1
|
Bhattacharya A, Parlanti P, Cavallo L, Farrow E, Spivey T, Renieri A, Mari F, Manzini MC. A novel framework for functional annotation of variants of uncertain significance in ID/ASD risk gene CC2D1A. Hum Mol Genet 2024; 33:1229-1240. [PMID: 38652285 DOI: 10.1093/hmg/ddae070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 03/07/2024] [Accepted: 04/11/2024] [Indexed: 04/25/2024] Open
Abstract
Intellectual disability (ID) and autism spectrum disorder (ASD) are genetically heterogeneous with hundreds of identified risk genes, most affecting only a few patients. Novel missense variants in these genes are being discovered as clinical exome sequencing is now routinely integrated into diagnosis, yet most of them are annotated as variants of uncertain significance (VUS). VUSs are a major roadblock in using patient genetics to inform clinical action. We developed a framework to characterize VUSs in Coiled-coil and C2 domain containing 1A (CC2D1A), a gene causing autosomal recessive ID with comorbid ASD in 40% of cases. We analyzed seven VUSs (p.Pro319Leu, p.Ser327Leu, p.Gly441Val, p.Val449Met, p.Thr580Ile, p.Arg886His and p.Glu910Lys) from four cases of individuals with ID and ASD. Variants were cloned and overexpressed in HEK293 individually and in their respective heterozygous combination. CC2D1A is a signaling scaffold that positively regulates PKA-CREB signaling by repressing phosphodiesterase 4D (PDE4D) to prevent cAMP degradation. After testing multiple parameters including direct interaction between PDE4D and CC2D1A, cAMP levels and CREB activation, we found that the most sensitive readout was CREB transcriptional activity using a luciferase assay. Compared to WT CC2D1A, five VUSs (p.Pro319Leu, p.Gly441Val, p.Val449Met, p.Thr580Ile, and p.Arg886His) led to significantly blunted response to forskolin induced CREB activation. This luciferase assay approach can be scaled up to annotate ~150 CC2D1A VUSs that are currently listed in ClinVar. Since CREB activation is a common denominator for multiple ASD/ID genes, our paradigm can also be adapted for their VUSs.
Collapse
Affiliation(s)
- Aniket Bhattacharya
- Child Health Institute of New Jersey and Department of Neuroscience and Cell Biology, Rutgers - Robert Wood Johnson Medical School, 89 French Street, New Brunswick, NJ 08901, United States
| | - Paola Parlanti
- Child Health Institute of New Jersey and Department of Neuroscience and Cell Biology, Rutgers - Robert Wood Johnson Medical School, 89 French Street, New Brunswick, NJ 08901, United States
| | - Luca Cavallo
- Child Health Institute of New Jersey and Department of Neuroscience and Cell Biology, Rutgers - Robert Wood Johnson Medical School, 89 French Street, New Brunswick, NJ 08901, United States
| | - Edward Farrow
- Department of Pharmacology and Physiology, School of Medicine and Health Sciences, George Washington University, 2121 I St NW, Washington, DC 20052, United States
| | - Tyler Spivey
- Department of Pharmacology and Physiology, School of Medicine and Health Sciences, George Washington University, 2121 I St NW, Washington, DC 20052, United States
| | - Alessandra Renieri
- Medical Genetics, University of Siena, Viale Bracci 2, 53100 Siena, Italy
| | - Francesca Mari
- Medical Genetics, University of Siena, Viale Bracci 2, 53100 Siena, Italy
| | - M Chiara Manzini
- Child Health Institute of New Jersey and Department of Neuroscience and Cell Biology, Rutgers - Robert Wood Johnson Medical School, 89 French Street, New Brunswick, NJ 08901, United States
| |
Collapse
|
2
|
Rodnyy AY, Kondaurova EM, Tsybko AS, Popova NK, Kudlay DA, Naumenko VS. The brain serotonin system in autism. Rev Neurosci 2024; 35:1-20. [PMID: 37415576 DOI: 10.1515/revneuro-2023-0055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 06/10/2023] [Indexed: 07/08/2023]
Abstract
Autism spectrum disorders (ASDs) are among the most common neurodevelopmental diseases. These disorders are characterized by lack of social interaction, by repetitive behavior, and often anxiety and learning disabilities. The brain serotonin (5-HT) system is known to be crucially implicated in a wide range of physiological functions and in the control of different kinds of normal and pathological behavior. A growing number of studies indicate the involvement of the brain 5-HT system in the mechanisms underlying both ASD development and ASD-related behavioral disorders. There are some review papers describing the role of separate key players of the 5-HT system in an ASD and/or autistic-like behavior. In this review, we summarize existing data on the participation of all members of the brain 5-HT system, namely, 5-HT transporter, tryptophan hydroxylase 2, MAOA, and 5-HT receptors, in autism in human and various animal models. Additionally, we describe the most recent studies involving modern techniques for in vivo regulation of gene expression that are aimed at identifying exact roles of 5-HT receptors, MAOA, and 5-HT transporter in the mechanisms underlying autistic-like behavior. Altogether, results of multiple research articles show that the brain 5-HT system intimately partakes in the control of some types of ASD-related behavior, and that specific changes in a function of a certain 5-HT receptor, transporter, and/or enzyme may normalize this aberrant behavior. These data give hope that some of clinically used 5-HT-related drugs have potential for ASD treatment.
Collapse
Affiliation(s)
- Alexander Ya Rodnyy
- Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Akad. Lavrentyeva Ave. 10, Novosibirsk 630090, Russia
| | - Elena M Kondaurova
- Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Akad. Lavrentyeva Ave. 10, Novosibirsk 630090, Russia
| | - Anton S Tsybko
- Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Akad. Lavrentyeva Ave. 10, Novosibirsk 630090, Russia
| | - Nina K Popova
- Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Akad. Lavrentyeva Ave. 10, Novosibirsk 630090, Russia
| | - Dmitry A Kudlay
- NRC Institute of Immunology FMBA of Russia, Kashirskoe Highway 24, Moscow 115522, Russia
- Sechenov's University, 8-2 Trubetskaya Str., Moscow 119991, Russia
| | - Vladimir S Naumenko
- Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Akad. Lavrentyeva Ave. 10, Novosibirsk 630090, Russia
| |
Collapse
|
3
|
Rashvand Z, Najmabadi H, Kahrizi K, Mozhdehipanah H, Moradi M, Estaki Z, Taherkhani K, Nikzat N, Najafipour R, Omrani MD. Identification of a Novel Variant in CC2D1A Gene Linked to Autosomal Recessive Intellectual Disability 3 in an Iranian Family and Investigating the Structure and Pleiotropic Effects of this Gene. IRANIAN JOURNAL OF CHILD NEUROLOGY 2024; 18:25-41. [PMID: 38375126 PMCID: PMC10874518 DOI: 10.22037/ijcn.v18i1.42188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Accepted: 09/10/2023] [Indexed: 02/21/2024]
Abstract
Objectives Intellectual disability (ID) represents a significant health challenge due to its diverse and intricate nature. A multitude of genes play a role in brain development and function, with defects in these genes potentially leading to ID. Considering that many of these genes have yet to be identified, and those identified have only been found in a small number of patients, no complete description of the phenotype created by these genes is available. CC2D1A is one of the genes whose loss-of-function mutation leads to a rare form of non-syndromic ID-3(OMIM*610055), and four pathogenic variants have been reported in this gene so far. Materials & Methods n the current study, two affected females were included with an initial diagnosis of ID who were from an Iranian family with consanguineous marriage. Whole-exome sequencing was used to identify the probable genetic defects. The Genotypic and phenotypic characteristics of the patients were compared with a mutation in the CC2D1A gene, and then the structure of the gene and its reported variants were investigated. Results The patients carried a novel homozygous splicing variant (NM_017721, c.1641+1G>A) in intron 14, which is pathogenic according to the ACMG guideline. Loss-of-function mutations in CC2D1A have severe phenotypic consequences such as ID, autism spectrum disorder (ASD), and seizures. However, missense mutations lead to ASD with or without ID, and in some patients, they cause ciliopathy. Conclusion This study reports the fifth novel, probably pathogenic variant in the CC2D1A gene. Comparing the clinical and molecular genetic features of the patients with loss-of-function mutation helped to describe the phenotype caused by this gene more precisely. Investigating the CC2D1A gene's mutations and structure revealed that it performs multiple functions. The DM14 domain appears more pivotal in triggering severe clinical symptoms, including ID, than the C2 domain.
Collapse
Affiliation(s)
- Zahra Rashvand
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hossein Najmabadi
- Genetics Research Center, the University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Kimia Kahrizi
- Genetics Research Center, the University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Hossein Mozhdehipanah
- Depatment of Neurology Boali Hospital, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Mohammad Moradi
- Cellular and Molecular Research Centre, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Zohreh Estaki
- Department of Pediatric Dentistry, School of Dentistry, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Khadijeh Taherkhani
- Cellular and Molecular Research Centre, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Nooshin Nikzat
- Genetics Research Center, the University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Reza Najafipour
- Genetics Research Center, the University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Mir Davood Omrani
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
4
|
Metkar SK, Yan Y, Lu Y, Lu J, Zhu X, Du F, Xu Y. Phosphodiesterase 2 and Its Isoform A as Therapeutic Targets in the Central Nervous System Disorders. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2024; 23:941-955. [PMID: 37855295 DOI: 10.2174/1871527323666230811093126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 06/15/2023] [Accepted: 07/07/2023] [Indexed: 10/20/2023]
Abstract
Cyclic adenosine monophosphates (cAMP) and cyclic guanosine monophosphate (cGMP) are two essential second messengers, which are hydrolyzed by phosphodiesterase's (PDEs), such as PDE-2. Pharmacological inhibition of PDE-2 (PDE2A) in the central nervous system improves cAMP and cGMP signaling, which controls downstream proteins related to neuropsychiatric, neurodegenerative, and neurodevelopmental disorders. Considering that there are no specific treatments for these disorders, PDE-2 inhibitors' development has gained more attention in the recent decade. There is high demand for developing new-generation drugs targeting PDE2 for treating diseases in the central nervous and peripheral systems. This review summarizes the relationship between PDE-2 with neuropsychiatric, neurodegenerative, and neurodevelopmental disorders as well as its possible treatment, mainly involving inhibitors of PDE2.
Collapse
Affiliation(s)
- Sanjay K Metkar
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103, USA
| | - Yuqing Yan
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103, USA
| | - Yue Lu
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103, USA
| | - Jianming Lu
- Codex BioSolutions Inc. 12358 Parklawn Drive, Suite 250A, Rockville, MD 20852, Maryland
| | - Xiongwei Zhu
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio 44106; USA
| | - Fu Du
- FD NeuroTechnologies Consulting & Services, Inc., Columbia, MD 21046, Maryland
| | - Ying Xu
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103, USA
| |
Collapse
|
5
|
Paes D, Schepers M, Rombaut B, van den Hove D, Vanmierlo T, Prickaerts J. The Molecular Biology of Phosphodiesterase 4 Enzymes as Pharmacological Targets: An Interplay of Isoforms, Conformational States, and Inhibitors. Pharmacol Rev 2021; 73:1016-1049. [PMID: 34233947 DOI: 10.1124/pharmrev.120.000273] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The phosphodiesterase 4 (PDE4) enzyme family plays a pivotal role in regulating levels of the second messenger cAMP. Consequently, PDE4 inhibitors have been investigated as a therapeutic strategy to enhance cAMP signaling in a broad range of diseases, including several types of cancers, as well as in various neurologic, dermatological, and inflammatory diseases. Despite their widespread therapeutic potential, the progression of PDE4 inhibitors into the clinic has been hampered because of their related relatively small therapeutic window, which increases the chance of producing adverse side effects. Interestingly, the PDE4 enzyme family consists of several subtypes and isoforms that can be modified post-translationally or can engage in specific protein-protein interactions to yield a variety of conformational states. Inhibition of specific PDE4 subtypes, isoforms, or conformational states may lead to more precise effects and hence improve the safety profile of PDE4 inhibition. In this review, we provide an overview of the variety of PDE4 isoforms and how their activity and inhibition is influenced by post-translational modifications and interactions with partner proteins. Furthermore, we describe the importance of screening potential PDE4 inhibitors in view of different PDE4 subtypes, isoforms, and conformational states rather than testing compounds directed toward a specific PDE4 catalytic domain. Lastly, potential mechanisms underlying PDE4-mediated adverse effects are outlined. In this review, we illustrate that PDE4 inhibitors retain their therapeutic potential in myriad diseases, but target identification should be more precise to establish selective inhibition of disease-affected PDE4 isoforms while avoiding isoforms involved in adverse effects. SIGNIFICANCE STATEMENT: Although the PDE4 enzyme family is a therapeutic target in an extensive range of disorders, clinical use of PDE4 inhibitors has been hindered because of the adverse side effects. This review elaborately shows that safer and more effective PDE4 targeting is possible by characterizing 1) which PDE4 subtypes and isoforms exist, 2) how PDE4 isoforms can adopt specific conformations upon post-translational modifications and protein-protein interactions, and 3) which PDE4 inhibitors can selectively bind specific PDE4 subtypes, isoforms, and/or conformations.
Collapse
Affiliation(s)
- Dean Paes
- Department of Psychiatry & Neuropsychology, School for Mental Health and Neuroscience, EURON, Maastricht University, Maastricht, The Netherlands (D.P, M.S., B.R., D.v.d.H., T.V., J.P.); Department of Neuroscience, Neuro-Immune Connect and Repair laboratory, Biomedical Research Institute, Hasselt University, Hasselt, Belgium (D.P., M.S., B.R., T.V.); and Department of Psychiatry, Psychosomatics and Psychotherapy, University of Würzburg, Würzburg, Germany (D.v.d.H.)
| | - Melissa Schepers
- Department of Psychiatry & Neuropsychology, School for Mental Health and Neuroscience, EURON, Maastricht University, Maastricht, The Netherlands (D.P, M.S., B.R., D.v.d.H., T.V., J.P.); Department of Neuroscience, Neuro-Immune Connect and Repair laboratory, Biomedical Research Institute, Hasselt University, Hasselt, Belgium (D.P., M.S., B.R., T.V.); and Department of Psychiatry, Psychosomatics and Psychotherapy, University of Würzburg, Würzburg, Germany (D.v.d.H.)
| | - Ben Rombaut
- Department of Psychiatry & Neuropsychology, School for Mental Health and Neuroscience, EURON, Maastricht University, Maastricht, The Netherlands (D.P, M.S., B.R., D.v.d.H., T.V., J.P.); Department of Neuroscience, Neuro-Immune Connect and Repair laboratory, Biomedical Research Institute, Hasselt University, Hasselt, Belgium (D.P., M.S., B.R., T.V.); and Department of Psychiatry, Psychosomatics and Psychotherapy, University of Würzburg, Würzburg, Germany (D.v.d.H.)
| | - Daniel van den Hove
- Department of Psychiatry & Neuropsychology, School for Mental Health and Neuroscience, EURON, Maastricht University, Maastricht, The Netherlands (D.P, M.S., B.R., D.v.d.H., T.V., J.P.); Department of Neuroscience, Neuro-Immune Connect and Repair laboratory, Biomedical Research Institute, Hasselt University, Hasselt, Belgium (D.P., M.S., B.R., T.V.); and Department of Psychiatry, Psychosomatics and Psychotherapy, University of Würzburg, Würzburg, Germany (D.v.d.H.)
| | - Tim Vanmierlo
- Department of Psychiatry & Neuropsychology, School for Mental Health and Neuroscience, EURON, Maastricht University, Maastricht, The Netherlands (D.P, M.S., B.R., D.v.d.H., T.V., J.P.); Department of Neuroscience, Neuro-Immune Connect and Repair laboratory, Biomedical Research Institute, Hasselt University, Hasselt, Belgium (D.P., M.S., B.R., T.V.); and Department of Psychiatry, Psychosomatics and Psychotherapy, University of Würzburg, Würzburg, Germany (D.v.d.H.)
| | - Jos Prickaerts
- Department of Psychiatry & Neuropsychology, School for Mental Health and Neuroscience, EURON, Maastricht University, Maastricht, The Netherlands (D.P, M.S., B.R., D.v.d.H., T.V., J.P.); Department of Neuroscience, Neuro-Immune Connect and Repair laboratory, Biomedical Research Institute, Hasselt University, Hasselt, Belgium (D.P., M.S., B.R., T.V.); and Department of Psychiatry, Psychosomatics and Psychotherapy, University of Würzburg, Würzburg, Germany (D.v.d.H.)
| |
Collapse
|
6
|
Yang CY, Hung YC, Cheng KH, Ling P, Hsu KS. Loss of CC2D1A in Glutamatergic Neurons Results in Autistic-Like Features in Mice. Neurotherapeutics 2021; 18:2021-2039. [PMID: 34132974 PMCID: PMC8608959 DOI: 10.1007/s13311-021-01072-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/05/2021] [Indexed: 02/04/2023] Open
Abstract
Biallelic loss-of-function mutations in Coiled-coil and C2 domain containing 1A (CC2D1A) cause autosomal recessive intellectual disability, sometimes comorbid with other neurodevelopmental disabilities, such as autism spectrum disorder (ASD) and seizures. We recently reported that conditional deletion of Cc2d1a in glutamatergic neurons of the postnatal mouse forebrain leads to impaired hippocampal synaptic plasticity and cognitive function. However, the pathogenic origin of the autistic features of CC2D1A deficiency remains elusive. Here, we confirmed that CC2D1A is highly expressed in the cortical zones during embryonic development. Taking advantage of Cre-LoxP-mediated gene deletion strategy, we generated a novel line of Cc2d1a conditional knockout (cKO) mice by crossing floxed Cc2d1a mice with Emx1-Cre mice, in which CC2D1A is ablated specifically in glutamatergic neurons throughout all embryonic and adult stages. We found that CC2D1A deletion leads to a trend toward decreased number of cortical progenitor cells at embryonic day 12.5 and alters the cortical thickness on postnatal day 10. In addition, male Cc2d1a cKO mice display autistic-like phenotypes including self-injurious repetitive grooming and aberrant social interactions. Loss of CC2D1A also results in decreased complexity of apical dendritic arbors of medial prefrontal cortex (mPFC) layer V pyramidal neurons and increased synaptic excitation/inhibition (E/I) ratio in the mPFC. Notably, chronic treatment with minocycline rescues behavioral and morphological abnormalities, as well as E/I changes, in male Cc2d1a cKO mice. Together, these findings indicate that male Cc2d1a cKO mice recapitulate autistic-like phenotypes of human disorder and suggest that minocycline has both structural and functional benefits in treating ASD.
Collapse
Affiliation(s)
- Cheng-Yi Yang
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Yu-Chieh Hung
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Kuan-Hsiang Cheng
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Pin Ling
- Department of Microbiology & Immunology, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Kuei-Sen Hsu
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan.
- Department of Pharmacology, College of Medicine, National Cheng Kung University, No. 1, University Rd., Tainan, 70101, Taiwan.
| |
Collapse
|
7
|
Berry-Kravis EM, Harnett MD, Reines SA, Reese MA, Ethridge LE, Outterson AH, Michalak C, Furman J, Gurney ME. Inhibition of phosphodiesterase-4D in adults with fragile X syndrome: a randomized, placebo-controlled, phase 2 clinical trial. Nat Med 2021; 27:862-870. [PMID: 33927413 DOI: 10.1038/s41591-021-01321-w] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 03/15/2021] [Indexed: 12/18/2022]
Abstract
The goal of this study was to determine whether a phosphodiesterase-4D (PDE4D) allosteric inhibitor (BPN14770) would improve cognitive function and behavioral outcomes in patients with fragile X syndrome (FXS). This phase 2 trial was a 24-week randomized, placebo-controlled, two-way crossover study in 30 adult male patients (age 18-41 years) with FXS. Participants received oral doses of BPN14770 25 mg twice daily or placebo. Primary outcomes were prespecified as safety and tolerability with secondary efficacy outcomes of cognitive performance, caregiver rating scales and physician rating scales (ClinicalTrials.gov identifier: NCT03569631 ). The study met the primary outcome measure since BPN14770 was well tolerated with no meaningful differences between the active and placebo treatment arms. The study also met key secondary efficacy measures of cognition and daily function. Cognitive benefit was demonstrated using the National Institutes of Health Toolbox Cognition Battery assessments of Oral Reading Recognition (least squares mean difference +2.81, P = 0.0157), Picture Vocabulary (+5.81, P = 0.0342) and Cognition Crystallized Composite score (+5.31, P = 0.0018). Benefit as assessed by visual analog caregiver rating scales was judged to be clinically meaningful for language (+14.04, P = 0.0051) and daily functioning (+14.53, P = 0.0017). Results from this study using direct, computer-based assessment of cognitive performance by adult males with FXS indicate significant cognitive improvement in domains related to language with corresponding improvement in caregiver scales rating language and daily functioning.
Collapse
Affiliation(s)
- Elizabeth M Berry-Kravis
- Department of Pediatrics, Neurological Sciences, and Biochemistry, Rush University Medical Center, Chicago, IL, USA.
| | | | | | - Melody A Reese
- Department of Psychology, University of Oklahoma, Norman, OK, USA
| | - Lauren E Ethridge
- Department of Psychology, University of Oklahoma, Norman, OK, USA.,Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Abigail H Outterson
- Department of Pediatrics, Neurological Sciences, and Biochemistry, Rush University Medical Center, Chicago, IL, USA
| | - Claire Michalak
- Department of Pediatrics, Neurological Sciences, and Biochemistry, Rush University Medical Center, Chicago, IL, USA
| | - Jeremiah Furman
- Department of Pediatrics, Neurological Sciences, and Biochemistry, Rush University Medical Center, Chicago, IL, USA
| | | |
Collapse
|
8
|
Delhaye S, Bardoni B. Role of phosphodiesterases in the pathophysiology of neurodevelopmental disorders. Mol Psychiatry 2021; 26:4570-4582. [PMID: 33414502 PMCID: PMC8589663 DOI: 10.1038/s41380-020-00997-9] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 12/03/2020] [Accepted: 12/09/2020] [Indexed: 12/12/2022]
Abstract
Phosphodiesterases (PDEs) are enzymes involved in the homeostasis of both cAMP and cGMP. They are members of a family of proteins that includes 11 subfamilies with different substrate specificities. Their main function is to catalyze the hydrolysis of cAMP, cGMP, or both. cAMP and cGMP are two key second messengers that modulate a wide array of intracellular processes and neurobehavioral functions, including memory and cognition. Even if these enzymes are present in all tissues, we focused on those PDEs that are expressed in the brain. We took into consideration genetic variants in patients affected by neurodevelopmental disorders, phenotypes of animal models, and pharmacological effects of PDE inhibitors, a class of drugs in rapid evolution and increasing application to brain disorders. Collectively, these data indicate the potential of PDE modulators to treat neurodevelopmental diseases characterized by learning and memory impairment, alteration of behaviors associated with depression, and deficits in social interaction. Indeed, clinical trials are in progress to treat patients with Alzheimer's disease, schizophrenia, depression, and autism spectrum disorders. Among the most recent results, the application of some PDE inhibitors (PDE2A, PDE3, PDE4/4D, and PDE10A) to treat neurodevelopmental diseases, including autism spectrum disorders and intellectual disability, is a significant advance, since no specific therapies are available for these disorders that have a large prevalence. In addition, to highlight the role of several PDEs in normal and pathological neurodevelopment, we focused here on the deregulation of cAMP and/or cGMP in Down Syndrome, Fragile X Syndrome, Rett Syndrome, and intellectual disability associated with the CC2D1A gene.
Collapse
Affiliation(s)
- Sébastien Delhaye
- grid.429194.30000 0004 0638 0649Université Côte d’Azur, CNRS UMR7275, Institute of Molecular and Cellular Pharmacology, 06560 Valbonne, France
| | - Barbara Bardoni
- Université Côte d'Azur, Inserm, CNRS UMR7275, Institute of Molecular and Cellular Pharmacology, 06560, Valbonne, France.
| |
Collapse
|
9
|
Sener EF, Onal MG, Dal F, Nalbantoglu U, Ozkul Y, Canatan H, Oztop DB. Novel alterations of CC2D1A as a candidate gene in a Turkish sample of patients with autism spectrum disorder. Int J Neurosci 2020; 132:1072-1079. [PMID: 33287601 DOI: 10.1080/00207454.2020.1860968] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
BACKGROUND Autism spectrum disorder (ASD) is a neurodevelopmental disorder with large genetic background, but identification of pathogenic variants has proceeded slowly because hundreds of loci are involved in this complex disorder. CC2D1A gene firstly associated with the intellectual disability (ID) in a family with a large deletion. We aimed to contribute to the literature by sequencing this gene and by this way we report novel CC2D1A variations in patients with ASD. METHODS Forty families who have a child with a diagnosis of ASD were enrolled to the study. DNA samples were obtained from each family member. Bidirectional CC2D1A gene sequencing was performed with CEQ Cycle Sequencing Kit, and the products were analyzed on the Beckman CEQ 8000. All of the genetic analysis was conducted in Erciyes University Genome and Stem Cell Center (GENKOK). RESULTS According to the sequencing results, we defined new alterations in this gene with two SNPs in exon 15 and 19 (rs747172992 and rs1364074600) in our patients. We found a pathogenic variant in one patient. This variant was located in the acceptor region. Six of the variants were missense mutations. Additionally, six different benign variants were detected in 30 patients; however, they were not associated with ASD. Two patients carried multiple rare variants. CONCLUSION In vitro and in vivo functional analysis with this gene will help to understand its contribution to ASD pathogenesis. Future studies may help to elucidate the underlying biological mechanisms of these variants leading to the autism phenotype.
Collapse
Affiliation(s)
- Elif Funda Sener
- Medical Faculty Department of Medical Biology, Erciyes University, Kayseri, Turkey.,Genome and Stem Cell Center (GENKOK), Erciyes University, Kayseri, Turkey
| | - Muge Gulcihan Onal
- Genome and Stem Cell Center (GENKOK), Erciyes University, Kayseri, Turkey.,Erciyes University Halil Bayraktar Vocational School of Health College, Kayseri, Turkey
| | - Fatma Dal
- Genome and Stem Cell Center (GENKOK), Erciyes University, Kayseri, Turkey
| | - Ufuk Nalbantoglu
- Genome and Stem Cell Center (GENKOK), Erciyes University, Kayseri, Turkey.,Faculty of Engineering, Department of Computer Engineering, Erciyes University, Kayseri, Turkey
| | - Yusuf Ozkul
- Genome and Stem Cell Center (GENKOK), Erciyes University, Kayseri, Turkey.,Medical Faculty Department of Medical Genetics, Erciyes University, Kayseri, Turkey
| | - Halit Canatan
- Medical Faculty Department of Medical Biology, Erciyes University, Kayseri, Turkey
| | - Didem Behice Oztop
- Faculty of Medicine, Department of Child Psychiatry, Ankara University, Ankara, Turkey
| |
Collapse
|
10
|
Mossa A, Manzini MC. Molecular causes of sex-specific deficits in rodent models of neurodevelopmental disorders. J Neurosci Res 2019; 99:37-56. [PMID: 31872500 PMCID: PMC7754327 DOI: 10.1002/jnr.24577] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 11/02/2019] [Accepted: 12/09/2019] [Indexed: 12/12/2022]
Abstract
Neurodevelopmental disorders (NDDs) such as intellectual disability and autism spectrum disorder consistently show a male bias in prevalence, but it remains unclear why males and females are affected with different frequency. While many behavioral studies of transgenic NDD models have focused only on males, the requirement by the National Institutes of Health to consider sex as a biological variable has promoted the comparison of male and female performance in wild-type and mutant animals. Here, we review examples of rodent models of NDDs in which sex-specific deficits were identified in molecular, physiological, and/or behavioral responses, showing sex differences in susceptibility to disruption of genes mutated in NDDs. Haploinsufficiency in genes involved in mechanisms such as synaptic function (GABRB3 and NRXN1), chromatin remodeling (CHD8, EMHT1, and ADNP), and intracellular signaling (CC2D1A and ERK1) lead to more severe behavioral outcomes in males. However, in the absence of behavioral deficits, females can still present with cellular and electrophysiological changes that could be due to compensatory mechanisms or differential allocation of molecular and cellular functions in the two sexes. By contrasting these findings with mouse models where females are more severely affected (MTHFR and AMBRA1), we propose a framework to approach the study of sex-specific deficits possibly leading to sex bias in NDDs.
Collapse
Affiliation(s)
- Adele Mossa
- Child Health Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - M Chiara Manzini
- Child Health Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA.,Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| |
Collapse
|
11
|
Baillie GS, Tejeda GS, Kelly MP. Therapeutic targeting of 3',5'-cyclic nucleotide phosphodiesterases: inhibition and beyond. Nat Rev Drug Discov 2019; 18:770-796. [PMID: 31388135 PMCID: PMC6773486 DOI: 10.1038/s41573-019-0033-4] [Citation(s) in RCA: 216] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/24/2019] [Indexed: 01/24/2023]
Abstract
Phosphodiesterases (PDEs), enzymes that degrade 3',5'-cyclic nucleotides, are being pursued as therapeutic targets for several diseases, including those affecting the nervous system, the cardiovascular system, fertility, immunity, cancer and metabolism. Clinical development programmes have focused exclusively on catalytic inhibition, which continues to be a strong focus of ongoing drug discovery efforts. However, emerging evidence supports novel strategies to therapeutically target PDE function, including enhancing catalytic activity, normalizing altered compartmentalization and modulating post-translational modifications, as well as the potential use of PDEs as disease biomarkers. Importantly, a more refined appreciation of the intramolecular mechanisms regulating PDE function and trafficking is emerging, making these pioneering drug discovery efforts tractable.
Collapse
Affiliation(s)
- George S Baillie
- Institute of Cardiovascular and Medical Science, University of Glasgow, Glasgow, UK
| | - Gonzalo S Tejeda
- Institute of Cardiovascular and Medical Science, University of Glasgow, Glasgow, UK
| | - Michy P Kelly
- Department of Pharmacology, Physiology & Neuroscience, University of South Carolina School of Medicine, Columbia, SC, USA.
| |
Collapse
|
12
|
Zamarbide M, Mossa A, Muñoz-Llancao P, Wilkinson MK, Pond HL, Oaks AW, Manzini MC. Male-Specific cAMP Signaling in the Hippocampus Controls Spatial Memory Deficits in a Mouse Model of Autism and Intellectual Disability. Biol Psychiatry 2019; 85:760-768. [PMID: 30732858 PMCID: PMC6474812 DOI: 10.1016/j.biopsych.2018.12.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 12/10/2018] [Accepted: 12/10/2018] [Indexed: 10/27/2022]
Abstract
BACKGROUND The prevalence of neurodevelopmental disorders is biased toward male individuals, with male-to-female ratios of 2:1 in intellectual disability and 4:1 in autism spectrum disorder. However, the molecular mechanisms of such bias remain unknown. While characterizing a mouse model for loss of the signaling scaffold coiled-coil and C2 domain-containing protein 1A (CC2D1A), which is mutated in intellectual disability and autism spectrum disorder, we identified biochemical and behavioral differences between male and female mice, and explored whether CC2D1A controls male-specific intracellular signaling. METHODS CC2D1A is known to regulate phosphodiesterase 4D (PDE4D), which regulates cyclic adenosine monophosphate (cAMP) signaling. We tested for activation of PDE4D and downstream signaling molecules in the hippocampus of Cc2d1a-deficient mice. We then performed behavioral studies in female mice to analyze learning and memory, and then targeted PDE4D activation with a PDE4D inhibitor to define how changes in cAMP levels affect behavior in male and female mice. RESULTS We found that in Cc2d1a-deficient male mice PDE4D is hyperactive, leading to a reduction in cAMP response element binding protein signaling, but this molecular deficit is not present in female mice. Cc2d1a-deficient male mice show a deficit in spatial memory, which is not present in Cc2d1a-deficient female mice. Restoring PDE4D activity using an inhibitor rescues cognitive deficits in male mice but has no effect on female mice. CONCLUSIONS Our findings show that CC2D1A regulates cAMP intracellular signaling in a male-specific manner in the hippocampus, leading to male-specific cognitive deficits. We propose that male-specific signaling mechanisms are involved in establishing sex bias in neurodevelopmental disorders.
Collapse
Affiliation(s)
- Marta Zamarbide
- Institute for Neuroscience and Department of Pharmacology and Physiology, George Washington University School of Medicine and Health Sciences, Washington, DC
| | - Adele Mossa
- Institute for Neuroscience and Department of Pharmacology and Physiology, George Washington University School of Medicine and Health Sciences, Washington, DC
| | - Pablo Muñoz-Llancao
- Institute for Neuroscience and Department of Pharmacology and Physiology, George Washington University School of Medicine and Health Sciences, Washington, DC
| | - Molly K Wilkinson
- Institute for Neuroscience and Department of Pharmacology and Physiology, George Washington University School of Medicine and Health Sciences, Washington, DC
| | - Heather L Pond
- Institute for Neuroscience and Department of Pharmacology and Physiology, George Washington University School of Medicine and Health Sciences, Washington, DC
| | - Adam W Oaks
- Institute for Neuroscience and Department of Pharmacology and Physiology, George Washington University School of Medicine and Health Sciences, Washington, DC
| | - M Chiara Manzini
- Institute for Neuroscience and Department of Pharmacology and Physiology, George Washington University School of Medicine and Health Sciences, Washington, DC.
| |
Collapse
|
13
|
Conditional Deletion of CC2D1A Reduces Hippocampal Synaptic Plasticity and Impairs Cognitive Function through Rac1 Hyperactivation. J Neurosci 2019; 39:4959-4975. [PMID: 30992372 DOI: 10.1523/jneurosci.2395-18.2019] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 04/11/2019] [Accepted: 04/14/2019] [Indexed: 11/21/2022] Open
Abstract
Coiled-coil and C2 domain containing 1A (CC2D1A) is an evolutionarily conserved protein, originally identified as a nuclear factor-κB activator through a large-scale screen of human genes. Mutations in the human Cc2d1a gene result in autosomal recessive nonsyndromic intellectual disability. It remains unclear, however, how Cc2d1a mutation leads to alterations in brain function. Here, we have taken advantage of Cre/loxP recombinase-based strategy to conditionally delete Cc2d1a exclusively from excitatory neurons of male mouse forebrain to examine its role in hippocampal synaptic plasticity and cognitive function. We confirmed the expression of CC2D1A protein and mRNA in the mouse hippocampus. Double immunofluorescence staining showed that CC2D1A is expressed in both excitatory and inhibitory neurons of the adult hippocampus. Conditional deletion of Cc2d1a (cKO) from excitatory neurons leads to impaired performance in object location memory test and altered anxiety-like behavior. Consistently, cKO mice displayed a deficit in the maintenance of LTP in the CA1 region of hippocampal slices. Cc2d1a deletion also resulted in decreased complexity of apical and basal dendritic arbors of CA1 pyramidal neurons. An enhanced basal Rac1 activity was observed following Cc2d1a deletion, and this enhancement was mediated by reduced SUMO-specific protease 1 (SENP1) and SENP3 expression, thus increasing the amount of Rac1 SUMOylation. Furthermore, partial blockade of Rac1 activity rescued impairments in LTP and object location memory performance in cKO mice. Together, our results implicate Rac1 hyperactivity in synaptic plasticity and cognitive deficits observed in Cc2d1a cKO mice and reveal a novel role for CC2D1A in regulating hippocampal synaptic function.SIGNIFICANCE STATEMENT CC2D1A is abundantly expressed in the brain, but there is little known about its physiological function. Taking advantage of Cc2d1a cKO mice, the present study highlights the importance of CC2D1A in the maintenance of LTP at Schaffer collateral-CA1 synapses and the formation of hippocampus-dependent long-term object location memory. Our findings establish a critical link between elevated Rac1 activity, structural and synaptic plasticity alterations, and cognitive impairment caused by Cc2d1a deletion. Moreover, partial blockade of Rac1 activity rescues synaptic plasticity and memory deficits in Cc2d1a cKO mice. Such insights may have implications for the utility of Rac1 inhibitors in the treatment of intellectual disability caused by Cc2d1a mutations in human patients.
Collapse
|
14
|
McMillan BJ, Tibbe C, Drabek AA, Seegar TCM, Blacklow SC, Klein T. Structural Basis for Regulation of ESCRT-III Complexes by Lgd. Cell Rep 2018; 19:1750-1757. [PMID: 28564595 DOI: 10.1016/j.celrep.2017.05.026] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 05/04/2017] [Accepted: 05/07/2017] [Indexed: 11/17/2022] Open
Abstract
The ESCRT-III complex induces outward membrane budding and fission through homotypic polymerization of its core component Shrub/CHMP4B. Shrub activity is regulated by its direct interaction with a protein called Lgd in flies, or CC2D1A or B in humans. Here, we report the structural basis for this interaction and propose a mechanism for regulation of polymer assembly. The isolated third DM14 repeat of Lgd binds Shrub, and an Lgd fragment containing only this DM14 repeat and its C-terminal C2 domain is sufficient for in vivo function. The DM14 domain forms a helical hairpin with a conserved, positively charged tip, that, in the structure of a DM14 domain-Shrub complex, occupies a negatively charged surface of Shrub that is otherwise used for homopolymerization. Lgd mutations at this interface disrupt its function in flies, confirming functional importance. Together, these data argue that Lgd regulates ESCRT activity by controlling access to the Shrub self-assembly surface.
Collapse
Affiliation(s)
- Brian J McMillan
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Christine Tibbe
- Institute of Genetics, Heinrich-Heine-University, Dusseldorf 40225, Germany
| | - Andrew A Drabek
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Tom C M Seegar
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Stephen C Blacklow
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA; Dana Farber Cancer Institute, Department of Cancer Biology, Boston, MA 02215, USA.
| | - Thomas Klein
- Institute of Genetics, Heinrich-Heine-University, Dusseldorf 40225, Germany.
| |
Collapse
|
15
|
Drusenheimer N, Migdal B, Jäckel S, Tveriakhina L, Scheider K, Schulz K, Gröper J, Köhrer K, Klein T. The Mammalian Orthologs of Drosophila Lgd, CC2D1A and CC2D1B, Function in the Endocytic Pathway, but Their Individual Loss of Function Does Not Affect Notch Signalling. PLoS Genet 2015; 11:e1005749. [PMID: 26720614 PMCID: PMC4697852 DOI: 10.1371/journal.pgen.1005749] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 11/24/2015] [Indexed: 12/14/2022] Open
Abstract
CC2D1A and CC2D1B belong to the evolutionary conserved Lgd protein family with members in all multi-cellular animals. Several functions such as centrosomal cleavage, involvement in signalling pathways, immune response and synapse maturation have been described for CC2D1A. Moreover, the Drosophila melanogaster ortholog Lgd was shown to be involved in the endosomal trafficking of the Notch receptor and other transmembrane receptors and physically interacts with the ESCRT-III component Shrub/CHMP4. To determine if this function is conserved in mammals we generated and characterized Cc2d1a and Cc2d1b conditional knockout mice. While Cc2d1b deficient mice displayed no obvious phenotype, we found that Cc2d1a deficient mice as well as conditional mutants that lack CC2D1A only in the nervous system die shortly after birth due to respiratory distress. This finding confirms the suspicion that the breathing defect is caused by the central nervous system. However, an involvement in centrosomal function could not be confirmed in Cc2d1a deficient MEF cells. To analyse an influence on Notch signalling, we generated intestine specific Cc2d1a mutant mice. These mice did not display any alterations in goblet cell number, proliferating cell number or expression of the Notch reporter Hes1-emGFP, suggesting that CC2D1A is not required for Notch signalling. However, our EM analysis revealed that the average size of endosomes of Cc2d1a mutant cells, but not Cc2d1b mutant cells, is increased, indicating a defect in endosomal morphogenesis. We could show that CC2D1A and its interaction partner CHMP4B are localised on endosomes in MEF cells, when the activity of the endosomal protein VPS4 is reduced. This indicates that CC2D1A cycles between the cytosol and the endosomal membrane. Additionally, in rescue experiments in D. melanogaster, CC2D1A and CC2D1B were able to functionally replace Lgd. Altogether our data suggest a functional conservation of the Lgd protein family in the ESCRT-III mediated process in metazoans. The proteins of the Lgd/CC2D1 family are conserved in all multicellular animals. The Drosophila melanogaster ortholog Lgd is involved in the regulation of signalling receptor degradation via the endosomal pathway. Loss of lgd function causes ectopic ligand-independent activation of the Notch signalling pathway due to a defect in the endosomal pathway. For the mammalian proteins no endosomal function has been defined so far. Here, we asked whether the function of Lgd is conserved in mammals with the focus on the question whether its orthologs are also involved in the endosomal pathway and regulation of Notch pathway activity. Therefore, we generated and characterised Cc2d1a and Cc2d1b conditional knockout mice. We found that the loss of Cc2d1b does not lead to an obvious phenotype, while the known lethality of Cc2d1a deficient newborns is nervous system dependent. In experiments with MEFs isolated from knockout animals we provide evidence that both CC2D1 proteins are involved in the function of the ESCRT-III complex in a similar manner as Lgd in D. melanogaster. Moreover, we found that the loss of one CC2D1 protein is not sufficient to cause ectopic activation of Notch signalling.
Collapse
Affiliation(s)
- Nadja Drusenheimer
- Institut für Genetik, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
- * E-mail: (ND); (TK)
| | - Bernhard Migdal
- Institut für Genetik, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Sandra Jäckel
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Lena Tveriakhina
- Institut für Molekularbiologie OE5250, Medizinische Hochschule Hannover, Hannover, Germany
| | - Kristina Scheider
- Institut für Genetik, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Katharina Schulz
- Institut für Genetik, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Jieny Gröper
- Institut für Genetik, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Karl Köhrer
- Biological and Medical Research Center (BMFZ), Genomics and Transcriptomics Laboratory (GTL), Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Thomas Klein
- Institut für Genetik, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
- * E-mail: (ND); (TK)
| |
Collapse
|
16
|
Yamada T, Amann JM, Fukuda K, Takeuchi S, Fujita N, Uehara H, Iwakiri S, Itoi K, Shilo K, Yano S, Carbone DP. Akt Kinase-Interacting Protein 1 Signals through CREB to Drive Diffuse Malignant Mesothelioma. Cancer Res 2015; 75:4188-97. [PMID: 26294214 DOI: 10.1158/0008-5472.can-15-0858] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 06/26/2015] [Indexed: 12/12/2022]
Abstract
Diffuse malignant mesothelioma (DMM) is a tumor of serosal membranes with propensity for progressive local disease. Because current treatment options are largely ineffective, novel therapeutic strategies based on molecular mechanisms and the disease characteristics are needed to improve the outcomes of patients with this disease. Akt kinase interacting protein 1 (Aki1; Freud-1/CC2D1A) is a scaffold protein for the PI3K-PDK1-Akt signaling module that helps determine receptor signal selectivity for EGFR. Aki1 has been suggested as a therapeutic target, but its potential has yet to be evaluated in a tumor setting. Here, we report evidence supporting its definition as a therapeutic target in DMM. In cell-based assays, Aki1 silencing decreased cell viability and caused cell-cycle arrest of multiple DMM cell lines via effects on the PKA-CREB1 signaling pathway. Blocking CREB activity phenocopied Aki1 silencing. Clinically, Aki1 was expressed in most human DMM specimens where its expression correlated with phosphorylated CREB1. Notably, Aki1 siRNA potently blocked tumor growth in an orthotopic implantation model of DMM when administered directly into the pleural cavity of tumor-bearing mice. Our findings suggest an important role for the Aki1-CREB axis in DMM pathogenesis and provide a preclinical rationale to target Aki1 by intrathoracic therapy in locally advanced tumors.
Collapse
Affiliation(s)
- Tadaaki Yamada
- Department of Internal Medicine, The Ohio State University Medical Center, Columbus, Ohio. Division of Medical Oncology, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| | - Joseph M Amann
- Department of Internal Medicine, The Ohio State University Medical Center, Columbus, Ohio
| | - Koji Fukuda
- Division of Medical Oncology, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| | - Shinji Takeuchi
- Division of Medical Oncology, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| | - Naoya Fujita
- Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Hisanori Uehara
- Department of Molecular and Environmental Pathology, Institute of Health Biosciences, University of Tokushima Graduate School, Tokushima, Japan
| | - Shotaro Iwakiri
- Department of Respiratory Surgery, Hyogo Prefectural Amagasaki Hospital, Amagasaki, Japan
| | - Kazumi Itoi
- Department of Respiratory Surgery, Hyogo Prefectural Amagasaki Hospital, Amagasaki, Japan
| | - Konstantin Shilo
- Department of Pathology, The Ohio State University Medical Center, Columbus, Ohio
| | - Seiji Yano
- Division of Medical Oncology, Cancer Research Institute, Kanazawa University, Kanazawa, Japan.
| | - David P Carbone
- Department of Internal Medicine, The Ohio State University Medical Center, Columbus, Ohio.
| |
Collapse
|