nanoplastics, (iii) additives (biphenyls, phthalates), (iv) novel flame retardants, and (v) nanoparticles. The emphasis is on (a) degree of soil burden of CECs and the consequences, (b) endocrine disruption and immunotoxicity, (c) genotoxicity and carcinogenicity, and (d) soil health guidelines.
Collapse
Affiliation(s)
- Naga Raju Maddela
- Departamento de Ciencias Biológicas, Facultad de Ciencias de la Salud, Universidad Técnica de Manabí Portoviejo 130105 Ecuador
- Instituto de Investigación, Universidad Técnica de Manabí Portoviejo 130105 Ecuador
| | | | - Dhatri Kakarla
- University of North Carolina at Chapel Hill Chapel Hill NC 27599 USA
| | - Kadiyala Venkateswarlu
- Formerly Department of Microbiology, Sri Krishnadevaraya University Anantapuramu 515003 India
| | - Mallavarapu Megharaj
- Global Centre for Environmental Remediation (GCER), Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), Faculty of Science, The University of Newcastle Callaghan NSW 2308 Australia
| |
Collapse
|
5
|
Zhai C, Huff-Lonergan EJ, Lonergan SM, Nair MN. Housekeeping Proteins in Meat Quality Research: Are They Reliable Markers for Internal Controls in Western Blot? A Mini Review. MEAT AND MUSCLE BIOLOGY 2022. [DOI: 10.22175/mmb.11551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Advancements in technology and analytical methods enable researchers to explore the biochemical events that cause variation in meat quality. Among those, western blot techniques have been successfully used in identifying and quantifying the key proteins that have critical functions in the development of meat quality. Housekeeping proteins, like β-actin, glyceraldehyde 3-phosphate dehydrogenase (GAPDH), and tubulins are often used as internal controls in western blots to normalize the abundance of the protein of interest. However, there are increasing concerns about using housekeeping proteins for western blot normalization, as these proteins do not demonstrate any loading differences above the relatively small total protein loading amounts of 10μg. In addition, the interaction between these housekeeping proteins and programmed cell death processes highlights the concerns about using the housekeeping protein as the internal control in meat quality research. Moreover, recent proteomic research has indicated that the abundance of some housekeeping proteins, like β-actin, GAPDH, and tubulin, can be altered by preslaughter stress, dietary supplementation, sex, slaughter method, genotype, breed, aging period, muscle type, and muscle portion. Furthermore, these housekeeping proteins could have differential expression in meat with differing color stability, tenderness, and water holding capacity. Therefore, this review aims to examine the realities of using housekeeping proteins as the loading control in meat quality research and introduce some alternative methods that can be used for western blot normalization.
Collapse
Affiliation(s)
- Chaoyu Zhai
- Colorado State University Department of Animal Sciences
| | | | | | | |
Collapse
|
6
|
Petersen EJ, Ceger P, Allen DG, Coyle J, Derk R, Reyero NG, Gordon J, Kleinstreuer N, Matheson J, McShan D, Nelson BC, Patri AK, Rice P, Rojanasakul L, Sasidharan A, Scarano L, Chang X. U.S. Federal Agency interests and key considerations for new approach methodologies for nanomaterials. ALTEX 2021; 39:183–206. [PMID: 34874455 PMCID: PMC9115850 DOI: 10.14573/altex.2105041] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 12/02/2021] [Indexed: 12/22/2022]
Abstract
Engineered nanomaterials (ENMs) come in a wide array of shapes, sizes, surface coatings, and compositions, and often possess novel or enhanced properties compared to larger sized particles of the same elemental composition. To ensure the safe commercialization of products containing ENMs, it is important to thoroughly understand their potential risks. Given that ENMs can be created in an almost infinite number of variations, it is not feasible to conduct in vivo testing on each type of ENM. Instead, new approach methodologies (NAMs) such as in vitro or in chemico test methods may be needed, given their capacity for higher throughput testing, lower cost, and ability to provide information on toxicological mechanisms. However, the different behaviors of ENMs compared to dissolved chemicals may challenge safety testing of ENMs using NAMs. In this study, member agencies within the Interagency Coordinating Committee on the Validation of Alternative Methods were queried about what types of ENMs are of agency interest and whether there is agency-specific guidance for ENM toxicity testing. To support the ability of NAMs to provide robust results in ENM testing, two key issues in the usage of NAMs, namely dosimetry and interference/bias controls, are thoroughly discussed.
Collapse
Affiliation(s)
- Elijah J. Petersen
- U.S. Department of Commerce, National Institute of Standards and Technology, Gaithersburg, MD, USA
| | - Patricia Ceger
- Integrated Laboratory Systems LLC, Research Triangle Park, NC, USA
| | - David G. Allen
- Integrated Laboratory Systems LLC, Research Triangle Park, NC, USA
| | - Jayme Coyle
- National Institute for Occupational Safety and Health, Health Effects Laboratory Division, Morgantown, WV, USA
- Current affiliation: UES, Inc., Dayton, OH, USA
| | - Raymond Derk
- National Institute for Occupational Safety and Health, Health Effects Laboratory Division, Morgantown, WV, USA
| | | | - John Gordon
- U.S. Consumer Product Safety Commission, Bethesda, MD, USA
| | - Nicole Kleinstreuer
- National Institute of Environmental Health Sciences, National Toxicology Program Interagency Center for the Evaluation of Alternative Toxicological Methods, Research Triangle Park, NC, USA
| | | | - Danielle McShan
- U.S. Environmental Protection Agency, Office of Pesticide Programs, Washington, DC, USA
| | - Bryant C. Nelson
- U.S. Department of Commerce, National Institute of Standards and Technology, Gaithersburg, MD, USA
| | - Anil K. Patri
- U.S. Food and Drug Administration, National Center for Toxicological Research, Jefferson, AR, USA
| | - Penelope Rice
- U.S. Food and Drug Administration, Center for Food Safety and Applied Nutrition, College Park, MD, USA
| | - Liying Rojanasakul
- National Institute for Occupational Safety and Health, Health Effects Laboratory Division, Morgantown, WV, USA
| | - Abhilash Sasidharan
- U.S. Environmental Protection Agency, Office of Pollution Prevention and Toxics, Washington, DC, USA
| | - Louis Scarano
- U.S. Environmental Protection Agency, Office of Pollution Prevention and Toxics, Washington, DC, USA
| | - Xiaoqing Chang
- Integrated Laboratory Systems LLC, Research Triangle Park, NC, USA
| |
Collapse
|
7
|
Liu L, Kong L. Research progress on the carcinogenicity of metal nanomaterials. J Appl Toxicol 2021; 41:1334-1344. [PMID: 33527484 DOI: 10.1002/jat.4145] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 01/16/2021] [Accepted: 01/22/2021] [Indexed: 12/21/2022]
Abstract
With the rapid development of nanotechnology, new nanomaterials with enormous potentials continue to emerge, especially metal nanomaterials. Metal nanomaterials possess the characteristics of metals and nanomaterials, so they are widely used in many fields. But at the same time, whether the use or release of metal nan4omaterials into the environment is toxic to human beings and animals has now attained widespread attention at home and abroad. Currently, it is an indisputable fact that cancer ranks among the top causes of death among residents worldwide. The properties of causing DNA damage and mutations possessed by these metal nanomaterials make them unpredictable influences in the body, subsequently leading to genotoxicity and carcinogenicity. Due to the increasing evidence of their roles in carcinogenicity, this article reviews the toxicological and carcinogenic effects of metal nanomaterials, including nano-metal elements (nickel nanoparticles, silver nanoparticles, and cobalt nanoparticles) and nano-metal oxides (titanium dioxide nanoparticles, silica nanoparticles, zinc oxide nanoparticles, and alumina nanoparticles). This article provides a reference for the researchers and policymakers to use metal nanomaterials rationally in modern industries and biomedicine.
Collapse
Affiliation(s)
- Lin Liu
- Key Laboratory of Environment Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Lu Kong
- Key Laboratory of Environment Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| |
Collapse
|
8
|
Carvalho MR, Mendonça MLM, Oliveira JML, Romanenghi RB, Morais CS, Ota GE, Lima ARR, Oliveira RJ, Filiú WFO, Okoshi K, Okoshi MP, Oliveira-Junior SA, Martinez PF. Influence of high-intensity interval training and intermittent fasting on myocardium apoptosis pathway and cardiac morphology of healthy rats. Life Sci 2021; 264:118697. [PMID: 33130084 DOI: 10.1016/j.lfs.2020.118697] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 10/22/2020] [Accepted: 10/28/2020] [Indexed: 10/23/2022]
Abstract
AIM To evaluate the influence of intermittent fasting and high-intensity interval training (HIIT) on myocardial apoptosis signaling and cardiac morphological characteristics in healthy rats. METHODS Male Wistar rats (n = 60) were divided into four groups: sedentary control (SED-C), intermittent fasting (SED-IF), high-intensity interval training (HIIT-C), and high-intensity interval training plus intermittent fasting (HIIT-IF). SED-C and HIIT-C groups were treated daily with ad libitum chow; SED-IF and HIIT-IF received the same standard chow every other day. HIIT-C and HIIT-IF rats were submitted to an HIIT protocol five times a week for 12 weeks. At the end of the experiment, functional capacity, cardiac morphology, and expression of apoptosis signaling pathways-related proteins were analyzed. KEY FINDINGS HIIT increased cardiomyocyte cross-sectional area, collagen interstitial fraction, and the pro-apoptotic proteins AIF and caspase-3 expression, and reduced pro-apoptotic protein CYTC expression and the cleaved-to-non-cleaved PARP-1 ratio in myocardium. Intermittent fasting reduced cardiomyocyte cross-sectional area, collagen interstitial fraction, and expression of Bax, CYTC and cleaved PARP-1, and increased expression of the anti-apoptotic protein BCL-2. SMAC, ARC, and caspase-8 expression was not changed by HIIT or intermittent fasting. SIGNIFICANCE HIIT promotes cardiomyocyte hypertrophy and interstitial fibrosis, and modulates the apoptosis signaling pathway in healthy rat myocardium. Intermittent fasting reduces pro-apoptotic and increases antiapoptotic signaling, besides attenuating HIIT-induced cardiomyocyte hypertrophy and myocardial interstitial fibrosis.
Collapse
Affiliation(s)
- Marianna R Carvalho
- Striated Muscle Study Laboratory, Federal University of Mato Grosso do Sul (UFMS), Campo Grande, Brazil
| | - Maria Lua M Mendonça
- Striated Muscle Study Laboratory, Federal University of Mato Grosso do Sul (UFMS), Campo Grande, Brazil
| | - Jéssica M L Oliveira
- Striated Muscle Study Laboratory, Federal University of Mato Grosso do Sul (UFMS), Campo Grande, Brazil
| | - Rodrigo B Romanenghi
- Striated Muscle Study Laboratory, Federal University of Mato Grosso do Sul (UFMS), Campo Grande, Brazil
| | - Camila S Morais
- Striated Muscle Study Laboratory, Federal University of Mato Grosso do Sul (UFMS), Campo Grande, Brazil
| | - Gabriel E Ota
- Striated Muscle Study Laboratory, Federal University of Mato Grosso do Sul (UFMS), Campo Grande, Brazil
| | - Aline R R Lima
- Internal Medicine Department, Botucatu Medical School, Sao Paulo State University (UNESP), Botucatu, Brazil
| | - Rodrigo J Oliveira
- Striated Muscle Study Laboratory, Federal University of Mato Grosso do Sul (UFMS), Campo Grande, Brazil
| | - Wander F O Filiú
- Striated Muscle Study Laboratory, Federal University of Mato Grosso do Sul (UFMS), Campo Grande, Brazil
| | - Katashi Okoshi
- Internal Medicine Department, Botucatu Medical School, Sao Paulo State University (UNESP), Botucatu, Brazil
| | - Marina P Okoshi
- Internal Medicine Department, Botucatu Medical School, Sao Paulo State University (UNESP), Botucatu, Brazil
| | - Silvio A Oliveira-Junior
- Striated Muscle Study Laboratory, Federal University of Mato Grosso do Sul (UFMS), Campo Grande, Brazil
| | - Paula F Martinez
- Striated Muscle Study Laboratory, Federal University of Mato Grosso do Sul (UFMS), Campo Grande, Brazil.
| |
Collapse
|
9
|
Prueitt RL, Li W, Chang YC, Boffetta P, Goodman JE. Systematic review of the potential respiratory carcinogenicity of metallic nickel in humans. Crit Rev Toxicol 2020; 50:605-639. [DOI: 10.1080/10408444.2020.1803792] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
| | | | | | - Paolo Boffetta
- Stony Brook Cancer Center and Department of Family, Population and Preventive Medicine, Stony Brook University, Stony Brook, NY, USA
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | | |
Collapse
|
10
|
Salimi A, Jamali Z, Atashbar S, Khezri S, Ghorbanpour AM, Etefaghi N. Pathogenic Mechanisms and Therapeutic Implication in Nickel-Induced Cell Damage. Endocr Metab Immune Disord Drug Targets 2020; 20:968-984. [DOI: 10.2174/1871530320666200214123118] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 01/24/2019] [Accepted: 03/07/2019] [Indexed: 11/22/2022]
Abstract
Background:
Nickel (Ni) is mostly applied in a number of industrial areas such as printing
inks, welding, alloys, electronics and electrical professions. Occupational or environmental exposure to
nickel may lead to cancer, allergy reaction, nephrotoxicity, hepatotoxicity, neurotoxicity, as well as
cell damage, apoptosis and oxidative stress.
Methods:
In here, we focused on published studies about cell death, carcinogenicity, allergy reactions
and neurotoxicity, and promising agents for the prevention and treatment of the toxicity by Ni.
Results:
Our review showed that in the last few years, more researches have focused on reactive oxygen
species formation, oxidative stress, DNA damages, apoptosis, interaction with involving receptors
in allergy and mitochondrial damages in neuron induced by Ni.
Conclusion:
The collected data in this paper provide useful information about the main toxicities induced
by Ni, also, their fundamental mechanisms, and how to discover new ameliorative agents for
prevention and treatment by reviewing agents with protective and therapeutic consequences on Ni
induced toxicity.
Collapse
Affiliation(s)
- Ahmad Salimi
- Department of Pharmacology and Toxicology, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Zhaleh Jamali
- Student Research Committee, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Saman Atashbar
- Department of Pharmacology and Toxicology, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Saleh Khezri
- Department of Pharmacology and Toxicology, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Amir M. Ghorbanpour
- Department of Pharmacology and Toxicology, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Nahid Etefaghi
- Department of Pharmacology and Toxicology, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
| |
Collapse
|
11
|
Wu Y, Ma J, Sun Y, Tang M, Kong L. Effect and mechanism of PI3K/AKT/mTOR signaling pathway in the apoptosis of GC-1 cells induced by nickel nanoparticles. CHEMOSPHERE 2020; 255:126913. [PMID: 32402875 DOI: 10.1016/j.chemosphere.2020.126913] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 04/21/2020] [Accepted: 04/26/2020] [Indexed: 05/28/2023]
Abstract
Nickel nanoparticles (Ni NPs) have a wide range of application prospects, but there is still a lack of their safety evaluation for the reproductive system. Nowadays, male reproductive health has been widely concerned because of the increasing incidence of male infertility. Studies have shown that Ni NPs can cause male reproductive toxicity. The purpose of this study was to investigate the toxicity of Ni NPs on GC-1 cells, a mouse spermatogonia cell line, and to explore the possible mechanism underlying the induction of apoptosis via PI3K/AKT/mTOR signaling pathway. The cell ultrastructure was firstly observed under a transmission electron microscope. Then, cell proliferation, cycle and apoptosis were detected by CCK-8 and flow cytometry, respectively. Furthermore, the expression levels of related proteins and genes were determined by Western blot and Reverse transcription-polymerase chain reaction, respectively. The results showed that Ni NPs could not only cause changes in cell ultrastructure, decreased survival rate and arrested G1 phase cell cycle, but also activated apoptosis pathway by inhibiting the PI3K/AKT/mTOR signaling pathway. The results of this study provide novel insights to explore the mechanisms of reproductive toxicity of Ni NPs and are of great significance to develop safety evaluation criteria for Ni NPs.
Collapse
Affiliation(s)
- Yongya Wu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Jun Ma
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Yufei Sun
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Meng Tang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Lu Kong
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China.
| |
Collapse
|
12
|
Wu Y, Kong L. Advance on toxicity of metal nickel nanoparticles. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2020; 42:2277-2286. [PMID: 31894452 DOI: 10.1007/s10653-019-00491-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Accepted: 12/02/2019] [Indexed: 06/10/2023]
Abstract
As a kind of conventional metal nanomaterial, nickel nanoparticles (Ni NPs) have broad application prospects in the fields of magnetism, energy technology and biomedicine and have quickly attracted great interest. The potential negative effects of Ni NPs have also attracted wide attention from some researchers. Studies have shown that Ni NPs cause a variety of toxic effects on cells, animals and humans and have toxic effects of multiple systems such as respiratory system, cardiovascular system and reproductive system. Ni NPs can lead to oxidative stress, apoptosis, DNA damage and inflammation and induce the increase of intracellular reactive oxygen species. The toxicity of Ni NPs is also found to be related to the mitogen-activated protein kinase pathway and the hypoxia inducible factor-1α pathway. Therefore, the toxicity and mechanism of Ni NPs are reviewed in this paper, and the future researches in this field are also proposed.
Collapse
Affiliation(s)
- Yongya Wu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Lu Kong
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China.
| |
Collapse
|
13
|
Shi K, An J, Qian K, Zhao X, Li F, Ma X, Wang Y, Zhang Y. p53 controls the switch between autophagy and apoptosis through regulation of PLSCR1 in sodium selenite-treated leukemia cells. Exp Cell Res 2020; 389:111879. [PMID: 32017928 DOI: 10.1016/j.yexcr.2020.111879] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 01/22/2020] [Accepted: 01/28/2020] [Indexed: 01/31/2023]
Abstract
Coordinated regulation of autophagy and apoptosis helps to enhance the antitumor effects of sodium selenite. However, the potential molecules that act as switch nodes in the crosstalk between autophagy and apoptosis is still elusive. Phospholipid scramblase 1 (PLSCR1) has been shown to regulate leukocyte differentiation, while its role in autophagy/apoptosis toggle switch remains unexplored. In this study, we showed that sodium selenite switched protective autophagy to apoptosis in p53-wild type NB4 cells without obvious caspase-8/apoptosis-inducing factor (AIF) axis activation, while induced autophagy-dependent caspase-8/AIF axis activation in p53-mutant Jurkat cells. Additionally, p53 was demonstrated as a positive regulator of PLSCR1. p53-dependent up-regulation of PLSCR1 accounted for the differential regulation of autophagy and apoptosis induced by sodium selenite. Furthermore, sodium selenite induced the release of AIF from mitochondria to cytosol with the facilitation of caspase-8 in Jurkat cells, while not in NB4 cells. The released AIF further enhanced autophagy flux through interacting with PLSCR1, which hereby resulting in the disassociation of PLSCR1 from Atg5-Atg12 complex. Our results indicate that PLSCR1 plays a critical role in p53-dependent regulation of autophagy and apoptosis in sodium selenite-treated leukemia cells. Manipulation of p53-PLSCR1 cascade might be beneficial to enhance the anti-tumor effects of sodium selenite.
Collapse
Affiliation(s)
- Kejian Shi
- Department of Thoracic Surgery, Xuanwu Hospital, Capital Medical University, Beijing, 100053, PR China; Beijing Research Institute of Traumatology and Orthopaedics, Beijing, 100035, PR China; State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medicine Sciences & School of Basic Medicine, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100005, PR China.
| | - Jiajia An
- Department of Clinical Laboratory, Binzhou Medical University Hospital, Binzhou, 256603, PR China; State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medicine Sciences & School of Basic Medicine, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100005, PR China.
| | - Kun Qian
- Department of Thoracic Surgery, Xuanwu Hospital, Capital Medical University, Beijing, 100053, PR China.
| | - Xin Zhao
- Department of Thoracic Surgery, Xuanwu Hospital, Capital Medical University, Beijing, 100053, PR China.
| | - Feng Li
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medicine Sciences & School of Basic Medicine, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100005, PR China.
| | - Xiaowei Ma
- Laboratory of Controllable Nanopharmaceuticals, Chinese Academy of Sciences (CAS) Center for Excellence in Nanoscience and CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing, 100190, PR China.
| | - Ying Wang
- Beijing Research Institute of Traumatology and Orthopaedics, Beijing, 100035, PR China.
| | - Yi Zhang
- Department of Thoracic Surgery, Xuanwu Hospital, Capital Medical University, Beijing, 100053, PR China.
| |
Collapse
|
14
|
Redox interactions and genotoxicity of metal-based nanoparticles: A comprehensive review. Chem Biol Interact 2019; 312:108814. [PMID: 31509734 DOI: 10.1016/j.cbi.2019.108814] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Revised: 08/11/2019] [Accepted: 09/05/2019] [Indexed: 12/25/2022]
Abstract
Nanotechnology is a growing science that may provide several new applications for medicine, food preservation, diagnostic technologies, and sanitation. Despite its beneficial applications, there are several questions related to the safety of nanomaterials for human use. The development of nanotechnology is associated with some concerns because of the increased risk of carcinogenesis following exposure to nanomaterials. The increased levels of reactive oxygen species (ROS) that are due to exposure to nanoparticles (NPs) are primarily responsible for the genotoxicity of metal NPs. Not all, but most metal NPs are able to directly produce free radicals through the release of metal ions and through interactions with water molecules. Furthermore, the increased production of free radicals and the cell death caused by metal NPs can stimulate reduction/oxidation (redox) reactions, leading to the continuous endogenous production of ROS in a positive feedback loop. The overexpression of inflammatory mediators, such as NF-kB and STATs, the mitochondrial malfunction and the increased intracellular calcium levels mediate the chronic oxidative stress that occurs after exposure to metal NPs. In this paper, we review the genotoxicity of different types of metal NPs and the redox mechanisms that amplify the toxicity of these NPs.
Collapse
|
15
|
Kong L, Hu W, Lu C, Cheng K, Tang M. Mechanisms underlying nickel nanoparticle induced reproductive toxicity and chemo-protective effects of vitamin C in male rats. CHEMOSPHERE 2019; 218:259-265. [PMID: 30472609 DOI: 10.1016/j.chemosphere.2018.11.128] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 11/16/2018] [Accepted: 11/19/2018] [Indexed: 06/09/2023]
Abstract
The purpose of this research is to go a step further study on the reproductive toxicities and the underlying mechanisms induced by nickel nanoparticles (NiNPs), and the possible protective action of vitamin C. Animal experiment was designed according to the one-generation reproductive toxicity standard, and rats were exposed to NiNPs through gavage. Ultrastructural, reactive oxygen species (ROS), oxidant and antioxidant enzymes, and cell apoptosis-related factors in the testicular tissue were analyzed. In contrast with the control group, the activity of surperoxide dismutase (SOD), catalase (CAT) and gonad-stimulating hormone (GSH) was reduced, while the content of nitric oxide (NO), malondialdehyde (MDA) and ROS was increased in the NiNPs treated animals. As the doses of NiNPs increase, the mRNA of apoptotic related factor Caspase-9, Caspase-8 and Caspase-3 showed an obviously upregulation. Protein expression of Bcl-2-associated X Protein (Bax) and apoptosis inducing factor (AIF) was significantly unregulated. After addition of antioxidants-vitamin C, the toxicity was reduced. Injured testicular tissue indicated that NiNPs exposure could damage the reproductive system. Our results suggest that NiNPs induce significant reproductive toxicities. The cellular apoptosis might be induced by caspase family proteinases, but the regulator factor (factor associated suicide (Fas), B-cell lymphoma-2 (Bcl-2), Bax, BH3-interacting domain death agonist (Bid) and AIF protein) might not be involved in this process. Thus, the mechanism of reproductive toxicity of NiNPs on rat testes involves in the induction of oxidative stress, which further results in cell apoptosis. Antioxidants-vitamin C shows a significant inhibition on the reproductive toxicities induced by NiNPs.
Collapse
Affiliation(s)
- Lu Kong
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education; School of Public Health & Collaborative Innovation Center of Suzhou Nano Science and Technology, Southeast University, Nanjing 210009, PR China
| | - Wangcheng Hu
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education; School of Public Health & Collaborative Innovation Center of Suzhou Nano Science and Technology, Southeast University, Nanjing 210009, PR China
| | - Chuncheng Lu
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, PR China
| | - Keping Cheng
- Zhongda Hospital, Southeast University, Nanjing 210009, Jiangsu, PR China.
| | - Meng Tang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education; School of Public Health & Collaborative Innovation Center of Suzhou Nano Science and Technology, Southeast University, Nanjing 210009, PR China.
| |
Collapse
|
16
|
Chen L, Wu LY, Yang WX. Nanoparticles induce apoptosis via mediating diverse cellular pathways. Nanomedicine (Lond) 2018; 13:2939-2955. [DOI: 10.2217/nnm-2018-0167] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
With a special size and structure, nanoparticles (NPs) have excellent application prospects in various fields and are widely used in the biomedicine, cosmetics and chemical industries nowadays. However, there have been some reports on the biosafety of this new type of material, pointing out its cytotoxicity in inducing apoptosis. With different physicochemical properties in size, shape, surface charge, and ligand, NPs exhibit different biocompatibilities when interacting with different cells. Therefore, a comprehensive and deep study into the proapoptotic mechanism of NPs is necessary. In the present review, we summarize the NP-triggered apoptotic signal pathways in detail and highlight some important functional molecules involved. We hope our findings and perspectives provide a new direction for the sound development of nanotechnology in the future.
Collapse
Affiliation(s)
- Liang Chen
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Liu-Yun Wu
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Wan-Xi Yang
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
17
|
Werner S, Nies E. Olfactory dysfunction revisited: a reappraisal of work-related olfactory dysfunction caused by chemicals. J Occup Med Toxicol 2018. [PMID: 30202422 DOI: 10.1186/s12995‐018‐0209‐6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Occupational exposure to numerous individual chemicals has been associated with olfactory dysfunction, mainly in individual case descriptions. Comprehensive epidemiological investigations into the olfactotoxic effect of working substances show that the human sense of smell may be impaired by exposure to metal compounds involving cadmium, chromium and nickel, and to formaldehyde. This conclusion is supported by the results of animal experiments. The level of evidence for a relationship between olfactory dysfunction and workplace exposure to other substances is relatively weak.
Collapse
Affiliation(s)
- Sabine Werner
- Institute for Occupational Safety and Health of the German Social Accident Insurance, Unit Toxicology of Industrial Chemicals, Alte Heerstrasse 111, 53757 Sankt Augustin, Germany
| | - Eberhard Nies
- Institute for Occupational Safety and Health of the German Social Accident Insurance, Unit Toxicology of Industrial Chemicals, Alte Heerstrasse 111, 53757 Sankt Augustin, Germany
| |
Collapse
|
18
|
Werner S, Nies E. Olfactory dysfunction revisited: a reappraisal of work-related olfactory dysfunction caused by chemicals. J Occup Med Toxicol 2018; 13:28. [PMID: 30202422 PMCID: PMC6124006 DOI: 10.1186/s12995-018-0209-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 07/30/2018] [Indexed: 11/10/2022] Open
Abstract
Occupational exposure to numerous individual chemicals has been associated with olfactory dysfunction, mainly in individual case descriptions. Comprehensive epidemiological investigations into the olfactotoxic effect of working substances show that the human sense of smell may be impaired by exposure to metal compounds involving cadmium, chromium and nickel, and to formaldehyde. This conclusion is supported by the results of animal experiments. The level of evidence for a relationship between olfactory dysfunction and workplace exposure to other substances is relatively weak.
Collapse
Affiliation(s)
- Sabine Werner
- Institute for Occupational Safety and Health of the German Social Accident Insurance, Unit Toxicology of Industrial Chemicals, Alte Heerstrasse 111, 53757 Sankt Augustin, Germany
| | - Eberhard Nies
- Institute for Occupational Safety and Health of the German Social Accident Insurance, Unit Toxicology of Industrial Chemicals, Alte Heerstrasse 111, 53757 Sankt Augustin, Germany
| |
Collapse
|
19
|
Ota H, Shionome T, Suguro H, Saito S, Ueki K, Arai Y, Asano M. Nickel chloride administration prevents the growth of oral squamous cell carcinoma. Oncotarget 2018; 9:24109-24121. [PMID: 29844876 PMCID: PMC5963632 DOI: 10.18632/oncotarget.25313] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 09/03/2017] [Indexed: 11/25/2022] Open
Abstract
The effect of NiCl2 on oral squamous cell carcinoma-derived cell line HSC3 was examined. Incubation with 1 mM NiCl2 significantly reduced the expression of MMPs at mRNA and protein levels. The in vivo orthotopic implantation model was established by injecting highly metastatic subcell line HSC3-M3 to nude mouse tongue. After 1 week of injection, mice were fed with or without 1 mM NiCl2-containing water for two to three weeks. Immunohistochamical examination revealed that MMP9 expression was drastically reduced in NiCl2-fed mice. By CT images, cancer mass was observed as a translucent area in control mice. In NiCl2-fed mice, much highly translucent area was observed within the translucent area. Histologically, this area corresponded to the necrotic area in the tumor mass. Real-time PCR analysis revealed the reduced expression of angiogenic factors such as IL-8 and VEGF mRNA in NiCl2-fed mice. To further examine the effect of NiCl2 on metastasis, human β-globin gene expression in regional lymphnodes was compared. The β-globin gene was totaly absent in NiCl2-fed mice. Moreover, various cancer metastasis-related genes were inhibited in NiCl2-fed mice by PCR array analysis. The results indicated that NiCl2 might be a promising new anti-cancer therapeutics for the oral cancer treatment.
Collapse
Affiliation(s)
- Hirotaka Ota
- Department of Pathology, Nihon University School of Dentistry, Tokyo, Japan.,Division of Immunology and Pathobiology, Nihon University School of Dentistry, Tokyo, Japan
| | - Takashi Shionome
- Department of Partial Denture Prosthodontics, Nihon University School of Dentistry, Tokyo, Japan
| | - Hisashi Suguro
- Department of Endodontics, Nihon University School of Dentistry, Tokyo, Japan.,Division of Advanced Dental Treatment, Dental Research Center, Nihon University School of Dentistry, Tokyo, Japan
| | - Satsuki Saito
- Division of Applied Oral Sciences, Nihon University Graduate School of Dentistry, Tokyo, Japan
| | - Kosuke Ueki
- Division of Applied Oral Sciences, Nihon University Graduate School of Dentistry, Tokyo, Japan
| | | | - Masatake Asano
- Department of Pathology, Nihon University School of Dentistry, Tokyo, Japan.,Division of Immunology and Pathobiology, Nihon University School of Dentistry, Tokyo, Japan
| |
Collapse
|
20
|
Nickel chloride-induced apoptosis via mitochondria- and Fas-mediated caspase-dependent pathways in broiler chickens. Oncotarget 2018; 7:79747-79760. [PMID: 27806327 PMCID: PMC5346748 DOI: 10.18632/oncotarget.12946] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Accepted: 10/13/2016] [Indexed: 11/28/2022] Open
Abstract
Ni, a metal with industrial and commercial uses, poses a serious hazard to human and animal health. In the present study, we used flow cytometry, immunohistochemistry and qRT-PCR to investigate the mechanisms of NiCl2-induced apoptosis in kidney cells. After treating 280 broiler chickens with 0, 300, 600 or 900 mg/kg NiCl2 for 42 days, we found that two caspase-dependent pathways were involved in the induced renal tubular cell apoptosis. In the mitochondria-mediated caspase-dependent apoptotic pathway, cyt-c, HtrA2/Omi, Smac/Diablo, apaf-1, PARP, and caspase-9, 3, 6 and 7 were all increased, while. XIAP transcription was decreased. Concurrently, in the Fas-mediated caspase-dependent apoptotic pathway, Fas, FasL, caspase-8, caspase-10 and Bid levels were all increased. These results indicate that dietary NiCl2 at 300+ mg/kg induces renal tubular cell apoptosis in broiler chickens, involving both mitochondrial and Fas-mediated caspase-dependent apoptotic pathways. Our results provide novel insight into Ni and Ni-compound toxicology evaluated in vitro and in vivo.
Collapse
|
21
|
Guo H, Cui H, Fang J, Zuo Z, Deng J, Wang X, Zhao L, Chen K, Deng J. Nickel chloride (NiCl2) in hepatic toxicity: apoptosis, G2/M cell cycle arrest and inflammatory response. Aging (Albany NY) 2017; 8:3009-3027. [PMID: 27824316 PMCID: PMC5191883 DOI: 10.18632/aging.101108] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Accepted: 10/18/2016] [Indexed: 01/05/2023]
Abstract
Up to now, the precise mechanism of Ni toxicology is still indistinct. Our aim was to test the apoptosis, cell cycle arrest and inflammatory response mechanism induced by NiCl2 in the liver of broiler chickens. NiCl2 significantly increased hepatic apoptosis. NiCl2 activated mitochondria-mediated apoptotic pathway by decreasing Bcl-2, Bcl-xL, Mcl-1, and increasing Bax, Bak, caspase-3, caspase-9 and PARP mRNA expression. In the Fas-mediated apoptotic pathway, mRNA expression levels of Fas, FasL, caspase-8 were increased. Also, NiCl2 induced ER stress apoptotic pathway by increasing GRP78 and GRP94 mRNA expressions. The ER stress was activated through PERK, IRE1 and ATF6 pathways, which were characterized by increasing eIF2α, ATF4, IRE1, XBP1 and ATF6 mRNA expressions. And, NiCl2 arrested G2/M phase cell cycle by increasing p53, p21 and decreasing cdc2, cyclin B mRNA expressions. Simultaneously, NiCl2 increased TNF-α, IL-1β, IL-6, IL-8 mRNA expressions through NF-κB activation. In conclusion, NiCl2 induces apoptosis through mitochondria, Fas and ER stress-mediated apoptotic pathways and causes cell cycle G2/M phase arrest via p53-dependent pathway and generates inflammatory response by activating NF-κB pathway.
Collapse
Affiliation(s)
- Hongrui Guo
- College of Veterinary Medicine, Sichuan Agricultural University Ya'an 625014, China
| | - Hengmin Cui
- College of Veterinary Medicine, Sichuan Agricultural University Ya'an 625014, China.,Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agricultural University Ya'an 625014, China
| | - Jing Fang
- College of Veterinary Medicine, Sichuan Agricultural University Ya'an 625014, China.,Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agricultural University Ya'an 625014, China
| | - Zhicai Zuo
- College of Veterinary Medicine, Sichuan Agricultural University Ya'an 625014, China.,Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agricultural University Ya'an 625014, China
| | - Junliang Deng
- College of Veterinary Medicine, Sichuan Agricultural University Ya'an 625014, China.,Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agricultural University Ya'an 625014, China
| | - Xun Wang
- College of Veterinary Medicine, Sichuan Agricultural University Ya'an 625014, China.,Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agricultural University Ya'an 625014, China
| | - Ling Zhao
- College of Veterinary Medicine, Sichuan Agricultural University Ya'an 625014, China.,Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agricultural University Ya'an 625014, China
| | - Kejie Chen
- College of Veterinary Medicine, Sichuan Agricultural University Ya'an 625014, China
| | - Jie Deng
- College of Veterinary Medicine, Sichuan Agricultural University Ya'an 625014, China
| |
Collapse
|
22
|
Lujan H, Sayes CM. Cytotoxicological pathways induced after nanoparticle exposure: studies of oxidative stress at the 'nano-bio' interface. Toxicol Res (Camb) 2017; 6:580-594. [PMID: 30090527 PMCID: PMC6062389 DOI: 10.1039/c7tx00119c] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 07/11/2017] [Indexed: 12/12/2022] Open
Abstract
Nanotechnology is advancing rapidly; many industries are utilizing nanomaterials because of their remarkable properties. As of 2017, over 1800 "nano-enabled products" (i.e. products that incorporate a nanomaterial feature and alter the product's performance) have been used to revolutionize pharmaceutical, transportation, and agriculture industries, just to name a few. As the number of nano-enabled products continues to increase, the risk of nanoparticle exposure to humans and the surrounding environment also increases. These exposures are usually classified as either intentional or unintentional. The increased rate of potential nanoparticle exposure to humans has required the field of 'nanotoxicology' to rapidly screen for key biological, biochemical, chemical, or physical signals, signatures, or markers associated with specific toxicological pathways of injury within in vivo, in vitro, and ex vivo models. One of the common goals of nanotoxicology research is to identify critical perturbed biological pathways that can lead to an adverse outcome. This review focuses on the most common toxicological pathways induced by nanoparticle exposure and provides insights into how these perturbations could aid in the development of nanomaterial specific adverse outcomes, inform nano-enabled product development, ensure safe manufacturing practices, promote intentional product use, and avoid environmental health hazards.
Collapse
Affiliation(s)
- Henry Lujan
- Department of Environmental Science , Baylor University , Waco , TX 76798-7266 , USA . ; ; Tel: +254-710-34769
| | - Christie M Sayes
- Department of Environmental Science , Baylor University , Waco , TX 76798-7266 , USA . ; ; Tel: +254-710-34769
| |
Collapse
|
23
|
Rehman K, Fatima F, Waheed I, Akash MSH. Prevalence of exposure of heavy metals and their impact on health consequences. J Cell Biochem 2017. [PMID: 28643849 DOI: 10.1002/jcb.26234] [Citation(s) in RCA: 635] [Impact Index Per Article: 90.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Even in the current era of growing technology, the concentration of heavy metals present in drinking water is still not within the recommended limits as set by the regulatory authorities in different countries of the world. Drinking water contaminated with heavy metals namely; arsenic, cadmium, nickel, mercury, chromium, zinc, and lead is becoming a major health concern for public and health care professionals. Occupational exposure to heavy metals is known to occur by the utilization of these metals in various industrial processes and/or contents including color pigments and alloys. However, the predominant source resulting in measurable human exposure to heavy metals is the consumption of contaminated drinking water and the resulting health issues may include cardiovascular disorders, neuronal damage, renal injuries, and risk of cancer and diabetes. The general mechanism involved in heavy metal-induced toxicity is recognized to be the production of reactive oxygen species resulting oxidative damage and health related adverse effects. Thus utilization of heavy metal-contaminated water is resulting in high morbidity and mortality rates all over the world. Thereby, feeling the need to raise the concerns about contribution of different heavy metals in various health related issues, this article has discussed the global contamination of drinking water with heavy metals to assess the health hazards associated with consumption of heavy metal-contaminated water. A relationship between exposure limits and ultimate responses produced as well as the major organs affected have been reviewed. Acute and chronic poisoning symptoms and mechanisms responsible for such toxicities have also been discussed.
Collapse
Affiliation(s)
- Kanwal Rehman
- Institute of Pharmacy, Physiology, and Pharmacology, University of Agriculture, Faisalabad, Pakistan
| | - Fiza Fatima
- Institute of Pharmacy, Physiology, and Pharmacology, University of Agriculture, Faisalabad, Pakistan
| | - Iqra Waheed
- Institute of Pharmacy, Physiology, and Pharmacology, University of Agriculture, Faisalabad, Pakistan
| | | |
Collapse
|
24
|
In vitro toxicity assessment of oral nanocarriers. Adv Drug Deliv Rev 2016; 106:381-401. [PMID: 27544694 DOI: 10.1016/j.addr.2016.08.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 08/04/2016] [Accepted: 08/09/2016] [Indexed: 02/08/2023]
Abstract
The fascinating properties of nanomaterials opened new frontiers in medicine. Nanocarriers are useful systems in transporting drugs to site-specific targets. The unique physico-chemical characteristics making nanocarriers promising devices to treat diseases may also be responsible for potential adverse effects. In order to develop functional nano-based drug delivery systems, efficacy and safety should be carefully evaluated. To date, no common testing strategy to address nanomaterial toxicological challenges has been generated. Different cell culture models are currently used to evaluate nanocarrier safety using conventional in vitro assays, but overall they have generated a huge amount of conflicting data. In this review we describe state-of-the-art approaches for in vitro testing of orally administered nanocarriers, highlighting the importance of developing harmonized and validated standard operating procedures. These procedures should be applied in a safe-by-design context with the aim to reduce and/or eliminate the uncertainties and risks associated with nanomedicine development.
Collapse
|
25
|
Carpignano F, Rigamonti G, Mazzini G, Merlo S. Low-Coherence Reflectometry for Refractive Index Measurements of Cells in Micro-Capillaries. SENSORS 2016; 16:s16101670. [PMID: 27727172 PMCID: PMC5087458 DOI: 10.3390/s16101670] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 09/30/2016] [Accepted: 10/07/2016] [Indexed: 12/20/2022]
Abstract
The refractive index of cells provides insights into their composition, organization and function. Moreover, a good knowledge of the cell refractive index would allow an improvement of optical cytometric and diagnostic systems. Although interferometric techniques undoubtedly represent a good solution for quantifying optical path variation, obtaining the refractive index of a population of cells non-invasively remains challenging because of the variability in the geometrical thickness of the sample. In this paper, we demonstrate the use of infrared low-coherence reflectometry for non-invasively quantifying the average refractive index of cell populations gently confined in rectangular glass micro-capillaries. A suspension of human red blood cells in plasma is tested as a reference. As a use example, we apply this technique to estimate the average refractive index of cell populations belonging to epithelial and hematological families.
Collapse
Affiliation(s)
- Francesca Carpignano
- Dipartimento di Ingegneria Industriale e dell'Informazione, Università degli Studi di Pavia, Via Ferrata 5, I-27100 Pavia, Italy.
| | - Giulia Rigamonti
- Dipartimento di Ingegneria Industriale e dell'Informazione, Università degli Studi di Pavia, Via Ferrata 5, I-27100 Pavia, Italy.
| | - Giuliano Mazzini
- Istituto di Genetica Molecolare IGM-C.N.R., Via Abbiategrasso 207, I-27100 Pavia, Italy.
- Dipartimento di Biologia e Biotecnologie "L. Spallanzani", Università degli Studi di Pavia, Via Ferrata 9, I-27100 Pavia, Italy.
| | - Sabina Merlo
- Dipartimento di Ingegneria Industriale e dell'Informazione, Università degli Studi di Pavia, Via Ferrata 5, I-27100 Pavia, Italy.
| |
Collapse
|
26
|
Gallo A, Boni R, Buttino I, Tosti E. Spermiotoxicity of nickel nanoparticles in the marine invertebrate Ciona intestinalis (ascidians). Nanotoxicology 2016; 10:1096-104. [PMID: 27080039 PMCID: PMC4975092 DOI: 10.1080/17435390.2016.1177743] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 02/11/2016] [Accepted: 03/22/2016] [Indexed: 12/26/2022]
Abstract
Nickel nanoparticles (Ni NPs) are increasingly used in modern industries as catalysts, sensors, and in electronic applications. Due to this large use, their inputs into marine environment have significantly increased; however, the potential ecotoxicological effects in marine environment have so far received little attention. In particular, little is known on the impact of NPs on gamete quality of marine organisms and on the consequences on fertility potential. The present study examines, for the first time, the impact of Ni NPs exposure on sperm quality of the marine invertebrate Ciona intestinalis (ascidian). Several parameters related with sperm status such as plasma membrane lipid peroxidation, mitochondrial membrane potential (MMP), intracellular pH, DNA integrity, and fertilizing ability were assessed as toxicity end points after exposure to different Ni NPs concentrations. Ni NPs generate oxidative stress that in turn induces lipid peroxidation and DNA fragmentation, and alters MMP and sperm morphology. Furthermore, sperm exposure to Ni NPs affects their fertilizing ability and causes developmental anomalies in the offspring. All together, these results reveal a spermiotoxicity of Ni NPs in ascidians suggesting that the application of these NPs should be carefully assessed as to their potential toxic effects on the health of marine organisms that, in turn, may influence the ecological system. This study shows that ascidian sperm represent a suitable and sensitive tool for the investigation of the toxicity of NPs entered into marine environment, for defining the mechanisms of toxic action and for the environmental monitoring purpose.
Collapse
Affiliation(s)
- Alessandra Gallo
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton DohrnNapoli,
Italy
| | - Raffaele Boni
- Department of Sciences, University of Basilicata,
Potenza,
Italy
| | - Isabella Buttino
- Italian Institute for Environmental Protection and Research,
Livorno,
Italy
| | - Elisabetta Tosti
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton DohrnNapoli,
Italy
| |
Collapse
|
27
|
Ma DD, Yang WX. Engineered nanoparticles induce cell apoptosis: potential for cancer therapy. Oncotarget 2016; 7:40882-40903. [PMID: 27056889 PMCID: PMC5130051 DOI: 10.18632/oncotarget.8553] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 03/28/2016] [Indexed: 01/09/2023] Open
Abstract
Engineered nanoparticles (ENPs) have been widely applied in industry, commodities, biology and medicine recently. The potential for many related threats to human health has been highlighted. ENPs with their sizes no larger than 100 nm are able to enter the human body and accumulate in organs such as brain, liver, lung, testes, etc, and cause toxic effects. Many references have studied ENP effects on the cells of different organs with related cell apoptosis noted. Understanding such pathways towards ENP induced apoptosis may aid in the design of effective cancer targeting ENP drugs. Such ENPs can either have a direct effect towards cancer cell apoptosis or can be used as drug delivery agents. Characteristics of ENPs, such as sizes, shape, forms, charges and surface modifications are all seen to play a role in determining their toxicity in target cells. Specific modifications of such characteristics can be applied to reduce ENP bioactivity and thus alleviate unwanted cytotoxicity, without affecting the intended function. This provides an opportunity to design ENPs with minimum toxicity to non-targeted cells.
Collapse
Affiliation(s)
- Dan-Dan Ma
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Wan-Xi Yang
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
28
|
Magaye R, Gu Y, Wang Y, Su H, Zhou Q, Mao G, Shi H, Yue X, Zou B, Xu J, Zhao J. In vitro and in vivo evaluation of the toxicities induced by metallic nickel nano and fine particles. J Mol Histol 2016. [PMID: 27010930 DOI: 10.1007/s10735‐016‐9671‐6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Nickel nanoparticles (Ni NPs) have been applied in various fields along with the rapid development of nanotechnology. However, the potential adverse health effects of the Ni NPs are unclear. To investigate the cyto- and genotoxicity and compare the differences between the Ni NPs and the nickel fine particles (Ni FPs), Sprague-Dawley (SD) rats and A549 cells were treated with different doses of Ni NPs or FPs. Intra-tracheal instillation of Ni NPs and FPs caused acute toxicity in the lungs, liver and kidneys of the SD rats. Even though the histology of the lungs showed hyperplastic changes and the protein expression of HO-1 and Nrf2 detected by western blot showed lung burden overload, no significant increase was observed to the expression level of oncoprotein C-myc. The results from cell titer-Glo assay and comet assay indicated that Ni NPs were more potent in causing cell toxicity and genotoxicity in vitro than Ni FPs. In addition, Ni NPs increased the expression of C-myc in vitro, but these increases may not have been due to oxidative stress since no significant dose-dependent changes were seen in HO-1 and Nrf2 expressions. Although Ni NPs have the potential to cause DNA damage in A549 cells in vitro, the molecular mechanisms that led to these changes and their tumorigenic potential is still debatable. In short, Ni NPs were more potent in causing cell toxicity and genotoxicity in vitro than Ni FPs, and intra-tracheal instillation of Ni NPs and FPs caused toxicity in organs of the SD rats, while it showed similar to the effects for both particle types. These results suggested that both Ni NPs and FPs have the potential to be harmful to human health, and Ni NPs may have higher cyto- and genotoxic effects than Ni FPs under the same treatment dose.
Collapse
Affiliation(s)
- Ruth Magaye
- Department of Preventative Medicine, Zhejiang Provincial Key Laboratory of Pathological and Physiological Technology, Medicine School of Ningbo University, 818 Fenghua Road, Jiangbei District, Ningbo, 315211, China
| | - Yuanliang Gu
- Department of Preventative Medicine, Zhejiang Provincial Key Laboratory of Pathological and Physiological Technology, Medicine School of Ningbo University, 818 Fenghua Road, Jiangbei District, Ningbo, 315211, China
| | - Yafei Wang
- Department of Preventative Medicine, Zhejiang Provincial Key Laboratory of Pathological and Physiological Technology, Medicine School of Ningbo University, 818 Fenghua Road, Jiangbei District, Ningbo, 315211, China
| | - Hong Su
- Department of Preventative Medicine, Zhejiang Provincial Key Laboratory of Pathological and Physiological Technology, Medicine School of Ningbo University, 818 Fenghua Road, Jiangbei District, Ningbo, 315211, China
| | - Qi Zhou
- Department of Preventative Medicine, Zhejiang Provincial Key Laboratory of Pathological and Physiological Technology, Medicine School of Ningbo University, 818 Fenghua Road, Jiangbei District, Ningbo, 315211, China
| | - Guochuan Mao
- Department of Preventative Medicine, Zhejiang Provincial Key Laboratory of Pathological and Physiological Technology, Medicine School of Ningbo University, 818 Fenghua Road, Jiangbei District, Ningbo, 315211, China
| | - Hongbo Shi
- Department of Preventative Medicine, Zhejiang Provincial Key Laboratory of Pathological and Physiological Technology, Medicine School of Ningbo University, 818 Fenghua Road, Jiangbei District, Ningbo, 315211, China
| | - Xia Yue
- Department of Preventative Medicine, Zhejiang Provincial Key Laboratory of Pathological and Physiological Technology, Medicine School of Ningbo University, 818 Fenghua Road, Jiangbei District, Ningbo, 315211, China
| | - Baobo Zou
- Department of Preventative Medicine, Zhejiang Provincial Key Laboratory of Pathological and Physiological Technology, Medicine School of Ningbo University, 818 Fenghua Road, Jiangbei District, Ningbo, 315211, China
| | - Jin Xu
- Department of Preventative Medicine, Zhejiang Provincial Key Laboratory of Pathological and Physiological Technology, Medicine School of Ningbo University, 818 Fenghua Road, Jiangbei District, Ningbo, 315211, China
| | - Jinshun Zhao
- Department of Preventative Medicine, Zhejiang Provincial Key Laboratory of Pathological and Physiological Technology, Medicine School of Ningbo University, 818 Fenghua Road, Jiangbei District, Ningbo, 315211, China.
| |
Collapse
|
29
|
Magaye R, Gu Y, Wang Y, Su H, Zhou Q, Mao G, Shi H, Yue X, Zou B, Xu J, Zhao J. In vitro and in vivo evaluation of the toxicities induced by metallic nickel nano and fine particles. J Mol Histol 2016; 47:273-86. [PMID: 27010930 DOI: 10.1007/s10735-016-9671-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 03/11/2016] [Indexed: 11/27/2022]
Abstract
Nickel nanoparticles (Ni NPs) have been applied in various fields along with the rapid development of nanotechnology. However, the potential adverse health effects of the Ni NPs are unclear. To investigate the cyto- and genotoxicity and compare the differences between the Ni NPs and the nickel fine particles (Ni FPs), Sprague-Dawley (SD) rats and A549 cells were treated with different doses of Ni NPs or FPs. Intra-tracheal instillation of Ni NPs and FPs caused acute toxicity in the lungs, liver and kidneys of the SD rats. Even though the histology of the lungs showed hyperplastic changes and the protein expression of HO-1 and Nrf2 detected by western blot showed lung burden overload, no significant increase was observed to the expression level of oncoprotein C-myc. The results from cell titer-Glo assay and comet assay indicated that Ni NPs were more potent in causing cell toxicity and genotoxicity in vitro than Ni FPs. In addition, Ni NPs increased the expression of C-myc in vitro, but these increases may not have been due to oxidative stress since no significant dose-dependent changes were seen in HO-1 and Nrf2 expressions. Although Ni NPs have the potential to cause DNA damage in A549 cells in vitro, the molecular mechanisms that led to these changes and their tumorigenic potential is still debatable. In short, Ni NPs were more potent in causing cell toxicity and genotoxicity in vitro than Ni FPs, and intra-tracheal instillation of Ni NPs and FPs caused toxicity in organs of the SD rats, while it showed similar to the effects for both particle types. These results suggested that both Ni NPs and FPs have the potential to be harmful to human health, and Ni NPs may have higher cyto- and genotoxic effects than Ni FPs under the same treatment dose.
Collapse
Affiliation(s)
- Ruth Magaye
- Department of Preventative Medicine, Zhejiang Provincial Key Laboratory of Pathological and Physiological Technology, Medicine School of Ningbo University, 818 Fenghua Road, Jiangbei District, Ningbo, 315211, China
| | - Yuanliang Gu
- Department of Preventative Medicine, Zhejiang Provincial Key Laboratory of Pathological and Physiological Technology, Medicine School of Ningbo University, 818 Fenghua Road, Jiangbei District, Ningbo, 315211, China
| | - Yafei Wang
- Department of Preventative Medicine, Zhejiang Provincial Key Laboratory of Pathological and Physiological Technology, Medicine School of Ningbo University, 818 Fenghua Road, Jiangbei District, Ningbo, 315211, China
| | - Hong Su
- Department of Preventative Medicine, Zhejiang Provincial Key Laboratory of Pathological and Physiological Technology, Medicine School of Ningbo University, 818 Fenghua Road, Jiangbei District, Ningbo, 315211, China
| | - Qi Zhou
- Department of Preventative Medicine, Zhejiang Provincial Key Laboratory of Pathological and Physiological Technology, Medicine School of Ningbo University, 818 Fenghua Road, Jiangbei District, Ningbo, 315211, China
| | - Guochuan Mao
- Department of Preventative Medicine, Zhejiang Provincial Key Laboratory of Pathological and Physiological Technology, Medicine School of Ningbo University, 818 Fenghua Road, Jiangbei District, Ningbo, 315211, China
| | - Hongbo Shi
- Department of Preventative Medicine, Zhejiang Provincial Key Laboratory of Pathological and Physiological Technology, Medicine School of Ningbo University, 818 Fenghua Road, Jiangbei District, Ningbo, 315211, China
| | - Xia Yue
- Department of Preventative Medicine, Zhejiang Provincial Key Laboratory of Pathological and Physiological Technology, Medicine School of Ningbo University, 818 Fenghua Road, Jiangbei District, Ningbo, 315211, China
| | - Baobo Zou
- Department of Preventative Medicine, Zhejiang Provincial Key Laboratory of Pathological and Physiological Technology, Medicine School of Ningbo University, 818 Fenghua Road, Jiangbei District, Ningbo, 315211, China
| | - Jin Xu
- Department of Preventative Medicine, Zhejiang Provincial Key Laboratory of Pathological and Physiological Technology, Medicine School of Ningbo University, 818 Fenghua Road, Jiangbei District, Ningbo, 315211, China
| | - Jinshun Zhao
- Department of Preventative Medicine, Zhejiang Provincial Key Laboratory of Pathological and Physiological Technology, Medicine School of Ningbo University, 818 Fenghua Road, Jiangbei District, Ningbo, 315211, China.
| |
Collapse
|
30
|
Inhibition of Nickel Nanoparticles-Induced Toxicity by Epigallocatechin-3-Gallate in JB6 Cells May Be through Down-Regulation of the MAPK Signaling Pathways. PLoS One 2016; 11:e0150954. [PMID: 26943640 PMCID: PMC4778769 DOI: 10.1371/journal.pone.0150954] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 02/22/2016] [Indexed: 12/21/2022] Open
Abstract
With the rapid development in nanotechnology, nickel nanoparticles (Ni NPs) have emerged in the application of nanomedicine in recent years. However, the potential adverse health effects of Ni NPs are unclear. In this study, we examined the inhibition effects of epigallocatechin-3-gallate (EGCG) on the toxicity induced by Ni NPs in mouse epidermal cell line (JB6 cell). MTT assay showed that Ni NPs induced cytotoxicity in a dose-dependent manner while EGCG exerted a certain inhibition on the toxicity. Additionally, EGCG could reduce the apoptotic cell number and the level of reactive oxygen species (ROS) in JB6 cells induced by Ni NPs. Furthermore, we observed that EGCG could down-regulate Ni NPs-induced activator protein-1 (AP-1) and nuclear factor-κB (NF-κB) activation in JB6 cells, which has been shown to play pivotal roles in tumor initiation, promotion and progression. Western blot indicated that EGCG could alleviate the toxicity of Ni NPs through regulating protein changes in MAPK signaling pathways. In summary, our results suggest that careful evaluation on the potential health effects of Ni NPs is necessary before being widely used in the field of nanomedicine. Inhibition of EGCG on Ni NPs-induced cytotoxicity in JB6 cells may be through the MAPK signaling pathways suggesting that EGCG might be useful in preventing the toxicity of Ni NPs.
Collapse
|
31
|
Guo H, Chen L, Cui H, Peng X, Fang J, Zuo Z, Deng J, Wang X, Wu B. Research Advances on Pathways of Nickel-Induced Apoptosis. Int J Mol Sci 2015; 17:E10. [PMID: 26703593 PMCID: PMC4730257 DOI: 10.3390/ijms17010010] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Revised: 12/15/2015] [Accepted: 12/16/2015] [Indexed: 12/12/2022] Open
Abstract
High concentrations of nickel (Ni) are harmful to humans and animals. Ni targets a number of organs and produces multiple toxic effects. Apoptosis is important in Ni-induced toxicity of the kidneys, liver, nerves, and immune system. Apoptotic pathways mediated by reactive oxygen species (ROS), mitochondria, endoplasmic reticulum (ER), Fas, and c-Myc participate in Ni-induced cell apoptosis. However, the exact mechanism of apoptosis caused by Ni is still unclear. Understanding the mechanism of Ni-induced apoptosis may help in designing measures to prevent Ni toxicity.
Collapse
Affiliation(s)
- Hongrui Guo
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agricultural University, Ya'an 625014, China.
| | - Lian Chen
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agricultural University, Ya'an 625014, China.
| | - Hengmin Cui
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agricultural University, Ya'an 625014, China.
- College of Veterinary Medicine, Sichuan Agricultural University Ya'an, Ya'an 625014, China.
| | - Xi Peng
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agricultural University, Ya'an 625014, China.
- College of Veterinary Medicine, Sichuan Agricultural University Ya'an, Ya'an 625014, China.
| | - Jing Fang
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agricultural University, Ya'an 625014, China.
- College of Veterinary Medicine, Sichuan Agricultural University Ya'an, Ya'an 625014, China.
| | - Zhicai Zuo
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agricultural University, Ya'an 625014, China.
- College of Veterinary Medicine, Sichuan Agricultural University Ya'an, Ya'an 625014, China.
| | - Junliang Deng
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agricultural University, Ya'an 625014, China.
- College of Veterinary Medicine, Sichuan Agricultural University Ya'an, Ya'an 625014, China.
| | - Xun Wang
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agricultural University, Ya'an 625014, China.
- College of Veterinary Medicine, Sichuan Agricultural University Ya'an, Ya'an 625014, China.
| | - Bangyuan Wu
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agricultural University, Ya'an 625014, China.
| |
Collapse
|
32
|
Modulation of the PI3K/Akt Pathway and Bcl-2 Family Proteins Involved in Chicken's Tubular Apoptosis Induced by Nickel Chloride (NiCl₂). Int J Mol Sci 2015; 16:22989-3011. [PMID: 26404262 PMCID: PMC4613348 DOI: 10.3390/ijms160922989] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Revised: 09/14/2015] [Accepted: 09/17/2015] [Indexed: 01/24/2023] Open
Abstract
Exposure of people and animals to environments highly polluted with nickel (Ni) can cause pathologic effects. Ni compounds can induce apoptosis, but the mechanism and the pathway of Ni compounds-induced apoptosis are unclear. We evaluated the alterations of apoptosis, mitochondrial membrane potential (MMP), phosphoinositide-3-kinase (PI3K)/serine-threonine kinase (Akt) pathway, and Bcl-2 family proteins induced by nickel chloride (NiCl2) in the kidneys of broiler chickens, using flow cytometry, terminal deoxynucleotidyl transferase 2ʹ-deoxyuridine 5ʹ-triphosphate dUTP nick end-labeling (TUNEL), immunohistochemstry and quantitative real-time polymerase chain reaction (qRT-PCR). We found that dietary NiCl2 in excess of 300 mg/kg resulted in a significant increase in apoptosis, which was associated with decrease in MMP, and increase in apoptosis inducing factor (AIF) and endonuclease G (EndoG) protein and mRNA expression. Concurrently, NiCl2 inhibited the PI3K/Akt pathway, which was characterized by decreasing PI3K, Akt1 and Akt2 mRNA expression levels. NiCl2 also reduced the protein and mRNA expression of anti-apoptotic Bcl-2 and Bcl-xL and increased the protein and mRNA expression of pro-apoptotic Bax and Bak. These results show that NiCl2 causes mitochondrial-mediated apoptosis by disruption of MMP and increased expression of AIF and EndoG mRNA and protein, and that the underlying mechanism of MMP loss involves the Bcl-2 family proteins modulation and PI3K/Akt pathway inhibition.
Collapse
|
33
|
Akhtar MJ, Alhadlaq HA, Kumar S, Alrokayan SA, Ahamed M. Selective cancer-killing ability of metal-based nanoparticles: implications for cancer therapy. Arch Toxicol 2015. [DOI: 10.1007/s00204-015-1570-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
34
|
Duan WX, He MD, Mao L, Qian FH, Li YM, Pi HF, Liu C, Chen CH, Lu YH, Cao ZW, Zhang L, Yu ZP, Zhou Z. NiO nanoparticles induce apoptosis through repressing SIRT1 in human bronchial epithelial cells. Toxicol Appl Pharmacol 2015; 286:80-91. [PMID: 25840356 DOI: 10.1016/j.taap.2015.03.024] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2015] [Revised: 03/20/2015] [Accepted: 03/21/2015] [Indexed: 02/06/2023]
Abstract
With application of nano-sized nickel-containing particles (Nano-Ni) expanding, the health concerns about their adverse effects on the pulmonary system are increasing. However, the mechanisms for the pulmonary toxicity of these materials remain unclear. In the present study, we focused on the impacts of NiO nanoparticles (NiONPs) on sirtuin1 (SIRT1), a NAD-dependent deacetylase, and investigated whether SIRT1 was involved in NiONPs-induced apoptosis. Although the NiONPs tended to agglomerate in fluid medium, they still entered into the human bronchial epithelial cells (BEAS-2B) and released Ni(2+) inside the cells. NiONPs at doses of 5, 10, and 20μg/cm(2) inhibited the cell viability. NiONPs' produced cytotoxicity was demonstrated through an apoptotic process, indicated by increased numbers of Annexin V positive cells and caspase-3 activation. The expression of SIRT1 was markedly down-regulated by the NiONPs, accompanied by the hyperacetylation of p53 (tumor protein 53) and overexpression of Bax (Bcl-2-associated X protein). However, overexpression of SIRT1 through resveratrol treatment or transfection clearly attenuated the NiONPs-induced apoptosis and activation of p53 and Bax. Our results suggest that the repression of SIRT1 may underlie the NiONPs-induced apoptosis via p53 hyperacetylation and subsequent Bax activation. Because SIRT1 participates in multiple biologic processes by deacetylation of dozens of substrates, this knowledge of the impact of NiONPs on SIRT1 may lead to an improved understanding of the toxic mechanisms of Nano-Ni and provide a molecular target to antagonize Nano-Ni toxicity.
Collapse
Affiliation(s)
- Wei-Xia Duan
- Department of Occupational Health, Third Military Medical University, Chongqing 400038, People's Republic of China
| | - Min-Di He
- Department of Occupational Health, Third Military Medical University, Chongqing 400038, People's Republic of China
| | - Lin Mao
- Department of Occupational Health, Third Military Medical University, Chongqing 400038, People's Republic of China
| | - Feng-Hua Qian
- Department of Hematology, Southwest Hospital, Third Military Medical University, Chongqing 400038, People's Republic of China
| | - Yu-Ming Li
- Institute of Hepatobiliary Surgery, XinQiao Hospital, Third Military Medical University, Chongqing 400038, People's Republic of China
| | - Hui-Feng Pi
- Department of Occupational Health, Third Military Medical University, Chongqing 400038, People's Republic of China
| | - Chuan Liu
- Department of Occupational Health, Third Military Medical University, Chongqing 400038, People's Republic of China
| | - Chun-Hai Chen
- Department of Occupational Health, Third Military Medical University, Chongqing 400038, People's Republic of China
| | - Yong-Hui Lu
- Department of Occupational Health, Third Military Medical University, Chongqing 400038, People's Republic of China
| | - Zheng-Wang Cao
- Department of Occupational Health, Third Military Medical University, Chongqing 400038, People's Republic of China
| | - Lei Zhang
- Department of Occupational Health, Third Military Medical University, Chongqing 400038, People's Republic of China
| | - Zheng-Ping Yu
- Department of Occupational Health, Third Military Medical University, Chongqing 400038, People's Republic of China
| | - Zhou Zhou
- Department of Occupational Health, Third Military Medical University, Chongqing 400038, People's Republic of China.
| |
Collapse
|
35
|
Ahmad J, Alhadlaq HA, Siddiqui MA, Saquib Q, Al-Khedhairy AA, Musarrat J, Ahamed M. Concentration-dependent induction of reactive oxygen species, cell cycle arrest and apoptosis in human liver cells after nickel nanoparticles exposure. ENVIRONMENTAL TOXICOLOGY 2015; 30:137-148. [PMID: 23776134 DOI: 10.1002/tox.21879] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Revised: 05/21/2013] [Accepted: 05/22/2013] [Indexed: 06/02/2023]
Abstract
Due to advent of nanotechnology, nickel nanoparticles (Ni NPs) are increasingly recognized for their utility in various applications including catalysts, sensors and electronics. However, the environmental and human health effects of Ni NPs have not been fully investigated. In this study, we examined toxic effects of Ni NPs in human liver (HepG2) cells. Ni NPs were prepared and characterized by X-ray diffraction, transmission electron microscopy and dynamic light scattering. We observed that Ni NPs (size, ∼28 nm; concentration range, 25-100 μg/mL) induced cytotoxicity in HepG2 cells and degree of induction was concentration-dependent. Ni NPs were also found to induce oxidative stress in dose-dependent manner evident by induction of reactive oxygen species and depletion of glutathione. Cell cycle analysis of cells treated with Ni NPs exhibited significant increase of apoptotic cell population in subG1 phase. Ni NPs also induced caspase-3 enzyme activity and apoptotic DNA fragmentation. Upregulation of cell cycle checkpoint gene p53 and bax/bcl-2 ratio with a concomitant loss in mitochondrial membrane potential suggested that Ni NPs induced apoptosis in HepG2 cells was mediated through mitochondrial pathway. This study warrants that applications of Ni NPs should be carefully assessed as to their toxicity to human health.
Collapse
Affiliation(s)
- Javed Ahmad
- Department of Zoology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | | | | | | | | | | | | |
Collapse
|
36
|
Rehbock C, Jakobi J, Gamrad L, van der Meer S, Tiedemann D, Taylor U, Kues W, Rath D, Barcikowski S. Current state of laser synthesis of metal and alloy nanoparticles as ligand-free reference materials for nano-toxicological assays. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2014; 5:1523-41. [PMID: 25247135 PMCID: PMC4168911 DOI: 10.3762/bjnano.5.165] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Accepted: 08/07/2014] [Indexed: 05/15/2023]
Abstract
Due to the abundance of nanomaterials in medical devices and everyday products, toxicological effects related to nanoparticles released from these materials, e.g., by mechanical wear, are a growing matter of concern. Unfortunately, appropriate nanoparticles required for systematic toxicological evaluation of these materials are still lacking. Here, the ubiquitous presence of surface ligands, remaining from chemical synthesis are a major drawback as these organic residues may cause cross-contaminations in toxicological studies. Nanoparticles synthesized by pulsed laser ablation in liquid are a promising alternative as this synthesis route provides totally ligand-free nanoparticles. The first part of this article reviews recent methods that allow the size control of laser-fabricated nanoparticles, focusing on laser post irradiation, delayed bioconjugation and in situ size quenching by low salinity electrolytes. Subsequent or parallel applications of these methods enable precise tuning of the particle diameters in a regime from 4-400 nm without utilization of any artificial surface ligands. The second paragraph of this article highlights the recent progress concerning the synthesis of composition controlled alloy nanoparticles by laser ablation in liquids. Here, binary and ternary alloy nanoparticles with totally homogeneous elemental distribution could be fabricated and the composition of these particles closely resembled bulk implant material. Finally, the model AuAg was used to systematically evaluate composition related toxicological effects of alloy nanoparticles. Here Ag(+) ion release is identified as the most probable mechanism of toxicity when recent toxicological studies with gametes, mammalian cells and bacteria are considered.
Collapse
Affiliation(s)
- Christoph Rehbock
- Technical Chemistry I and Center for Nanointegration Duisburg-Essen (CENIDE), Universitaetsstr. 7, 45141 Essen, Germany
| | - Jurij Jakobi
- Technical Chemistry I and Center for Nanointegration Duisburg-Essen (CENIDE), Universitaetsstr. 7, 45141 Essen, Germany
| | - Lisa Gamrad
- Technical Chemistry I and Center for Nanointegration Duisburg-Essen (CENIDE), Universitaetsstr. 7, 45141 Essen, Germany
| | - Selina van der Meer
- Technical Chemistry I and Center for Nanointegration Duisburg-Essen (CENIDE), Universitaetsstr. 7, 45141 Essen, Germany
| | - Daniela Tiedemann
- Institute for Farm Animal Genetics, Friedrich-Loeffler-Institut, Höltystr. 10, 31535 Neustadt, Germany
| | - Ulrike Taylor
- Institute for Farm Animal Genetics, Friedrich-Loeffler-Institut, Höltystr. 10, 31535 Neustadt, Germany
| | - Wilfried Kues
- Institute for Farm Animal Genetics, Friedrich-Loeffler-Institut, Höltystr. 10, 31535 Neustadt, Germany
| | - Detlef Rath
- Institute for Farm Animal Genetics, Friedrich-Loeffler-Institut, Höltystr. 10, 31535 Neustadt, Germany
| | - Stephan Barcikowski
- Technical Chemistry I and Center for Nanointegration Duisburg-Essen (CENIDE), Universitaetsstr. 7, 45141 Essen, Germany
| |
Collapse
|
37
|
Jayaseelan C, Abdul Rahuman A, Ramkumar R, Perumal P, Rajakumar G, Vishnu Kirthi A, Santhoshkumar T, Marimuthu S. Effect of sub-acute exposure to nickel nanoparticles on oxidative stress and histopathological changes in Mozambique tilapia, Oreochromis mossambicus. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2014; 107:220-228. [PMID: 25011118 DOI: 10.1016/j.ecoenv.2014.06.012] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Revised: 06/07/2014] [Accepted: 06/09/2014] [Indexed: 06/03/2023]
Abstract
The aim of the present study was to assess the oxidative stress, antioxidant response and histopathological changes of nickel nanoparticles (Ni NPs) exposure (14 days) in Mozambique tilapia, Oreochromis mossambicus. Ni NPs were synthesized by metal salt reduction method and characterized by X-ray diffraction (XRD) and Transmission electron microscopy (TEM). The XRD peaks at 44°, 51° and 76° were indexed to the (111), (200) and (220) Bragg's reflections of cubic structure of Nickel, respectively. The crystallite sizes were calculated using Scherrer's formula applied to the major intense peaks and found to be the size of 56nm. TEM images showed that the synthesized Ni NPs are spherical in shape. Biochemical analysis indicated that the superoxide dismutase (SOD), catalase (CAT) and peroxidase (POD) activity was significantly affected by Ni NPs treated O. mossambicus. Reduced antioxidant enzymes and the contents of antioxidants were lowered in the liver and gills of fishes treated with Ni NPs. After 14 days of exposure, a significant accumulation of Ni in the Ni NPs in experimental group was observed in the gill and skin tissues, with the highest levels found in the liver. Ni NPs exposed fish showed nuclear hypertrophy (NH), nuclear degeneration (ND), necrosis (NC) and irregular-shaped nuclei were observed in liver tissue. The hyperplasia of the gill epithelium (GE), lamellar fusion of secondary lamellae (LF), dilated marginal channel (MC), epithelial lifting (EL) and epithelial rupture were observed in gill tissue. Degeneration in muscle bundles (DM), focal area of necrosis (NC) vacuolar degeneration in muscle bundles (VD), edema between muscle bundles (ED) and splitting of muscle fibers were noticed in skin tissue. Further ecotoxicological evaluation will be made concerning the risk of Ni NPs on aquatic environment.
Collapse
Affiliation(s)
- Chidambaram Jayaseelan
- Unit of Nanotechnology and Bioactive Natural Products, Post Graduate and Research Department of Zoology, C. Abdul Hakeem College, Melvisharam-632 509, Vellore District, Tamil Nadu, India
| | - Abdul Abdul Rahuman
- Unit of Nanotechnology and Bioactive Natural Products, Post Graduate and Research Department of Zoology, C. Abdul Hakeem College, Melvisharam-632 509, Vellore District, Tamil Nadu, India.
| | - Rajendiran Ramkumar
- Department of Biotechnology, Periyar University, Salem-636 011, Tamil Nadu, India
| | - Pachiappan Perumal
- Department of Biotechnology, Periyar University, Salem-636 011, Tamil Nadu, India
| | - Govindasamy Rajakumar
- Unit of Nanotechnology and Bioactive Natural Products, Post Graduate and Research Department of Zoology, C. Abdul Hakeem College, Melvisharam-632 509, Vellore District, Tamil Nadu, India
| | - Arivarasan Vishnu Kirthi
- Unit of Nanotechnology and Bioactive Natural Products, Post Graduate and Research Department of Zoology, C. Abdul Hakeem College, Melvisharam-632 509, Vellore District, Tamil Nadu, India
| | - Thirunavukkarasu Santhoshkumar
- Unit of Nanotechnology and Bioactive Natural Products, Post Graduate and Research Department of Zoology, C. Abdul Hakeem College, Melvisharam-632 509, Vellore District, Tamil Nadu, India
| | - Sampath Marimuthu
- Unit of Nanotechnology and Bioactive Natural Products, Post Graduate and Research Department of Zoology, C. Abdul Hakeem College, Melvisharam-632 509, Vellore District, Tamil Nadu, India
| |
Collapse
|
38
|
Wang X, Wei F, Yan S, Zhang H, Tan X, Zhang L, Zhou G, Cui L, Li C, Wang L, Li Y. Innovative fluorescent magnetic albumin microbead-assisted cell labeling and intracellular imaging of glioblastoma cells. Biosens Bioelectron 2014; 54:55-63. [DOI: 10.1016/j.bios.2013.10.041] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Revised: 10/22/2013] [Accepted: 10/22/2013] [Indexed: 12/17/2022]
|
39
|
Magaye R, Zhou Q, Bowman L, Zou B, Mao G, Xu J, Castranova V, Zhao J, Ding M. Metallic nickel nanoparticles may exhibit higher carcinogenic potential than fine particles in JB6 cells. PLoS One 2014; 9:e92418. [PMID: 24691273 PMCID: PMC3972196 DOI: 10.1371/journal.pone.0092418] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Accepted: 02/21/2014] [Indexed: 01/20/2023] Open
Abstract
While numerous studies have described the pathogenic and carcinogenic effects of nickel compounds, little has been done on the biological effects of metallic nickel. Moreover, the carcinogenetic potential of metallic nickel nanoparticles is unknown. Activator protein-1 (AP-1) and nuclear factor-κB (NF-κB) have been shown to play pivotal roles in tumor initiation, promotion, and progression. Mutation of the p53 tumor suppressor gene is considered to be one of the steps leading to the neoplastic state. The present study examines effects of metallic nickel fine and nanoparticles on tumor promoter or suppressor gene expressions as well as on cell transformation in JB6 cells. Our results demonstrate that metallic nickel nanoparticles caused higher activation of AP-1 and NF-κB, and a greater decrease of p53 transcription activity than fine particles. Western blot indicates that metallic nickel nanoparticles induced a higher level of protein expressions for R-Ras, c-myc, C-Jun, p65, and p50 in a time-dependent manner. In addition, both metallic nickel nano- and fine particles increased anchorage-independent colony formation in JB6 P+ cells in the soft agar assay. These results imply that metallic nickel fine and nanoparticles are both carcinogenetic in vitro in JB6 cells. Moreover, metallic nickel nanoparticles may exhibit higher carcinogenic potential, which suggests that precautionary measures should be taken in the use of nickel nanoparticles or its compounds in nanomedicine.
Collapse
Affiliation(s)
- Ruth Magaye
- Public Health Department of Medical School, Zhejiang Provincial Key Laboratory of Pathological and Physiological Technology, Ningbo University, Ningbo, Zhejiang Province, People's Republic of China
| | - Qi Zhou
- Public Health Department of Medical School, Zhejiang Provincial Key Laboratory of Pathological and Physiological Technology, Ningbo University, Ningbo, Zhejiang Province, People's Republic of China
| | - Linda Bowman
- Pathology and Physiology Research Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, West Virginia, United States of America
| | - Baobo Zou
- Public Health Department of Medical School, Zhejiang Provincial Key Laboratory of Pathological and Physiological Technology, Ningbo University, Ningbo, Zhejiang Province, People's Republic of China
| | - Guochuan Mao
- Public Health Department of Medical School, Zhejiang Provincial Key Laboratory of Pathological and Physiological Technology, Ningbo University, Ningbo, Zhejiang Province, People's Republic of China
| | - Jin Xu
- Public Health Department of Medical School, Zhejiang Provincial Key Laboratory of Pathological and Physiological Technology, Ningbo University, Ningbo, Zhejiang Province, People's Republic of China
| | - Vincent Castranova
- Pathology and Physiology Research Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, West Virginia, United States of America
| | - Jinshun Zhao
- Public Health Department of Medical School, Zhejiang Provincial Key Laboratory of Pathological and Physiological Technology, Ningbo University, Ningbo, Zhejiang Province, People's Republic of China; Pathology and Physiology Research Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, West Virginia, United States of America
| | - Min Ding
- Pathology and Physiology Research Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, West Virginia, United States of America
| |
Collapse
|
40
|
Capasso L, Camatini M, Gualtieri M. Nickel oxide nanoparticles induce inflammation and genotoxic effect in lung epithelial cells. Toxicol Lett 2014; 226:28-34. [DOI: 10.1016/j.toxlet.2014.01.040] [Citation(s) in RCA: 118] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Revised: 01/24/2014] [Accepted: 01/27/2014] [Indexed: 01/11/2023]
|
41
|
Ahamed M, Alhadlaq HA. Nickel nanoparticle-induced dose-dependent cyto-genotoxicity in human breast carcinoma MCF-7 cells. Onco Targets Ther 2014; 7:269-80. [PMID: 24627639 PMCID: PMC3931666 DOI: 10.2147/ott.s58044] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Despite the widespread application of nickel nanoparticles (Ni NPs) in industrial, commercial, and biomedical fields, their response to human cells has not been clearly elucidated. In the study reported here, Ni NPs with a 28 nm diameter were used to study their interaction with human breast carcinoma (MCF-7) cells. Dose-dependent decreased cell viability and damaged cell membrane integrity showed the cytotoxic potential of the Ni NPs. We further found that Ni NPs induce oxidative stress in a dose-dependent manner, as evidenced by glutathione depletion and reactive oxygen species (ROS) generation. Comet assay indicated the dose-dependent induction of DNA damage due to Ni NP exposure. The level of messenger RNA, as well as activity of caspase-3 enzyme, was higher in MCF-7 cells exposed to Ni NPs than in control cells. Moreover, we observed statistically significant correlations of ROS with cell viability (R2=0.984), DNA damage (% tail DNA) (R2=0.982), and caspase-3 enzyme activity (R2=0.991). To the best of our knowledge, this is the first study on human breast cancer cells to have shown the cyto-genotoxicity of Ni NPs, which seems to be mediated through ROS.
Collapse
Affiliation(s)
- Maqusood Ahamed
- King Abdullah Institute for Nanotechnology, King Saud University, Riyadh, Saudi Arabia
| | - Hisham A Alhadlaq
- King Abdullah Institute for Nanotechnology, King Saud University, Riyadh, Saudi Arabia ; Department of Physics and Astronomy, College of Science, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
42
|
Hussain S, Garantziotis S, Rodrigues-Lima F, Dupret JM, Baeza-Squiban A, Boland S. Intracellular signal modulation by nanomaterials. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 811:111-34. [PMID: 24683030 DOI: 10.1007/978-94-017-8739-0_7] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
A thorough understanding of the interactions of nanomaterials with biological systems and the resulting activation of signal transduction pathways is essential for the development of safe and consumer friendly nanotechnology. Here we present an overview of signaling pathways induced by nanomaterial exposures and describe the possible correlation of their physicochemical characteristics with biological outcomes. In addition to the hierarchical oxidative stress model and a review of the intrinsic and cell-mediated mechanisms of reactive oxygen species (ROS) generating capacities of nanomaterials, we also discuss other oxidative stress dependent and independent cellular signaling pathways. Induction of the inflammasome, calcium signaling, and endoplasmic reticulum stress are reviewed. Furthermore, the uptake mechanisms can be of crucial importance for the cytotoxicity of nanomaterials and membrane-dependent signaling pathways have also been shown to be responsible for cellular effects of nanomaterials. Epigenetic regulation by nanomaterials, effects of nanoparticle-protein interactions on cell signaling pathways, and the induction of various cell death modalities by nanomaterials are described. We describe the common trigger mechanisms shared by various nanomaterials to induce cell death pathways and describe the interplay of different modalities in orchestrating the final outcome after nanomaterial exposures. A better understanding of signal modulations induced by nanomaterials is not only essential for the synthesis and design of safer nanomaterials but will also help to discover potential nanomedical applications of these materials. Several biomedical applications based on the different signaling pathways induced by nanomaterials are already proposed and will certainly gain a great deal of attraction in the near future.
Collapse
Affiliation(s)
- Salik Hussain
- Clinical Research Program, National Institute of Environmental Health Sciences (NIEHS), National Institute of Health (NIH), Research Triangle Park, NC, USA,
| | | | | | | | | | | |
Collapse
|
43
|
Kročková J, Massányi P, Sirotkin AV, Lukáč N, Kováčik A. Nickel-induced structural and functional alterations in porcine granulosa cells in vitro. Biol Trace Elem Res 2013; 154:190-5. [PMID: 23784734 DOI: 10.1007/s12011-013-9733-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2013] [Accepted: 06/06/2013] [Indexed: 12/30/2022]
Abstract
The present study was aimed at investigating the effect of nickel chloride (NiCl2) on secretion of progesterone (P), ultrastructure and apoptosis in porcine granulosa cells. NiCl2 was added to the cells to achieve a Ni(2+) concentration of 62.5, 125, 250, 500 and 1,000 μmol/L. A control group contained no NiCl2 addition. Quantification of P was performed directly from aliquots of the media from control and treated porcine granulosa cells after 48 h of culture using radioimmunoassay. Quantification of apoptotic cells was performed using terminal deoxynucleotidyl transferase dUTP nick end labelling assay, and ultrastructural changes were analyzed using transmission electron microscopy. A concentration-dependent depletion of P production was observed significantly for 1,000 μmol/L NiCl2. The percentage of apoptotic cells was increased in all experimental groups significantly only after addition of 1,000 μmol/L NiCl2. After addition of ≥250 μmol/L NiCl2, a higher incidence of euchromatin was observed. Also, lipid droplets and vacuoles in the cytoplasm increased after addition of ≥250 μmol/L NiCl2. NiCl2 induced the decrease in numbers of mitochondria and smooth endoplasmic reticulum after treatment with ≥500 μmol/L NiCl2. Our findings suggest a negative effect of NiCl2 on steroidogenesis and apoptosis as well as ultrastructure of porcine granulosa cells.
Collapse
Affiliation(s)
- Jiřina Kročková
- Department of Animal Physiology, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovak Republic.
| | | | | | | | | |
Collapse
|
44
|
Yang YX, Li XL, Wang L, Han SY, Zhang YR, Pratheeshkumar P, Wang X, Lu J, Yin YQ, Sun LJ, Budhraja A, Hitron AJ, Ding SZ. Anti-apoptotic proteins and catalase-dependent apoptosis resistance in nickel chloride-transformed human lung epithelial cells. Int J Oncol 2013; 43:936-46. [PMID: 23828460 PMCID: PMC3787888 DOI: 10.3892/ijo.2013.2004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Accepted: 05/29/2013] [Indexed: 12/24/2022] Open
Abstract
Chronic exposure to nickel compounds is associated with increased incidence of certain types of human cancer, including lung and nasal cancers. Despite intensive investigation, the oncogenic processes remain poorly understood. Apoptosis resistance is a key feature for tumor cells to escape physiological surveillance and acquire growth advantage over normal cells. Although NiCl2 exposure induces transformation of human lung epithelial cells, little information is available with regard to its molecular mechanisms, it is also not clear if the transformed cells are apoptosis resistant and tumorigenic. We explored the apoptosis resistance properties of nickel chloride-transformed human lung epithelial cells and the underlying mechanisms. The results showed that transformed BEAS-2B human lung epithelial cells are resistant to NiCl2-induced apoptosis. They have increased Bcl-2, Bcl-xL and catalase protein levels over the passage matched non-transformed counterparts. The mechanisms of apoptosis resistance are mitochondria-mediated and caspase-dependent. Forced overexpression of Bcl-2, Bcl-xL and catalase proteins reduced NiCl2-induced cell death; siRNA-mediated knockdown of their expression sensitized the cells to nickel-induced apoptosis, suggesting that Bcl-2, Bcl-xl and catalase protein expression plays a critical role in apoptosis resistance. Akt also participates in this process, as its overexpression increases Bcl-xL protein expression levels and attenuates NiCl2-induced apoptosis. Furthermore, transformed cells are tumorigenic in a xenograft model. Together, these results demonstrate that nickel-transformed cells are apoptosis-resistant and tumorigenic. Increased expression of Bcl-2, Bcl-xL and catalase proteins are important mechanisms contributing to transformed cell oncogenic properties.
Collapse
Affiliation(s)
- Yu-Xiu Yang
- Department of Internal Medicine, Henan Provincial People's Hospital, Zhengzhou University, Zhengzhou, Henan 450000, P.R. China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Yin N, Liu Q, Liu J, He B, Cui L, Li Z, Yun Z, Qu G, Liu S, Zhou Q, Jiang G. Silver nanoparticle exposure attenuates the viability of rat cerebellum granule cells through apoptosis coupled to oxidative stress. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2013; 9:1831-41. [PMID: 23427069 DOI: 10.1002/smll.201202732] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Indexed: 05/16/2023]
Abstract
The impact of silver nanoparticles (AgNPs) on the central nervous system is a topic with mounting interest and concern and the facts remain elusive. In the current study, the neurotoxicity of commercial AgNPs to rat cerebellum granule cells (CGCs) and the corresponding molecular mechanism are closely investigated. It is demonstrated that AgNPs induce significant cellular toxicity to CGCs in a dose-dependent manner without damaging the cell membrane. Flow cytometry analysis with the Annexin V/propidium iodide (PI) staining indicates that the apoptotic proportion of CGCs upon treatment with AgNPs is greatly increased compared to the negative control. Moreover, the activity of caspase-3 is largely elevated in AgNP-treated cells compared to the negative control. AgNPs are demonstrated to induce oxidative stress, reflected by the massive generation of reactive oxygen species (ROS), the depletion of antioxidant glutathione (GSH), and the increase of intracellular calcium. Histological examination suggests that AgNPs provoke destruction of the cerebellum granular layer in rats with concomitant activation of caspase-3, in parallel to the neurotoxicity of AgNPs observed in vitro. Taken together, it is demonstrated for the first time that AgNPs substantially impair the survival of primary neuronal cells through apoptosis coupled to oxidative stress, depending on the caspase activation-mediated signaling.
Collapse
Affiliation(s)
- Nuoya Yin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, PO Box 2871, Beijing 100085, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Zhao J, Bowman L, Magaye R, Leonard SS, Castranova V, Ding M. Apoptosis induced by tungsten carbide-cobalt nanoparticles in JB6 cells involves ROS generation through both extrinsic and intrinsic apoptosis pathways. Int J Oncol 2013; 42:1349-59. [PMID: 23417053 DOI: 10.3892/ijo.2013.1828] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Accepted: 07/16/2012] [Indexed: 11/05/2022] Open
Abstract
In this study, apoptosis and related signaling induced by WC-Co nanoparticles were investigated in JB6 cells and rat lung macrophages. Electron spin resonance (ESR) and fluorescent staining indicated that both WC-Co nanoparticles and fine particles stimulated reactive oxygen species (ROS) generation. Catalase exhibited an inhibitory effect on WC-Co nanoparticle-induced ROS as well as mitochondrial membrane permeability damage. Further study indicated that WC-Co nanoparticles elicited higher cytotoxicity and apoptotic induction than fine particles. Western blot analysis showed activation of proapoptotic factors including Fas, Fas-associated protein with death domain (FADD), caspase 3, 8 and 9, BID and BAX. In addition, both cytochrome c and apoptosis-inducing factor (AIF) were upregulated and released from mitochondria to the cytoplasm. Our findings demonstrate that, on a mass basis, WC-Co nanoparticles exhibit higher cytotoxicity and apoptotic induction than fine particles. Apoptosis induced by WC-Co nanoparticles and fine particles involves both extrinsic and intrinsic apoptosis pathways.
Collapse
Affiliation(s)
- Jinshun Zhao
- Department of Preventive Medicine of the Medical School, Zhejiang Provincial Key Laboratory of Pathological and Physiological Technology, Ningbo University, Ningbo, Zhejiang 315211, P.R. China.
| | | | | | | | | | | |
Collapse
|
47
|
Pondman KM, Maijenburg AW, Celikkol FB, Pathan AA, Kishore U, Haken BT, ten Elshof JE. Au coated Ni nanowires with tuneable dimensions for biomedical applications. J Mater Chem B 2013; 1:6129-6136. [DOI: 10.1039/c3tb20808g] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
48
|
Nanomaterials toxicity and cell death modalities. JOURNAL OF DRUG DELIVERY 2012; 2012:167896. [PMID: 23304518 PMCID: PMC3523142 DOI: 10.1155/2012/167896] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Accepted: 11/07/2012] [Indexed: 01/27/2023]
Abstract
In the last decade, the nanotechnology advancement has developed a plethora of novel and intriguing nanomaterial application in many sectors, including research and medicine. However, many risks have been highlighted in their use, particularly related to their unexpected toxicity in vitro and in vivo experimental models. This paper proposes an overview concerning the cell death modalities induced by the major nanomaterials.
Collapse
|
49
|
Magaye R, Zhao J. Recent progress in studies of metallic nickel and nickel-based nanoparticles' genotoxicity and carcinogenicity. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2012; 34:644-650. [PMID: 23000472 DOI: 10.1016/j.etap.2012.08.012] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2012] [Revised: 08/09/2012] [Accepted: 08/24/2012] [Indexed: 06/01/2023]
Abstract
Recently, nanoparticles have been the focus of many research and innovation. Metallic nickel and nickel-based nanoparticles are among those being exploited. Nickel fine particles are known to be genotoxic and carcinogenic. It has been discovered that many properties of nano sized elements and materials are not present in their bulk states. The nano size of these particles renders them the ability to be easily transported into biological systems, thus raising the question of their effects on the susceptible system. Therefore scientific research on the effects of nickel nanoparticles is important. This mini-review intends to summarize the current knowledge on the genotoxicity and carcinogenicity potential of metallic nickel and nickel-based nanoparticles implicated in in vitro and in vivo mammalian studies.
Collapse
Affiliation(s)
- Ruth Magaye
- Department of Preventive Medicine of the Medical School, Zhejiang Provincial Key Laboratory of Pathological and Physiological Technology, Ningbo University, Ningbo, Zhejiang 315211, PR China
| | | |
Collapse
|
50
|
MAGAYE RUTH, ZHAO JINSHUN, BOWMAN LINDA, DING MIN. Genotoxicity and carcinogenicity of cobalt-, nickel- and copper-based nanoparticles. Exp Ther Med 2012; 4:551-561. [PMID: 23170105 PMCID: PMC3501377 DOI: 10.3892/etm.2012.656] [Citation(s) in RCA: 153] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2012] [Accepted: 07/31/2012] [Indexed: 01/06/2023] Open
Abstract
The nanotechnology industry has matured and expanded at a rapid pace in the last decade, leading to the research and development of nanomaterials with enormous potential. The largest source of these nanomaterials is the transitional metals. It has been revealed that numerous properties of these nano-sized elements are not present in their bulk states. The nano size of these particles means they are easily transported into biological systems, thus, raising the question of their effects on the susceptible systems. Although advances have been made and insights have been gained on the effect of transitional metals on susceptible biological systems, there still is much ground to be covered, particularly with respect to our knowledge on the genotoxic and carcinogenic effects. Therefore, this review intends to summarize the current knowledge on the genotoxic and carcinogenic potential of cobalt-, nickel- and copper-based nanoparticles indicated in in vitro and in vivo mammalian studies. In the present review, we briefly state the sources, use and exposure routes of these nanoparticles and summarize the current literature findings on their in vivo and in vitro genotoxic and carcinogenic effects. Due to the increasing evidence of their role in carcinogenicity, we have also included studies that have reported epigenetic factors, such as abnormal apoptosis, enhanced oxidative stress and pro-inflammatory effects involving these nanoparticles.
Collapse
Affiliation(s)
- RUTH MAGAYE
- Department of Preventive Medicine of the Medical School, Zhejiang Provincial Key Laboratory of Pathological and Physiological Technology, Ningbo University, Ningbo, Zhejiang 315211,
P.R. China
| | - JINSHUN ZHAO
- Department of Preventive Medicine of the Medical School, Zhejiang Provincial Key Laboratory of Pathological and Physiological Technology, Ningbo University, Ningbo, Zhejiang 315211,
P.R. China
| | - LINDA BOWMAN
- Pathology and Physiology Research Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV 26505,
USA
| | - MIN DING
- Pathology and Physiology Research Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV 26505,
USA
| |
Collapse
|