1
|
Haliyur R, Parkinson DH, Ma F, Xu J, Li Q, Huang Y, Tsoi LC, Bogle R, Liu J, Gudjonsson JE, Rao RC. Liquid Biopsy for Proliferative Diabetic Retinopathy: Single-Cell Transcriptomics of Human Vitreous Reveals Inflammatory T-Cell Signature. OPHTHALMOLOGY SCIENCE 2024; 4:100539. [PMID: 39220810 PMCID: PMC11365369 DOI: 10.1016/j.xops.2024.100539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 04/16/2024] [Accepted: 04/19/2024] [Indexed: 09/04/2024]
Abstract
Purpose Current therapies for proliferative diabetic retinopathy (PDR) do not specifically target VEGF-independent, cell-type-specific processes that lead to vision loss, such as inflammatory pathways. This study aimed to identify targetable cell types and corresponding signaling pathways by elucidating the single-cell landscape of the vitreous of patients with PDR. Design Case series. Subjects Vitreous and peripheral blood obtained from 5 adult patients (6 eyes) undergoing pars plana vitrectomy for vision-threatening PDR. Methods Single-cell RNA sequencing (scRNA-seq) was performed on vitreous cells obtained from diluted cassette washings during vitrectomy from 6 eyes and peripheral blood mononuclear cells (PBMCs, n = 5). Droplet-based scRNA-seq was performed using the Chromium 10x platform to obtain single-cell transcriptomes. Differences in tissue compartments were analyzed with gene ontology enrichment of differentially expressed genes and an unbiased ligand-receptor interaction analysis. Main Outcome Measures Single-cell transcriptomic profiles of vitreous and peripheral blood. Results Transcriptomes from 13 675 surgically harvested vitreous cells and 22 636 PBMCs were included. Clustering revealed 4 cell states consistently across all eyes with representative transcripts for T cells (CD2, CD3D, CD3E, and GZMA), B cells (CD79A, IGHM, MS4A1 (CD20), and HLA-DRA), myeloid cells (LYZ, CST3, AIF1, and IFI30), and neutrophils (BASP1, CXCR2, S100A8, and S100A9). Most vitreous cells were T cells (91.6%), unlike the peripheral blood (46.2%), whereas neutrophils in the vitreous were essentially absent. The full repertoire of adaptive T cells including CD4+, CD8+ and T regulatory cells (Treg) and innate immune system effectors (i.e., natural killer T cells) was present in the vitreous. Pathway analysis also demonstrated activation of CD4+ and CD8+ memory T cells and ligand-receptor interactions unique to the vitreous. Conclusions In the first single-cell transcriptomic characterization of human vitreous in a disease state, we show PDR vitreous is primarily composed of T cells, a critical component of adaptive immunity, with activity and proportions distinct from T cells within the peripheral blood, and neutrophils are essentially absent. These results demonstrate the feasibility of liquid vitreous biopsies via collection of otherwise discarded, diluted cassette washings during vitrectomy to gain mechanistic and therapeutic insights into human vitreoretinal disease. Financial Disclosures Proprietary or commercial disclosure may be found in the Footnotes and Disclosures at the end of this article.
Collapse
Affiliation(s)
- Rachana Haliyur
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan, Ann Arbor, Michigan
| | - David H. Parkinson
- Medical Scientist Training Program, University of Michigan Medical School, University of Michigan, Ann Arbor, Michigan
| | - Feiyang Ma
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Jing Xu
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan, Ann Arbor, Michigan
| | - Qiang Li
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan, Ann Arbor, Michigan
| | - Yuanhao Huang
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan
| | - Lam C. Tsoi
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Rachael Bogle
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Jie Liu
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan
| | - Johann E. Gudjonsson
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Rajesh C. Rao
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan, Ann Arbor, Michigan
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan
- Department of Human Genetics, University of Michigan, Ann Arbor, Michigan
- Department of Pathology, University of Michigan, Ann Arbor, Michigan
- Center for RNA Biomedicine, University of Michigan, Ann Arbor, Michigan
- A. Alfred Taubman Medical Research Institute, University of Michigan, Ann Arbor, Michigan
- Section of Ophthalmology, Surgery Service, Veterans Administration Ann Arbor Healthcare System, Ann Arbor, Michigan
| |
Collapse
|
2
|
Liu W, Zhu X, Ge X, Chen Y, Li DWC, Gong L. Light damage induces inflammatory factors in mouse retina and vitreous humor. Mol Vis 2023; 29:180-187. [PMID: 38222454 PMCID: PMC10784230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 10/10/2023] [Indexed: 01/16/2024] Open
Abstract
Purpose Increased inflammatory factor levels have been reported in the vitreous humor (VH) of diabetic retinopathy and neovascular age-related macular degeneration, ocular diseases generally associated with the formation of new retinal blood vessels and leakage. However, the levels of inflammatory mediators are less known in retinal degeneration without neovascularization. Human retinitis pigmentosa (RP) and animal models of light-induced retinal degeneration (LIRD) share several features, such as photoreceptor death and retinal inflammation. Here, we aimed to determine the levels of inflammatory factors in the VH of the LIRD mouse model. Methods LIRD was induced by exposing BALB/c mice to white light (15,000 lx, 2 h), and the mice were recovered for 2 days before analysis (n = 50 mice). We assessed retinal morphology using optical coherence tomography and hematoxylin and eosin staining; retinal cell viability was determined using terminal deoxynucleotidyl transferase dUTP nick-end labeling, and retinal responses were measured based on electroretinogram signals. Total retinal RNAs were extracted and subjected to RNA sequencing analysis. VH samples from control (n = 4) and LIRD mice (n = 9) were assayed in triplicate for a panel of four inflammatory mediators using the Simple Plex Cartridge on an Ella System. Results Retinal degeneration, photoreceptor death, infiltration of microglia/macrophages into the photoreceptor layer, and loss of a- and b-waves were obviously detected after LIRD. RNA sequencing revealed that light damage (LD) led to the significant upregulation of inflammatory factors in mouse retinas. In the VH, LD increased the total protein concentration. Dramatic induction of CCL2 (~3000 fold) and IL6 (~10 fold) was detected in VH in response to LD. Increased but not significant levels of TNFα and IL1β were also detected in light-exposed VH. Conclusions Given that the LIRD model mimics RP pathogenesis in some aspects, these results suggest a causative link between retinal degeneration and VH inflammation in RP progression, and the increased CCL2 level in VH may reflect similar elevated CCL2 expression in the degenerative retina.
Collapse
Affiliation(s)
- Wei Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, Guangdong, 510060, China
| | - Xingfei Zhu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, Guangdong, 510060, China
| | - Xiangyu Ge
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, Guangdong, 510060, China
| | - Yulin Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, Guangdong, 510060, China
| | - David Wan-Cheng Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, Guangdong, 510060, China
| | - Lili Gong
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, Guangdong, 510060, China
| |
Collapse
|
3
|
Ulhaq ZS, Hasan YTN, Rosyidin NK, Istifiani LA, Pamungkas SA, Soraya GV. A systematic proteomic profiling and pathway analysis of protein biomarkers in diabetic retinopathy with subsequent validation of the IL-6 upstream regulator. J Diabetes Metab Disord 2023; 22:801-815. [PMID: 37255833 PMCID: PMC10225401 DOI: 10.1007/s40200-023-01204-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 02/21/2023] [Indexed: 03/15/2023]
Abstract
Purpose Diabetic retinopathy (DR) is a leading cause of irreversible blindness worldwide. Identifying risk factors associated with DR development and progression is crucial for improving treatment efficacy. Although proteomic changes in DR have been extensively studied, the results remain equivocal. Hence, this study aims to summarize and identify potential diagnostic or prognostic markers for DR. In addition, the upstream regulator responsible for protein deregulation of this disease was also validated. Methods We systematically analyzed the current literature on proteomic profile changes in DR, followed by pathway analysis identification. To validate the protein level changes, ELISA was performed from serum samples collected from 27 patients with DR and 25 healthy controls. Results Our analysis revealed that 1 candidate marker (afamin [AFM]) distinguished non-proliferative diabetic retinopathy (NPDR) from type 2 diabetic patients with no diabetic retinopathy/controls, 65 candidate markers distinguished proliferative diabetic retinopathy (PDR) from NPDR, 1 candidate marker (thyroid receptor-interacting protein 11 [TRIP11]) distinguished PDR from PDR-DME/DME, and 3 candidate markers for therapeutic evaluation of PDR. Our results pinpoint that inflammatory response, which IL-6 mainly modulated, is responsible for the changes of proteomic profiles identified in DR. This was also validated by ELISA analysis, indicating that IL-6 could be potentially useful for diagnosing DR. Conclusion We report a comprehensive patient-based proteomic approach to identify potential biomarkers for DR diagnosis, prognosis, and treatment evaluation. Supplementary information The online version contains supplementary material available at 10.1007/s40200-023-01204-6.
Collapse
Affiliation(s)
- Zulvikar Syambani Ulhaq
- Research Center for Pre-Clinical and Clinical Medicine, National Research and Innovation Agency Republic of Indonesia, Cibinong, Indonesia
- Laboratory of Developmental Disorders and Toxicology, Center for Promotion of International Education and Research, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| | - Yuliono Trika Nur Hasan
- Faculty of Medicine and Health Sciences, Maulana Malik State Islamic University, Malang, Indonesia
- Department of Opthalmology, Karsa General Hospital, Batu, Indonesia
| | | | - Lola Ayu Istifiani
- Department of Nutrition, Faculty of Health Sciences, Brawijaya University, Malang, Indonesia
| | | | - Gita Vita Soraya
- Department of Biochemistry, Faculty of Medicine, Hasanuddin University, Makassar, Indonesia
- Department of Neurology, Faculty of Medicine, Hasanuddin University, Makassar, Indonesia
| |
Collapse
|
4
|
Santos FM, Ciordia S, Mesquita J, Cruz C, Sousa JPCE, Passarinha LA, Tomaz CT, Paradela A. Proteomics profiling of vitreous humor reveals complement and coagulation components, adhesion factors, and neurodegeneration markers as discriminatory biomarkers of vitreoretinal eye diseases. Front Immunol 2023; 14:1107295. [PMID: 36875133 PMCID: PMC9978817 DOI: 10.3389/fimmu.2023.1107295] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 02/01/2023] [Indexed: 02/18/2023] Open
Abstract
Introduction Diabetic retinopathy (DR) and age-related macular degeneration (AMD) are leading causes of visual impairment and blindness in people aged 50 years or older in middle-income and industrialized countries. Anti-VEGF therapies have improved the management of neovascular AMD (nAMD) and proliferative DR (PDR), no treatment options exist for the highly prevalent dry form of AMD. Methods To unravel the biological processes underlying these pathologies and to find new potential biomarkers, a label-free quantitative (LFQ) method was applied to analyze the vitreous proteome in PDR (n=4), AMD (n=4) compared to idiopathic epiretinal membranes (ERM) (n=4). Results and discussion Post-hoc tests revealed 96 proteins capable of differentiating among the different groups, whereas 118 proteins were found differentially regulated in PDR compared to ERM and 95 proteins in PDR compared to dry AMD. Pathway analysis indicates that mediators of complement, coagulation cascades and acute phase responses are enriched in PDR vitreous, whilst proteins highly correlated to the extracellular matrix (ECM) organization, platelet degranulation, lysosomal degradation, cell adhesion, and central nervous system development were found underexpressed. According to these results, 35 proteins were selected and monitored by MRM (multiple reaction monitoring) in a larger cohort of patients with ERM (n=21), DR/PDR (n=20), AMD (n=11), and retinal detachment (n=13). Of these, 26 proteins could differentiate between these vitreoretinal diseases. Based on Partial least squares discriminant and multivariate exploratory receiver operating characteristic (ROC) analyses, a panel of 15 discriminatory biomarkers was defined, which includes complement and coagulation components (complement C2 and prothrombin), acute-phase mediators (alpha-1-antichymotrypsin), adhesion molecules (e.g., myocilin, galectin-3-binding protein), ECM components (opticin), and neurodegeneration biomarkers (beta-amyloid, amyloid-like protein 2).
Collapse
Affiliation(s)
- Fátima M. Santos
- CICS-UBI – Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
- Functional Proteomics Laboratory, Centro Nacional de Biotecnología, CSIC, Madrid, Spain
| | - Sergio Ciordia
- Functional Proteomics Laboratory, Centro Nacional de Biotecnología, CSIC, Madrid, Spain
| | - Joana Mesquita
- CICS-UBI – Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Carla Cruz
- CICS-UBI – Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
- Chemistry Department, Faculty of Sciences, University of Beira Interior, Covilhã, Portugal
| | - João Paulo Castro e Sousa
- CICS-UBI – Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
- Department of Ophthalmology, Centro Hospitalar de Leiria, Leiria, Portugal
| | - Luís A. Passarinha
- CICS-UBI – Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculdade de Ciências e Tecnologia, Universidade NOVA, Caparica, Portugal
- UCIBIO–Applied Molecular Biosciences Unit, Departamento de Química/Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
- Laboratório de Fármaco-Toxicologia, UBIMedical, Universidade da Beira Interior, Covilhã, Portugal
| | - Cândida T. Tomaz
- CICS-UBI – Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
- Chemistry Department, Faculty of Sciences, University of Beira Interior, Covilhã, Portugal
| | - Alberto Paradela
- Functional Proteomics Laboratory, Centro Nacional de Biotecnología, CSIC, Madrid, Spain
| |
Collapse
|
5
|
Dos Santos FM, Ciordia S, Mesquita J, de Sousa JPC, Paradela A, Tomaz CT, Passarinha LAP. Vitreous humor proteome: unraveling the molecular mechanisms underlying proliferative and neovascular vitreoretinal diseases. Cell Mol Life Sci 2022; 80:22. [PMID: 36585968 PMCID: PMC11072707 DOI: 10.1007/s00018-022-04670-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 11/09/2022] [Accepted: 12/12/2022] [Indexed: 01/01/2023]
Abstract
Proliferative diabetic retinopathy (PDR), proliferative vitreoretinopathy (PVR), and neovascular age-related macular degeneration (nAMD) are among the leading causes of blindness. Due to the multifactorial nature of these vitreoretinal diseases, omics approaches are essential for a deeper understanding of the pathophysiologic processes underlying the evolution to a proliferative or neovascular etiology, in which patients suffer from an abrupt loss of vision. For many years, it was thought that the function of the vitreous was merely structural, supporting and protecting the surrounding ocular tissues. Proteomics studies proved that vitreous is more complex and biologically active than initially thought, and its changes reflect the physiological and pathological state of the eye. The vitreous is the scenario of a complex interplay between inflammation, fibrosis, oxidative stress, neurodegeneration, and extracellular matrix remodeling. Vitreous proteome not only reflects the pathological events that occur in the retina, but the changes in the vitreous itself play a central role in the onset and progression of vitreoretinal diseases. Therefore, this review offers an overview of the studies on the vitreous proteome that could help to elucidate some of the pathological mechanisms underlying proliferative and/or neovascular vitreoretinal diseases and to find new potential pharmaceutical targets.
Collapse
Affiliation(s)
- Fátima Milhano Dos Santos
- Health Sciences Research Centre (CICS-UBI), Universidade da Beira Interior, 6201-001, Covilhã, Portugal.
- Functional Proteomics Laboratory, Centro Nacional de Biotecnología (CNB-CSIC), Unidad de Proteomica, Calle Darwin 3, Campus de Cantoblanco, 28049, Madrid, Spain.
| | - Sergio Ciordia
- Functional Proteomics Laboratory, Centro Nacional de Biotecnología (CNB-CSIC), Unidad de Proteomica, Calle Darwin 3, Campus de Cantoblanco, 28049, Madrid, Spain
| | - Joana Mesquita
- Health Sciences Research Centre (CICS-UBI), Universidade da Beira Interior, 6201-001, Covilhã, Portugal
| | - João Paulo Castro de Sousa
- Health Sciences Research Centre (CICS-UBI), Universidade da Beira Interior, 6201-001, Covilhã, Portugal
- Department of Ophthalmology, Centro Hospitalar de Leiria, 2410-197, Leiria, Portugal
| | - Alberto Paradela
- Functional Proteomics Laboratory, Centro Nacional de Biotecnología (CNB-CSIC), Unidad de Proteomica, Calle Darwin 3, Campus de Cantoblanco, 28049, Madrid, Spain
| | - Cândida Teixeira Tomaz
- Health Sciences Research Centre (CICS-UBI), Universidade da Beira Interior, 6201-001, Covilhã, Portugal
- C4-UBI, Cloud Computing Competence Centre, University of Beira Interior, 6200-501, Covilhã, Portugal
- Chemistry Department, Faculty of Sciences, Universidade da Beira Interior, 6201-001, Covilhã, Portugal
| | - Luís António Paulino Passarinha
- Health Sciences Research Centre (CICS-UBI), Universidade da Beira Interior, 6201-001, Covilhã, Portugal.
- Associate Laboratory i4HB, Faculdade de Ciências e Tecnologia, Institute for Health and Bioeconomy, Universidade NOVA, 2819-516, Caparica, Portugal.
- UCIBIO-Applied Molecular Biosciences Unit, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal.
- Pharmaco-Toxicology Laboratory, UBIMedical, Universidade da Beira Interior, 6200-000, Covilhã, Portugal.
| |
Collapse
|
6
|
Han R, Gong R, Liu W, Xu G. Proteome changes associated with the VEGFR pathway and immune system in diabetic macular edema patients at different diabetic retinopathy stages. Curr Eye Res 2022; 47:1050-1060. [PMID: 35435079 DOI: 10.1080/02713683.2022.2068181] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
PURPOSE Diabetic macular edema (DME) is a major cause of vision loss in all stages of diabetic retinopathy (DR). However, there is limited recognition of aqueous humor (AH) proteome profiles of DME patients at different DR stages. In this study, we aimed to investigate the AH proteome changes between DME patients at the nonproliferative diabetic retinopathy (NPDR) stage and those at the proliferative diabetic retinopathy (PDR) stage. METHODS A label-free data-independent acquisition based liquid chromatography tandem mass spectrometry (LC-MS/MS) analysis was performed to profile the abundances of AH proteins in 73 eyes from DME patients at different DR stages. Enzyme-linked immunosorbent assay (ELISA) was used to confirm the proteomics results with AH samples from non-diabetic patients and DME patients at the NPDR or PDR stage. RESULTS LC-MS/MS results showed significantly changed expression of 308 proteins between DME patients in the NPDR and PDR groups. Compared to the NPDR group, the proteins relatively up-regulated in the PDR group are involved in the immune system and/or negative regulation of the cell cycle, while proteins relatively down-regulated in the PDR group are associated with the vascular endothelial growth factor receptor (VEGFR) pathway and/or metabolism. ELISA results further verified the proteomic result of down-regulated expression of the immune-associated protein cystatin C (CST3) in the PDR group compared to that in the NPDR and non-diabetic groups. CONCLUSIONS In this study, we reported for the first time the decreased abundances of AH proteins associated with the VEGFR pathway and both down- and up-regulated expression of AH proteins associated with the immune system in the PDR group compared to that in the NPDR group. Furthermore, we found negative correlations of immune-associated protein, CST3 concentration in AH with DR severity and central retinal thickness, suggesting CST3 as a promising target independent of the VEGFR pathway in DME-involved DR treatment.
Collapse
Affiliation(s)
- Ruyi Han
- Department of Ophthalmology, Eye and ENT Hospital of Fudan University, Shanghai, 200030, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai, 200030,China.,NHC Key Laboratory of Myopia, Fudan University, Shanghai, 200030, China
| | - Ruowen Gong
- Department of Ophthalmology, Eye and ENT Hospital of Fudan University, Shanghai, 200030, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai, 200030,China.,NHC Key Laboratory of Myopia, Fudan University, Shanghai, 200030, China
| | - Wei Liu
- Department of Ophthalmology, Eye and ENT Hospital of Fudan University, Shanghai, 200030, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai, 200030,China.,NHC Key Laboratory of Myopia, Fudan University, Shanghai, 200030, China
| | - Gezhi Xu
- Department of Ophthalmology, Eye and ENT Hospital of Fudan University, Shanghai, 200030, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai, 200030,China.,NHC Key Laboratory of Myopia, Fudan University, Shanghai, 200030, China
| |
Collapse
|
7
|
Santos FM, Mesquita J, Castro-de-Sousa JP, Ciordia S, Paradela A, Tomaz CT. Vitreous Humor Proteome: Targeting Oxidative Stress, Inflammation, and Neurodegeneration in Vitreoretinal Diseases. Antioxidants (Basel) 2022; 11:505. [PMID: 35326156 PMCID: PMC8944522 DOI: 10.3390/antiox11030505] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 03/03/2022] [Accepted: 03/04/2022] [Indexed: 12/12/2022] Open
Abstract
Oxidative stress is defined as an unbalance between pro-oxidants and antioxidants, as evidenced by an increase in reactive oxygen and reactive nitrogen species production over time. It is important in the pathophysiology of retinal disorders such as diabetic retinopathy, age-related macular degeneration, retinal detachment, and proliferative vitreoretinopathy, which are the focus of this article. Although the human organism's defense mechanisms correct autoxidation caused by endogenous or exogenous factors, this may be insufficient, causing an imbalance in favor of excessive ROS production or a weakening of the endogenous antioxidant system, resulting in molecular and cellular damage. Furthermore, modern lifestyles and environmental factors contribute to increased chemical exposure and stress induction, resulting in oxidative stress. In this review, we discuss the current information about oxidative stress and the vitreous proteome with a special focus on vitreoretinal diseases. Additionally, we explore therapies using antioxidants in an attempt to rescue the body from oxidation, restore balance, and maximize healthy body function, as well as new investigational therapies that have shown significant therapeutic potential in preclinical studies and clinical trial outcomes, along with their goals and strategic approaches to combat oxidative stress.
Collapse
Affiliation(s)
- Fátima Milhano Santos
- CICS-UBI—Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, 6201-001 Covilhã, Portugal; or (J.P.C.-d.-S.)
- Unidad de Proteomica, Centro Nacional de Biotecnología, CSIC, Campus de Cantoblanco, 28049 Madrid, Spain; (S.C.); (A.P.)
- C4-UBI, Cloud Computing Competence Centre, University of Beira Interior, 6200-501 Covilhã, Portugal
| | - Joana Mesquita
- CICS-UBI—Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, 6201-001 Covilhã, Portugal; or (J.P.C.-d.-S.)
| | - João Paulo Castro-de-Sousa
- CICS-UBI—Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, 6201-001 Covilhã, Portugal; or (J.P.C.-d.-S.)
- Department of Ophthalmology, Centro Hospitalar de Leiria, 2410-197 Leiria, Portugal
| | - Sergio Ciordia
- Unidad de Proteomica, Centro Nacional de Biotecnología, CSIC, Campus de Cantoblanco, 28049 Madrid, Spain; (S.C.); (A.P.)
| | - Alberto Paradela
- Unidad de Proteomica, Centro Nacional de Biotecnología, CSIC, Campus de Cantoblanco, 28049 Madrid, Spain; (S.C.); (A.P.)
| | - Cândida Teixeira Tomaz
- CICS-UBI—Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, 6201-001 Covilhã, Portugal; or (J.P.C.-d.-S.)
- C4-UBI, Cloud Computing Competence Centre, University of Beira Interior, 6200-501 Covilhã, Portugal
- Chemistry Department, Faculty of Sciences, University of Beira Interior, 6201-001 Covilhã, Portugal
| |
Collapse
|
8
|
Rezaeian Z, Bahrami AR, Matin MM, Hosseiny SS. Investigation the effects of vitreous humor on proliferation and dedifferentiation of differentiated NTERA2 cells. BRAZ J BIOL 2021; 84:e250151. [PMID: 34817042 DOI: 10.1590/1519-6984.250151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 09/19/2021] [Indexed: 11/21/2022] Open
Abstract
Mammals have a limited capacity to regenerate their tissues and organs. One of the mechanisms associated with natural regeneration is dedifferentiation. Several small molecules such as vitamin C and growth factors could improve reprogramming efficiency. In this study, the NTERA2-D1 (NT2) cells were induced towards differentiation (NT2-RA) with 10-5 M retinoic acid (RA) for three days and then subjected to various amounts of vitreous humor (VH). Results show that the growth rate of these cells was reduced, while this rate was partly restored upon treatment with VH (NT2-RA-VH). Cell cycle analysis with PI method also showed that the numbers of cells at the S phase of the cell cycle in these cells were increased. The levels of SSEA3 and TRA-1-81 antigens in NT2-RA were dropped but they increased in NT2- RA-VH to a level similar to the NT2 cells. The level of SSEA1 had an opposite pattern. Expression of OCT4 gene dropped after RA treatment, but it was recovered in NT2-RA-VH cells. In conclusion, we suggest VH as a potent mixture for improving the cellular reprogramming leading to dedifferentiation.
Collapse
Affiliation(s)
- Z Rezaeian
- Ferdowsi University of Mashhad, Institute of Biotechnology, Cellular and Molecular Biotechnology Research Group, Mashhad, Iran
| | - A R Bahrami
- Ferdowsi University of Mashhad, Institute of Biotechnology, Cellular and Molecular Biotechnology Research Group, Mashhad, Iran.,Ferdowsi University of Mashhad, Faculty of Sciences, Department of Biology, Mashhad, Iran
| | - M M Matin
- Ferdowsi University of Mashhad, Institute of Biotechnology, Cellular and Molecular Biotechnology Research Group, Mashhad, Iran
| | - S S Hosseiny
- Ferdowsi University of Mashhad, Institute of Biotechnology, Cellular and Molecular Biotechnology Research Group, Mashhad, Iran
| |
Collapse
|
9
|
Iyer SS, Lagrew MK, Tillit SM, Roohipourmoallai R, Korntner S. The Vitreous Ecosystem in Diabetic Retinopathy: Insight into the Patho-Mechanisms of Disease. Int J Mol Sci 2021; 22:ijms22137142. [PMID: 34281192 PMCID: PMC8269048 DOI: 10.3390/ijms22137142] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/10/2021] [Accepted: 06/14/2021] [Indexed: 12/22/2022] Open
Abstract
Diabetic retinopathy is one of the leading causes of blindness in the world with the incidence of disease ever-increasing worldwide. The vitreous humor represents an extensive and complex interactive arena for cytokines in the diabetic eye. In recent decades, there has been significant progress in understanding this environment and its implications in disease pathophysiology. In this review, we investigate the vitreous ecosystem in diabetic retinopathy at the molecular level. Areas of concentration include: the current level of knowledge of growth factors, cytokine and chemokine mediators, and lipid-derived metabolites in the vitreous. We discuss the molecular patho-mechanisms of diabetic retinopathy based upon current vitreous research.
Collapse
|
10
|
Weber SR, Zhao Y, Gates C, Ma J, da Veiga Leprevost F, Basrur V, Nesvizhskii AI, Gardner TW, Sundstrom JM. Proteomic Analyses of Vitreous in Proliferative Diabetic Retinopathy: Prior Studies and Future Outlook. J Clin Med 2021; 10:jcm10112309. [PMID: 34070658 PMCID: PMC8199452 DOI: 10.3390/jcm10112309] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 05/20/2021] [Accepted: 05/22/2021] [Indexed: 11/16/2022] Open
Abstract
Vitreous fluid is becoming an increasingly popular medium for the study of retinal disease. Numerous studies have demonstrated that proteomic analysis of the vitreous from patients with proliferative diabetic retinopathy yields valuable molecular information regarding known and novel proteins and pathways involved in this disease. However, there is no standardized methodology for vitreous proteomic studies. Here, we share a suggested protocol for such studies and outline the various experimental and analytic methods that are currently available. We also review prior mass spectrometry-based proteomic studies of the vitreous from patients with proliferative diabetic retinopathy, discuss common pitfalls of these studies, and propose next steps for moving the field forward.
Collapse
Affiliation(s)
- Sarah R. Weber
- Department of Ophthalmology, Penn State College of Medicine, 500 University Drive, Hershey, PA 17033, USA; (S.R.W.); (Y.Z.)
- Kellogg Eye Center, University of Michigan Medical School, 1000 Wall Street, Ann Arbor, MI 48105, USA;
| | - Yuanjun Zhao
- Department of Ophthalmology, Penn State College of Medicine, 500 University Drive, Hershey, PA 17033, USA; (S.R.W.); (Y.Z.)
| | - Christopher Gates
- Bioinformatics Core, Biomedical Research Core Facilities, University of Michigan Medical School, 2800 Plymouth Road, Ann Arbor, MI 48109, USA;
| | - Jingqun Ma
- Department of Pathology, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA;
| | - Felipe da Veiga Leprevost
- Department of Pathology, University of Michigan Medical School, 1301 Catherine Street, Ann Arbor, MI 48109, USA; (F.d.V.L.); (V.B.); (A.I.N.)
| | - Venkatesha Basrur
- Department of Pathology, University of Michigan Medical School, 1301 Catherine Street, Ann Arbor, MI 48109, USA; (F.d.V.L.); (V.B.); (A.I.N.)
| | - Alexey I. Nesvizhskii
- Department of Pathology, University of Michigan Medical School, 1301 Catherine Street, Ann Arbor, MI 48109, USA; (F.d.V.L.); (V.B.); (A.I.N.)
- Department of Computational Medicine and Bioinformatics, University of Michigan, 100 Washtenaw Ave, Ann Arbor, MI 48109, USA
| | - Thomas W. Gardner
- Kellogg Eye Center, University of Michigan Medical School, 1000 Wall Street, Ann Arbor, MI 48105, USA;
| | - Jeffrey M. Sundstrom
- Department of Ophthalmology, Penn State College of Medicine, 500 University Drive, Hershey, PA 17033, USA; (S.R.W.); (Y.Z.)
- Kellogg Eye Center, University of Michigan Medical School, 1000 Wall Street, Ann Arbor, MI 48105, USA;
- Correspondence: ; Tel.: +1-717-531-6774
| |
Collapse
|
11
|
Ghosh S, Liu H, Yazdankhah M, Stepicheva N, Shang P, Vaidya T, Hose S, Gupta U, Calderon MJ, Hu MW, Nair AP, Weiss J, Fitting CS, Bhutto IA, Gadde SGK, Naik NK, Jaydev C, Lutty GA, Handa JT, Jayagopal A, Qian J, Sahel JA, Rajasundaram D, Sergeev Y, Zigler JS, Sethu S, Watkins S, Ghosh A, Sinha D. βA1-crystallin regulates glucose metabolism and mitochondrial function in mouse retinal astrocytes by modulating PTP1B activity. Commun Biol 2021; 4:248. [PMID: 33627831 PMCID: PMC7904954 DOI: 10.1038/s42003-021-01763-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Accepted: 01/28/2021] [Indexed: 02/08/2023] Open
Abstract
βA3/A1-crystallin, a lens protein that is also expressed in astrocytes, is produced as βA3 and βA1-crystallin isoforms by leaky ribosomal scanning. In a previous human proteome high-throughput array, we found that βA3/A1-crystallin interacts with protein tyrosine phosphatase 1B (PTP1B), a key regulator of glucose metabolism. This prompted us to explore possible roles of βA3/A1-crystallin in metabolism of retinal astrocytes. We found that βA1-crystallin acts as an uncompetitive inhibitor of PTP1B, but βA3-crystallin does not. Loss of βA1-crystallin in astrocytes triggers metabolic abnormalities and inflammation. In CRISPR/cas9 gene-edited βA1-knockdown (KD) mice, but not in βA3-knockout (KO) mice, the streptozotocin (STZ)-induced diabetic retinopathy (DR)-like phenotype is exacerbated. Here, we have identified βA1-crystallin as a regulator of PTP1B; loss of this regulation may be a new mechanism by which astrocytes contribute to DR. Interestingly, proliferative diabetic retinopathy (PDR) patients showed reduced βA1-crystallin and higher levels of PTP1B in the vitreous humor.
Collapse
Affiliation(s)
- Sayan Ghosh
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Haitao Liu
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Meysam Yazdankhah
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Nadezda Stepicheva
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Peng Shang
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Tanuja Vaidya
- GROW Research Laboratory, Narayana Nethralaya Foundation, Bengaluru, India
| | - Stacey Hose
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Urvi Gupta
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Michael Joseph Calderon
- Department of Cell Biology and Center for Biologic Imaging, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Ming-Wen Hu
- Wilmer Eye Institute, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | - Joseph Weiss
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Christopher S Fitting
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Imran A Bhutto
- Wilmer Eye Institute, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | - Naveen Kumar Naik
- GROW Research Laboratory, Narayana Nethralaya Foundation, Bengaluru, India
| | - Chaitra Jaydev
- GROW Research Laboratory, Narayana Nethralaya Foundation, Bengaluru, India
| | - Gerard A Lutty
- Wilmer Eye Institute, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - James T Handa
- Wilmer Eye Institute, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | - Jiang Qian
- Wilmer Eye Institute, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - José-Alain Sahel
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Institut de la Vision, INSERM, CNRS, Sorbonne Université, Paris, France
| | - Dhivyaa Rajasundaram
- Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Yuri Sergeev
- National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - J Samuel Zigler
- Wilmer Eye Institute, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Swaminathan Sethu
- GROW Research Laboratory, Narayana Nethralaya Foundation, Bengaluru, India
| | - Simon Watkins
- Department of Cell Biology and Center for Biologic Imaging, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Arkasubhra Ghosh
- GROW Research Laboratory, Narayana Nethralaya Foundation, Bengaluru, India
| | - Debasish Sinha
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
- Department of Cell Biology and Center for Biologic Imaging, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
- Wilmer Eye Institute, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
12
|
Uslubas I, Kanli A, Kasap M, Akpinar G, Karabas L. Effect of aflibercept on proliferative vitreoretinopathy: Proteomic analysis in an experimental animal model. Exp Eye Res 2021; 203:108425. [PMID: 33417914 DOI: 10.1016/j.exer.2020.108425] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 12/03/2020] [Accepted: 12/21/2020] [Indexed: 11/17/2022]
Abstract
PURPOSE The aim of this study was to monitor inflammatory, proliferative and progressive effects of proliferative vitreoretinopathy (PVR) and aflibercept treatment in dispase induced PVR rat model by proteomic analysis. MATERIAL AND METHODS A total of 35 male Long Evans pigmented rats were divided into three groups, namely, PVR (dispase+saline), PVR+aflibercept (dispase+aflibercept) and control. The PVR group received 2 μl of 0.03 IU/μl dispase and 2 μl saline, the PVR+aflibercept group received 2 μl of 0.03 IU/μl and 2 μl of 40 mg/ml aflibercept at the first day of the experiment. At the end of the 6th week all retina and vitreous specimens were collected by evisceration and transferred to the proteomics laboratory for analysis. Proteomic analysis by 2D gel electrophoresis coupled with MALDI-TOF/TOF was performed. RESULTS In the PVR and PVR+aflibercept group 16 different proteins that were identified to be differentially regulated in comparison to the control group. In the PVR+aflibercept group, ENO1, ENO2, LDH-B, PEBP-1 and GS levels were higher than the PVR group. In addition, the association of proteins such as UCHL, PEBP1, PDHB and ENO1 with PVR has been demonstrated for the first time. CONCLUSION STRING analysis elucidated the functional protein-protein interaction among the differentially regulated proteins and highlighted that those proteins mainly played roles in carbon and nucleotide metabolisms. Functional analysis of the differentially regulated proteins indicated the presence of inflammation, gliosis and retinal damage in the PVR group. Aflibercept treatment had pronounced effect on prevention of inflammation and retinal damage while causing a slight increase in gliosis. However, aflibercept treatment was not effective enough to normalize the levels of differentially regulated proteins of the PVR group. Therefore, we predict that the treatment dose of aflibercept used in this study was below of its ideal concentration and should be increased in the future studies. The differential regulation of these structural proteins in this study should shed some light to the mechanism of glial wound formation in the retina and guide future treatment modalities.
Collapse
MESH Headings
- Angiogenesis Inhibitors/therapeutic use
- Animals
- Disease Models, Animal
- Electrophoresis, Gel, Two-Dimensional
- Electrophoresis, Polyacrylamide Gel
- Endopeptidases/toxicity
- Eye Proteins/metabolism
- Male
- Proteome/metabolism
- Proteomics
- Rats
- Rats, Long-Evans
- Receptors, Vascular Endothelial Growth Factor/therapeutic use
- Recombinant Fusion Proteins/therapeutic use
- Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
- Vascular Endothelial Growth Factor A/antagonists & inhibitors
- Vitreoretinopathy, Proliferative/chemically induced
- Vitreoretinopathy, Proliferative/drug therapy
- Vitreoretinopathy, Proliferative/metabolism
Collapse
Affiliation(s)
- Isil Uslubas
- Kocaeli University School of Medicine, Department of Ophthalmology, Turkey.
| | - Aylin Kanli
- Kocaeli University School of Medicine, Department of Medical Biology, Turkey
| | - Murat Kasap
- Kocaeli University School of Medicine, Department of Medical Biology, Turkey
| | - Gurler Akpinar
- Kocaeli University School of Medicine, Department of Medical Biology, Turkey
| | - Levent Karabas
- Kocaeli University School of Medicine, Department of Ophthalmology, Turkey
| |
Collapse
|
13
|
Araújo RS, Silva MS, Santos DF, Silva GA. Dysregulation of trophic factors contributes to diabetic retinopathy in the Ins2 Akita mouse. Exp Eye Res 2020; 194:108027. [PMID: 32259534 DOI: 10.1016/j.exer.2020.108027] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 02/15/2020] [Accepted: 03/28/2020] [Indexed: 02/08/2023]
Abstract
Diabetic retinopathy (DR) is considered as a diabetes-related complication that can lead to severe visual impairments. By 2030, it is expected that 1 in 5 adults will suffer from the disease. Suitable animal models for chronic DR are essential for a better understanding of the pathophysiology and to further develop new treatments. The Ins2Akita mouse is a type 1 diabetes model that shows signs of both early and late stages of DR, including pericyte loss, increased vascular permeability, increased acellular capillaries and neovascularization. To further characterize DR in the Ins2Akita mouse model, we have evaluated the protein levels of the angiogenesis inducers vascular endothelial growth factor (VEGF) and placental growth factor (PlGF) and the angiogenesis inhibitor pigment epithelium-derived factor (PEDF). Additionally, we have analyzed the protein expression profile of the glial markers ionized calcium binding adaptor molecule 1 (Iba1) and glial fibrillary acidic protein (GFAP) as well as of the chemokine monocyte chemoattractant protein 1 (MCP-1). In this study we demonstrate that, with disease progression, there is the development of an inflammatory response and an unbalanced expression of pro- and antiangiogenic factors in the neural retina and in the retinal pigment epithelium (RPE) of Ins2Akita mice. Therefore, our data provide support for the diabetic retinopathy features detected in the Ins2Akita retina, reflecting what is observed in the human pathology.
Collapse
Affiliation(s)
- Rute S Araújo
- CEDOC - Chronic Diseases Research Center, NOVA Medical School, Universidade Nova de Lisboa, Campo Mártires da Pátria 130, 1169-056, Lisboa, Portugal; Bioengineering- Cell Therapies and Regenerative Medicine PhD Program, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001, Lisboa, Portugal
| | - Maria S Silva
- CEDOC - Chronic Diseases Research Center, NOVA Medical School, Universidade Nova de Lisboa, Campo Mártires da Pátria 130, 1169-056, Lisboa, Portugal
| | - Daniela F Santos
- CEDOC - Chronic Diseases Research Center, NOVA Medical School, Universidade Nova de Lisboa, Campo Mártires da Pátria 130, 1169-056, Lisboa, Portugal; ProRegeM PhD Program, NOVA Medical School/Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Campo Mártires da Pátria 130, 1169-056, Lisboa, Portugal
| | - Gabriela A Silva
- CEDOC - Chronic Diseases Research Center, NOVA Medical School, Universidade Nova de Lisboa, Campo Mártires da Pátria 130, 1169-056, Lisboa, Portugal; NOVA Medical School, Universidade Nova de Lisboa, Campo Mártires da Pátria 130, 1169-056, Lisboa, Portugal.
| |
Collapse
|
14
|
Ankamah E, Sebag J, Ng E, Nolan JM. Vitreous Antioxidants, Degeneration, and Vitreo-Retinopathy: Exploring the Links. Antioxidants (Basel) 2019; 9:antiox9010007. [PMID: 31861871 PMCID: PMC7022282 DOI: 10.3390/antiox9010007] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 12/05/2019] [Accepted: 12/16/2019] [Indexed: 02/06/2023] Open
Abstract
The transparent vitreous body, which occupies about 80% of the eye’s volume, is laden with numerous enzymatic and non-enzymatic antioxidants that could protect the eye from oxidative stress and disease. Aging is associated with degeneration of vitreous structure as well as a reduction in its antioxidant capacity. A growing body of evidence suggests these age-related changes may be the precursor of numerous oxidative stress-induced vitreo-retinopathies, including vision degrading myodesopsia, the clinically significant entoptic phenomena that can result from advanced vitreous degeneration. Adequate intravitreal antioxidant levels may be protective against vitreous degeneration, possibly preventing and even improving vision degrading myodesopsia as well as mitigating various other vitreo-retinopathies. The present article is, therefore, a review of the different antioxidant molecules within vitreous and the inter-relationships between vitreous antioxidant capacity and degeneration.
Collapse
Affiliation(s)
- Emmanuel Ankamah
- Nutrition Research Centre Ireland, School of Health Science, Carriganore House, Waterford Institute of Technology, West Campus, Co., X91 K236 Waterford, Ireland;
- Institute of Eye Surgery, UPMC Whitfield, Buttlerstown, Co., X91 DH9W Waterford, Ireland
- Correspondence: (E.A.); (J.M.N.)
| | - J. Sebag
- VMR Consulting Inc., Huntington Beach, CA 92647, USA;
| | - Eugene Ng
- Nutrition Research Centre Ireland, School of Health Science, Carriganore House, Waterford Institute of Technology, West Campus, Co., X91 K236 Waterford, Ireland;
- Institute of Eye Surgery, UPMC Whitfield, Buttlerstown, Co., X91 DH9W Waterford, Ireland
| | - John M. Nolan
- Nutrition Research Centre Ireland, School of Health Science, Carriganore House, Waterford Institute of Technology, West Campus, Co., X91 K236 Waterford, Ireland;
- Correspondence: (E.A.); (J.M.N.)
| |
Collapse
|
15
|
RKIP negatively regulates the glucose induced angiogenesis and endothelial-mesenchymal transition in retinal endothelial cells. Exp Eye Res 2019; 189:107851. [PMID: 31655041 DOI: 10.1016/j.exer.2019.107851] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 10/10/2019] [Accepted: 10/19/2019] [Indexed: 11/22/2022]
Abstract
Diabetic retinopathy (DR), a common microvascular complication of diabetes, is reported to be the leading cause of blindness worldwide. In our previous study, we found that the Raf kinase inhibitor protein (RKIP) is significantly decreased in vitreous humor of proliferative diabetic retinopathy (PDR) patients, which indicated that RKIP might play a role in the development of PDR. To investigate the role of RKIP in PDR, stable overexpression and knockdown of RKIP in Human retinal capillary endothelial cells (HRCECs) were generated by using lentivirus constructs. Then, the glucose-induced cell viability, migration, angiogenesis, and (endothelial to mesenchymal transition) EndMT were determined in the RKIP-wide type (WT), -knocking down (KD) and -overexpression (OE) HRCECs. The results showed that, compared with the RKIP-WT groups, the glucose-induced cell viabilities, migration and angiogenesis were significantly increased in the RKIP-KD groups, while significantly decreased in the RKIP-OE groups. Besides, compared with the control groups, CD31 and vWF were upregulated, while α-SMA was downregulated in the RKIP-KD groups, while CD31 and vWF were downregulated, while α-SMA was upregulated in the RKIP-OE groups induced by glucose. In conclusion, our results showed that RKIP negatively regulates glucose-induced cell viability, migration, angiogenesis, and EndMT in HRCECs, suggesting that the downregulation of RKIP in the vitreous humor of PDR patients might contribute to the development of DR.
Collapse
|
16
|
Asymmetric dimethylarginine aggravates blood-retinal barrier breakdown of diabetic retinopathy via inhibition of intercellular communication in retinal pericytes. Amino Acids 2019; 51:1515-1526. [PMID: 31576457 DOI: 10.1007/s00726-019-02788-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 09/14/2019] [Indexed: 10/25/2022]
Abstract
Blood-retinal barrier breakdown is the main pathological characteristics of diabetic retinopathy (DR). Asymmetric dimethylarginine (ADMA) was reported to be elevated in DR patients. In this study, we observed the dynamic profile of ADMA, retinal morphology and permeability of BRB at 2, 4 or 8 week of diabetic rats induced by a single intraperitoneal injection of streptozocin (60 mg/kg) and in cultured rat retinal pericytes pretreated with D-glucose (30 mM) for 1, 3, 5 and 7 days or ADMA (3, 10, 30 μM) for 24, 48 and 72 h, trying to explore the effects of ADMA on blood-retinal barrier in DR. Gap junction intercellular communication (GJIC) and the expression of blood-retinal barrier-specific component connexin 43 (Cx43) were examined in diabetic rats or cultured retinal pericytes to elucidate whether ADMA impacted blood-retinal barrier function via damaging Cx43-GJIC. The results showed that with increasing duration of diabetes, the ultrastructure of blood-retinal barrier of diabetic rats appeared cell junction damage, apoptosis of retinal pericytes and breakdown of barrier successively. The increases in retinal permeability, ADMA levels and Cx43 expression, and abnormal GJIC were observed in diabetic rats and retinal pericytes exposed to D-glucose (30 mM). A glucose-like effect was seen using ADMA or another L-arginine analogue NG-monomethyl-L-arginine or dimethylarginine dimethylaminohydrolases (DDAHs) siRNA, implicating that ADMA aggravated the breakdown of blood-retinal barrier via damaging Cx43-GJIC.
Collapse
|
17
|
Proteomic Biomarkers of Retinal Inflammation in Diabetic Retinopathy. Int J Mol Sci 2019; 20:ijms20194755. [PMID: 31557880 PMCID: PMC6801709 DOI: 10.3390/ijms20194755] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 09/23/2019] [Accepted: 09/24/2019] [Indexed: 02/07/2023] Open
Abstract
Diabetic retinopathy (DR), a sight-threatening neurovasculopathy, is the leading cause of irreversible blindness in the developed world. DR arises as the result of prolonged hyperglycemia and is characterized by leaky retinal vasculature, retinal ischemia, retinal inflammation, angiogenesis, and neovascularization. The number of DR patients is growing with an increase in the elderly population, and therapeutic approaches are limited, therefore, new therapies to prevent retinal injury and enhance repair are a critical unmet need. Besides vascular endothelial growth factor (VEGF)-induced vascular proliferation, several other mechanisms are important in the pathogenesis of diabetic retinopathy, including vascular inflammation. Thus, combining anti-VEGF therapy with other new therapies targeting these pathophysiological pathways of DR may further optimize treatment outcomes. Technological advancements have allowed for high-throughput proteomic studies examining biofluids such as aqueous humor, vitreous humor, tear, and serum. Many DR biomarkers have been identified, especially proteins involved in retinal inflammatory processes. This review attempts to summarize the proteomic biomarkers of DR-associated retinal inflammation identified over the last several years.
Collapse
|
18
|
Nawaz IM, Rezzola S, Cancarini A, Russo A, Costagliola C, Semeraro F, Presta M. Human vitreous in proliferative diabetic retinopathy: Characterization and translational implications. Prog Retin Eye Res 2019; 72:100756. [PMID: 30951889 DOI: 10.1016/j.preteyeres.2019.03.002] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 03/26/2019] [Accepted: 03/28/2019] [Indexed: 02/07/2023]
Abstract
Diabetic retinopathy (DR) is one of the leading causes of visual impairment in the working-age population. DR is a progressive eye disease caused by long-term accumulation of hyperglycaemia-mediated pathological alterations in the retina of diabetic patients. DR begins with asymptomatic retinal abnormalities and may progress to advanced-stage proliferative diabetic retinopathy (PDR), characterized by neovascularization or preretinal/vitreous haemorrhages. The vitreous, a transparent gel that fills the posterior cavity of the eye, plays a vital role in maintaining ocular function. Structural and molecular alterations of the vitreous, observed during DR progression, are consequences of metabolic and functional modifications of the retinal tissue. Thus, vitreal alterations reflect the pathological events occurring at the vitreoretinal interface. These events are caused by hypoxic, oxidative, inflammatory, neurodegenerative, and leukostatic conditions that occur during diabetes. Conversely, PDR vitreous can exert pathological effects on the diabetic retina, resulting in activation of a vicious cycle that contributes to disease progression. In this review, we recapitulate the major pathological features of DR/PDR, and focus on the structural and molecular changes that characterize the vitreal structure and composition during DR and progression to PDR. In PDR, vitreous represents a reservoir of pathological signalling molecules. Therefore, in this review we discuss how studying the biological activity of the vitreous in different in vitro, ex vivo, and in vivo experimental models can provide insights into the pathogenesis of PDR. In addition, the vitreous from PDR patients can represent a novel tool to obtain preclinical experimental evidences for the development and characterization of new therapeutic drug candidates for PDR therapy.
Collapse
Affiliation(s)
- Imtiaz M Nawaz
- Department of Molecular and Translational Medicine, University of Brescia, Italy
| | - Sara Rezzola
- Department of Molecular and Translational Medicine, University of Brescia, Italy
| | - Anna Cancarini
- Department of Ophthalmology, University of Brescia, Italy
| | - Andrea Russo
- Department of Ophthalmology, University of Brescia, Italy
| | - Ciro Costagliola
- Department of Medicine and Health Sciences, University of Molise, Campobasso, Italy
| | | | - Marco Presta
- Department of Molecular and Translational Medicine, University of Brescia, Italy.
| |
Collapse
|
19
|
Ganie SA, Molla KA, Henry RJ, Bhat KV, Mondal TK. Advances in understanding salt tolerance in rice. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2019; 132:851-870. [PMID: 30759266 DOI: 10.1007/s00122-019-03301-8] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 02/02/2019] [Indexed: 05/03/2023]
Abstract
This review presents a comprehensive overview of the recent research on rice salt tolerance in the areas of genomics, proteomics, metabolomics and chemical genomics. Salinity is one of the major constraints in rice cultivation globally. Traditionally, rice is a glycophyte except for a few genotypes that have been widely used in salinity tolerance breeding of rice. Both seedling and reproductive stages of rice are considered to be the salt-susceptible stages; however, research efforts have been biased towards improving the understanding of seedling-stage salt tolerance. An extensive literature survey indicated that there have been very few attempts to develop reproductive stage-specific salt tolerance in rice probably due to the lack of salt-tolerant phenotypes at the reproductive stage. Recently, the role of DNA methylation, genome duplication and codon usage bias in salinity tolerance of rice have been studied. Furthermore, the study of exogenous salt stress alleviants in rice has opened up another potential avenue for understanding and improving its salt tolerance. There is a need to not only generate additional genomic resources in the form of salt-responsive QTLs and molecular markers and to characterize the genes and their upstream regulatory regions, but also to use them to gain deep insights into the mechanisms useful for developing tolerant varieties. We analysed the genomic locations of diverse salt-responsive genomic resources and found that rice chromosomes 1-6 possess the majority of these salinity-responsive genomic resources. The review presents a comprehensive overview of the recent research on rice salt tolerance in the areas of genomics, proteomics, metabolomics and chemical genomics, which should help in understanding the molecular basis of salinity tolerance and its more effective improvement in rice.
Collapse
Affiliation(s)
- Showkat Ahmad Ganie
- ICAR-National Bureau of Plant Genetic Resources, IARI Campus, Pusa, New Delhi, 110012, India
| | - Kutubuddin Ali Molla
- ICAR-National Bureau of Plant Genetic Resources, IARI Campus, Pusa, New Delhi, 110012, India
| | - Robert J Henry
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - K V Bhat
- ICAR-National Bureau of Plant Genetic Resources, IARI Campus, Pusa, New Delhi, 110012, India
| | - Tapan Kumar Mondal
- ICAR-National Bureau of Plant Genetic Resources, IARI Campus, Pusa, New Delhi, 110012, India.
- ICAR-National Research Centre on Plant Biotechnology, IARI, Pusa, New Delhi, 110012, India.
| |
Collapse
|
20
|
Ahmad MT, Zhang P, Dufresne C, Ferrucci L, Semba RD. The Human Eye Proteome Project: Updates on an Emerging Proteome. Proteomics 2019; 18:e1700394. [PMID: 29356342 DOI: 10.1002/pmic.201700394] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 01/08/2018] [Indexed: 01/05/2023]
Abstract
The human eye is a complex organ consisting of multiple compartments with unique and specialized properties that reflect their varied functions. Although there have been advancements in ocular imaging and therapeutics over the past decade, the pathogenesis of many common eye diseases remains poorly understood. Proteomics is an invaluable tool to gain insight into pathogenesis, diagnosis, and treatment of eye diseases. By 2013, when the Human Eye Proteome Project (also known as the EyeOme) was founded, there were 4842 nonredundant proteins identified in the human eye. Twenty-three recent papers on the human eye proteome were identified in PubMed searches. These papers were used to compile an updated resource of 9782 nonredundant proteins in the human eye. This updated catalogue sheds light on the molecular makeup of previously undescribed proteomes within the human eye, including optic nerve, sclera, iris, and ciliary body, while adding additional proteins to previously characterized proteomes such as aqueous humor, lens, vitreous, retina, and retinal pigment epithelium/choroid. Although considerable advances have been made to characterize the complete proteome of the human eye, additional high-quality data are needed to confirm and quantify previously discovered eye proteins in both health and disease.
Collapse
Affiliation(s)
- Meleha T Ahmad
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Pingbo Zhang
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | - Luigi Ferrucci
- National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Richard D Semba
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
21
|
Kasudhan KS, Sarkar S, Gupta V, Gupta A, Chakraborti A. Identification of unique proteins in vitreous fluid of patients with noninfectious uveitis. Acta Ophthalmol 2018; 96:e989-e1003. [PMID: 30146788 DOI: 10.1111/aos.13801] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 04/01/2018] [Indexed: 12/25/2022]
Abstract
PURPOSE Uveitis is a cause for concern in the developing countries like India. Its poor diagnosis and lack of proper therapeutics often cause blindness in children and young adults. Moreover, the exact mechanism of pathogenesis of different types of uveitis is still elusive. Modern proteomic techniques are found to be advantageous for an in-depth understanding of the ocular physiology using proteomic diversity. Our aim was to identify unique proteins involved in the pathogenesis of autoimmune or noninfectious uveitis. METHODS Vitreous fluid samples (n = 90) were obtained from infectious (N = 34) and noninfectious (N = 56) uveitis patients, and their protein profiles were compared by analysing sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) and 2D electrophoresis. Unique proteins were identified through matrix-assisted laser desorption ionization-time-of-flight mass spectrometry (MALDI-TOF MS) and further studied for pathway analysis. RESULTS Protein spots having different molecular weights were observed in noninfectious vitreous fluid samples. Enzymatic digestion of these spots after MALDI-TOF MS analysis revealed different proteins. We identified 25 different proteins through SDS-PAGE and 22 through 2D electrophoresis. 50% of the proteins from SDS-PAGE were associated with heterotrimeric G-protein signalling pathway-rod outer segment phototransduction. 50% proteins from SDS-PAGE and 20% from 2D electrophoresis revealed association with de novo purine biosynthesis. Carbonic anhydrase 1 and serpin B3 were found to be common in both analyses. CONCLUSION High-throughput proteomic and pathway analyses have exposed the potential association of these proteins with autoimmune pathogenesis in uveitis. The exact role of most of the proteins in autoimmune uveitis is yet to be unfurled.
Collapse
Affiliation(s)
| | - Subendu Sarkar
- Department of Experimental Medicine and Biotechnology; Chandigarh India
| | - Vishali Gupta
- Advance Eye Center; Postgraduate Institute of Medical Education and Research; Chandigarh India
| | - Amod Gupta
- Advance Eye Center; Postgraduate Institute of Medical Education and Research; Chandigarh India
| | | |
Collapse
|
22
|
Zou C, Han C, Zhao M, Yu J, Bai L, Yao Y, Gao S, Cao H, Zheng Z. Change of ranibizumab-induced human vitreous protein profile in patients with proliferative diabetic retinopathy based on proteomics analysis. Clin Proteomics 2018. [PMID: 29541006 PMCID: PMC5844103 DOI: 10.1186/s12014-018-9187-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Background Preoperative treatment of anti-vascular endothelial growth factor (VEGF) agents is extensively used in proliferative diabetic retinopathy (PDR), but the molecular mechanism is not fully understood. The objective of this research is to observe change of protein profile induced by ranibizumab (an anti-VEGF agent) in vitreous humor from PDR patients and reveal the effects of anti-VEGF treatment on PDR. Methods A proteomic method was used to identify differentially expressed proteins in vitreous humor. Untreated PDR patients were defined as PDR group, while those who treated with intravitreal injection of ranibizumab (IVR) were defined as IVR. Gene Ontology (GO) annotation and REACTOME pathways were obtained from DAVID Bioinformatics Resources. Intravitreal level of apolipoprotein C-I (APOC1), serpin peptidase inhibitor clade A member 5 (SERPINA5), tissue inhibitor of metalloproteinases (TIMP2), and keratin 1 (KRT1) were determined by enzyme-linked immuno sorbent assay (ELISA). Results 339 differentially expressed proteins were identified in response to IVR. The most notable GO annotation describes the altered proteins was “innate immune response”. The most notable REACTOME pathway was “platelet degranulation”. ELISA result showed increased level of APOC1, SERPINA5, KRT1 and a decreased level of TIMP2 in PDR group compared with IVR. Conclusions In addition to decreasing VEGF level, ranibizumab is associated with change of human vitreous protein profile in patients with PDR, in which the differential proteins are involved in immune response, platelet degranulation, complement activation etc., suggesting that the effects of VEGF are involved in these signaling pathways. Electronic supplementary material The online version of this article (10.1186/s12014-018-9187-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Chen Zou
- 1Department of Ophthalmology, Shanghai General Hospital, Shanghai Key Laboratory of Ocular Fundus Disease, Shanghai Engineering Center for Visual Science and Photomedicine, No. 100 Haining Road, Shanghai, 200080 China
| | - Changjing Han
- 2Department of Ophthalmology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004 Shaanxi Province China
| | - Minjie Zhao
- 3Department of Ophthalmology, Yixing People's Hospital, Jiangsu University, No.75 Tongzhenguan Road, Yixing, 214200 Jiangsu China
| | - Jingjing Yu
- Department of Ophthalmology, Changshu the 2nd People's Hospital, Changshu, 215500 Jiangsu China
| | - Lin Bai
- 1Department of Ophthalmology, Shanghai General Hospital, Shanghai Key Laboratory of Ocular Fundus Disease, Shanghai Engineering Center for Visual Science and Photomedicine, No. 100 Haining Road, Shanghai, 200080 China
| | - Yuan Yao
- 5Public Health, Stanford University, Stanford, CA 94305 USA
| | - Shuaixin Gao
- 6National Center for Protein Science Shanghai, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 333 Haike Road, Shanghai, 201210 China
| | - Hui Cao
- 1Department of Ophthalmology, Shanghai General Hospital, Shanghai Key Laboratory of Ocular Fundus Disease, Shanghai Engineering Center for Visual Science and Photomedicine, No. 100 Haining Road, Shanghai, 200080 China
| | - Zhi Zheng
- 1Department of Ophthalmology, Shanghai General Hospital, Shanghai Key Laboratory of Ocular Fundus Disease, Shanghai Engineering Center for Visual Science and Photomedicine, No. 100 Haining Road, Shanghai, 200080 China
| |
Collapse
|
23
|
Zhang J, Suo Y, Liu M, Xu X. Identification of genes related to proliferative diabetic retinopathy through RWR algorithm based on protein-protein interaction network. Biochim Biophys Acta Mol Basis Dis 2017; 1864:2369-2375. [PMID: 29237571 DOI: 10.1016/j.bbadis.2017.11.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 11/15/2017] [Accepted: 11/25/2017] [Indexed: 12/14/2022]
Abstract
Proliferative diabetic retinopathy (PDR) is one of the most common complications of diabetes and can lead to blindness. Proteomic studies have provided insight into the pathogenesis of PDR and a series of PDR-related genes has been identified but are far from fully characterized because the experimental methods are expensive and time consuming. In our previous study, we successfully identified 35 candidate PDR-related genes through the shortest-path algorithm. In the current study, we developed a computational method using the random walk with restart (RWR) algorithm and the protein-protein interaction (PPI) network to identify potential PDR-related genes. After some possible genes were obtained by the RWR algorithm, a three-stage filtration strategy, which includes the permutation test, interaction test and enrichment test, was applied to exclude potential false positives caused by the structure of PPI network, the poor interaction strength, and the limited similarity on gene ontology (GO) terms and biological pathways. As a result, 36 candidate genes were discovered by the method which was different from the 35 genes reported in our previous study. A literature review showed that 21 of these 36 genes are supported by previous experiments. These findings suggest the robustness and complementary effects of both our efforts using different computational methods, thus providing an alternative method to study PDR pathogenesis.
Collapse
Affiliation(s)
- Jian Zhang
- Department of Ophthalmology, Shanghai General Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai, China; Shanghai Key Laboratory of Fundus Disease, Shanghai, China; Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China
| | - Yan Suo
- Department of Ophthalmology, Shanghai General Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai, China; Shanghai Key Laboratory of Fundus Disease, Shanghai, China; Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China
| | - Min Liu
- College of Information Engineering, Shanghai Maritime University, Shanghai, China
| | - Xun Xu
- Department of Ophthalmology, Shanghai General Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai, China; Shanghai Key Laboratory of Fundus Disease, Shanghai, China; Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China.
| |
Collapse
|
24
|
Vinita K, Sripriya S, Philomenadin FMS, Vaitheeswaran K, Raman R, Sharma T. High order interaction analysis of SNPs in PEDF (rs12150053, rs12948385) and EPO (rs1617640) genes with clinical determinants of type 2 diabetic retinopathy patients from south India. Meta Gene 2017. [DOI: 10.1016/j.mgene.2017.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
25
|
Identification of vitreous proteins in retinopathy of prematurity. Biochem Biophys Res Commun 2017; 488:483-488. [PMID: 28502635 DOI: 10.1016/j.bbrc.2017.05.067] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Accepted: 05/11/2017] [Indexed: 12/13/2022]
Abstract
Retinopathy of prematurity (ROP) is a disorder of blood vessels in the retina developed in premature infants and the leading cause of the blindness in children. Proteomic analysis was performed to identify vitreous proteins specific to patients with ROP. Vitreous humor samples were obtained from three patients with ROP and two patients with congenital cataract, the latter included as a control group. The vitreous samples were separated by 2D-PAGE and the proteins running as definitive spots were identified by MALDI-TOF MS spectrometry. We identified 13 and 6 proteins in the vitreous from ROP and cataract patients, respectively. Albumin, transferrin, pigment epithelium-derived factor (PEDF) and transthyretin were found in both patient groups. In the samples from ROP patients, PEDF and transthyretin levels were lower than in those from cataract patients, and retinol binding protein 3 and prostaglandin D synthase were not detected. Of the 13 proteins, 9 proteins including α-2-macroglobulin, ceruloplasmin, α-fetoprotein, vitamin D-binding protein, α-1-antitrypsin, α-1-β-glycoprotein, hemopexin, apolipoprotein A-1 and A-lV were found in vitreous samples of only the ROP patients. PEDF has anti-angiogenic and neurotrophic functions. Whether PEDF is increased or decreased in diabetic retinopathy has been controversial but we observed lower PEDF in the ROP samples than in the controls. The proteins specific to or decreased in ROP, if confirmed in future studies, may provide clue to understanding its pathogenesis.
Collapse
|
26
|
Cehofski LJ, Honoré B, Vorum H. A Review: Proteomics in Retinal Artery Occlusion, Retinal Vein Occlusion, Diabetic Retinopathy and Acquired Macular Disorders. Int J Mol Sci 2017; 18:ijms18050907. [PMID: 28452939 PMCID: PMC5454820 DOI: 10.3390/ijms18050907] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 03/08/2017] [Accepted: 04/05/2017] [Indexed: 01/26/2023] Open
Abstract
Retinal artery occlusion (RAO), retinal vein occlusion (RVO), diabetic retinopathy (DR) and age-related macular degeneration (AMD) are frequent ocular diseases with potentially sight-threatening outcomes. In the present review we discuss major findings of proteomic studies of RAO, RVO, DR and AMD, including an overview of ocular proteome changes associated with anti-vascular endothelial growth factor (VEGF) treatments. Despite the severe outcomes of RAO, the proteome of the disease remains largely unstudied. There is also limited knowledge about the proteome of RVO, but proteomic studies suggest that RVO is associated with remodeling of the extracellular matrix and adhesion processes. Proteomic studies of DR have resulted in the identification of potential therapeutic targets such as carbonic anhydrase-I. Proliferative diabetic retinopathy is the most intensively studied stage of DR. Proteomic studies have established VEGF, pigment epithelium-derived factor (PEDF) and complement components as key factors associated with AMD. The aim of this review is to highlight the major milestones in proteomics in RAO, RVO, DR and AMD. Through large-scale protein analyses, proteomics is bringing new important insights into these complex pathological conditions.
Collapse
Affiliation(s)
- Lasse Jørgensen Cehofski
- Department of Ophthalmology, Aalborg University Hospital, Hobrovej 18-22, 9000 Aalborg, Denmark.
- Department of Clinical Medicine, Aalborg University, Søndre Skovvej 15, 9000 Aalborg, Denmark.
| | - Bent Honoré
- Department of Clinical Medicine, Aalborg University, Søndre Skovvej 15, 9000 Aalborg, Denmark.
- Department of Biomedicine, Aarhus University, Ole Worms Allé 3, Building 1182, 024, 8000 Aarhus C, Denmark.
| | - Henrik Vorum
- Department of Ophthalmology, Aalborg University Hospital, Hobrovej 18-22, 9000 Aalborg, Denmark.
- Department of Clinical Medicine, Aalborg University, Søndre Skovvej 15, 9000 Aalborg, Denmark.
| |
Collapse
|
27
|
Vitova L, Tuma Z, Moravec J, Kvapil M, Matejovic M, Mares J. Early urinary biomarkers of diabetic nephropathy in type 1 diabetes mellitus show involvement of kallikrein-kinin system. BMC Nephrol 2017; 18:112. [PMID: 28359252 PMCID: PMC5372325 DOI: 10.1186/s12882-017-0519-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 03/21/2017] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Additional urinary biomarkers for diabetic nephropathy (DN) are needed, providing early and reliable diagnosis and new insights into its mechanisms. Rigorous selection criteria and homogeneous study population may improve reproducibility of the proteomic approach. METHODS Long-term type 1 diabetes patients without metabolic comorbidities were included, 11 with sustained microalbuminuria (MA) and 14 without MA (nMA). Morning urine proteins were precipitated and resolved by 2D electrophoresis. Principal component analysis (PCA) and Projection to latent structures discriminatory analysis (PLS-DA) were adopted to assess general data validity, to pick protein fractions for identification with mass spectrometry (MS), and to test predictive value of the resulting model. RESULTS Proteins (n = 113) detected in more than 90% patients were considered representative. Unsupervised PCA showed excellent natural data clustering without outliers. Protein spots reaching Variable Importance in Projection score above 1 in PLS (n = 42) were subjected to MS, yielding 33 positive identifications. The PLS model rebuilt with these proteins achieved accurate classification of all patients (R2X = 0.553, R2Y = 0.953, Q2 = 0.947). Thus, multiple earlier recognized biomarkers of DN were confirmed and several putative new biomarkers suggested. Among them, the highest significance was met in kininogen-1. Its activation products detected in nMA patients exceeded by an order of magnitude the amount found in MA patients. CONCLUSIONS Reducing metabolic complexity of the diseased and control groups by meticulous patients' selection allows to focus the biomarker search in DN. Suggested new biomarkers, particularly kininogen fragments, exhibit the highest degree of correlation with MA and substantiate validation in larger and more varied cohorts.
Collapse
Affiliation(s)
- Lenka Vitova
- Department of Internal Medicine, Teaching Hospital Motol, V Uvalu 84, Prague, 5, 150 06, Czech Republic.
| | - Zdenek Tuma
- Proteomic Laboratory, Charles University School of Medicine in Pilsen, alej Svobody 1655/76, Pilsen, 323 00, Czech Republic
| | - Jiri Moravec
- Proteomic Laboratory, Charles University School of Medicine in Pilsen, alej Svobody 1655/76, Pilsen, 323 00, Czech Republic
| | - Milan Kvapil
- Department of Internal Medicine, Teaching Hospital Motol, V Uvalu 84, Prague, 5, 150 06, Czech Republic
| | - Martin Matejovic
- Department of Internal Medicine I, Charles University School of Medicine in Pilsen, alej Svobody 80, Pilsen, 304 60, Czech Republic
| | - Jan Mares
- Proteomic Laboratory, Charles University School of Medicine in Pilsen, alej Svobody 1655/76, Pilsen, 323 00, Czech Republic.,Department of Internal Medicine I, Charles University School of Medicine in Pilsen, alej Svobody 80, Pilsen, 304 60, Czech Republic
| |
Collapse
|
28
|
Del Amo EM, Rimpelä AK, Heikkinen E, Kari OK, Ramsay E, Lajunen T, Schmitt M, Pelkonen L, Bhattacharya M, Richardson D, Subrizi A, Turunen T, Reinisalo M, Itkonen J, Toropainen E, Casteleijn M, Kidron H, Antopolsky M, Vellonen KS, Ruponen M, Urtti A. Pharmacokinetic aspects of retinal drug delivery. Prog Retin Eye Res 2016; 57:134-185. [PMID: 28028001 DOI: 10.1016/j.preteyeres.2016.12.001] [Citation(s) in RCA: 419] [Impact Index Per Article: 46.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 11/25/2016] [Accepted: 12/01/2016] [Indexed: 12/14/2022]
Abstract
Drug delivery to the posterior eye segment is an important challenge in ophthalmology, because many diseases affect the retina and choroid leading to impaired vision or blindness. Currently, intravitreal injections are the method of choice to administer drugs to the retina, but this approach is applicable only in selected cases (e.g. anti-VEGF antibodies and soluble receptors). There are two basic approaches that can be adopted to improve retinal drug delivery: prolonged and/or retina targeted delivery of intravitreal drugs and use of other routes of drug administration, such as periocular, suprachoroidal, sub-retinal, systemic, or topical. Properties of the administration route, drug and delivery system determine the efficacy and safety of these approaches. Pharmacokinetic and pharmacodynamic factors determine the required dosing rates and doses that are needed for drug action. In addition, tolerability factors limit the use of many materials in ocular drug delivery. This review article provides a critical discussion of retinal drug delivery, particularly from the pharmacokinetic point of view. This article does not include an extensive review of drug delivery technologies, because they have already been reviewed several times recently. Instead, we aim to provide a systematic and quantitative view on the pharmacokinetic factors in drug delivery to the posterior eye segment. This review is based on the literature and unpublished data from the authors' laboratory.
Collapse
Affiliation(s)
- Eva M Del Amo
- School of Pharmacy, University of Eastern Finland, Kuopio, Finland
| | - Anna-Kaisa Rimpelä
- Centre for Drug Research, Division of Pharmaceutical Biosciences, University of Helsinki, Helsinki, Finland
| | - Emma Heikkinen
- School of Pharmacy, University of Eastern Finland, Kuopio, Finland
| | - Otto K Kari
- Centre for Drug Research, Division of Pharmaceutical Biosciences, University of Helsinki, Helsinki, Finland
| | - Eva Ramsay
- School of Pharmacy, University of Eastern Finland, Kuopio, Finland
| | - Tatu Lajunen
- Centre for Drug Research, Division of Pharmaceutical Biosciences, University of Helsinki, Helsinki, Finland
| | - Mechthild Schmitt
- Centre for Drug Research, Division of Pharmaceutical Biosciences, University of Helsinki, Helsinki, Finland
| | - Laura Pelkonen
- School of Pharmacy, University of Eastern Finland, Kuopio, Finland
| | - Madhushree Bhattacharya
- Centre for Drug Research, Division of Pharmaceutical Biosciences, University of Helsinki, Helsinki, Finland
| | - Dominique Richardson
- Centre for Drug Research, Division of Pharmaceutical Biosciences, University of Helsinki, Helsinki, Finland
| | - Astrid Subrizi
- School of Pharmacy, University of Eastern Finland, Kuopio, Finland
| | - Tiina Turunen
- Centre for Drug Research, Division of Pharmaceutical Biosciences, University of Helsinki, Helsinki, Finland
| | - Mika Reinisalo
- School of Pharmacy, University of Eastern Finland, Kuopio, Finland
| | - Jaakko Itkonen
- Centre for Drug Research, Division of Pharmaceutical Biosciences, University of Helsinki, Helsinki, Finland
| | - Elisa Toropainen
- School of Pharmacy, University of Eastern Finland, Kuopio, Finland
| | - Marco Casteleijn
- Centre for Drug Research, Division of Pharmaceutical Biosciences, University of Helsinki, Helsinki, Finland
| | - Heidi Kidron
- Centre for Drug Research, Division of Pharmaceutical Biosciences, University of Helsinki, Helsinki, Finland
| | - Maxim Antopolsky
- Centre for Drug Research, Division of Pharmaceutical Biosciences, University of Helsinki, Helsinki, Finland
| | | | - Marika Ruponen
- School of Pharmacy, University of Eastern Finland, Kuopio, Finland
| | - Arto Urtti
- Centre for Drug Research, Division of Pharmaceutical Biosciences, University of Helsinki, Helsinki, Finland; School of Pharmacy, University of Eastern Finland, Kuopio, Finland.
| |
Collapse
|
29
|
Licier R, Miranda E, Serrano H. A Quantitative Proteomics Approach to Clinical Research with Non-Traditional Samples. Proteomes 2016; 4:proteomes4040031. [PMID: 28248241 PMCID: PMC5260964 DOI: 10.3390/proteomes4040031] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 09/19/2016] [Accepted: 09/21/2016] [Indexed: 01/13/2023] Open
Abstract
The proper handling of samples to be analyzed by mass spectrometry (MS) can guarantee excellent results and a greater depth of analysis when working in quantitative proteomics. This is critical when trying to assess non-traditional sources such as ear wax, saliva, vitreous humor, aqueous humor, tears, nipple aspirate fluid, breast milk/colostrum, cervical-vaginal fluid, nasal secretions, bronco-alveolar lavage fluid, and stools. We intend to provide the investigator with relevant aspects of quantitative proteomics and to recognize the most recent clinical research work conducted with atypical samples and analyzed by quantitative proteomics. Having as reference the most recent and different approaches used with non-traditional sources allows us to compare new strategies in the development of novel experimental models. On the other hand, these references help us to contribute significantly to the understanding of the proportions of proteins in different proteomes of clinical interest and may lead to potential advances in the emerging field of precision medicine.
Collapse
Affiliation(s)
- Rígel Licier
- Department of Medicine, San Juan Bautista School of Medicine, Caguas 00727, Puerto Rico.
- Quantitative Proteomics Laboratory, Comprehensive Cancer Center of Puerto Rico, San Juan 00936, Puerto Rico.
| | - Eric Miranda
- Quantitative Proteomics Laboratory, Comprehensive Cancer Center of Puerto Rico, San Juan 00936, Puerto Rico.
- Department of Internal Medicine, University of Puerto Rico, Medical Sciences Campus, San Juan 00936, Puerto Rico.
| | - Horacio Serrano
- Quantitative Proteomics Laboratory, Comprehensive Cancer Center of Puerto Rico, San Juan 00936, Puerto Rico.
- Department of Internal Medicine, University of Puerto Rico, Medical Sciences Campus, San Juan 00936, Puerto Rico.
| |
Collapse
|
30
|
|
31
|
Yee KMP, Feener EP, Madigan M, Jackson NJ, Gao BB, Ross-Cisneros FN, Provis J, Aiello LP, Sadun AA, Sebag J. Proteomic Analysis of Embryonic and Young Human Vitreous. Invest Ophthalmol Vis Sci 2016; 56:7036-42. [PMID: 26529037 DOI: 10.1167/iovs.15-16809] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
PURPOSE The proteomic profile of vitreous from second-trimester human embryos and young adults was characterized using mass spectrometry and analyzed for changes in protein levels that may relate to structural changes occurring during this time. This vitreous proteome was compared to previous reports to confirm proteins already identified and reveal novel ones. METHODS Vitreous from 17 human embryos aged 14 to 20 weeks gestation (WG) and from a 12-, a 14-, a 15-, and a 28-year-old was individually analyzed using tandem mass spectrometry-based proteomics. Peptide spectral count associations with embryonic age were assessed using a general linear model of fold changes and Spearman's rank correlation. Differences between embryonic and young adult vitreous proteomes were also compared. Immunohistochemistry was used to evaluate three proteins in five additional fetal (10-18 WG) human eyes. RESULTS There were 1217 proteins identified in fetal and young adult human vitreous, 206 after quantile normalization and variance filtering. In embryos, the peptide counts of 37 proteins changed significantly from 14 to 20 WG: 75.7% increased, 24.3% decreased. Immunohistochemistry confirmed the absence of clusterin and cadherin in 10 and 14 WG eyes and their presence at 18 WG. Comparing embryonic to young adult vitreous, 47 proteins were significantly higher or lower. A total of 768 proteins not previously identified in the literature are presented. CONCLUSIONS Proteins previously unreported in the human vitreous were identified. The human vitreous proteome undergoes significant changes during embryogenesis and young adulthood. A number of protein levels change considerably during the second trimester, with the majority decreasing.
Collapse
Affiliation(s)
- Kenneth M P Yee
- VMR Institute for Vitreous Macula Retina, Huntington Beach, California, United States 2Doheny Eye Institute, Los Angeles, California, United States
| | - Edward P Feener
- Beetham Eye Institute, Joslin Diabetes Center, Boston, Massachusetts, United States
| | - Michele Madigan
- School of Optometry and Vision Science, University of New South Wales, Sydney, Australia 5Save Sight Institute, University of Sydney, Sydney, Australia
| | - Nicholas J Jackson
- Department of Medicine Statistics Core, David Geffen School of Medicine at UCLA, Los Angeles, California, United States
| | - Ben-Bo Gao
- Beetham Eye Institute, Joslin Diabetes Center, Boston, Massachusetts, United States
| | | | - Jan Provis
- John Curtin School of Medical Research, Canberra, Australia 8Australian National University, Canberra, Australia
| | - Lloyd Paul Aiello
- Beetham Eye Institute, Joslin Diabetes Center, Boston, Massachusetts, United States 9Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, United States
| | - Alfredo A Sadun
- Doheny Eye Institute, Los Angeles, California, United States 10Department of Ophthalmology, David Geffen School of Medicine at UCLA, Los Angeles, California, United States
| | - J Sebag
- VMR Institute for Vitreous Macula Retina, Huntington Beach, California, United States 2Doheny Eye Institute, Los Angeles, California, United States
| |
Collapse
|
32
|
Jin J, Min H, Kim SJ, Oh S, Kim K, Yu HG, Park T, Kim Y. Development of Diagnostic Biomarkers for Detecting Diabetic Retinopathy at Early Stages Using Quantitative Proteomics. J Diabetes Res 2016; 2016:6571976. [PMID: 26665153 PMCID: PMC4657408 DOI: 10.1155/2016/6571976] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 03/05/2015] [Indexed: 12/25/2022] Open
Abstract
Diabetic retinopathy (DR) is a common microvascular complication caused by diabetes mellitus (DM) and is a leading cause of vision impairment and loss among adults. Here, we performed a comprehensive proteomic analysis to discover biomarkers for DR. First, to identify biomarker candidates that are specifically expressed in human vitreous, we performed data-mining on both previously published DR-related studies and our experimental data; 96 proteins were then selected. To confirm and validate the selected biomarker candidates, candidates were selected, confirmed, and validated using plasma from diabetic patients without DR (No DR) and diabetics with mild or moderate nonproliferative diabetic retinopathy (Mi or Mo NPDR) using semiquantitative multiple reaction monitoring (SQ-MRM) and stable-isotope dilution multiple reaction monitoring (SID-MRM). Additionally, we performed a multiplex assay using 15 biomarker candidates identified in the SID-MRM analysis, which resulted in merged AUC values of 0.99 (No DR versus Mo NPDR) and 0.93 (No DR versus Mi and Mo NPDR). Although further validation with a larger sample size is needed, the 4-protein marker panel (APO4, C7, CLU, and ITIH2) could represent a useful multibiomarker model for detecting the early stages of DR.
Collapse
Affiliation(s)
- Jonghwa Jin
- Department of Biomedical Sciences, Seoul National University College of Medicine, 28 Yongon-Dong, Seoul 110-799, Republic of Korea
- Department of Biomedical Engineering, Seoul National University College of Medicine, 28 Yongon-Dong, Seoul 110-799, Republic of Korea
| | - Hophil Min
- Department of Biomedical Sciences, Seoul National University College of Medicine, 28 Yongon-Dong, Seoul 110-799, Republic of Korea
| | - Sang Jin Kim
- Department of Ophthalmology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 135-710, Republic of Korea
| | - Sohee Oh
- Department of Biostatistics, Seoul Metropolitan Government-Seoul National University Boramae Medical Center, 20 Borame-ro 5-gil, Dongjak-gu, Seoul 156-707, Republic of Korea
| | - Kyunggon Kim
- Department of Biomedical Sciences, Seoul National University College of Medicine, 28 Yongon-Dong, Seoul 110-799, Republic of Korea
- Department of Biomedical Engineering, Seoul National University College of Medicine, 28 Yongon-Dong, Seoul 110-799, Republic of Korea
| | - Hyeong Gon Yu
- Department of Ophthalmology, Seoul National University College of Medicine, 28 Yongon-Dong, Seoul 110-799, Republic of Korea
| | - Taesung Park
- Department of Statistics, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151-747, Republic of Korea
| | - Youngsoo Kim
- Department of Biomedical Sciences, Seoul National University College of Medicine, 28 Yongon-Dong, Seoul 110-799, Republic of Korea
- Department of Biomedical Engineering, Seoul National University College of Medicine, 28 Yongon-Dong, Seoul 110-799, Republic of Korea
- *Youngsoo Kim:
| |
Collapse
|
33
|
Srinivasan V, Sulochana KN. Effect of adiponectin on expression of vascular endothelial growth factor and pigment epithelium-derived factor: an in vitro study. Indian J Pharmacol 2015; 47:117-20. [PMID: 25821324 PMCID: PMC4375806 DOI: 10.4103/0253-7613.150376] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Revised: 10/25/2014] [Accepted: 12/23/2014] [Indexed: 11/09/2022] Open
Abstract
Aim: This study was carried out to identify the role of adiponectin (APN) in modulating the expression of vascular endothelial growth factor (VEGF) and pigment epithelial-derived factor (PEDF) in relation to ocular angiogenesis. Materials and Methods: Human retinal pigment epithelial cell lines (ARPE-19) were cultured in Dulbeco's minimum essential medium with 10% fetal bovine serum (FBS) and exposed to varying concentrations of recombinant adiponectin (5–5 ng/ml) for 1 h. Analysis of VEGF and PEDF mRNA was done by reverse transcriptase and further quantified by quantitative polymerase chain reaction. VEGF and PEDF protein expression were studied using enzyme-linked immune sorbent assay (ELISA). Statistical Analysis: Unpaired Student's t-test was used to analyze the significance. P < 0.05 was accepted as statistically significant. Results: ARPE cells exposed to APN showed decreased expression of VEGF mRNA, protein whereas PEDF protein is unaltered and PEDF mRNA was increased. Conclusion: Our in vitro study on ARPE exposed to APN showed a negative correlation with VEGF levels. Thus indicating the protective role for APN in angiogenesis-related diseases.
Collapse
Affiliation(s)
| | - K N Sulochana
- Department of Biochemistry and Cell biology, Vision Research Foundation, Nungambakkam, Chennai, Tamil Nadu, India
| |
Collapse
|
34
|
Wang F, Xu L, Song X, Li X, Yan R. Identification of differentially expressed proteins between free-living and activated third-stage larvae of Haemonchus contortus. Vet Parasitol 2015; 215:72-7. [PMID: 26790740 DOI: 10.1016/j.vetpar.2015.10.030] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2015] [Revised: 10/14/2015] [Accepted: 10/31/2015] [Indexed: 01/25/2023]
Abstract
The disease caused by Haemonchus contortus, a blood-feeding nematode of small ruminants, is of major economic importance worldwide. The infective third-stage larva (L3) of this nematode is enclosed in a second cuticle. Once the L3 is ingested by the host, the outer cuticle undergoes an exsheathment process that marks the transition from the free-living stage to the parasitic stage. This study explored the changes in protein expression relative to this transition. Proteins extracted from free living L3 and exsheathed L3 (xL3) were analyzed by two dimensional differential gel electrophoresis (2D-DIGE). More than 2200 protein spots were recognized, and 124 of them was found to be differentially expressed (average ratio of xL3/L3>1.5 or xL3/L3<-1.5, p<0.05). Of these, 83 spots were up-regulated and 41 spots were down-regulated in xL3 when compared with L3. These differentially expressed spots were analyzed by matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF-MS) or MALDI-TOF-MS/MS and 40 proteins were identified. To predict the functions of these identified proteins, they were assigned for gene ontology (GO) annotation. Results showed that the proteins may be involved in biological processes of reproduction, cellular organization or biogenesis, multi-cellular organismal processes, single-organism processes, metabolic processes, signaling, biological regulation, response to stimulus, cellular processes, biological adhesion, growth, locomotion, localization, developmental processes and multi-organism processes. Kyoto Encyclopedia of Genes and Genomes (KEGG) annotations were also performed, which was useful for exploring the process of metabolism and signal transduction pathways. This study indicated that some key alterations taking place, during the transition from L3 to xL3 may be interesting antiparasite targets, and some of the proteins involved in this process might be candidate antigens for vaccine development.
Collapse
Affiliation(s)
- Fang Wang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Lixin Xu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Xiaokai Song
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Xiangrui Li
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Ruofeng Yan
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China.
| |
Collapse
|
35
|
Franco-Chuaire ML, Ramírez-Clavijo S, Chuaire-Noack L. Pigment epithelium-derived factor: clinical significance in estrogen-dependent tissues and its potential in cancer therapy. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2015; 18:837-55. [PMID: 26523216 PMCID: PMC4620182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Pigment epithelium-derived factor (PEDF) is a glycoprotein that belongs to the family of non-inhibitory serpins. The broad spectrum of PEDF biological activity is evident when considering its effects in promoting cell survival and proliferation, as well as its antiangiogenic, antitumor, and anti-metastatic properties. Although the structural domains of the PEDF gene that mediate such diverse effects and their mechanisms of action have not been completely elucidated, there is a large body of evidence describing their diverse range of activities; this evidence combined with the regulation of PEDF expression by sex steroids and their receptors have led to the idea that PEDF is not only a diagnostic and prognostic marker for certain diseases such as cancer, but is also a potential therapeutic target. In this manner, this paper aims to generally review the regulation of PEDF expression and PEDF interactions, as well as the findings that relate PEDF to the role of estrogens and estrogen receptors. In addition, this manuscript will review major advances toward potential therapeutic applications of PEDF.
Collapse
Affiliation(s)
| | - Sandra Ramírez-Clavijo
- Facultad de Ciencias Naturales y Matemáticas, Universidad del Rosario, Bogotá DC, Colombia
| | - Lilian Chuaire-Noack
- Facultad de Ciencias Naturales y Matemáticas, Universidad del Rosario, Bogotá DC, Colombia,Corresponding author: Lilian Chuaire-Noack. Facultad de Ciencias Naturales y Matemáticas, Universidad del Rosario, Bogotá DC, Colombia; Tel: 57(1) 2970200; ext 4021;
| |
Collapse
|
36
|
PEDF and its roles in physiological and pathological conditions: implication in diabetic and hypoxia-induced angiogenic diseases. Clin Sci (Lond) 2015; 128:805-23. [PMID: 25881671 PMCID: PMC4557399 DOI: 10.1042/cs20130463] [Citation(s) in RCA: 102] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Pigment epithelium-derived factor (PEDF) is a broadly expressed multifunctional member of the serine proteinase inhibitor (serpin) family. This widely studied protein plays critical roles in many physiological and pathophysiological processes, including neuroprotection, angiogenesis, fibrogenesis and inflammation. The present review summarizes the temporal and spatial distribution patterns of PEDF in a variety of developing and adult organs, and discusses its functions in maintaining physiological homoeostasis. The major focus of the present review is to discuss the implication of PEDF in diabetic and hypoxia-induced angiogenesis, and the pathways mediating PEDF's effects under these conditions. Furthermore, the regulatory mechanisms of PEDF expression, function and degradation are also reviewed. Finally, the therapeutic potential of PEDF as an anti-angiogenic drug is briefly summarized.
Collapse
|
37
|
Yu J, Feng L, Wu Y, Wang H, Ba J, Zhu W, Xie C. Vitreous proteomic analysis of idiopathic epiretinal membranes. MOLECULAR BIOSYSTEMS 2015; 10:2558-66. [PMID: 25014768 DOI: 10.1039/c4mb00240g] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
To understand the molecular mechanisms of idiopathic epiretinal membranes (iERMs), the vitreous proteomes of patients with iERMs were investigated. The vitreous proteome in patients with iERMs (n = 8) and donor samples (n = 8) was analysed using reversed phase high-performance liquid chromatography (RP-HPLC) coupled with electrospray ionization tandem mass spectrometry (ESI-MS/MS) and GeneGo Metacore™. This research followed the tenets of the Declaration of Helsinki for the use of human subjects. In this current study, 226 significant changes in protein abundance (abundance ratio >2, p < 0.01) were identified in the vitreous proteome of iERM patients compared to normal control vitreous, including 122 proteins that were present at lower levels and 104 proteins that were present at higher levels. In the iERM vitreous samples, complement components, inflammation-related proteins and matrix metalloproteinase were present at higher levels, while normal cytoskeleton proteins were present at lower levels. The top GeneGo pathway was "immune response", the top process network was "inflammation", and the top KEGG pathway was "coagulation cascades". The essential 2-node proteins of the network were estrogen receptor 1 (ESR1) and p300. Among those found at higher levels, ubiquitin-conjugating enzyme E2O (UBE2O) and complement C4A (C4A) were the most abundant proteins, and could be detected in each of the iERM vitreous samples. It can be concluded that iERMs are a complicated pathological process involving inflammation, immune response, and cytoskeleton remolding. UBE2O and C4A may be candidate biomarkers for iERMs.
Collapse
Affiliation(s)
- Jing Yu
- Department of Ophthalmology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, P. R. China.
| | | | | | | | | | | | | |
Collapse
|
38
|
Imbalance of the nerve growth factor and its precursor as a potential biomarker for diabetic retinopathy. BIOMED RESEARCH INTERNATIONAL 2015; 2015:571456. [PMID: 25853140 PMCID: PMC4380101 DOI: 10.1155/2015/571456] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Revised: 10/08/2014] [Accepted: 10/08/2014] [Indexed: 02/07/2023]
Abstract
Our previous studies have demonstrated that diabetes-induced oxidative stress alters homeostasis of retinal nerve growth factor (NGF) resulting in accumulation of its precursor, proNGF, at the expense of NGF which plays a critical role in preserving neuronal and retinal function. This imbalance coincided with retinal damage in experimental diabetes. Here we test the hypothesis that alteration of proNGF and NGF levels observed in retina and vitreous will be mirrored in serum of diabetic patients. Blood and vitreous samples were collected from patients (diabetic and nondiabetic) undergoing vitrectomy at Georgia Regents University under approved IRB. Levels of proNGF, NGF, and p75NTR shedding were detected using Western blot analysis. MMP-7 activity was also assayed. Diabetes-induced proNGF expression and impaired NGF expression were observed in vitreous and serum. Vitreous and sera from diabetic patients (n = 11) showed significant 40.8-fold and 3.6-fold increases, respectively, compared to nondiabetics (n = 9). In contrast, vitreous and sera from diabetic patients showed significant 44% and 64% reductions in NGF levels, respectively, compared to nondiabetics. ProNGF to NGF ratios showed significant correlation between vitreous and serum. Further characterization of diabetes-induced imbalance in the proNGF to NGF ratio will facilitate its utility as an early biomarker for diabetic complications.
Collapse
|
39
|
Monteiro JP, Santos FM, Rocha AS, Castro-de-Sousa JP, Queiroz JA, Passarinha LA, Tomaz CT. Vitreous humor in the pathologic scope: insights from proteomic approaches. Proteomics Clin Appl 2015; 9:187-202. [PMID: 25523418 DOI: 10.1002/prca.201400133] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Revised: 12/11/2014] [Accepted: 12/15/2014] [Indexed: 12/22/2022]
Abstract
The vitreous humor (VH) is the largest component of the eye. It is a colorless, gelatinous, highly hydrated matrix that fills the posterior segment of the eye between the lens and retina in vertebrates. In VH, a diversity of proteins that can influence retinal physiology is present, including growth factors, hormones, proteins with transporter activity, and enzymes. More importantly, the protein composition of VH has been described as being altered in a number of disease states. Therefore, attempts aiming at establishing a map of VH proteins and detecting putative biomarkers for ocular illness or protein fluctuations with putative physiologic significance were conducted over the last two decades, using proteomic approaches. Proteomic strategies often involve gel-based or LC techniques as sample fractioning approaches, subsequently coupled with MS procedures. This set of studies resulted in the proteomic characterization of a range of ocular disease samples, with particular incidence on diabetic retinopathy. However, practical therapeutic applications arising from these studies are scarce at the moment. A pertinent example of therapeutic targets arising from VH proteomics has emerged concerning vasoproliferative factors present in the vitreous, which should be involved in neovascularization and subsequent fibrovascular proliferation of the retina, in ocular disease context. Therefore, this review attempts to sum up the information acquired from the proteomic approaches to ocular disease conducted in VH samples, highlighting its clinical potential for disclosing ocular disease mechanisms and engendering pharmacological therapeutic treatments.
Collapse
Affiliation(s)
- João P Monteiro
- CICS-UBI Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | | | | | | | | | | | | |
Collapse
|
40
|
|
41
|
Shen Q, Wu JZ, Wong JC. Potential drug interventions for diabetic retinopathy. Drug Discov Today 2013; 18:1334-41. [DOI: 10.1016/j.drudis.2013.08.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 08/14/2013] [Accepted: 08/23/2013] [Indexed: 01/03/2023]
|
42
|
Skeie JM, Mahajan VB. Proteomic interactions in the mouse vitreous-retina complex. PLoS One 2013; 8:e82140. [PMID: 24312404 PMCID: PMC3843729 DOI: 10.1371/journal.pone.0082140] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Accepted: 10/21/2013] [Indexed: 11/19/2022] Open
Abstract
PURPOSE Human vitreoretinal diseases are due to presumed abnormal mechanical interactions between the vitreous and retina, and translational models are limited. This study determined whether nonstructural proteins and potential retinal biomarkers were expressed by the normal mouse vitreous and retina. METHODS Vitreous and retina samples from mice were collected by evisceration and analyzed by liquid chromatography-tandem mass spectrometry. Identified proteins were further analyzed for differential expression and functional interactions using bioinformatic software. RESULTS We identified 1,680 unique proteins in the retina and 675 unique proteins in the vitreous. Unbiased clustering identified protein pathways that distinguish retina from vitreous including oxidative phosphorylation and neurofilament cytoskeletal remodeling, whereas the vitreous expressed oxidative stress and innate immunology pathways. Some intracellular protein pathways were found in both retina and vitreous, such as glycolysis and gluconeogenesis and neuronal signaling, suggesting proteins might be shuttled between the retina and vitreous. We also identified human disease biomarkers represented in the mouse vitreous and retina, including carbonic anhydrase-2 and 3, crystallins, macrophage inhibitory factor, glutathione peroxidase, peroxiredoxins, S100 precursors, and von Willebrand factor. CONCLUSIONS Our analysis suggests the vitreous expresses nonstructural proteins that functionally interact with the retina to manage oxidative stress, immune reactions, and intracellular proteins may be exchanged between the retina and vitreous. This novel proteomic dataset can be used for investigating human vitreoretinopathies in mouse models. Validation of vitreoretinal biomarkers for human ocular diseases will provide a critical tool for diagnostics and an avenue for therapeutics.
Collapse
Affiliation(s)
- Jessica M. Skeie
- Omics Laboratory, University of Iowa, Iowa City, Iowa, United States of America
- Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, Iowa, United States of America
| | - Vinit B. Mahajan
- Omics Laboratory, University of Iowa, Iowa City, Iowa, United States of America
- Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, Iowa, United States of America
| |
Collapse
|
43
|
Veréb Z, Lumi X, Andjelic S, Globocnik-Petrovic M, Urbancic M, Hawlina M, Facskó A, Petrovski G. Functional and molecular characterization of ex vivo cultured epiretinal membrane cells from human proliferative diabetic retinopathy. BIOMED RESEARCH INTERNATIONAL 2013; 2013:492376. [PMID: 24195074 PMCID: PMC3806336 DOI: 10.1155/2013/492376] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Revised: 08/13/2013] [Accepted: 08/15/2013] [Indexed: 12/13/2022]
Abstract
Characterization of the cell surface marker phenotype of ex vivo cultured cells growing out of human fibrovascular epiretinal membranes (fvERMs) from proliferative diabetic retinopathy (PDR) can give insight into their function in immunity, angiogenesis, and retinal detachment. FvERMs from uneventful vitrectomies due to PDR were cultured adherently ex vivo. Surface marker analysis, release of immunity- and angiogenesis-pathway-related factors upon TNF α activation and measurement of the intracellular calcium dynamics upon mechano-stimulation using fluorescent dye Fura-2 were all performed. FvERMs formed proliferating cell monolayers when cultured ex vivo, which were negative for endothelial cell markers (CD31, VEGFR2), partially positive for hematopoietic- (CD34, CD47) and mesenchymal stem cell markers (CD73, CD90/Thy-1, and PDGFR β ), and negative for CD105. CD146/MCAM and CD166/ALCAM, previously unreported in cells from fvERMs, were also expressed. Secretion of 11 angiogenesis-related factors (DPPIV/CD26, EG-VEGF/PK1, ET-1, IGFBP-2 and 3, IL-8/CXCL8, MCP-1/CCL2, MMP-9, PTX3/TSG-14, Serpin E1/PAI-1, Serpin F1/PEDF, TIMP-1, and TSP-1) were detected upon TNF α activation of fvERM cells. Mechano-stimulation of these cells induced intracellular calcium propagation representing functional viability and role of these cells in tractional retinal detachment, thus serving as a model for studying tractional forces present in fvERMs in PDR ex vivo.
Collapse
Affiliation(s)
- Zoltán Veréb
- Stem Cells and Eye Research Laboratory, Department of Biochemistry and Molecular Biology, Medical and Health Science Center, Faculty of Medicine, University of Debrecen, Debrecen H-4010, Hungary
| | - Xhevat Lumi
- Eye Hospital, University Medical Centre Ljubljana, SI-1000 Ljubljana, Slovenia
| | - Sofija Andjelic
- Eye Hospital, University Medical Centre Ljubljana, SI-1000 Ljubljana, Slovenia
| | | | - Mojca Urbancic
- Eye Hospital, University Medical Centre Ljubljana, SI-1000 Ljubljana, Slovenia
| | - Marko Hawlina
- Eye Hospital, University Medical Centre Ljubljana, SI-1000 Ljubljana, Slovenia
| | - Andrea Facskó
- Department of Ophthalmology, University of Szeged, H-6720, Hungary
| | - Goran Petrovski
- Stem Cells and Eye Research Laboratory, Department of Biochemistry and Molecular Biology, Medical and Health Science Center, Faculty of Medicine, University of Debrecen, Debrecen H-4010, Hungary
- Department of Ophthalmology, University of Szeged, H-6720, Hungary
| |
Collapse
|
44
|
Hernández C, García-Ramírez M, Colomé N, Corraliza L, García-Pascual L, Casado J, Canals F, Simó R. Identification of new pathogenic candidates for diabetic macular edema using fluorescence-based difference gel electrophoresis analysis. Diabetes Metab Res Rev 2013; 29:499-506. [PMID: 23568601 DOI: 10.1002/dmrr.2419] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Revised: 03/20/2013] [Accepted: 03/30/2013] [Indexed: 11/08/2022]
Abstract
BACKGROUND Diabetic macular edema is the main cause of visual impairment in diabetic patients. The aim of the present study was to explore the differential proteomic pattern of the vitreous fluid from diabetic macular edema patients by means of fluorescence-based difference gel electrophoresis (DIGE). METHODS Samples of vitreous from eight type 2 diabetic patients [four with diabetic macular edema without proliferative diabetic retinopathy and four with proliferative diabetic retinopathy without diabetic macular edema), and eight from non-diabetic subjects with idiopathic macular hole (control group) were selected from our vitreous bank for proteomic analysis. To further confirm the potential candidates identified by DIGE, 18 additional samples (six proliferative diabetic retinopathy, six diabetic macular edema and six macular hole, matched by age) were analysed by enzyme-linked immuno sorbent assay (ELISA). RESULTS Selecting an abundance ratio of 1.5-fold, p < 0.05, as the threshold for the study, four proteins were specifically associated with diabetic macular edema. Hemopexin was significantly higher in the vitreous fluid of patients with diabetic macular edema in comparison with both control subjects and proliferative diabetic retinopathy patients. By contrast, clusterin, transthyretin and crystallin S were significantly decreased in the vitreous of patients with diabetic macular edema. The differential production of hemopexin, clusterin and transthyretin was further confirmed by ELISA. CONCLUSIONS Proteomic analysis by DIGE was useful in identifying new potential candidates involved in the pathogenesis of diabetic macular edema. These results could open up new strategies in the treatment of diabetic macular edema.
Collapse
Affiliation(s)
- Cristina Hernández
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, Barcelona, Spain; Diabetes and Metabolism Research Unit, Vall Hebron Institut de Recerca, Barcelona, Spain
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Semba RD, Enghild JJ, Venkatraman V, Dyrlund TF, Van Eyk JE. The Human Eye Proteome Project: perspectives on an emerging proteome. Proteomics 2013; 13:2500-11. [PMID: 23749747 PMCID: PMC3978387 DOI: 10.1002/pmic.201300075] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Revised: 04/26/2013] [Accepted: 05/15/2013] [Indexed: 12/22/2022]
Abstract
There are an estimated 285 million people with visual impairment worldwide, of whom 39 million are blind. The pathogenesis of many eye diseases remains poorly understood. The human eye is currently an emerging proteome that may provide key insight into the biological pathways of disease. We review proteomic investigations of the human eye and present a catalogue of 4842 nonredundant proteins identified in human eye tissues and biofluids to date. We highlight the need to identify new biomarkers for eye diseases using proteomics. Recent advances in proteomics do now allow the identification of hundreds to thousands of proteins in tissues and fluids, characterization of various PTMs and simultaneous quantification of multiple proteins. To facilitate proteomic studies of the eye, the Human Eye Proteome Project (HEPP) was organized in September 2012. The HEPP is one of the most recent components of the Biology/Disease-driven Human Proteome Project (B/D-HPP) whose overarching goal is to support the broad application of state-of-the-art measurements of proteins and proteomes by life scientists studying the molecular mechanisms of biological processes and human disease. The large repertoire of investigative proteomic tools has great potential to transform vision science and enhance understanding of physiology and disease processes that affect sight.
Collapse
Affiliation(s)
- Richard D Semba
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | | | | | | | | |
Collapse
|
46
|
Isabel Padrão A, Ferreira R, Vitorino R, Amado F. Proteome-base biomarkers in diabetes mellitus: progress on biofluids' protein profiling using mass spectrometry. Proteomics Clin Appl 2013; 6:447-66. [PMID: 22997208 DOI: 10.1002/prca.201200044] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The worldwide number of individuals suffering from diabetes mellitus (DM) has been projected to rise from 171 million in 2000 to 366 million in 2030. Identification of specific biomarkers for prediction and monitoring of DM is needed not only for the adequate screening diagnosis but also to assist the design of interventions to prevent or delay progression of this pathology and its attendant complications. Proteomic methods based on MS hold special promise for the identification of novel biomarkers that might form the foundation for new clinical tests, but to date, their contribution has been somehow unfruitful. Indeed, from more than 300 proteins found differently modulated in body fluids from diabetic patients, approximately 50 were validated with other approaches like ELISA or Western blotting and the clinical trials are being initiated to employ biofluids' proteomics (specifically urinary proteomics) in clinical decision. This review provides an overview of MS-based applications in the identification of potential biomarkers for DM, emphasizing the methodological challenges involved.
Collapse
Affiliation(s)
- Ana Isabel Padrão
- QOPNA, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | | | | | | |
Collapse
|
47
|
Wang H, Feng L, Hu J, Xie C, Wang F. Differentiating vitreous proteomes in proliferative diabetic retinopathy using high-performance liquid chromatography coupled to tandem mass spectrometry. Exp Eye Res 2012; 108:110-9. [PMID: 23276812 DOI: 10.1016/j.exer.2012.11.023] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Revised: 11/06/2012] [Accepted: 11/28/2012] [Indexed: 01/03/2023]
Abstract
Proliferative diabetic retinopathy (PDR) is a serious microangiopathic complication of diabetes mellitus and a major cause of blindness in working-age adults. Diabetes-induced alterations in the vitreous protein composition in diabetic patients with PDR may be responsible for the presence of PDR. Therefore, we performed a comprehensive proteomic analysis and compared the protein profiles of vitreous humor from type 2 diabetic patients with PDR (n = 8) and that from normal human eyes donated for corneal transplant (n = 8). Using reversed phase high-performance liquid chromatography (RP-HPLC) coupled to electrospray Ionization tandem mass spectrometry (ESI-MS/MS), we identified 96 significant differentially expressed proteins (abundance ratio > 1.5, p < 0.05), including 37 and 59 proteins up- and downregulated in PDR vitreous compared with the control, respectively. Biological pathway analysis revealed 44 proteins involved in 56 biological pathways; among them, the most remarkable pathways differentially represented between PDR and normal vitreous were the glycolysis/gluconeogenesis, complement and coagulation cascades, gap junction, and phagosome pathways. The differential expressions of angiopoietin-related protein 6, apolipoprotein A-I, estrogen receptor alpha, and tubulin were confirmed by western blot analysis. These data provide insight into the molecular events possibly involved in the pathogenesis of PDR and widen the scope of potential avenues for new therapies for PDR.
Collapse
Affiliation(s)
- Hao Wang
- Department of Ophthalmology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, 301 Yanchang Road, Shanghai 200072, China
| | | | | | | | | |
Collapse
|
48
|
Proteomic analyses of the vitreous humour. Mediators Inflamm 2012; 2012:148039. [PMID: 22973072 PMCID: PMC3437669 DOI: 10.1155/2012/148039] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2012] [Accepted: 08/03/2012] [Indexed: 11/17/2022] Open
Abstract
The human vitreous humour (VH) is a transparent, highly hydrated gel, which occupies the posterior segment of the eye between the lens and the retina. Physiological and pathological conditions of the retina are reflected in the protein composition of the VH, which can be sampled as part of routine surgical procedures. Historically, many studies have investigated levels of individual proteins in VH from healthy and diseased eyes. In the last decade, proteomics analyses have been performed to characterise the proteome of the human VH and explore networks of functionally related proteins, providing insight into the aetiology of diabetic retinopathy and proliferative vitreoretinopathy. Recent proteomic studies on the VH from animal models of autoimmune uveitis have identified new signalling pathways associated to autoimmune triggers and intravitreal inflammation. This paper aims to guide biological scientists through the different proteomic techniques that have been used to analyse the VH and present future perspectives for the study of intravitreal inflammation using proteomic analyses.
Collapse
|
49
|
Bagyánszki M, Bódi N. Diabetes-related alterations in the enteric nervous system and its microenvironment. World J Diabetes 2012; 3:80-93. [PMID: 22645637 PMCID: PMC3360223 DOI: 10.4239/wjd.v3.i5.80] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2011] [Revised: 04/06/2012] [Accepted: 05/11/2012] [Indexed: 02/05/2023] Open
Abstract
Gastric intestinal symptoms common among diabetic patients are often caused by intestinal motility abnormalities related to enteric neuropathy. It has recently been demonstrated that the nitrergic subpopulation of myenteric neurons are especially susceptible to the development of diabetic neuropathy. Additionally, different susceptibility of nitrergic neurons located in different intestinal segments to diabetic damage and their different levels of responsiveness to insulin treatment have been revealed. These findings indicate the importance of the neuronal microenvironment in the pathogenesis of diabetic nitrergic neuropathy. The main focus of this review therefore was to summarize recent advances related to the diabetes-related selective nitrergic neuropathy and associated motility disturbances. Special attention was given to the findings on capillary endothelium and enteric glial cells. Growing evidence indicates that capillary endothelium adjacent to the myenteric ganglia and enteric glial cells surrounding them are determinative in establishing the ganglionic microenvironment. Additionally, recent advances in the development of new strategies to improve glycemic control in type 1 and type 2 diabetes mellitus are also considered in this review. Finally, looking to the future, the recent and promising results of metagenomics for the characterization of the gut microbiome in health and disease such as diabetes are highlighted.
Collapse
Affiliation(s)
- Mária Bagyánszki
- Mária Bagyánszki, Nikolett Bódi, Department of Physiology, Anatomy and Neuroscience, Faculty of Science, University of Szeged, H-6726 Szeged, Hungary
| | | |
Collapse
|