1
|
Wei KC, Lin JT, Lin CH. Celecoxib paradoxically induces COX-2 expression and astrocyte activation through the ERK/JNK/AP-1 signaling pathway in the cerebral cortex of rats. Neurochem Int 2024; 183:105926. [PMID: 39734024 DOI: 10.1016/j.neuint.2024.105926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 12/21/2024] [Accepted: 12/26/2024] [Indexed: 12/31/2024]
Abstract
Previous studies have shown that celecoxib or NSAID may paradoxically induce cyclooxygenase-2 (COX-2) expression and trigger inflammation-like responses in airway smooth muscle cells and renal mesangial cells. Despite the extensive research on celecoxib, its atypical biological effect on the induction of COX-2 in astroglial cells within the central nervous system (CNS) remains unexplored. In the present study, we investigated the impact of celecoxib on COX-2 and Glial Fibrillary Acidic Protein (GFAP) expression and explored the mechanisms underlying celecoxib-regulated COX-2 expression in cortical astrocytes of rats. Cortical astrocytes were treated with celecoxib (20 μM) for 24 h, resulting in a significant increase in COX-2 expression and up-regulation of GFAP, a marker of astrocyte activation, and the COX-2 induced by celecoxib is functionally active in prostaglandin E2 (PGE2) synthesis. Celecoxib also enhanced LPS-induced COX-2 expression, but its ability to inhibit PGE2 synthesis decreased at higher concentrations. Celecoxib induced phosphorylation of Extracellular signal-regulated Kinase (ERK) and c-Jun N-terminal Kinase (JNK) but not p38 Mitogen-Activated Protein Kinase (p38 MAPK), and inhibition of activity of ERK and JNK by U0126 and SP600125 effectively blocked COX-2 and GFAP induction by celecoxib. Celecoxib increased the accumulation of transcription factor AP-1 (composed of phosphorylated c-Jun and c-fos) in the nucleus. Inhibition of AP-1 activity with SR11302 significantly prevented celecoxib-induced COX-2 and GFAP expression. Additionally, the inhibiting activity of ERK and JNK can effectively suppress AP-1 expression and activity induced by celecoxib. These findings demonstrated that celecoxib induces COX-2 expression and astrocyte activation through the ERK/JNK/AP-1 signaling pathway, highlighting its potential effect in modulating inflammatory responses in the central nervous system.
Collapse
Affiliation(s)
- Kai-Che Wei
- Department of Dermatology, Kaohsiung Veterans General Hospital, Kaoshiung, 813, Taiwan; College of Medicine, National Yang-Ming Chiao Tung University, Taipei, 112, Taiwan
| | - Jun-Ting Lin
- Master and PhD Programs in Pharmacology and Toxicology, School of Medicine, Tzu Chi University, Hualien, 970, Taiwan
| | - Chia-Ho Lin
- Master and PhD Programs in Pharmacology and Toxicology, School of Medicine, Tzu Chi University, Hualien, 970, Taiwan; Department of Pharmacology, School of Medicine, Tzu Chi University, Hualien, 970, Taiwan.
| |
Collapse
|
2
|
Zhou Y, Deng Q, Vong CT, Khan H, Cheang WS. Oxyresveratrol reduces lipopolysaccharide-induced inflammation and oxidative stress through inactivation of MAPK and NF-κB signaling in brain endothelial cells. Biochem Biophys Rep 2024; 40:101823. [PMID: 39290344 PMCID: PMC11407036 DOI: 10.1016/j.bbrep.2024.101823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 08/30/2024] [Accepted: 09/03/2024] [Indexed: 09/19/2024] Open
Abstract
Inflammatory responses and oxidative stress damage the integrity of the blood-brain barrier (BBB), which is a primary pathological modulator of neurodegenerative diseases. Brain endothelial cells are crucial components of BBB. In the present study, the effect of oxyresveratrol on lipopolysaccharide (LPS)-induced brain endothelial (bEnd.3) cells was assessed. Our results showed that oxyresveratrol diminished protein expressions of inducible nitric oxide synthase (iNOS) and adhesion molecules including intercellular adhesion molecule (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1), nitric oxide (NO) production, and proinflammatory cytokines such as interleukin-6 (IL-6) and tumor necrosis factor (TNF-α) in LPS-elicited bEnd.3 cells. These anti-inflammatory effects were mediated through suppressing nuclear factor-kappa B (NF-κB) and mitogen-activated protein kinase (MAPK) signaling pathways. In addition, we found that oxyresveratrol reduced reactive oxygen species (ROS) levels. To conclude, the current results demonstrated the protective role of oxyresveratrol against LPS-induced inflammation and oxidative stress in bEnd.3 cells, suggesting its potential effect for mitigating neurodegenerative and cerebrovascular diseases.
Collapse
Affiliation(s)
- Yan Zhou
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR, China
| | - Qiaowen Deng
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR, China
| | - Chi Teng Vong
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR, China
- Macau Centre for Research and Development in Chinese Medicine, University of Macau, Macau SAR, China
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University Mardan, 23200, Pakistan
| | - Wai San Cheang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR, China
| |
Collapse
|
3
|
Tanaka M, Shirakura K, Takayama Y, Μatsui M, Watanabe Y, Yamamoto T, Takahashi J, Tanaka S, Hino N, Doi T, Obana M, Fujio Y, Takayama K, Okada Y. Endothelial ROBO4 suppresses PTGS2/COX-2 expression and inflammatory diseases. Commun Biol 2024; 7:599. [PMID: 38762541 PMCID: PMC11102558 DOI: 10.1038/s42003-024-06317-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 05/10/2024] [Indexed: 05/20/2024] Open
Abstract
Accumulating evidence suggests that endothelial cells can be useful therapeutic targets. One of the potential targets is an endothelial cell-specific protein, Roundabout4 (ROBO4). ROBO4 has been shown to ameliorate multiple diseases in mice, including infectious diseases and sepsis. However, its mechanisms are not fully understood. In this study, using RNA-seq analysis, we found that ROBO4 downregulates prostaglandin-endoperoxide synthase 2 (PTGS2), which encodes cyclooxygenase-2. Mechanistic analysis reveals that ROBO4 interacts with IQ motif-containing GTPase-activating protein 1 (IQGAP1) and TNF receptor-associated factor 7 (TRAF7), a ubiquitin E3 ligase. In this complex, ROBO4 enhances IQGAP1 ubiquitination through TRAF7, inhibits prolonged RAC1 activation, and decreases PTGS2 expression in inflammatory endothelial cells. In addition, Robo4-deficiency in mice exacerbates PTGS2-associated inflammatory diseases, including arthritis, edema, and pain. Thus, we reveal the molecular mechanism by which ROBO4 suppresses the inflammatory response and vascular hyperpermeability, highlighting its potential as a promising therapeutic target for inflammatory diseases.
Collapse
Affiliation(s)
- Masato Tanaka
- Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Keisuke Shirakura
- Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Yui Takayama
- Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Miki Μatsui
- Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Yukio Watanabe
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Takuya Yamamoto
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
- Medical-risk Avoidance based on iPS Cells Team, RIKEN Center for Advanced Intelligence Project (AIP), Kyoto, Japan
- Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Kyoto, Japan
| | - Junya Takahashi
- Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Shota Tanaka
- Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Nobumasa Hino
- Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Takefumi Doi
- Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Masanori Obana
- Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
- Center for Infectious Disease Education and Research (CiDER), Osaka University, Osaka, Japan
| | - Yasushi Fujio
- Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
- Center for Infectious Disease Education and Research (CiDER), Osaka University, Osaka, Japan
| | - Kazuo Takayama
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan.
- AMED-CREST, Japan Agency for Medical Research and Development (AMED), Tokyo, Japan.
| | - Yoshiaki Okada
- Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan.
- Center for Infectious Disease Education and Research (CiDER), Osaka University, Osaka, Japan.
| |
Collapse
|
4
|
van Dorst DCH, Mirabito Colafella KM, van Veghel R, Garrelds IM, de Vries R, Mathijssen RHJ, Danser AHJ, Versmissen J. Cyclooxygenase-2 inhibition prevents renal toxicity but not hypertension during sunitinib treatment. Eur J Pharmacol 2024; 962:176199. [PMID: 38029870 DOI: 10.1016/j.ejphar.2023.176199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 11/09/2023] [Accepted: 11/09/2023] [Indexed: 12/01/2023]
Abstract
BACKGROUND Anticancer angiogenesis inhibitors cause hypertension and renal injury. Previously we observed in rats that high-dose aspirin (capable of blocking cyclooxygenase (COX)-1 and-2) was superior to low-dose aspirin (blocking COX-1 only) to prevent these side-effects during treatment with the angiogenesis inhibitor sunitinib, suggesting a role for COX-2. High-dose aspirin additionally prevented the rise in COX-derived prostacyclin (PGI2). Therefore, we studied the preventive effects of selective COX-2 inhibition and the hypothesized contributing role of PGI2 during angiogenesis inhibition. METHODS Male WKY rats received vehicle, sunitinib ((SU), 14 mg/kg/day) alone or combined with COX-2 inhibition (celecoxib, 10 mg/kg/day) or a PGI2 analogue (iloprost, 100 μg/kg/day) for 8 days (n = 8-9 per group). Mean arterial pressure (MAP) was measured via radiotelemetry, biochemical measurements were performed via ELISA and vascular function was assessed via wire myography. RESULTS SU increased MAP (17±1mmHg versus 3±1mmHg after vehicle on day 4, P < 0.002), which could not be significantly blunted by celecoxib (+12±3mmHg on day 4, P = 0.247), but was temporarily attenuated by iloprost (treatment days 1 + 2 only). Urinary PGI2 (996 ± 112 versus 51 ± 11ng/24h after vehicle, P < 0.001), but not circulating PGI2 increased during SU, which remained unaffected by celecoxib and iloprost. Celecoxib reduced sunitinib-induced albuminuria (0.36 ± 0.05 versus 0.58 ± 0.05mg/24h after SU, P = 0.005). Wire myography demonstrated increased vasoconstriction to endothelin-1 after SU (Emax P = 0.005 versus vehicle), which remained unaffected by celecoxib or iloprost. CONCLUSION Selective COX-2 inhibition ameliorates albuminuria during angiogenesis inhibition with sunitinib, which most likely acts independently of PGI2. To combat angiogenesis inhibitor-induced hypertension, dual rather than selective COX-1/2 blockade seems preferential.
Collapse
Affiliation(s)
- Daan C H van Dorst
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus MC University Medical Center, Rotterdam, the Netherlands; Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands.
| | - Katrina M Mirabito Colafella
- Cardiovascular Disease Program, Biomedicine Discovery Institute and Department of Physiology, Monash University, Melbourne, Australia
| | - Richard van Veghel
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Ingrid M Garrelds
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - René de Vries
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Ron H J Mathijssen
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | - A H Jan Danser
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Jorie Versmissen
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus MC University Medical Center, Rotterdam, the Netherlands; Department of Hospital Pharmacy, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| |
Collapse
|
5
|
Dashtban-Moghadam E, Khodaverdian S, Dabirmanesh B, Mirnajafi-Zadeh J, Shojaei A, Mirzaie M, Choopanian P, Atabakhshi-Kashi M, Fatholahi Y, Khajeh K. Hippocampal tandem mass tag (TMT) proteomics analysis during kindling epileptogenesis in rat. Brain Res 2024; 1822:148620. [PMID: 37848119 DOI: 10.1016/j.brainres.2023.148620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 10/02/2023] [Accepted: 10/04/2023] [Indexed: 10/19/2023]
Abstract
Epilepsy is a neurological disorder that remains difficult to treat due to the lack of a clear molecular mechanism and incomplete understanding of involved proteins. To identify potential therapeutic targets, it is important to gain insight into changes in protein expression patterns related to epileptogenesis. One promising approach is to analyze proteomic data, which can provide valuable information about these changes. In this study, to evaluate the changes in gene expression during epileptogenesis, LC-MC2 analysis was carried out on hippocampus during stages of electrical kindling in rat models. Subsequently, progressive changes in the expression of proteins were detected as a result of epileptogenesis development. In line with behavioral kindled seizure stages and according to the proteomics data, we described epileptogenesis phases by comparing Stage3 versus Control (S3/C0), Stage5 versus Stage3 (S5/S3), and Stage5 versus Control group (S5/C0). Gene ontology analysis on differentially expressed proteins (DEPs) showed significant changes of proteins involved in immune responses like Csf1R, Aif1 and Stat1 during S3/C0, regulation of synaptic plasticity like Bdnf, Rac1, CaMK, Cdc42 and P38 during S5/S3, and nervous system development throughout S5/C0 like Bdnd, Kcc2 and Slc1a3.There were also proteins like Cox2, which were altered commonly among all three phases. The pathway enrichment analysis of DEPs was also done to discover molecular connections between phases and we have found that the targets like Csf1R, Bdnf and Cox2 were analyzed throughout all three phases were highly involved in the PPI network analysis as hub nodes. Additionally, these same targets underwent changes which were confirmed through Western blotting. Our results have identified proteomic patterns that could shed light on the molecular mechanisms underlying epileptogenesis which may allow for novel targeted therapeutic strategies.
Collapse
Affiliation(s)
- Elahe Dashtban-Moghadam
- Department of Biochemistry, Faculty of Biological Science, Tarbiat Modares University, Tehran, Iran
| | - Shima Khodaverdian
- Department of Biochemistry, Faculty of Biological Science, Tarbiat Modares University, Tehran, Iran
| | - Bahareh Dabirmanesh
- Department of Biochemistry, Faculty of Biological Science, Tarbiat Modares University, Tehran, Iran
| | - Javad Mirnajafi-Zadeh
- Department of Medical Physiology, Faculty of Medical Science, Tarbiat Modares University, Tehran, Iran; Institute for Brain and Cognition, Tarbiat Modares University, Tehran, Iran
| | - Amir Shojaei
- Department of Medical Physiology, Faculty of Medical Science, Tarbiat Modares University, Tehran, Iran
| | - Mehdi Mirzaie
- Department of Pharmacology, Faculty of Medicine, Neuroscience Center & Helsinki Institute of Life Science, University of Helsinki, Helsinki 00290, Finland; Department of Applied Mathematics, Faculty of Mathematical Science, Tarbiat Modares University, Tehran, Iran
| | - Peyman Choopanian
- Department of Pharmacology, Faculty of Medicine, Neuroscience Center & Helsinki Institute of Life Science, University of Helsinki, Helsinki 00290, Finland
| | - Mona Atabakhshi-Kashi
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Nanoscience and Technology, Beijing 100190, China
| | - Yaghoub Fatholahi
- Department of Medical Physiology, Faculty of Medical Science, Tarbiat Modares University, Tehran, Iran.
| | - Khosro Khajeh
- Department of Biochemistry, Faculty of Biological Science, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
6
|
Pyun J, Koay H, Runwal P, Mawal C, Bush AI, Pan Y, Donnelly PS, Short JL, Nicolazzo JA. Cu(ATSM) Increases P-Glycoprotein Expression and Function at the Blood-Brain Barrier in C57BL6/J Mice. Pharmaceutics 2023; 15:2084. [PMID: 37631298 PMCID: PMC10458578 DOI: 10.3390/pharmaceutics15082084] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/28/2023] [Accepted: 07/31/2023] [Indexed: 08/27/2023] Open
Abstract
P-glycoprotein (P-gp), expressed at the blood-brain barrier (BBB), is critical in preventing brain access to substrate drugs and effluxing amyloid beta (Aβ), a contributor to Alzheimer's disease (AD). Strategies to regulate P-gp expression therefore may impact central nervous system (CNS) drug delivery and brain Aβ levels. As we have demonstrated that the copper complex copper diacetyl bis(4-methyl-3-thiosemicarbazone) (Cu(ATSM)) increases P-gp expression and function in human brain endothelial cells, the present study assessed the impact of Cu(ATSM) on expression and function of P-gp in mouse brain endothelial cells (mBECs) and capillaries in vivo, as well as in peripheral organs. Isolated mBECs treated with Cu(ATSM) (100 nM for 24 h) exhibited a 1.6-fold increase in P-gp expression and a 20% reduction in accumulation of the P-gp substrate rhodamine 123. Oral administration of Cu(ATSM) (30 mg/kg/day) for 28 days led to a 1.5 & 1.3-fold increase in brain microvascular and hepatic expression of P-gp, respectively, and a 20% reduction in BBB transport of [3H]-digoxin. A metallomic analysis showed a 3.5 and 19.9-fold increase in Cu levels in brain microvessels and livers of Cu(ATSM)-treated mice. Our findings demonstrate that Cu(ATSM) increases P-gp expression and function at the BBB in vivo, with implications for CNS drug delivery and clearance of Aβ in AD.
Collapse
Affiliation(s)
- Jae Pyun
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia; (J.P.); (P.R.)
| | - HuiJing Koay
- Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC 3052, Australia (P.S.D.)
| | - Pranav Runwal
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia; (J.P.); (P.R.)
| | - Celeste Mawal
- Oxidation Biology Lab, Melbourne Dementia Research Centre, Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC 3052, Australia; (C.M.); (A.I.B.)
| | - Ashley I. Bush
- Oxidation Biology Lab, Melbourne Dementia Research Centre, Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC 3052, Australia; (C.M.); (A.I.B.)
| | - Yijun Pan
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia; (J.P.); (P.R.)
| | - Paul S. Donnelly
- Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC 3052, Australia (P.S.D.)
| | - Jennifer L. Short
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia;
| | - Joseph A. Nicolazzo
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia; (J.P.); (P.R.)
| |
Collapse
|
7
|
Millán Solano MV, Salinas Lara C, Sánchez-Garibay C, Soto-Rojas LO, Escobedo-Ávila I, Tena-Suck ML, Ortíz-Butrón R, Choreño-Parra JA, Romero-López JP, Meléndez Camargo ME. Effect of Systemic Inflammation in the CNS: A Silent History of Neuronal Damage. Int J Mol Sci 2023; 24:11902. [PMID: 37569277 PMCID: PMC10419139 DOI: 10.3390/ijms241511902] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/21/2023] [Accepted: 06/24/2023] [Indexed: 08/13/2023] Open
Abstract
Central nervous system (CNS) infections including meningitis and encephalitis, resulting from the blood-borne spread of specific microorganisms, provoke nervous tissue damage due to the inflammatory process. Moreover, different pathologies such as sepsis can generate systemic inflammation. Bacterial lipopolysaccharide (LPS) induces the release of inflammatory mediators and damage molecules, which are then released into the bloodstream and can interact with structures such as the CNS, thus modifying the blood-brain barrier's (BBB´s) and blood-cerebrospinal fluid barrier´s (BCSFB´s) function and inducing aseptic neuroinflammation. During neuroinflammation, the participation of glial cells (astrocytes, microglia, and oligodendrocytes) plays an important role. They release cytokines, chemokines, reactive oxygen species, nitrogen species, peptides, and even excitatory amino acids that lead to neuronal damage. The neurons undergo morphological and functional changes that could initiate functional alterations to neurodegenerative processes. The present work aims to explain these processes and the pathophysiological interactions involved in CNS damage in the absence of microbes or inflammatory cells.
Collapse
Affiliation(s)
- Mara Verónica Millán Solano
- Red MEDICI, Carrera Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de Mexico, Tlalnepantla 54090, Mexico; (M.V.M.S.); (C.S.-G.); (L.O.S.-R.); (I.E.-Á.); (J.P.R.-L.)
- Laboratory of Immunobiology and Genetics, Instituto Nacional de Enfermedades Respiratorias Ismael Cos’ıo Villegas, Mexico City 14080, Mexico;
| | - Citlaltepetl Salinas Lara
- Red MEDICI, Carrera Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de Mexico, Tlalnepantla 54090, Mexico; (M.V.M.S.); (C.S.-G.); (L.O.S.-R.); (I.E.-Á.); (J.P.R.-L.)
- Departamento de Neuropatología, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suarez, Mexico City 14269, Mexico;
| | - Carlos Sánchez-Garibay
- Red MEDICI, Carrera Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de Mexico, Tlalnepantla 54090, Mexico; (M.V.M.S.); (C.S.-G.); (L.O.S.-R.); (I.E.-Á.); (J.P.R.-L.)
- Departamento de Neuropatología, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suarez, Mexico City 14269, Mexico;
| | - Luis O. Soto-Rojas
- Red MEDICI, Carrera Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de Mexico, Tlalnepantla 54090, Mexico; (M.V.M.S.); (C.S.-G.); (L.O.S.-R.); (I.E.-Á.); (J.P.R.-L.)
- Laboratorio de Patogénesis Molecular, Laboratorio 4, Edificio A4, Carrera Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla 54090, Mexico
| | - Itzel Escobedo-Ávila
- Red MEDICI, Carrera Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de Mexico, Tlalnepantla 54090, Mexico; (M.V.M.S.); (C.S.-G.); (L.O.S.-R.); (I.E.-Á.); (J.P.R.-L.)
- Departamento de Neurodesarrollo y Fisiología, Instituto de Fisiología Celular, Universidad Nacional Autonoma de Mexico, Mexico City 04510, Mexico
| | - Martha Lilia Tena-Suck
- Departamento de Neuropatología, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suarez, Mexico City 14269, Mexico;
| | - Rocío Ortíz-Butrón
- Laboratorio de Neurobiología, Departamento de Fisiología de ENCB, Instituto Politécnico Nacional, Mexico City 07738, Mexico;
| | - José Alberto Choreño-Parra
- Laboratory of Immunobiology and Genetics, Instituto Nacional de Enfermedades Respiratorias Ismael Cos’ıo Villegas, Mexico City 14080, Mexico;
| | - José Pablo Romero-López
- Red MEDICI, Carrera Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de Mexico, Tlalnepantla 54090, Mexico; (M.V.M.S.); (C.S.-G.); (L.O.S.-R.); (I.E.-Á.); (J.P.R.-L.)
- Laboratorio de Patogénesis Molecular, Laboratorio 4, Edificio A4, Carrera Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla 54090, Mexico
| | - María Estela Meléndez Camargo
- Laboratorio de Farmacología, Departamento de Farmacia, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Av. Wilfrido Massieu Esq. Manuel Luis Stampa S/N, U.P. Adolfo López Mateos, Mexico City 07738, Mexico;
| |
Collapse
|
8
|
Long F, Hu L, Chen Y, Duan X, Xie K, Feng J, Wang M. RBM3 is associated with acute lung injury in septic mice and patients via the NF-κB/NLRP3 pathway. Inflamm Res 2023; 72:731-744. [PMID: 36781430 DOI: 10.1007/s00011-023-01705-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 01/23/2023] [Accepted: 02/06/2023] [Indexed: 02/15/2023] Open
Abstract
Sepsis refers to host response disorders caused by infection, leading to life-threatening organ dysfunction. RNA-binding motif protein 3 (RBM3) is an important cold-shock protein that is upregulated in response to mild hypothermia or hypoxia. In this study, we aimed to investigate whether RBM3 is involved in sepsis-associated acute lung injury (ALI). Intraperitoneal injection of LPS (10 mg/kg) was performed in wild type (WT) and RBM3 knockout (KO, RBM3-/-) mice to establish an in vivo sepsis model. An NLRP3 inflammasome inhibitor, MCC950 (50 mg/kg), was injected intraperitoneally 30 min before LPS treatment. Serum, lung tissues, and BALF were collected 24 h later for further analysis. In addition, we also collected serum from sepsis patients and healthy volunteers to detect their RBM3 expression. The results showed that the expression of RBM3 in the lung tissues of LPS-induced sepsis mice and the serum of patients with sepsis was significantly increased and positively correlated with disease severity. In addition, RBM3 knockout (KO) mice had a low survival rate, and RBM3 KO mice had more severe lung damage, inflammation, lung cell apoptosis, and oxidative stress than WT mice. LPS treatment significantly increased the levels of nucleotide binding and oligomerization domain-like receptor family 3 (NLRP3) inflammasomes and mononuclear cell nuclear factor-κB (NF-κB) in the lung tissues of RBM3 KO mice. However, these levels were only slightly elevated in WT mice. Interestingly, MCC950 improved LPS-induced acute lung injury in WT and RBM3 KO mice but inhibited the expression of NLRP3, caspase-1, and IL-1β. In conclusion, RBM3 was overexpressed in sepsis patients and LPS-induced mice. RBM3 gene deficiency aggravated sepsis-associated ALI through the NF-κB/NLRP3 pathway.
Collapse
Affiliation(s)
- Feiyu Long
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan Province, China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Southwest Medical University, Luzhou, 646000, Sichuan Province, China
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Liren Hu
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan Province, China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Southwest Medical University, Luzhou, 646000, Sichuan Province, China
| | - Yingxu Chen
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan Province, China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Southwest Medical University, Luzhou, 646000, Sichuan Province, China
| | - Xiaoxia Duan
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan Province, China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Southwest Medical University, Luzhou, 646000, Sichuan Province, China
| | - Keliang Xie
- Department of Critical Care Medicine, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Jianguo Feng
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan Province, China.
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Southwest Medical University, Luzhou, 646000, Sichuan Province, China.
| | - Maohua Wang
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan Province, China.
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Southwest Medical University, Luzhou, 646000, Sichuan Province, China.
| |
Collapse
|
9
|
Canagliflozin Attenuates Lipotoxicity in Cardiomyocytes by Inhibiting Inflammation and Ferroptosis through Activating AMPK Pathway. Int J Mol Sci 2023; 24:ijms24010858. [PMID: 36614295 PMCID: PMC9821072 DOI: 10.3390/ijms24010858] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/22/2022] [Accepted: 12/27/2022] [Indexed: 01/06/2023] Open
Abstract
Diabetic cardiomyopathy (DCM) is a myocardial disease independent of other cardiovascular diseases, such as coronary heart disease, hypertension, etc. Lipotoxicity is closely related to DCM. In this study, we investigated the mechanism of lipid metabolism disturbance in DCM in HL-1 cells. Through bioinformatics and Western blotting analysis, we found that canagliflozin (CAN) significantly inhibited the expression of inflammatory factors cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS). Ferroptosis is mediated by lipid peroxidation. We demonstrated the presence of ferroptosis in cardiomyocytes by detecting intracellular Fe2+ content and the levels of reactive oxygen species (ROS), malondialdehyde (MDA), reduced glutathione (GSH), and mitochondrial membrane potential (MMP). CAN could significantly regulate the indicators of ferroptosis. By using specific inhibitors celecoxib (coxib), S-methylisothiourea sulfate (SMT), Ferrostatin-1 (Fer-1), and Compound C, we further found that CAN regulated inflammation and ferroptosis through AMP-activated protein (AMPK), and inflammation interacted with ferroptosis. Our study indicated that CAN attenuated lipotoxicity in cardiomyocytes by regulating inflammation and ferroptosis through activating the AMPK pathway. This study provides a new direction of myocardial lipotoxicity and some new information for the treatment of DCM.
Collapse
|
10
|
Villani ER, Franza L, Cianci R. Delirium in Head Trauma: Looking for a Culprit. Rev Recent Clin Trials 2022; 17:245-249. [PMID: 35959617 DOI: 10.2174/1574887117666220811090608] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 04/24/2022] [Accepted: 04/28/2022] [Indexed: 01/15/2023]
Abstract
Head trauma and delirium are two common conditions in the elderly population. They both carry a heavy burden in terms of mortality and morbidity and are associated with one another through several environmental and clinical factors, such as comorbidities, age, and sex. One factor that may play a role in both these conditions is inflammation, which might also represent a link between them. In particular, head trauma can cause both systemic and neuroinflammation, while delirium appears to be precipitated by inflammatory conditions, while also involving a number of inflammatory pathways in its pathogenesis. Interleukin 6 and tumor necrosis factor α are only two of the main actors in this crosstalk, which also involves microglia and immune cells. An indirect proof is that anti-inflammatory drugs have proven effective in reducing post-traumatic delirium, thus demonstrating the importance of inflammation in the pathophysiology of this disease. In this paper, we have revised the available literature exploring the links between inflammation, head trauma and delirium and we will discuss the mechanisms of this relationship, paying particular attention to the possible future implications.
Collapse
Affiliation(s)
- Emanuele Rocco Villani
- Department of Geriatrics, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario "Agostino Gemelli", IRCCS, Rome, Italy.,UOC Geriatria, Disturbi Cognitivi e Demenze, Ausl Modena, Carpi, Italy
| | - Laura Franza
- Emergency Medicine Department, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario "Agostino Gemelli", IRCCS, Rome, Italy
| | - Rossella Cianci
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario "Agostino Gemelli", IRCCS, Rome, Italy
| |
Collapse
|
11
|
Broekaart DWM, Zimmer TS, Cohen ST, Tessers R, Anink JJ, de Vries HE, Gorter JA, Prades R, Aronica E, van Vliet EA. The Gelatinase Inhibitor ACT-03 Reduces Gliosis in the Rapid Kindling Rat Model of Epilepsy, and Attenuates Inflammation and Loss of Barrier Integrity In Vitro. Biomedicines 2022; 10:biomedicines10092117. [PMID: 36140216 PMCID: PMC9495904 DOI: 10.3390/biomedicines10092117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 08/12/2022] [Accepted: 08/20/2022] [Indexed: 11/25/2022] Open
Abstract
Matrix metalloproteinases (MMPs) are endopeptidases responsible for the cleavage of intra- and extracellular proteins. Several brain MMPs have been implicated in neurological disorders including epilepsy. We recently showed that the novel gelatinase inhibitor ACT-03 has disease-modifying effects in models of epilepsy. Here, we studied its effects on neuroinflammation and blood–brain barrier (BBB) integrity. Using the rapid kindling rat model of epilepsy, we examined whether ACT-03 affected astro- and microgliosis in the brain using immunohistochemistry. Cellular and molecular alterations were further studied in vitro using human fetal astrocyte and brain endothelial cell (hCMEC/D3) cultures, with a focus on neuroinflammatory markers as well as on barrier permeability using an endothelial and astrocyte co-culture model. We observed less astro- and microgliosis in the brains of kindled animals treated with ACT-03 compared to control vehicle-treated animals. In vitro, ACT-03 treatment attenuated stimulation-induced mRNA expression of several pro-inflammatory factors in human fetal astrocytes and brain endothelial cells, as well as a loss of barrier integrity in endothelial and astrocyte co-cultures. Since ACT-03 has disease-modifying effects in epilepsy models, possibly via limiting gliosis, inflammation, and barrier integrity loss, it is of interest to further evaluate its effects in a clinical trial.
Collapse
Affiliation(s)
- Diede W. M. Broekaart
- Amsterdam UMC, Location University of Amsterdam, Department of (Neuro)Pathology, Amsterdam Neuroscience, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Till S. Zimmer
- Amsterdam UMC, Location University of Amsterdam, Department of (Neuro)Pathology, Amsterdam Neuroscience, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Sophie T. Cohen
- Amsterdam UMC, Location University of Amsterdam, Department of (Neuro)Pathology, Amsterdam Neuroscience, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Rianne Tessers
- Amsterdam UMC, Location University of Amsterdam, Department of (Neuro)Pathology, Amsterdam Neuroscience, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Jasper J. Anink
- Amsterdam UMC, Location University of Amsterdam, Department of (Neuro)Pathology, Amsterdam Neuroscience, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Helga E. de Vries
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, 1081 HV Amsterdam, The Netherlands
| | - Jan A. Gorter
- Swammerdam Institute for Life Sciences Center for Neuroscience, University of Amsterdam, 1098 XH Amsterdam, The Netherlands
| | - Roger Prades
- Accure Therapeutics S.L., 08028 Barcelona, Spain
| | - Eleonora Aronica
- Amsterdam UMC, Location University of Amsterdam, Department of (Neuro)Pathology, Amsterdam Neuroscience, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
- Stichting Epilepsie Instellingen Nederland (SEIN), 2103 SW Heemstede, The Netherlands
- Correspondence: (E.A.); (E.A.v.V.)
| | - Erwin A. van Vliet
- Amsterdam UMC, Location University of Amsterdam, Department of (Neuro)Pathology, Amsterdam Neuroscience, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
- Swammerdam Institute for Life Sciences Center for Neuroscience, University of Amsterdam, 1098 XH Amsterdam, The Netherlands
- Correspondence: (E.A.); (E.A.v.V.)
| |
Collapse
|
12
|
Eugenol suppresses the proliferation and invasion of TNF-α-induced fibroblast-like synoviocytes via regulating NF-κB and COX-2. Biochem Biophys Res Commun 2022; 612:63-69. [DOI: 10.1016/j.bbrc.2022.04.074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 04/16/2022] [Indexed: 02/07/2023]
|
13
|
Kline HL, Yamamoto BK. Alcohol reinstatement after prolonged abstinence from alcohol drinking by female adolescent rats: Roles of cyclooxygenase-2 and the prostaglandin E 2 receptor 1. Drug Alcohol Depend 2022; 236:109491. [PMID: 35537317 DOI: 10.1016/j.drugalcdep.2022.109491] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/12/2022] [Accepted: 05/01/2022] [Indexed: 12/29/2022]
Abstract
BACKGROUND Adolescent alcohol misuse is a global problem that can significantly increase the reinstatement of alcohol drinking during re-exposure after abstinence, but the mechanism that causes this increase is unknown. Female adolescents are an understudied population but they are particularly vulnerable to adolescent-onset alcohol abuse. We aimed to determine how adolescent-onset alcohol drinking affects pro-inflammatory mediators endothelin-1 (ET-1), cyclooxygenase-2 (COX-2), and prostaglandin E2 (PGE2) in the brain and the role of COX-2 and PGE2 in EtOH reinstatement in adolescent females. METHODS Adolescent female rats were exposed to a 2-bottle choice paradigm of water vs 5% ethanol (EtOH) every other day over a 21 day period. ET-1 and COX-2 proteins were measured in the dorsal striatum (DS) after a 4 week abstinence from EtOH drinking. The COX-2 inhibitor nimesulide was then administered during abstinence prior to an EtOH reinstatement or sucrose preference or to measure PGE2 content. The PGE2 receptor 1 (EP1) antagonist SC-51089 was then administered prior to EtOH reinstatement during which EtOH intake was measured. RESULTS EtOH drinking significantly increased ET-1 by 33.8 ± 8.9% and COX-2 by 71.4 ± 24.3% in the DS. Treatment with nimesulide during abstinence attenuated EtOH intake during reinstatement after prolonged abstinence by 40.3 ± 12.4% compared to saline controls. Adolescent EtOH drinking and abstinence increased PGE2 150.5 ± 30.9% in the DS and nimesulide attenuated this increase. SC-51089 treatment during abstinence attenuated EtOH reinstatement by 48.1 ± 8.4% compared to DMSO controls. CONCLUSIONS These experiments identified a prostaglandin-mediated mechanism that offers a putative pharmacological target to attenuate EtOH reinstatement after adolescent-onset EtOH drinking.
Collapse
Affiliation(s)
- Hannah L Kline
- Department of Pharmacology & Toxicology, Indiana University School of Medicine, Indianapolis, IN, USA; Medical Neuroscience Graduate Program, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Bryan K Yamamoto
- Department of Pharmacology & Toxicology, Indiana University School of Medicine, Indianapolis, IN, USA; Stark Neuroscience Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA.
| |
Collapse
|
14
|
Liu YX, Yu Y, Liu JP, Liu WJ, Cao Y, Yan RM, Yao YM. Neuroimmune Regulation in Sepsis-Associated Encephalopathy: The Interaction Between the Brain and Peripheral Immunity. Front Neurol 2022; 13:892480. [PMID: 35832175 PMCID: PMC9271799 DOI: 10.3389/fneur.2022.892480] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 05/27/2022] [Indexed: 11/15/2022] Open
Abstract
Sepsis-associated encephalopathy (SAE), the most popular cause of coma in the intensive care unit (ICU), is the diffuse cerebral damage caused by the septic challenge. SAE is closely related to high mortality and extended cognitive impairment in patients in septic shock. At present, many studies have demonstrated that SAE might be mainly associated with blood–brain barrier damage, abnormal neurotransmitter secretion, oxidative stress, and neuroimmune dysfunction. Nevertheless, the precise mechanism which initiates SAE and contributes to the long-term cognitive impairment remains largely unknown. Recently, a growing body of evidence has indicated that there is close crosstalk between SAE and peripheral immunity. The excessive migration of peripheral immune cells to the brain, the activation of glia, and resulting dysfunction of the central immune system are the main causes of septic nerve damage. This study reviews the update on the pathogenesis of septic encephalopathy, focusing on the over-activation of immune cells in the central nervous system (CNS) and the “neurocentral–endocrine–immune” networks in the development of SAE, aiming to further understand the potential mechanism of SAE and provide new targets for diagnosis and management of septic complications.
Collapse
Affiliation(s)
- Yu-xiao Liu
- Translational Medicine Research Center, Medical Innovation Research Division and Fourth Medical Center of the Chinese PLA General Hospital, Beijing, China
- Department of Neurosurgery, The Chinese PLA General Hospital, Beijing, China
| | - Yang Yu
- Department of Traditional Chinese Medical Science, Sixth Medical Center of the Chinese PLA General Hospital, Beijing, China
| | - Jing-peng Liu
- Translational Medicine Research Center, Medical Innovation Research Division and Fourth Medical Center of the Chinese PLA General Hospital, Beijing, China
- Department of Traditional Chinese Medical Science, Sixth Medical Center of the Chinese PLA General Hospital, Beijing, China
| | - Wen-jia Liu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences, Beijing Institute of Lifeomics, Beijing, China
| | - Yang Cao
- Department of Neurosurgery, The Chinese PLA General Hospital, Beijing, China
| | - Run-min Yan
- Department of Neurosurgery, The Chinese PLA General Hospital, Beijing, China
- *Correspondence: Yong-ming Yao
| | - Yong-ming Yao
- Translational Medicine Research Center, Medical Innovation Research Division and Fourth Medical Center of the Chinese PLA General Hospital, Beijing, China
- Run-min Yan
| |
Collapse
|
15
|
Babaahmadi-Rezaei H, Mohamed R, Dayati P, Mehr RN, Seif F, Sharifat N, Khedri A, Kamato D, Little PJ. Endothelin-1 dependent expression of GAG genes involves NOX and p38 mediated Smad linker region phosphorylation. Clin Exp Pharmacol Physiol 2022; 49:710-718. [PMID: 35527471 PMCID: PMC9322435 DOI: 10.1111/1440-1681.13650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 03/03/2022] [Accepted: 04/04/2022] [Indexed: 11/29/2022]
Abstract
Endothelin-1 (ET-1) is implicated in the development of atherosclerosis and mediates glycosaminoglycan (GAG) chain hyperelongation on proteoglycans. Our aim was to identify the ET-1-mediated signalling pathway involving NADPH oxidase (NOX), p38 MAP kinsae and Smad2 linker region phosphorylation (phospho-Smad2L) regulate GAG synthesizing enzymes mRNA expression (C4ST-1 and ChSy1) involved in GAG chains hyperelongation in human vascular smooth muscle cells (VSMCs). Signalling intermediates were detected and quantified by Western blotting and the mRNA levels of GAG synthesizing enzymes were assessed by quantitative real-time polymerase chain reaction (qRT-PCR). ET-1 treatment of human VSMCs resulted in an increase in phospho-Smad2L level. The TGF-β receptor antagonist, SB431542 and the mixed ETA and ETB receptor antagonist bosentan, inhibited ET-1-mediated phospho-Smad2L level. In the presence of apocynin and diphenyleneiodonium chloride (DPI) (NOX inhibitors) and SB239063 (p38 inhibitor) ET-1-mediated phospho-Smad2L levels were inhibited. The gene expression levels of GAG synthesizing enzymes post-ET-1 treatment were increased compared to untreated controls (P<0.01). The ET-mediated the mRNA levels of these enzymes were blocked by the bosentan, SB431542, SB239063, DPI, apocynin and antioxidant N-acetyl-L-cysteine (NAC). ET-1-mediated signalling to GAG synthesizing enzymes gene expression occurs via transactivation-dependent pathway involving NOX, p38 MAP kinsae and Smad2 linker region phosphorylation. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Hossein Babaahmadi-Rezaei
- Hyperlipidemia Research Center, Department of Clinical Biochemistry, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Rafat Mohamed
- The University of Queensland, , Pharmacy Australia Centre of Excellence, 20 Cornwall St, Woolloongabba, QLD, Australia
| | - Parisa Dayati
- Hyperlipidemia Research Center, Department of Clinical Biochemistry, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Reyhaneh Niayesh Mehr
- Hyperlipidemia Research Center, Department of Clinical Biochemistry, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Faezeh Seif
- Hyperlipidemia Research Center, Department of Clinical Biochemistry, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Narges Sharifat
- Hyperlipidemia Research Center, Department of Clinical Biochemistry, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Azam Khedri
- Hyperlipidemia Research Center, Department of Clinical Biochemistry, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Dannii Kamato
- The University of Queensland, , Pharmacy Australia Centre of Excellence, 20 Cornwall St, Woolloongabba, QLD, Australia
| | - Peter J Little
- The University of Queensland, , Pharmacy Australia Centre of Excellence, 20 Cornwall St, Woolloongabba, QLD, Australia.,Department of Pharmacy, Xinhua College of Sun Yat-sen University, Tianhe District, Guangzhou, China
| |
Collapse
|
16
|
Wang L, Zhao M. Suppression of NOD-like receptor protein 3 inflammasome activation and macrophage M1 polarization by hederagenin contributes to attenuation of sepsis-induced acute lung injury in rats. Bioengineered 2022; 13:7262-7276. [PMID: 35266443 PMCID: PMC9208453 DOI: 10.1080/21655979.2022.2047406] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Acute lung injury (ALI) is a major leading cause of death in sepsis patients. Hederagenin (HG), derived from Hedera helix Linné, has anti-inflammatory effects, while its role in sepsis-induced ALI has not been elucidated. In vivo, rats were subjected to cecal ligation and puncture to induce ALI and then treated with HG (12.5, 25, or 50 mg/kg) by gavage. Administration of HG raised survival rate, ameliorated lung injury, and decreased lung wet/dry ratio and inflammatory cell accumulation in bronchoalveloar lavage fluid (BALF) of ALI rats. HG inhibited macrophage polarization toward the M1 phenotype as evidenced by decreased CD86 expression in rat lung tissues. Moreover, HG decreased the secretion of TNF-α, IL-6 and monocyte chemoattractant protein-1 (MCP-1) in BALF and the levels of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) in lung tissues. In vitro, phorbol-12-myristate-13-acetate (PMA)-differentiated THP-1 macrophages were stimulated with 100 ng/mL lipopolysaccharide. HG treatment inhibited M1 macrophage polarization and the production of M1-related pro-inflammatory mediators (IL-6, MCP-1, iNOS, and COX-2). Mechanistically, HG inhibited NLRP3 inflammasome activation and subsequent release of IL-18 and IL-1β, and suppressed NF-κB signaling pathway both in vivo and in vitro. Notably, HG treatment further emphasized the inhibitory effect of NF-κB inhibitor BAY11-7082 on NLRP3 inflammasome activation and macrophage M1 polarization. Taken together, HG exerts a protective effect against sepsis-induced ALI by reducing the inflammatory response and macrophage M1 polarization, which may involve NF-κB pathway-modulated NLRP3 inflammasome activation.
Collapse
Affiliation(s)
- Lin Wang
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Min Zhao
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
17
|
Sphingosine 1-Phosphate-Upregulated COX-2/PGE2 System Contributes to Human Cardiac Fibroblast Apoptosis: Involvement of MMP-9-Dependent Transactivation of EGFR Cascade. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:7664290. [PMID: 35242277 PMCID: PMC8888119 DOI: 10.1155/2022/7664290] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 01/11/2022] [Accepted: 01/12/2022] [Indexed: 12/20/2022]
Abstract
Human cardiac fibroblasts (HCFs) play key roles in normal physiological functions and pathological processes in the heart. Our recent study has found that, in HCFs, sphingosine 1-phosphate (S1P) can upregulate the expression of cyclooxygenase-2 (COX-2) leading to prostaglandin E2 (PGE2) generation mediated by S1P receptors/PKCα/MAPKs cascade-dependent activation of NF-κB. Alternatively, G protein-coupled receptor- (GPCR-) mediated transactivation of receptor tyrosine kinases (RTKs) has been proved to induce inflammatory responses. However, whether GPCR-mediated transactivation of RTKs participated in the COX-2/PGE2 system induced by S1P is still unclear in HCFs. We hypothesize that GPCR-mediated transactivation of RTKs-dependent signaling cascade is involved in S1P-induced responses. This study is aimed at exploring the comprehensive mechanisms of S1P-promoted COX-2/PGE2 expression and apoptotic effects on HCFs. Here, we used pharmacological inhibitors and transfection with siRNA to evaluate whether matrix metalloprotease (MMP)2/9, heparin-binding- (HB-) epidermal growth factor (EGF), EGF receptor (EGFR), PI3K/Akt, MAPKs, and transcription factor AP-1 participated in the S1P-induced COX-2/PGE2 system determined by Western blotting, real-time polymerase chain reaction (RT-PCR), chromatin immunoprecipitation (ChIP), and promoter-reporter assays in HCFs. Our results showed that S1PR1/3 activated by S1P coupled to Gq- and Gi-mediated MMP9 activity to stimulate EGFR/PI3K/Akt/MAPKs/AP-1-dependent activity of transcription to upregulate COX-2 accompanied with PGE2 production, leading to stimulation of caspase-3 activity and apoptosis. Moreover, S1P-enhanced c-Jun bound to COX-2 promoters on its corresponding binding sites, which was attenuated by these inhibitors of protein kinases, determined by a ChIP assay. These results concluded that transactivation of MMP9/EGFR-mediated PI3K/Akt/MAPKs-dependent AP-1 activity was involved in the upregulation of the COX-2/PGE2 system induced by S1P, in turn leading to apoptosis in HCFs.
Collapse
|
18
|
Shaheryar ZA, Khan MA, Adnan CS, Zaidi AA, Hänggi D, Muhammad S. Neuroinflammatory Triangle Presenting Novel Pharmacological Targets for Ischemic Brain Injury. Front Immunol 2021; 12:748663. [PMID: 34691061 PMCID: PMC8529160 DOI: 10.3389/fimmu.2021.748663] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 09/15/2021] [Indexed: 12/20/2022] Open
Abstract
Ischemic stroke is one of the leading causes of morbidity and mortality globally. Hundreds of clinical trials have proven ineffective in bringing forth a definitive and effective treatment for ischemic stroke, except a myopic class of thrombolytic drugs. That, too, has little to do with treating long-term post-stroke disabilities. These studies proposed diverse options to treat stroke, ranging from neurotropic interpolation to venting antioxidant activity, from blocking specific receptors to obstructing functional capacity of ion channels, and more recently the utilization of neuroprotective substances. However, state of the art knowledge suggests that more pragmatic focus in finding effective therapeutic remedy for stroke might be targeting intricate intracellular signaling pathways of the 'neuroinflammatory triangle': ROS burst, inflammatory cytokines, and BBB disruption. Experimental evidence reviewed here supports the notion that allowing neuroprotective mechanisms to advance, while limiting neuroinflammatory cascades, will help confine post-stroke damage and disabilities.
Collapse
Affiliation(s)
- Zaib A. Shaheryar
- Institute for Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Lübeck, Germany
- Faculty of Pharmacy, University of Lahore, Lahore, Pakistan
| | - Mahtab A. Khan
- Faculty of Pharmacy, University of Central Punjab, Lahore, Pakistan
| | | | - Awais Ali Zaidi
- Faculty of Pharmacy, University of Lahore, Lahore, Pakistan
- Imran Idrees College of Pharmacy, Lahore, Pakistan
| | - Daniel Hänggi
- Department of Neurosurgery, Faculty of Medicine and University Hospital Düsseldorf, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Sajjad Muhammad
- Department of Neurosurgery, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Department of Neurosurgery, Faculty of Medicine and University Hospital Düsseldorf, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
19
|
Torres Crigna A, Link B, Samec M, Giordano FA, Kubatka P, Golubnitschaja O. Endothelin-1 axes in the framework of predictive, preventive and personalised (3P) medicine. EPMA J 2021; 12:265-305. [PMID: 34367381 PMCID: PMC8334338 DOI: 10.1007/s13167-021-00248-z] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 06/11/2021] [Indexed: 02/07/2023]
Abstract
Endothelin-1 (ET-1) is involved in the regulation of a myriad of processes highly relevant for physical and mental well-being; female and male health; in the modulation of senses, pain, stress reactions and drug sensitivity as well as healing processes, amongst others. Shifted ET-1 homeostasis may influence and predict the development and progression of suboptimal health conditions, metabolic impairments with cascading complications, ageing and related pathologies, cardiovascular diseases, neurodegenerative pathologies, aggressive malignancies, modulating, therefore, individual outcomes of both non-communicable and infectious diseases such as COVID-19. This article provides an in-depth analysis of the involvement of ET-1 and related regulatory pathways in physiological and pathophysiological processes and estimates its capacity as a predictor of ageing and related pathologies,a sensor of lifestyle quality and progression of suboptimal health conditions to diseases for their targeted preventionand as a potent target for cost-effective treatments tailored to the person.
Collapse
Affiliation(s)
- Adriana Torres Crigna
- Department of Radiation Oncology, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Barbara Link
- Department of Radiation Oncology, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Marek Samec
- Clinic of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01 Martin, Slovakia
| | - Frank A. Giordano
- Department of Radiation Oncology, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Peter Kubatka
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01 Martin, Slovakia
| | - Olga Golubnitschaja
- Predictive, Preventive and Personalised (3P) Medicine, Department of Radiation Oncology, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| |
Collapse
|
20
|
Gao Q, Hernandes MS. Sepsis-Associated Encephalopathy and Blood-Brain Barrier Dysfunction. Inflammation 2021; 44:2143-2150. [PMID: 34291398 DOI: 10.1007/s10753-021-01501-3] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/02/2021] [Accepted: 06/08/2021] [Indexed: 12/29/2022]
Abstract
Sepsis is a life-threatening clinical condition caused by a dysregulated host response to infection. Sepsis-associated encephalopathy (SAE) is a common but poorly understood neurological complication of sepsis, which is associated with increased morbidity and mortality. SAE clinical presentation may range from mild confusion and delirium to severe cognitive impairment and deep coma. Important mechanisms associated with SAE include excessive microglial activation, impaired endothelial barrier function, and blood-brain barrier (BBB) dysfunction. Endotoxemia and pro-inflammatory cytokines produced systemically during sepsis lead to microglial and brain endothelial cell activation, tight junction downregulation, and increased leukocyte recruitment. The resulting neuroinflammation and BBB dysfunction exacerbate SAE pathology and aggravate sepsis-induced brain dysfunction. In this mini-review, recent literature surrounding some of the mediators of BBB dysfunction during sepsis is summarized. Modulation of microglial activation, endothelial cell dysfunction, and the consequent prevention of BBB permeability represent relevant therapeutic targets that may significantly impact SAE outcomes.
Collapse
Affiliation(s)
- Qingzeng Gao
- Division of Cardiology, Department of Medicine, Emory University, 101 Woodruff Circle, WMB 308, Atlanta, GA, 30322, USA
| | - Marina Sorrentino Hernandes
- Division of Cardiology, Department of Medicine, Emory University, 101 Woodruff Circle, WMB 308, Atlanta, GA, 30322, USA.
| |
Collapse
|
21
|
Tsai MY, Yang WC, Lin CF, Wang CM, Liu HY, Lin CS, Lin JW, Lin WL, Lin TC, Fan PS, Hung KH, Lu YW, Chang GR. The Ameliorative Effects of Fucoidan in Thioacetaide-Induced Liver Injury in Mice. Molecules 2021; 26:molecules26071937. [PMID: 33808318 PMCID: PMC8036993 DOI: 10.3390/molecules26071937] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 03/20/2021] [Accepted: 03/23/2021] [Indexed: 02/08/2023] Open
Abstract
Liver disorders have been recognized as one major health concern. Fucoidan, a sulfated polysaccharide extracted from the brown seaweed Fucus serratus, has previously been reported as an anti-inflammatory and antioxidant. However, the discovery and validation of its hepatoprotective properties and elucidation of its mechanisms of action are still unknown. The objective of the current study was to investigate the effect and possible modes of action of a treatment of fucoidan against thioacetamide (TAA)-induced liver injury in male C57BL/6 mice by serum biochemical and histological analyses. The mouse model for liver damage was developed by the administration of TAA thrice a week for six weeks. The mice with TAA-induced liver injury were orally administered fucoidan once a day for 42 days. The treated mice showed significantly higher body weights; food intakes; hepatic antioxidative enzymes (catalase, glutathione peroxidase (GPx), and superoxide dismutase (SOD)); and a lower serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and C-reactive protein (CRP) levels. Additionally, a reduced hepatic IL-6 level and a decreased expression of inflammatory-related genes, such as cyclooxygenase-2 (COX-2), and inducible nitric oxide synthase (iNOS) mRNA was observed. These results demonstrated that fucoidan had a hepatoprotective effect on liver injury through the suppression of the inflammatory responses and acting as an antioxidant. In addition, here, we validated the use of fucoidan against liver disorders with supporting molecular data.
Collapse
Affiliation(s)
- Ming-Yang Tsai
- Animal Industry Division, Livestock Research Institute, Council of Agriculture, Executive Yuan, 112 Muchang, Xinhua Dist, Tainan 71246, Taiwan;
- Graduate Institute of Bioresources, National Pingtung University of Science and Technology, 1 Shuefu Road, Neipu, Pingtung 91201, Taiwan
| | - Wei-Cheng Yang
- School of Veterinary Medicine, National Taiwan University, 4 Section, 1 Roosevelt Road, Taipei 10617, Taiwan; (W.-C.Y.); (C.-S.L.)
| | - Chuen-Fu Lin
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, Shuefu Road, Neipu, Pingtung 912301, Taiwan;
| | - Chao-Min Wang
- Department of Veterinary Medicine, National Chiayi University, 580 Xinmin Road, Chiayi 60054, Taiwan; (C.-M.W.); (T.-C.L.); (P.-S.F.)
| | - Hsien-Yueh Liu
- Bachelor Degree Program in Animal Healthcare, Hungkuang University, 6 Section, 1018 Taiwan Boulevard, Shalu District, Taichung 433304, Taiwan; (H.-Y.L.); (J.-W.L.); (W.-L.L.)
| | - Chen-Si Lin
- School of Veterinary Medicine, National Taiwan University, 4 Section, 1 Roosevelt Road, Taipei 10617, Taiwan; (W.-C.Y.); (C.-S.L.)
| | - Jen-Wei Lin
- Bachelor Degree Program in Animal Healthcare, Hungkuang University, 6 Section, 1018 Taiwan Boulevard, Shalu District, Taichung 433304, Taiwan; (H.-Y.L.); (J.-W.L.); (W.-L.L.)
| | - Wei-Li Lin
- Bachelor Degree Program in Animal Healthcare, Hungkuang University, 6 Section, 1018 Taiwan Boulevard, Shalu District, Taichung 433304, Taiwan; (H.-Y.L.); (J.-W.L.); (W.-L.L.)
- General Education Center, Chaoyang University of Technology, 168 Jifeng Eastern Road, Taichung 413310, Taiwan
| | - Tzu-Chun Lin
- Department of Veterinary Medicine, National Chiayi University, 580 Xinmin Road, Chiayi 60054, Taiwan; (C.-M.W.); (T.-C.L.); (P.-S.F.)
| | - Pei-Shan Fan
- Department of Veterinary Medicine, National Chiayi University, 580 Xinmin Road, Chiayi 60054, Taiwan; (C.-M.W.); (T.-C.L.); (P.-S.F.)
| | - Kuo-Hsiang Hung
- Graduate Institute of Bioresources, National Pingtung University of Science and Technology, 1 Shuefu Road, Neipu, Pingtung 91201, Taiwan
- Correspondence: (K.-H.H.); (Y.-W.L.); (G.-R.C.)
| | - Yu-Wen Lu
- Department of Chinese Medicine, Show Chwan Memorial Hospital, 1 Section, 542 Chung-Shan Road, Changhua 50008, Taiwan
- Department of Chinese Medicine, Chang Bing Show Chwan Memorial Hospital, 6 Lugong Road, Changhua 50544, Taiwan
- Correspondence: (K.-H.H.); (Y.-W.L.); (G.-R.C.)
| | - Geng-Ruei Chang
- Department of Veterinary Medicine, National Chiayi University, 580 Xinmin Road, Chiayi 60054, Taiwan; (C.-M.W.); (T.-C.L.); (P.-S.F.)
- Correspondence: (K.-H.H.); (Y.-W.L.); (G.-R.C.)
| |
Collapse
|
22
|
Xiao Q, Cui Y, Zhao Y, Liu L, Wang H, Yang L. Orientin relieves lipopolysaccharide-induced acute lung injury in mice: The involvement of its anti-inflammatory and anti-oxidant properties. Int Immunopharmacol 2021; 90:107189. [PMID: 33214095 DOI: 10.1016/j.intimp.2020.107189] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 10/14/2020] [Accepted: 11/06/2020] [Indexed: 10/23/2022]
Abstract
Oxidative stress and inflammatory responses are nearly involved in the pathogenesis of various diseases, including acute lung injury (ALI). Orientin (Ori), a flavonoid component extracted from natural plants, displayed anti-inflammatory and antioxidant properties in our previous studies. In the current study, we aimed to investigate the amelioration effect of Ori on lipopolysaccharide (LPS)-induced ALI, and we further explored the potential molecular mechanisms. The present results indicated that Ori effectively alleviated LPS-induced ALI by improving the histological changes of lung; decreasing the lung W/D ratio and protein levels, the release of inflammatory cells and cytokines into the bronchoalveolar lavage fluid (BALF); inhibiting nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2) and high mobility group box 1 (HMGB1) protein expression; reducing malondialdehyde (MDA) formation and reactive oxygen species (ROS) generation; and increasing the content of glutathione (GSH) and superoxide dismutase (SOD) contents. Moreover, Ori treatment not only significantly suppressed the LPS-induced nucleotide-binding domain (NOD)-like receptor protein 3 (NLRP3) inflammasome, and nuclear factor-kappa B (NF-κB) signaling pathway activation, but also obviously restored the expression of nuclear factor erythroid 2-related factor 2 (Nrf2), NAD (P) H: quinone oxidoreductase (NQO1), glutamate-cysteine ligase catalytic (GCLC), and heme oxygenase 1 (HO-1) expression in the lung; all of which are reduced by LPS. Taken together, these data suggested that Ori plays an important role in the protection against ALI by suppressing inflammation and oxidative stress which may be strongly related to the suppression of NLRP3 inflammasome and NF-κB activation, as well as the upregulation of the Nrf2 signaling pathway.
Collapse
Affiliation(s)
- Qingfei Xiao
- Department of Nephrology, The First Hospital of Jilin University, Changchun 130021, China
| | - Yan Cui
- Department of Nephrology, The First Hospital of Jilin University, Changchun 130021, China
| | - Yongli Zhao
- Department of Nephrology, The First Hospital of Jilin University, Changchun 130021, China
| | - Li Liu
- Department of Nephrology, The First Hospital of Jilin University, Changchun 130021, China
| | - Hongyue Wang
- Department of Nephrology, The First Hospital of Jilin University, Changchun 130021, China.
| | - Liming Yang
- Department of Nephrology, The First Hospital of Jilin University, Changchun 130021, China.
| |
Collapse
|
23
|
Chen S, Tang C, Ding H, Wang Z, Liu X, Chai Y, Jiang W, Han Y, Zeng H. Maf1 Ameliorates Sepsis-Associated Encephalopathy by Suppressing the NF- kB/NLRP3 Inflammasome Signaling Pathway. Front Immunol 2020; 11:594071. [PMID: 33424842 PMCID: PMC7785707 DOI: 10.3389/fimmu.2020.594071] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 11/17/2020] [Indexed: 12/13/2022] Open
Abstract
Background The NOD-, LRR- and pyrin domain-containing protein 3 (NLRP3) inflammasome has been identified as an important mediator of blood–brain-barrier disruption in sepsis-associated encephalopathy (SAE). However, no information is available concerning the critical upstream regulators of SAE. Methods Lipopolysaccharide (LPS) was used to establish an in vitro model of blood–brain barrier (BBB) disruption and an in vivo model of SAE. Disruption of BBB integrity was assessed by measuring the expression levels of tight-junction proteins. NLRP3 inflammasome activation, pro-inflammatory cytokines levels, and neuroapoptosis were measured using biochemical assays. Finally, the FITC-dextran Transwell assay and Evan’s blue dye assay were used to assess the effect of Maf1 on LPS-induced endothelial permeability in vitro and in vivo. Results We found that Maf1 significantly suppressed the brain inflammatory response and neuroapoptosis induced by LPS in vivo and in vitro. Notably, Maf1 downregulated activation of the NF-κB/p65-induced NLRP3 inflammasome and the expression of pro-inflammatory cytokines. In addition, we found that Maf1 and p65 directly bound to the NLRP3 gene promoter region and competitively regulated the function of NLRP3 in inflammations. Moreover, overexpression of NLRP3 reversed the effects of p65 on BBB integrity, apoptosis, and inflammation in response to LPS. Our study revealed novel role for Maf1 in regulating NF-κB-mediated inflammasome formation, which plays a prominent role in SAE. Conclusions Regulation of Maf1 might be a therapeutic strategy for SAE and other neurodegenerative diseases associated with inflammation.
Collapse
Affiliation(s)
- Shenglong Chen
- Department of Critical Care Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Chaogang Tang
- Department of Cerebrovascular Disease, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, China
| | - Hongguang Ding
- Department of Critical Care Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Zhonghua Wang
- Department of Gerontological Critical Care Medicine, Guangdong Provincial People's Hospital/Guangdong Academy of Medical Sciences/Guangdong Provincial Geriatrics Institute, Guangzhou, China
| | - Xinqiang Liu
- Department of Critical Care Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Yunfei Chai
- Anesthesiology Department of Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Wenqiang Jiang
- Department of Critical Care Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Yongli Han
- Department of Critical Care Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Hongke Zeng
- Department of Critical Care Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| |
Collapse
|
24
|
Yang CC, Hsiao LD, Su MH, Yang CM. Sphingosine 1-Phosphate Induces Cyclooxygenase-2/Prostaglandin E 2 Expression via PKCα-dependent Mitogen-Activated Protein Kinases and NF-κB Cascade in Human Cardiac Fibroblasts. Front Pharmacol 2020; 11:569802. [PMID: 33192511 PMCID: PMC7662885 DOI: 10.3389/fphar.2020.569802] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 09/22/2020] [Indexed: 12/12/2022] Open
Abstract
In the regions of tissue injuries and inflammatory diseases, sphingosine 1-phosphate (S1P), a proinflammatory mediator, is increased. S1P may induce the upregulation of cyclooxygenase-2 (COX-2)/prostaglandin E2 (PGE2) system in various types of cells to exacerbate heart inflammation. However, the detailed molecular mechanisms by which S1P induces COX-2 expression in human cardiac fibroblasts (HCFs) remain unknown. HCFs were incubated with S1P and analyzed by Western blotting, real time-Polymerase chain reaction (RT-PCR), and immunofluorescent staining. Our results indicated that S1P activated S1PR1/3-dependent transcriptional activity to induce COX-2 expression and PGE2 production. S1P recruited and activated PTX-sensitive Gi or -insensitive Gq protein-coupled S1PR and then stimulated PKCα-dependent phosphorylation of p42/p44 MAPK, p38 MAPK, and JNK1/2, leading to activating transcription factor NF-κB. Moreover, S1P-activated NF-κB was translocated into the nucleus and bound to its corresponding binding sites on COX-2 promoters determined by chromatin immunoprecipitation (ChIP) and promoter-reporter assays, thereby turning on COX-2 gene transcription associated with PGE2 production in HCFs. These results concluded that in HCFs, activation of NF-κB by PKCα-mediated MAPK cascades was essential for S1P-induced up-regulation of the COX-2/PGE2 system. Understanding the mechanisms of COX-2 expression and PGE2 production regulated by the S1P/S1PRs system on cardiac fibroblasts may provide rationally therapeutic interventions for heart injury or inflammatory diseases.
Collapse
Affiliation(s)
- Chien-Chung Yang
- Department of Traditional Chinese Medicine, Chang Gung Memorial Hospital at Tao-Yuan, Tao-Yuan, Taiwan.,School of Traditional Chinese Medicine, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan
| | - Li-Der Hsiao
- Department of Pharmacology, College of Medicine, China Medical University, Taichung, Taiwan
| | - Mei-Hsiu Su
- Department of Pharmacology, College of Medicine, China Medical University, Taichung, Taiwan
| | - Chuen-Mao Yang
- Department of Pharmacology, College of Medicine, China Medical University, Taichung, Taiwan.,Department of Post-Baccalaureate Veterinary Medicine, College of Medical and Health Science, Asia University, Wufeng, Taichung, Taiwan
| |
Collapse
|
25
|
Jin YH, Kang B, Kang HS, Koh CS, Kim BS. Endothelin-1 contributes to the development of virus-induced demyelinating disease. J Neuroinflammation 2020; 17:307. [PMID: 33069239 PMCID: PMC7568825 DOI: 10.1186/s12974-020-01986-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 10/06/2020] [Indexed: 01/08/2023] Open
Abstract
Background Experimental autoimmune encephalitis (EAE) and virally induced demyelinating disease are two major experimental model systems used to study human multiple sclerosis. Although endothelin-1 level elevation was previously observed in the CNS of mice with EAE and viral demyelinating disease, the potential role of endothelin-1 in the development of these demyelinating diseases is unknown. Methods and results In this study, the involvement of endothelin-1 in the development and progression of demyelinating diseases was investigated using these two experimental models. Administration of endothelin-1 significantly promoted the progression of both experimental diseases accompanied with elevated inflammatory T cell responses. In contrast, administration of specific endothelin-1 inhibitors (BQ610 and BQ788) significantly inhibited progression of these diseases accompanied with reduced T cell responses to the respective antigens. Conclusions These results strongly suggest that the level of endothelin-1 plays an important role in the pathogenesis of immune-mediated CNS demyelinating diseases by promoting immune responses.
Collapse
Affiliation(s)
- Young-Hee Jin
- Department of Microbiology-Immunology, Northwestern University Feinberg Medical School, 303 East Chicago Avenue, Chicago, IL, 60611, USA. .,KM Application Center, Korea Institute of Oriental Medicine, Daegu, Republic of Korea. .,Center for Convergent Research of Emerging Virus Infection, Korea Research Institute of Chemical Technology, Daejeon, Republic of Korea.
| | - Bongsu Kang
- Department of Microbiology-Immunology, Northwestern University Feinberg Medical School, 303 East Chicago Avenue, Chicago, IL, 60611, USA
| | - Hyun S Kang
- Department of Microbiology-Immunology, Northwestern University Feinberg Medical School, 303 East Chicago Avenue, Chicago, IL, 60611, USA
| | - Chang-Sung Koh
- Department of Biomedical Laboratory Sciences, Graduate School of Medicine, Shinshu University, Matsumoto, Nagano, 390-8621, Japan
| | - Byung S Kim
- Department of Microbiology-Immunology, Northwestern University Feinberg Medical School, 303 East Chicago Avenue, Chicago, IL, 60611, USA.
| |
Collapse
|
26
|
Zhang E, Huang J, Wang K, Yu Q, Zhu C, Ren H. Pterostilbene Protects Against Lipopolysaccharide/D-Galactosamine-Induced Acute Liver Failure by Upregulating the Nrf2 Pathway and Inhibiting NF- κB, MAPK, and NLRP3 Inflammasome Activation. J Med Food 2020; 23:952-960. [PMID: 32701014 DOI: 10.1089/jmf.2019.4647] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The purpose of this study was to evaluate the protective effect of pterostilbene (Psb) against lipopolysaccharide and D-galactosamine (L/D)-induced acute liver failure (ALF) in mice and its potential mechanisms. Histology of liver was detected by H&E staining. Aspartate aminotransferase (AST) and alanine aminotransferase (ALT) levels in serum and malondialdehyde (MDA), myeloperoxidase (MPO), glutathione (GSH), and superoxide dismutase (SOD) contents in liver were examined using detection kits. The levels of interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), and interleukin-1β (IL-1β) secretion were detected by ELISA. Meanwhile, MAPK, NF-κB, NLRP3 inflammasome, and Nrf2 were assessed by western blotting. Our findings showed that pretreatment with Psb protected against L/D-induced ALF by lowering the lethality, improving liver histology, reducing ALT, AST, IL-6, IL-1β, TNF-α, MDA, and MPO levels, and boosting liver GSH content and SOD activity. Moreover, Psb pretreatment effectively suppressed inflammation by decreasing NLRP3 inflammasome, MAPK, and NF-κB pathway activations. Moreover, Psb pretreatment efficiently enhanced the expression of several antioxidant enzymes, mainly depending on Nrf2 activation. This was the first study to demonstrate that Psb protects against L/D-induced ALF by inactivating MAPK, NF-κb, and NLRP3 inflammasome and upregulating the Nrf2 signaling pathway, indicating a potential therapeutic application for ALF treatment.
Collapse
Affiliation(s)
- Erli Zhang
- Department of Traditional Chinese Medicine, The First Hospital of Jilin University, Changchun, China
| | - Jingbo Huang
- Department of Traditional Chinese Medicine, The First Hospital of Jilin University, Changchun, China
| | - Kun Wang
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, China
| | - Qinlei Yu
- Jilin Provincial Animal Disease Control Center, Changchun, China
| | - Chao Zhu
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, China
| | - Hua Ren
- Department of Ophthalmology, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
27
|
Kikuchi DS, Campos ACP, Qu H, Forrester SJ, Pagano RL, Lassègue B, Sadikot RT, Griendling KK, Hernandes MS. Poldip2 mediates blood-brain barrier disruption in a model of sepsis-associated encephalopathy. J Neuroinflammation 2019; 16:241. [PMID: 31779628 PMCID: PMC6883676 DOI: 10.1186/s12974-019-1575-4] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 08/29/2019] [Indexed: 11/10/2022] Open
Abstract
Background Sepsis-associated encephalopathy (SAE), a diffuse cerebral dysfunction in the absence of direct CNS infection, is associated with increased rates of mortality and morbidity in patients with sepsis. Increased cytokine production and disruption of the blood-brain barrier (BBB) are implicated in the pathogenesis of SAE. The induction of pro-inflammatory mediators is driven, in part, by activation of NF-κΒ. Lipopolysaccharide (LPS), an endotoxin produced by gram-negative bacteria, potently activates NF-κΒ and its downstream targets, including cyclooxygenase-2 (Cox-2). Cox-2 catalyzes prostaglandin synthesis and in the brain prostaglandin, E2 is capable of inducing endothelial permeability. Depletion of polymerase δ-interacting protein 2 (Poldip2) has previously been reported to attenuate BBB disruption, possibly via regulation of NF-κΒ, in response to ischemic stroke. Here we investigated Poldip2 as a novel regulator of NF-κΒ/cyclooxygenase-2 signaling in an LPS model of SAE. Methods Intraperitoneal injections of LPS (18 mg/kg) were used to induce BBB disruption in Poldip2+/+ and Poldip2+/− mice. Changes in cerebral vascular permeability and the effect of meloxicam, a selective Cox-2 inhibitor, were assessed by Evans blue dye extravasation. Cerebral cortices of Poldip2+/+ and Poldip2+/− mice were further evaluated by immunoblotting and ELISA. To investigate the role of endothelial Poldip2, immunofluorescence microscopy and immunoblotting were performed to study the effect of siPoldip2 on LPS-mediated NF-κΒ subunit p65 translocation and Cox-2 induction in rat brain microvascular endothelial cells. Finally, FITC-dextran transwell assay was used to assess the effect of siPoldip2 on LPS-induced endothelial permeability. Results Heterozygous deletion of Poldip2 conferred protection against LPS-induced BBB permeability. Alterations in Poldip2+/+ BBB integrity were preceded by induction of Poldip2, p65, and Cox-2, which was not observed in Poldip2+/− mice. Consistent with these findings, prostaglandin E2 levels were significantly elevated in Poldip2+/+ cerebral cortices compared to Poldip2+/− cortices. Treatment with meloxicam attenuated LPS-induced BBB permeability in Poldip2+/+ mice, while having no significant effect in Poldip2+/− mice. Moreover, silencing of Poldip2 in vitro blocked LPS-induced p65 nuclear translocation, Cox-2 expression, and endothelial permeability. Conclusions These data suggest Poldip2 mediates LPS-induced BBB disruption by regulating NF-κΒ subunit p65 activation and Cox-2 and prostaglandin E2 induction. Consequently, targeted inhibition of Poldip2 may provide clinical benefit in the prevention of sepsis-induced BBB disruption. Electronic supplementary material The online version of this article (10.1186/s12974-019-1575-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Daniel S Kikuchi
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, 101 Woodruff Circle, 308 WMB, Atlanta, GA, 30322, USA
| | | | - Hongyan Qu
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, 101 Woodruff Circle, 308 WMB, Atlanta, GA, 30322, USA
| | - Steven J Forrester
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, 101 Woodruff Circle, 308 WMB, Atlanta, GA, 30322, USA
| | - Rosana L Pagano
- Division of Neuroscience, Hospital Sírio-Libanês, São Paulo, SP, Brazil
| | - Bernard Lassègue
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, 101 Woodruff Circle, 308 WMB, Atlanta, GA, 30322, USA
| | - Ruxana T Sadikot
- Division of Pulmonary and Critical Care, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Kathy K Griendling
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, 101 Woodruff Circle, 308 WMB, Atlanta, GA, 30322, USA
| | - Marina S Hernandes
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, 101 Woodruff Circle, 308 WMB, Atlanta, GA, 30322, USA.
| |
Collapse
|
28
|
Lv H, An B, Yu Q, Cao Y, Liu Y, Li S. The hepatoprotective effect of myricetin against lipopolysaccharide and D-galactosamine-induced fulminant hepatitis. Int J Biol Macromol 2019; 155:1092-1104. [PMID: 31712142 DOI: 10.1016/j.ijbiomac.2019.11.075] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 10/09/2019] [Accepted: 11/07/2019] [Indexed: 12/25/2022]
Abstract
Fulminant hepatitis (FH) is a severe liver disease characterized by extensive hepatic necrosis, oxidative stress, and inflammation. Myricetin (Myr), a botanical flavonoid glycoside, is recognized to exert antiapoptosis, anti-inflammatory, and antioxidant properties. In the current study, we focused on exploring the protective effects and underlying mechanisms of Myr against lipopolysaccharide (LPS) and D-galactosamine (D-GalN)-induced FH. These data indicated that Myr effectively protected from LPS/D-GalN-induced FH by lowering the mortality of mice, decreasing ALT and AST levels, and alleviating histopathological changes, oxidative stress, inflammation, and hepatic apoptosis. Moreover, Myr could efficiently mediate multiple signaling pathways, displaying not only the regulation of caspase-3/9 and P53 protein, inhibition of toll-like receptor 4 (TLR4)-nuclear factor-kappa B (NF-κB) activation, and -mitogen-activated protein kinase (MAPK), but also the increase of heme oxygenase-1 (HO-1) and nuclear factor-erythroid 2-related factor 2 (Nrf2) expression, as well as induction of AMP-activated protein kinase (AMPK) and acetyl-CoA carboxylase (ACC) phosphorylation in mice with LPS/D-GalN-induced FH. Importantly, our further results in vitro suggested that Myr remarkably attenuated H2O2-triggered hepatotoxicity and ROS generation, activated Keap1-Nrf2/HO-1 and AMPK/ACC signaling pathway. However, Myr-enhanced the expression of HO-1 and Nrf2 protein was reversed by Keap1-overexpression, Nrf2-null and AMPK inhibitor. Meanwhile, Myr-relieved hepatotoxicity excited by H2O2 was blocked by Nrf2-null and AMPK inhibitor. Taken together, Myr exhibits a protective role against LPS/D-GalN-induced FH by suppressing hepatic apoptosis, inflammation, and oxidative stress, likely involving in the regulation of apoptosis-related protein, TLR4-NF-κB/-MAPK and NLRP3 inflammasome, and AMPK-Nrf2/HO-1 signaling pathway.
Collapse
Affiliation(s)
- Hongming Lv
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, Heilongjiang Bayi, China
| | - Beiying An
- Department of Clinical Laboratory, The First Hospital of Jilin University, Changchun 130021, Jilin, China
| | - Qinlei Yu
- Jilin Provincial Animal Disease Control Center, 4510 Xi'an Road, Changchun 130062, China
| | - Yu Cao
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, Heilongjiang Bayi, China
| | - Yang Liu
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, Heilongjiang Bayi, China
| | - Shize Li
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, Heilongjiang Bayi, China.
| |
Collapse
|
29
|
Lyu Z, Ji X, Chen G, An B. Atractylodin ameliorates lipopolysaccharide and d-galactosamine-induced acute liver failure via the suppression of inflammation and oxidative stress. Int Immunopharmacol 2019; 72:348-357. [DOI: 10.1016/j.intimp.2019.04.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Revised: 03/28/2019] [Accepted: 04/02/2019] [Indexed: 12/21/2022]
|
30
|
Kao CC, Cheng SY, Wang YJ, Chien SC, Hsu YW, Wu MY, Lu HF, Nam S, Sun T, Wu MS, Chang WC. Association of endothelin genetic variants and hospitalized infection complications in end-stage renal disease (ESRD) patients. BMC Nephrol 2019; 20:203. [PMID: 31167651 PMCID: PMC6549338 DOI: 10.1186/s12882-019-1349-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 04/23/2019] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Infection is the second most common cause of mortality for patients with end-stage renal disease (ESRD), accompanying with immune dysfunction. Endothelin (EDN) is known to be related to inflammation; however, it is unknown whether genetic variants of the EDN gene family are associated with increased risk of hospitalized infection events. METHODS Nineteen tagging single-nucleotide polymorphisms (tSNPs) of the EDN gene family were selected for genotyping a cohort of 190 ESRD patients. Patient demographics were recorded, the subtypes of infection events were identified, and association analysis between the EDN genetic variants and hospitalized infection events was performed. RESULTS In this study, 106 patients were hospitalized for infection events. The leading events were pneumonia, bacteremia, and cellulitis. The minor allele of rs260741, rs197173, and rs926632 SNPs of EDN3 were found to be associated with reduced risk of hospitalized bacteremia events. CONCLUSIONS The minor allele of rs260741, rs197173, and rs926632 in EDN3 were associated with reduced risk of hospitalized bacteremia events in ESRD patients.
Collapse
Affiliation(s)
- Chih-Chin Kao
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Division of Nephrology, Department of Internal Medicine, Taipei Medical University Hospital, Taipei, Taiwan
- Division of Nephrology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Shih-Ying Cheng
- Department of Pharmacy, Taipei Medical University Hospital, Taipei, Taiwan
- Department of Clinical Pharmacy, School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Yu-Jia Wang
- Ph.D. Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Shu-Chen Chien
- Department of Pharmacy, Taipei Medical University Hospital, Taipei, Taiwan
- Department of Clinical Pharmacy, School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
- Clinical Research Center, Taipei Medical University Hospital, Taipei, Taiwan
| | - Yu-Wen Hsu
- Ph.D. Program for Translational Medicine, College of Medical Science and Technology, Academia Sinica, Taipei Medical University, Taipei, Taiwan
| | - Mei-Yi Wu
- Division of Nephrology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Division of Nephrology, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
| | - Hsing-Fang Lu
- Department of Clinical Pharmacy, School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Sean Nam
- Department of Clinical Pharmacy, School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Tao Sun
- Department of Surgery, University of Chicago, Chicago, IL USA
| | - Mai-Szu Wu
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Division of Nephrology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Division of Nephrology, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
| | - Wei-Chiao Chang
- Department of Clinical Pharmacy, School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
- Department of Pharmacy, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
- Master Program for Clinical Pharmacogenomics and Pharmacoproteomics, School of Pharmacy, Taipei Medical University, Taipei, 110 Taiwan
- Department of Medical Research, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
| |
Collapse
|
31
|
Ahmad S, Kindelin A, Khan SA, Ahmed M, Hoda MN, Bhatia K, Ducruet AF. C3a Receptor Inhibition Protects Brain Endothelial Cells Against Oxygen-glucose Deprivation/Reperfusion. Exp Neurobiol 2019; 28:216-228. [PMID: 31138990 PMCID: PMC6526115 DOI: 10.5607/en.2019.28.2.216] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 04/09/2019] [Accepted: 04/10/2019] [Indexed: 02/07/2023] Open
Abstract
The complement cascade is a central component of innate immunity which plays a critical role in brain inflammation. Complement C3a receptor (C3aR) is a key mediator of post-ischemic cerebral injury, and pharmacological antagonism of the C3a receptor is neuroprotective in stroke. Cerebral ischemia injures brain endothelial cells, causing blood brain barrier (BBB) disruption which further exacerbates ischemic neuronal injury. In this study, we used an in vitro model of ischemia (oxygen glucose deprivation; OGD) to investigate the protective effect of a C3aR antagonist (C3aRA, SB290157) on brain endothelial cells (bEnd.3). Following 24 hours of reperfusion, OGD-induced cell death was assessed by TUNEL and Caspase-3 staining. Western blot and immunocytochemistry were utilized to demonstrate that OGD upregulates inflammatory, oxidative stress and antioxidant markers (ICAM-1, Cox-2, Nox-2 and MnSOD) in endothelial cells and that C3aRA treatment significantly attenuate these markers. We also found that C3aRA administration restored the expression level of the tight junction protein occludin in endothelial cells following OGD. Interestingly, OGD/reperfusion injury increased the phosphorylation of ERK1/2 and C3aR inhibition significantly reduced the activation of ERK suggesting that endothelial C3aR may act via ERK signaling. Furthermore, exogenous C3a administration stimulates these same inflammatory mechanisms both with and without OGD, and C3aRA suppresses these C3a-mediated responses, supporting an antagonist role for C3aRA. Based on these results, we conclude that C3aRA administration attenuates inflammation, oxidative stress, ERK activation, and protects brain endothelial cells following experimental brain ischemia.
Collapse
Affiliation(s)
- Saif Ahmad
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Dignity Health, Phoenix, Arizona 85013, USA
| | - Adam Kindelin
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Dignity Health, Phoenix, Arizona 85013, USA
| | - Shah Alam Khan
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Dignity Health, Phoenix, Arizona 85013, USA.,Oman Medical College, Muscat 130, Sultanate of Oman
| | - Maaz Ahmed
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Dignity Health, Phoenix, Arizona 85013, USA
| | - Md Nasrul Hoda
- Department of Neurology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Dignity Health, Phoenix, Arizona 85013, USA
| | - Kanchan Bhatia
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Dignity Health, Phoenix, Arizona 85013, USA.,School of Mathematical and Natural Sciences, Arizona State University, Phoenix, AZ 85004, USA
| | - Andrew F Ducruet
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Dignity Health, Phoenix, Arizona 85013, USA
| |
Collapse
|
32
|
Arfuzir NNN, Agarwal R, Iezhitsa I, Agarwal P, Ismail NM. Dose-Dependent Effects of Endothelin-1 on Retinal and Optic Nerve Morphology in Sprague Dawley Rats. NEUROCHEM J+ 2019. [DOI: 10.1134/s1819712419010045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
33
|
Tang F, Fan K, Wang K, Bian C. Amygdalin attenuates acute liver injury induced by D-galactosamine and lipopolysaccharide by regulating the NLRP3, NF-κB and Nrf2/NQO1 signalling pathways. Biomed Pharmacother 2018; 111:527-536. [PMID: 30597306 DOI: 10.1016/j.biopha.2018.12.096] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 12/19/2018] [Accepted: 12/19/2018] [Indexed: 12/11/2022] Open
Abstract
Acute liver injury (ALI) is a life-threatening syndrome accompanied by overwhelming inflammation. Amygdalin (AGD) has been reported to possess various biological activities, particularly anti-inflammatory activity. The current study was designed to assess the protective effects and underlying mechanisms of AGD against ALI induced by d-galactosamine (GalN) and lipopolysaccharide (LPS) in mice. The results indicated that AGD treatment effectively reduced the lethality, ameliorated the histopathological liver changes, reduced the malondialdehyde (MDA) and myeloperoxidase (MPO) levels, and decreased the alanine transaminase (ALT) and aspartate aminotransferase (AST) levels resulting from LPS/GalN challenge. Moreover, AGD significantly inhibited LPS/GalN-induced inflammatory responses in mice with ALI by reducing not only the secretion of tumour necrosis factor (TNF)-α, interleukin (IL)-1β, and IL-6 but also the protein expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2). Additionally, our results demonstrated that the inhibitory effect of AGD was due to the suppressed activation of nuclear factor-kappa B (NF-κB) and nucleotide-binding domain (NOD-)like receptor protein 3 (NLRP3) inflammasome activity. Furthermore, AGD treatment substantially increased nuclear factor erythroid 2-related factor 2 (Nrf2) nuclear translocation and enhanced NAD (P) H: quinoneoxidoreductase 1 protein expression, which was reversed by a Nrf2 inhibitor, in HepG2 cells. In summary, our investigations suggested that the ability of AGD to ameliorate LPS/GalN-induced ALI may involve the inhibition of the NLRP3 inflammasome and NF-κB signalling pathways and the upregulation of the Nrf2/NQO1 signalling pathway.
Collapse
Affiliation(s)
- Fayin Tang
- College of pharmaceutical Engineering, Henan University of Husbandry and Economy, Zhengzhou, 450046, Henan Province, China; College of Veterinary Medicine, Jilin University, Xi'an Road 5333#, Changchun 130062, China
| | - Kefeng Fan
- College of pharmaceutical Engineering, Henan University of Husbandry and Economy, Zhengzhou, 450046, Henan Province, China
| | - Kunli Wang
- College of pharmaceutical Engineering, Henan University of Husbandry and Economy, Zhengzhou, 450046, Henan Province, China
| | - Chuanzhou Bian
- College of pharmaceutical Engineering, Henan University of Husbandry and Economy, Zhengzhou, 450046, Henan Province, China.
| |
Collapse
|
34
|
Tai LW, Pan Z, Sun L, Li H, Gu P, Wong SSC, Chung SK, Cheung CW. Suppression of Pax2 Attenuates Allodynia and Hyperalgesia through ET-1-ETAR-NFAT5 Signaling in a Rat Model of Neuropathic Pain. Neuroscience 2018; 384:139-151. [PMID: 29847776 DOI: 10.1016/j.neuroscience.2018.05.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 05/15/2018] [Accepted: 05/16/2018] [Indexed: 01/16/2023]
Abstract
Endothelin-1 (ET-1) and its receptors (ETAR/ETBR) emerge to be a key signaling axis in neuropathic pain processing and are recognized as new therapeutic targets. Yet, little is known on the functional regulation of ET-1 axis during neuropathic pain. Bioinformatics analysis indicated that paired box gene 2 (Pax2) or nuclear factor of activated T-cells 5 (NFAT5), two transcription factors involved in the modulation of neurotransmission, may regulate ET-1. Therefore, we hypothesized that ET-1 axis may be regulated by Pax2 or NFAT5 in the development of neuropathic pain. After partial sciatic nerve ligation (pSNL), rats displayed allodynia and hyperalgesia, which was associated with increased mRNA and protein expressions of spinal Pax2, NFAT5, and mRNA levels of ET-1 and ETAR, but not ETBR. Knockdown of Pax2 or NFAT5 with siRNA, or inhibition of ETAR with BQ-123 attenuated pSNL-induced pain-like behaviors. At molecular level, Pax2 siRNA, but not NFAT5 siRNA, downregulated ET-1 and ETAR, while ETAR inhibitor reduced NFAT5, indicating Pax2 in the upstream of ET-1 axis with NFAT5 in the downstream. Further, suppression of Pax2 (inhibiting ET-1) or impairment of ET-1 signaling (inhibition of ETAR and/or decrease of NFAT5) deactivated mitogen-activated protein kinases (MAPK) and nuclear factor-kappa B (NF-κB) signaling pathways, supporting the significance of functional regulation of ET-1 axis in neuropathic pain signaling. These findings demonstrate that Pax2 targeting ET-1-ETAR-NFAT5 is a novel regulatory mechanism underlying neuropathic pain.
Collapse
Affiliation(s)
- Lydia Wai Tai
- Department of Anaesthesiology, The University of Hong Kong, Hong Kong, China; Laboratory and Clinical Research Institute for Pain, The University of Hong Kong, Hong Kong, China
| | - Zhiqiang Pan
- Department of Anaesthesiology, The University of Hong Kong, Hong Kong, China; Laboratory and Clinical Research Institute for Pain, The University of Hong Kong, Hong Kong, China; Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
| | - Liting Sun
- Department of Anaesthesiology, The University of Hong Kong, Hong Kong, China; Laboratory and Clinical Research Institute for Pain, The University of Hong Kong, Hong Kong, China
| | - Haobo Li
- Department of Anaesthesiology, The University of Hong Kong, Hong Kong, China
| | - Pan Gu
- Department of Anaesthesiology, The University of Hong Kong, Hong Kong, China; Laboratory and Clinical Research Institute for Pain, The University of Hong Kong, Hong Kong, China
| | - Stanley Sau Ching Wong
- Department of Anaesthesiology, The University of Hong Kong, Hong Kong, China; Laboratory and Clinical Research Institute for Pain, The University of Hong Kong, Hong Kong, China
| | - Sookja K Chung
- Laboratory and Clinical Research Institute for Pain, The University of Hong Kong, Hong Kong, China; School of Biomedical Sciences, Hormone and Healthy Aging, The University of Hong Kong, Hong Kong, China; Research Center of Heart, Brain, Hormone and Healthy Aging, The University of Hong Kong, Hong Kong, China
| | - Chi Wai Cheung
- Department of Anaesthesiology, The University of Hong Kong, Hong Kong, China; Laboratory and Clinical Research Institute for Pain, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
35
|
The Rho GTPase Rnd1 inhibits epithelial-mesenchymal transition in hepatocellular carcinoma and is a favorable anti-metastasis target. Cell Death Dis 2018; 9:486. [PMID: 29706627 PMCID: PMC5924761 DOI: 10.1038/s41419-018-0517-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 03/09/2018] [Accepted: 03/23/2018] [Indexed: 12/11/2022]
Abstract
Rnd1, a member of Rho GTPases, was found to be downregulated in human malignancies and downregulation of Rnd1 promotes tumor invasion via various mechanisms. However, the role of Rnd1 in hepatocellular carcinoma (HCC) progression remains unclear. In this study, our results demonstrated that Rnd1 was downregulated in HCC cells and in human HCC tissues. Low expression of Rnd1 was associated with aggressive clinic-pathologic characteristics, such as vascular invasion, and poor prognosis in patients who underwent curative surgery for HCC. Overexpression of Rnd1-suppressed cell growth, migration, invasion, and EMT processes in vitro and in vivo. Furthermore, Rnd1 blocked HCC progression by restricting EMT process through inhibition of the Raf/MEK/ERK cascade, and this was correlated with a reduction in RhoA activity. Combination of Rnd1 overexpression with sorafenib, a Raf signaling pathway inhibitor, showed a more potent inhibition on HCC metastasis. Moreover, epigenetic inhibitors (5-Aza and SAHA) increased the expression of Rnd1, and potentiated sorafenib-induced toxicity in HCC cells. In a conclusion, Rnd1-suppressed EMT-mediated metastasis of HCC by reducing the activity of the RhoA/Raf/MEK/ERK signaling pathway, functioning as a favorable anti-metastasis target for HCC patients. Rnd1 overexpression in combination with sorafenib may result in enhanced anti-metastasis efficacy in HCC.
Collapse
|
36
|
Nodai T, Hitomi S, Ono K, Masaki C, Harano N, Morii A, Sago-Ito M, Ujihara I, Hibino T, Terawaki K, Omiya Y, Hosokawa R, Inenaga K. Endothelin-1 Elicits TRP-Mediated Pain in an Acid-Induced Oral Ulcer Model. J Dent Res 2018. [PMID: 29518348 DOI: 10.1177/0022034518762381] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Oral ulcer is the most common oral disease and leads to pain during meals and speaking, reducing the quality of life of patients. Recent evidence using animal models suggests that oral ulcers induce cyclooxygenase-dependent spontaneous pain and cyclooxygenase-independent mechanical allodynia. Endothelin-1 is upregulated in oral mucosal inflammation, although it has not been shown to induce pain in oral ulcers. In the present study, we investigated the involvement of endothelin-1 signaling with oral ulcer-induced pain using our proprietary assay system in conscious rats. Endothelin-1 was significantly upregulated in oral ulcers experimentally induced by topical acetic acid treatment, while endothelin-1 production was suppressed by antibacterial pretreatment. Spontaneous nociceptive behavior in oral ulcer model rats was inhibited by swab applications of BQ-788 (ETB receptor antagonist), ONO-8711 (prostanoid receptor EP1 antagonist), and HC-030031 (TRPA1 antagonist). Prostaglandin E2 production in the ulcers was suppressed by BQ-788. Mechanical allodynia in the model was inhibited not only by BQ-788 and HC-030031 but also by BQ-123 (ETA receptor antagonist), SB-366791 (TRPV1 antagonist), and RN-1734 (TRPV4 antagonist). In naive rats, submucosal injection of endothelin-1 caused mechanical allodynia that was sensitive to HC-030031 and SB-366791 but not to RN-1734. These results suggest that endothelin-1 production following oral bacterial invasion via ulcerative regions elicits TRPA1-mediated spontaneous pain. This pain likely occurs through an indirect route that involves ETB receptor-accelerated prostanoid production. Endothelin-1 elicits directly TRPA1- and TRPV1-mediated mechanical allodynia via both ETA and ETB receptors on nociceptive fibers. The TRPV4-mediated allodynia component seems to be independent of endothelin signaling. These findings highlight the potential of endothelin signaling blockers as effective analgesic approaches for oral ulcer patients.
Collapse
Affiliation(s)
- T Nodai
- 1 Division of Physiology, Kyushu Dental University, Fukuoka, Japan.,2 Division of Oral Reconstruction and Rehabilitation, Kyushu Dental University, Fukuoka, Japan
| | - S Hitomi
- 1 Division of Physiology, Kyushu Dental University, Fukuoka, Japan
| | - K Ono
- 1 Division of Physiology, Kyushu Dental University, Fukuoka, Japan
| | - C Masaki
- 2 Division of Oral Reconstruction and Rehabilitation, Kyushu Dental University, Fukuoka, Japan
| | - N Harano
- 3 Division of Dental Anesthesiology, Kyushu Dental University, Fukuoka, Japan
| | - A Morii
- 1 Division of Physiology, Kyushu Dental University, Fukuoka, Japan.,4 Division of Orofacial Functions and Orthodontics, Kyushu Dental University, Fukuoka, Japan
| | - M Sago-Ito
- 4 Division of Orofacial Functions and Orthodontics, Kyushu Dental University, Fukuoka, Japan
| | - I Ujihara
- 1 Division of Physiology, Kyushu Dental University, Fukuoka, Japan
| | - T Hibino
- 5 Tsumura Research Laboratories, Kampo Scientific Strategies Division, Tsumura & Co., Ibaraki, Japan
| | - K Terawaki
- 5 Tsumura Research Laboratories, Kampo Scientific Strategies Division, Tsumura & Co., Ibaraki, Japan
| | - Y Omiya
- 5 Tsumura Research Laboratories, Kampo Scientific Strategies Division, Tsumura & Co., Ibaraki, Japan
| | - R Hosokawa
- 2 Division of Oral Reconstruction and Rehabilitation, Kyushu Dental University, Fukuoka, Japan
| | - K Inenaga
- 1 Division of Physiology, Kyushu Dental University, Fukuoka, Japan
| |
Collapse
|
37
|
|
38
|
Patel H, Zaghloul N, Lin K, Liu SF, Miller EJ, Ahmed M. Hypoxia-induced activation of specific members of the NF-kB family and its relevance to pulmonary vascular remodeling. Int J Biochem Cell Biol 2017; 92:141-147. [DOI: 10.1016/j.biocel.2017.09.022] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 09/11/2017] [Accepted: 09/28/2017] [Indexed: 02/04/2023]
|
39
|
Pourjafar M, Saidijam M, Mansouri K, Malih S, Ranjbar Nejad T, Shabab N, Najafi R. Cytoprotective effects of endothelin-1 on mesenchymal stem cells: an in vitro study. Clin Exp Pharmacol Physiol 2017; 43:769-76. [PMID: 27161651 DOI: 10.1111/1440-1681.12590] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 05/02/2016] [Accepted: 05/04/2016] [Indexed: 12/22/2022]
Abstract
Stem cell-based therapies is a promising approach for regenerative therapy in various diseases. Some obstacles remain to be solved before clinical application of the cell therapy is realized, including increasing the survival of transplanted stem cells, reducing loss of transplanted cells, and maintaining adequate vascular supply. Recently, stem cell preconditioning with chemical and pharmacological agents has been shown to increase therapeutic efficacy. The present study investigated the effect of endothelin-1 (ET-1) on survival, angiogenesis, and migration of mesenchymal stem cells (MSCs), in vitro. MSCs were treated with various concentrations of ET-1 and the expression of cyclooxygenase-2 (COX-2), hypoxia-inducible factor-1 (HIF-1), C-X-C chemokine receptor type 4 (CXCR4), C-C chemokine receptor type 2 (CCR2), vascular endothelial growth factor (VEGF), angiopoietin-2 (Ang-2), angiopoietin-4 (Ang-4) and matrix metalloproteinase-2 (MMP-2) were examined. Caspase 3 activity and prostaglandin E2 (PGE2) were determined by ELISA assay. MSCs migration and tube formation potential were assessed using scratch test and three dimensional vessel formation assay. ET-1 enhanced the MSCs viability. In ET-1- treated MSCs, expression of COX-2, HIF-1, CXCR4, CCR2, VEGF, Ang-2, Ang-4 and MMP-2 were increased compared to control groups. Elevation of all these genes were reversed by celecoxib (50 μmol/L), a selective COX-2 inhibitor. PGE2 generation, MSCs migration and tube formation were enhanced by ET-1 conditioning, whereas caspase-3 activity was reduced in these cells, compared to the control group. The results presented here reveal that preconditioning of MSCs with ET-1 has strong cytoprotective effects through activation of survival signalling molecules and trophic factors.
Collapse
Affiliation(s)
- Mona Pourjafar
- Research Centre for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Massoud Saidijam
- Research Centre for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Kamran Mansouri
- Medical Biology Research Centre, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Sara Malih
- Research Centre for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Tayebeh Ranjbar Nejad
- Research Centre for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Nooshin Shabab
- Research Centre for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Rezvan Najafi
- Research Centre for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.,Endometrium and Endometriosis Research Centre, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
40
|
Han LT, Fang Y, Cao Y, Wu FH, Liu E, Mo GY, Huang F. Triterpenoid saponin flaccidoside II from Anemone flaccida triggers apoptosis of NF1-associated malignant peripheral nerve sheath tumors via the MAPK-HO-1 pathway. Onco Targets Ther 2016; 9:1969-79. [PMID: 27103823 PMCID: PMC4827896 DOI: 10.2147/ott.s95597] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Malignant peripheral nerve sheath tumors (MPNSTs) are highly aggressive soft tissue neoplasms that are extremely rare and are frequently associated with neurofibromatosis type 1 patients. MPNSTs are typically fatal, and there is no effective treatment so far. In our previous study, we showed that flaccidoside II, one of the triterpenoid saponins isolated from Anemone flaccida Fr. Schmidt, has antitumor potential by inducing apoptosis. In the present study, we found that flaccidoside II inhibits proliferation and facilitates apoptosis in MPNST cell lines ST88-14 and S462. Furthermore, this study provides a mechanism by which the downregulation of heme oxygenase-1 via extracellular signal-regulated kinase-1/2 and p38 mitogen-activated protein kinase pathways is involved in the apoptotic role of flaccidoside II. This study suggested the potential of flaccidoside II as a novel pharmacotherapeutic approach for MPNSTs.
Collapse
Affiliation(s)
- Lin-Tao Han
- China Key Laboratory of TCM Resource and Prescription, Ministry of Education, Wuhan, Hubei, People's Republic of China
| | - Yin Fang
- China Key Laboratory of TCM Resource and Prescription, Ministry of Education, Wuhan, Hubei, People's Republic of China
| | - Yan Cao
- Department of Pharmacy, Hubei University of Chinese Medicine, Wuhan, Hubei, People's Republic of China
| | - Feng-Hua Wu
- China Key Laboratory of TCM Resource and Prescription, Ministry of Education, Wuhan, Hubei, People's Republic of China
| | - E Liu
- Department of Pharmacy, Hubei University of Chinese Medicine, Wuhan, Hubei, People's Republic of China
| | - Guo-Yan Mo
- Department of Pharmacy, Hubei University of Chinese Medicine, Wuhan, Hubei, People's Republic of China
| | - Fang Huang
- China Key Laboratory of TCM Resource and Prescription, Ministry of Education, Wuhan, Hubei, People's Republic of China
| |
Collapse
|
41
|
Baretella O, Vanhoutte P. Endothelium-Dependent Contractions. ADVANCES IN PHARMACOLOGY 2016; 77:177-208. [DOI: 10.1016/bs.apha.2016.04.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
42
|
Shih RH, Wang CY, Yang CM. NF-kappaB Signaling Pathways in Neurological Inflammation: A Mini Review. Front Mol Neurosci 2015; 8:77. [PMID: 26733801 PMCID: PMC4683208 DOI: 10.3389/fnmol.2015.00077] [Citation(s) in RCA: 586] [Impact Index Per Article: 58.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 11/30/2015] [Indexed: 12/14/2022] Open
Abstract
The NF-κB (nuclear factor κ-light-chain-enhancer of activated B cells) transcription factor family is a pleiotropic regulator of many cellular signaling pathways, providing a mechanism for the cells in response to a wide variety of stimuli linking to inflammation. The stimulated cells will be regulated by not only the canonical but also non-canonical NF-κB pathways. To initiate both of these pathways, IκB-degradation triggers NF-κB release and the nuclear translocated-heterodimer (or homodimer) can associate with the κB sites of promoter to regulate the gene transcriptions. NF-κB ubiquitously expresses in neurons and the constitutive NF-κB activation is associated with processing of neuronal information. NF-κB can regulate the transcription of genes such as chemokines, cytokines, proinflammatory enzymes, adhesion molecules, proinflammatory transcription factors, and other factors to modulate the neuronal survival. In neuronal insult, NF-κB constitutively active in neuron cell bodies can protect neurons against different injuries and regulate the neuronal inflammatory reactions. Besides neurons, NF-κB transcription factors are abundant in glial cells and cerebral blood vessels and the diverse functions of NF-κB also regulate the inflammatory reaction around the neuronal environment. NF-κB transcription factors are abundant in the brain and exhibit diverse functions. Several central nerve system (CNS) diseases are linked to NF-κB activated by inflammatory mediators. The RelA and c-Rel expression produce opposite effects on neuronal survival. Importantly, c-Rel expression in CNS plays a critical role in anti-apoptosis and reduces the age-related behaviors. Moreover, the different subunits of NF-κB dimer formation can modulate the neuroninflammation, neuronal protection, or neurotoxicity. The diverse functions of NF-κB depend on the subunits of the NF-κB dimer-formation which enable us to develop a therapeutic approach to neuroinflammation based on a new concept of inflammation as a strategic tool in neuronal cells. However, the detail role of NF-κB in neuroinflammation, remains to be clarified. In the present article, we provide an updated review of the current state of our knowledge about relationship between NF-κB and neuroinflammation.
Collapse
Affiliation(s)
- Ruey-Horng Shih
- Institute of Neuroscience, National Chengchi University Taipei, Taiwan
| | - Chen-Yu Wang
- Department of Physiology and Pharmacology and Health Aging Research Center, College of Medicine, Chang Gung University Tao-Yuan, Taiwan
| | - Chuen-Mao Yang
- Department of Physiology and Pharmacology and Health Aging Research Center, College of Medicine, Chang Gung University Tao-Yuan, Taiwan
| |
Collapse
|
43
|
Moshaverinia A, Chen C, Xu X, Ansari S, Zadeh HH, Schricker SR, Paine ML, Moradian-Oldak J, Khademhosseini A, Snead ML, Shi S. Regulation of the Stem Cell-Host Immune System Interplay Using Hydrogel Coencapsulation System with an Anti-Inflammatory Drug. ADVANCED FUNCTIONAL MATERIALS 2015; 25:2296-2307. [PMID: 26120294 PMCID: PMC4478611 DOI: 10.1002/adfm.201500055] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The host immune system is known to influence mesenchymal stem cell (MSC)-mediated bone tissue regeneration. However, the therapeutic capacity of hydrogel biomaterial to modulate the interplay between MSCs and T-lymphocytes is unknown. Here it is shown that encapsulating hydrogel affects this interplay when used to encapsulate MSCs for implantation by hindering the penetration of pro-inflammatory cells and/or cytokines, leading to improved viability of the encapsulated MSCs. This combats the effects of the host pro-inflammatory T-lymphocyte-induced nuclear factor kappaB pathway, which can reduce MSC viability through the CASPASE-3 and CAS-PASE-8 associated proapoptotic cascade, resulting in the apoptosis of MSCs. To corroborate rescue of engrafted MSCs from the insult of the host immune system, the incorporation of the anti-inflammatory drug indomethacin into the encapsulating alginate hydrogel further regulates the local microenvironment and prevents pro-inflammatory cytokine-induced apoptosis. These findings suggest that the encapsulating hydrogel can regulate the MSC-host immune cell interplay and direct the fate of the implanted MSCs, leading to enhanced tissue regeneration.
Collapse
Affiliation(s)
- Alireza Moshaverinia
- Center for Craniofacial Molecular Biology (CCMB), Ostrow School of Dentistry, University of Southern California, 2250 Alcazar St, Los Angeles, CA 90033, USA
| | - Chider Chen
- School of Dental Medicine, University of Pennsylvania, 240 South 40th Street, Philadelphia, PA 19104, USA
| | - Xingtian Xu
- Center for Craniofacial Molecular Biology (CCMB), Ostrow School of Dentistry, University of Southern California, 2250 Alcazar St, Los Angeles, CA 90033, USA
| | - Sahar Ansari
- Center for Craniofacial Molecular Biology (CCMB), Ostrow School of Dentistry, University of Southern California, 2250 Alcazar St, Los Angeles, CA 90033, USA
| | - Homayoun H. Zadeh
- Center for Craniofacial Molecular Biology (CCMB), Ostrow School of Dentistry, University of Southern California, 2250 Alcazar St, Los Angeles, CA 90033, USA
| | - Scott R. Schricker
- College of Dentistry, Ohio State University, 305 W 12th Ave, Columbus, OH 43210, USA
| | - Michael L. Paine
- Center for Craniofacial Molecular Biology (CCMB), Ostrow School of Dentistry, University of Southern California, 2250 Alcazar St, Los Angeles, CA 90033, USA
| | - Janet Moradian-Oldak
- Center for Craniofacial Molecular Biology (CCMB), Ostrow School of Dentistry, University of Southern California, 2250 Alcazar St, Los Angeles, CA 90033, USA
| | - Ali Khademhosseini
- Biomaterials Innovation Research Center Harvard Medical School 65 Landsdowne St, Rm 252, Cambridge, MA 02139, USA
| | - Malcolm L. Snead
- Center for Craniofacial Molecular Biology (CCMB), Ostrow School of Dentistry, University of Southern California, 2250 Alcazar St, Los Angeles, CA 90033, USA
| | - Songtao Shi
- School of Dental Medicine, University of Pennsylvania, 240 South 40th Street, Philadelphia, PA 19104, USA
| |
Collapse
|
44
|
Huang CY, Sheu WHH, Chiang AN. Docosahexaenoic acid and eicosapentaenoic acid suppress adhesion molecule expression in human aortic endothelial cells via differential mechanisms. Mol Nutr Food Res 2015; 59:751-62. [PMID: 25631736 DOI: 10.1002/mnfr.201400687] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Revised: 12/22/2014] [Accepted: 01/07/2015] [Indexed: 11/12/2022]
Abstract
SCOPE Dietary PUFAs modulate the progression of cardiovascular disease, but the underlying mechanisms within vascular cells remain unclear. The aim of this study was to investigate the biological function and regulatory mechanisms of PUFAs in LPS-activated human aortic endothelial cells (HAECs). METHODS AND RESULTS To simulate the in vivo conditions of atherosclerosis, we have established an in vitro model in which THP-1 monocytes adhere to HAECs. Our results showed that n-3 PUFAs docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) remarkably attenuated the adhesion of THP-1 cells to HAECs, probably through inhibiting the expression of VCAM-1 and ICAM-1. Using lipid raft isolation and confocal microscopy, we found that DHA and EPA suppressed the translocation of TLR4 into lipid rafts. Furthermore, DHA and EPA inhibited the ubiquitination and translocation of TRAF6, and the phosphorylation of TAK1, p38, and IκBα. We demonstrated that DHA reduced the phosphorylation of PKR, but EPA increased the expression of A20. Additionally, silencing of A20 reversed the inhibitory effect of EPA on the expression of adhesion molecules. CONCLUSION Our study revealed differential signaling pathways modulated by n-3 PUFAs in LPS-stimulated HAECs. These signaling pathways are potential targets for the prevention of atherosclerotic progression.
Collapse
Affiliation(s)
- Chun-Ying Huang
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei, Taiwan
| | | | | |
Collapse
|
45
|
Sakthivel KM, Guruvayoorappan C. Acacia ferruginea inhibits inflammation by regulating inflammatory iNOS and COX-2. J Immunotoxicol 2015; 13:127-35. [PMID: 25738525 DOI: 10.3109/1547691x.2015.1017625] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Inflammation is a local defensive reaction of a host to cellular injury or infection. Prolonged inflammation can contribute to pathogenesis of many disorders. Identification of naturally occurring phytoconstituents that can suppress inflammatory mediators can lead to the discovery of anti-inflammatory therapeutics. Acacia ferruginea is used traditionally to treat numerous ailments including hemorrhage, irritable bowel syndrome and leprosy. The present study evaluated the anti-inflammatory activity of A. ferruginea extract against acute (carrageenan) and chronic (formaldehyde) inflammation in Balb/c mice. Pre-treatment with A. ferruginea extract (10 mg/kg BW) for 5 consecutive days via intraperitonial (IP) administration significantly inhibited subsequent induction of paw edema in both models; the effects were comparable to that of the standard drug indomethacin. The results also showed the A. ferruginea extract significantly inhibited nitric oxide (NO) synthesis and iNOS expression (as measured in serum), diminished inflammation in - and neutrophil infiltration to - the paw tissues and led to a reduction in the number of COX-2(+) immunoreative cells (as evidenced by histologic and immunohistochemical analyses) in the paws relative to those in paws of mice that received the irritants only. Further, in vitro studies showed the extract could significantly scavenge free radicals generated as in DPPH and NO radical generating assays. Taken together, the results showed that A. ferruginea extract imparted potent anti-oxidant and -inflammatory effects, in part by maintaining oxidative homeostasis, inhibiting NO synthesis and suppressing iNOS and COX-2 expression and so could potentially be exploited as a potential plant-based medication against inflammatory disorders.
Collapse
|
46
|
Mackow ER, Gorbunova EE, Gavrilovskaya IN. Endothelial cell dysfunction in viral hemorrhage and edema. Front Microbiol 2015; 5:733. [PMID: 25601858 PMCID: PMC4283606 DOI: 10.3389/fmicb.2014.00733] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Accepted: 12/04/2014] [Indexed: 12/31/2022] Open
Abstract
The endothelium maintains a vascular barrier by controlling platelet and immune cell interactions, capillary tone and interendothelial cell (EC) adherence. Here we suggest common elements in play during viral infection of the endothelium that alter normal EC functions and contribute to lethal hemorrhagic or edematous diseases. In viral reservoir hosts, infection of capillaries and lymphatic vessels may direct immunotolerance without disease, but in the absence of these cognate interactions they direct the delayed onset of human disease characterized by thrombocytopenia and vascular leakage in a severe endothelial dysfunction syndrome. Here we present insight into EC controls of hemostasis, immune response and capillary permeability that are altered by viral infection of the endothelium.
Collapse
Affiliation(s)
- Erich R Mackow
- Department of Molecular Genetics and Microbiology, Stony Brook University , Stony Brook, NY, USA
| | - Elena E Gorbunova
- Department of Molecular Genetics and Microbiology, Stony Brook University , Stony Brook, NY, USA
| | - Irina N Gavrilovskaya
- Department of Molecular Genetics and Microbiology, Stony Brook University , Stony Brook, NY, USA
| |
Collapse
|
47
|
Kowalczyk A, Kleniewska P, Kolodziejczyk M, Skibska B, Goraca A. The role of endothelin-1 and endothelin receptor antagonists in inflammatory response and sepsis. Arch Immunol Ther Exp (Warsz) 2014; 63:41-52. [PMID: 25288367 PMCID: PMC4289534 DOI: 10.1007/s00005-014-0310-1] [Citation(s) in RCA: 179] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Accepted: 07/18/2014] [Indexed: 12/12/2022]
Abstract
Endothelin-1 (ET-1) is a potent endogenous vasoconstrictor, mainly secreted by endothelial cells. It acts through two types of receptors: ETA and ETB. Apart from a vasoconstrictive action, ET-1 causes fibrosis of the vascular cells and stimulates production of reactive oxygen species. It is claimed that ET-1 induces proinflammatory mechanisms, increasing superoxide anion production and cytokine secretion. A recent study has shown that ET-1 is involved in the activation of transcription factors such as NF-κB and expression of proinflammatory cytokines including TNF-α, IL-1, and IL-6. It has been also indicated that during endotoxaemia, the plasma level of ET-1 is increased in various animal species. Some authors indicate a clear correlation between endothelin plasma level and morbidity/mortality rate in septic patients. These pathological effects of ET-1 may be abrogated at least partly by endothelin receptor blockade. ET-1 receptor antagonists may be useful for prevention of various vascular diseases. This review summarises the current knowledge regarding endothelin receptor antagonists and the role of ET-1 in sepsis and inflammation.
Collapse
Affiliation(s)
- Agata Kowalczyk
- Chair of Experimental and Clinical Physiology, Department of Cardiovascular Physiology, Medical University of Lodz, Mazowiecka 6/8, 92-215, Lodz, Poland,
| | | | | | | | | |
Collapse
|
48
|
Li L, Wang L, Wu Z, Yao L, Wu Y, Huang L, Liu K, Zhou X, Gou D. Anthocyanin-rich fractions from red raspberries attenuate inflammation in both RAW264.7 macrophages and a mouse model of colitis. Sci Rep 2014; 4:6234. [PMID: 25167935 PMCID: PMC4148654 DOI: 10.1038/srep06234] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Accepted: 08/11/2014] [Indexed: 01/10/2023] Open
Abstract
Edible berries have a broad spectrum of biomedical functions, including improving immune responses and reducing risk for chronic diseases. In this study, the anti-inflammatory activities of crude extracts (CEs), anthocyanin-rich fractions (ARFs), and des-anthocyanin fractions (DAFs) from seven berries were evaluated based on their inhibitory effects on nitric oxide (NO) production in lipopolysaccharide (LPS)/IFN-γ-activated RAW264.7 macrophages. ARFs from red raspberries (RR-ARFs) exhibited the highest efficiency in suppressing NO synthesis. The anti-inflammatory properties were also demonstrated by reducing the expression levels of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), interleukin-1 beta (IL-1β) and IL-6 in RAW264.7 cells. The luciferase reporter assay demonstrated that the activities of NF-κB and AP-1 signaling pathways were significantly suppressed by RR-ARFs. Further studies showed that RR-ARFs decreased the phosphorylation of IKK, IκBα, p65 and JNK and the nuclear translocation of p65 in LPS/IFN-γ-stimulated RAW264.7 cells. In a mouse colitis model, dextran sulfate sodium (DSS)-induced weight loss and histological damage were significantly ameliorated by RR-ARFs treatment. Taken together, our results indicate that RR-ARFs attenuate inflammation both in vitro and in vivo primarily by inhibiting the activation of NF-κB and MAPKs. The anti-inflammatory of RR-ARFs could be harnessed and applied in animal agriculture, drug and food industries.
Collapse
Affiliation(s)
- Li Li
- 1] College of Life Sciences, Shenzhen Key Laboratory of Microbial Genetic Engineering, Shenzhen University, Shenzhen 518060, China [2]
| | - Liyan Wang
- 1] College of Life Sciences, Department of Marine Science and Bio-Pharm, Shenzhen Key Laboratory of Marine Bioresourse and Eco-environmental Science, Shenzhen 518060, China [2]
| | - Zhiqin Wu
- 1] College of Life Sciences, Shenzhen Key Laboratory of Microbial Genetic Engineering, Shenzhen University, Shenzhen 518060, China [2]
| | - Lijun Yao
- College of Life Sciences, Shenzhen Key Laboratory of Microbial Genetic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Yonghou Wu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Lian Huang
- College of Life Sciences, Shenzhen Key Laboratory of Microbial Genetic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Kan Liu
- College of Life Sciences, Shenzhen key laboratory of synthetic biology, Shenzhen University, Shenzhen 518060, China
| | - Xiang Zhou
- College of Life Sciences, Department of Marine Science and Bio-Pharm, Shenzhen Key Laboratory of Marine Bioresourse and Eco-environmental Science, Shenzhen 518060, China
| | - Deming Gou
- 1] College of Life Sciences, Shenzhen Key Laboratory of Microbial Genetic Engineering, Shenzhen University, Shenzhen 518060, China [2] College of Life Sciences, Department of Marine Science and Bio-Pharm, Shenzhen Key Laboratory of Marine Bioresourse and Eco-environmental Science, Shenzhen 518060, China
| |
Collapse
|
49
|
Dou L, Sallée M, Cerini C, Poitevin S, Gondouin B, Jourde-Chiche N, Fallague K, Brunet P, Calaf R, Dussol B, Mallet B, Dignat-George F, Burtey S. The cardiovascular effect of the uremic solute indole-3 acetic acid. J Am Soc Nephrol 2014; 26:876-87. [PMID: 25145928 DOI: 10.1681/asn.2013121283] [Citation(s) in RCA: 222] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
In CKD, uremic solutes may induce endothelial dysfunction, inflammation, and oxidative stress, leading to increased cardiovascular risk. We investigated whether the uremic solute indole-3 acetic acid (IAA) predicts clinical outcomes in patients with CKD and has prooxidant and proinflammatory effects. We studied 120 patients with CKD. During the median study period of 966 days, 29 patients died and 35 experienced a major cardiovascular event. Kaplan-Meier analysis revealed that mortality and cardiovascular events were significantly higher in the higher IAA group (IAA>3.73 µM) than in the lower IAA group (IAA<3.73 µM). Multivariate Cox regression analysis demonstrated that serum IAA was a significant predictor of mortality and cardiovascular events after adjustments for age and sex; cholesterol, systolic BP, and smoking; C-reactive protein, phosphate, body mass index, and albumin; diastolic BP and history of cardiovascular disease; and uremic toxins p-cresyl sulfate and indoxyl sulfate. Notably, IAA level remained predictive of mortality when adjusted for CKD stage. IAA levels were positively correlated with markers of inflammation and oxidative stress: C-reactive protein and malondialdehyde, respectively. In cultured human endothelial cells, IAA activated an inflammatory nongenomic aryl hydrocarbon receptor (AhR)/p38MAPK/NF-κB pathway that induced the proinflammatory enzyme cyclooxygenase-2. Additionally, IAA increased production of endothelial reactive oxygen species. In conclusion, serum IAA may be an independent predictor of mortality and cardiovascular events in patients with CKD. In vitro, IAA induces endothelial inflammation and oxidative stress and activates an inflammatory AhR/p38MAPK/NF-κB pathway.
Collapse
Affiliation(s)
- Laetitia Dou
- Aix Marseille University, Inserm, UMR 1076, Marseille, France;
| | - Marion Sallée
- Aix Marseille University, Inserm, UMR 1076, Marseille, France; Nephrology Dialysis Renal Transplantation Center, APHM, CHU Conception, Marseille, France
| | - Claire Cerini
- Aix Marseille University, Inserm, UMR 1076, Marseille, France
| | | | - Bertrand Gondouin
- Aix Marseille University, Inserm, UMR 1076, Marseille, France; Nephrology Dialysis Renal Transplantation Center, APHM, CHU Conception, Marseille, France
| | - Noemie Jourde-Chiche
- Nephrology Dialysis Renal Transplantation Center, APHM, CHU Conception, Marseille, France
| | - Karim Fallague
- Aix Marseille University, Inserm, UMR 1076, Marseille, France
| | - Philippe Brunet
- Aix Marseille University, Inserm, UMR 1076, Marseille, France; Nephrology Dialysis Renal Transplantation Center, APHM, CHU Conception, Marseille, France
| | - Raymond Calaf
- Biochemistry Laboratory, Aix Marseille University, Marseille, France; and
| | - Bertrand Dussol
- Aix Marseille University, Inserm, UMR 1076, Marseille, France; Nephrology Dialysis Renal Transplantation Center, APHM, CHU Conception, Marseille, France
| | - Bernard Mallet
- Biochemistry Laboratory, APHM, CHU Timone, Marseille, France
| | | | - Stephane Burtey
- Aix Marseille University, Inserm, UMR 1076, Marseille, France; Nephrology Dialysis Renal Transplantation Center, APHM, CHU Conception, Marseille, France
| |
Collapse
|
50
|
Yang SM, Chan YL, Hua KF, Chang JM, Chen HL, Tsai YJ, Hsu YJ, Chao LK, Feng-Ling Y, Tsai YL, Wu SH, Wang YF, Tsai CL, Chen A, Ka SM. Osthole improves an accelerated focal segmental glomerulosclerosis model in the early stage by activating the Nrf2 antioxidant pathway and subsequently inhibiting NF-κB-mediated COX-2 expression and apoptosis. Free Radic Biol Med 2014; 73:260-9. [PMID: 24858719 DOI: 10.1016/j.freeradbiomed.2014.05.009] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2013] [Revised: 05/03/2014] [Accepted: 05/06/2014] [Indexed: 01/06/2023]
Abstract
Inflammatory reactions and oxidative stress are implicated in the pathogenesis of focal segmental glomerulosclerosis (FSGS), a common chronic kidney disease with relatively poor prognosis and unsatisfactory treatment regimens. Previously, we showed that osthole, a coumarin compound isolated from the seeds of Cnidium monnieri, can inhibit reactive oxygen species generation, NF-κB activation, and cyclooxygenase-2 expression in lipopolysaccharide-activated macrophages. In this study, we further evaluated its renoprotective effect in a mouse model of accelerated FSGS (acFSGS), featuring early development of proteinuria, followed by impaired renal function, glomerular epithelial cell hyperplasia lesions (a sensitive sign that precedes the development of glomerular sclerosis), periglomerular inflammation, and glomerular hyalinosis/sclerosis. The results show that osthole significantly prevented the development of the acFSGS model in the treated group of mice. The mechanisms involved in the renoprotective effects of osthole on the acFSGS model were mainly a result of an activated Nrf2-mediated antioxidant pathway in the early stage (proteinuria and ischemic collapse of the glomeruli) of acFSGS, followed by a decrease in: (1) NF-κB activation and COX-2 expression as well as PGE2 production, (2) podocyte injury, and (3) apoptosis. Our data support that targeting the Nrf2 antioxidant pathway may justify osthole being established as a candidate renoprotective compound for FSGS.
Collapse
Affiliation(s)
- Shun-Min Yang
- Department of Pathology and National Defense Medical Center, Taipei 114, Taiwan, Republic of China
| | - Yi-Lin Chan
- Department of Pathology and National Defense Medical Center, Taipei 114, Taiwan, Republic of China
| | - Kuo-Feng Hua
- Department of Biotechnology and Animal Science, National Ilan University, Ilan, Taiwan, Republic of China
| | - Jia-Ming Chang
- Institute for Drug Evaluation Platform, Development Center for Biotechnology, Taipei, Taiwan, Republic of China
| | - Hui-Ling Chen
- Institute for Drug Evaluation Platform, Development Center for Biotechnology, Taipei, Taiwan, Republic of China
| | - Yung-Jen Tsai
- Institute for Drug Evaluation Platform, Development Center for Biotechnology, Taipei, Taiwan, Republic of China
| | - Yu-Juei Hsu
- Division of Nephrology, Department of Internal Medicine, Tri-Service General Hospital; National Defense Medical Center, Taipei 114, Taiwan, Republic of China
| | - Louis Kuoping Chao
- Department of Cosmeceutics, China Medical University, Taichung, Taiwan, Republic of China
| | - Yang Feng-Ling
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan, Republic of China
| | - Yu-Ling Tsai
- Graduate Institute of Life Sciences; and National Defense Medical Center, Taipei 114, Taiwan, Republic of China
| | - Shih-Hsiung Wu
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan, Republic of China
| | - Yih-Fuh Wang
- Graduate Institute of Electrical Engineering and Computer Science, National Penghu University of Science and Technology, Penghu, Taiwan, Republic of China
| | - Change-Ling Tsai
- Graduate Institute of Electrical Engineering and Computer Science, National Penghu University of Science and Technology, Penghu, Taiwan, Republic of China
| | - Ann Chen
- Department of Pathology and National Defense Medical Center, Taipei 114, Taiwan, Republic of China
| | - Shuk-Man Ka
- Graduate Institute of Aerospace and Undersea Medicine, School of Medicine; National Defense Medical Center, Taipei 114, Taiwan, Republic of China.
| |
Collapse
|