1
|
Leonard J, Kepplinger D, Espina V, Gillevet P, Ke Y, Birukov KG, Doctor A, Hoemann CD. Whole blood coagulation in an ex vivo thrombus is sufficient to induce clot neutrophils to adopt a myeloid-derived suppressor cell signature and shed soluble Lox-1. J Thromb Haemost 2024; 22:1031-1045. [PMID: 38135253 PMCID: PMC11584067 DOI: 10.1016/j.jtha.2023.12.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 12/04/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023]
Abstract
BACKGROUND Blood clots are living tissues that release inflammatory mediators including IL-8/CXCL8 and MCP-1/CCL2. A deeper understanding of blood clots is needed to develop new therapies for prothrombotic disease states and regenerative medicine. OBJECTIVES To identify a common transcriptional shift in cultured blood clot leukocytes. METHODS Differential gene expression of whole blood and cultured clots (4 hours at 37 °C) was assessed by RNA sequencing (RNAseq), reverse transcriptase-polymerase chain reaction, proteomics, and histology (23 diverse healthy human donors). Cultured clot serum bioactivity was tested in endothelial barrier functional assays. RESULTS All cultured clots developed a polymorphonuclear myeloid-derived suppressor cell (PMN-MDSC) signature, including up-regulation of OLR1 (mRNA encoding lectin-like oxidized low-density lipoprotein receptor 1 [Lox-1]), IL-8/CXCL8, CXCL2, CCL2, IL10, IL1A, SPP1, TREM1, and DUSP4/MKP. Lipopolysaccharide enhanced PMN-MDSC gene expression and specifically induced a type II interferon response with IL-6 production. Lox-1 was specifically expressed by cultured clot CD15+ neutrophils. Cultured clot neutrophils, but not activated platelets, shed copious amounts of soluble Lox-1 (sLox-1) with a donor-dependent amplitude. sLox-1 shedding was enhanced by phorbol ester and suppressed by heparin and by beta-glycerol phosphate, a phosphatase inhibitor. Cultured clot serum significantly enhanced endothelial cell monolayer barrier function, consistent with a proresolving bioactivity. CONCLUSION This study suggests that PMN-MDSC activation is part of the innate immune response to coagulation which may have a protective role in inflammation. The cultured blood clot is an innovative thrombus model that can be used to study both sterile and nonsterile inflammatory states and could be used as a personalized medicine tool for drug screening.
Collapse
Affiliation(s)
- Julia Leonard
- Department of Bioengineering, Institute of Biomedical Engineering, George Mason University, Manassas, Virginia, USA
| | - David Kepplinger
- Department of Statistics, George Mason University, Fairfax, Virginia, USA
| | - Virginia Espina
- Department of Systems Biology, George Mason University, Fairfax, Virginia, USA
| | - Pat Gillevet
- Department of Biology, George Mason University, Fairfax, Virginia, USA
| | - Yunbo Ke
- Department of Anesthesiology, School of Medicine, University of Maryland at Baltimore, Baltimore, Maryland, USA
| | - Konstantin G Birukov
- Department of Anesthesiology, School of Medicine, University of Maryland at Baltimore, Baltimore, Maryland, USA
| | - Allan Doctor
- Departments of Pediatrics & Bioengineering and Center for Blood Oxygen Transport and Hemostasis, School of Medicine, University of Maryland at Baltimore, Baltimore, Maryland, USA
| | - Caroline D Hoemann
- Department of Bioengineering, Institute of Biomedical Engineering, George Mason University, Manassas, Virginia, USA.
| |
Collapse
|
2
|
The Emerging Role of Tumor Microenvironmental Stimuli in Regulating Metabolic Rewiring of Liver Cancer Stem Cells. Cancers (Basel) 2022; 15:cancers15010005. [PMID: 36612000 PMCID: PMC9817521 DOI: 10.3390/cancers15010005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/14/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022] Open
Abstract
Primary liver cancer (PLC) is one of the most devastating cancers worldwide. Extensive phenotypical and functional heterogeneity is a cardinal hallmark of cancer, including PLC, and is related to the cancer stem cell (CSC) concept. CSCs are responsible for tumor growth, progression, relapse and resistance to conventional therapies. Metabolic reprogramming represents an emerging hallmark of cancer. Cancer cells, including CSCs, are very plastic and possess the dynamic ability to constantly shift between different metabolic states depending on various intrinsic and extrinsic stimuli, therefore amplifying the complexity of understanding tumor heterogeneity. Besides the well-known Warburg effect, several other metabolic pathways including lipids and iron metabolism are altered in PLC. An increasing number of studies supports the role of the surrounding tumor microenvironment (TME) in the metabolic control of liver CSCs. In this review, we discuss the complex metabolic rewiring affecting liver cancer cells and, in particular, liver CSCs. Moreover, we highlight the role of TME cellular and noncellular components in regulating liver CSC metabolic plasticity. Deciphering the specific mechanisms regulating liver CSC-TME metabolic interplay could be very helpful with respect to the development of more effective and innovative combinatorial therapies for PLC treatment.
Collapse
|
3
|
Raggi C, Taddei ML, Rae C, Braconi C, Marra F. Metabolic reprogramming in cholangiocarcinoma. J Hepatol 2022; 77:849-864. [PMID: 35594992 DOI: 10.1016/j.jhep.2022.04.038] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/16/2022] [Accepted: 04/28/2022] [Indexed: 12/25/2022]
Abstract
Metabolic reprogramming is a hallmark of cancer and allows tumour cells to meet the increased energy demands required for rapid proliferation, invasion, and metastasis. Indeed, many tumour cells acquire distinctive metabolic and bioenergetic features that enable them to survive in resource-limited conditions, mainly by harnessing alternative nutrients. Several recent studies have explored the metabolic plasticity of cancer cells with the aim of identifying new druggable targets, while therapeutic strategies to limit the access to nutrients have been successfully applied to the treatment of some tumours. Cholangiocarcinoma (CCA), a highly heterogeneous tumour, is the second most common form of primary liver cancer. It is characterised by resistance to chemotherapy and poor prognosis, with 5-year survival rates of below 20%. Deregulation of metabolic pathways have been described during the onset and progression of CCA. Increased aerobic glycolysis and glutamine anaplerosis provide CCA cells with the ability to generate biosynthetic intermediates. Other metabolic alterations involving carbohydrates, amino acids and lipids have been shown to sustain cancer cell growth and dissemination. In this review, we discuss the complex metabolic rewiring that occurs during CCA development and leads to unique nutrient addiction. The possible role of therapeutic interventions based on metabolic changes is also thoroughly discussed.
Collapse
Affiliation(s)
- Chiara Raggi
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy.
| | - Maria Letizia Taddei
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Colin Rae
- Institute of Cancer Sciences, The University of Glasgow, Glasgow, United Kingdom
| | - Chiara Braconi
- Institute of Cancer Sciences, The University of Glasgow, Glasgow, United Kingdom; Beatson West of Scotland Cancer Centre, Glasgow, United Kingdom
| | - Fabio Marra
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy.
| |
Collapse
|
4
|
Ryytty S, Modi SR, Naumenko N, Shakirzyanova A, Rahman MO, Vaara M, Suomalainen A, Tavi P, Hämäläinen RH. Varied Responses to a High m.3243A>G Mutation Load and Respiratory Chain Dysfunction in Patient-Derived Cardiomyocytes. Cells 2022; 11:cells11162593. [PMID: 36010669 PMCID: PMC9406376 DOI: 10.3390/cells11162593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/17/2022] [Accepted: 08/18/2022] [Indexed: 11/16/2022] Open
Abstract
The m.3243A>G mutation in mitochondrial tRNA-Leu(UUR) is one of the most common pathogenic mitochondrial DNA mutations in humans. The clinical manifestations are highly heterogenous and the causes for the drastic clinical variability are unknown. Approximately one third of patients suffer from cardiac disease, which often increases mortality. Why only some patients develop cardiomyopathy is unknown. Here, we studied the molecular effects of a high m.3243A>G mutation load on cardiomyocyte functionality, using cells derived from induced pluripotent stem cells (iPSC-CM) of two different m.3243A>G patients, only one of them suffering from severe cardiomyopathy. While high mutation load impaired mitochondrial respiration in both patients' iPSC-CMs, the downstream consequences varied. mtDNA mutant cells from a patient with no clinical heart disease showed increased glucose metabolism and retained cellular ATP levels, whereas cells from the cardiac disease patient showed reduced ATP levels. In this patient, the mutations also affected intracellular calcium signaling, while this was not true in the other patient's cells. Our results reflect the clinical variability in mitochondrial disease patients and show that iPSC-CMs retain tissue specific features seen in patients.
Collapse
Affiliation(s)
- Sanna Ryytty
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211 Kuopio, Finland
| | - Shalem R. Modi
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211 Kuopio, Finland
| | - Nikolay Naumenko
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211 Kuopio, Finland
| | - Anastasia Shakirzyanova
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211 Kuopio, Finland
| | - Muhammad Obaidur Rahman
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211 Kuopio, Finland
| | - Miia Vaara
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211 Kuopio, Finland
| | - Anu Suomalainen
- Stem Cell and Metabolism Research Program, Research Programs Unit, University of Helsinki, 00290 Helsinki, Finland
- HUSLab, Helsinki University Hospital, 00290 Helsinki, Finland
| | - Pasi Tavi
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211 Kuopio, Finland
| | - Riikka H. Hämäläinen
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211 Kuopio, Finland
- Correspondence:
| |
Collapse
|
5
|
Malvi P, Rawat V, Gupta R, Wajapeyee N. Transcriptional, chromatin, and metabolic landscapes of LDHA inhibitor-resistant pancreatic ductal adenocarcinoma. Front Oncol 2022; 12:926437. [PMID: 35982980 PMCID: PMC9378957 DOI: 10.3389/fonc.2022.926437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 06/21/2022] [Indexed: 11/22/2022] Open
Abstract
Metabolic reprogramming, due in part to the overexpression of metabolic enzymes, is a key hallmark of cancer cells. Lactate dehydrogenase (LDHA), a metabolic enzyme that catalyzes the interconversion of lactate and pyruvate, is overexpressed in a wide variety of cancer types, including pancreatic ductal adenocarcinoma (PDAC). Furthermore, the genetic or pharmacological inhibition of LDHA suppresses cancer growth, demonstrating a cancer-promoting role for this enzyme. Therefore, several pharmacological LDHA inhibitors are being developed and tested as potential anti-cancer therapeutic agents. Because cancer cells are known to rapidly adapt and become resistant to anti-cancer therapies, in this study, we modeled the adaptation of cancer cells to LDHA inhibition. Using PDAC as a model system, we studied the molecular aspects of cells resistant to the competitive LDHA inhibitor sodium oxamate. We performed unbiased RNA-sequencing (RNA-seq), assay for transposase-accessible chromatin with sequencing (ATAC-seq), and metabolomics analyses of parental and oxamate-resistant PDAC cells treated with and without oxamate to identify the transcriptional, chromatin, and metabolic landscapes of these cells. We found that oxamate-resistant PDAC cells were significantly different from parental cells at the levels of mRNA expression, chromatin accessibility, and metabolites. Additionally, an integrative analysis combining the RNA-seq and ATAC-seq datasets identified a subset of differentially expressed mRNAs that directly correlated with changes in chromatin accessibility. Finally, functional analysis of differentially expressed metabolic genes in parental and oxamate-resistant PDAC cells treated with and without oxamate, together with an integrative analysis of RNA-seq and metabolomics data, revealed changes in metabolic enzymes that might explain the changes in metabolite levels observed in these cells. Collectively, these studies identify the transcriptional, chromatin, and metabolic landscapes of LDHA inhibitor resistance in PDAC cells. Future functional studies related to these changes remain necessary to reveal the direct roles played by these changes in the development of LDHA inhibitor resistance and uncover approaches for more effective use of LDHA inhibitors in cancer therapy.
Collapse
Affiliation(s)
- Parmanand Malvi
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Vipin Rawat
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Romi Gupta
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL, United States
- O’Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Narendra Wajapeyee
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL, United States
- O’Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
6
|
Zhou SN, Lu SS, Ju DW, Yu LX, Liang XX, Xiang X, Liangpunsakul S, Roberts LR, Lu YY, Zhang N. A New Prognostic Model Covering All Stages of Intrahepatic Cholangiocarcinoma. J Clin Transl Hepatol 2022; 10:254-262. [PMID: 35528972 PMCID: PMC9039701 DOI: 10.14218/jcth.2021.00099] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 05/18/2021] [Accepted: 06/12/2021] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND AND AIMS Intrahepatic cholangiocarcinoma (ICC) is the second most common primary hepatic malignancy that causes a poor survival. We aimed to identify its prognostic factors and to develop a nomogram that will predict survival of ICC patients among all stages. METHODS A total of 442 patients with pathology-proven ICC registered at the Fifth Medical Center of PLA General Hospital between July 2007 and December 2019 were enrolled. Subjects were followed for survival status until June 30, 2020. A prognostic model visualized as a nomogram was constructed in the training cohort using multivariate cox model, and was then validated in the validation cohort. RESULTS The median age was 55 years. With a median follow-up of 50.4 months, 337 patients died. The median survival was 11.6 months, with 1-, 3- and 5-year survival rates of 48.3%, 22.7% and 16.2%, respectively. Factors associated with overall survival were multiple tumors, lymph node involvement, vascular invasion, distant metastasis, decreased albumin, elevated lactate dehydrogenase (LDH), decreased iron, elevated fibrinogen, elevated CA125 and elevated CA19-9. A nomogram predicting survival of ICC patients at the time of diagnosis achieved a Harrel's c-statistic of 0.758, significantly higher than the 0.582 of the TNM stage alone. Predicted median survivals of those within the low, mid and high-risk subgroups were 35.6, 12.1 and 6.2 months, respectively. CONCLUSIONS A nomogram based on imaging data and serum biomarkers at diagnosis showed good ability to predict survival in patients with all stages of ICC. Further studies are needed to validate the prognostic capability of our new model.
Collapse
Affiliation(s)
- Shuang-Nan Zhou
- Department of Infectious Disease, the Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Shan-Shan Lu
- Department of Liver Disease, the Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Da-Wei Ju
- Central Theater Command General Hospital of The Chinese People’s Liberation Army, Wuhan, Hubei, China
| | - Ling-Xiang Yu
- Department of Liver Disease, the Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Xiao-Xiao Liang
- Department of Liver Disease, the Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
- Beijing Chaoyang Integrative Medicine Emergency Medical Center, Beijing, China
| | - Xiao Xiang
- BeiGene (Beijing) Co. Ltd, Beijing, China
| | - Suthat Liangpunsakul
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, IN, USA
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Lewis R. Roberts
- Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| | - Yin-Ying Lu
- Department of Liver Disease, the Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
- Correspondence to: Ning Zhang and Yinying Lu,, Department of Liver Disease, the Fifth Medical Center, Chinese PLA General Hospital, Beijing 100039, China. ORCID: https://orcid.org/0000-0002-6826-9175 (NZ). Tel: +86-10-66949711 (NZ) and +86-10-66933380 (YL), E-mail: (NZ) and (YL)
| | - Ning Zhang
- Department of Liver Disease, the Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
- Correspondence to: Ning Zhang and Yinying Lu,, Department of Liver Disease, the Fifth Medical Center, Chinese PLA General Hospital, Beijing 100039, China. ORCID: https://orcid.org/0000-0002-6826-9175 (NZ). Tel: +86-10-66949711 (NZ) and +86-10-66933380 (YL), E-mail: (NZ) and (YL)
| |
Collapse
|
7
|
Ding J, Gumpena R, Boily MO, Caron A, Chong O, Cox JH, Dumais V, Gaudreault S, Graff AH, King A, Knight J, Oballa R, Surendradoss J, Tang T, Wu J, Lowther WT, Powell DA. Dual Glycolate Oxidase/Lactate Dehydrogenase A Inhibitors for Primary Hyperoxaluria. ACS Med Chem Lett 2021; 12:1116-1123. [PMID: 34267881 DOI: 10.1021/acsmedchemlett.1c00196] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 05/18/2021] [Indexed: 12/12/2022] Open
Abstract
Both glycolate oxidase (GO) and lactate dehydrogenase A (LDHA) influence the endogenous synthesis of oxalate and are clinically validated targets for treatment of primary hyperoxaluria (PH). We investigated whether dual inhibition of GO and LDHA may provide advantage over single agents in treating PH. Utilizing a structure-based drug design (SBDD) approach, we developed a series of novel, potent, dual GO/LDHA inhibitors. X-ray crystal structures of compound 15 bound to individual GO and LDHA proteins validated our SBDD strategy. Dual inhibitor 7 demonstrated an IC50 of 88 nM for oxalate reduction in an Agxt-knockdown mouse hepatocyte assay. Limited by poor liver exposure, this series of dual inhibitors failed to demonstrate significant PD modulation in an in vivo mouse model. This work highlights the challenges in optimizing in vivo liver exposures for diacid containing compounds and limited benefit seen with dual GO/LDHA inhibitors over single agents alone in an in vitro setting.
Collapse
Affiliation(s)
- Jinyue Ding
- Chinook Therapeutics, 210-887 Great
Northern Way, Vancouver, British Columbia, V5T 4T5, Canada and 1600 Fairview Avenue E, Suite #100, Seattle, Washington 98102, United States
| | - Rajesh Gumpena
- Center for Structural Biology, Department of Biochemistry, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, North Carolina 27157, United States
| | - Marc-Olivier Boily
- Chinook Therapeutics, 210-887 Great
Northern Way, Vancouver, British Columbia, V5T 4T5, Canada and 1600 Fairview Avenue E, Suite #100, Seattle, Washington 98102, United States
| | - Alexandre Caron
- Chinook Therapeutics, 210-887 Great
Northern Way, Vancouver, British Columbia, V5T 4T5, Canada and 1600 Fairview Avenue E, Suite #100, Seattle, Washington 98102, United States
| | - Oliver Chong
- Chinook Therapeutics, 210-887 Great
Northern Way, Vancouver, British Columbia, V5T 4T5, Canada and 1600 Fairview Avenue E, Suite #100, Seattle, Washington 98102, United States
| | - Jennifer H. Cox
- Chinook Therapeutics, 210-887 Great
Northern Way, Vancouver, British Columbia, V5T 4T5, Canada and 1600 Fairview Avenue E, Suite #100, Seattle, Washington 98102, United States
| | - Valerie Dumais
- Chinook Therapeutics, 210-887 Great
Northern Way, Vancouver, British Columbia, V5T 4T5, Canada and 1600 Fairview Avenue E, Suite #100, Seattle, Washington 98102, United States
| | - Samuel Gaudreault
- Chinook Therapeutics, 210-887 Great
Northern Way, Vancouver, British Columbia, V5T 4T5, Canada and 1600 Fairview Avenue E, Suite #100, Seattle, Washington 98102, United States
| | - Aaron H. Graff
- Center for Structural Biology, Department of Biochemistry, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, North Carolina 27157, United States
| | - Andrew King
- Chinook Therapeutics, 210-887 Great
Northern Way, Vancouver, British Columbia, V5T 4T5, Canada and 1600 Fairview Avenue E, Suite #100, Seattle, Washington 98102, United States
| | - John Knight
- Department of Urology, University of Alabama at Birmingham, 720 20th Street South, Birmingham, Alabama 35294, United States
| | - Renata Oballa
- Chinook Therapeutics, 210-887 Great
Northern Way, Vancouver, British Columbia, V5T 4T5, Canada and 1600 Fairview Avenue E, Suite #100, Seattle, Washington 98102, United States
| | - Jayakumar Surendradoss
- Chinook Therapeutics, 210-887 Great
Northern Way, Vancouver, British Columbia, V5T 4T5, Canada and 1600 Fairview Avenue E, Suite #100, Seattle, Washington 98102, United States
| | - Tim Tang
- Chinook Therapeutics, 210-887 Great
Northern Way, Vancouver, British Columbia, V5T 4T5, Canada and 1600 Fairview Avenue E, Suite #100, Seattle, Washington 98102, United States
| | - Joyce Wu
- Chinook Therapeutics, 210-887 Great
Northern Way, Vancouver, British Columbia, V5T 4T5, Canada and 1600 Fairview Avenue E, Suite #100, Seattle, Washington 98102, United States
| | - W. Todd Lowther
- Center for Structural Biology, Department of Biochemistry, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, North Carolina 27157, United States
| | - David A. Powell
- Chinook Therapeutics, 210-887 Great
Northern Way, Vancouver, British Columbia, V5T 4T5, Canada and 1600 Fairview Avenue E, Suite #100, Seattle, Washington 98102, United States
| |
Collapse
|
8
|
Khan AA, Allemailem KS, Alhumaydhi FA, Gowder SJT, Rahmani AH. The Biochemical and Clinical Perspectives of Lactate Dehydrogenase: An Enzyme of Active Metabolism. Endocr Metab Immune Disord Drug Targets 2021; 20:855-868. [PMID: 31886754 DOI: 10.2174/1871530320666191230141110] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 11/05/2019] [Accepted: 11/25/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND Lactate dehydrogenase (LDH) is a group of oxidoreductase isoenzymes catalyzing the reversible reaction between pyruvate and lactate. The five isoforms of this enzyme, formed from two subunits, vary in isoelectric points and these isoforms have different substrate affinity, inhibition constants and electrophoretic mobility. These diverse biochemical properties play a key role in its cellular, tissue and organ specificity. Though LDH is predominantly present in the cytoplasm, it has a multi-organellar location as well. OBJECTIVE The primary objective of this review article is to provide an update in parallel, the previous and recent biochemical views and its clinical significance in different diseases. METHODS With the help of certain inhibitors, its active site three-dimensional view, reactions mechanisms and metabolic pathways have been sorted out to a greater extent. Overexpression of LDH in different cancers plays a principal role in anaerobic cellular metabolism, hence several inhibitors have been designed to employ as novel anticancer agents. DISCUSSION LDH performs a very important role in overall body metabolism and some signals can induce isoenzyme switching under certain circumstances, ensuring that the tissues consistently maintain adequate ATP supply. This enzyme also experiences some posttranslational modifications, to have diversified metabolic roles. Different toxicological and pathological complications damage various organs, which ultimately result in leakage of this enzyme in serum. Hence, unusual LDH isoform level in serum serves as a significant biomarker of different diseases. CONCLUSION LDH is an important diagnostic biomarker for some common diseases like cancer, thyroid disorders, tuberculosis, etc. In general, LDH plays a key role in the clinical diagnosis of various common and rare diseases, as this enzyme has a prominent role in active metabolism.
Collapse
Affiliation(s)
- Amjad A Khan
- Department of Basic Health Sciences, College of Applied Medical Science, Qassim University, Qassim, Saudi Arabia
| | - Khaled S Allemailem
- Department of Basic Health Sciences, College of Applied Medical Science, Qassim University, Qassim, Saudi Arabia,Department of Medical Laboratories, College of Applied Medical Science, Qassim University, Qassim, Saudi Arabia
| | - Fahad A Alhumaydhi
- Department of Medical Laboratories, College of Applied Medical Science, Qassim University, Qassim, Saudi Arabia
| | - Sivakumar J T Gowder
- Department for Management of Science and Technology Development, Ton Duc Thang University, Ho Chi Minh City,
Vietnam,Faculty of Applied Sciences, Ton Duc Thang University, Vietnam
| | - Arshad H Rahmani
- Department of Medical Laboratories, College of Applied Medical Science, Qassim University, Qassim, Saudi Arabia
| |
Collapse
|
9
|
Christov PP, Kim K, Jana S, Romaine IM, Rai G, Mott BT, Allweil AA, Lamers A, Brimacombe KR, Urban DJ, Lee TD, Hu X, Lukacs CM, Davies DR, Jadhav A, Hall MD, Green N, Moore WJ, Stott GM, Flint AJ, Maloney DJ, Sulikowski GA, Waterson AG. Optimization of ether and aniline based inhibitors of lactate dehydrogenase. Bioorg Med Chem Lett 2021; 41:127974. [PMID: 33771585 PMCID: PMC8113097 DOI: 10.1016/j.bmcl.2021.127974] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 03/08/2021] [Accepted: 03/13/2021] [Indexed: 01/27/2023]
Abstract
Lactate dehydrogenase (LDH) is a critical enzyme in the glycolytic metabolism pathway that is used by many tumor cells. Inhibitors of LDH may be expected to inhibit the metabolic processes in cancer cells and thus selectively delay or inhibit growth in transformed versus normal cells. We have previously disclosed a pyrazole-based series of potent LDH inhibitors with long residence times on the enzyme. Here, we report the elaboration of a new subseries of LDH inhibitors based on those leads. These new compounds potently inhibit both LDHA and LDHB enzymes, and inhibit lactate production in cancer cell lines.
Collapse
Affiliation(s)
- Plamen P Christov
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN 37232, United States
| | - Kwangho Kim
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN 37232, United States
| | - Somnath Jana
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN 37232, United States
| | - Ian M Romaine
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN 37232, United States
| | - Ganesha Rai
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, MD 20850, United States
| | - Bryan T Mott
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, MD 20850, United States
| | - Alexander A Allweil
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN 37232, United States
| | - Alexander Lamers
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN 37232, United States
| | - Kyle R Brimacombe
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, MD 20850, United States
| | - Daniel J Urban
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, MD 20850, United States
| | - Tobie D Lee
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, MD 20850, United States
| | - Xin Hu
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, MD 20850, United States
| | - Christine M Lukacs
- Beryllium Discovery Corp, 7869 Day Rd West, Bainbridge Island, WA 98110, United States
| | - Douglas R Davies
- Beryllium Discovery Corp, 7869 Day Rd West, Bainbridge Island, WA 98110, United States
| | - Ajit Jadhav
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, MD 20850, United States
| | - Matthew D Hall
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, MD 20850, United States
| | - Neal Green
- Beryllium Discovery Corp, 7869 Day Rd West, Bainbridge Island, WA 98110, United States
| | - William J Moore
- NExT Program Support, Applied/Developmental Research Directorate, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, United States
| | - Gordon M Stott
- NExT Program Support, Applied/Developmental Research Directorate, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, United States
| | - Andrew J Flint
- NExT Program Support, Applied/Developmental Research Directorate, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, United States
| | - David J Maloney
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, MD 20850, United States
| | - Gary A Sulikowski
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN 37232, United States
| | - Alex G Waterson
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN 37232, United States.
| |
Collapse
|
10
|
Rai G, Urban DJ, Mott BT, Hu X, Yang SM, Benavides GA, Johnson MS, Squadrito GL, Brimacombe KR, Lee TD, Cheff DM, Zhu H, Henderson MJ, Pohida K, Sulikowski GA, Dranow DM, Kabir M, Shah P, Padilha E, Tao D, Fang Y, Christov PP, Kim K, Jana S, Muttil P, Anderson T, Kunda NK, Hathaway HJ, Kusewitt DF, Oshima N, Cherukuri M, Davies DR, Norenberg JP, Sklar LA, Moore WJ, Dang CV, Stott GM, Neckers L, Flint AJ, Darley-Usmar VM, Simeonov A, Waterson AG, Jadhav A, Hall MD, Maloney DJ. Pyrazole-Based Lactate Dehydrogenase Inhibitors with Optimized Cell Activity and Pharmacokinetic Properties. J Med Chem 2020; 63:10984-11011. [PMID: 32902275 PMCID: PMC7830743 DOI: 10.1021/acs.jmedchem.0c00916] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Lactate dehydrogenase (LDH) catalyzes the conversion of pyruvate to lactate, with concomitant oxidation of reduced nicotinamide adenine dinucleotide as the final step in the glycolytic pathway. Glycolysis plays an important role in the metabolic plasticity of cancer cells and has long been recognized as a potential therapeutic target. Thus, potent, selective inhibitors of LDH represent an attractive therapeutic approach. However, to date, pharmacological agents have failed to achieve significant target engagement in vivo, possibly because the protein is present in cells at very high concentrations. We report herein a lead optimization campaign focused on a pyrazole-based series of compounds, using structure-based design concepts, coupled with optimization of cellular potency, in vitro drug-target residence times, and in vivo PK properties, to identify first-in-class inhibitors that demonstrate LDH inhibition in vivo. The lead compounds, named NCATS-SM1440 (43) and NCATS-SM1441 (52), possess desirable attributes for further studying the effect of in vivo LDH inhibition.
Collapse
Affiliation(s)
- Ganesha Rai
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850, United States
| | - Daniel J. Urban
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850, United States
| | - Bryan T. Mott
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850, United States
| | - Xin Hu
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850, United States
| | - Shyh-Ming Yang
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850, United States
| | - Gloria A. Benavides
- Mitochondrial Medicine Laboratory, Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama 35294, United States
| | - Michelle S. Johnson
- Mitochondrial Medicine Laboratory, Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama 35294, United States
| | - Giuseppe L. Squadrito
- Mitochondrial Medicine Laboratory, Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama 35294, United States
| | - Kyle R. Brimacombe
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850, United States
| | - Tobie D. Lee
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850, United States
| | - Dorian M. Cheff
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850, United States
| | - Hu Zhu
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850, United States
| | - Mark J. Henderson
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850, United States
| | - Katherine Pohida
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850, United States
| | - Gary A. Sulikowski
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - David M. Dranow
- Beryllium Discovery Corp., Bainbridge Island, Washington 98110, United States
| | - Md Kabir
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850, United States
| | - Pranav Shah
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850, United States
| | - Elias Padilha
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850, United States
| | - Dingyin Tao
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland, 20850, United States
| | - Yuhong Fang
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850, United States
| | - Plamen P. Christov
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Kwangho Kim
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Somnath Jana
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Pavan Muttil
- College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, New Mexico 87131, United States
| | - Tamara Anderson
- College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, New Mexico 87131, United States
| | - Nitesh K. Kunda
- College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, New Mexico 87131, United States
| | - Helen J. Hathaway
- College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, New Mexico 87131, United States
| | - Donna F. Kusewitt
- Dept of Pathology, University of New Mexico Cancer Center, Albuquerque, New Mexico 87131, United States
| | - Nobu Oshima
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892, United States
| | - Murali Cherukuri
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892, United States
| | - Douglas R. Davies
- Beryllium Discovery Corp., Bainbridge Island, Washington 98110, United States
| | - Jeffrey P. Norenberg
- College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, New Mexico 87131, United States
| | - Larry A. Sklar
- Dept of Pathology, University of New Mexico Cancer Center, Albuquerque, New Mexico 87131, United States
| | - William J. Moore
- NExT Program Support, Applied/Developmental Research Directorate, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702, United States
| | - Chi V. Dang
- Abramson Cancer Center, Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States; Ludwig Institute for Cancer Research, New York, New York 10017, United States
| | - Gordon M. Stott
- NExT Program Support, Applied/Developmental Research Directorate, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702, United States
| | - Leonard Neckers
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892, United States
| | - Andrew J. Flint
- NExT Program Support, Applied/Developmental Research Directorate, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702, United States
| | - Victor M. Darley-Usmar
- Mitochondrial Medicine Laboratory, Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama 35294, United States
| | - Anton Simeonov
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850, United States
| | - Alex G. Waterson
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Ajit Jadhav
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850, United States
| | - Matthew D. Hall
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850, United State
| | - David J. Maloney
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850, United States
| |
Collapse
|
11
|
Byrling J, Kristl T, Hu D, Pla I, Sanchez A, Sasor A, Andersson R, Marko-Varga G, Andersson B. Mass spectrometry-based analysis of formalin-fixed, paraffin-embedded distal cholangiocarcinoma identifies stromal thrombospondin-2 as a potential prognostic marker. J Transl Med 2020; 18:343. [PMID: 32887625 PMCID: PMC7487897 DOI: 10.1186/s12967-020-02498-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 08/21/2020] [Indexed: 12/18/2022] Open
Abstract
Background Distal cholangiocarcinoma is an aggressive malignancy with a dismal prognosis. Diagnostic and prognostic biomarkers for distal cholangiocarcinoma are lacking. The aim of the present study was to identify differentially expressed proteins between distal cholangiocarcinoma and normal bile duct samples. Methods A workflow utilizing discovery mass spectrometry and verification by parallel reaction monitoring was used to analyze surgically resected formalin-fixed, paraffin-embedded samples from distal cholangiocarcinoma patients and normal bile duct samples. Bioinformatic analysis was used for functional annotation and pathway analysis. Immunohistochemistry was performed to validate the expression of thrombospondin-2 and investigate its association with survival. Results In the discovery study, a total of 3057 proteins were identified. Eighty-seven proteins were found to be differentially expressed (q < 0.05 and fold change ≥ 2 or ≤ 0.5); 31 proteins were upregulated and 56 were downregulated in the distal cholangiocarcinoma samples compared to controls. Bioinformatic analysis revealed an abundance of differentially expressed proteins associated with the tumor reactive stroma. Parallel reaction monitoring verified 28 proteins as upregulated and 18 as downregulated in distal cholangiocarcinoma samples compared to controls. Immunohistochemical validation revealed thrombospondin-2 to be upregulated in distal cholangiocarcinoma epithelial and stromal compartments. In paired lymph node metastases samples, thrombospondin-2 expression was significantly lower; however, stromal thrombospondin-2 expression was still frequent (72%). Stromal thrombospondin-2 was an independent predictor of poor disease-free survival (HR 3.95, 95% CI 1.09–14.3; P = 0.037). Conclusion Several proteins without prior association with distal cholangiocarcinoma biology were identified and verified as differentially expressed between distal cholangiocarcinoma and normal bile duct samples. These proteins can be further evaluated to elucidate their biomarker potential and role in distal cholangiocarcinoma carcinogenesis. Stromal thrombospondin-2 is a potential prognostic marker in distal cholangiocarcinoma.
Collapse
Affiliation(s)
- Johannes Byrling
- Department of Clinical Sciences Lund, Surgery, Lund University, and Skåne University Hospital, Lund, Sweden
| | - Theresa Kristl
- Department of Biomedical Engineering, Clinical Protein Science and Imaging, Lund University, Lund, Sweden
| | - Dingyuan Hu
- Department of Clinical Sciences Lund, Surgery, Lund University, and Skåne University Hospital, Lund, Sweden
| | - Indira Pla
- Department of Biomedical Engineering, Clinical Protein Science and Imaging, Lund University, Lund, Sweden
| | - Aniel Sanchez
- Department of Biomedical Engineering, Clinical Protein Science and Imaging, Lund University, Lund, Sweden
| | - Agata Sasor
- Department of Clinical Sciences Lund, Pathology, Lund University, and Skåne University Hospital, Lund, Sweden
| | - Roland Andersson
- Department of Clinical Sciences Lund, Surgery, Lund University, and Skåne University Hospital, Lund, Sweden
| | - György Marko-Varga
- Department of Biomedical Engineering, Clinical Protein Science and Imaging, Lund University, Lund, Sweden
| | - Bodil Andersson
- Department of Clinical Sciences Lund, Surgery, Lund University, and Skåne University Hospital, Lund, Sweden.
| |
Collapse
|
12
|
Pant K, Richard S, Peixoto E, Gradilone SA. Role of Glucose Metabolism Reprogramming in the Pathogenesis of Cholangiocarcinoma. Front Med (Lausanne) 2020; 7:113. [PMID: 32318579 PMCID: PMC7146077 DOI: 10.3389/fmed.2020.00113] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 03/12/2020] [Indexed: 12/21/2022] Open
Abstract
Cholangiocarcinoma (CCA) is one of the most lethal cancers, and its rate of occurrence is increasing annually. The diagnoses of CCA patients remain elusive due to the lack of early symptoms and is misdiagnosed as HCC in a considerable percentage of patients. It is crucial to explore the underlying mechanisms of CCA carcinogenesis and development to find out specific biomarkers for early diagnosis of CCA and new promising therapeutic targets. In recent times, the reprogramming of tumor cells metabolism has been recognized as a hallmark of cancer. The modification from the oxidative phosphorylation metabolic pathway to the glycolysis pathway in CCA meets the demands of cancer cell proliferation and provides a favorable environment for tumor development. The alteration of metabolic programming in cancer cells is complex and may occur via mutations and epigenetic modifications within oncogenes, tumor suppressor genes, signaling pathways, and glycolytic enzymes. Herein we review the altered metabolism in cancer and the signaling pathways involved in this phenomena as they may affect CCA development. Understanding the regulatory pathways of glucose metabolism such as Akt/mTOR, HIF1α, and cMyc in CCA may further develop our knowledge of this devastating disease and may offer relevant information in the exploration of new diagnostic biomarkers and targeted therapeutic approaches for CCA.
Collapse
Affiliation(s)
- Kishor Pant
- The Hormel Institute, University of Minnesota, Austin, MN, United States
| | - Seth Richard
- The Hormel Institute, University of Minnesota, Austin, MN, United States
| | - Estanislao Peixoto
- The Hormel Institute, University of Minnesota, Austin, MN, United States
| | - Sergio A Gradilone
- The Hormel Institute, University of Minnesota, Austin, MN, United States.,Masonic Cancer Center, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
13
|
Multifaceted Aspects of Metabolic Plasticity in Human Cholangiocarcinoma: An Overview of Current Perspectives. Cells 2020; 9:cells9030596. [PMID: 32138158 PMCID: PMC7140515 DOI: 10.3390/cells9030596] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 02/24/2020] [Accepted: 02/26/2020] [Indexed: 12/14/2022] Open
Abstract
Cholangiocarcinoma (CCA) is a deadly tumor without an effective therapy. Unique metabolic and bioenergetics features are important hallmarks of tumor cells. Metabolic plasticity allows cancer cells to survive in poor nutrient environments and maximize cell growth by sustaining survival, proliferation, and metastasis. In recent years, an increasing number of studies have shown that specific signaling networks contribute to malignant tumor onset by reprogramming metabolic traits. Several evidences demonstrate that numerous metabolic mediators represent key-players of CCA progression by regulating many signaling pathways. Besides the well-known Warburg effect, several other different pathways involving carbohydrates, proteins, lipids, and nucleic acids metabolism are altered in CCA. The goal of this review is to highlight the main metabolic processes involved in the cholangio-carcinogeneis that might be considered as potential novel druggable candidates for this disease.
Collapse
|
14
|
Mohammad GH, Vassileva V, Acedo P, Olde Damink SWM, Malago M, Dhar DK, Pereira SP. Targeting Pyruvate Kinase M2 and Lactate Dehydrogenase A Is an Effective Combination Strategy for the Treatment of Pancreatic Cancer. Cancers (Basel) 2019; 11:cancers11091372. [PMID: 31527446 PMCID: PMC6770573 DOI: 10.3390/cancers11091372] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Revised: 09/07/2019] [Accepted: 09/12/2019] [Indexed: 01/11/2023] Open
Abstract
Reprogrammed glucose metabolism is one of the hallmarks of cancer, and increased expression of key glycolytic enzymes, such as pyruvate kinase M2 (PKM2) and lactate dehydrogenase A (LDHA), has been associated with poor prognosis in various malignancies. Targeting these enzymes could attenuate aerobic glycolysis and inhibit tumor proliferation. We investigated whether the PKM2 activator, TEPP-46, and the LDHA inhibitor, FX-11, can be combined to inhibit in vitro and in vivo tumor growth in preclinical models of pancreatic cancer. We assessed PKM2 and LDHA expression, enzyme activity, and cell proliferation rate after treatment with TEPP-46, FX-11, or a combination of both. Efficacy was validated in vivo by evaluating tumor growth, PK and LDHA activity in plasma and tumors, and PKM2, LDHA, and Ki-67 expression in tumor tissues following treatment. Dual therapy synergistically inhibited pancreatic cancer cell proliferation and significantly delayed tumor growth in vivo without apparent toxicity. Treatment with TEPP-46 and FX-11 resulted in increased PK and reduced LDHA enzyme activity in plasma and tumor tissues and decreased PKM2 and LDHA expression in tumors, which was reflected by a decrease in tumor volume and proliferation. The targeting of glycolytic enzymes such as PKM2 and LDHA represents a promising therapeutic approach for the treatment of pancreatic cancer.
Collapse
Affiliation(s)
- Goran Hamid Mohammad
- Institute for Liver and Digestive Health, Royal Free Hospital Campus, University College London, London NW3 2QG, UK
- Komar Research Center, Komar University of Science and Technology, Sulaimani 46001, Iraq
| | - Vessela Vassileva
- Department of Surgery and Cancer, Imperial Centre for Translational and Experimental Medicine, Imperial College London, London W12 0UQ, UK
| | - Pilar Acedo
- Institute for Liver and Digestive Health, Royal Free Hospital Campus, University College London, London NW3 2QG, UK
| | - Steven W M Olde Damink
- Department of Surgery, Maastricht University Medical Center & Nutrim School for Nutrition, Toxicology and Metabolism, Maastricht University, 6200 MD Maastricht, The Netherlands
| | - Massimo Malago
- Hepato-pancreatic-biliary and Liver Transplantation Surgery, Royal Free Hospital Campus, University College London, London NW3 2QG, UK
| | - Dipok Kumar Dhar
- Institute for Liver and Digestive Health, Royal Free Hospital Campus, University College London, London NW3 2QG, UK
- King Faisal Specialist Hospital and Research Center, Comparative Medicine Department and Organ Transplantation Center, Riyadh 11211, Saudi Arabia
| | - Stephen P Pereira
- Institute for Liver and Digestive Health, Royal Free Hospital Campus, University College London, London NW3 2QG, UK.
| |
Collapse
|
15
|
Urbańska K, Orzechowski A. Unappreciated Role of LDHA and LDHB to Control Apoptosis and Autophagy in Tumor Cells. Int J Mol Sci 2019; 20:ijms20092085. [PMID: 31035592 PMCID: PMC6539221 DOI: 10.3390/ijms20092085] [Citation(s) in RCA: 161] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 04/23/2019] [Accepted: 04/24/2019] [Indexed: 12/19/2022] Open
Abstract
Tumor cells possess a high metabolic plasticity, which drives them to switch on the anaerobic glycolysis and lactate production when challenged by hypoxia. Among the enzymes mediating this plasticity through bidirectional conversion of pyruvate and lactate, the lactate dehydrogenase A (LDHA) and lactate dehydrogenase B (LDHB), are indicated. LDHA has a higher affinity for pyruvate, preferentially converting pyruvate to lactate, and NADH to NAD+ in anaerobic conditions, whereas LDHB possess a higher affinity for lactate, preferentially converting lactate to pyruvate, and NAD+ to NADH, when oxygen is abundant. Apart from the undisputed role of LDHA and LDHB in tumor cell metabolism and adaptation to unfavorable environmental or cellular conditions, these enzymes participate in the regulation of cell death. This review presents the latest progress made in this area on the roles of LDHA and LDHB in apoptosis and autophagy of tumor cells. Several examples of how LDHA and LDHB impact on these processes, as well as possible molecular mechanisms, will be discussed in this article. The information included in this review points to the legitimacy of modulating LDHA and/or LDHB to target tumor cells in the context of human and veterinary medicine.
Collapse
Affiliation(s)
- Kaja Urbańska
- Department of Morphological Sciences, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland.
| | - Arkadiusz Orzechowski
- Department of Physiological Sciences, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland.
| |
Collapse
|
16
|
Dayan A, Fleminger G, Ashur-Fabian O. Targeting the Achilles’ heel of cancer cells via integrin-mediated delivery of ROS-generating dihydrolipoamide dehydrogenase. Oncogene 2019; 38:5050-5061. [DOI: 10.1038/s41388-019-0775-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 02/03/2019] [Accepted: 02/19/2019] [Indexed: 12/18/2022]
|
17
|
Zhang M, Pan Y, Tang D, Dorfman RG, Xu L, Zhou Q, Zhou L, Wang Y, Li Y, Yin Y, Kong B, Friess H, Zhao S, Wu JL, Wang L, Zou X. Low levels of pyruvate induced by a positive feedback loop protects cholangiocarcinoma cells from apoptosis. Cell Commun Signal 2019; 17:23. [PMID: 30866966 PMCID: PMC6417221 DOI: 10.1186/s12964-019-0332-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 02/20/2019] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Cancer cells avidly consume glucose and convert it to lactate, resulting in a low pyruvate level. This phenomenon is known as the Warburg effect, and is important for cell proliferation. Although cMyc has often been described as an oncoprotein that preferentially contributes to the Warburg effect and tumor proliferation, mechanisms of action remain unclear. Histone deacetylase 3 (HDAC3) regulates gene expression by removing acetyl groups from lysine residues, as well as has an oncogenic role in apoptosis and contributes to the proliferation of many cancer cells including cholangiocarcinoma (CCA). HDAC inhibitors display antitumor activity in many cancer cell lines. Cancer cells maintain low levels of pyruvate to prevent inhibition of HDAC but the mechanisms remain elusive. The purpose of our study was to explore the role of cMyc in regulating pyruvate metabolism, as well as to investigate whether the inhibitory effect of pyruvate on HDAC3 could hold promise in the treatment of cancer cells. METHODS We studied pyruvate levels in CCA cell lines using metabolite analysis, and analyzed the relationship of pyruvate levels and cell proliferation with cell viability analysis. We cultivated CCA cell lines with high or low levels of pyruvate, and then analyzed the protein levels of HDAC3 and apoptotic markers via Western Blotting. We then explored the reasons of low levels of pyruvate by using seahorse analysis and 13C6 metabolites tracing analysis, and then confirmed the results using patient tissue protein samples through Western Blotting. Bioinformatics analysis and transfection assay were used to confirm the upstream target of the low levels of pyruvate status in CCA. The regulation of cMyc by HDAC3 was studied through immunoprecipitation and Western Blotting. RESULTS We confirmed downregulated pyruvate levels in CCA, and defined that high pyruvate levels correlated with reduced cell proliferation levels. Downregulated pyruvate levels decreased the inhibition to HDAC3 and consequently protected CCA cells from apoptosis. Synergistically upregulated LDHA, PKM2 levels resulted in low levels of pyruvate, as well as poor patient survival. We also found that low levels of pyruvate contributed to proliferation of CCA cells and confirmed that the upstream target is cMyc. Conversely, high activity of HDAC3 stabilized cMyc protein by preferential deacetylating cMyc at K323 site, which further contributed to the low pyruvate levels. Finally, this creates a positive feedback loop that maintained the low levels of pyruvate and promoted CCA proliferation. CONCLUSIONS Collectively, our findings identify a role for promoting the low pyruvate levels regulated by c-Myc, and its dynamic acetylation in cancer cell proliferation. These targets, as markers for predicting tumor proliferation in patients undergoing clinical treatments, could pave the way towards personalized therapies.
Collapse
Affiliation(s)
- Mingming Zhang
- Department of Gastroenterology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing University, No.321 Zhongshan Road, 210008 Nanjing, People’s Republic of China
- Key laboratory of Reproduction Regulation of NPFPC (SIPPR, IRD), Fudan University, Shanghai, 200032 China
- School of Life Sciences, Fudan University, Shanghai, China
| | - Yida Pan
- Department of Digestive Diseases of Huashan Hospital, Shanghai, China
| | - Dehua Tang
- Department of Gastroenterology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing University, No.321 Zhongshan Road, 210008 Nanjing, People’s Republic of China
| | | | - Lei Xu
- Department of Gastroenterology, Nanjing Medical University Affiliated Drum Tower Clinical Medical College, Nanjing Medical University, Nanjing, China
| | - Qian Zhou
- School of Life Sciences, Fudan University, Shanghai, China
| | - Lixing Zhou
- Department of Gastroenterology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing University, No.321 Zhongshan Road, 210008 Nanjing, People’s Republic of China
| | - Yuming Wang
- Department of Gastroenterology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing University, No.321 Zhongshan Road, 210008 Nanjing, People’s Republic of China
| | - Yang Li
- Department of Gastroenterology, Nanjing Medical University Affiliated Drum Tower Clinical Medical College, Nanjing Medical University, Nanjing, China
| | - Yuyao Yin
- Department of Gastroenterology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing University, No.321 Zhongshan Road, 210008 Nanjing, People’s Republic of China
| | - Bo Kong
- Department of Gastroenterology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing University, No.321 Zhongshan Road, 210008 Nanjing, People’s Republic of China
- Department of Surgery, Technical University of Munich (TUM), Munich, Germany
| | - Helmut Friess
- Department of Surgery, Technical University of Munich (TUM), Munich, Germany
| | - Shimin Zhao
- Key laboratory of Reproduction Regulation of NPFPC (SIPPR, IRD), Fudan University, Shanghai, 200032 China
- School of Life Sciences, Fudan University, Shanghai, China
| | - Jian-lin Wu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Faculty of Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macao 442000 People’s Republic of China
| | - Lei Wang
- Department of Gastroenterology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing University, No.321 Zhongshan Road, 210008 Nanjing, People’s Republic of China
| | - Xiaoping Zou
- Department of Gastroenterology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing University, No.321 Zhongshan Road, 210008 Nanjing, People’s Republic of China
| |
Collapse
|
18
|
Kim YJ, Rahman MM, Lee SM, Kim JM, Park K, Kang JH, Seo YR. Assessment of in vivo genotoxicity of citrated-coated silver nanoparticles via transcriptomic analysis of rabbit liver tissue. Int J Nanomedicine 2019; 14:393-405. [PMID: 30662263 PMCID: PMC6329348 DOI: 10.2147/ijn.s174515] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Background Silver nanoparticles (AgNPs) are widely used in industrial and household applications, arousing concern regarding their safety in humans. The risks posed by stabilizer-coated AgNPs continue to be unclear, and assessing their toxicity is for an understanding of the safety issues involved in their use in various applications. Purpose We aimed to investigated the long-term toxicity of citrate-coated silver nanoparticles (cAgNPs) in liver tissue using several toxicity tests and transcriptomic analysis at 7 and 28 days after a single intravenous injection into rabbit ear veins (n=4). Materials and methods The cAgNPs used in this study were in the form of a 20% (w/v) aqueous solution, and their size was 7.9±0.95 nm, measured using transmission electron microscopy. The animal experiments were performed based on the principles of good laboratory practice. Results Our results showed that the structure and function of liver tissue were disrupted due to a single exposure to cAgNPs. In addition, in vivo comet assay showed unrepaired genotoxicity in liver tissue until 4 weeks after a single injection, suggesting a potential carcinogenic effect of cAgNPs. In our transcriptomic analysis, a total of 244 genes were found to have differential expression at 28 days after a single cAgNP injection. Carefully curated pathway analysis of these genes using Pathway Studio and Ingenuity Pathway Analysis tools revealed major molecular networks responding to cAgNP exposure and indicated a high correlation of the genes with inflammation, hepatotoxicity, and cancer. Molecular validation suggested potential biomarkers for assessing the toxicity of accumulated cAgNPs. Conclusion Our investigation highlights the risk associated with a single cAgNP exposure with unrepaired damage persisting for at least a month.
Collapse
Affiliation(s)
- Yeo Jin Kim
- Institute of Environmental Medicine for Green Chemistry, Dongguk University Biomedi Campus, Ilsandong-gu, Goyang-si, Republic of Korea, .,Department of Life Science, Dongguk University Biomedi Campus, Ilsandong-gu, Goyang-si, Republic of Korea,
| | - Md Mujibur Rahman
- Institute of Environmental Medicine for Green Chemistry, Dongguk University Biomedi Campus, Ilsandong-gu, Goyang-si, Republic of Korea,
| | - Sang Min Lee
- Department of Life Science, Dongguk University Biomedi Campus, Ilsandong-gu, Goyang-si, Republic of Korea,
| | - Jung Min Kim
- Genoplan Korea, Inc., Seocho-gu, Seoul, Republic of Korea
| | - Kwangsik Park
- College of Pharmacy, Dongduk Women's University, Seongbuk-gu, Seoul, Republic of Korea
| | - Joo-Hyon Kang
- Department of Civil & Environmental Engineering, Dongguk University, Jung-gu, Seoul, Republic of Korea
| | - Young Rok Seo
- Institute of Environmental Medicine for Green Chemistry, Dongguk University Biomedi Campus, Ilsandong-gu, Goyang-si, Republic of Korea, .,Department of Life Science, Dongguk University Biomedi Campus, Ilsandong-gu, Goyang-si, Republic of Korea,
| |
Collapse
|
19
|
Datta S, Chakrabarti N. Age related rise in lactate and its correlation with lactate dehydrogenase (LDH) status in post-mitochondrial fractions isolated from different regions of brain in mice. Neurochem Int 2018; 118:23-33. [PMID: 29678731 DOI: 10.1016/j.neuint.2018.04.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 03/11/2018] [Accepted: 04/11/2018] [Indexed: 02/06/2023]
Abstract
Rise in brain lactate is the hallmark of ageing. Separate studies report that ageing is associated with elevation of lactate level and alterations of lactate dehydrogenase (LDH)-A/B mRNA-expression-ratio in cerebral cortex and hippocampus. However, age related lactate rise in brain and its association with LDH status and their brain regional variations are still elusive. In the present study, level of lactate, LDH (A and B) activity and LDH-A expression were evaluated in post-mitochondrial fraction of tissues isolated from four different brain regions (cerebral cortex, hippocampus, substantia nigra and cerebellum) of young and aged mice. Lactate levels elevated in four brain regions with maximum rise in substantia nigra of aged mice. LDH-A protein expression and its activity decreased in cerebral cortex, hippocampus and substantia nigra without any changes of these parameters in cerebellum of aged mice. LDH-B activity decreased in hippocampus, substantia nigra and cerebellum whereas its activity remains unaltered in cerebral cortex of aged mice. Accordingly, the ratio of LDH-A/LDH-B-activity remains unaltered in hippocampus and substantia nigra, decreased in cerebral cortex and increased in cerebellum. Therefore, rise of lactate in three brain regions (cerebral cortex, hippocampus, substantia nigra) appeared to be not correlated with the alterations of its regulatory enzymes activities in these three brain regions, rather it supports the fact of involvement of other mechanisms, like lactate transport and/or aerobic/anaerobic metabolism as the possible cause(s) of lactate rise in these three brain regions. The increase in LDH-A/LDH-B-activity-ratio appeared to be positively correlated with elevated lactate level in cerebellum of aged mice. Overall, the present study indicates that the mechanism of rise in lactate in brain varies with brain regions where LDH status plays an important role during ageing.
Collapse
Affiliation(s)
- Siddhartha Datta
- Department of Physiology, University of Calcutta, Kolkata, West Bengal, India; UGC-CPEPA Centre for "Electro-physiological and Neuro-imaging Studies Including Mathematical Modelling", University of Calcutta, Kolkata, West Bengal, India.
| | - Nilkanta Chakrabarti
- Department of Physiology, University of Calcutta, Kolkata, West Bengal, India; UGC-CPEPA Centre for "Electro-physiological and Neuro-imaging Studies Including Mathematical Modelling", University of Calcutta, Kolkata, West Bengal, India; S. N. Pradhan Centre for Neurosciences, University of Calcutta, Kolkata, West Bengal, India.
| |
Collapse
|
20
|
Rai G, Brimacombe KR, Mott BT, Urban DJ, Hu X, Yang SM, Lee TD, Cheff DM, Kouznetsova J, Benavides GA, Pohida K, Kuenstner EJ, Luci DK, Lukacs CM, Davies DR, Dranow DM, Zhu H, Sulikowski G, Moore WJ, Stott GM, Flint AJ, Hall MD, Darley-Usmar VM, Neckers LM, Dang CV, Waterson AG, Simeonov A, Jadhav A, Maloney DJ. Discovery and Optimization of Potent, Cell-Active Pyrazole-Based Inhibitors of Lactate Dehydrogenase (LDH). J Med Chem 2017; 60:9184-9204. [PMID: 29120638 PMCID: PMC5894102 DOI: 10.1021/acs.jmedchem.7b00941] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
We report the discovery and medicinal chemistry optimization of a novel series of pyrazole-based inhibitors of human lactate dehydrogenase (LDH). Utilization of a quantitative high-throughput screening paradigm facilitated hit identification, while structure-based design and multiparameter optimization enabled the development of compounds with potent enzymatic and cell-based inhibition of LDH enzymatic activity. Lead compounds such as 63 exhibit low nM inhibition of both LDHA and LDHB, submicromolar inhibition of lactate production, and inhibition of glycolysis in MiaPaCa2 pancreatic cancer and A673 sarcoma cells. Moreover, robust target engagement of LDHA by lead compounds was demonstrated using the cellular thermal shift assay (CETSA), and drug-target residence time was determined via SPR. Analysis of these data suggests that drug-target residence time (off-rate) may be an important attribute to consider for obtaining potent cell-based inhibition of this cancer metabolism target.
Collapse
Affiliation(s)
- Ganesha Rai
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, Maryland, 20850
| | - Kyle R. Brimacombe
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, Maryland, 20850
| | - Bryan T. Mott
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, Maryland, 20850
| | - Daniel J. Urban
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, Maryland, 20850
| | - Xin Hu
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, Maryland, 20850
| | - Shyh-Ming Yang
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, Maryland, 20850
| | - Tobie D. Lee
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, Maryland, 20850
| | - Dorian M. Cheff
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, Maryland, 20850
| | - Jennifer Kouznetsova
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, Maryland, 20850
| | - Gloria A. Benavides
- Mitochondrial Medicine Laboratory, Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama, 35294
| | - Katie Pohida
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, Maryland, 20850
| | - Eric J. Kuenstner
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, Maryland, 20850
| | - Diane K. Luci
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, Maryland, 20850
| | | | - Douglas R. Davies
- Beryllium Discovery Corp, 7869 Day Rd West, Bainbridge Island, WA, 98110
| | - David M. Dranow
- Beryllium Discovery Corp, 7869 Day Rd West, Bainbridge Island, WA, 98110
| | - Hu Zhu
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, Maryland, 20850
| | - Gary Sulikowski
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee, 37232
| | - William J. Moore
- NExT Program Support, Applied/Developmental Research Directorate, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, 21702
| | - Gordon M. Stott
- NExT Program Support, Applied/Developmental Research Directorate, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, 21702
| | - Andrew J. Flint
- NExT Program Support, Applied/Developmental Research Directorate, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, 21702
| | - Matthew D. Hall
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, Maryland, 20850
| | - Victor M. Darley-Usmar
- Mitochondrial Medicine Laboratory, Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama, 35294
| | - Leonard M. Neckers
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, 9000 Rockville Pike, Bethesda, Maryland, 20892
| | - Chi V. Dang
- Abramson Cancer Center, Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadephia, Pennsylvania, 19104
| | - Alex G. Waterson
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee, 37232
| | - Anton Simeonov
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, Maryland, 20850
| | - Ajit Jadhav
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, Maryland, 20850
| | - David J. Maloney
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, Maryland, 20850
| |
Collapse
|
21
|
Jin C, Gao L, Li Y, Wu S, Lu X, Yang J, Cai Y. Lanthanum damages learning and memory and suppresses astrocyte–neuron lactate shuttle in rat hippocampus. Exp Brain Res 2017; 235:3817-3832. [DOI: 10.1007/s00221-017-5102-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 10/03/2017] [Indexed: 12/26/2022]
|
22
|
Abstract
Mitochondria play a key role in ATP generation, redox homeostasis and regulation of apoptosis. Due to the essential role of mitochondria in metabolism and cell survival, targeting mitochondria in cancer cells is considered as an attractive therapeutic strategy. However, metabolic flexibility in cancer cells may enable the upregulation of compensatory pathways, such as glycolysis to support cancer cell survival when mitochondrial metabolism is inhibited. Thus, compounds capable of both targeting mitochondria and inhibiting glycolysis may be particularly useful to overcome such drug-resistant mechanism. This review provides an update on recent development in the field of targeting mitochondria and novel compounds that impact mitochondria, glycolysis or both. Key challenges in this research area and potential solutions are also discussed.
Collapse
|
23
|
Faria J, Barbosa J, Queirós O, Moreira R, Carvalho F, Dinis-Oliveira RJ. Comparative study of the neurotoxicological effects of tramadol and tapentadol in SH-SY5Y cells. Toxicology 2016; 359-360:1-10. [PMID: 27317026 DOI: 10.1016/j.tox.2016.06.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 06/12/2016] [Accepted: 06/14/2016] [Indexed: 10/21/2022]
Abstract
Opioid therapy and abuse are increasing, justifying the need to study their toxicity and underlying mechanisms. Given opioid pharmacodynamics at the central nervous system, the analysis of toxic effects in neuronal models gains particular relevance. The aim of this study was to compare the toxicological effects of acute exposure to tramadol and tapentadol in the undifferentiated human SH-SY5Y neuroblastoma cell line. Upon exposure to tramadol and tapentadol concentrations up to 600μM, cell toxicity was assessed through evaluation of oxidative stress, mitochondrial and metabolic alterations, as well as cell viability and death mechanisms through necrosis or apoptosis, and related signalling. Tapentadol was observed to trigger much more prominent toxic effects than tramadol, ultimately leading to energy deficit and cell death. Cell death was shown to predominantly occur through necrosis, with no alterations in membrane potential or in cytochrome c release. Both drugs were shown to stimulate glucose uptake and to cause ATP depletion, due to changes in the expression of energy metabolism enzymes. The toxicity mechanisms in such a neuronal model are relevant to understand adverse reactions to these opioids and to contribute to dose adjustment in order to avoid neurological damage.
Collapse
Affiliation(s)
- Juliana Faria
- IINFACTS-Institute of Research and Advanced Training in Health Sciences and Technologies, Department of Sciences, University Institute of Health Sciences (IUCS), CESPU, CRL, Gandra, Portugal; UCIBIO-REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal; Department of Legal Medicine and Forensic Sciences, Faculty of Medicine, University of Porto, Porto, Portugal.
| | - Joana Barbosa
- IINFACTS-Institute of Research and Advanced Training in Health Sciences and Technologies, Department of Sciences, University Institute of Health Sciences (IUCS), CESPU, CRL, Gandra, Portugal; UCIBIO-REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal; Department of Legal Medicine and Forensic Sciences, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Odília Queirós
- IINFACTS-Institute of Research and Advanced Training in Health Sciences and Technologies, Department of Sciences, University Institute of Health Sciences (IUCS), CESPU, CRL, Gandra, Portugal; CBMA-Center for Molecular Biology and Environment, Department of Biology, University of Minho, Braga, Portugal
| | - Roxana Moreira
- IINFACTS-Institute of Research and Advanced Training in Health Sciences and Technologies, Department of Sciences, University Institute of Health Sciences (IUCS), CESPU, CRL, Gandra, Portugal; CBMA-Center for Molecular Biology and Environment, Department of Biology, University of Minho, Braga, Portugal
| | - Félix Carvalho
- UCIBIO-REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Ricardo Jorge Dinis-Oliveira
- IINFACTS-Institute of Research and Advanced Training in Health Sciences and Technologies, Department of Sciences, University Institute of Health Sciences (IUCS), CESPU, CRL, Gandra, Portugal; UCIBIO-REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal; Department of Legal Medicine and Forensic Sciences, Faculty of Medicine, University of Porto, Porto, Portugal.
| |
Collapse
|
24
|
Mohammad GH, Olde Damink SWM, Malago M, Dhar DK, Pereira SP. Pyruvate Kinase M2 and Lactate Dehydrogenase A Are Overexpressed in Pancreatic Cancer and Correlate with Poor Outcome. PLoS One 2016; 11:e0151635. [PMID: 26989901 PMCID: PMC4798246 DOI: 10.1371/journal.pone.0151635] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 03/02/2016] [Indexed: 02/07/2023] Open
Abstract
Pancreatic cancer has a 5-year survival rate of less than 4%. Despite advances in diagnostic technology, pancreatic cancer continues to be diagnosed at a late and incurable stage. Accurate biomarkers for early diagnosis and to predict treatment response are urgently needed. Since alteration of glucose metabolism is one of the hallmarks of cancer cells, we proposed that pyruvate kinase type M2 (M2PK) and lactate dehydrogenase A (LDHA) enzymes could represent novel diagnostic markers and potential therapeutic targets in pancreatic cancer. In 266 tissue sections from normal pancreas, pancreatic cystic neoplasms, pancreatic intraepithelial neoplasia (PanIN) and cancer, we evaluated the expression of PKM2, LDHA, Ki-67 and CD8+ by immunohistochemistry and correlated these markers with clinicopathological characteristics and patient survival. PKM2 and LDHA expression was also assessed by Western blot in 10 human pancreatic cancer cell lines. PKM2 expression increased progressively from cyst through PanIN to cancer, whereas LDHA was overexpressed throughout the carcinogenic process. All but one cell line showed high expression of both proteins. Patients with strong PKM2 and LDHA expression had significantly worse survival than those with weak PKM2 and/or LDHA expression (7.0 months vs. 27.9 months, respectively, p = 0.003, log rank test). The expression of both PKM2 and LDHA correlated directly with Ki-67 expression, and inversely with intratumoral CD8+ cell count. PKM2 was significantly overexpressed in poorly differentiated tumours and both PKM2 and LDHA were overexpressed in larger tumours. Multivariable analysis showed that combined expression of PKM2 and LDHA was an independent poor prognostic marker for survival. In conclusion, our results demonstrate a high expression pattern of two major glycolytic enzymes during pancreatic carcinogenesis, with increased expression in aggressive tumours and a significant adverse effect on survival.
Collapse
Affiliation(s)
- Goran Hamid Mohammad
- UCL Institute for Liver and Digestive Health, Royal Free Hospital Campus, University College London, London, United Kingdom
- Chemistry Department, School of Science, University of Sulaimani, Sulaimanyah, Kurdistan Region, Iraq
| | - S. W. M. Olde Damink
- UCL Institute for Liver and Digestive Health, Royal Free Hospital Campus, University College London, London, United Kingdom
- Department of Surgery, Maastricht University Medical Centre, Maastricht, the Netherlands
| | - Massimo Malago
- UCL Institute for Liver and Digestive Health, Royal Free Hospital Campus, University College London, London, United Kingdom
| | - Dipok Kumar Dhar
- UCL Institute for Liver and Digestive Health, Royal Free Hospital Campus, University College London, London, United Kingdom
- King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Stephen P. Pereira
- UCL Institute for Liver and Digestive Health, Royal Free Hospital Campus, University College London, London, United Kingdom
| |
Collapse
|
25
|
Gao ZJ, Wang FS. Current diagnosis and treatment of primary intrahepatic cholangiocarcinoma. Shijie Huaren Xiaohua Zazhi 2015; 23:4939-4945. [DOI: 10.11569/wcjd.v23.i31.4939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Primary intrahepatic cholangiocarcinoma (ICC) is a rare malignancy arising from intrahepatic biliary epithelial cells and is also defined as cholangiohepatoma. It is the second most common primary liver malignancy after hepatocellular carcinoma. Epidemiologic research shows that the incidence rate of ICC has increased in recent years. Till now, surgical resection remains the only effective treatment to cure the disease, but single-center large-sample clinical trials are still limited. Early diagnosis of ICC is difficult due to the lack of specific clinical manifestations. The rate of resection is low, while the mortality is high and the prognosis is poor. With the development of medical imaging and pathological diagnosis technology, the early diagnosis and overall survival rates are increasing. Comprehensive therapy including non-surgical treatment plays a more and more important role in improving the prognosis. The aim of this study is to review the advances in the diagnosis and treatment of ICC in recent years.
Collapse
|
26
|
Prognostic Risk Factors Associated with Recurrence and Metastasis After Radical Resection in Patients with Hepatolithiasis Complicated by Intrahepatic Cholangiocarcinoma. Cell Biochem Biophys 2015; 73:455-460. [DOI: 10.1007/s12013-015-0665-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|