1
|
Ahmadi S, Ohkubo T. A Bird's-Eye Overview of Leptin and Female Reproduction -with Mammalian Comparisons. J Poult Sci 2025; 62:2025007. [PMID: 39916995 PMCID: PMC11794366 DOI: 10.2141/jpsa.2025007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 01/10/2025] [Indexed: 02/09/2025] Open
Abstract
Leptin, a key regulator of reproductive physiology, influences various processes in vertebrates, including oocyte proliferation, embryogenesis, the onset of puberty, ovarian function, and follicle development. In mammals, leptin affects steroidogenesis, folliculogenesis, and hormonal regulation through the hypothalamic-pituitary-gonadal axis. Instead, in avian species, leptin-controlled mechanisms are poorly understood, because birds do not produce leptin in adipocytes. In birds, leptin is expressed in the brain, pituitary glands, and gonads, where it enhances ovarian function and egg-laying performance, particularly during feed deprivation. In this review, we discuss and summarize the recently discovered role of leptin in regulating ovarian function during different life stages in birds and compare it with its function in mammals.
Collapse
Affiliation(s)
- Sadequllah Ahmadi
- College of Agriculture, Ibaraki University, 3-21-1 Chuo, Ami, Ibaraki 300-0393, Japan
- Faculty of Animal Science, Afghanistan National Agricultural Sciences and Technology University (ANASTU), Kandahar 3801, Afghanistan
| | - Takeshi Ohkubo
- College of Agriculture, Ibaraki University, 3-21-1 Chuo, Ami, Ibaraki 300-0393, Japan
| |
Collapse
|
2
|
Pan J, Shen X, Ouyang H, Sun J, Liufu S, Jiang D, Chen W, Peng S, Xu D, Tian Y, Huang Y, He J. Immunization with OPN5 increased seasonal degradation of reproductive activity in Magang ganders. Poult Sci 2025; 104:104753. [PMID: 39754930 PMCID: PMC11758404 DOI: 10.1016/j.psj.2024.104753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 12/29/2024] [Accepted: 12/30/2024] [Indexed: 01/06/2025] Open
Abstract
To investigate the regulatory mechanism mediated by hypothalamic OPN5 on seasonal changes in the reproductive activities of domestic geese, 60 Magang ganders in their breeding period were selected for the experiment and evenly divided into an immunization group(OPN5-IM) and a control group. On days 0, 15 and 30, ganders in the immunized group were immunized with OPN5-KLH protein vaccine, and ganders in the control were immunized with the same amount of blank emulsified vaccine. Additionally, 120 female geese were provided to stimulate the reproductive activities of male geese. The results showed that the arrangement of spermatogenic cells was disturbed, the number of sperm decreased, and the testicular weight, seminiferous tubule area, length diameter, spermatogenic epithelium thickness decreased significantly with the natural day length prolonged. Moreover, the concentration of testosterone and LH decreased significantly while PRL increased. The prolonged photoperiod significantly affected the gene expression of GnRH-I, VIP, FSHβ, FSHR, LHβ, PRL, and PRLR in ganders. Specifically, the gene expression of GnRH-I, FSHβ, and LHβ in the hypothalamus and pituitary decreased, while the gene expression of VIP, PRL, and PRLR increased. Following OPN5 immunization, the anti-OPN5 antibody titer of ganders in the OPN5-IM group was notably higher than in the control group. The testicular degeneration was severe in OPN5-IM group compared with the control, as evidenced by a significant reduction in seminiferous tubule area, length diameter, and thickness of spermatogenic epithelium in the immunized group on day 60. Additionally, the concentrations of testosterone and LH were lower in the OPN5-IM group than in the control group, whereas PRL was higher. Moreover, OPN5 immunization significantly affected the expression of GnRH-I, PRL, and PRLR. OPN5 mRNA and protein expression were higher in the immunized group, whereas TRH, DIO2, and TSHR mRNA expressions were lower. However, DIO3 mRNA and protein were up-regulated in the immunized group. In conclusion, our results indicated that the reproductive performance of Magang geese degraded from the breeding to the non-breeding period as daylight was extended. Immunization against OPN5 increased OPN5 expression and down-regulated the TSH-DIO2/DIO3 pathway, further to affect the HPG axis and accelerate the degradation of reproductive activity. Therefore, OPN5 may play an important mediating role in light-regulating seasonal reproductive degradation in Magang geese.
Collapse
Affiliation(s)
- Jianqiu Pan
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Xu Shen
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Hongjia Ouyang
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Junfeng Sun
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Sui Liufu
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Danli Jiang
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Wenjun Chen
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Siyue Peng
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Danning Xu
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Yunbo Tian
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Yunmao Huang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Jianhua He
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China.
| |
Collapse
|
3
|
Ren P, Wu K, Chen M, Huang Q, Luo Z, Wang Y. MiR-302c-3p regulates autophagy and apoptosis in ovarian granulosa cells via the LATS2/YAP axis in chickens. Theriogenology 2024; 229:100-107. [PMID: 39167834 DOI: 10.1016/j.theriogenology.2024.08.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/14/2024] [Accepted: 08/16/2024] [Indexed: 08/23/2024]
Abstract
The degenerative process of follicular atresia in hens naturally commences in granulosa cells, significantly impacting laying hens' reproductive performance. Past studies suggested that granulosa cell autophagy and apoptosis work together to cause follicular atresia. Recent research indicates that miRNA regulates granulosa autophagy and apoptosis, which contributes to the development of follicular atresia. However, the role of miR-302c-3p in follicular atresia and development remains unclear. In this study with the RNA-seq approach, we found that miR-302c-3p expression was significantly decreased in atrophic follicles, suggesting its involvement in the follicular atresia process. Following this, we performed in vitro studies to confirm that miR-302c-3p inhibits autophagy and apoptosis in chicken granulosa cells. Mechanistically, LATS2 is considered as the putative target gene of miR-302c-3p, and it has been demonstrated that LATS2 exerts a positive regulatory role in the modulation of autophagy and apoptosis in chicken granulosa cells. Furthermore, we verified the regulatory function of miR-302c-3p in chicken granulosa cells via the LATS2-YAP signaling pathway. Our results collectively demonstrates that miR-302c-3p targets LATS2 to modulate the YAP signaling pathway, impacting autophagy and apoptosis in granulosa cells leading to follicular atresia.
Collapse
Affiliation(s)
- Peng Ren
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, Sichuan, China
| | - Kejun Wu
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, Sichuan, China
| | - Meiying Chen
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, Sichuan, China
| | - Qinke Huang
- Guangyuan City Animal Husbandry Seed Management Station, Guangyuan, 628107, Sichuan, China
| | - Zhengwei Luo
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, Sichuan, China
| | - Ye Wang
- Sichuan Key Laboratory of Conservation Biology on Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Chengdu, 610081, Sichuan, China.
| |
Collapse
|
4
|
Zhou X, Jiang D, Zhang Z, Shen X, Pan J, Ouyang H, Xu D, Tian Y, Huang Y. Effect of active immunization with OPN5 on follicular development and egg production in quail under different photoperiods. Theriogenology 2024; 228:81-92. [PMID: 39116655 DOI: 10.1016/j.theriogenology.2024.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 06/14/2024] [Accepted: 08/04/2024] [Indexed: 08/10/2024]
Abstract
OPN5 is one of the main deep brain photoreceptors (DBPs), converting photoperiodic information into neuroendocrine signals to regulate reproduction in birds. This study investigated the mechanism of OPN5-mediated photoperiodic regulation of reproduction by active immunization against OPN5. 96 female quail were divided into OPN5-immunized and control group under the same photoperiod: 16 L:8 D (d 1 to d 35), 8 L:16 D (d 36 to d 70) and 12 L:12 D (d 71 to d 126). OPN5-immunized group was conducted with OPN5 protein vaccination and control group was given a blank vaccine. Samples were collected on d 1, d 30, d 60, and d 126. Results showed switching photoperiod to 8 L:16 D decreased the laying rate, GSI%, numbers of YFs and WFs, serum levels of PRL, P4 and E2, and pituitary PRL and TSHβ protein expressions in both groups (P < 0.05). Whereas the OPN5-immunized group exhibited higher laying rates than the control group (P < 0.05). The control group showed reduced GnRHR and TSHβ gene expressions in the pituitary and increased GnIH and DIO3 transcript and/or protein abundance in the hypothalamus. (P < 0.05). The OPN5-immunized group had lower DIO3 expression at both mRNA and protein levels. (P < 0.05). Switching photoperiod from 8 L:16 D to 12 L:12 D increased the laying rates, GSI%, numbers of YFs and WFs, serum levels of PRL, and PRL protein expression in both groups (P < 0.05), and the responses were more pronounced in OPN5-immunized group (P < 0.05). In contrast to the control group, quail with OPN5-immunization had higher OPN5 and DIO2 transcript and/or protein levels but lower DIO3 expressions in the hypothalamus along the transition photoperiods (P < 0.05). The results revealed that OPN5 responds to photoperiod transition, and its activation mediates related signaling to up-regulate TSH-DIO2/DIO3 pathway and VIP-PRL secretion to prime quail reproductive functions.
Collapse
Affiliation(s)
- Xiaoli Zhou
- College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Danli Jiang
- College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Zhuoshen Zhang
- College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Xu Shen
- College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Jianqiu Pan
- College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Hongjia Ouyang
- College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Danning Xu
- College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Yunbo Tian
- College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Yunmao Huang
- College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China.
| |
Collapse
|
5
|
Zhou X, Xu Y, Fang C, Ye C, Liang W, Fan Z, Ma X, Liu A, Zhang X, Luo Q. Integrated Transcriptomic-Metabolomic Analysis Reveals the Effect of Different Light Intensities on Ovarian Development in Chickens. Int J Mol Sci 2024; 25:8704. [PMID: 39201389 PMCID: PMC11354726 DOI: 10.3390/ijms25168704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/02/2024] [Accepted: 08/05/2024] [Indexed: 09/02/2024] Open
Abstract
Light is a key environmental factor regulating reproduction in avians. However, the mechanism of light intensity regulating ovarian development is still unclear. In this study, 5-week-old (5 wk) partridge broiler breeders were randomly divided into a low-light-intensity group (LL group) and a natural-light-intensity group (NL group) (n = 100). In the rearing period (5 wk to 22 wk), the light intensity of the LL group and NL group were 0.41 ± 0.05 lux and 45.39 ± 1.09 lux, and in the laying period (23 wk to 32 wk) they were 23.92 ± 0.06 lux and 66.93 ± 0.76 lux, respectively. Samples were collected on 22 wk and 32 wk. The results showed that the LL group had a later age at first egg and a longer laying period than the NL group. Serum P4 and LH levels in the LL group were higher than in the NL group on 22 wk (p < 0.05). On 32 wk, P4, E2, LH and FSH levels in the LL group were lower than in the NL group (p < 0.05). Ovarian transcriptomics and metabolomics identified 128 differentially expressed genes (DEGs) and 467 differential metabolites (DMs) on 22 wk; 155 DEGs and 531 DMs on 32 wk between two groups. An enrichment analysis of these DEGs and DMs identified key signaling pathways, including steroid hormone biosynthesis, neuroactive ligand-receptor interaction. In these pathways, genes such as CYP21A1, SSTR2, and NPY may regulate the synthesis of metabolites, including tryptamine, triglycerides, and phenylalanine. These genes and metabolites may play a dominant role in the light-intensity regulation of ovarian development and laying performance in broiler breeders.
Collapse
Affiliation(s)
- Xiaoli Zhou
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou 510642, China
| | - Yuhang Xu
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou 510642, China
| | - Cheng Fang
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou 510642, China
| | - Chutian Ye
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou 510642, China
| | - Weiming Liang
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou 510642, China
| | - Zhexia Fan
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou 510642, China
| | - Xuerong Ma
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou 510642, China
| | - Aijun Liu
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou 510642, China
| | - Xiquan Zhang
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou 510642, China
| | - Qingbin Luo
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
6
|
Liu-Fu S, Pan JQ, Sun JF, Shen X, Jiang DL, Ouyang HJ, Xu DN, Tian YB, Huang YM. Effect of immunization against OPN5 on the reproductive performance in Shan Partridge ducks under different photoperiods. Poult Sci 2024; 103:103413. [PMID: 38442558 DOI: 10.1016/j.psj.2023.103413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 12/15/2023] [Accepted: 12/27/2023] [Indexed: 03/07/2024] Open
Abstract
Photoperiod is an important environmental factor that influences seasonal reproduction behavior in birds. Birds translate photoperiodic information into neuroendocrine signals through deep brain photoreceptors (DBPs). OPN5 has been considered candidate DBPs involved in regulating seasonal reproduction in birds. We found that OPN5 could mediate light to regulate the follicle development in ducks. In this study, we further verified the effect of OPN5 on follicular development in Shan Partridge ducks by immunizing against the extracellular domain (ECD) of OPN5. We investigated the specific regulatory mechanism of photoperiod mediated by OPN5 on the reproductive activity of ducks. The trial randomly divided 120 Shan Partridge ducks into 3 groups with different treatments: the immunization of OPN5 group was done at d0, d15, d30, and d40 with 1 mL of vaccine containing OPN5 protein (thus containing 1, 1, 0.5, and 0.5 mg of OPN5-KLH protein), and the control group (CS and CL groups) was injected at the same time with the same dose of OPN5-uncontained blank vaccine. The group of CS (900 lux), OPN5 (600 lux), and CL (600 lux) lasted for 40 d in 12 L:12 D photoperiods, respectively. Then, the groups of CS, OPN5, and CL subsequently received 12 L:12 D, 12 L:12 D, and 17 L:7 D light treatments for 33 d, respectively. The ducks were caged in 3 constant rooms with the same feeding conditions for each group, free water, and limited feeding (150 g per duck each day). Duck serum and tissue samples were collected at d 40, d 62, and d 73 (n = 12). It was found that before prolonged light, the group of immunization (group OPN5) and the group of strong light intensity (group CS) were higher than the group of CL in egg production. Subsequent to prolonged light, the group CL in egg production rose about the same as the group immunization, while the strong light group (group CS) was lower. Group OPN5 increased the ovarian index of ducks, and both the immunization of group OPN5 and group CL (extended light) increased the thickness of the granular layer and promoted the secretion of E2, P4, LH, and PRL hormones. Compared with group CS, group CL and OPN5 increased the mRNA level and protein expression of OPN5 in the hypothalamus on d 62 and d 73 (P < 0.05). The gene or protein expression patterns of GnRH, TRH, TSHβ, DIO2, THRβ, VIP, and PRL were positively correlated with OPN5, whereas the gene expression patterns of GnIH and DIO3 were negatively correlated with OPN5. The results showed that immunization against OPN5 could activate the corresponding transmembrane receptors to promote the expression of OPN5, up-regulate the expression of TSHβ and DIO2, and then regulate the HPG axis-related genes to facilitate the follicular development of Shan Partridge ducks. In addition, in this experiment, prolonging the photoperiod or enhancing the light intensity could also enhance follicle development, but the effect was not as significant as immunizing against OPN5. Our results will offer beneficial data and more supportive shreds of evidence in favor of elucidating the role of OPN5 in relation to photoperiods and reproduction.
Collapse
Affiliation(s)
- Sui Liu-Fu
- Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Jian-Qiu Pan
- Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Jun-Feng Sun
- Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Xu Shen
- Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Dan-Li Jiang
- Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Hong-Jia Ouyang
- Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Dan-Ning Xu
- Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Yun-Bo Tian
- Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Yun-Mao Huang
- Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China.
| |
Collapse
|
7
|
Li L, Zhu Y, Zhang S, Wang J, Guo S, Ding B, Zhang Z. Effects of a mixture of glycerol monolaurate and cinnamaldehyde supplementation on laying performance, egg quality, and antioxidant status in laying hens. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:2015-2022. [PMID: 37919879 DOI: 10.1002/jsfa.13092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 10/26/2023] [Accepted: 11/03/2023] [Indexed: 11/04/2023]
Abstract
BACKGROUND This study aimed to determine the effects of a mixture of glycerol monolaurate and cinnamaldehyde (GCM) supplementation on the laying performance, egg quality, antioxidant capacity, and serum parameters of laying hens. A total of 1120 14-week-old Jingfen-1 strain laying hens with similar performance were randomly allocated to four dietary treatments: control, and GCM groups supplemented with 250, 500, or 1000 mg kg-1 for 12 weeks. RESULTS Compared with the control group, GCM-supplemented groups significantly reduced (P < 0.05) the rate of unqualified eggs of laying hens aged 17-24 weeks. Supplementation of GCM significantly increased (P < 0.05) yolk color and serum glutathione peroxidase (GSH-Px) activity but decreased (P < 0.05) the hydrogen peroxide (H2 O2 ) content in the serum of laying hens at the age of 20 weeks. Furthermore, groups supplemented with GCM showed a significant increase (P < 0.05) in Haugh unit, yolk color, activities of total superoxide dismutase and GSH-Px, and the glucose content in serum, and a decrease (P < 0.05) in the content of urea nitrogen and H2 O2 and malondialdehyde in serum of laying hens at the age of 24 weeks. 500 mg kg-1 GCM supplementation significantly increased (P < 0.05) the number of large white follicles and 1000 mg kg-1 GCM supplementation decreased the number of large yellow follicles in 28-week-old laying hens. CONCLUSION These results indicated that GCM supplementation has positive effects on reducing egg loss and improving egg quality in the early laying period of laying hens. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Lanlan Li
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Engineering Research Center of Feed Protein Resources on Agricultural By-Products, Ministry of Education, Wuhan Polytechnic University, Wuhan, China
| | - Yue Zhu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Engineering Research Center of Feed Protein Resources on Agricultural By-Products, Ministry of Education, Wuhan Polytechnic University, Wuhan, China
| | - Shuangshuang Zhang
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Engineering Research Center of Feed Protein Resources on Agricultural By-Products, Ministry of Education, Wuhan Polytechnic University, Wuhan, China
| | - Jihua Wang
- Calid Biotech (Wuhan) Co., Ltd, Wuhan, China
| | - Shuangshuang Guo
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Engineering Research Center of Feed Protein Resources on Agricultural By-Products, Ministry of Education, Wuhan Polytechnic University, Wuhan, China
| | - Binying Ding
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Engineering Research Center of Feed Protein Resources on Agricultural By-Products, Ministry of Education, Wuhan Polytechnic University, Wuhan, China
| | - Zhengfan Zhang
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Engineering Research Center of Feed Protein Resources on Agricultural By-Products, Ministry of Education, Wuhan Polytechnic University, Wuhan, China
| |
Collapse
|
8
|
Murugesan S, Nidamanuri AL. Role of leptin and ghrelin in regulation of physiological functions of chicken. WORLD POULTRY SCI J 2022. [DOI: 10.1080/00439339.2022.2119917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
9
|
Ahmadi S, Ohkubo T. Leptin Promotes Primordial Follicle Activation by Regulating Ovarian Insulin-like Growth Factor System in Chicken. Endocrinology 2022; 163:6650339. [PMID: 35882602 DOI: 10.1210/endocr/bqac112] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Indexed: 11/19/2022]
Abstract
Leptin and insulin-like growth factor 1 (IGF-1) regulate follicle development and reproduction in vertebrates. This study investigated the role played by leptin and IGF-1 in primordial follicle activation in the ovary of 7-day-old chicks. Different doses of leptin were intraperitoneally administrated to female layer chicks, and further analyses were performed. While leptin administration did not affect hepatic leptin receptor (LEPR), growth hormone receptor (GHR), or IGF-1, the lower dose of leptin significantly increased the messenger RNA (mRNA) expression of IGF-1, IGF-1 receptor, and IGF-binding protein (IGFBP)-2 and attenuated anti-Müllerian hormone (AMH) gene expression in the ovary. Furthermore, the ovaries of the same age chicks were challenged with leptin and/or IGF-1 in vitro. Leptin at a lower dose increased the mRNA expression of IGF-1, LEPR, and leptin; 100 ng/mL leptin and 10 ng/mL IGF-1 alone or combined with leptin reduced IGFBP-2 mRNA expression. AMH gene expression was also reduced by all doses except 10 ng/mL leptin. Histological studies showed that a lower dose of leptin injection induced the primordial follicle growth in the ovary in vivo, and the number of primordial follicles was higher in all leptin treatments over control in vitro. Moreover, the luciferase assay revealed that leptin enhanced IGF-1 promoter activity in LEPR-expressing CHO-K1 cells. Collectively, these results indicate that leptin directly affects the IGF-1/IGFBP system and promotes primordial follicular growth in the ovary of early posthatch chicks. In addition, the follicular development by leptin-induced IGF-1 is, at least in part, caused by the suppression of AMH in the ovary.
Collapse
Affiliation(s)
- Sadequllah Ahmadi
- United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Fuchu, Japan
- College of Agriculture, Ibaraki University, Ibaraki, Japan
| | - Takeshi Ohkubo
- United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Fuchu, Japan
- College of Agriculture, Ibaraki University, Ibaraki, Japan
| |
Collapse
|
10
|
Akhtar MF, Shafiq M, Ali I. Improving Gander Reproductive Efficacy in the Context of Globally Sustainable Goose Production. Animals (Basel) 2021; 12:44. [PMID: 35011150 PMCID: PMC8749758 DOI: 10.3390/ani12010044] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 12/17/2021] [Accepted: 12/19/2021] [Indexed: 02/05/2023] Open
Abstract
The goose is a popular poultry species, and in the past two decades the goose industry has become highly profitable across the globe. Ganders low reproductive performance remains a barrier to achieving high fertility and hatchability in subsequent flocks. To address the global demand for cheaper animal protein, various methodologies for improving avian (re)production should be explored. A large amount of literature is available on reproduction traits and techniques for commercial chicken breeder flocks, while research on improved reproduction in ganders has been carried out to a lesser extent. The present review aims to provide a comprehensive literature overview focusing on recent advancements/techniques used in improving gander reproductive efficacy in the context of ensuring a globally sustainable goose industry.
Collapse
Affiliation(s)
- Muhammad Faheem Akhtar
- Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, Nanjing 210023, China
- Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, College of Agronomy, Liaocheng University, Liaocheng 252000, China
| | - Muhammad Shafiq
- Department of Cell Biology and Genetics, Shantou University Medical College, Shantou 515063, China;
| | - Ilyas Ali
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China;
| |
Collapse
|
11
|
Shaikat AH, Ochiai M, Sasaki A, Takeda M, Arima A, Ohkubo T. Leptin Modulates the mRNA Expression of Follicle Development Markers in Post-hatch Chicks in an Age-Dependent Manner. Front Physiol 2021; 12:657527. [PMID: 34305632 PMCID: PMC8293390 DOI: 10.3389/fphys.2021.657527] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 06/10/2021] [Indexed: 11/13/2022] Open
Abstract
Leptin is involved in regulating reproductive function in chickens, and the development of the leptin system is initiated during the early embryonic stage; however, whether leptin has a specific role in regulating the ovarian development in early post-hatch days is still not fully understood. This study investigated the expression of ovarian functional markers in growing juvenile chickens, along with the effects of leptin on gene expression in the hypothalamus–pituitary–gonadal (HPG) axis on specific ovarian-remodeling days. Leptin receptor (LEPR), follicle-stimulating hormone receptor (FSHR), and the mRNA expression of aromatase (CYP19A1) tended to increase with age in the ovaries of growing chicks. In the ovaries of 7-day-old chicks, intraperitoneally injected leptin significantly increased the mRNA expressions of LEPR, FSHR, and CYP19A1, and this resulted in the increased serum estradiol levels. However, leptin had no effect on hypothalamic LEPR, gonadotropin-releasing hormone 1 (GnRH1), or gonadotropin-inhibitory hormone (GnIH) mRNAs; however, in the pituitary gland, leptin significantly increased the mRNA expression of luteinizing hormone beta subunit (LHB) but had no effect on the mRNA expression of follicle-stimulating hormone beta subunit (FSHB). In 28-day-old chicks, hypothalamic and pituitary mRNAs were unaffected by leptin administration, except hypothalamic LEPR mRNA that was upregulated by a high dose of leptin. In the ovary, leptin dose-dependently decreased the mRNA expression of LEPR; low doses of leptin significantly increased the mRNA expression of FSHR, whereas high doses significantly decreased this expression; leptin did not affect the mRNA expression of CYP19A1; and high leptin doses significantly reduced the serum estradiol levels. Collectively, the results of this study show that leptin modulates ovarian development and folliculogenesis marker genes by primarily acting on ovaries on the specific ovarian-remodeling days in post-hatch chicks, which may alter folliculogenesis and ovarian development toward puberty in chicken.
Collapse
Affiliation(s)
- Amir Hossan Shaikat
- College of Agriculture, Ibaraki University, Ami, Japan.,United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Fuchu, Japan
| | - Masami Ochiai
- College of Agriculture, Ibaraki University, Ami, Japan
| | - Akari Sasaki
- College of Agriculture, Ibaraki University, Ami, Japan
| | - Misa Takeda
- College of Agriculture, Ibaraki University, Ami, Japan.,United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Fuchu, Japan
| | - Akari Arima
- College of Agriculture, Ibaraki University, Ami, Japan
| | - Takeshi Ohkubo
- College of Agriculture, Ibaraki University, Ami, Japan.,United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Fuchu, Japan
| |
Collapse
|
12
|
Nidamanuri AL, Prince LLL, Mahapatra RK, Murugesan S. Effect on physiological and production parameters upon supplementation of fermented yeast culture to Nicobari chickens during and post summer. J Anim Physiol Anim Nutr (Berl) 2021; 106:284-295. [PMID: 34110055 DOI: 10.1111/jpn.13579] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 04/26/2021] [Accepted: 05/07/2021] [Indexed: 12/11/2022]
Abstract
Nicobari is an indigenous bird reared for meat and eggs. This study evaluated the effect of heat stress on plasma levels of leptin, growth hormone and their receptors, liver AMP kinase, plasma cholesterol and lipid peroxide (MDA). The laying period coincided with the post summer period. The birds were equally divided into three groups, control group was offered ad libitum feed and treatment groups were supplemented with fermented yeast culture at 700 mg (T1) and 1.4 g/kg (T2) of feed/day. The levels of plasma Leptin and GH hormones were higher (p < 0.05) in the control group when compared to the treatment groups. The expression of the hormone receptors was higher in the brain, and MMP3 gene expression in the magnum was lower in the treatment group. Plasma cholesterol, MDA and AMP kinase were significantly higher (p < 0.05) in the control group. Fermented yeast culture supplementation decreased feed intake and increased egg production parameters, which indicates a greater efficiency of supplementation. Supplementation reduced the severity of necrosis of villi in the jejunum when compared to control. In conclusion, higher ambient temperature during summer had negative effect on production parameters through modulation of physiological parameters which could be ameliorated by supplementation of FYC.
Collapse
|
13
|
Lei MM, Dai ZC, Zhu HX, Chen R, Chen Z, Shao CR, Shi ZD. Impairment of testes development in Yangzhou ganders by augmentation of leptin receptor signaling. Theriogenology 2021; 171:94-103. [PMID: 34051590 DOI: 10.1016/j.theriogenology.2021.05.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 05/11/2021] [Accepted: 05/16/2021] [Indexed: 10/21/2022]
Abstract
The aim of this study was to determine the cellular and molecular mechanisms of leptin (LEP) and the leptin receptor (LEPR) in testicular development of prepubertal ganders. In an in vivo animal experiment, active immunization against LEPR severely depressed prepubertal testicular development by significantly reducing testicular weights at 200 and 227 days of age. The number of elongated spermatids in the seminiferous tubules was also significantly decreased by immunization with LEPR at ages of 200 and 227 days. Inhibition of testicular development by LEPR immunization was associated with decreases in LHR, StAR, 3β-HSD, CYP11A1, CYP17A1, and PRLR mRNA expression levels in testicular tissue, which resulted in a significant decrease in testosterone synthesis. In the in vitro experiments, the addition of LEP combined with anti-LEPR antibodies strengthened LEPR signal transduction, and inhibited significantly testosterone production in cultured Leydig cells isolated from prepubertal gander testes. The mRNA expression of LHR, StAR, 3β-HSD, CYP11A1, CYP17A1 also decreased significantly after treatment with LEP combined with anti-LEPR antibodies in cultured Leydig cells. These results suggest that anti-LEPR antibodies strengthen LEPR signaling transduction in the presence of LEP, and immunization against LEPR inhibited testes development and testosterone secretion in prepubertal ganders.
Collapse
Affiliation(s)
- M M Lei
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China; Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, 210014, China
| | - Z C Dai
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China; Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, 210014, China
| | - H X Zhu
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China; Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, 210014, China
| | - R Chen
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China; Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, 210014, China
| | - Z Chen
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China; Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, 210014, China
| | - C R Shao
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China; Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, 210014, China
| | - Z D Shi
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China; Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, 210014, China.
| |
Collapse
|
14
|
Wang J, Zhang C, Zhao S, Ding X, Bai S, Zeng Q, Zhang K, Zhuo Y, Xu S, Mao X, Peng H, Shan Z. Dietary apple pectic oligosaccharide improves reproductive performance, antioxidant capacity, and ovary function of broiler breeders. Poult Sci 2021; 100:100976. [PMID: 33607317 PMCID: PMC7900577 DOI: 10.1016/j.psj.2020.12.073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 12/12/2020] [Accepted: 12/15/2020] [Indexed: 12/04/2022] Open
Abstract
Reproduction performance is one of the most important economic traits for the poultry industry. Intriguingly, apple pectic oligosaccharide (APO) could promote gastrointestinal function and immune function to improve performance; however, literature about APO on reproduction performance in breeders is limited. This study aimed to determine whether APO administration can improve reproduction performance and ovary function of broiler breeders with different egg laying rates. Two hundred and fifty six Arbor Acres broiler breeders (48-week-old) were used in a 2 × 2 factorial design with 2 egg laying rates (average [AR] and low [LR]) and 2 dietary levels of APO (0 and 200 mg/kg APO). Results showed that the LR breeders presented higher egg weight but lower egg laying rate, qualified egg rate, and feed efficiency than the AR breeders (P(laying) < 0.05). Also, the LR breeders had decreased serum Anti-Müllerian hormone, leptin, and antioxidant enzyme (superoxide dismutase, total antioxidant capacity) levels than the AR breeders (P(laying) ≤ 0.05). Dietary supplementation with APO improved egg weight, feed efficiency, as well as egg albumen quality (higher albumen height and Haugh unit) (P(APO) < 0.05), and decreased the concentration of pro-inflammatory cytokine levels (interleukin [IL]-1β, IL-8) in serum (P(APO) ≤ 0.05). The apoptosis rate and pro-apoptosis-related gene expression (caspase 9 and Bax) in the ovary of LR breeders were higher, while the anti-apoptosis-related gene expression (Bcl-2, PCNA) was lower in LR compared with the AR breeders (P(laying) < 0.05). Dietary supplementation with APO decreased the caspase 9 and Bax expression in LR breeders (P(interaction) < 0.05), and increased the Bcl-2 and PCNA expression in the 2 breeders (P(APO) < 0.05). These findings indicate that breeders with a lower egg laying rate exhibit lower antioxidant capacity and high cell apoptosis in the ovary. Dietary supplementation with APO might improve albumen quality and antioxidant capacity, and decrease the inflammatory factors and ovary apoptosis-related genes expression to improve ovary function. Moreover, the effect of APO on decreasing ovarian pro-apoptosis-related gene expression was more pronounced in lower reproductive breeders.
Collapse
Affiliation(s)
- Jianping Wang
- Animal Nutrition Institute, Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Sichuan Agricultural University, Chengdu 611130, China
| | - Chunhua Zhang
- College of Agriculture and Forestry, Pu'er Unviersity, Pu'er City 665000, China
| | - Shuju Zhao
- Animal Nutrition Institute, Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Sichuan Agricultural University, Chengdu 611130, China
| | - Xuemei Ding
- Animal Nutrition Institute, Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Sichuan Agricultural University, Chengdu 611130, China
| | - Shiping Bai
- Animal Nutrition Institute, Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Sichuan Agricultural University, Chengdu 611130, China
| | - Qiufeng Zeng
- Animal Nutrition Institute, Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Sichuan Agricultural University, Chengdu 611130, China
| | - Keying Zhang
- Animal Nutrition Institute, Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Sichuan Agricultural University, Chengdu 611130, China
| | - Yong Zhuo
- Animal Nutrition Institute, Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Sichuan Agricultural University, Chengdu 611130, China
| | - Shengyu Xu
- Animal Nutrition Institute, Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiangbing Mao
- Animal Nutrition Institute, Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Sichuan Agricultural University, Chengdu 611130, China
| | - Huanwei Peng
- Animal Nutrition Institute, Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Sichuan Agricultural University, Chengdu 611130, China
| | - Zhiguo Shan
- College of Agriculture and Forestry, Pu'er Unviersity, Pu'er City 665000, China
| |
Collapse
|
15
|
Wang J, Wan C, Shuju Z, Yang Z, Celi P, Ding X, Bai S, Zeng Q, Mao X, Xu S, Zhang K, Li M. Differential analysis of gut microbiota and the effect of dietary Enterococcus faecium supplementation in broiler breeders with high or low laying performance. Poult Sci 2021; 100:1109-1119. [PMID: 33518070 PMCID: PMC7858034 DOI: 10.1016/j.psj.2020.10.024] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 08/20/2020] [Accepted: 10/01/2020] [Indexed: 02/07/2023] Open
Abstract
The difference in microbiota was examined for breeders with different egg-laying rates, and the impact of dietary Enterococcus faecium (EF) was also determined in the present study. A total of 256 Arbor Acres broiler breeders (48-wk-old) were used in a 2 × 2 factorial design, which encompassed 2 egg-laying rate levels [average (average egg laying: AP, 80.45 ± 0.91%) and low (lower egg laying: LP, 70.61 ± 1.16%)] and 2 different dietary groups [control (no additive), 6 × 108 cfu/kg EF]. The results showed that the AP breeders presented a lower egg weight, feed conversion ratio, abdominal fat rate, and serum leptin level (P(laying) ≤ 0.05) as well as a higher egg-laying rate (P(laying) < 0.01) than the LP breeders. Dietary supplementation with EF improved the egg weight (P(EF) = 0.03) and had a higher concentration of follicle-stimulating hormone (FSH) in the serum (P(EF) = 0.04). The relative expression of Caspase 9, Bax, AMHR, BMP15, and GATA4 in the ovary of AP breeders was lower, whereas the FSHR and BMPR1B expression was higher than that measured in LP breeders (P(laying) ≤ 0.05). LP increased the abundance of Bacteroidetes (phylum), Firmicutes (phylum), Bacteroidia (class), Clostridia (class), Bacteroidales (order), Clostridiales (order), and Lachnospiraceae (family), whereas the AP promoted the enrichment of Proteobacteria (phylum) and Gammaproteobacteria (class) (P(laying) < 0.05). The genera Bacillus, Rhodanobacter, and Streptomyces were positively correlated with the egg-laying rate and BMPR1B expression (P < 0.05) but negatively correlated with the abdominal fat rate (P < 0.05) and Caspase 9 (P < 0.05). These findings indicate that the low reproductive performance breeders had lower microbiota diversity and higher Firmicutes, which triggers the energy storage that led to higher fat deposition. Besides, increases in the abdominal fat rate, leptin level, and apoptosis (Caspase 9, Bax) and reproduction-related gene (BMP15, AMHR, BMPR1B, and GATA4) expression would possibly be the potential mechanisms under which breeders have different reproductive performance. Dietary EF increased the egg weight and serum FSH level and decreased the Bacteroidetes (phylum) in low reproductive breeders.
Collapse
Affiliation(s)
- Jianping Wang
- Animal Nutrition Institute, Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Chunpeng Wan
- Research Center of Tea and Tea Culture, College of Agronomy, Jiangxi Agricultural, University, Nanchang, 330045, P.R. China
| | - Zhao Shuju
- Animal Nutrition Institute, Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
| | - Zengqiao Yang
- Animal Nutrition Institute, Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
| | - Pietro Celi
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville 3010, Australia
| | - Xuemei Ding
- Animal Nutrition Institute, Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
| | - Shiping Bai
- Animal Nutrition Institute, Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
| | - Qiufeng Zeng
- Animal Nutrition Institute, Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xiangbing Mao
- Animal Nutrition Institute, Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
| | - Shengyu Xu
- Animal Nutrition Institute, Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
| | - Keying Zhang
- Animal Nutrition Institute, Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
| | - Mingxi Li
- Research Center of Tea and Tea Culture, College of Agronomy, Jiangxi Agricultural, University, Nanchang, 330045, P.R. China.
| |
Collapse
|
16
|
Effects of photoperiod on performance, ovarian morphology, reproductive hormone level, and hormone receptor mRNA expression in laying ducks. Poult Sci 2021; 100:100979. [PMID: 33677400 PMCID: PMC8046941 DOI: 10.1016/j.psj.2021.01.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 12/19/2020] [Accepted: 01/01/2021] [Indexed: 12/13/2022] Open
Abstract
We investigated the effect of photoperiod on performance, ovarian morphology, reproductive hormones levels, and their receptors mRNA expressions in laying ducks. After adaption, 300 252-day-old Jinding laying ducks were randomly allocated to 5 groups, receiving 12L:12D, 14L:10D, 16L:8D, 18L:6D, or 20L:4D, respectively. Each treatment had 6 replicates of 10 birds each. The feeding trial lasted 8 wk. Egg production, egg mass, and ADFI increased linearly and quadratically with increasing photoperiods (P < 0.05), and the higher values of them occurred in photoperiods ≥ 16 h, compared with 12L:12D (P > 0.05). Initial and bare stroma weight increased quadratically, while total large white follicle (LWF) number and weight increased linearly and quadratically, with increasing photoperiods (P < 0.05). The higher values of them occurred in 16L:8D and 18L:6D treatments as well as the higher total LWF weight also occurred in 20L:4D, compared with 12L:12D (P > 0.05). Besides, 16.93 and 16.93 h were the optimal photoperiods for bare stroma (follicles ≥ 2 mm in diameter removed) weight and total LWF weight, respectively, calculated from reliable regression equations (R2 ≥ 0.5071). Compared with 12L:12D, the higher levels of estradiol, progesterone, follicle-stimulating hormone (FSH) as well as the higher expressions of estrogen, luteinizing hormone (LH) and progesterone receptors were observed in ≥16 h photoperiods (P < 0.05), while the higher LH level and FSH receptor expression only occurred in 16L:8D and 18L:6D (P < 0.05). In the hypothalamus, higher mRNA expression of gonadotropin-releasing hormone occurred in 16L:8D and 18L:6D groups (P < 0.05). Meanwhile, gonadotropin-inhibitory hormone and prolactin increased in 20-hour photoperiod (P < 0.05), and the latter may be due to theup-regulation of vasoactive intestinal peptide expression (P < 0.05). To sum up, an appropriate photoperiod could improve the performance and reproductive organ and ovarian follicles development through reproductive hormones and their receptors, and 16.56 to 10.93 h is an adequate photoperiod for laying ducks.
Collapse
|
17
|
El-Tarabany MS, Saleh AA, El-Araby IE, El-Magd MA. Association of LEPR polymorphisms with egg production and growth performance in female Japanese quails. Anim Biotechnol 2020; 33:599-611. [PMID: 32865111 DOI: 10.1080/10495398.2020.1812617] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
This study aimed to screen intron 8 of the leptin receptor (LEPR) gene for polymorphisms in female Japanese quails. Two adjacent novel SNPs (A277G and A304G) were detected using PCR-SSCP and sequencing. These SNPs produced three haplotypes (AA/AA, AG/AG, and GG/GG) that were significantly (p ≤ 0.05) associated with growth and egg production traits. GG/GG haplotype-quails had significantly (p ≤ 0.05) lower egg production, feed intake, growth performance, lipid profile, serum levels of sex hormones (estradiol, progesterone, FSH, LH), and ovarian expressions of survivin, FSHR, and IGF1 than other quails. However, GG/GG quails had significantly (p ≤ 0.05) higher serum levels of LEP and mRNA levels of LEPR, LEP, and caspase 3 in the hypothalamus and ovaries. These higher levels of LEP/LEPR could not only reduce feed intake and body weight gain but also could induce apoptosis of ovarian cells (as indicated by lower survivin and IGF1 and higher caspase3 expression) which could inhibit the development of the follicles and the release of sex hormones with a subsequent decrease in egg production in GG/GG quails. Therefore, with these results, we suggest selecting Japanese quails with AA/AA and AG/AG haplotypes to improve the reproduction and growth performance of this flock.
Collapse
Affiliation(s)
- Mahmoud S El-Tarabany
- Department of Animal Wealth Development, Animal Breeding and Production, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Ayman A Saleh
- Department of Animal Wealth Development, Veterinary Genetics & Genetic Engineering, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Iman E El-Araby
- Department of Animal Wealth Development, Veterinary Genetics & Genetic Engineering, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Mohammed A El-Magd
- Department of Anatomy & Embryology, Faculty of Veterinary Medicine, Kafrelsheikh University, Zagazig, Egypt
| |
Collapse
|
18
|
Estienne A, Brossaud A, Reverchon M, Ramé C, Froment P, Dupont J. Adipokines Expression and Effects in Oocyte Maturation, Fertilization and Early Embryo Development: Lessons from Mammals and Birds. Int J Mol Sci 2020; 21:E3581. [PMID: 32438614 PMCID: PMC7279299 DOI: 10.3390/ijms21103581] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 05/11/2020] [Accepted: 05/14/2020] [Indexed: 12/28/2022] Open
Abstract
Some evidence shows that body mass index in humans and extreme weights in animal models, including avian species, are associated with low in vitro fertilization, bad oocyte quality, and embryo development failures. Adipokines are hormones mainly produced and released by white adipose tissue. They play a key role in the regulation of energy metabolism. However, they are also involved in many other physiological processes including reproductive functions. Indeed, leptin and adiponectin, the most studied adipokines, but also novel adipokines including visfatin and chemerin, are expressed within the reproductive tract and modulate female fertility. Much of the literature has focused on the physiological and pathological roles of these adipokines in ovary, placenta, and uterine functions. The purpose of this review is to summarize the current knowledge regarding the involvement of leptin, adiponectin, visfatin, and chemerin in the oocyte maturation, fertilization, and embryo development in both mammals and birds.
Collapse
Affiliation(s)
- Anthony Estienne
- INRAE UMR 85 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France; (A.E.); (A.B.); (C.R.); (P.F.)
- CNRS UMR 7247 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France
- Université François Rabelais de Tours, F-37041 Tours, France
- Institut Français du Cheval et de l’Equitation, Centre INRAE Val de Loire, F-37380 Nouzilly, France
| | - Adeline Brossaud
- INRAE UMR 85 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France; (A.E.); (A.B.); (C.R.); (P.F.)
- CNRS UMR 7247 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France
- Université François Rabelais de Tours, F-37041 Tours, France
- Institut Français du Cheval et de l’Equitation, Centre INRAE Val de Loire, F-37380 Nouzilly, France
| | - Maxime Reverchon
- SYSAAF-Syndicat des Sélectionneurs Avicoles et Aquacoles Français, Centre INRAE Val de Loire, F-37380 Nouzilly, France;
| | - Christelle Ramé
- INRAE UMR 85 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France; (A.E.); (A.B.); (C.R.); (P.F.)
- CNRS UMR 7247 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France
- Université François Rabelais de Tours, F-37041 Tours, France
- Institut Français du Cheval et de l’Equitation, Centre INRAE Val de Loire, F-37380 Nouzilly, France
| | - Pascal Froment
- INRAE UMR 85 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France; (A.E.); (A.B.); (C.R.); (P.F.)
- CNRS UMR 7247 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France
- Université François Rabelais de Tours, F-37041 Tours, France
- Institut Français du Cheval et de l’Equitation, Centre INRAE Val de Loire, F-37380 Nouzilly, France
| | - Joëlle Dupont
- INRAE UMR 85 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France; (A.E.); (A.B.); (C.R.); (P.F.)
- CNRS UMR 7247 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France
- Université François Rabelais de Tours, F-37041 Tours, France
- Institut Français du Cheval et de l’Equitation, Centre INRAE Val de Loire, F-37380 Nouzilly, France
| |
Collapse
|
19
|
Nie C, Wang Y, Liu Y, Liu J, Ge W, Ma X, Zhang W. Impacts of Dietary Protein from Fermented Cottonseed Meal on Lipid Metabolism and Metabolomic Profiling in the Serum of Broilers. Curr Protein Pept Sci 2020; 21:812-820. [PMID: 32013830 DOI: 10.2174/1389203721666200203152643] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 06/01/2019] [Accepted: 07/22/2019] [Indexed: 11/22/2022]
Abstract
Dietary protein from fermented cottonseed meal (FCSM), widely used in poultry diets in China, had regulating effects on lipid metabolism. To understand the effects of FCSM on lipid metabolism in broilers, we analyzed the biochemical indexes, enzyme activity, hormone level and metabolites in serum responses to FCSM intake. One hundred and eighty 21-d-old Chinese yellow feathered broilers (536.07±4.43 g) were randomly divided into 3 groups with 6 replicates and 3 diets with 6 % supplementation of unfermented CSM (control group), FCSM by C. Tropicalis (Ct CSM) or C. tropicalis plus S. Cerevisae (Ct-Sc CSM). Result showed that: (1) FCSM intake decreased significantly the content of triglyceride (TAG), total cholesterol (TC) and low-density lipoprotein cholesterol (LDL-C) (P<0.05) in serum; (2) FCSM intake could significantly increase enzyme activity of acetyl CoA carboxylase (ACC), lipoprotein lipase (LPL), fatty acid synthase (FAS) and hormone sensitive lipase (HSL) (P<0.05); (3) Ct-Sc CSM intake increased significantly the levels of adiponectin (ADP) (P<0.05); (4) FCSM intake caused significant metabolic changes involving glycolysis, TCA cycle, synthesis of fatty acid and glycogen, and metabolism of glycerolipid, vitamins B group and amino acids. Our results strongly suggested that FCSM intake could significantly affect lipid metabolism via multiple pathways. These findings provided new essential information about the effect of FCSM on broilers and demonstrated the great potential of nutrimetabolomics, through which the research complex nutrients are included in animal diet.
Collapse
Affiliation(s)
- Cunxi Nie
- College of Animal Science and Technology, Shihezi University, Shihezi, China,State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yongqiang Wang
- College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Yanfeng Liu
- College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Jiancheng Liu
- College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Wenxia Ge
- College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Xi Ma
- College of Animal Science and Technology, Shihezi University, Shihezi, China,State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Wenju Zhang
- College of Animal Science and Technology, Shihezi University, Shihezi, China
| |
Collapse
|
20
|
Hypothalamic and pituitary transcriptome profiling using RNA-sequencing in high-yielding and low-yielding laying hens. Sci Rep 2019; 9:10285. [PMID: 31311989 PMCID: PMC6635495 DOI: 10.1038/s41598-019-46807-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 07/05/2019] [Indexed: 12/21/2022] Open
Abstract
The reproductive physiology and laying performance of laying hens are regulated by the hypothalamus and pituitary. To understand the mechanism of egg laying regulation, we sequenced and analysed the hypothalamus and pituitary expression profiles in high- and low-yielding laying Chinese Dagu Chickens (CDC) using RNA-seq. More than 46 million clean reads and 24,873 tentative genes were obtained using the Gallus gallus genome as a reference. Transcriptome analysis in hypothalamus and pituitary revealed seven and 39 differentially expressed genes (DEGs) between high- and low-yielding CDC hens, respectively. A total of 24 and 22 DEGs were up-regulated and down-regulated, respectively, and 13 novel genes were identified. Functional annotation and pathway enrichment analysis showed that DEGs in the hypothalamus were mainly enriched in glycosaminoglycan biosynthesis. DEGs significantly enriched in the pituitary primarily affected the extracellular matrix, the protein extracellular matrix, and the extracellular space. Pathways involving phenylalanine metabolism, 2-oxocarboxylic acid metabolism, the glycosphingolipid biosynthesis-ganglion series, and local adhesion were significantly enriched in the pituitary. Eight DEGs, PRDX6, TRIB2, OVCH2, CFD, Peptidase M20, SLC7A10, and two other amino acid transporters, are involved in the metabolism and transport of amino acids. To our knowledge, this is the first study comparing the hypothalamus and pituitary transcriptomes of high- and low-yielding laying hens. Our findings suggest that putative differences in gene expression can provide a base for further research in this field. Moreover, we identified increased expression of genes involved in amino acid metabolism, glycosaminoglycan biosynthesis, and oestrogen negative feedback systems in low-yielding laying hens, highlighting their potential as biomarkers of egg production.
Collapse
|
21
|
Cui YM, Wang J, Hai-Jun Z, Feng J, Wu SG, Qi GH. Effect of photoperiod on ovarian morphology, reproductive hormone secretion, and hormone receptor mRNA expression in layer ducks during the pullet phase. Poult Sci 2019; 98:2439-2447. [PMID: 30668853 DOI: 10.3382/ps/pey601] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 12/21/2018] [Indexed: 02/04/2023] Open
Abstract
We evaluated the effect of photoperiod on ovarian morphology, reproductive hormone secretion, and hormone receptor mRNA expression in layer ducks during the pullet phase. A total of 480 71-d-old Jinding layer ducks were randomly divided into 5 groups that received 6L (hours of light):18D (hours of darkness), 8L:16D, 10L:14D, 12L:12D, or 14L:10D, respectively. Each group had 6 replicates with 16 birds each. The photoperiod feeding trial lasted 80 d until 150 d of age. The age at first egg (AFE), the total number, and weight of eggs increased linearly with increasing photoperiods (P < 0.05); lower values of AFE occurred with photoperiods ≥8 h, whereas a higher total number and weight of eggs occurred with photoperiods ≥10 h, compared with 6L:18D (P > 0.05). Oviduct weight, ovary percentage, and initial and bare stroma (weight and percentage) increased quadratically with increasing photoperiods (P < 0.05), and 10.24, 10.01, and 10.10 h were the optimal photoperiods for oviduct weight, bare stroma (follicles ≥2 mm in diameter removed) weight, and bare stroma percentage, respectively, as calculated from reliable regression equations (R2 ≥ 0.5791). Compared with 6L:18D, 10L:14D had a higher total large white follicle weight, small yellow follicle number, and weight (P < 0.05). In addition, higher serum levels of follicle-stimulating hormone, luteinizing hormone, and progesterone were observed with ≥10-h photoperiods (P < 0.05), as were levels of hormone receptor mRNA expression in ovarian follicles (P < 0.05), with the highest values for both measures at 10L:14D. In the hypothalamus, mRNA expression of gonadotropin-releasing hormone increased in ≥8-h photoperiods, with the highest value at 10L:14D. In contrast, gonadotropin-inhibitory hormone increased in photoperiods ≥12 h (P < 0.05). In conclusion, an appropriate photoperiod led to early sexual maturity and improved the development of reproductive organs and ovarian follicles through effects on reproductive hormones and their receptors; 10 to 10.24 h is an adequate photoperiod for layer ducks during the pullet phase.
Collapse
Affiliation(s)
- Yao-Ming Cui
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture & Rural Affairs, and National Engineering Research Center of Biological Feed, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jing Wang
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture & Rural Affairs, and National Engineering Research Center of Biological Feed, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zhang Hai-Jun
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture & Rural Affairs, and National Engineering Research Center of Biological Feed, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jia Feng
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture & Rural Affairs, and National Engineering Research Center of Biological Feed, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Shu-Geng Wu
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture & Rural Affairs, and National Engineering Research Center of Biological Feed, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Guang-Hai Qi
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture & Rural Affairs, and National Engineering Research Center of Biological Feed, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
22
|
Lei MM, Wei CK, Chen Z, Yosefi S, Zhu HX, Shi ZD. Anti-leptin receptor antibodies strengthen leptin biofunction in growing chickens. Gen Comp Endocrinol 2018; 259:223-230. [PMID: 29247679 DOI: 10.1016/j.ygcen.2017.12.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 12/13/2017] [Accepted: 12/13/2017] [Indexed: 12/11/2022]
Abstract
Antibodies against the extracellular domains of the chicken leptin receptor were used to study the biological function of leptin in growing chickens. Both polyclonal and monoclonal anti-LEPR antibodies were administered intramuscularly to 30-d-old Chinese indigenous Gushi pullets. Both antibody preparations increased feed intake for 6 h after injection and reduced plasma concentrations of glucose, triglycerides, and both high- and low-density lipoproteins. The antibody treatments also upregulated agouti-related peptide and neuropeptide Y in the hypothalamus and downregulated proopiomelanocortin, melanocortin 4 receptor, and leptin receptor. The treatments also upregulated leptin receptor, acetyl CoA carboxylase beta, and acyl-CoA oxidase in the liver, abdominal fat, and breast muscle and downregulated sterol regulatory element-binding protein-1 and fatty acid synthase. Furthermore, even though the anti-leptin receptor antibodies failed to affect leptin receptor signaling transduction when administered alone, they did augment the induction of leptin receptor signaling transduction by leptin. These results demonstrate that antibodies against the extracellular domains of leptin-specific receptor enhance, but do not mimic, the ability of leptin to activate receptors. Furthermore, the enhanced leptin bioactivity observed after the intramuscular injection of anti-LEPR antibodies confirmed the occurrence of de novo leptin in the peripheral tissues and blood of treated chickens.
Collapse
Affiliation(s)
- M M Lei
- Key Laboratory of Control Technology and Standard for Agro-product Safety and Quality, MOA, Nanjing 210014, China; Laboratory of Animal Breeding and Reproduction, Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China.
| | - C K Wei
- Key Laboratory of Control Technology and Standard for Agro-product Safety and Quality, MOA, Nanjing 210014, China; Laboratory of Animal Breeding and Reproduction, Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China.
| | - Z Chen
- Key Laboratory of Control Technology and Standard for Agro-product Safety and Quality, MOA, Nanjing 210014, China; Laboratory of Animal Breeding and Reproduction, Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China.
| | - S Yosefi
- Institute of Animal Science, Agricultural Research Organization, Volcani Center, PO Box 6, Bet Dagan 50250, Israel.
| | - H X Zhu
- Key Laboratory of Control Technology and Standard for Agro-product Safety and Quality, MOA, Nanjing 210014, China; Laboratory of Animal Breeding and Reproduction, Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China.
| | - Z D Shi
- Key Laboratory of Control Technology and Standard for Agro-product Safety and Quality, MOA, Nanjing 210014, China; Laboratory of Animal Breeding and Reproduction, Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China.
| |
Collapse
|
23
|
Wu L, Chen G, Liu W, Yang X, Gao J, Huang L, Guan H, Li Z, Zheng Z, Li M, Gu W, Ge L. Intramuscular injection of exogenous leptin induces adiposity, glucose intolerance and fatty liver by repressing the JAK2-STAT3/PI3K pathway in a rat model. Gen Comp Endocrinol 2017; 252:88-96. [PMID: 28242305 DOI: 10.1016/j.ygcen.2017.02.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 02/20/2017] [Accepted: 02/23/2017] [Indexed: 12/23/2022]
Abstract
Obesity, diabetes and fatty liver disease are extremely common in leptin-resistant patients. Dysfunction of leptin or its receptor is associated with obesity. The present study aimed to assess the effects of intramuscular injection of exogenous leptin or its receptor on fat deposition and leptin-insulin feedback regulation. Forty-five 40-day old female Sprague Dawley (SD) rats were injected thrice with leptin or its receptor intramuscularly. Adiposity and fat deposition were assessed by assessing the Lee's index, body weight, food intake, and total cholesterol, high density lipoprotein, low density lipoprotein, and triglyceride levels, as well as histological properties (liver and adipose tissue). Serum glucose, leptin, and insulin amounts were evaluated, and glucose tolerance assessed to monitor glucose metabolism in SD rats; pancreas specimens were analyzed immunohistochemically. Hypothalamic phosphorylated Janus kinase 2 (p-JAK2), phosphorylated signal transducer and activator of transcription 3 (p-STAT3), and phosphatidylinositol-3-kinase (PI3K) signaling, and hepatic sterol regulatory element binding protein-1 (SREBP-1) were qualified by Western blotting. Leptin receptor immunogen reduced fat deposition, increased appetite, and lowered serum leptin levels, enhancing STAT3 signaling in hypothalamus and down-regulating hepatic SREBP-1. In contrast, SD rats administered leptin immunogen displayed significantly increased body weight and fat deposition, with up-regulated SREBP-1, indicating adiposity occurrence. SD rats administered leptin immunogen also showed glucose intolerance, β- cell reduction in the pancreas, and deregulation of JAK2-STAT3/PI3K signaling, indicating that Lep rats were at risk of diabetes. In conclusion, intramuscular injection of exogenous leptin or its receptor, a novel rat model approach, can be used in obesity pathogenesis and therapeutic studies.
Collapse
Affiliation(s)
- Lihong Wu
- Key Laboratory of Oral Medicine, Guangzhou Institure of Oral Disease, Stomatology Hospital of Guangzhou Medical University, Guangzhou 510140, China; Center of Emphasis in Infectious Diseases, Department of Biomedical Sciences, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA
| | - Guoxiong Chen
- First Department of Orthopedics, The Affiliated Nanhai Hospital of Southern Medical University, Foshan 528200, China
| | - Wen Liu
- Department of Laboratory Animal Center, Southern Medical University, Guangzhou 510515, China
| | - Xuechao Yang
- Key Laboratory of Oral Medicine, Guangzhou Institure of Oral Disease, Stomatology Hospital of Guangzhou Medical University, Guangzhou 510140, China
| | - Jie Gao
- Key Laboratory of Oral Medicine, Guangzhou Institure of Oral Disease, Stomatology Hospital of Guangzhou Medical University, Guangzhou 510140, China
| | - Liwen Huang
- Key Laboratory of Oral Medicine, Guangzhou Institure of Oral Disease, Stomatology Hospital of Guangzhou Medical University, Guangzhou 510140, China
| | - Hongbing Guan
- Key Laboratory of Oral Medicine, Guangzhou Institure of Oral Disease, Stomatology Hospital of Guangzhou Medical University, Guangzhou 510140, China
| | - Zhengmao Li
- Key Laboratory of Oral Medicine, Guangzhou Institure of Oral Disease, Stomatology Hospital of Guangzhou Medical University, Guangzhou 510140, China
| | - Zhichao Zheng
- Key Laboratory of Oral Medicine, Guangzhou Institure of Oral Disease, Stomatology Hospital of Guangzhou Medical University, Guangzhou 510140, China
| | - Meiling Li
- Key Laboratory of Oral Medicine, Guangzhou Institure of Oral Disease, Stomatology Hospital of Guangzhou Medical University, Guangzhou 510140, China
| | - Weiwang Gu
- Department of Laboratory Animal Center, Southern Medical University, Guangzhou 510515, China; Department of Laboratory Animal Science, Songshan Lake Pearl Laboratory Animal Sci. & Tech. Co., Ltd., Dongguan 523808, China.
| | - Linhu Ge
- Key Laboratory of Oral Medicine, Guangzhou Institure of Oral Disease, Stomatology Hospital of Guangzhou Medical University, Guangzhou 510140, China.
| |
Collapse
|
24
|
Long L, Wu SG, Yuan F, Zhang HJ, Wang J, Qi GH. Effects of dietary octacosanol supplementation on laying performance, egg quality, serum hormone levels, and expression of genes related to the reproductive axis in laying hens. Poult Sci 2017; 96:894-903. [PMID: 27665009 DOI: 10.3382/ps/pew316] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 07/29/2016] [Indexed: 11/20/2022] Open
Abstract
This experiment was conducted to evaluate the effects of dietary octacosanol supplementation on laying performance, egg quality, serum hormone levels, and gene expression related to reproductive axis in laying hens to confirm the reproduction-promoting function of octacosanol. In total, 360 Hy-Line Brown (67-wk-old) laying hens were randomly assigned to one of three treatments with 0, 5, and 10 mg octacosanol (extracted from rice bran, purity >92%)/kg feed. The feeding trial lasted for 10 weeks. The results showed that the dietary addition of 5 and 10 mg/kg octacosanol improved feed efficiency by 4.9% and 3.4% (P < 0.01), increased the albumen height by 20.5% and 13.3% (P < 0.01), the Haugh unit score by 12.9% and 8.7% (P < 0.01), and the eggshell strength by 39.5% and 24.5% (P < 0.01), respectively, compared with the control diet. Dietary octacosanol addition significantly affected serum triiodothyronine, estradiol, follicle-stimulating hormone levels (P < 0.05), and progesterone and luteinizing hormone level (P < 0.01). Compared with the control, dietary addition of octacosanol at 5 mg/kg promoted the follicle-stimulating hormone receptor (FSHR) mRNA expression in different-sized follicles, and significantly increased the FSHR mRNA expression of granulosa cells from the F2 and F3 follicles (P < 0.05). Dietary supplementation with both 5 and 10 mg/kg octacosanol promoted the mRNA expression of luteinizing hormone receptor and prolactin receptor in different-sized follicles, and significantly up-regulated the expression levels in F1 granulosa cells (P < 0.05). The ovarian weight was significantly increased with the dietary addition of 5 mg/kg octacosanol (P < 0.05). The numbers of small yellow follicles and large white follicles were increased with the addition of dietary 5 and 10 mg/kg octacosanol (P < 0.01). This study provides evidence that octacosanol has the capacity to improve reproductive performance, indicating that it is a potentially effective feed additive in egg production.
Collapse
Affiliation(s)
- L Long
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Tianjin Naer Biotechnology Co., Ltd., Tianjin 300457, China
| | - S G Wu
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - F Yuan
- Tianjin Naer Biotechnology Co., Ltd., Tianjin 300457, China
| | - H J Zhang
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - J Wang
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - G H Qi
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
25
|
Londraville RL, Prokop JW, Duff RJ, Liu Q, Tuttle M. On the Molecular Evolution of Leptin, Leptin Receptor, and Endospanin. Front Endocrinol (Lausanne) 2017; 8:58. [PMID: 28443063 PMCID: PMC5385356 DOI: 10.3389/fendo.2017.00058] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 03/15/2017] [Indexed: 12/16/2022] Open
Abstract
Over a decade passed between Friedman's discovery of the mammalian leptin gene (1) and its cloning in fish (2) and amphibians (3). Since 2005, the concept of gene synteny conservation (vs. gene sequence homology) was instrumental in identifying leptin genes in dozens of species, and we now have leptin genes from all major classes of vertebrates. This database of LEP (leptin), LEPR (leptin receptor), and LEPROT (endospanin) genes has allowed protein structure modeling, stoichiometry predictions, and even functional predictions of leptin function for most vertebrate classes. Here, we apply functional genomics to model hundreds of LEP, LEPR, and LEPROT proteins from both vertebrates and invertebrates. We identify conserved structural motifs in each of the three leptin signaling proteins and demonstrate Drosophila Dome protein's conservation with vertebrate leptin receptors. We model endospanin structure for the first time and identify endospanin paralogs in invertebrate genomes. Finally, we argue that leptin is not an adipostat in fishes and discuss emerging knockout models in fishes.
Collapse
Affiliation(s)
- Richard Lyle Londraville
- Program in Integrative Bioscience, Department of Biology, University of Akron, Akron, OH, USA
- *Correspondence: Richard Lyle Londraville,
| | | | - Robert Joel Duff
- Program in Integrative Bioscience, Department of Biology, University of Akron, Akron, OH, USA
| | - Qin Liu
- Program in Integrative Bioscience, Department of Biology, University of Akron, Akron, OH, USA
| | - Matthew Tuttle
- Program in Integrative Bioscience, Department of Biology, University of Akron, Akron, OH, USA
| |
Collapse
|
26
|
Ban Q, Hui W, Cheng F, Liu D, Liu X. Effect of chicken leptin recptor short hairpin RNA on expression ofJAK2,STAT3,SOCS3andCPT1genes in chicken preadipocytes. Anim Sci J 2016; 88:559-564. [DOI: 10.1111/asj.12722] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 08/24/2016] [Accepted: 08/30/2016] [Indexed: 12/23/2022]
Affiliation(s)
- Qian Ban
- School of Life Science; Anhui University; Hefei China
- College of Animal Science and Technology; Shihezi University; Shihezi China
| | - Wenqiao Hui
- Institute of Animal Science and Veterinary Medicine; Anhui Academy of Agricultural Sciences; Hefei China
- College of Animal Science and Technology; Shihezi University; Shihezi China
| | - Fei Cheng
- School of Life Science; Anhui University; Hefei China
| | - Dahai Liu
- School of Life Science; Anhui University; Hefei China
| | - Xiaojun Liu
- College of Animal Science and Veterinary Medicine; Henan Agricultural University; Zhengzhou China
- College of Animal Science and Technology; Shihezi University; Shihezi China
| |
Collapse
|
27
|
Ma X, Hayes E, Prizant H, Srivastava RK, Hammes SR, Sen A. Leptin-Induced CART (Cocaine- and Amphetamine-Regulated Transcript) Is a Novel Intraovarian Mediator of Obesity-Related Infertility in Females. Endocrinology 2016; 157:1248-57. [PMID: 26730935 PMCID: PMC4769362 DOI: 10.1210/en.2015-1750] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 12/29/2015] [Indexed: 12/24/2022]
Abstract
Obesity is considered detrimental to women's reproductive health. Although most of the attention has been focused on the effects of obesity on hypothalamic function, studies suggest a multifactorial impact. In fact, obesity is associated with reduced fecundity even in women with regular cycles, indicating that there may be local ovarian effects modulating fertility. Here we describe a novel mechanism for leptin actions directly in the ovary that may account for some of the negative effects of obesity on ovarian function. We find that normal cycling, obese, hyperleptinemic mice fed with a high-fat diet are subfertile and ovulate fewer oocytes compared with animals fed with a normal diet. Importantly, we show that leptin induces expression of the neuropeptide cocaine- and amphetamine-regulated transcript (CART) in the granulosa cells (GCs) of ovarian follicles both in vitro and in vivo. CART then negatively affects intracellular cAMP levels, MAPK signaling, and aromatase mRNA expression, which leads to lower estradiol synthesis in GCs and altered ovarian folliculogenesis. Finally, in human samples from patients undergoing in vitro fertilization, we show a significant positive correlation between patient body mass index, CART mRNA expression in GCs, and CART peptide levels in follicular fluid. These observations suggest that, under obese conditions, CART acts as a local mediator of leptin in the ovary to cause ovarian dysfunction and reduced fertility.
Collapse
Affiliation(s)
- Xiaoting Ma
- Division of Endocrinology and Metabolism (X.M., E.H., H.P., S.R.H., A.S.), Department of Medicine, and Department of Obstetrics and Gynecology (R.K.S.), University of Rochester School of Medicine and Dentistry, Rochester, New York 14642
| | - Emily Hayes
- Division of Endocrinology and Metabolism (X.M., E.H., H.P., S.R.H., A.S.), Department of Medicine, and Department of Obstetrics and Gynecology (R.K.S.), University of Rochester School of Medicine and Dentistry, Rochester, New York 14642
| | - Hen Prizant
- Division of Endocrinology and Metabolism (X.M., E.H., H.P., S.R.H., A.S.), Department of Medicine, and Department of Obstetrics and Gynecology (R.K.S.), University of Rochester School of Medicine and Dentistry, Rochester, New York 14642
| | - Rajesh K Srivastava
- Division of Endocrinology and Metabolism (X.M., E.H., H.P., S.R.H., A.S.), Department of Medicine, and Department of Obstetrics and Gynecology (R.K.S.), University of Rochester School of Medicine and Dentistry, Rochester, New York 14642
| | - Stephen R Hammes
- Division of Endocrinology and Metabolism (X.M., E.H., H.P., S.R.H., A.S.), Department of Medicine, and Department of Obstetrics and Gynecology (R.K.S.), University of Rochester School of Medicine and Dentistry, Rochester, New York 14642
| | - Aritro Sen
- Division of Endocrinology and Metabolism (X.M., E.H., H.P., S.R.H., A.S.), Department of Medicine, and Department of Obstetrics and Gynecology (R.K.S.), University of Rochester School of Medicine and Dentistry, Rochester, New York 14642
| |
Collapse
|
28
|
Wang D, Xu C, Wang T, Li H, Li Y, Ren J, Tian Y, Li Z, Jiao Y, Kang X, Liu X. Discovery and functional characterization of leptin and its receptors in Japanese quail (Coturnix japonica). Gen Comp Endocrinol 2016; 225:1-12. [PMID: 26342967 DOI: 10.1016/j.ygcen.2015.09.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 08/07/2015] [Accepted: 09/01/2015] [Indexed: 12/31/2022]
Abstract
Leptin is an important endocrine regulation factor of food intake and energy homeostasis in mammals; however, the existence of a poultry leptin gene (LEP) is still debated. Here, for the first time, we report the cloning of a partial exon 3 sequence of LEP (qLEP) and four different leptin receptor splicing variants, including a long receptor (qLEPRl) and three soluble receptors (qLEPR-a, qLEPR-b and qLEPR-c) in Japanese quail (Coturnix japonica). The qLEP gene had high GC content (64%), which is similar to other reported avian leptin genes. The encoded qLEP protein possessed the conserved pair of cysteine residues that are required to form a lasso knot for full biological activity, but shared relatively low identities with LEPs of other vertebrates. The translated qLEPRl protein contained 1143 amino acids and shared high amino acid sequence identity with a chicken homolog (89% identity). qLEPRl also contained all the motifs, domains, and basic tyrosine residues that are conserved in the LEPRl proteins of other vertebrates. qRT-PCR analysis showed that LEP and the four LEPR variants were expressed extensively in all tissues examined; the expression levels of LEP were relatively high in hypothalamus, skeletal muscle, and pancreas, while the expression levels of the LEPRs were highest in the pituitary. Compared with the expression levels of juvenile qLEP and total qLEPR (including all LEPR variants), the expression levels of mature qLEP and total qLEPR were up-regulated in the hypothalamus and pituitary, and down-regulated in the ovary. The expressions of LEP/LEPR increased when fasting and decreased when refeeding in the brain and peripheral tissues of juvenile quail, which suggested that the LEP/LEPR system modulated food intake and energy expenditure, although, unlike in mammals, LEP may actually act to inhibit food intake during fasting, at least in juvenile quail. The results indicate that qLEP and qLEPR have unique expression patterns and that the encoded proteins play important roles in the regulation of reproduction and energy status in Japanese quail.
Collapse
Affiliation(s)
- Dandan Wang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China
| | - Chunlin Xu
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China
| | - Taian Wang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China
| | - Hong Li
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China
| | - Yanmin Li
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China
| | - Junxiao Ren
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China
| | - Yadong Tian
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China; Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Henan Agricultural University, Zhengzhou 450002, China; International Joint Research Laboratory for Poultry Breeding of Henan, Henan Agricultural University, Zhengzhou 450002, China
| | - Zhuanjian Li
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China; Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Henan Agricultural University, Zhengzhou 450002, China; International Joint Research Laboratory for Poultry Breeding of Henan, Henan Agricultural University, Zhengzhou 450002, China
| | - Yuping Jiao
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China; Institute of Animal Husbandry and Veterinary Medicine, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Xiangtao Kang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China; Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Henan Agricultural University, Zhengzhou 450002, China; International Joint Research Laboratory for Poultry Breeding of Henan, Henan Agricultural University, Zhengzhou 450002, China.
| | - Xiaojun Liu
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China; Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Henan Agricultural University, Zhengzhou 450002, China; International Joint Research Laboratory for Poultry Breeding of Henan, Henan Agricultural University, Zhengzhou 450002, China.
| |
Collapse
|
29
|
ANJUM MS, SANDHU MA, UR-RAHMAN Z, SAFDAR A. Circulating metabolic and reproductive hormone changes in laying hens kept under various heat-combating systems. TURKISH JOURNAL OF VETERINARY & ANIMAL SCIENCES 2016. [DOI: 10.3906/vet-1602-84] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
30
|
Wen R, Hu S, Xiao Q, Han C, Gan C, Gou H, Liu H, Li L, Xu H, He H, Wang J. Leptin exerts proliferative and anti-apoptotic effects on goose granulosa cells through the PI3K/Akt/mTOR signaling pathway. J Steroid Biochem Mol Biol 2015; 149:70-9. [PMID: 25576904 DOI: 10.1016/j.jsbmb.2015.01.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Revised: 12/08/2014] [Accepted: 01/03/2015] [Indexed: 01/30/2023]
Abstract
Leptin was known as a pivotal regulator for the control of food intake and energy expenditure. However, leptin has also been found to be involved in the regulation of female reproductive system through interactions with pathways in the hypothalamic-hypophyseal axis and direct action at the ovarian level. In the present study, granulosa cells from goose ovarian preovulatory (F1-F3) follicles were cultured with leptin (0, 1, 10 or 100ng/ml). The proliferative and anti-apoptotic actions of leptin in granulosa cells were revealed by CCK-8, BrdU and TUNEL assays. Quantitative real-time PCR and Western blot analyses further indicated that leptin treatment led to increased expression of cyclin D1, cyclin D2, cyclin D3 and bcl-2, and decreased expression of p21 and caspase-3. The effects were involved in the activation of the PI3K/Akt/mTOR signaling pathway, as leptin treatment enhanced the expression of PI3K, Akt1, Akt2, Raptor, mTOR, S6K and p-S6K. Moreover, blockade of the PI3K/Akt/mTOR pathway attenuated the influences of leptin on proliferation and apoptosis of granulosa cells, considering that activated factors by leptin were inhibited in the presence of either 20μM LY294002 (a PI3K inhibitor) or 10μM rapamycin (an mTOR inhibitor). In addition, leptin had a modulatory effect on the expression of its receptor at the transcriptional and translational levels, and blockade of PI3K/Akt/mTOR inhibited both basal and leptin-induced Lepr gene and protein expression. These findings suggest that leptin exerts its proliferative and anti-apoptotic effects on goose granulosa cells through the PI3K/Akt/mTOR signaling pathway via interaction with its receptor.
Collapse
Affiliation(s)
- Rui Wen
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Ya'an, Sichuan 625014, PR China
| | - Shenqiang Hu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Ya'an, Sichuan 625014, PR China
| | - Qihai Xiao
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Ya'an, Sichuan 625014, PR China
| | - Chunchun Han
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Ya'an, Sichuan 625014, PR China
| | - Chao Gan
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Ya'an, Sichuan 625014, PR China
| | - Hua Gou
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Ya'an, Sichuan 625014, PR China
| | - Hehe Liu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Ya'an, Sichuan 625014, PR China
| | - Liang Li
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Ya'an, Sichuan 625014, PR China
| | - Hengyong Xu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Ya'an, Sichuan 625014, PR China
| | - Hua He
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Ya'an, Sichuan 625014, PR China
| | - Jiwen Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Ya'an, Sichuan 625014, PR China.
| |
Collapse
|
31
|
Lei MM, Wu SQ, Shao XB, Li XW, Chen Z, Ying SJ, Shi ZD. Creating leptin-like biofunctions by active immunization against chicken leptin receptor in growing chickens. Domest Anim Endocrinol 2015; 50:55-64. [PMID: 25447880 DOI: 10.1016/j.domaniend.2014.09.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2014] [Revised: 09/01/2014] [Accepted: 09/04/2014] [Indexed: 12/19/2022]
Abstract
In this study, immunization against chicken leptin receptor (cLEPR) extracellular domain (ECD) was applied to investigate leptin regulation and LEPR biofunction in growing chicken pullets. A recombinant protein (cLEPR ECD) based on the cLEPR complemenary DNA sequence corresponding to the 582nd to 796th amino acid residues of cLEPR mature peptide was prepared and used as antigen. Immunization against cLEPR ECD in growing chickens increased anti-cLEPR ECD antibody titers in blood, enhanced proportions of phosphorylated janus kinase 2 (JAK2) and served as signal transducer and activator of transcription 3 (STAT3) protein in liver tissue. Chicken live weight gain and abdominal fat mass were significantly decreased (P < 0.05), but feed intake was stimulated by cLEPR ECD immunization (P < 0.05). The treatment also upregulated the gene expression levels of lepR, AMP-activated protein kinase (AMPK), acetyl CoA carboxylase-2 (ACC2), and uncoupling protein 3 (UCP3) in liver, abdominal fat, and breast muscle (P < 0.05) but decreased fasn expression levels (P < 0.01). Apart from that of lepR, the expression of appetite-regulating genes, such as orexigenic genes, agouti-related peptide (AgRP) and neuropeptide Y (NPY), were upregulated (P < 0.01), whereas the anorexigenic gene proopiomelanocortin (POMC) was downregulated in the hypothalamic tissue of cLEPR-immunized pullets (P < 0.01). Blood concentrations of metabolic molecules, such as glucose, triglycerides, and very-low-density lipoprotein, were significantly decreased in cLEPR-immunized pullets but those of cholesterol, high-density lipoprotein, and low-density lipoprotein increased. These results demonstrate that antibodies to membrane proximal cLEPR ECD enhance cLEPR signal transduction, which stimulates metabolism and reduces fat deposition in chickens.
Collapse
Affiliation(s)
- M M Lei
- Laboratory of Animal Breed Improvement and Reproduction, Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - S Q Wu
- College of Animal Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - X B Shao
- Institute of Guagndong Province Poultry Technology, Guangzhou, 510520, China
| | - X W Li
- College of Animal Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Z Chen
- Laboratory of Animal Breed Improvement and Reproduction, Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - S J Ying
- Laboratory of Animal Breed Improvement and Reproduction, Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Z D Shi
- Laboratory of Animal Breed Improvement and Reproduction, Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China.
| |
Collapse
|
32
|
Wu L, Liu W, Bayaer N, Gu W, Song J. Exogenous leptin administered intramuscularly induces sex hormone disorder and Ca loss via downregulation of Gnrh and PI3K expression. Exp Anim 2014; 63:447-57. [PMID: 25048263 PMCID: PMC4244293 DOI: 10.1538/expanim.63.447] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Obesity is a public health problem that increases the risk of metabolic disease,
infertility, and other chronic health problems. The present study aimed to develop a new
rat model for sex hormone disorder with overweight and Ca loss by intramuscular injection
of exogenous leptin (LEP). Thirty female Sprague-Dawley (SD) rats (40 days old) were
injected thrice intramuscularly with LEP or keyhole limpet hemocyanin immunogen. The
following analyses were performed to determine the development of appetite, overweight,
reproductive related-hormones, and calcium (Ca)/phosphorus (Pi) in SD rats: measurement of
Lee’s index, body weight, food intake; serum Ca, Pi, and hormone tests by enzyme-linked
immunosorbent analysis; histological analysis of abdominal fat; real-time polymerase chain
reaction analysis of neuropeptide Y, pro-opiomelanocortin, gonadotropin-releasing hormone
(Gnrh) mRNA, and gonadotropin-releasing hormone receptor
(Gnrhr) mRNA expression; and western blotting analysis of enzyme
phosphatidylinositol-3-kinase (PI3K). Rats injected with LEP immunogen displayed
significantly increased body weight, food intake, Lee’s index, serum LEP, serum cortisol,
fat deposition in the abdomen, and decreased hormones including follicle stimulating
hormone, luteinizing hormone, estradiol, cholecystokinin, and Ca. Exogenous LEP
administered intramuscularly also downregulate Gnrh and PI3K. In
conclusion, exogenous LEP administered intramuscularly is a novel animal model for sex
hormones disorder with overweight and Ca loss in SD rats. The downregulation of PI3K and
Gnrh may be involved in the development of this animal model.
Collapse
Affiliation(s)
- Lihong Wu
- Department of Laboratory Animal Center, Southern Medical University, 1023 Guangzhou North Road, 510515 Guangzhou, Guangdong, P.R. China
| | | | | | | | | |
Collapse
|
33
|
Wu L, LIU W, BAYAER N, GU W, SONG J. Exogenous Leptin Administered Intramuscularly Induces Sex Hormone Disorder and Ca Loss via Downregulation of Gnrh and PI3K Expression. Exp Anim 2014. [DOI: 10.1538/expanim.14-0028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Affiliation(s)
- Lihong Wu
- Department of Laboratory Animal Center, Southern Medical University, 1023 Guangzhou North Road, 510515 Guangzhou, Guangdong, P.R. China
- Songshan Lake Pearl Laboratory Animal Sci. &Tech. Co., Ltd., 523808 Dongguan, P.R. China
- Key Laboratory of Oral Medicine, School and Hospital of Stomatology, Guangzhou Medical University, 510140 Guangzhou, P.R. China
| | - Wen LIU
- Department of Pathology, University of Tennessee Health Science Center, 38163 Memphis, Tennessee, USA
| | - Nashun BAYAER
- Department of Laboratory Animal Center, Guang Dong Medical College, 523808 Zhanjiang, P.R. China
| | - Weiwang GU
- Department of Laboratory Animal Center, Southern Medical University, 1023 Guangzhou North Road, 510515 Guangzhou, Guangdong, P.R. China
| | - Jieli SONG
- Department of Vasculocardiology, The Fifth Affiliated Hospital of Southern Medical University, 510900 Guang Zhou, Guangdong, P.R. China
| |
Collapse
|