1
|
Bradshaw WJ, Harris G, Gileadi O, Katis VL. The mechanism of allosteric activation of SYK kinase derived from multiple phospho-ITAM-bound structures. Structure 2024; 32:2337-2351.e4. [PMID: 39442513 PMCID: PMC11625004 DOI: 10.1016/j.str.2024.09.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/30/2024] [Accepted: 09/25/2024] [Indexed: 10/25/2024]
Abstract
Spleen tyrosine kinase (SYK) is central to adaptive and innate immune signaling. It features a regulatory region containing tandem SH2 (tSH2) domains separated by a helical "hinge" segment keeping SYK inactive by associating with the kinase domain. SYK activation is triggered when the tSH2 domains bind to a phosphorylated immunoreceptor tyrosine-based activation motif (ITAM) found on receptor tails. Past mutational studies have indicated that ITAM binding disrupts the hinge-kinase interaction, leading to SYK phosphorylation and activation. However, the mechanism of this process is unclear, as the ITAM interaction occurs far from the hinge region. We have determined crystal structures of three phospho-ITAMs in complex with the tSH2 domains, revealing a highly conserved binding mechanism. These structures, together with mutational studies and biophysical analyses, reveal that phospho-ITAM binding restricts SH2 domain movement and causes allosteric changes in the hinge region. These changes are not compatible with the association of the kinase domain, leading to kinase activation.
Collapse
Affiliation(s)
- William J Bradshaw
- Alzheimer's Research UK Oxford Drug Discovery Institute, Centre for Medicines Discovery, Nuffield Department of Medicine Research Building, Old Road Campus, University of Oxford, Oxford OX3 7FZ, UK
| | - Gemma Harris
- Research Complex at Harwell, Rutherford Appleton Laboratory, Harwell Campus, Didcot OX11 0FA, UK
| | - Opher Gileadi
- Alzheimer's Research UK Oxford Drug Discovery Institute, Centre for Medicines Discovery, Nuffield Department of Medicine Research Building, Old Road Campus, University of Oxford, Oxford OX3 7FZ, UK
| | - Vittorio L Katis
- Alzheimer's Research UK Oxford Drug Discovery Institute, Centre for Medicines Discovery, Nuffield Department of Medicine Research Building, Old Road Campus, University of Oxford, Oxford OX3 7FZ, UK.
| |
Collapse
|
2
|
Yuan JJ, Zhao YN, Yu SH, Sun Y, Li GX, Yan JY, Xu JM, Ding WN, Benhamed M, Qiu RL, Jin CW, Zheng SJ, Ding ZJ. The Arabidopsis receptor-like kinase WAKL4 limits cadmium uptake via phosphorylation and degradation of NRAMP1 transporter. Nat Commun 2024; 15:9537. [PMID: 39496660 PMCID: PMC11535502 DOI: 10.1038/s41467-024-53898-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 10/22/2024] [Indexed: 11/06/2024] Open
Abstract
Cadmium (Cd) is a detrimental heavy metal propagated from soil to the food chain via plants, posing a great risk to human health upon consumption. Despite the understanding of Cd tolerance mechanisms in plants, whether and how plants actively respond to Cd and in turn restrict its uptake and accumulation remain elusive. Here, we identify a cell wall-associated receptor-like kinase 4 (WAKL4) involved in specific tolerance to Cd stress. We show that Cd rapidly and exclusively induces WAKL4 accumulation by promoting WAKL4 transcription and blocking its vacuole-dependent proteolysis in roots. The accumulated WAKL4 next interacts with and phosphorylates the Cd transporter NRAMP1 at Tyr488, leading to the enhanced ubiquitination and vacuole-dependent degradation of NRAMP1, and consequently reducing Cd uptake. Our findings therefore uncover a mechanism conferred by the WAKL4-NRAMP1 module that enables plants to actively respond to Cd and limit its uptake, informing the future molecular breeding of low Cd accumulated crops or vegetables.
Collapse
Affiliation(s)
- Jun Jie Yuan
- State Key Laboratory of Plant Environmental Resilience, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 5100642, China
| | - Ya Nan Zhao
- State Key Laboratory of Plant Environmental Resilience, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Su Hang Yu
- State Key Laboratory of Plant Environmental Resilience, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Ying Sun
- School of Agriculture, Ningxia University, Yinchuan, 750021, China
| | - Gui Xin Li
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Jing Ying Yan
- Agricultural Experimental Station, Zhejiang University, Hangzhou, 310058, China
| | - Ji Ming Xu
- State Key Laboratory of Plant Environmental Resilience, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Wo Na Ding
- Ningbo Key Laboratory of Agricultural Germplasm Resources Mining and Environmental Regulation, College of Science and Technology, Ningbo University, Ningbo, 315300, China
| | - Moussa Benhamed
- Université Paris-Saclay, CNRS, INRAE, Univ Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 10 91405, Orsay, France
| | - Rong Liang Qiu
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 5100642, China
| | - Chong Wei Jin
- State Key Laboratory of Plant Environmental Resilience, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Shao Jian Zheng
- State Key Laboratory of Plant Environmental Resilience, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 5100642, China
| | - Zhong Jie Ding
- State Key Laboratory of Plant Environmental Resilience, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
3
|
Di Bernardo M, León Guerrero VL, Sutoski JC, Hardy WR, MacNeil LT. SHC-3: a previously unidentified C. elegans Shc family member functions in the insulin-like signaling pathway to enhance survival during L1 arrest. Genetics 2024; 228:iyae093. [PMID: 38861412 PMCID: PMC11630764 DOI: 10.1093/genetics/iyae093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 11/21/2023] [Accepted: 05/21/2024] [Indexed: 06/13/2024] Open
Abstract
Shc (Src homologous and collagen) proteins function in many different signaling pathways where they mediate phosphorylation-dependent protein-protein interactions. These proteins are characterized by the presence of two phosphotyrosine-binding domains, an N-terminal PTB and a C-terminal SH2. We describe a previously unrecognized Caenorhabditis elegans Shc gene, shc-3 and characterize its role in stress response. Both shc-3 and shc-1 are required for long-term survival in L1 arrest and survival in heat stress, however, they do not act redundantly but rather play distinct roles in these processes. Loss of shc-3 did not further decrease survival of daf-16 mutants in L1 arrest, suggesting that like SHC-1, SHC-3 functions in the insulin-like signaling pathway. In the absence of SHC-3, DAF-16 nuclear entry and exit are slowed, suggesting that SHC-3 is required for rapid changes in DAF-16 signaling.
Collapse
Affiliation(s)
- Mercedes Di Bernardo
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main St W, Hamilton, ON L8S 4K1, Canada
| | - Victoria L León Guerrero
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main St W, Hamilton, ON L8S 4K1, Canada
| | - Jacob C Sutoski
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main St W, Hamilton, ON L8S 4K1, Canada
| | - William Rod Hardy
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main St W, Hamilton, ON L8S 4K1, Canada
| | - Lesley T MacNeil
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main St W, Hamilton, ON L8S 4K1, Canada
- Farncombe Family Digestive Health Research Institute, McMaster University, 1280 Main St W, Hamilton, ON L8S 4K1, Canada
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, 1280 Main St W, Hamilton, ON L8S 4K1, Canada
| |
Collapse
|
4
|
Bradley D, Hogrebe A, Dandage R, Dubé AK, Leutert M, Dionne U, Chang A, Villén J, Landry CR. The fitness cost of spurious phosphorylation. EMBO J 2024; 43:4720-4751. [PMID: 39256561 PMCID: PMC11480408 DOI: 10.1038/s44318-024-00200-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 07/23/2024] [Accepted: 07/24/2024] [Indexed: 09/12/2024] Open
Abstract
The fidelity of signal transduction requires the binding of regulatory molecules to their cognate targets. However, the crowded cell interior risks off-target interactions between proteins that are functionally unrelated. How such off-target interactions impact fitness is not generally known. Here, we use Saccharomyces cerevisiae to inducibly express tyrosine kinases. Because yeast lacks bona fide tyrosine kinases, the resulting tyrosine phosphorylation is biologically spurious. We engineered 44 yeast strains each expressing a tyrosine kinase, and quantitatively analysed their phosphoproteomes. This analysis resulted in ~30,000 phosphosites mapping to ~3500 proteins. The number of spurious pY sites generated correlates strongly with decreased growth, and we predict over 1000 pY events to be deleterious. However, we also find that many of the spurious pY sites have a negligible effect on fitness, possibly because of their low stoichiometry. This result is consistent with our evolutionary analyses demonstrating a lack of phosphotyrosine counter-selection in species with tyrosine kinases. Our results suggest that, alongside the risk for toxicity, the cell can tolerate a large degree of non-functional crosstalk as interaction networks evolve.
Collapse
Affiliation(s)
- David Bradley
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, QC, Canada
- Department of Biochemistry, Microbiology and Bioinformatics, Université Laval, Québec, QC, Canada
- Quebec Network for Research on Protein Function, Engineering, and Applications (PROTEO), Université du Québec à Montréal, Montréal, QC, Canada
- Université Laval Big Data Research Center (BDRC_UL), Québec, QC, Canada
- Department of Biology, Université Laval, Québec, QC, Canada
| | - Alexander Hogrebe
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Rohan Dandage
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, QC, Canada
- Department of Biochemistry, Microbiology and Bioinformatics, Université Laval, Québec, QC, Canada
- Quebec Network for Research on Protein Function, Engineering, and Applications (PROTEO), Université du Québec à Montréal, Montréal, QC, Canada
- Université Laval Big Data Research Center (BDRC_UL), Québec, QC, Canada
- Department of Biology, Université Laval, Québec, QC, Canada
| | - Alexandre K Dubé
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, QC, Canada
- Department of Biochemistry, Microbiology and Bioinformatics, Université Laval, Québec, QC, Canada
- Quebec Network for Research on Protein Function, Engineering, and Applications (PROTEO), Université du Québec à Montréal, Montréal, QC, Canada
- Université Laval Big Data Research Center (BDRC_UL), Québec, QC, Canada
- Department of Biology, Université Laval, Québec, QC, Canada
| | - Mario Leutert
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Institute of Molecular Systems Biology, ETH Zürich, Zürich, Switzerland
| | - Ugo Dionne
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, QC, Canada
- Department of Biochemistry, Microbiology and Bioinformatics, Université Laval, Québec, QC, Canada
- Quebec Network for Research on Protein Function, Engineering, and Applications (PROTEO), Université du Québec à Montréal, Montréal, QC, Canada
- Université Laval Big Data Research Center (BDRC_UL), Québec, QC, Canada
- Department of Biology, Université Laval, Québec, QC, Canada
| | - Alexis Chang
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Judit Villén
- Department of Genome Sciences, University of Washington, Seattle, WA, USA.
| | - Christian R Landry
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, QC, Canada.
- Department of Biochemistry, Microbiology and Bioinformatics, Université Laval, Québec, QC, Canada.
- Quebec Network for Research on Protein Function, Engineering, and Applications (PROTEO), Université du Québec à Montréal, Montréal, QC, Canada.
- Université Laval Big Data Research Center (BDRC_UL), Québec, QC, Canada.
- Department of Biology, Université Laval, Québec, QC, Canada.
| |
Collapse
|
5
|
Xiang S, Zhu C, Zhou Y, Wu W, Zhang Y, Chen C, Wang F. Facile Generation of Neutralizing Antibodies on Tyrosine Phosphorylated IRS1 by Epitope-Directed Elicitation. ACS Chem Biol 2024; 19:2050-2059. [PMID: 39137393 DOI: 10.1021/acschembio.4c00382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
Generating antibodies specific to the functional epitope containing phosphotyrosine remains highly challenging. Here, we create an "epitope-directed immunogen" by incorporating fluorosulfate-l-tyrosine (FSY) with cross-linking activities into a specific tyrosine phosphorylation site of insulin receptor substrate 1 (IRS1) and immunizing mice to elicit site-specific antibody responses. By taking advantage of antibody clonal selection and evolution in vivo, we efficiently identified antibodies that target the IRS1 Y612 epitope and are capable of neutralizing the binding interactions between IRS1 and p85α mediated by the phosphorylation of Y612. This epitope-directed antibody elicitation by encoding the cross-linking reactivity in the immunogen potentially enables a general method for facile generation of neutralizing antibodies to protein tyrosine phosphorylation sites.
Collapse
Affiliation(s)
- Shuqin Xiang
- Key Laboratory of Biomacromolecules (CAS), CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Chaoyang District, Beijing 100101, China
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100408, China
| | - Chaoyang Zhu
- Key Laboratory of Biomacromolecules (CAS), CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Chaoyang District, Beijing 100101, China
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100408, China
| | - Yinjian Zhou
- Key Laboratory of Biomacromolecules (CAS), CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Chaoyang District, Beijing 100101, China
| | - Weiping Wu
- Suzhou Institute for Biomedical Research, Suzhou 215028, Jiangsu, China
| | - Yuhan Zhang
- Key Laboratory of Biomacromolecules (CAS), CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Chaoyang District, Beijing 100101, China
| | - Chen Chen
- Key Laboratory of Biomacromolecules (CAS), CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Chaoyang District, Beijing 100101, China
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100408, China
| | - Feng Wang
- Key Laboratory of Biomacromolecules (CAS), CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Chaoyang District, Beijing 100101, China
- Suzhou Institute for Biomedical Research, Suzhou 215028, Jiangsu, China
- Beijing Translational Center for Biopharmaceuticals, Beijing 100101, China
| |
Collapse
|
6
|
Kratzwald S, Schwarz TC, Ledolter K, Hlavac M, Felkl M, Becker CFW, Konrat R, Lichtenecker RJ. Synthesis of a 13C/ 2H Labeled Building Block to Probe the Phosphotyrosine Interactome Using Biomolecular NMR Spectroscopy. Chembiochem 2024:e202400663. [PMID: 39271462 DOI: 10.1002/cbic.202400663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/13/2024] [Accepted: 09/13/2024] [Indexed: 09/15/2024]
Abstract
Phosphotyrosine (pTyr) recognition coordinates the assembly of protein complexes, thus controlling key events of cell cycle, cell development and programmed cell death. Although many aspects of membrane receptor function and intracellular signal transduction have been deciphered in the last decades, the details of how phosphorylation alters protein-protein interaction and creates regulating switches of protein activity and localization often remains unclear. We developed a synthetic route to a protected phophotyrosine building block with isolated 13C-1H spins in the aromatic ring. The compound can be used for solid phase peptide synthesis (SPPS) and readily applied to study affinity, dynamics and interactions on an atomic level using NMR spectroscopy. As a first example, we prepared an isotopologue of a pTyr containing 12mer peptide (pY1021) as part of the platelet-derived growth factor to analyze the binding to the phospholipase C-γ (PLCγ-1) SH2 domain.
Collapse
Affiliation(s)
- Sarah Kratzwald
- Institute of Organic Chemistry, Faculty of Chemistry, University of Vienna, Währingerstr. 38, Vienna, 1090, Austria
- Mag-Lab Vienna, Karl-Farkas Gasse 22, Vienna, 1030, Austria
| | - Thomas C Schwarz
- Department of Structural and Computational Biology, University of Vienna, Vienna Biocenter 5, Vienna, 1030, Austria
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Vienna Biocenter 5, Vienna, 1030, Austria
- Christian Doppler Laboratory for High-Content Structural Biology and Biotechnology, Department of Structural and Computational Biology, Max Perutz Labs, University of Vienna, Vienna Biocenter 5, Vienna, 1030, Austria
| | - Karin Ledolter
- Department of Structural and Computational Biology, University of Vienna, Vienna Biocenter 5, Vienna, 1030, Austria
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Vienna Biocenter 5, Vienna, 1030, Austria
| | - Matus Hlavac
- Mag-Lab Vienna, Karl-Farkas Gasse 22, Vienna, 1030, Austria
| | - Manuel Felkl
- Institute of Biological Chemistry, Faculty of Chemistry, University of Vienna, Währingerstr. 38, Vienna, 1090, Austria
| | - Christian F W Becker
- Institute of Biological Chemistry, Faculty of Chemistry, University of Vienna, Währingerstr. 38, Vienna, 1090, Austria
| | - Robert Konrat
- Department of Structural and Computational Biology, University of Vienna, Vienna Biocenter 5, Vienna, 1030, Austria
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Vienna Biocenter 5, Vienna, 1030, Austria
- Christian Doppler Laboratory for High-Content Structural Biology and Biotechnology, Department of Structural and Computational Biology, Max Perutz Labs, University of Vienna, Vienna Biocenter 5, Vienna, 1030, Austria
| | - Roman J Lichtenecker
- Institute of Organic Chemistry, Faculty of Chemistry, University of Vienna, Währingerstr. 38, Vienna, 1090, Austria
- Mag-Lab Vienna, Karl-Farkas Gasse 22, Vienna, 1030, Austria
- Christian Doppler Laboratory for High-Content Structural Biology and Biotechnology, Department of Structural and Computational Biology, Max Perutz Labs, University of Vienna, Vienna Biocenter 5, Vienna, 1030, Austria
| |
Collapse
|
7
|
van Vlimmeren AE, Voleti R, Chartier CA, Jiang Z, Karandur D, Humphries PA, Lo WL, Shah NH. The pathogenic T42A mutation in SHP2 rewires the interaction specificity of its N-terminal regulatory domain. Proc Natl Acad Sci U S A 2024; 121:e2407159121. [PMID: 39012820 PMCID: PMC11287265 DOI: 10.1073/pnas.2407159121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 06/19/2024] [Indexed: 07/18/2024] Open
Abstract
Mutations in the tyrosine phosphatase Src homology-2 domain-containing protein tyrosine phosphatase-2 (SHP2) are associated with a variety of human diseases. Most mutations in SHP2 increase its basal catalytic activity by disrupting autoinhibitory interactions between its phosphatase domain and N-terminal SH2 (phosphotyrosine recognition) domain. By contrast, some disease-associated mutations located in the ligand-binding pockets of the N- or C-terminal SH2 domains do not increase basal activity and likely exert their pathogenicity through alternative mechanisms. We lack a molecular understanding of how these SH2 mutations impact SHP2 structure, activity, and signaling. Here, we characterize five SHP2 SH2 domain ligand-binding pocket mutants through a combination of high-throughput biochemical screens, biophysical and biochemical measurements, and molecular dynamics simulations. We show that while some of these mutations alter binding affinity to phosphorylation sites, the T42A mutation in the N-SH2 domain is unique in that it also substantially alters ligand-binding specificity, despite being 8 to 10 Å from the specificity-determining region of the SH2 domain. This mutation exerts its effect on sequence specificity by remodeling the phosphotyrosine-binding pocket, altering the mode of engagement of both the phosphotyrosine and surrounding residues on the ligand. The functional consequence of this altered specificity is that the T42A mutant has biased sensitivity toward a subset of activating ligands and enhances downstream signaling. Our study highlights an example of a nuanced mechanism of action for a disease-associated mutation, characterized by a change in protein-protein interaction specificity that alters enzyme activation.
Collapse
Affiliation(s)
- Anne E. van Vlimmeren
- Department of Chemistry, Columbia University, New York, NY10027
- Department of Biological Sciences, Columbia University, New York, NY10027
| | - Rashmi Voleti
- Department of Chemistry, Columbia University, New York, NY10027
| | | | - Ziyuan Jiang
- Department of Chemistry, Columbia University, New York, NY10027
| | - Deepti Karandur
- Department of Biochemistry, Vanderbilt University, Nashville, TN37232
| | - Preston A. Humphries
- Division of Microbiology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT84112
| | - Wan-Lin Lo
- Division of Microbiology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT84112
| | - Neel H. Shah
- Department of Chemistry, Columbia University, New York, NY10027
| |
Collapse
|
8
|
van Vlimmeren AE, Voleti R, Chartier CA, Jiang Z, Karandur D, Humphries PA, Lo WL, Shah NH. The pathogenic T42A mutation in SHP2 rewires the interaction specificity of its N-terminal regulatory domain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.07.10.548257. [PMID: 37502916 PMCID: PMC10369915 DOI: 10.1101/2023.07.10.548257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Mutations in the tyrosine phosphatase SHP2 are associated with a variety of human diseases. Most mutations in SHP2 increase its basal catalytic activity by disrupting auto-inhibitory interactions between its phosphatase domain and N-terminal SH2 (phosphotyrosine recognition) domain. By contrast, some disease-associated mutations located in the ligand-binding pockets of the N- or C-terminal SH2 domains do not increase basal activity and likely exert their pathogenicity through alternative mechanisms. We lack a molecular understanding of how these SH2 mutations impact SHP2 structure, activity, and signaling. Here, we characterize five SHP2 SH2 domain ligand-binding pocket mutants through a combination of high-throughput biochemical screens, biophysical and biochemical measurements, and molecular dynamics simulations. We show that, while some of these mutations alter binding affinity to phosphorylation sites, the T42A mutation in the N-SH2 domain is unique in that it also substantially alters ligand-binding specificity, despite being 8-10 Å from the specificity-determining region of the SH2 domain. This mutation exerts its effect on sequence specificity by remodeling the phosphotyrosine binding pocket, altering the mode of engagement of both the phosphotyrosine and surrounding residues on the ligand. The functional consequence of this altered specificity is that the T42A mutant has biased sensitivity toward a subset of activating ligands and enhances downstream signaling. Our study highlights an example of a nuanced mechanism of action for a disease-associated mutation, characterized by a change in protein-protein interaction specificity that alters enzyme activation.
Collapse
Affiliation(s)
- Anne E. van Vlimmeren
- Department of Chemistry, Columbia University, New York, NY 10027
- Department of Biological Sciences, Columbia University, New York, NY 10027
| | - Rashmi Voleti
- Department of Chemistry, Columbia University, New York, NY 10027
| | | | - Ziyuan Jiang
- Department of Chemistry, Columbia University, New York, NY 10027
| | - Deepti Karandur
- Department of Biochemistry, Vanderbilt University, Nashville, TN 37232
| | - Preston A. Humphries
- Division of Microbiology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84112
| | - Wan-Lin Lo
- Division of Microbiology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84112
| | - Neel H. Shah
- Department of Chemistry, Columbia University, New York, NY 10027
| |
Collapse
|
9
|
Bradley D, Hogrebe A, Dandage R, Dubé AK, Leutert M, Dionne U, Chang A, Villén J, Landry CR. The fitness cost of spurious phosphorylation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.08.561337. [PMID: 37873463 PMCID: PMC10592693 DOI: 10.1101/2023.10.08.561337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
The fidelity of signal transduction requires the binding of regulatory molecules to their cognate targets. However, the crowded cell interior risks off-target interactions between proteins that are functionally unrelated. How such off-target interactions impact fitness is not generally known, but quantifying this is required to understand the constraints faced by cell systems as they evolve. Here, we use the model organism S. cerevisiae to inducibly express tyrosine kinases. Because yeast lacks bona fide tyrosine kinases, most of the resulting tyrosine phosphorylation is spurious. This provides a suitable system to measure the impact of artificial protein interactions on fitness. We engineered 44 yeast strains each expressing a tyrosine kinase, and quantitatively analysed their phosphoproteomes. This analysis resulted in ~30,000 phosphosites mapping to ~3,500 proteins. Examination of the fitness costs in each strain revealed a strong correlation between the number of spurious pY sites and decreased growth. Moreover, the analysis of pY effects on protein structure and on protein function revealed over 1000 pY events that we predict to be deleterious. However, we also find that a large number of the spurious pY sites have a negligible effect on fitness, possibly because of their low stoichiometry. This result is consistent with our evolutionary analyses demonstrating a lack of phosphotyrosine counter-selection in species with bona fide tyrosine kinases. Taken together, our results suggest that, alongside the risk for toxicity, the cell can tolerate a large degree of non-functional crosstalk as interaction networks evolve.
Collapse
Affiliation(s)
- David Bradley
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, QC, Canada
- Department of Biochemistry, Microbiology and Bioinformatics, Université Laval, Québec, QC, Canada
- Quebec Network for Research on Protein Function, Engineering, and Applications (PROTEO), Université du Québec à Montréal, Montréal, QC, Canada
- Université Laval Big Data Research Center (BDRC_UL), Québec, QC, Canada
- Department of Biology, Université Laval, Québec, QC, Canada
| | - Alexander Hogrebe
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Rohan Dandage
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, QC, Canada
- Department of Biochemistry, Microbiology and Bioinformatics, Université Laval, Québec, QC, Canada
- Quebec Network for Research on Protein Function, Engineering, and Applications (PROTEO), Université du Québec à Montréal, Montréal, QC, Canada
- Université Laval Big Data Research Center (BDRC_UL), Québec, QC, Canada
- Department of Biology, Université Laval, Québec, QC, Canada
| | - Alexandre K Dubé
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, QC, Canada
- Department of Biochemistry, Microbiology and Bioinformatics, Université Laval, Québec, QC, Canada
- Quebec Network for Research on Protein Function, Engineering, and Applications (PROTEO), Université du Québec à Montréal, Montréal, QC, Canada
- Université Laval Big Data Research Center (BDRC_UL), Québec, QC, Canada
- Department of Biology, Université Laval, Québec, QC, Canada
| | - Mario Leutert
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Institute of Molecular Systems Biology, ETH Zürich, Zürich, Switzerland
| | - Ugo Dionne
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, QC, Canada
- Department of Biochemistry, Microbiology and Bioinformatics, Université Laval, Québec, QC, Canada
- Quebec Network for Research on Protein Function, Engineering, and Applications (PROTEO), Université du Québec à Montréal, Montréal, QC, Canada
- Université Laval Big Data Research Center (BDRC_UL), Québec, QC, Canada
- Department of Biology, Université Laval, Québec, QC, Canada
| | - Alexis Chang
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Judit Villén
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Christian R Landry
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, QC, Canada
- Department of Biochemistry, Microbiology and Bioinformatics, Université Laval, Québec, QC, Canada
- Quebec Network for Research on Protein Function, Engineering, and Applications (PROTEO), Université du Québec à Montréal, Montréal, QC, Canada
- Université Laval Big Data Research Center (BDRC_UL), Québec, QC, Canada
- Department of Biology, Université Laval, Québec, QC, Canada
| |
Collapse
|
10
|
Pergu R, Shoba VM, Chaudhary SK, Munkanatta Godage DNP, Deb A, Singha S, Dhawa U, Singh P, Anokhina V, Singh S, Siriwardena SU, Choudhary A. Development and Applications of Chimera Platforms for Tyrosine Phosphorylation. ACS CENTRAL SCIENCE 2023; 9:1558-1566. [PMID: 37637727 PMCID: PMC10450875 DOI: 10.1021/acscentsci.3c00200] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Indexed: 08/29/2023]
Abstract
Chimeric small molecules that induce post-translational modification (PTM) on a target protein by bringing it into proximity to a PTM-inducing enzyme are furnishing novel modalities to perturb protein function. Despite recent advances, such molecules are unavailable for a critical PTM, tyrosine phosphorylation. Furthermore, the contemporary design paradigm of chimeric molecules, formed by joining a noninhibitory binder of the PTM-inducing enzyme with the binder of the target protein, prohibits the recruitment of most PTM-inducing enzymes as their noninhibitory binders are unavailable. Here, we report two platforms to generate phosphorylation-inducing chimeric small molecules (PHICS) for tyrosine phosphorylation. We generate PHICS from both noninhibitory binders (scantily available, platform 1) and kinase inhibitors (abundantly available, platform 2) using cysteine-based group transfer chemistry. PHICS triggered phosphorylation on tyrosine residues in diverse sequence contexts and target proteins (e.g., membrane-associated, cytosolic) and displayed multiple bioactivities, including the initiation of a growth receptor signaling cascade and the death of drug-resistant cancer cells. These studies provide an approach to induce biologically relevant PTM and lay the foundation for pharmacologic PTM editing (i.e., induction or removal) of target proteins using abundantly available inhibitors of PTM-inducing or -erasing enzymes.
Collapse
Affiliation(s)
- Rajaiah Pergu
- Chemical
Biology and Therapeutics Science, Broad
Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States
| | - Veronika M. Shoba
- Chemical
Biology and Therapeutics Science, Broad
Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States
| | - Santosh K. Chaudhary
- Chemical
Biology and Therapeutics Science, Broad
Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States
| | | | - Arghya Deb
- Chemical
Biology and Therapeutics Science, Broad
Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States
| | - Santanu Singha
- Chemical
Biology and Therapeutics Science, Broad
Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States
| | - Uttam Dhawa
- Chemical
Biology and Therapeutics Science, Broad
Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States
| | - Prashant Singh
- Chemical
Biology and Therapeutics Science, Broad
Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States
| | - Viktoriya Anokhina
- Chemical
Biology and Therapeutics Science, Broad
Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States
| | - Sameek Singh
- Chemical
Biology and Therapeutics Science, Broad
Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States
| | - Sachini U. Siriwardena
- Chemical
Biology and Therapeutics Science, Broad
Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States
| | - Amit Choudhary
- Chemical
Biology and Therapeutics Science, Broad
Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States
- Department
of Medicine, Harvard Medical School, Boston, Massachusetts 02115, United States
- Divisions
of Renal Medicine and Engineering, Brigham
and Women’s Hospital, Boston, Massachusetts 02115, United States
| |
Collapse
|
11
|
Ullo MF, Case LB. How cells sense and integrate information from different sources. WIREs Mech Dis 2023:e1604. [PMID: 36781396 DOI: 10.1002/wsbm.1604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 01/06/2023] [Accepted: 01/24/2023] [Indexed: 02/15/2023]
Abstract
Cell signaling is a fundamental cellular process that enables cells to sense and respond to information in their surroundings. At the molecular level, signaling is primarily carried out by transmembrane protein receptors that can initiate complex downstream signal transduction cascades to alter cellular behavior. In the human body, different cells can be exposed to a wide variety of environmental conditions, and cells express diverse classes of receptors capable of sensing and integrating different signals. Furthermore, different receptors and signaling pathways can crosstalk with each other to calibrate the cellular response. Crosstalk occurs through multiple mechanisms at different levels of signaling pathways. In this review, we discuss how cells sense and integrate different chemical, mechanical, and spatial signals as well as the mechanisms of crosstalk between pathways. To illustrate these concepts, we use a few well-studied signaling pathways, including receptor tyrosine kinases and integrin receptors. Finally, we discuss the implications of dysregulated cellular sensing on driving diseases such as cancer. This article is categorized under: Cancer > Molecular and Cellular Physiology Metabolic Diseases > Molecular and Cellular Physiology.
Collapse
Affiliation(s)
- Maria F Ullo
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Lindsay B Case
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| |
Collapse
|
12
|
Bobone S, Storti C, Calligari P, Stella L. Fluorescence Anisotropy and Polarization in the Characterization of Biomolecular Association Processes and Their Application to Study SH2 Domain Binding Affinity. Methods Mol Biol 2023; 2705:93-112. [PMID: 37668971 DOI: 10.1007/978-1-0716-3393-9_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2023]
Abstract
Fluorescence anisotropy (or polarization) is a powerful technique to study biomolecular association processes, by following the rotational motions of one of the two partners in the interaction, labeled with a fluorophore. It can be used to determine dissociation constants in solution, down to nM values, and unlabeled ligands can be characterized, too, by using competition experiments. In this chapter, we introduce the basic principles of the technique, compare it with other experimental approaches, and discuss the experimental details with specific examples regarding SH2 domain/phosphopeptide association processes. The experimental protocols to be used in binding experiments and displacement studies are described, as well as the caveats to be considered in performing accurate measurements.
Collapse
Affiliation(s)
- Sara Bobone
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Rome, Italy
| | - Claudia Storti
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Rome, Italy
| | - Paolo Calligari
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Rome, Italy
| | - Lorenzo Stella
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Rome, Italy.
| |
Collapse
|
13
|
Sámano-Sánchez H, Gibson TJ, Chemes LB. Using Linear Motif Database Resources to Identify SH2 Domain Binders. Methods Mol Biol 2023; 2705:153-197. [PMID: 37668974 DOI: 10.1007/978-1-0716-3393-9_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2023]
Abstract
The SH2-binding phosphotyrosine class of short linear motifs (SLiMs) are key conditional regulatory elements, particularly in signaling protein complexes beneath the cell's plasma membrane. In addition to transmitting cellular signaling information, they can also play roles in cellular hijack by invasive pathogens. Researchers can take advantage of bioinformatics tools and resources to predict the motifs at conserved phosphotyrosine residues in regions of intrinsically disordered protein. A candidate SH2-binding motif can be established and assigned to one or more of the SH2 domain subgroups. It is, however, not so straightforward to predict which SH2 domains are capable of binding the given candidate. This is largely due to the cooperative nature of the binding amino acids which enables poorer binding residues to be tolerated when the other residues are optimal. High-throughput peptide arrays are powerful tools used to derive SH2 domain-binding specificity, but they are unable to capture these cooperative effects and also suffer from other shortcomings. Tissue and cell type expression can help to restrict the list of available interactors: for example, some well-studied SH2 domain proteins are only present in the immune cell lineages. In this article, we provide a table of motif patterns and four bioinformatics strategies that introduce a range of tools that can be used in motif hunting in cellular and pathogen proteins. Experimental followup is essential to determine which SH2 domain/motif-containing proteins are the actual functional partners.
Collapse
Affiliation(s)
- Hugo Sámano-Sánchez
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
- Zhejiang University School of Medicine, International Campus, Zhejiang University, Haining, China
- Biomedical Sciences, Edinburgh Medical School, The University of Edinburgh, Edinburgh, UK
| | - Toby J Gibson
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Lucía B Chemes
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany.
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín (UNSAM) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Martín, Argentina.
- Escuela de Bio y Nanotecnologías (EByN), Universidad Nacional de San Martín, San Martín, Argentina.
| |
Collapse
|
14
|
Kiani A, Rios P, Köhn M. Peptides as Baits for the Coprecipitation of SH2 Domain-Containing Proteins. Methods Mol Biol 2023; 2705:359-369. [PMID: 37668984 DOI: 10.1007/978-1-0716-3393-9_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2023]
Abstract
Phosphotyrosine (pTyr)-containing amino acid sequences have regulatory effects on proteins that contain pTyr recognition motifs, such as Src Homology 2 (SH2) domains. Using pTyr-containing peptides as a bait for coprecipitation, by immobilization of the synthesized phosphopeptides to beads and incubation with cell lysates, enables to study the binding preference of the SH2 domain for the specific pTyr-sequence obtained from a pTyr-containing protein in a complex biological environment. Using phosphopeptides allows to not only assess the wild-type sequence, but also peptides that can contain modified sequences which carry a nonhydrolyzable pTyr or other modifications varying the binding strength and selectivity, for example, to create strong SH2 domain binders to inhibit their interaction with pTyr-containing proteins. This pulldown experiment can be used as an assay to evaluate the ability of a peptide to bind to the protein of interest in the cell lysate or investigate the selectivity of the peptide. Therefore, immobilizing phosphopeptides and using them as a pulldown tool has a wide range of applications.
Collapse
Affiliation(s)
- Azin Kiani
- Faculty of Biology, Institute of Biology III, University of Freiburg, Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
- Faculty of Chemistry and Pharmacy, University of Freiburg, Freiburg, Germany
| | - Pablo Rios
- Faculty of Biology, Institute of Biology III, University of Freiburg, Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| | - Maja Köhn
- Faculty of Biology, Institute of Biology III, University of Freiburg, Freiburg, Germany.
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
15
|
Stiegler AL, Boggon TJ. Structure Determination of SH2-Phosphopeptide Complexes by X-Ray Crystallography: The Example of p120RasGAP. Methods Mol Biol 2023; 2705:77-89. [PMID: 37668970 PMCID: PMC11059313 DOI: 10.1007/978-1-0716-3393-9_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2023]
Abstract
The p120RasGAP protein contains two Src homology 2 (SH2) domains, each with phosphotyrosine-binding activity. We describe the crystallization of the isolated and purified p120RasGAP SH2 domains with phosphopeptides derived from a binding partner protein, p190RhoGAP. Purified recombinant SH2 domain protein is mixed with synthetic phosphopeptide at a stoichiometric ratio to form the complex in vitro. Crystallization is then achieved by the hanging drop vapor diffusion method over specific reservoir solutions that yield single macromolecular co-crystals containing SH2 domain protein and phosphopeptide. This protocol yields suitable crystals for X-ray diffraction studies, and our recent X-ray crystallography studies of the two SH2 domains of p120RasGAP demonstrate that the N-terminal SH2 domain binds phosphopeptide in a canonical interaction. In contrast, the C-terminal SH2 domain binds phosphopeptide via a unique atypical binding mode. The crystallographic studies for p120RasGAP illustrate that although the three-dimensional structure of SH2 domains and the molecular details of their binding to phosphotyrosine peptides are well defined, careful structural analysis can continue to yield new molecular-level insights.
Collapse
Affiliation(s)
- Amy L Stiegler
- Department of Pharmacology, Yale University, New Haven, CT, USA
| | - Titus J Boggon
- Department of Pharmacology, Yale University, New Haven, CT, USA.
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA.
- Yale Cancer Center, Yale University, New Haven, CT, USA.
| |
Collapse
|
16
|
SH2 Domains: Folding, Binding and Therapeutical Approaches. Int J Mol Sci 2022; 23:ijms232415944. [PMID: 36555586 PMCID: PMC9783222 DOI: 10.3390/ijms232415944] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/06/2022] [Accepted: 12/09/2022] [Indexed: 12/23/2022] Open
Abstract
SH2 (Src Homology 2) domains are among the best characterized and most studied protein-protein interaction (PPIs) modules able to bind and recognize sequences presenting a phosphorylated tyrosine. This post-translational modification is a key regulator of a plethora of physiological and molecular pathways in the eukaryotic cell, so SH2 domains possess a fundamental role in cell signaling. Consequently, several pathologies arise from the dysregulation of such SH2-domains mediated PPIs. In this review, we recapitulate the current knowledge about the structural, folding stability, and binding properties of SH2 domains and their roles in molecular pathways and pathogenesis. Moreover, we focus attention on the different strategies employed to modulate/inhibit SH2 domains binding. Altogether, the information gathered points to evidence that pharmacological interest in SH2 domains is highly strategic to developing new therapeutics. Moreover, a deeper understanding of the molecular determinants of the thermodynamic stability as well as of the binding properties of SH2 domains appears to be fundamental in order to improve the possibility of preventing their dysregulated interactions.
Collapse
|
17
|
Alviar KB, Rotenberg D, Martin KM, Whitfield AE. The physical interactome between Peregrinus maidis proteins and the maize mosaic virus glycoprotein provides insights into the cellular biology of a rhabdovirus in the insect vector. Virology 2022; 577:163-173. [PMID: 36395538 DOI: 10.1016/j.virol.2022.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 10/02/2022] [Accepted: 10/02/2022] [Indexed: 11/07/2022]
Abstract
Rhabdovirus glycoproteins (G) serve multifunctional roles in virus entry, assembly, and exit from animal cells. We hypothesize that maize mosaic virus (MMV) G is required for invasion, infection, and spread in Peregrinus maidis, the planthopper vector. Using a membrane-based yeast two-hybrid assay, we identified 107 P. maidis proteins that physically interacted with MMV G, of which approximately 53% matched proteins with known functions including endocytosis, vesicle-mediated transport, protein synthesis and turnover, nuclear export, metabolism and host defense. Physical interaction networks among conserved proteins indicated a possible cellular coordination of processes associated with MMV G translation, protein folding and trafficking. Non-annotated proteins contained predicted functional sites, including a diverse array of ligand binding sites. Cyclophilin A and apolipophorin III co-immunoprecipitated with MMV G, and each showed different patterns of localization with G in insect cells. This study describes the first protein interactome for a rhabdovirus spike protein and insect vector.
Collapse
Affiliation(s)
- Karen B Alviar
- Institute of Weed Science, Entomology and Plant Pathology, College of Agriculture and Food Science, University of the Philippines Los Baños, College, Laguna, 4031, Philippines
| | - Dorith Rotenberg
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, 27695, USA
| | - Kathleen M Martin
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, 27695, USA
| | - Anna E Whitfield
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, 27695, USA.
| |
Collapse
|
18
|
Ryan A, Janosko CP, Courtney TM, Deiters A. Engineering SHP2 Phosphatase for Optical Control. Biochemistry 2022; 61:2687-2697. [DOI: 10.1021/acs.biochem.2c00387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Amy Ryan
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Chasity P. Janosko
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Taylor M. Courtney
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Alexander Deiters
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
19
|
García-Benlloch S, Revert-Ros F, Blesa JR, Alis R. MOTS-c promotes muscle differentiation in vitro. Peptides 2022; 155:170840. [PMID: 35842023 DOI: 10.1016/j.peptides.2022.170840] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/22/2022] [Accepted: 07/10/2022] [Indexed: 11/20/2022]
Abstract
MOTS-c (mitochondrial open reading frame of the 12 S rRNA-c) is a newly discovered peptide that has been shown to have a protective role in whole-body metabolic homeostasis. This could be a consequence of the effect of MOTS-c on muscle tissue. Here, we investigated the role of MOTS-c in the differentiation of human (LHCN-M2) and murine (C2C12) muscle progenitor cells. Cells were treated with peptides at the onset of differentiation or after myotubes had been formed. We identified in silico a putative Src Homology 2 (SH2) binding motif in the YIFY region of the MOTS-c sequence, and created a Y8F mutant MOTS-c peptide to explore the role of this region. In both cellular models, treatment with wild-type MOTS-c peptide increased myotube formation whereas treatment with the Y8F peptide did not. MOTS-c wild-type, but not Y8F peptide, also protected against interleukin-6 (IL-6)-induced reduction of nuclear myogenin staining in myocytes. Thus, we investigated whether MOTS-c interacts with the IL-6/Janus kinase/ Signal transducer and activator of transcription 3 (STAT3) pathway, and found that MOTS-c, but not the Y8F peptide, blocked the transcriptional activity of STAT3 induced by IL-6. Altogether, our findings suggest that, in muscle cells, MOTS-c interacts with STAT3 via the putative SH2 binding motif in the YIFY region to reduce STAT3 transcriptional activity, which enhances myotube formation. This newly discovered mechanism of action highlights MOTS-c as a potential therapeutic target against muscle-wasting in several diseases.
Collapse
Affiliation(s)
- Sandra García-Benlloch
- Facultad de Medicina y Odontología, Universidad Católica de Valencia San Vicente Mártir, c/Quevedo 2, 46001 Valencia, Spain; Escuela de Doctorado, Universidad Católica de Valencia San Vicente Mártir, c/ Quevedo 2, 46001 Valencia, Spain
| | - Francisco Revert-Ros
- Facultad de Medicina y Odontología, Universidad Católica de Valencia San Vicente Mártir, c/Quevedo 2, 46001 Valencia, Spain
| | - Jose Rafael Blesa
- Facultad de Medicina y Odontología, Universidad Católica de Valencia San Vicente Mártir, c/Quevedo 2, 46001 Valencia, Spain
| | - Rafael Alis
- Facultad de Medicina y Odontología, Universidad Católica de Valencia San Vicente Mártir, c/Quevedo 2, 46001 Valencia, Spain; Present affiliation, Developmental Neurobiology Unit, Instituto de Biomedicina de Valencia IBV-CSIC, Valencia, Spain.
| |
Collapse
|
20
|
Bao Z, Liu J, Fu J. Comprehensive binary interaction mapping of τ phosphotyrosine sites with SH2 domains in the human genome: Implications for the rational design of self-inhibitory phosphopeptides to target τ hyperphosphorylation signaling in Alzheimer's Disease. Amino Acids 2022; 54:859-875. [PMID: 35622130 DOI: 10.1007/s00726-022-03171-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 05/08/2022] [Indexed: 11/01/2022]
Abstract
Human microtubule-associated protein Tau (τ) is abundant in the axons of neurons where it stabilizes microtubule bundles; abnormally hyperphosphorylated τ is a hallmark of Alzheimer's disease (AD) and related tauopathies. The hyperphosphorylation events can be recognized by phosphotyrosine-recognition domain SH2 (Src homology 2) to elicit downstream τ signaling in AD pathology. In this study, a comprehensive binary interaction map (CBIM) of all the 6 τ phosphotyrosine sites with 120 SH2 domains in the human genome was systematically created at structural level using computational analyses and binding assays, from which we were able to identify those of strong and moderate binding pairs of sites to domains. It is found that the SH2-recognition specificity of different τ phosphotyrosine sites has been evolutionally optimized to become roughly orthogonal to each other, and thus these site phosphorylations would regulate different but probably partially overlapped biological functions in τ signaling. Some SH2 groups such as SRC, RIN, PLCG, SOCS and SH2D were revealed to have effective binding potency as compared to others; they could be regarded as potential τ-associated proteins to transduce the downstream signaling. We further determined the systematic binding affinities of 6 τ-phosphopeptides to the 11 SH2 domains in SRC group, from which the FYN-τ18 and YES-τ29 pairs were identified as strong binders. Subsequently, rational molecular design was performed on τ18 and τ29 to derive a number of τ-phosphopeptide mutants with increased affinity; they are self-inhibitory candidates to competitively target τ hyperphosphorylation events in AD. In addition, it is revealed that the primary anchor pY0 and secondary anchor X+3 of τ-phosphopeptides play an important role in SRC-group SH2 recognition, which confer stability and specificity to the SH2-phosphopeptide binding, respectively.
Collapse
Affiliation(s)
- Zhonglei Bao
- Department of Neurology, the Second Affiliated Hospital, Harbin Medical University, Harbin, 150086, China
| | - Jianghua Liu
- Department of Neurology, Daqing Oilfield General Hospital, Daqing, 163001, China
| | - Jin Fu
- Department of Neurology, the Second Affiliated Hospital, Harbin Medical University, Harbin, 150086, China.
| |
Collapse
|
21
|
TIRAP-mediated activation of p38 MAPK in inflammatory signaling. Sci Rep 2022; 12:5601. [PMID: 35379857 PMCID: PMC8979995 DOI: 10.1038/s41598-022-09528-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 03/16/2022] [Indexed: 02/06/2023] Open
Abstract
AbstractThe role of TIRAP (toll/interleukin-1 receptor (TIR) domain-containing adapter protein) in macrophage inflammatory signalling has been significantly evolved since its discovery in 2001 due to its dynamic nature and subcellular localization to regulate multiple signaling through several protein–protein interactions (PPIs). Structural analysis of these interactions can reveal a better understanding of their conformational dynamics and the nature of their binding. Tyrosine phosphorylation in the TIR domain of TIRAP is very critical for its function. In toll-like receptor (TLR) 4/2 signalling, Bruton's tyrosine kinase (BTK) and Protein kinase C delta (PKCδ) are known to phosphorylate the Y86, Y106, Y159, and Y187 of TIRAP which is crucial for the downstream function of MAPKs (mitogen-activated protein kinases) activation. The objective of this study is to understand the interaction of TIRAP with p38 MAPK through molecular docking and identify the importance of TIRAP tyrosine phosphorylation in p38 MAPK interaction. In this structural study, we performed an in-silico molecular docking using HADDOCK 2.4, pyDockWEB, ClusPro 2.0, and ZDOCK 3.0.2 tools to unravel the interaction between TIRAP and p38 MAPK. Further, manual in-silico phosphorylations of TIRAP tyrosines; Y86, Y106, Y159, and Y187 was created in the Discovery Studio tool to study the conformational changes in protein docking and their binding affinities with p38 MAPK in comparison to non-phosphorylated state. Our molecular docking and 500 ns of molecular dynamic (MD) simulation study demonstrates that the Y86 phosphorylation (pY86) in TIRAP is crucial in promoting the higher binding affinity (∆Gbind) with p38 MAPK. The conformational changes due to the tyrosine phosphorylation mainly at the Y86 site pull the TIRAP closer to the active site in the kinase domain of p38 MAPK and plays a significant role at the interface site which is reversed in its dephosphorylated state. The heatmap of interactions between the TIRAP and p38 MAPK after the MD simulation shows that the TIRAP pY86 structure makes the highest number of stable hydrogen bonds with p38 MAPK residues. Our findings may further be validated in an in-vitro system and would be crucial for targeting the TIRAP and p38 MAPK interaction for therapeutic purposes against the chronic inflammatory response and associated diseases.
Collapse
|
22
|
Shah K, Al-Haidari A, Sun J, Kazi JU. T cell receptor (TCR) signaling in health and disease. Signal Transduct Target Ther 2021; 6:412. [PMID: 34897277 PMCID: PMC8666445 DOI: 10.1038/s41392-021-00823-w] [Citation(s) in RCA: 183] [Impact Index Per Article: 45.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 11/02/2021] [Accepted: 11/02/2021] [Indexed: 12/18/2022] Open
Abstract
Interaction of the T cell receptor (TCR) with an MHC-antigenic peptide complex results in changes at the molecular and cellular levels in T cells. The outside environmental cues are translated into various signal transduction pathways within the cell, which mediate the activation of various genes with the help of specific transcription factors. These signaling networks propagate with the help of various effector enzymes, such as kinases, phosphatases, and phospholipases. Integration of these disparate signal transduction pathways is done with the help of adaptor proteins that are non-enzymatic in function and that serve as a scaffold for various protein-protein interactions. This process aids in connecting the proximal to distal signaling pathways, thereby contributing to the full activation of T cells. This review provides a comprehensive snapshot of the various molecules involved in regulating T cell receptor signaling, covering both enzymes and adaptors, and will discuss their role in human disease.
Collapse
Affiliation(s)
- Kinjal Shah
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Lund, Sweden
- Lund Stem Cell Center, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Amr Al-Haidari
- Clinical Genetics and Pathology, Skåne University Hospital, Region Skåne, Lund, Sweden
- Clinical Sciences Department, Surgery Research Unit, Lund University, Malmö, Sweden
| | - Jianmin Sun
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Lund, Sweden
- Lund Stem Cell Center, Department of Laboratory Medicine, Lund University, Lund, Sweden
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Science and Technology center, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Julhash U Kazi
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Lund, Sweden.
- Lund Stem Cell Center, Department of Laboratory Medicine, Lund University, Lund, Sweden.
| |
Collapse
|
23
|
Aboualizadeh F, Yao Z, Guan J, Drecun L, Pathmanathan S, Snider J, Umapathy G, Kotlyar M, Jurisica I, Palmer R, Stagljar I. Mapping the Phospho-dependent ALK Interactome to Identify Novel Components in ALK Signaling. J Mol Biol 2021; 433:167283. [PMID: 34606829 DOI: 10.1016/j.jmb.2021.167283] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 09/27/2021] [Accepted: 09/27/2021] [Indexed: 10/25/2022]
Abstract
Protein-protein interactions (PPIs) play essential roles in Anaplastic Lymphoma Kinase (ALK) signaling. Systematic characterization of ALK interactors helps elucidate novel ALK signaling mechanisms and may aid in the identification of novel therapeutics targeting related diseases. In this study, we used the Mammalian Membrane Two-Hybrid (MaMTH) system to map the phospho-dependent ALK interactome. By screening a library of 86 SH2 domain-containing full length proteins, 30 novel ALK interactors were identified. Many of their interactions are correlated to ALK phosphorylation activity: oncogenic ALK mutations potentiate the interactions and ALK inhibitors attenuate the interactions. Among the novel interactors, NCK2 was further verified in neuroblastoma cells using co-immunoprecipitation. Modulation of ALK activity by addition of inhibitors lead to concomitant changes in the tyrosine phosphorylation status of NCK2 in neuroblastoma cells, strongly supporting the functionality of the ALK/NCK2 interaction. Our study provides a resource list of potential novel ALK signaling components for further study.
Collapse
Affiliation(s)
| | - Zhong Yao
- Donnelly Centre, University of Toronto, Ontario, Canada
| | - Jikui Guan
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg SE-40530, Sweden
| | - Luka Drecun
- Donnelly Centre, University of Toronto, Ontario, Canada
| | | | - Jamie Snider
- Donnelly Centre, University of Toronto, Ontario, Canada
| | - Ganesh Umapathy
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg SE-40530, Sweden
| | - Max Kotlyar
- Krembil Research Institute, University Health Network, Ontario, Canada
| | - Igor Jurisica
- Krembil Research Institute, University Health Network, Ontario, Canada; Department of Medical Biophysics, University of Toronto, Ontario, Canada; Department of Computer Science, University of Toronto, Ontario, Canada; Institute of Neuroimmunology, Slovak Academy of Sciences, Bratislava, Slovak Republic
| | - Ruth Palmer
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg SE-40530, Sweden
| | - Igor Stagljar
- Donnelly Centre, University of Toronto, Ontario, Canada; Department of Biochemistry, University of Toronto, Ontario, Canada; Department of Molecular Genetics, University of Toronto, Ontario, Canada; Mediterranean Institute for Life Sciences, Meštrovićevo Šetalište 45, Split, Croatia; School of Medicine, University of Split, Split, Croatia. https://twitter.com/stagljar
| |
Collapse
|
24
|
Liang LY, Roy M, Horne CR, Sandow JJ, Surudoi M, Dagley LF, Young SN, Dite T, Babon JJ, Janes PW, Patel O, Murphy JM, Lucet IS. The intracellular domains of the EphB6 and EphA10 receptor tyrosine pseudokinases function as dynamic signalling hubs. Biochem J 2021; 478:3351-3371. [PMID: 34431498 PMCID: PMC8454701 DOI: 10.1042/bcj20210572] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/20/2021] [Accepted: 08/25/2021] [Indexed: 12/25/2022]
Abstract
EphB6 and EphA10 are two poorly characterised pseudokinase members of the Eph receptor family, which collectively serves as mediators of contact-dependent cell-cell communication to transmit extracellular cues into intracellular signals. As per their active counterparts, EphB6 and EphA10 deregulation is strongly linked to proliferative diseases. However, unlike active Eph receptors, whose catalytic activities are thought to initiate an intracellular signalling cascade, EphB6 and EphA10 are classified as catalytically dead, raising the question of how non-catalytic functions contribute to Eph receptor signalling homeostasis. In this study, we have characterised the biochemical properties and topology of the EphB6 and EphA10 intracellular regions comprising the juxtamembrane (JM) region, pseudokinase and SAM domains. Using small-angle X-ray scattering and cross-linking-mass spectrometry, we observed high flexibility within their intracellular regions in solution and a propensity for interaction between the component domains. We identified tyrosine residues in the JM region of EphB6 as EphB4 substrates, which can bind the SH2 domains of signalling effectors, including Abl, Src and Vav3, consistent with cellular roles in recruiting these proteins for downstream signalling. Furthermore, our finding that EphB6 and EphA10 can bind ATP and ATP-competitive small molecules raises the prospect that these pseudokinase domains could be pharmacologically targeted to counter oncogenic signalling.
Collapse
Affiliation(s)
- Lung-Yu Liang
- Walter and Eliza Hall Institute or Medical Research, 1G Royal Parade, Parkville, Victoria 3052, Australia
- Department of Medical Biology, University of Melbourne, 1G Royal Parade, Parkville, Victoria 3052, Australia
| | - Michael Roy
- Walter and Eliza Hall Institute or Medical Research, 1G Royal Parade, Parkville, Victoria 3052, Australia
- Department of Medical Biology, University of Melbourne, 1G Royal Parade, Parkville, Victoria 3052, Australia
| | - Christopher R. Horne
- Walter and Eliza Hall Institute or Medical Research, 1G Royal Parade, Parkville, Victoria 3052, Australia
- Department of Medical Biology, University of Melbourne, 1G Royal Parade, Parkville, Victoria 3052, Australia
| | - Jarrod J. Sandow
- Walter and Eliza Hall Institute or Medical Research, 1G Royal Parade, Parkville, Victoria 3052, Australia
- Department of Medical Biology, University of Melbourne, 1G Royal Parade, Parkville, Victoria 3052, Australia
| | - Minglyanna Surudoi
- Walter and Eliza Hall Institute or Medical Research, 1G Royal Parade, Parkville, Victoria 3052, Australia
| | - Laura F. Dagley
- Walter and Eliza Hall Institute or Medical Research, 1G Royal Parade, Parkville, Victoria 3052, Australia
- Department of Medical Biology, University of Melbourne, 1G Royal Parade, Parkville, Victoria 3052, Australia
| | - Samuel N. Young
- Walter and Eliza Hall Institute or Medical Research, 1G Royal Parade, Parkville, Victoria 3052, Australia
| | - Toby Dite
- Walter and Eliza Hall Institute or Medical Research, 1G Royal Parade, Parkville, Victoria 3052, Australia
- Department of Medical Biology, University of Melbourne, 1G Royal Parade, Parkville, Victoria 3052, Australia
| | - Jeffrey J. Babon
- Walter and Eliza Hall Institute or Medical Research, 1G Royal Parade, Parkville, Victoria 3052, Australia
- Department of Medical Biology, University of Melbourne, 1G Royal Parade, Parkville, Victoria 3052, Australia
| | - Peter W. Janes
- Tumour Targeting Program, Olivia Newton-John Cancer Research Institute and La Trobe School of Cancer Medicine, Level 5, ONJ Centre, 145 Studley Rd, Heidelberg, Victoria 3084, Australia
| | - Onisha Patel
- Walter and Eliza Hall Institute or Medical Research, 1G Royal Parade, Parkville, Victoria 3052, Australia
- Department of Medical Biology, University of Melbourne, 1G Royal Parade, Parkville, Victoria 3052, Australia
| | - James M. Murphy
- Walter and Eliza Hall Institute or Medical Research, 1G Royal Parade, Parkville, Victoria 3052, Australia
- Department of Medical Biology, University of Melbourne, 1G Royal Parade, Parkville, Victoria 3052, Australia
| | - Isabelle S. Lucet
- Walter and Eliza Hall Institute or Medical Research, 1G Royal Parade, Parkville, Victoria 3052, Australia
- Department of Medical Biology, University of Melbourne, 1G Royal Parade, Parkville, Victoria 3052, Australia
| |
Collapse
|
25
|
Padarti A, Abou-Fadel J, Zhang J. Resurgence of phosphotyrosine binding domains: Structural and functional properties essential for understanding disease pathogenesis. Biochim Biophys Acta Gen Subj 2021; 1865:129977. [PMID: 34391832 DOI: 10.1016/j.bbagen.2021.129977] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 07/30/2021] [Accepted: 07/30/2021] [Indexed: 11/28/2022]
Abstract
BACKGROUND Phosphotyrosine Binding (PTB) Domains, usually found on scaffold proteins, are pervasive in many cellular signaling pathways. These domains are the second-largest family of phosphotyrosine recognition domains and since their initial discovery, dozens of PTB domains have been structurally determined. SCOPE OF REVIEW Due to its signature sequence flexibility, PTB domains can bind to a large variety of ligands including phospholipids. PTB peptide binding is divided into classical binding (canonical NPXY motifs) and non-classical binding (all other motifs). The first atypical PTB domain was discovered in cerebral cavernous malformation 2 (CCM2) protein, while only one third in size of the typical PTB domain, it remains functionally equivalent. MAJOR CONCLUSIONS PTB domains are involved in numerous signaling processes including embryogenesis, neurogenesis, and angiogenesis, while dysfunction is linked to major disorders including diabetes, hypercholesterolemia, Alzheimer's disease, and strokes. PTB domains may also be essential in infectious processes, currently responsible for the global pandemic in which viral cellular entry is suspected to be mediated through PTB and NPXY interactions. GENERAL SIGNIFICANCE We summarize the structural and functional updates in the PTB domain over the last 20 years in hopes of resurging interest and further analyzing the importance of this versatile domain.
Collapse
Affiliation(s)
- Akhil Padarti
- Department of Molecular and Translational Medicine (MTM), Texas Tech University Health Science Center El Paso, 5001 El Paso Drive, El Paso, TX 79905, USA
| | - Johnathan Abou-Fadel
- Department of Molecular and Translational Medicine (MTM), Texas Tech University Health Science Center El Paso, 5001 El Paso Drive, El Paso, TX 79905, USA
| | - Jun Zhang
- Department of Molecular and Translational Medicine (MTM), Texas Tech University Health Science Center El Paso, 5001 El Paso Drive, El Paso, TX 79905, USA.
| |
Collapse
|
26
|
Kobelt D, Perez-Hernandez D, Fleuter C, Dahlmann M, Zincke F, Smith J, Migotti R, Popp O, Burock S, Walther W, Dittmar G, Mertins P, Stein U. The newly identified MEK1 tyrosine phosphorylation target MACC1 is druggable by approved MEK1 inhibitors to restrict colorectal cancer metastasis. Oncogene 2021; 40:5286-5301. [PMID: 34247190 PMCID: PMC8390371 DOI: 10.1038/s41388-021-01917-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 06/14/2021] [Accepted: 06/17/2021] [Indexed: 02/06/2023]
Abstract
Cancer metastasis causes >90% of cancer deaths and remains a major treatment challenge. Here we deciphered the impact of tyrosine phosphorylation of MACC1, a causative driver for cancer metastasis, for cancer cell signaling and novel interventions to restrict cancer metastasis. We identified MACC1 as new MEK1 substrate. MEK1 directly phosphorylates MACC1, leading to accelerated and increased ERK1 activation. Mutating in silico predicted hierarchical MACC1 tyrosine phosphorylation sites abrogates MACC1-induced migration, invasion, and MET expression, a transcriptional MACC1 target. Targeting MEK1 by RNAi or clinically applicable MEK1 inhibitors AZD6244 and GSK1120212 reduces MACC1 tyrosine phosphorylation and restricts MACC1-induced metastasis formation in mice. Although MEK1 levels, contrary to MACC1, are not of prognostic relevance for CRC patients, MEK1 expression was found indispensable for MACC1-induced metastasis. This study identifies MACC1 as new MEK1 substrate for tyrosine phosphorylation decisively impacting cell motility, tumor growth, and metastasis. Thus, MAP kinase signaling is not linear leading to ERK activation, but branches at the level of MEK1. This fundamental finding opens new therapeutic options for targeting the MEK1/MACC1 axis as novel vulnerability in patients at high risk for metastasis. This might be extended from CRC to further solid tumor entities.
Collapse
Affiliation(s)
- Dennis Kobelt
- Translational Oncology of Solid Tumors, Experimental and Clinical Research Center, Charité-Universitätsmedizin Berlin and Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Daniel Perez-Hernandez
- Mass Spectrometry Core Unit, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- Proteome and Genome Research Laboratory, Luxembourg Institute of Health, Strassen, Luxembourg
| | - Claudia Fleuter
- Translational Oncology of Solid Tumors, Experimental and Clinical Research Center, Charité-Universitätsmedizin Berlin and Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Mathias Dahlmann
- Translational Oncology of Solid Tumors, Experimental and Clinical Research Center, Charité-Universitätsmedizin Berlin and Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Fabian Zincke
- Translational Oncology of Solid Tumors, Experimental and Clinical Research Center, Charité-Universitätsmedizin Berlin and Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Janice Smith
- Translational Oncology of Solid Tumors, Experimental and Clinical Research Center, Charité-Universitätsmedizin Berlin and Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Rebekka Migotti
- Mass Spectrometry Core Unit, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Oliver Popp
- Mass Spectrometry Core Unit, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
| | - Susen Burock
- Charité Comprehensive Cancer Center, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Wolfgang Walther
- Translational Oncology of Solid Tumors, Experimental and Clinical Research Center, Charité-Universitätsmedizin Berlin and Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Gunnar Dittmar
- Mass Spectrometry Core Unit, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- Proteome and Genome Research Laboratory, Luxembourg Institute of Health, Strassen, Luxembourg
| | - Philipp Mertins
- Mass Spectrometry Core Unit, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
| | - Ulrike Stein
- Translational Oncology of Solid Tumors, Experimental and Clinical Research Center, Charité-Universitätsmedizin Berlin and Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany.
- German Cancer Consortium (DKTK), Heidelberg, Germany.
| |
Collapse
|
27
|
Importance of tyrosine phosphorylation for transmembrane signaling in plants. Biochem J 2021; 478:2759-2774. [PMID: 34297043 PMCID: PMC8331091 DOI: 10.1042/bcj20210202] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 06/21/2021] [Accepted: 06/22/2021] [Indexed: 11/17/2022]
Abstract
Reversible protein phosphorylation is a widespread post-translational modification fundamental for signaling across all domains of life. Tyrosine (Tyr) phosphorylation has recently emerged as being important for plant receptor kinase (RK)-mediated signaling, particularly during plant immunity. How Tyr phosphorylation regulates RK function is however largely unknown. Notably, the expansion of protein Tyr phosphatase and SH2 domain-containing protein families, which are the core of regulatory phospho-Tyr (pTyr) networks in choanozoans, did not occur in plants. Here, we summarize the current understanding of plant RK Tyr phosphorylation focusing on the critical role of a pTyr site (‘VIa-Tyr’) conserved in several plant RKs. Furthermore, we discuss the possibility of metazoan-like pTyr signaling modules in plants based on atypical components with convergent biochemical functions.
Collapse
|
28
|
Jia S, Chen F, Wang H, Kesavamoorthy G, Lai JSM, Wong IYH, Chiu K, Chan JCH. Effect of Vitamin D3 on Regulating Human Tenon's Fibroblasts Activity. Transl Vis Sci Technol 2021; 10:7. [PMID: 34251424 PMCID: PMC8287040 DOI: 10.1167/tvst.10.8.7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose To study the in vitro effect of vitamin D3 on the healing response of human Tenon's fibroblasts (HTF) and its possible role in preventing excessive postoperative subconjunctival fibrosis. Methods Effect of vitamin D3 on cytotoxicity and cell survival of primary cultured HTF was measured by lactate dehydrogenase and PrestoBlue assays, respectively. Proliferation and migration of vitamin D3-treated HTF (D3-HTF) was determined by CyQUANT proliferation and scratch assay, respectively. The mRNA expression profiles of control-HTF and D3-HTF from six subjects (three with glaucoma and long-term use of topical medications, three with primary pterygium) were assessed by RNA sequencing analyses to identify potential biomarkers for the inhibitory effect on HTF by vitamin D3. Validation of these biomarkers and their potential pathways were performed by quantitative real-time polymerase chain reaction (qRT-PCR) detection. Results Pure monolayers of HTF from controls (retinal detachment or squint surgeries), pterygium, and glaucoma subjects were successfully prepared and passaged. Proliferation and migration of pterygium and glaucoma HTF were inhibited by vitamin D3 in a dose-dependent manner, and without cytotoxicity or decrease in cellular viability with concentrations up to 10 µM. The qRT-PCR results were consistent with the transcriptome analyses, vitamin D3 appears to enhance CYP24A1, SHE, KRT16 but suppresses CILP expression in HTF. Conclusions Vitamin D3 can inhibit the in vitro activity of HTF without compromising cellular survivability at concentration up to 10 µM. This has potential clinical application for improving the outcome of pterygium and filtering surgeries. Translational Relevance Vitamin D3 can suppress the in vitro proliferation, migration, and transdifferentiation of human Tenon's fibroblasts, without the cytotoxicity of mitomycin-C, the current standard antifibrotic agent in clinical use.
Collapse
Affiliation(s)
- Shuo Jia
- Department of Ophthalmology, LKS Faculty of Medicine, University of Hong Kong, Hong Kong
| | - Fushun Chen
- Department of Ophthalmology, LKS Faculty of Medicine, University of Hong Kong, Hong Kong
| | - Huogang Wang
- Department of Ophthalmology, LKS Faculty of Medicine, University of Hong Kong, Hong Kong
| | | | - Jimmy Shiu-Ming Lai
- Department of Ophthalmology, LKS Faculty of Medicine, University of Hong Kong, Hong Kong
| | - Ian Yat-Hing Wong
- Department of Ophthalmology, LKS Faculty of Medicine, University of Hong Kong, Hong Kong
| | - Kin Chiu
- Department of Ophthalmology, LKS Faculty of Medicine, University of Hong Kong, Hong Kong
| | | |
Collapse
|
29
|
The loops of the N-SH2 binding cleft do not serve as allosteric switch in SHP2 activation. Proc Natl Acad Sci U S A 2021; 118:2025107118. [PMID: 33888588 DOI: 10.1073/pnas.2025107118] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The Src-homology-2 domain-containing phosphatase SHP2 is a critical regulator of signal transduction, being implicated in cell growth and differentiation. Activating mutations cause developmental disorders and act as oncogenic drivers in hematologic cancers. SHP2 is activated by phosphopeptide binding to the N-SH2 domain, triggering the release of N-SH2 from the catalytic PTP domain. Based on early crystallographic data, it has been widely accepted that opening of the binding cleft of N-SH2 serves as the key "allosteric switch" driving SHP2 activation. To test the putative coupling between binding cleft opening and SHP2 activation as assumed by the allosteric switch model, we critically reviewed structural data of SHP2, and we used extensive molecular dynamics (MD) simulation and free energy calculations of isolated N-SH2 in solution, SHP2 in solution, and SHP2 in a crystal environment. Our results demonstrate that the binding cleft in N-SH2 is constitutively flexible and open in solution and that a closed cleft found in certain structures is a consequence of crystal contacts. The degree of opening of the binding cleft has only a negligible effect on the free energy of SHP2 activation. Instead, SHP2 activation is greatly favored by the opening of the central β-sheet of N-SH2. We conclude that opening of the N-SH2 binding cleft is not the key allosteric switch triggering SHP2 activation.
Collapse
|
30
|
Makukhin N, Ciulli A. Recent advances in synthetic and medicinal chemistry of phosphotyrosine and phosphonate-based phosphotyrosine analogues. RSC Med Chem 2020; 12:8-23. [PMID: 34041480 PMCID: PMC8130623 DOI: 10.1039/d0md00272k] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 09/30/2020] [Indexed: 11/21/2022] Open
Abstract
Phosphotyrosine-containing compounds attract significant attention due to their potential to modulate signalling pathways by binding to phospho-writers, erasers and readers such as SH2 and PTB domain containing proteins. Phosphotyrosine derivatives provide useful chemical tools to study protein phosphorylation/dephosphorylation, and as such represent attractive starting points for the development of binding ligands and chemical probes to study biology, and for inhibitor and degrader drug design. To overcome enzymatic lability of the phosphate group, physiologically stable phosphonate-based phosphotyrosine analogues find utility in a wide range of applications. This review covers advances over the last decade in the design of phosphotyrosine and its phosphonate-based derivatives, highlights the improved and expanded synthetic toolbox, and illustrates applications in medicinal chemistry.
Collapse
Affiliation(s)
- Nikolai Makukhin
- Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee Dow Street DD1 5EH Dundee UK
| | - Alessio Ciulli
- Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee Dow Street DD1 5EH Dundee UK
| |
Collapse
|
31
|
Zhou XX, Bracken CJ, Zhang K, Zhou J, Mou Y, Wang L, Cheng Y, Leung KK, Wells JA. Targeting Phosphotyrosine in Native Proteins with Conditional, Bispecific Antibody Traps. J Am Chem Soc 2020; 142:17703-17713. [PMID: 32924468 DOI: 10.1021/jacs.0c08458] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Engineering sequence-specific antibodies (Abs) against phosphotyrosine (pY) motifs embedded in folded polypeptides remains highly challenging because of the stringent requirement for simultaneous recognition of the pY motif and the surrounding folded protein epitope. Here, we present a method named phosphotyrosine Targeting by Recombinant Ab Pair, or pY-TRAP, for in vitro engineering of binders for native pY proteins. Specifically, we create the pY protein by unnatural amino acid misincorporation, mutagenize a universal pY-binding Ab to create a first binder B1 for the pY motif on the pY protein, and then select against the B1-pY protein complex for a second binder B2 that recognizes the composite epitope of B1 and the pY-containing protein complex. We applied pY-TRAP to create highly specific binders to folded Ub-pY59, a rarely studied Ub phosphoform exclusively observed in cancerous tissues, and ZAP70-pY248, a kinase phosphoform regulated in feedback signaling pathways in T cells. The pY-TRAPs do not have detectable binding to wild-type proteins or to other pY peptides or proteins tested. This pY-TRAP approach serves as a generalizable method for engineering sequence-specific Ab binders to native pY proteins.
Collapse
Affiliation(s)
- Xin X Zhou
- Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94158, United States
| | - Colton J Bracken
- Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94158, United States
| | - Kaihua Zhang
- Department of Biochemistry and Biophysics, University of California, San Francisco, California 94158, United States
| | - Jie Zhou
- Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94158, United States
| | - Yun Mou
- Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94158, United States
| | - Lei Wang
- Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94158, United States
| | - Yifan Cheng
- Department of Biochemistry and Biophysics, University of California, San Francisco, California 94158, United States.,Howard Hughes Medical Institute, University of California, San Francisco, California 94158, United States
| | - Kevin K Leung
- Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94158, United States
| | - James A Wells
- Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94158, United States.,Chan Zuckerberg Biohub, San Francisco, California 94158, United States.,Department of Cellular and Molecular Pharmacology, University of California, San Francisco, California 94158, United States
| |
Collapse
|
32
|
Anselmi M, Calligari P, Hub JS, Tartaglia M, Bocchinfuso G, Stella L. Structural Determinants of Phosphopeptide Binding to the N-Terminal Src Homology 2 Domain of the SHP2 Phosphatase. J Chem Inf Model 2020; 60:3157-3171. [PMID: 32395997 PMCID: PMC8007070 DOI: 10.1021/acs.jcim.0c00307] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Indexed: 11/28/2022]
Abstract
SH2 domain-containing tyrosine phosphatase 2 (SHP2), encoded by PTPN11, plays a fundamental role in the modulation of several signaling pathways. Germline and somatic mutations in PTPN11 are associated with different rare diseases and hematologic malignancies, and recent studies have individuated SHP2 as a central node in oncogenesis and cancer drug resistance. The SHP2 structure includes two Src homology 2 domains (N-SH2 and C-SH2) followed by a catalytic protein tyrosine phosphatase (PTP) domain. Under basal conditions, the N-SH2 domain blocks the active site, inhibiting phosphatase activity. Association of the N-SH2 domain with binding partners containing short amino acid motifs comprising a phosphotyrosine residue (pY) leads to N-SH2/PTP dissociation and SHP2 activation. Considering the relevance of SHP2 in signaling and disease and the central role of the N-SH2 domain in its allosteric regulation mechanism, we performed microsecond-long molecular dynamics (MD) simulations of the N-SH2 domain complexed to 12 different peptides to define the structural and dynamical features determining the binding affinity and specificity of the domain. Phosphopeptide residues at position -2 to +5, with respect to pY, have significant interactions with the SH2 domain. In addition to the strong interaction of the pY residue with its conserved binding pocket, the complex is stabilized hydrophobically by insertion of residues +1, +3, and +5 in an apolar groove of the domain and interaction of residue -2 with both the pY and a protein surface residue. Additional interactions are provided by hydrogen bonds formed by the backbone of residues -1, +1, +2, and +4. Finally, negatively charged residues at positions +2 and +4 are involved in electrostatic interactions with two lysines (Lys89 and Lys91) specific for the SHP2 N-SH2 domain. Interestingly, the MD simulations illustrated a previously undescribed conformational flexibility of the domain, involving the core β sheet and the loop that closes the pY binding pocket.
Collapse
Affiliation(s)
- Massimiliano Anselmi
- Department
of Chemical Science and Technologies, University
of Rome Tor Vergata, 00133, Rome, Italy
| | - Paolo Calligari
- Department
of Chemical Science and Technologies, University
of Rome Tor Vergata, 00133, Rome, Italy
| | - Jochen S. Hub
- Theoretical
Physics and Center for Biophysics, Saarland
University, Campus E2 6, 66123 Saarbrücken, Germany
| | - Marco Tartaglia
- Genetics
and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146 Rome, Italy
| | - Gianfranco Bocchinfuso
- Department
of Chemical Science and Technologies, University
of Rome Tor Vergata, 00133, Rome, Italy
| | - Lorenzo Stella
- Department
of Chemical Science and Technologies, University
of Rome Tor Vergata, 00133, Rome, Italy
| |
Collapse
|
33
|
Patel AD, Pasha TY, Lunagariya P, Shah U, Bhambharoliya T, Tripathi RKP. A Library of Thiazolidin-4-one Derivatives as Protein Tyrosine Phosphatase 1B (PTP1B) Inhibitors: An Attempt To Discover Novel Antidiabetic Agents. ChemMedChem 2020; 15:1229-1242. [PMID: 32390300 DOI: 10.1002/cmdc.202000055] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 04/28/2020] [Indexed: 01/18/2023]
Abstract
Protein tyrosine phosphatase 1B (PTP1B) is an important target for the treatment of diabetes. A series of thiazolidin-4-one derivatives 8-22 was designed, synthesized and investigated as PTP1B inhibitors. The new molecules inhibited PTP1B with IC50 values in the micromolar range. 5-(Furan-2-ylmethylene)-2-(4-nitrophenylimino)thiazolidin-4-one (17) exhibited potency with a competitive type of enzyme inhibition. structure-activity relationship studies revealed various structural facets important for the potency of these analogues. The findings revealed a requirement for a nitro group-including hydrophobic heteroaryl ring for PTP1B inhibition. Molecular docking studies afforded good correlation with experimental results. H-bonding and π-π interactions were responsible for optimal binding and effective stabilization of virtual protein-ligand complexes. Furthermore, in-silico pharmacokinetic properties of test compounds predicted their drug-like characteristics for potential oral use as antidiabetic agents.Additionally, a binding site model demonstrating crucial pharmacophoric characteristics influencing potency and binding affinity of inhibitors has been proposed, which can be employed in the design of future potential PTP1B inhibitors.
Collapse
Affiliation(s)
- Ashish D Patel
- Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, Changa, Anand, 388421, India.,Department of Pharmaceutical Chemistry Parul Institute of Pharmacy, Parul University, Vadodara, Gujarat, 391760, India
| | - Thopallada Y Pasha
- Shri Adichunchanagiri College of Pharmacy, Adichunchanagiri University, B G Nagara, Karnataka, 571448, India
| | - Paras Lunagariya
- Smt. R. D. Gardi B. Pharmacy College, Rajkot, Gujarat, 360110, India
| | - Umang Shah
- Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, Changa, Anand, 388421, India
| | - Tushar Bhambharoliya
- Wilson College of Textiles, North Carolina State University, North Carolina, 27606, USA
| | - Rati K P Tripathi
- Department of Pharmaceutical Science Sushruta School of Medical and Paramedical Sciences, Assam University (A Central University), Silchar, Assam, 788011, India.,Department of Pharmaceutical Chemistry Parul Institute of Pharmacy, Parul University, Vadodara, Gujarat, 391760, India
| |
Collapse
|
34
|
A New Pathway Promotes Adaptation of Human Glioblastoma Cells to Glucose Starvation. Cells 2020; 9:cells9051249. [PMID: 32443613 PMCID: PMC7290719 DOI: 10.3390/cells9051249] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 05/11/2020] [Accepted: 05/15/2020] [Indexed: 12/13/2022] Open
Abstract
Adaptation of glioblastoma to caloric restriction induces compensatory changes in tumor metabolism that are incompletely known. Here we show that in human glioblastoma cells maintained in exhausted medium, SHC adaptor protein 3 (SHC3) increases due to down-regulation of SHC3 protein degradation. This effect is reversed by glucose addition and is not present in normal astrocytes. Increased SHC3 levels are associated to increased glucose uptake mediated by changes in membrane trafficking of glucose transporters of the solute carrier 2A superfamily (GLUT/SLC2A). We found that the effects on vesicle trafficking are mediated by SHC3 interactions with adaptor protein complex 1 and 2 (AP), BMP-2-inducible protein kinase and a fraction of poly ADP-ribose polymerase 1 (PARP1) associated to vesicles containing GLUT/SLC2As. In glioblastoma cells, PARP1 inhibitor veliparib mimics glucose starvation in enhancing glucose uptake. Furthermore, cytosol extracted from glioblastoma cells inhibits PARP1 enzymatic activity in vitro while immunodepletion of SHC3 from the cytosol significantly relieves this inhibition. The identification of a new pathway controlling glucose uptake in high grade gliomas represents an opportunity for repositioning existing drugs and designing new ones.
Collapse
|
35
|
Joshi R, Qin L, Cao X, Zhong S, Voss C, Min W, Li SSC. DLC1 SAM domain-binding peptides inhibit cancer cell growth and migration by inactivating RhoA. J Biol Chem 2019; 295:645-656. [PMID: 31806702 DOI: 10.1074/jbc.ra119.011929] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Indexed: 12/25/2022] Open
Abstract
Deleted-in-liver cancer 1 (DLC1) exerts its tumor suppressive function mainly through the Rho-GTPase-activating protein (RhoGAP) domain. When activated, the domain promotes the hydrolysis of RhoA-GTP, leading to reduced cell migration. DLC1 is kept in an inactive state by an intramolecular interaction between its RhoGAP domain and the DLC1 sterile α motif (SAM) domain. We have shown previously that this autoinhibited state of DLC1 may be alleviated by tensin-3 (TNS3) or PTEN. We show here that the TNS3/PTEN-DLC1 interactions are mediated by the C2 domains of the former and the SAM domain of the latter. Intriguingly, the DLC1 SAM domain was capable of binding to specific peptide motifs within the C2 domains. Indeed, peptides containing the binding motifs were highly effective in blocking the C2-SAM domain-domain interaction. Importantly, when fused to the tat protein-transduction sequence and subsequently introduced into cells, the C2 peptides potently promoted the RhoGAP function in DLC1, leading to decreased RhoA activation and reduced tumor cell growth in soft agar and migration in response to growth factor stimulation. To facilitate the development of the C2 peptides as potential therapeutic agents, we created a cyclic version of the TNS3 C2 domain-derived peptide and showed that this peptide readily entered the MDA-MB-231 breast cancer cells and effectively inhibited their migration. Our work shows, for the first time, that the SAM domain is a peptide-binding module and establishes the framework on which to explore DLC1 SAM domain-binding peptides as potential therapeutic agents for cancer treatment.
Collapse
Affiliation(s)
- Rakesh Joshi
- Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, Ontario N6A 5C1, Canada; Departments of Surgery, Pathology and Oncology, Western University, London, Ontario N6A 5A5, Canada
| | - Lyugao Qin
- Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, Ontario N6A 5C1, Canada
| | - Xuan Cao
- School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Shanshan Zhong
- Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, Ontario N6A 5C1, Canada
| | - Courtney Voss
- Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, Ontario N6A 5C1, Canada
| | - Weiping Min
- Departments of Surgery, Pathology and Oncology, Western University, London, Ontario N6A 5A5, Canada.
| | - Shawn S C Li
- Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, Ontario N6A 5C1, Canada.
| |
Collapse
|
36
|
Schreier TB, Umhang M, Lee SK, Lue WL, Shen Z, Silver D, Graf A, Müller A, Eicke S, Stadler-Waibel M, Seung D, Bischof S, Briggs SP, Kötting O, Moorhead GBG, Chen J, Zeeman SC. LIKE SEX4 1 Acts as a β-Amylase-Binding Scaffold on Starch Granules during Starch Degradation. THE PLANT CELL 2019; 31:2169-2186. [PMID: 31266901 PMCID: PMC6751131 DOI: 10.1105/tpc.19.00089] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 05/17/2019] [Accepted: 06/26/2019] [Indexed: 05/23/2023]
Abstract
In Arabidopsis (Arabidopsis thaliana) leaves, starch is synthesized during the day and degraded at night to fuel growth and metabolism. Starch is degraded primarily by β-amylases, liberating maltose, but this activity is preceded by glucan phosphorylation and is accompanied by dephosphorylation. A glucan phosphatase family member, LIKE SEX4 1 (LSF1), binds starch and is required for normal starch degradation, but its exact role is unclear. Here, we show that LSF1 does not dephosphorylate glucans. The recombinant dual specificity phosphatase (DSP) domain of LSF1 had no detectable phosphatase activity. Furthermore, a variant of LSF1 mutated in the catalytic cysteine of the DSP domain complemented the starch-excess phenotype of the lsf1 mutant. By contrast, a variant of LSF1 with mutations in the carbohydrate binding module did not complement lsf1 Thus, glucan binding, but not phosphatase activity, is required for the function of LSF1 in starch degradation. LSF1 interacts with the β-amylases BAM1 and BAM3, and the BAM1-LSF1 complex shows amylolytic but not glucan phosphatase activity. Nighttime maltose levels are reduced in lsf1, and genetic analysis indicated that the starch-excess phenotype of lsf1 is dependent on bam1 and bam3 We propose that LSF1 binds β-amylases at the starch granule surface, thereby promoting starch degradation.
Collapse
Affiliation(s)
- Tina B Schreier
- Institute of Molecular Plant Biology, ETH Zurich, CH-8092 Zurich, Switzerland
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, United Kingdom
| | - Martin Umhang
- Institute of Molecular Plant Biology, ETH Zurich, CH-8092 Zurich, Switzerland
| | - Sang-Kyu Lee
- Institute of Molecular Plant Biology, ETH Zurich, CH-8092 Zurich, Switzerland
| | - Wei-Ling Lue
- Institute of Molecular Biology, Academia Sinica, Taipei 115, Taiwan
| | - Zhouxin Shen
- Division of Biological Sciences, University of California, San Diego, La Jolla, California 92093-0380
| | - Dylan Silver
- University of Calgary, Department of Biological Sciences, Calgary, Alberta T2N 1N4, Canada
| | - Alexander Graf
- John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom
| | - Antonia Müller
- Institute of Molecular Plant Biology, ETH Zurich, CH-8092 Zurich, Switzerland
| | - Simona Eicke
- Institute of Molecular Plant Biology, ETH Zurich, CH-8092 Zurich, Switzerland
| | | | - David Seung
- Institute of Molecular Plant Biology, ETH Zurich, CH-8092 Zurich, Switzerland
| | - Sylvain Bischof
- Institute of Molecular Plant Biology, ETH Zurich, CH-8092 Zurich, Switzerland
| | - Steven P Briggs
- Division of Biological Sciences, University of California, San Diego, La Jolla, California 92093-0380
| | - Oliver Kötting
- Institute of Molecular Plant Biology, ETH Zurich, CH-8092 Zurich, Switzerland
| | - Greg B G Moorhead
- University of Calgary, Department of Biological Sciences, Calgary, Alberta T2N 1N4, Canada
| | - Jychian Chen
- Institute of Molecular Biology, Academia Sinica, Taipei 115, Taiwan
| | - Samuel C Zeeman
- Institute of Molecular Plant Biology, ETH Zurich, CH-8092 Zurich, Switzerland
| |
Collapse
|
37
|
Weston PA, Gurusinghe S, Birckhead E, Skoneczny D, Quinn JC, Weston LA. Chemometric analysis of Amaranthus retroflexus in relation to livestock toxicity in southern Australia. PHYTOCHEMISTRY 2019; 161:1-10. [PMID: 30776591 DOI: 10.1016/j.phytochem.2019.01.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 01/20/2019] [Accepted: 01/25/2019] [Indexed: 06/09/2023]
Abstract
Amaranthus retroflexus L., an introduced invasive weed in southern Australia, has been associated with acute renal failure and/or mortality in a number of livestock species. While its leaves, flowers and stems are generally reported to contain high levels of nitrogen, few studies have fully characterised the chemical composition of A. retroflexus foliage with respect to mammalian toxicity. We performed extensive metabolic profiling of stems, leaves, roots and inflorescence tissues of A. retroflexus collected from three spatially and/or temporally distinct toxicity outbreaks, and report on the 1) composition of primary and secondary metabolites in methanolic extracts of A. retroflexus tissues using HPLC and HPLC-MS QToF and 2) chemometric analysis of A. retroflexus extracts in relation to the associated toxin(s). All tissues of A. retroflexus possessed an abundance of N-containing metabolites, particularly quaternary ammonium compounds which were identified as betaines, two of which (valine betaine and isoleucine betaine) are rarely encountered in plants. Cytotoxicity to murine fibroblasts was highest in extracts of leaf tissue and was associated with a single, a small modified peptide with high similarity to N-acetyl-L-α-aspartyl-L-alanyl-L-α-aspartyl-L-α-glutamyl-O-(carboxymethyl)-L-tyrosyl-L-leucinamide, a synthetic phosphotyrosyl mimic involved in cell signaling processes. One possible mode of action leading to acute renal failure in grazing livestock by a modified peptide such as this is proposed.
Collapse
Affiliation(s)
- Paul A Weston
- Graham Centre for Agricultural Innovation (Charles Sturt University and NSW Department of Primary Industries), Wagga Wagga, NSW, 2650, Australia; Charles Sturt University, School of Agricultural and Wine Sciences, Wagga Wagga, NSW, 2678, Australia.
| | - Saliya Gurusinghe
- Graham Centre for Agricultural Innovation (Charles Sturt University and NSW Department of Primary Industries), Wagga Wagga, NSW, 2650, Australia.
| | - Emily Birckhead
- Charles Sturt University, School of Animal and Veterinary Sciences, Wagga Wagga, NSW, 2678, Australia
| | - Dominik Skoneczny
- Graham Centre for Agricultural Innovation (Charles Sturt University and NSW Department of Primary Industries), Wagga Wagga, NSW, 2650, Australia
| | - Jane C Quinn
- Graham Centre for Agricultural Innovation (Charles Sturt University and NSW Department of Primary Industries), Wagga Wagga, NSW, 2650, Australia; Charles Sturt University, School of Animal and Veterinary Sciences, Wagga Wagga, NSW, 2678, Australia
| | - Leslie A Weston
- Graham Centre for Agricultural Innovation (Charles Sturt University and NSW Department of Primary Industries), Wagga Wagga, NSW, 2650, Australia; Charles Sturt University, School of Agricultural and Wine Sciences, Wagga Wagga, NSW, 2678, Australia
| |
Collapse
|
38
|
An J, Zhai G, Guo Z, Bai X, Chen P, Dong H, Tian S, Ai D, Zhang Y, Zhang K. Combinatorial Peptide Ligand Library-Based Photoaffinity Probe for the Identification of Phosphotyrosine-Binding Domain Proteins. Anal Chem 2019; 91:3221-3226. [PMID: 30721620 DOI: 10.1021/acs.analchem.8b04781] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Phosphotyrosine (pY) serves as a docking site for the recognition proteins containing pY-binding (pYB) modules, such as the SH2 domain, to mediate cell signal transduction. Thus, it is vital to profile these binding proteins for understanding of signal regulation. However, identification of pYB proteins remains a significant challenge due to their low abundance and typically weak and transient interactions with pY sites. Herein, we designed and prepared a pY-peptide photoaffinity probe for the robust and specific enrichment and identification of its binding proteins. Using SHC1-pY317 as a paradigm, we showed that the developed probe enables to capture target protein with high selectivity and remarkable specificity even in a complex context. Notably, we expanded the strategy to a combinatorial pY-peptide-based photoaffinity probe by using combinatorial peptide ligand library (CPLL) technique and identified 24 SH2 domain proteins, which presents a deeper profiling of pYB proteins than previous reports using affinity probes. Moreover, the method can be used to mine putative pYB proteins and confirmed PKN2 as a selective binder to pY, expanding the repertoire of known domain proteins. Our approach provides a general strategy for rapid and robust interrogating pYB proteins and will promote the understanding of the signal transduction mechanism.
Collapse
Affiliation(s)
- Jinying An
- 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, Key Laboratory of Breast Cancer Prevention and Treatment (Ministry of Education), Cancer Institute and Hospital , Tianjin Medical University , Tianjin 300070 , China
| | - Guijin Zhai
- 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, Key Laboratory of Breast Cancer Prevention and Treatment (Ministry of Education), Cancer Institute and Hospital , Tianjin Medical University , Tianjin 300070 , China
| | - Zhenchang Guo
- 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, Key Laboratory of Breast Cancer Prevention and Treatment (Ministry of Education), Cancer Institute and Hospital , Tianjin Medical University , Tianjin 300070 , China
| | - Xue Bai
- 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, Key Laboratory of Breast Cancer Prevention and Treatment (Ministry of Education), Cancer Institute and Hospital , Tianjin Medical University , Tianjin 300070 , China
| | - Pu Chen
- 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, Key Laboratory of Breast Cancer Prevention and Treatment (Ministry of Education), Cancer Institute and Hospital , Tianjin Medical University , Tianjin 300070 , China
| | - Hanyang Dong
- 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, Key Laboratory of Breast Cancer Prevention and Treatment (Ministry of Education), Cancer Institute and Hospital , Tianjin Medical University , Tianjin 300070 , China
| | - Shanshan Tian
- 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, Key Laboratory of Breast Cancer Prevention and Treatment (Ministry of Education), Cancer Institute and Hospital , Tianjin Medical University , Tianjin 300070 , China
| | - Ding Ai
- Tianjin Key Laboratory of Metabolic Diseases, Department of Physiology and Pathophysiology , Tianjin Medical University , Tianjin 300070 , China
| | - Yukui Zhang
- Dalian Institute of Chemical Physics , Chinese Academy of Sciences , 457 Zhongshan Road , Dalian 116023 , China
| | - Kai Zhang
- 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, Key Laboratory of Breast Cancer Prevention and Treatment (Ministry of Education), Cancer Institute and Hospital , Tianjin Medical University , Tianjin 300070 , China
| |
Collapse
|
39
|
Pemberton JG, Balla T. Polyphosphoinositide-Binding Domains: Insights from Peripheral Membrane and Lipid-Transfer Proteins. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1111:77-137. [PMID: 30483964 DOI: 10.1007/5584_2018_288] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Within eukaryotic cells, biochemical reactions need to be organized on the surface of membrane compartments that use distinct lipid constituents to dynamically modulate the functions of integral proteins or influence the selective recruitment of peripheral membrane effectors. As a result of these complex interactions, a variety of human pathologies can be traced back to improper communication between proteins and membrane surfaces; either due to mutations that directly alter protein structure or as a result of changes in membrane lipid composition. Among the known structural lipids found in cellular membranes, phosphatidylinositol (PtdIns) is unique in that it also serves as the membrane-anchored precursor of low-abundance regulatory lipids, the polyphosphoinositides (PPIn), which have restricted distributions within specific subcellular compartments. The ability of PPIn lipids to function as signaling platforms relies on both non-specific electrostatic interactions and the selective stereospecific recognition of PPIn headgroups by specialized protein folds. In this chapter, we will attempt to summarize the structural diversity of modular PPIn-interacting domains that facilitate the reversible recruitment and conformational regulation of peripheral membrane proteins. Outside of protein folds capable of capturing PPIn headgroups at the membrane interface, recent studies detailing the selective binding and bilayer extraction of PPIn species by unique functional domains within specific families of lipid-transfer proteins will also be highlighted. Overall, this overview will help to outline the fundamental physiochemical mechanisms that facilitate localized interactions between PPIn lipids and the wide-variety of PPIn-binding proteins that are essential for the coordinate regulation of cellular metabolism and membrane dynamics.
Collapse
Affiliation(s)
- Joshua G Pemberton
- Section on Molecular Signal Transduction, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Tamas Balla
- Section on Molecular Signal Transduction, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
40
|
Miccoli A, Dhiani BA, Mehellou Y. Phosphotyrosine prodrugs: design, synthesis and anti-STAT3 activity of ISS-610 aryloxy triester phosphoramidate prodrugs. MEDCHEMCOMM 2018; 10:200-208. [PMID: 30881608 DOI: 10.1039/c8md00244d] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 11/06/2018] [Indexed: 12/20/2022]
Abstract
Unmasked phohate groups of phosphotyrosine-containing molecules carry two negative charges at physiological pH, which compromise their (passive) cellular uptake. Also, these phosphate groups are often cleaved off by phosphatases. Together, these ultimately limit the pharmacological efficacy of the phosphotyrosine-containing compounds. To address these drawbacks, we herein present the application of the aryloxy triester phosphoramidate prodrug technology, a monophosphate prodrug technology, to the phosphotyrosine-containing compound ISS-610-Met, an analogue of the anticancer STAT3 dimerization inhibitor ISS-610. Our data shows that the generated ISS-610-Met prodrugs exhibited enhanced pharmacological activity and inhibition of STAT3 downstream signaling compared to the parent compound ISS-610-Met and the known STAT3 dimerization inhibitor ISS-610. These encouraging results provide a compelling proof of concept for the potential of the aryloxy triester phosphoramidate prodrug technology in the discovery of novel therapeutics that contain phosphotyrosine and its phospho mimics.
Collapse
Affiliation(s)
- Ageo Miccoli
- Cardiff School of Pharmacy and Pharmaceutical Sciences , Cardiff University , Redwood Building, King Edward VII Avenue , Cardiff CF10 3NB , UK .
| | - Binar A Dhiani
- Cardiff School of Pharmacy and Pharmaceutical Sciences , Cardiff University , Redwood Building, King Edward VII Avenue , Cardiff CF10 3NB , UK .
| | - Youcef Mehellou
- Cardiff School of Pharmacy and Pharmaceutical Sciences , Cardiff University , Redwood Building, King Edward VII Avenue , Cardiff CF10 3NB , UK .
| |
Collapse
|
41
|
Fatima S, Shukla S, Nazir A. C.el Phosphatome: A Catalogue of Actual and Pseudo Phosphatases Based on In-Silico Studies in Caenorhabditis elegans. Protein J 2018; 37:572-580. [PMID: 30242660 DOI: 10.1007/s10930-018-9794-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Phosphatases are well known to carry out important functions via counter activity of kinases and they serve as mechanism for dephosphorylating the monophosphate esters from the phosphorylated serine, threonine, tyrosine and histidine residues. The biological relevance of phosphatases could be explored further employing newer technologies and models. Caenorhabditis elegans is a powerful genetic model system that bears significant homology with humans, hence providing with a precious tool towards studying important signalling pathways. We carried out the present study to catalogue the C. elegans protein phosphatome, referred here as 'C.el phosphatome' and annotated the corresponding dataset. We further classified these phosphatases based on presence of catalytic conserved motif; GDxHG, GDxVDRG, GNHE, RxxD, DGxxG, DG, GxxDN for Ser/Thr phosphatases, HC(x)5 R for tyrosine phosphatases and DxDxT/V for aspartate based phosphatases. Bioinformatics tool DAVID was employed to decipher the biological relevance of phosphatases. Our findings show Ser/Thr phosphatases (114), Tyr phosphatases (121) and Asp phosphatases (0) in C. elegans genome based on the hallmark sequence identification. Amongst them, 34 and 57 Ser/Thr and Tyr phosphatases respectively contain the catalytic motif. This catalogue offers a precious tool for further studies towards understanding important biological processes and disease conditions.
Collapse
Affiliation(s)
- Soobiya Fatima
- Academy of Scientific and Innovative Research (AcSIR), CSIR-Central Drug Research Institute (CSIR-CDRI) Campus, Lucknow, India
- Laboratory of Functional Genomics and Molecular Toxicology, Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, 226031, India
| | - Shikha Shukla
- Laboratory of Functional Genomics and Molecular Toxicology, Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, 226031, India
| | - Aamir Nazir
- Academy of Scientific and Innovative Research (AcSIR), CSIR-Central Drug Research Institute (CSIR-CDRI) Campus, Lucknow, India.
- Laboratory of Functional Genomics and Molecular Toxicology, Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, 226031, India.
| |
Collapse
|
42
|
Abstract
Drug transporter proteins are critical to the distribution of a wide range of endogenous compounds and xenobiotics such as hormones, bile acids, peptides, lipids, sugars, and drugs. There are two classes of drug transporters- the solute carrier (SLC) transporters and ATP-binding cassette (ABC) transporters -which predominantly differ in the energy source utilized to transport substrates across a membrane barrier. Despite their hydrophobic nature and residence in the membrane bilayer, drug transporters have dynamic structures and adopt many conformations during the translocation process. Whereas there is significant literature evidence for the substrate specificity and structure-function relationship for clinically relevant drug transporters proteins, there is less of an understanding in the regulatory mechanisms that contribute to the functional expression of these proteins. Post-translational modifications have been shown to modulate drug transporter functional expression via a wide range of molecular mechanisms. These modifications commonly occur through the addition of a functional group (e.g. phosphorylation), a small protein (e.g. ubiquitination), sugar chains (e.g. glycosylation), or lipids (e.g. palmitoylation) on solvent accessible amino acid residues. These covalent additions often occur as a result of a signaling cascade and may be reversible depending on the type of modification and the intended fate of the signaling event. Here, we review the significant role in which post-translational modifications contribute to the dynamic regulation and functional consequences of SLC and ABC drug transporters and highlight recent progress in understanding their roles in transporter structure, function, and regulation.
Collapse
Affiliation(s)
- Lindsay C Czuba
- Department of Pharmaceutical Sciences, University of Maryland, 20 Penn Street, Baltimore, MD 21201, USA
| | | | - Peter W Swaan
- Department of Pharmaceutical Sciences, University of Maryland, 20 Penn Street, Baltimore, MD 21201, USA.
| |
Collapse
|
43
|
Abstract
CD28 superagonistic antibodies (CD28SAb) can preferentially activate and expand immunosuppressive regulatory T cells (Treg) in mice. However, pre-clinical trials assessing CD28SAbs for the therapy of autoimmune diseases reveal severe systemic inflammatory response syndrome in humans, thereby implying the existence of distinct signalling abilities between human and mouse CD28. Here, we show that a single amino acid variant within the C-terminal proline-rich motif of human and mouse CD28 (P212 in human vs. A210 in mouse) regulates CD28-induced NF-κB activation and pro-inflammatory cytokine gene expression. Moreover, this Y209APP212 sequence in humans is crucial for the association of CD28 with the Nck adaptor protein for actin cytoskeleton reorganisation events necessary for CD28 autonomous signalling. This study thus unveils different outcomes between human and mouse CD28 signalling to underscore the importance of species difference when transferring results from preclinical models to the bedside. CD28 transmits co-stimulatory signals for the activation of both mouse and human T cells, but in vivo hyperactivation of CD28 has opposite effects on system immunity. Here, the authors show that a single amino acid difference between mouse and human CD28 dictates this function distinction via differential recruitment of Nck.
Collapse
|
44
|
Zhang J, Dubey P, Padarti A, Zhang A, Patel R, Patel V, Cistola D, Badr A. Novel functions of CCM1 delimit the relationship of PTB/PH domains. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2017; 1865:1274-1286. [PMID: 28698152 DOI: 10.1016/j.bbapap.2017.07.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 06/27/2017] [Accepted: 07/01/2017] [Indexed: 12/18/2022]
Abstract
BACKGROUND Three NPXY motifs and one FERM domain in CCM1 makes it a versatile scaffold protein for tethering the signaling components together within the CCM signaling complex (CSC). The cellular role of CCM1 protein remains inadequately expounded. Both phosphotyrosine binding (PTB) and pleckstrin homology (PH) domains were recognized as structurally related but functionally distinct domains. METHODS By utilizing molecular cloning, protein binding assays and RT-qPCR to identify novel cellular partners of CCM1 and its cellular expression patterns; by screening candidate PTB/PH proteins and subsequently structurally simulation in combining with current X-ray crystallography and NMR data to defined the essential structure of PTB/PH domain for NPXY-binding and the relationship among PTB, PH and FERM domain(s). RESULTS We identified a group of 28 novel cellular partners of CCM1, all of which contain either PTB or PH domain(s), and developed a novel classification system for these PTB/PH proteins based on their relationship with different NPXY motifs of CCM1. Our results demonstrated that CCM1 has a wide spectrum of binding to different PTB/PH proteins and perpetuates their specificity to interact with certain PTB/PH domains through selective combination of three NPXY motifs. We also demonstrated that CCM1 can be assembled into oligomers through intermolecular interaction between its F3 lobe in FERM domain and one of the three NPXY motifs. Despite being embedded in FERM domain as F3 lobe, F3 module acts as a fully functional PH domain to interact with NPXY motif. The most salient feature of the study was that both PTB and PH domains are structurally and functionally comparable, suggesting that PTB domain is likely evolved from PH domain with polymorphic structural additions at its N-terminus. CONCLUSIONS A new β1A-strand of the PTB domain was discovered and new minimum structural requirement of PTB/PH domain for NPXY motif-binding was determined. Based on our data, a novel theory of structure, function and relationship of PTB, PH and FERM domains has been proposed, which extends the importance of the NPXY-PTB/PH interaction on the CSC signaling and/or other cell receptors with great potential pointing to new therapeutic strategies. GENERAL SIGNIFICANCE The study provides new insight into the structural characteristics of PTB/PH domains, essential structural elements of PTB/PH domain required for NPXY motif-binding, and function and relationship among PTB, PH and FERM domains.
Collapse
Affiliation(s)
- Jun Zhang
- Department of Biomedical Sciences, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA.
| | - Pallavi Dubey
- Department of Biomedical Sciences, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA
| | - Akhil Padarti
- Department of Biomedical Sciences, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA
| | - Aileen Zhang
- Department of Biomedical Sciences, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA
| | - Rinkal Patel
- Department of Biomedical Sciences, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA
| | - Vipulkumar Patel
- Department of Biomedical Sciences, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA
| | - David Cistola
- Department of Biomedical Sciences, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA
| | - Ahmed Badr
- Department of Biomedical Sciences, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA
| |
Collapse
|
45
|
Tay AP, Pang CNI, Winter DL, Wilkins MR. PTMOracle: A Cytoscape App for Covisualizing and Coanalyzing Post-Translational Modifications in Protein Interaction Networks. J Proteome Res 2017; 16:1988-2003. [PMID: 28349685 DOI: 10.1021/acs.jproteome.6b01052] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Post-translational modifications of proteins (PTMs) act as key regulators of protein activity and of protein-protein interactions (PPIs). To date, it has been difficult to comprehensively explore functional links between PTMs and PPIs. To address this, we developed PTMOracle, a Cytoscape app for coanalyzing PTMs within PPI networks. PTMOracle also allows extensive data to be integrated and coanalyzed with PPI networks, allowing the role of domains, motifs, and disordered regions to be considered. For proteins of interest, or a whole proteome, PTMOracle can generate network visualizations to reveal complex PTM-associated relationships. This is assisted by OraclePainter for coloring proteins by modifications, OracleTools for network analytics, and OracleResults for exploring tabulated findings. To illustrate the use of PTMOracle, we investigate PTM-associated relationships and their role in PPIs in four case studies. In the yeast interactome and its rich set of PTMs, we construct and explore histone-associated and domain-domain interaction networks and show how integrative approaches can predict kinases involved in phosphodegrons. In the human interactome, a phosphotyrosine-associated network is analyzed but highlights the sparse nature of human PPI networks and lack of PTM-associated data. PTMOracle is open source and available at the Cytoscape app store: http://apps.cytoscape.org/apps/ptmoracle .
Collapse
Affiliation(s)
- Aidan P Tay
- Systems Biology Initiative, School of Biotechnology and Biomolecular Sciences, The University of New South Wales , Sydney, New South Wales 2052, Australia
| | - Chi Nam Ignatius Pang
- Systems Biology Initiative, School of Biotechnology and Biomolecular Sciences, The University of New South Wales , Sydney, New South Wales 2052, Australia
| | - Daniel L Winter
- Systems Biology Initiative, School of Biotechnology and Biomolecular Sciences, The University of New South Wales , Sydney, New South Wales 2052, Australia
| | - Marc R Wilkins
- Systems Biology Initiative, School of Biotechnology and Biomolecular Sciences, The University of New South Wales , Sydney, New South Wales 2052, Australia
| |
Collapse
|
46
|
Venerando A, Cesaro L, Pinna LA. From phosphoproteins to phosphoproteomes: a historical account. FEBS J 2017; 284:1936-1951. [PMID: 28079298 DOI: 10.1111/febs.14014] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 12/20/2016] [Accepted: 01/10/2017] [Indexed: 12/17/2022]
Abstract
The first phosphoprotein (casein) was discovered in 1883, yet the enzyme responsible for its phosphorylation was identified only 130 years later, in 2012. In the intervening time, especially in the last decades of the 1900s, it became evident that, far from being an oddity, phosphorylation affects the majority of eukaryotic proteins during their lifespan, and that this reaction is catalysed by the members of a large family of protein kinases, susceptible to a variety of stimuli controlling nearly every aspect of life and death. The aim of this review is to present a historical account of the main steps of this spectacular revolution, which transformed our conception of a biochemical reaction originally held as a sporadic curiosity into the master mechanism governing cell regulation, and, if it is perturbed, causing cell dysregulation.
Collapse
Affiliation(s)
| | - Luca Cesaro
- Department of Biomedical Sciences, University of Padova, Italy
| | - Lorenzo A Pinna
- Department of Biomedical Sciences, University of Padova, Italy.,CNR Neuroscience Institute, Padova, Italy
| |
Collapse
|
47
|
Huang H, Kaneko T, Sidhu SS, Li SSC. Creation of Phosphotyrosine Superbinders by Directed Evolution of an SH2 Domain. Methods Mol Biol 2017; 1555:225-254. [PMID: 28092036 DOI: 10.1007/978-1-4939-6762-9_13] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Commercial antibodies raised against phosphotyrosine have been widely used as reagents to detect or isolate tyrosine-phosphorylated proteins from cellular samples. However, these antibodies are costly and are not amenable to in-house production in an academic lab setting. In this chapter, we describe a method to generate super-high affinity SH2 domains, dubbed the phosphotyrosine superbinders, by evolving a natural SH2 domain using the phage display technology. The superbinders are stable and can be easily produced in Escherichia coli in large quantities. The strategy presented here may also be applied to other protein domains to generate domain variants with markedly enhanced affinities for a specific post-translational modification.
Collapse
Affiliation(s)
- Haiming Huang
- Banting and Best Department of Medical Research, University of Toronto, Donnelly Centre, 160 College Street, Toronto, ON, Canada, M5S 3E1
- Department of Molecular Genetics, University of Toronto, Donnelly Centre, 160 College Street, Toronto, ON, Canada, M5S 3E1
| | - Tomonori Kaneko
- Department of Biochemistry and Siebens-Drake Medical Research Institute, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada, N6A 5C1
| | - Sachdev S Sidhu
- Banting and Best Department of Medical Research, University of Toronto, Donnelly Centre, 160 College Street, Toronto, ON, Canada, M5S 3E1.
- Department of Molecular Genetics, University of Toronto, Donnelly Centre, 160 College Street, Toronto, ON, Canada, M5S 3E1.
| | - Shawn S C Li
- Department of Biochemistry and Siebens-Drake Medical Research Institute, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada, N6A 5C1.
| |
Collapse
|
48
|
Machida K, Liu B. Binding Assays Using Recombinant SH2 Domains: Far-Western, Pull-Down, and Fluorescence Polarization. Methods Mol Biol 2017; 1555:307-330. [PMID: 28092040 DOI: 10.1007/978-1-4939-6762-9_17] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Recognition of phosphotyrosine-containing sequences by SH2 domains confers specificity in tyrosine kinase pathways. By assessing interactions between isolated SH2 domains and their binding proteins, it is possible to gain insight into otherwise inaccessible complex cellular systems. Far-Western, pull-down, and fluorescence polarization (FP) have been frequently used for characterization of phosphotyrosine signaling. Here, we outline standard protocols for these established assays using recombinant SH2 domain, emphasizing the importance of appropriate sample preparation and assay controls.
Collapse
Affiliation(s)
- Kazuya Machida
- Raymond and Beverly Sackler Laboratory of Genetics and Molecular Medicine, Department of Genetics and Genome Sciences, University of Connecticut School of Medicine, 400 Farmington Avenue, Farmington, CT, 06030, USA.
| | - Bernard Liu
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| |
Collapse
|
49
|
Abstract
With a growing number of high-throughput studies, structural analyses, and availability of protein-protein interaction databases, it is now possible to apply web-based prediction tools to SH2 domain-interactions. However, in silico prediction is not always reliable and requires experimental validation. Rosette assay is a dot blot-based reverse-phase assay developed for the assessment of binding between SH2 domains and their ligands. It is conveniently customizable, allowing for low- to high-throughput analysis of interactions between various numbers of SH2 domains and their ligands, e.g., short peptides, purified proteins, and cell lysates. The binding assay is performed in a 96-well plate (MBA or MWA apparatus) in which a sample spotted membrane is incubated with up to 96 labeled SH2 domains. Bound domains are detected and quantified using a chemiluminescence or near-infrared fluorescence (IR) imaging system. In this chapter, we describe a practical protocol for rosette assay to assess interactions between synthesized tyrosine phosphorylated peptides and a library of GST-tagged SH2 domains. Since the methodology is not confined to assessment of SH2-pTyr interactions, rosette assay can be broadly utilized for ligand and drug screening using different protein interaction domains or antibodies.
Collapse
|
50
|
Huculeci R, Garcia-Pino A, Buts L, Lenaerts T, van Nuland N. Structural insights into the intertwined dimer of fyn SH2. Protein Sci 2015; 24:1964-78. [PMID: 26384592 DOI: 10.1002/pro.2806] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Revised: 09/13/2015] [Accepted: 09/16/2015] [Indexed: 01/01/2023]
Abstract
Src homology 2 domains are interaction modules dedicated to the recognition of phosphotyrosine sites incorporated in numerous proteins found in intracellular signaling pathways. Here we provide for the first time structural insight into the dimerization of Fyn SH2 both in solution and in crystalline conditions, providing novel crystal structures of both the dimer and peptide-bound structures of Fyn SH2. Using nuclear magnetic resonance chemical shift analysis, we show how the peptide is able to eradicate the dimerization, leading to monomeric SH2 in its bound state. Furthermore, we show that Fyn SH2's dimer form differs from other SH2 dimers reported earlier. Interestingly, the Fyn dimer can be used to construct a completed dimer model of Fyn without any steric clashes. Together these results extend our understanding of SH2 dimerization, giving structural details, on one hand, and suggesting a possible physiological relevance of such behavior, on the other hand.
Collapse
Affiliation(s)
- Radu Huculeci
- Structural Biology Brussels, Jean Jeener NMR Center, Vrije Universiteit Brussel, Brussels, Belgium.,Structural Biology Research Center, VIB, Brussels, Belgium
| | - Abel Garcia-Pino
- Structural Biology Brussels, Jean Jeener NMR Center, Vrije Universiteit Brussel, Brussels, Belgium.,Structural Biology Research Center, VIB, Brussels, Belgium
| | - Lieven Buts
- Structural Biology Brussels, Jean Jeener NMR Center, Vrije Universiteit Brussel, Brussels, Belgium.,Structural Biology Research Center, VIB, Brussels, Belgium
| | - Tom Lenaerts
- MLG, Département d'Informatique, Université Libre de Bruxelles, Brussels, Belgium.,AI-Lab,Vakgroep Computerwetenschappen, Vrije Universiteit Brussel, Brussels, Belgium.,Interuniversity Institute of Bioinformatics Brussels (IB2), ULB-VUB, Brussels, Belgium
| | - Nico van Nuland
- Structural Biology Brussels, Jean Jeener NMR Center, Vrije Universiteit Brussel, Brussels, Belgium.,Structural Biology Research Center, VIB, Brussels, Belgium
| |
Collapse
|