1
|
Marinho MM, da Rocha MN, Magalhães EP, Ribeiro LR, Roberto CHA, de Queiroz Almeida-Neto FW, Monteiro ML, Nunes JVS, de Menezes RRPPB, Marinho ES, de Lima Neto P, Martins AMC, Dos Santos HS. Insights of potential trypanocidal effect of the synthetic derivative (2E)-1-(4-aminophenyl)-3-(2,4-dichlorophenyl)prop-2-en-1-one: in vitro assay, MEV analysis, quantum study, molecular docking, molecular dynamics, MPO analysis, and predictive ADMET. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:7797-7818. [PMID: 38722342 DOI: 10.1007/s00210-024-03138-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 04/30/2024] [Indexed: 10/04/2024]
Abstract
This study aims to evaluate the antitrypanosomiasis activity of a synthetic dichloro-substituted aminochalcone via in vitro assays against infected cell cultures, as well as a theoretical characterization of pharmacokinetics and pharmacodynamics against the protein targets of the evolutionary cycle of T. cruzi. The in vitro evaluation of parasite proliferation inhibition was performed via cytotoxicity analysis on mammalian host cells, effect on epimastigote and trypomastigote forms, and cell death analysis, while computer simulations characterized the electronic structure of (2E)-1-(4-aminophenyl)-3-(2,4-dichlorophenyl)prop-2-en-1-one (DCl), the mechanism of action against the proteins of the evolutionary cycle of T. cruzi: Cruzain, Trypanothione reductase, TcGAPDH, and CYP51 by molecular docking and dynamics and predictive pharmacokinetics by MPO-based ADMET. The in vitro tests showed that the DCl LC50 in order of 178.9 ± 23.9 was similar to the BZN, evidencing the effectiveness of chalcone against Trypomastigotes. Molecular docking and dynamics simulations suggest that DCl acts on the active site of the CYP51 receptor, with hydrogen interactions that showed a high degree of occupation, establishing a stable complex with the target. MPO analysis and ADMET prediction tests suggest that the compound presents an alignment between permeability and hepatic clearance, although it presents low metabolic stability. Chalcone showed stable pharmacodynamics against the CYP51 target, but can form reactive metabolites from N-conjugation and C = C epoxidation, as an indication of controlled oral dose, although the estimated LD50 rate > 500 mg/kg is a indicative of low incidence of lethality by ingestion, constituting a promising therapeutic strategy.
Collapse
Affiliation(s)
- Márcia Machado Marinho
- Department of Biological Chemistry, Regional University of Cariri, Crato, CE, Brazil
- Center for Exact Sciences and Technology, State University of Vale do Acaraú, Sobral, CE, Brazil
| | - Matheus Nunes da Rocha
- Center for Science and Technology, Postgraduate Program in Natural Sciences, State University of Ceará, Fortaleza, CE, Brazil
| | - Emanuel Paula Magalhães
- Department of Clinical and Toxicological Analysis, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Lyanna Rodrigues Ribeiro
- Department of Clinical and Toxicological Analysis, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Caio Henrique Alexandre Roberto
- Center for Science and Technology, Postgraduate Program in Natural Sciences, State University of Ceará, Fortaleza, CE, Brazil
| | | | - Marília Lopes Monteiro
- Department of Clinical and Toxicological Analysis, Federal University of Ceará, Fortaleza, CE, Brazil
| | - João Victor Serra Nunes
- Department of Clinical and Toxicological Analysis, Federal University of Ceará, Fortaleza, CE, Brazil
| | | | - Emmanuel Silva Marinho
- Center for Science and Technology, Postgraduate Program in Natural Sciences, State University of Ceará, Fortaleza, CE, Brazil
| | - Pedro de Lima Neto
- Department of Analytical Chemistry and Physical Chemistry, Federal University of Ceará, Campus do Pici, Fortaleza, CE, Brazil
| | - Alice Maria Costa Martins
- Department of Clinical and Toxicological Analysis, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Hélcio Silva Dos Santos
- Center for Exact Sciences and Technology, State University of Vale do Acaraú, Sobral, CE, Brazil.
| |
Collapse
|
2
|
Jin Z, Wang X. Traditional Chinese medicine and plant-derived natural products in regulating triglyceride metabolism: Mechanisms and therapeutic potential. Pharmacol Res 2024; 208:107387. [PMID: 39216839 DOI: 10.1016/j.phrs.2024.107387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/27/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
The incidence of cardiometabolic disease is increasing globally, with a trend toward younger age of onset. Among these, atherosclerotic cardiovascular disease is a leading cause of mortality worldwide. Despite the efficacy of traditional lipid-lowering drugs, such as statins, in reducing low-density lipoprotein cholesterol levels, a significant residual risk of cardiovascular events remains, which is closely related to unmet triglyceride (TG) targets. The clinical application of current TG-lowering Western medicines has certain limitations, necessitating alternative or complementary therapeutic strategies. Traditional Chinese medicine (TCM) and plant-derived natural products, known for their safety owing to their natural origins and diverse biological activities, offer promising avenues for TG regulation with potentially fewer side effects. This review systematically summarises the mechanisms of TG metabolism and subsequently reviews the regulatory effects of TCM and plant-derived natural products on TG metabolism, including the inhibition of TG synthesis (via endogenous and exogenous pathways), promotion of TG catabolism, regulation of fatty acid absorption and transport, enhancement of lipophagy, modulation of the gut microbiota, and other mechanisms. In conclusion, through a comprehensive analysis of recent studies, this review consolidates the multifaceted regulatory roles of TCM and plant-derived natural products in TG metabolism and elucidates their potential as safer, multi-target therapeutic agents in managing hypertriglyceridemia and mitigating cardiovascular risk, thereby providing a basis for new drug development.
Collapse
Affiliation(s)
- Zhou Jin
- Cardiovascular Department of Traditional Chinese Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Branch of National Clinical Research Center for Chinese Medicine Cardiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Cardiovascular Research Institute of Traditional Chinese Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xiaolong Wang
- Cardiovascular Department of Traditional Chinese Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Branch of National Clinical Research Center for Chinese Medicine Cardiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Cardiovascular Research Institute of Traditional Chinese Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
3
|
Chang C, Roh YS, Du M, Kuo YC, Zhang Y, Hardy M, Gahler R, Solnier J. Differences in Metabolite Profiles of Dihydroberberine and Micellar Berberine in Caco-2 Cells and Humans-A Pilot Study. Int J Mol Sci 2024; 25:5625. [PMID: 38891813 PMCID: PMC11171481 DOI: 10.3390/ijms25115625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/17/2024] [Accepted: 05/20/2024] [Indexed: 06/21/2024] Open
Abstract
We investigated the pharmacokinetic pathway of berberine and its metabolites in vitro, in Caco-2 cells, and in human participants following the administration of dihydroberberine (DHB) and micellar berberine (LipoMicel®, LMB) formulations. A pilot trial involving nine healthy volunteers was conducted over a 24 h period; blood samples were collected and subjected to Ultra High-Performance Liquid Chromatography-High Resolution Mass Spectrometry (UHPLC-HRMS) analyses to quantify the concentrations of berberine and its metabolites. Pharmacokinetic correlations indicated that berberrubine and thalifendine follow distinct metabolic pathways. Additionally, jatrorrhizine sulfate appeared to undergo metabolism differently compared to the other sulfated metabolites. Moreover, berberrubine glucuronide likely has a unique metabolic pathway distinct from other glucuronides. The human trial revealed significantly higher blood concentrations of berberine metabolites in participants of the DHB treatment group compared to the LMB treatment group-except for berberrubine glucuronide, which was only detected in the LMB treatment group. Similarly, results from in vitro investigations showed significant differences in berberine metabolite profiles between DHB and LMB. Dihydroberberine, dihydroxy-berberrubine/thalifendine and jatrorrhizine sulfate were detected in LMB-treated cells, but not in DHB-treated cells; thalifendine and jatrorrhizine-glucuronide were detected in DHB-treated cells only. While DHB treatment provided higher blood concentrations of berberine and most berberine metabolites, both in vitro (Caco-2 cells) and in vivo human studies showed that treatment with LMB resulted in a higher proportion of unmetabolized berberine compared to DHB. These findings suggest potential clinical implications that merit further investigation in future large-scale trials.
Collapse
Affiliation(s)
- Chuck Chang
- ISURA, Clinical Research, Burnaby, BC V3N 4S9, Canada; (C.C.); (Y.S.R.); (M.D.); (Y.C.K.); (Y.Z.)
| | - Yoon Seok Roh
- ISURA, Clinical Research, Burnaby, BC V3N 4S9, Canada; (C.C.); (Y.S.R.); (M.D.); (Y.C.K.); (Y.Z.)
| | - Min Du
- ISURA, Clinical Research, Burnaby, BC V3N 4S9, Canada; (C.C.); (Y.S.R.); (M.D.); (Y.C.K.); (Y.Z.)
| | - Yun Chai Kuo
- ISURA, Clinical Research, Burnaby, BC V3N 4S9, Canada; (C.C.); (Y.S.R.); (M.D.); (Y.C.K.); (Y.Z.)
| | - Yiming Zhang
- ISURA, Clinical Research, Burnaby, BC V3N 4S9, Canada; (C.C.); (Y.S.R.); (M.D.); (Y.C.K.); (Y.Z.)
| | - Mary Hardy
- Academy of Integrative and Holistic Medicine, San Diego, CA 92037, USA;
| | | | - Julia Solnier
- ISURA, Clinical Research, Burnaby, BC V3N 4S9, Canada; (C.C.); (Y.S.R.); (M.D.); (Y.C.K.); (Y.Z.)
| |
Collapse
|
4
|
Xiang ZD, Guan HD, Zhao X, Xie Q, Cai FJ, Xie ZJ, Dang R, Li ML, Wang CH. Protoberberine alkaloids: A review of the gastroprotective effects, pharmacokinetics, and toxicity. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 126:155444. [PMID: 38367423 DOI: 10.1016/j.phymed.2024.155444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 01/29/2024] [Accepted: 02/09/2024] [Indexed: 02/19/2024]
Abstract
BACKGROUND Stomach diseases have become global health concerns. Protoberberine alkaloids (PBAs) are a group of quaternary isoquinoline alkaloids from abundant natural sources and have been shown to improve gastric disorders in preclinical and clinical studies. The finding that PBAs exhibit low oral bioavailability but potent pharmacological activity has attracted great interest. PURPOSE This review aims to provide a systematic review of the molecular mechanisms of PBAs in the treatment of gastric disorders and to discuss the current understanding of the pharmacokinetics and toxicity of PBAs. METHODS The articles related to PBAs were collected from the Web of Science, Pubmed, and China National Knowledge Infrastructure databases using relevant keywords. The collected articles were screened and categorized according to their research content to focus on the gastroprotective effects, pharmacokinetics, and toxicity of PBAs. RESULTS Based on the results of preclinical studies, PBAs have demonstrated therapeutic effects on chronic atrophic gastritis and gastric cancer by activating interleukin-4 (IL-4)/signal transducer and activator of transcription 6 (STAT6) pathway and suppressing transforming growth factor-beta 1 (TGF-β1)/phosphoinositide 3-kinase (PI3K), Janus kinase-2 (JAK2)/signal transducers and activators of transcription 3 (STAT3), and mitogen-activated protein kinase (MAPK) pathways. The major PBAs exhibit similar pharmacokinetic properties, including rapid absorption, slow elimination, and low bioavailability. Notably, the natural organ-targeting property of PBAs may account for the finding of their low blood levels and high pharmacological activity. PBAs interact with other compounds, including conventional drugs and natural products, by modulation of metabolic enzymes and transporters. The potential tissue toxicity of PBAs should be emphasized due to their high tissue accumulation. CONCLUSION This review highlights the gastroprotective effects, pharmacokinetics, and toxicity of PBAs and will contribute to the evaluation of drug properties and clinical translational studies of PBAs, accelerating their transfer from the laboratory to the bedside.
Collapse
Affiliation(s)
- Ze-Dong Xiang
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, The MOE Laboratory of Standardization of Chinese Medicines, Shanghai R&D Center for Standardization of Chinese Medicines, 1200 Cailun Road, Shanghai 201203, China
| | - Hui-Da Guan
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, The MOE Laboratory of Standardization of Chinese Medicines, Shanghai R&D Center for Standardization of Chinese Medicines, 1200 Cailun Road, Shanghai 201203, China
| | - Xiang Zhao
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, The MOE Laboratory of Standardization of Chinese Medicines, Shanghai R&D Center for Standardization of Chinese Medicines, 1200 Cailun Road, Shanghai 201203, China
| | - Qi Xie
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, The MOE Laboratory of Standardization of Chinese Medicines, Shanghai R&D Center for Standardization of Chinese Medicines, 1200 Cailun Road, Shanghai 201203, China
| | - Fu-Jie Cai
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, The MOE Laboratory of Standardization of Chinese Medicines, Shanghai R&D Center for Standardization of Chinese Medicines, 1200 Cailun Road, Shanghai 201203, China
| | - Zhe-Jun Xie
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, The MOE Laboratory of Standardization of Chinese Medicines, Shanghai R&D Center for Standardization of Chinese Medicines, 1200 Cailun Road, Shanghai 201203, China
| | - Rui Dang
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, The MOE Laboratory of Standardization of Chinese Medicines, Shanghai R&D Center for Standardization of Chinese Medicines, 1200 Cailun Road, Shanghai 201203, China
| | - Man-Lin Li
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, The MOE Laboratory of Standardization of Chinese Medicines, Shanghai R&D Center for Standardization of Chinese Medicines, 1200 Cailun Road, Shanghai 201203, China.
| | - Chang-Hong Wang
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, The MOE Laboratory of Standardization of Chinese Medicines, Shanghai R&D Center for Standardization of Chinese Medicines, 1200 Cailun Road, Shanghai 201203, China.
| |
Collapse
|
5
|
Babaeenezhad E, Rashidipour M, Jangravi Z, Moradi Sarabi M, Shahriary A. Cytotoxic and epigenetic effects of berberine-loaded chitosan/pectin nanoparticles on AGS gastric cancer cells: Role of the miR-185-5p/KLF7 axis, DNMTs, and global DNA methylation. Int J Biol Macromol 2024; 260:129618. [PMID: 38253156 DOI: 10.1016/j.ijbiomac.2024.129618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 01/10/2024] [Accepted: 01/17/2024] [Indexed: 01/24/2024]
Abstract
Poor bioavailability, solubility, and absorption of berberine (Ber) limit its widespread application. Here, we formulated novel chitosan/pectin nanoparticles (NPs) loaded with Ber to address delivery problems and promote the anticancer properties of Ber in AGS gastric cancer cells. The ionic gelification method was used to synthesize NPs-Ber. Physicochemical characterization of NPs-Ber was performed using FE-SEM, DLS, PDI, ζ potential, and FTIR. The cytotoxic effects of NPs-Ber on AGS cells were evaluated using the MTT assay. Apoptosis and cell cycle arrest were examined by flow cytometry. The gene expression levels of miR-185-5p, KLF7, caspase-3, and DNMTs were determined using RT-qPCR. In addition, the 5-methylcytosine level in the genomic DNA was quantified using ELISA. FE-SEM images revealed a denser and more packed matrix for NPs-Ber, and FTIR analysis confirmed the formation of NPs-Ber. The size (550.39 nm), PDI (0.134), and ζ potential (-16.52 mV) confirmed the stability of the prepared NPs-Ber. NPs-Ber showed a continuous release pattern following the Korsmeyer-Peppas model such that 81.36 % of Ber was released from the formulation after 240 min. Compared to NPs and free Ber, NPs-Ber was found to possess higher anticancer activity in AGS cells. This result was indicated by the viability test and further clarified by augmented apoptosis and cell cycle arrest at the G0/G1 phase. The IC50 value of NP-Ber against AGS cells was significantly lower than those of free Ber and NPs. Interestingly, our results showed that NPs-Ber considerably changed the expression levels of miR-185-5p, KLF7, caspase-3, and DNMTs (DNMT1, 3A, and 3B) compared with unloaded NPs and free Ber. Additionally, 5-methylated cytosine (5-mC) levels in cells treated with NPs-Ber were significantly higher than those in cells treated with unloaded NPs or free Ber. In summary, the present study demonstrated that Ber encapsulation in NPs enhances its cytotoxic and epigenetic effects on AGS cells, suggesting the promising potential of NPs-Ber in GC therapy.
Collapse
Affiliation(s)
- Esmaeel Babaeenezhad
- Student Research Committee, Faculty of Medicine, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Marzieh Rashidipour
- Student Research Committee, Faculty of Medicine, Baqiyatallah University of Medical Sciences, Tehran, Iran; Razi Herbal Medicines Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Zohreh Jangravi
- Department of Biochemistry, Faculty of Medicine, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - Mostafa Moradi Sarabi
- Nutritional Health Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran; Department of Biochemistry and Genetics, Faculty of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran.
| | - Alireza Shahriary
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
6
|
Gasmi A, Asghar F, Zafar S, Oliinyk P, Khavrona O, Lysiuk R, Peana M, Piscopo S, Antonyak H, Pen JJ, Lozynska I, Noor S, Lenchyk L, Muhammad A, Vladimirova I, Dub N, Antoniv O, Tsal O, Upyr T, Bjørklund G. Berberine: Pharmacological Features in Health, Disease and Aging. Curr Med Chem 2024; 31:1214-1234. [PMID: 36748808 DOI: 10.2174/0929867330666230207112539] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 12/15/2022] [Accepted: 12/29/2022] [Indexed: 02/08/2023]
Abstract
BACKGROUND Berberine is the main active compound of different herbs and is defined as an isoquinoline quaternary botanical alkaloid found in barks and roots of numerous plants. It exhibits a wide range of pharmacological effects, such as anti-obesity and antidiabetic effects. Berberine has antibacterial activity against a variety of microbiota, including many bacterial species, protozoa, plasmodia, fungi, and trypanosomes. OBJECTIVE This review describes the role of berberine and its metabolic effects. It also discusses how it plays a role in glucose metabolism, fat metabolism, weight loss, how it modulates the gut microbiota, and what are its antimicrobial properties along with its potential side effects with maximal tolerable dosage. METHODS Representative studies were considered and analyzed from different scientific databases, including PubMed and Web of Science, for the years 1982-2022. RESULTS Literature analysis shows that berberine affects many biochemical and pharmacological pathways that theoretically yield a positive effect on health and disease. Berberine exhibits neuroprotective properties in various neurodegenerative and neuropsychological ailments. Despite its low bioavailability after oral administration, berberine is a promising tool for several disorders. A possible hypothesis would be the modulation of the gut microbiome. While the evidence concerning the aging process in humans is more limited, preliminary studies have shown positive effects in several models. CONCLUSION Berberine could serve as a potential candidate for the treatment of several diseases. Previous literature has provided a basis for scientists to establish clinical trials in humans. However, for obesity, the evidence appears to be sufficient for hands-on use.
Collapse
Affiliation(s)
- Amin Gasmi
- Société Francophone de Nutrithérapie et de Nutrigénétique Appliquée, Villeurbanne, France
| | - Farah Asghar
- Department of Microbiology and Molecular Genetics (MMG), University of the Punjab, Lahore, Pakistan
| | - Saba Zafar
- Department of Research, The Women University, Multan, Pakistan
| | - Petro Oliinyk
- Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
- CONEM Ukraine Life Science Research Group, Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
| | - Oksana Khavrona
- Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
- CONEM Ukraine Life Science Research Group, Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
| | - Roman Lysiuk
- Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
- CONEM Ukraine Life Science Research Group, Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
| | - Massimiliano Peana
- Department of Chemical, Physical, Mathematical and Natural Sciences, University of Sassari, Sassari, Italy
| | - Salva Piscopo
- Société Francophone de Nutrithérapie et de Nutrigénétique Appliquée, Villeurbanne, France
| | - Halyna Antonyak
- Department of Ecology, Ivan Franko National University of Lviv, Lviv, Ukraine
| | - Joeri J Pen
- Diabetes Clinic, Department of Internal Medicine, UZ Brussel, Vrije Universiteit Brussel (VUB), Brussels, Belgium
- Department of Nutrition, UZ Brussel, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Iryna Lozynska
- Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
- CONEM Ukraine Life Science Research Group, Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
| | - Sadaf Noor
- Institute of Molecular Biology and Biotechnology, Bahauddin Zakariya University, Multan, Pakistan
| | - Larysa Lenchyk
- Department of Research, National University of Pharmacy, Kharkiv, Ukraine
- CONEM Ukraine Pharmacognosy and Natural Product Chemistry Research Group, National University of Pharmacy, Kharkiv, Ukraine
| | - Akram Muhammad
- Department of Research, Government College University, Faisalabad, Pakistan
| | - Inna Vladimirova
- Department of Research, National University of Pharmacy, Kharkiv, Ukraine
- CONEM Ukraine Pharmacognosy and Natural Product Chemistry Research Group, National University of Pharmacy, Kharkiv, Ukraine
| | - Natalia Dub
- Andrei Krupynskyi Lviv Medical Academy, Lviv, Ukraine
| | - Olha Antoniv
- Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
- CONEM Ukraine Life Science Research Group, Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
| | - Oksana Tsal
- Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
- CONEM Ukraine Life Science Research Group, Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
| | - Taras Upyr
- Department of Research, National University of Pharmacy, Kharkiv, Ukraine
- CONEM Ukraine Pharmacognosy and Natural Product Chemistry Research Group, National University of Pharmacy, Kharkiv, Ukraine
| | - Geir Bjørklund
- Council for Nutritional and Environmental Medicine (CONEM), Mo i Rana, Norway
| |
Collapse
|
7
|
Coppinger C, Pomales B, Movahed MR, Marefat M, Hashemzadeh M. Berberine: A Multi-Target Natural PCSK9 Inhibitor with the Potential to Treat Diabetes, Alzheimer's, Cancer and Cardiovascular Disease. Curr Rev Clin Exp Pharmacol 2024; 19:312-326. [PMID: 38361373 DOI: 10.2174/0127724328250471231222094648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/22/2023] [Accepted: 11/24/2023] [Indexed: 02/17/2024]
Abstract
Berberine is a natural product with a wide range of pharmacological effects. It has antimicrobial, anti-cancer, anti-inflammatory, anti-hyperlipidemic, neuroprotective, and cholesterollowering properties, among others. It has been used in traditional Chinese and Ayurvedic medicine for 3000 years and is generally well-tolerated with few side effects. Its main drawback is low oral bioavailability, which has hindered widespread clinical use. However, recent interest has surged with the emergence of evidence that berberine is effective in treating cancer, diabetes, Alzheimer's disease, and cardiovascular disease via multiple mechanisms. It enhances insulin sensitivity and secretion by pancreatic β-cells in Type 2 Diabetes Mellitus in addition to reducing pro-inflammatory cytokines such as IL-6, IL-1β, TLR4 and TNF-α. These cytokines are elevated in Alzheimer's disease, cardiovascular disease, and diabetes. Reductions in pro-inflammatory cytokine levels are associated with positive outcomes such as improved cognition, reduced cardiovascular events, and improved glucose metabolism and insulin sensitivity. Berberine is a natural PCSK9 inhibitor, which contributes to its hypolipidemic effects. It also increases low-density lipoprotein receptor expression, reduces intestinal cholesterol absorption, and promotes cholesterol excretion from the liver to the bile. This translates into a notable decrease in LDL cholesterol levels. High LDL cholesterol levels are associated with increased cardiovascular disease risk. Novel synthetic berberine derivatives are currently being developed that optimize LDL reduction, bioavailability, and other pharmacokinetic properties.
Collapse
Affiliation(s)
- Caroline Coppinger
- Department of Chemistry, Pima College, Tucson, AZ, USA
- Department of Medicine, University of Arizona, Tucson, AZ, USA
| | - Briana Pomales
- Department of Chemistry, Pima College, Tucson, AZ, USA
- Department of Medicine, University of Arizona, Tucson, AZ, USA
| | - Mohammad Reza Movahed
- Department of Medicine, University of Arizona, Tucson, AZ, USA
- Department of Medicine, University of Arizona College of Medicine, Phoenix, USA
| | | | - Mehrnoosh Hashemzadeh
- Department of Chemistry, Pima College, Tucson, AZ, USA
- Department of Medicine, University of Arizona College of Medicine, Phoenix, USA
| |
Collapse
|
8
|
Dehau T, Cherlet M, Croubels S, Van De Vliet M, Goossens E, Van Immerseel F. Berberine-microbiota interplay: orchestrating gut health through modulation of the gut microbiota and metabolic transformation into bioactive metabolites. Front Pharmacol 2023; 14:1281090. [PMID: 38130410 PMCID: PMC10733463 DOI: 10.3389/fphar.2023.1281090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 11/23/2023] [Indexed: 12/23/2023] Open
Abstract
Berberine is an isoquinoline alkaloid found in plants. It presents a wide range of pharmacological activities, including anti-inflammatory and antioxidant properties, despite a low oral bioavailability. Growing evidence suggests that the gut microbiota is the target of berberine, and that the microbiota metabolizes berberine to active metabolites, although little evidence exists in the specific species involved in its therapeutic effects. This study was performed to detail the bidirectional interactions of berberine with the broiler chicken gut microbiota, including the regulation of gut microbiota composition and metabolism by berberine and metabolization of berberine by the gut microbiota, and how they contribute to berberine-mediated effects on gut health. As previous evidence showed that high concentrations of berberine may induce dysbiosis, low (0.1 g/kg feed), middle (0.5 g/kg feed) and high (1 g/kg feed) doses were here investigated. Low and middle doses of in-feed berberine stimulated potent beneficial bacteria from the Lachnospiraceae family in the large intestine of chickens, while middle and high doses tended to increase villus length in the small intestine. Plasma levels of the berberine-derived metabolites berberrubine, thalifendine and demethyleneberberine were positively correlated with the villus length of chickens. Berberrubine and thalifendine were the main metabolites of berberine in the caecum, and they were produced in vitro by the caecal microbiota, confirming their microbial origin. We show that members of the genus Blautia could demethylate berberine into mainly thalifendine, and that this reaction may stimulate the production of short-chain fatty acids (SCFAs) acetate and butyrate, via acetogenesis and cross-feeding respectively. We hypothesize that acetogens such as Blautia spp. are key bacteria in the metabolization of berberine, and that berberrubine, thalifendine and SCFAs play a significant role in the biological effect of berberine.
Collapse
Affiliation(s)
- Tessa Dehau
- Livestock Gut Health Team (LiGHT) Ghent, Department of Pathobiology, Pharmacology and Zoological Medicine, Faculty Of Veterinary Medicine, Merelbeke, Belgium
| | - Marc Cherlet
- Laboratory of Pharmacology and Toxicology, Department of Pathobiology, Pharmacology and Zoological Medicine, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Siska Croubels
- Laboratory of Pharmacology and Toxicology, Department of Pathobiology, Pharmacology and Zoological Medicine, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Michiel Van De Vliet
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Faculty of Sciences, Ghent University, Ghent, Belgium
| | - Evy Goossens
- Livestock Gut Health Team (LiGHT) Ghent, Department of Pathobiology, Pharmacology and Zoological Medicine, Faculty Of Veterinary Medicine, Merelbeke, Belgium
| | - Filip Van Immerseel
- Livestock Gut Health Team (LiGHT) Ghent, Department of Pathobiology, Pharmacology and Zoological Medicine, Faculty Of Veterinary Medicine, Merelbeke, Belgium
| |
Collapse
|
9
|
Cai Y, Yang Q, Yu Y, Yang F, Bai R, Fan X. Efficacy and underlying mechanisms of berberine against lipid metabolic diseases: a review. Front Pharmacol 2023; 14:1283784. [PMID: 38034996 PMCID: PMC10684937 DOI: 10.3389/fphar.2023.1283784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 11/03/2023] [Indexed: 12/02/2023] Open
Abstract
Lipid-lowering therapy is an important tool for the treatment of lipid metabolic diseases, which are increasing in prevalence. However, the failure of conventional lipid-lowering drugs to achieve the desired efficacy in some patients, and the side-effects of these drug regimens, highlight the urgent need for novel lipid-lowering drugs. The liver and intestine are important in the production and removal of endogenous and exogenous lipids, respectively, and have an important impact on circulating lipid levels. Elevated circulating lipids predisposes an individual to lipid deposition in the vascular wall, affecting vascular function. Berberine (BBR) modulates liver lipid production and clearance by regulating cellular targets such as cluster of differentiation 36 (CD36), acetyl-CoA carboxylase (ACC), microsomal triglyceride transfer protein (MTTP), scavenger receptor class B type 1 (SR-BI), low-density lipoprotein receptor (LDLR), and ATP-binding cassette transporter A1 (ABCA1). It influences intestinal lipid synthesis and metabolism by modulating gut microbiota composition and metabolism. Finally, BBR maintains vascular function by targeting proteins such as endothelial nitric oxide synthase (eNOS) and lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1). This paper elucidates and summarizes the pharmacological mechanisms of berberine in lipid metabolic diseases from a multi-organ (liver, intestine, and vascular system) and multi-target perspective.
Collapse
Affiliation(s)
- Yajie Cai
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qiaoning Yang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- NMPA Key Laboratory for Clinical Research and Evaluation of Traditional Chinese Medicine, Beijing, China
| | - Yanqiao Yu
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Department of Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Furong Yang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ruina Bai
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaodi Fan
- Institute of Basic Medical Sciences, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
- Key Laboratory of Pharmacology of Chinese Materia Medica, Beijing, China
| |
Collapse
|
10
|
Huang Z, Li M, Qin Z, Ma X, Huang R, Liu Y, Xie J, Zeng H, Zhan R, Su Z. Intestines-erythrocytes-mediated bio-disposition deciphers the hypolipidemic effect of berberine from Rhizoma Coptidis: A neglected insight. JOURNAL OF ETHNOPHARMACOLOGY 2023; 314:116600. [PMID: 37196811 DOI: 10.1016/j.jep.2023.116600] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 05/01/2023] [Accepted: 05/03/2023] [Indexed: 05/19/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Rhizoma Coptidis (RC), the dried rhizome of Coptis Chinensis Franch., can dispel dampness and heat within the body and has been traditionally used for the treatment of cardiovascular disease (CVD)-associated problems including hyperlipidemia in China. Berberine (BBR) is the main active component of RC, which has been shown to possess significant therapeutic potential. However, only 0.14% of BBR is metabolized in the liver, and the extremely low bioavailability (<1%) and blood concentration of BBR in experimental and clinical settings is insufficient to achieve the effects as observed under in vitro conditions, which imposes challenges to explain its excellent pharmacological actions. Intense efforts are currently being devoted to defining its specific pharmacological molecular targets, while the exploration from the perspective of its pharmacokinetic disposition has rarely been reported to date, which could hardly make a comprehensive understanding of its hypolipidemic enigma. AIM OF THE STUDY This study made a pioneering endeavor to unveil the hypolipidemic mechanism of BBR from RC focusing on its unique intestines-erythrocytes-mediated bio-disposition. MATERIALS AND METHODS The fate of BBR in intestines and erythrocytes was probed by a rapid and sensitive LC/MS-IT-TOF method. To analyze the disposition of BBR, a reliable HPLC method was subsequently developed and validated for simultaneous determination of BBR and its key active metabolite oxyberberine (OBB) in whole blood, tissues, and excreta. Meanwhile, the enterohepatic circulation (BDC) of BBR and OBB was verified by bile duct catheterization rats. Finally, lipid overloading models of L02 and HepG2 cells were employed to probe the lipid-lowering activity of BBR and OBB at in vivo concentration. RESULTS The results showed that BBR underwent biotransformation in both intestines and erythrocytes, and converted into the major metabolite oxyberberine (OBB). The AUC0-t ratio of total BBR to OBB was approximately 2:1 after oral administration. Besides, the AUC0-t ratio of bound BBR to its unbound counterpart was 4.6:1, and this ratio of OBB was 2.5:1, indicative of abundant binding-type form in the blood. Liver dominated over other organs in tissue distribution. BBR was excreted in bile, while the excretion of OBB in feces was significantly higher than that in bile. Furthermore, the bimodal phenomenon of both BBR and OBB disappeared in BDC rats and the AUC0-t was significantly lower than that in the sham-operated control rats. Interestingly, OBB significantly decreased triglycerides and cholesterol levels in lipid overloading models of L02 and HepG2 cells at in vivo-like concentration, which was superior to the prodrug BBR. CONCLUSIONS Cumulatively, BBR underwent unique extrahepatic metabolism and disposition into OBB by virtue of intestines and erythrocytes. BBR and OBB were mainly presented and transported in the protein-bound form within the circulating erythrocytes, potentially resulting in hepatocyte targeting accompanied by obvious enterohepatic circulation. The unique extrahepatic disposition of BBR via intestines and erythrocytes conceivably contributed enormously to its hypolipidemic effect. OBB was the important material basis for the hypolipidemic effect of BBR and RC.
Collapse
Affiliation(s)
- Ziwei Huang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510120, PR China
| | - Minhua Li
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510120, PR China
| | - Zehui Qin
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510120, PR China
| | - Xingdong Ma
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510120, PR China
| | - Ronglei Huang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510120, PR China
| | - Yuhong Liu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510120, PR China
| | - Jianhui Xie
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, PR China; State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, PR China; Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou, 510120, PR China
| | - Huifang Zeng
- The First Affiliated Hospital of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510120, PR China.
| | - Ruoting Zhan
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510120, PR China.
| | - Ziren Su
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510120, PR China.
| |
Collapse
|
11
|
Gupta S, Vohra S, Sethi K, Rani R, Gupta S, Kumar S, Kumar R. In vitro and in vivo evaluation of efficacy of berberine chloride: phyto-alternative approach against Trypanosoma evansi infection. Mol Biochem Parasitol 2023; 254:111562. [PMID: 37084956 DOI: 10.1016/j.molbiopara.2023.111562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/29/2023] [Accepted: 04/19/2023] [Indexed: 04/23/2023]
Abstract
Current chemotherapy against the Surra organism, Trypanosoma evansi has several limitations in terms of efficacy, toxicity, availability and emerging resistance. These reasons make the search of new chemo-preventive and chemo-therapeutic agent with high potency and low toxicity. Alkaloid phyto-molecules, berberine has shown promising anti-kinetoplastid activity against T. cruzi, T. congolense, T. brucei, Leishmania donovani and L. tropica. However, till date, there is no investigation of therapeutic efficacy of berberine chloride (BC) against T. evansi. The IC50 value of BC for growth inhibition of T. evansi at 24h of culture was calculated as 12.15µM. The specific selectivity index (SSI) of BC was calculated as 19.01 and 10.43 against Vero cell line and Equine PBMC's, respectively. Thirteen drug target genes affecting various metabolic pathways were studied to investigate the mode of trypanocidal action of BC. In transcript analysis, the mRNA expression of arginine kinase 1 remained refractory to exposure with BC, which provides metabolic plasticity in adverse environmental conditions. In contrary, rest all the drug target gene were down-regulated, which indicates that drug severely affect DNA replication, cell proliferation, energy homeostasis, redox homeostasis and calcium homeostasis of T. evansi, leading to the death of parasite in low concentrations. It is the first attempt to investigate in vitro anti-trypanosomal activity of BC against T. evansi. These data imply that phytochemicals as alternative strategies can be explored in the future as an alternative treatment for Surra in animal.
Collapse
Affiliation(s)
- Snehil Gupta
- Department of Veterinary Parasitology, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, Haryana, 125004, India; NCVTC, ICAR-National Research Centre on Equines, Hisar, Haryana, 125001, India
| | - Sukhdeep Vohra
- Department of Veterinary Parasitology, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, Haryana, 125004, India; NCVTC, ICAR-National Research Centre on Equines, Hisar, Haryana, 125001, India
| | - Khushboo Sethi
- Parasitology Lab, ICAR-National Research Centre on Equines, Hisar, Haryana, 125001, India; NCVTC, ICAR-National Research Centre on Equines, Hisar, Haryana, 125001, India
| | - Ruma Rani
- Parasitology Lab, ICAR-National Research Centre on Equines, Hisar, Haryana, 125001, India; NCVTC, ICAR-National Research Centre on Equines, Hisar, Haryana, 125001, India
| | - Surbhi Gupta
- Department of Veterinary Physiology and Biochemistry, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, Haryana, 125004, India; NCVTC, ICAR-National Research Centre on Equines, Hisar, Haryana, 125001, India
| | - Sanjay Kumar
- Parasitology Lab, ICAR-National Research Centre on Equines, Hisar, Haryana, 125001, India; NCVTC, ICAR-National Research Centre on Equines, Hisar, Haryana, 125001, India
| | - Rajender Kumar
- Parasitology Lab, ICAR-National Research Centre on Equines, Hisar, Haryana, 125001, India; NCVTC, ICAR-National Research Centre on Equines, Hisar, Haryana, 125001, India.
| |
Collapse
|
12
|
A High Dose of Dietary Berberine Improves Gut Wall Morphology, Despite an Expansion of Enterobacteriaceae and a Reduction in Beneficial Microbiota in Broiler Chickens. mSystems 2023; 8:e0123922. [PMID: 36719211 PMCID: PMC9948737 DOI: 10.1128/msystems.01239-22] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Phytogenic products are embraced as alternatives to antimicrobials, and some are known to mitigate intestinal inflammation and ensure optimal gut health and performance in broiler chickens. Dietary inclusion of berberine, a benzylisoquinoline alkaloid found in plants, is believed to exert gut health-promoting effects through modulation of the gut microbiota; however, there are only a few studies investigating its effects in chickens. The aim of this study was to investigate the interplay between dietary supplementation of a high concentration of berberine, the gastrointestinal microbiota, and histomorphological parameters in the gut. Berberine was shown to increase villus length and decrease crypt depth and CD3+ T-lymphocyte infiltration in the gut tissue of chickens at different ages. Berberine affected the diversity of the gut microbiota from the jejunum to the colon, both at a compositional and functional level, with larger effects observed in the large intestine. A high concentration of berberine enriched members of the Enterobacteriaceae family and depleted members of the Ruminococcaceae, Lachnospiraceae, and Peptostreptococcaceae families, as well as tended to reduce butyrate production in the cecum. In vivo results were confirmed by in vitro growth experiments, where increasing concentrations of berberine inhibited the growth of several butyrate-producing strains while not affecting that of Enterobacteriaceae strains. Positive correlations were found between berberine levels in plasma and villus length or villus-to-crypt ratio in the jejunum. Our study showed that berberine supplementation at a high concentration improves chicken gut morphology toward decreased inflammation, which is likely not mediated by the induced gut microbiota shifts. IMPORTANCE Dietary additives are widely used to reduce intestinal inflammation and enteritis, a growing problem in the broiler industry. Berberine, with anti-inflammatory, antioxidant, and antimicrobial activity, would be an interesting feed additive in this regard. This study investigates for the first time the impact of berberine supplementation on the chicken gastrointestinal microbiota, as a potential mechanism to improve gut health, together with histological effects in the small intestine. This study identified a dose-effect of berberine on the gut microbiota, indicating the importance of finding an optimal dose to be used as a dietary additive.
Collapse
|
13
|
Yamamura Y, Yoshinari K, Yamazoe Y. Construction of a fused grid-based CYP2C19-Template system and the application. Drug Metab Pharmacokinet 2023; 48:100481. [PMID: 36813636 DOI: 10.1016/j.dmpk.2022.100481] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 10/05/2022] [Accepted: 10/22/2022] [Indexed: 11/11/2022]
Abstract
A ligand-accessible space in the CYP2C19 active site was reconstituted as a fused grid-based Template with the use of structural data of the ligands. An evaluation system of CYP2C19-mediated metabolism has been developed on Template with the introduction of the idea of Trigger-residue initiated ligand-movement and fastening. Reciprocal comparison of the data of simulation on Template with experimental results suggested a unified way of the interaction of CYP2C19 and its ligands through the simultaneous plural-contact with Rear-wall of Template. CYP2C19 was expected to have a room for ligands between vertically standing parallel walls termed Facial-wall and Rear-wall, which were separated by a distance corresponding to 1.5-Ring (grid) diameter size. The ligand sittings were stabilized through contacts with Facial-wall and the left-side borders of Template including specific Position 29 or Left-end after Trigger-residue initiated ligand-movement. Trigger-residue movement is suggested to force ligands to stay firmly in the active site and then to initiate CYP2C19 reactions. Simulation experiments for over 450 reactions of CYP2C19 ligands supported the system established.
Collapse
Affiliation(s)
- Yoshiya Yamamura
- Laboratory of Molecular Toxicology, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan; Non-Clinical Regulatory Science, Applied Research & Operations, Astellas Pharma Inc., 21, Miyukigaoka, Tsukuba, Ibaraki, 305-8585, Japan
| | - Kouichi Yoshinari
- Laboratory of Molecular Toxicology, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan
| | - Yasushi Yamazoe
- Division of Drug Metabolism and Molecular Toxicology, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aramaki-Aoba, Aoba-ku, Sendai, 980-8578, Japan; Division of Risk Assessment, National Institute of Health Sciences, Tonomachi 3-25-26, Kawasaki-ku, Kawasaki, 210-9501, Japan.
| |
Collapse
|
14
|
Chen Y, Hao Z, Zhao H, Duan X, Jia D, Li K, Yang Y, Cui H, Gao M, Zhao D. Berberine alleviates intestinal barrier dysfunction in glucolipid metabolism disorder hamsters by modulating gut microbiota and gut-microbiota-related tryptophan metabolites. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:1464-1473. [PMID: 36168925 DOI: 10.1002/jsfa.12242] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 08/26/2022] [Accepted: 09/28/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Barberry plants can be considered as useful additives and functional compounds in various industries, especially in the food industry. Berberine (BBR), the most important functional compound in the barberry roots, has recently been used to treat obesity, diabetes, and atherosclerosis. Gut microbiota and the intestinal barrier play an important role in the development of glucolipid metabolism disorders (GLMDs). However, the association of gut microbiota metabolism disorder and the intestinal barrier dysfunction effect of BBR in GLMDs remains elusive. RESULTS The results showed that administration of BBR could increase the number of colonic glands and goblet cell mucus secretion, improve the intestinal barrier function, and reduce the serum glycolipid level in GLMD hamsters. Interestingly, BBR was metabolized into 12 metabolites by gut microbiota, and the main metabolic pathways were oxidation, demethylation, and hydrogenation. In addition, BBR significantly improved the species diversity and uniformity of gut microbiota and promoted the proliferation of beneficial microbiota. Furthermore, the levels of tryptophan metabolites, such as indole, indole-3-acetamide, indole-3-acetaldehyde, indole-3-pyruvic acid, and indole-3-acetic acid were significantly altered by BBR. Both the intestinal tight junction proteins and intestinal immune factors were altered by BBR. CONCLUSION BBR could alleviate intestinal barrier dysfunction of GLMDs by modulating gut microbiota and gut-microbiota-related tryptophan metabolites, which may be one of the pharmacological mechanisms for the treatment of GLMDs. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yuting Chen
- The Postdoctoral Research Station of Biology, Hebei Medical University, Shijiazhuang, China
- The Department of Pharmacognosy, School of Pharmacy, Hebei Medical University, Shijiazhuang, China
| | - Zhangsen Hao
- The Department of Pharmacognosy, School of Pharmacy, Hebei Medical University, Shijiazhuang, China
- Department of Pharmacy, The Fourth Hospital of Shijiazhuang, Shijiazhuang, China
| | - Han Zhao
- The Department of Pharmacognosy, School of Pharmacy, Hebei Medical University, Shijiazhuang, China
| | - Xiaofeng Duan
- The Department of Pharmacognosy, School of Pharmacy, Hebei Medical University, Shijiazhuang, China
| | - Dongsheng Jia
- Institute of Cash Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, China
| | - Kaipeng Li
- The Department of Pharmacognosy, School of Pharmacy, Hebei Medical University, Shijiazhuang, China
| | - Yuxin Yang
- The Department of Pharmacognosy, School of Pharmacy, Hebei Medical University, Shijiazhuang, China
| | - Hongjuan Cui
- Hebei INVIVO Biotech Co. Ltd, Shijiazhuang, China
| | - Mingming Gao
- The Laboratory of Lipid Metabolism, Institute of Basic Medicine, Hebei Medical University, Shijiazhuang, China
| | - Ding Zhao
- The Department of Pharmacognosy, School of Pharmacy, Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
15
|
Integrated metabolomics and molecular docking reveal berberrubine inhibits thrombosis by regulating the vitamin K catalytic cycle in mice. Eur J Pharmacol 2022; 938:175436. [PMID: 36481237 DOI: 10.1016/j.ejphar.2022.175436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/10/2022] [Accepted: 11/28/2022] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Natural product berberine was reported to inhibit platelet activation and thrombosis by suppressing the class Ⅰ PI3Kβ/Rasa3/Rap1 pathway. This study aims to investigate the effects and mechanisms of berberrubine, a main metabolite of berberine, to inhibit thrombus formation. METHODS Carrageenan-induced mouse tail thrombosis model was used to evaluate the effects of berberrubine hydrochloride (BBB) on thrombus formation in vivo. Non-targeted metabolomics was performed with UPLC-Q-TOF/MS to explore the potential mechanisms of BBB in inhibiting thrombosis. The effects of BBB on bleeding risk and prothrombin time were determined. And molecular docking was used to identify the possible target of BBB. RESULTS After oral administration, BBB significantly inhibited carrageenan-induced thrombosis in mice without prolonging bleeding time. The results of non-targeted metabolomics showed that oral BBB could regulate 'Phenylalanine, tyrosine and tryptophan biosynthesis' and 'Ubiquinone and other terpenoid-quinone biosynthesis', which is closely related to the vitamin K catalytic cycle. Molecular docking revealed BBB could combine and interact with vitamin K epoxide reductase (VKOR) and γ-Glutamyl carboxylase (GGCX), which was mutually confirmed with the experimental results that oral BBB could significantly prolong prothrombin time. CONCLUSIONS Integrated metabolomics and molecular docking reveal BBB inhibited thrombosis by regulating the vitamin K catalytic cycle. Our research is helpful in deeply understanding the antithrombotic material basis of oral berberine, and also could provide scientific evidence for developing new antithrombotic drugs based on BBB in the future.
Collapse
|
16
|
Colletti A, Fratter A, Pellizzato M, Cravotto G. Nutraceutical Approaches to Dyslipidaemia: The Main Formulative Issues Preventing Efficacy. Nutrients 2022; 14:nu14224769. [PMID: 36432457 PMCID: PMC9696395 DOI: 10.3390/nu14224769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/29/2022] [Accepted: 11/04/2022] [Indexed: 11/16/2022] Open
Abstract
Currently, the nutraceutical approach to treat dyslipidaemia is increasing in use, and in many cases is used by physicians as the first choice in the treatment of patients with borderline values. Nutraceuticals represent an excellent opportunity to treat the preliminary conditions not yet showing the pathological signs of dyslipidaemia. Their general safety, the patient's confidence, the convincing proof of efficacy and the reasonable costs prompted the market of new preparations. Despite this premise, many nutraceutical products are poorly formulated and do not meet the minimum requirements to ensure efficacy in normalizing blood lipid profiles, promoting cardiovascular protection, and normalizing disorders of glycemic metabolism. In this context, bioaccessibility and bioavailability of the active compounds is a crucial issue. Little attention is paid to the proper formulations needed to improve the overall bioavailability of the active molecules. According to these data, many products prove to be insufficient to ensure full enteric absorption. The present review analysed the literature in the field of nutraceuticals for the treatment of dyslipidemia, focusing on resveratrol, red yeast rice, berberine, and plant sterols, which are among the nutraceuticals with the greatest formulation problems, highlighting bioavailability and the most suitable formulations.
Collapse
Affiliation(s)
- Alessandro Colletti
- Department of Science and Drug Technology, University of Turin, 10124 Turin, Italy
- Italian Society of Nutraceutical Formulators (SIFNut), 31033 Treviso, Italy
| | - Andrea Fratter
- Italian Society of Nutraceutical Formulators (SIFNut), 31033 Treviso, Italy
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, 35122 Padua, Italy
| | - Marzia Pellizzato
- Italian Society of Nutraceutical Formulators (SIFNut), 31033 Treviso, Italy
| | - Giancarlo Cravotto
- Department of Science and Drug Technology, University of Turin, 10124 Turin, Italy
- Italian Society of Nutraceutical Formulators (SIFNut), 31033 Treviso, Italy
- Correspondence: ; Tel.: +39-011-670-7103
| |
Collapse
|
17
|
Multi-Target Potential of Berberine as an Antineoplastic and Antimetastatic Agent: A Special Focus on Lung Cancer Treatment. Cells 2022; 11:cells11213433. [PMID: 36359829 PMCID: PMC9655513 DOI: 10.3390/cells11213433] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 10/21/2022] [Accepted: 10/22/2022] [Indexed: 11/06/2022] Open
Abstract
Despite therapeutic advancements, lung cancer remains the principal cause of cancer mortality in a global scenario. The increased incidence of tumor reoccurrence and progression and the highly metastatic nature of lung cancer are of great concern and hence require the investigation of novel therapies and/or medications. Naturally occurring compounds from plants serve as important resources for novel drugs for cancer therapy. Amongst these phytochemicals, Berberine, an alkaloid, has been extensively explored as a potential natural anticancer therapeutic agent. Several studies have shown the effectiveness of Berberine in inhibiting cancer growth and progression mediated via several different mechanisms, which include cell cycle arrest, inducing cell death by apoptosis and autophagy, inhibiting cell proliferation and invasion, as well as regulating the expression of microRNA, telomerase activity, and the tumor microenvironment, which usually varies for different cancer types. In this review, we aim to provide a better understanding of molecular insights of Berberine and its various derivative-induced antiproliferative and antimetastatic effects against lung cancer. In conclusion, the Berberine imparts its anticancer efficacy against lung cancers via modulation of several signaling pathways involved in cancer cell viability and proliferation, as well as migration, invasion, and metastasis.
Collapse
|
18
|
Khoshandam A, Imenshahidi M, Hosseinzadeh H. Pharmacokinetic of berberine, the main constituent of Berberis vulgaris L.: A comprehensive review. Phytother Res 2022; 36:4063-4079. [PMID: 36221815 DOI: 10.1002/ptr.7589] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 07/18/2022] [Accepted: 08/03/2022] [Indexed: 11/10/2022]
Abstract
Barberry (Berberis vulgaris L.) is a medicinal plant and its main constituent is an isoquinoline alkaloid named berberine that has multiple pharmacological effects such as antioxidant, anti-microbial, antiinflammatory, anticancer, anti-diabetes, anti-dyslipidemia, and anti-obesity. However, it has restricted clinical uses due to its very poor solubility and bioavailability (less than 1%). It undergoes demethylenation, reduction, and cleavage of the dioxymethylene group in the first phase of metabolism. Its phase two reactions include glucuronidation, sulfation, and methylation. The liver is the main site for berberine distribution. Berberine could excrete in feces, urine, and bile. Fecal excretion of berberine (11-23%) is higher than urinary and biliary excretion routes. However, a major berberine metabolite is excreted in urine greater than in feces. Concomitant administration of berberine with other drugs such as metformin, cyclosporine A, digoxin, etc. may result in important interactions. Thus, in this review, we gathered and dissected any related animal and human research articles regarding the pharmacokinetic parameters of berberine including bioavailability, metabolism, distribution, excretion, and drug-drug interactions. Also, we discussed and gathered various animal and human studies regarding the developed products of berberine with better bioavailability and consequently, better therapeutic effects.
Collapse
Affiliation(s)
- Arian Khoshandam
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohsen Imenshahidi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.,Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Hosseinzadeh
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.,Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
19
|
Law SK, Wang Y, Lu X, Au DCT, Chow WYL, Leung AWN, Xu C. Chinese medicinal herbs as potential prodrugs for obesity. Front Pharmacol 2022; 13:1016004. [PMID: 36263142 PMCID: PMC9573959 DOI: 10.3389/fphar.2022.1016004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 09/14/2022] [Indexed: 11/13/2022] Open
Abstract
Obesity is a leading worldwide health threat with ever-growing prevalence, it promotes the incidence of various diseases, particularly cardiovascular disease, metabolic syndrome, diabetes, hypertension, and certain cancers. Traditional Chinese Medicine (TCM) has been used to control body weight and treat obesity for thousands of years, Chinese medicinal herbs provide a rich natural source of effective agents against obesity. However, some problems such as complex active ingredients, poor quality control, and unclear therapeutic mechanisms still need to be investigated and resolved. Prodrugs provide a path forward to overcome TCM deficiencies such as absorption, distribution, metabolism, excretion (ADME) properties, and toxicity. This article aimed to review the possible prodrugs from various medicinal plants that demonstrate beneficial effects on obesity and seek to offer insights on prodrug design as well as a solution to the global obesity issues.
Collapse
Affiliation(s)
- Siu Kan Law
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
- Faculty of Science and Technology, The Technological and Higher Education Institute of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Yanping Wang
- School of Nursing and Health Studies, Hong Kong Metropolitan University, Hong Kong, Hong Kong SAR, China
| | - Xinchen Lu
- Faculty of Science and Technology, The Technological and Higher Education Institute of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Dawn Ching Tung Au
- Faculty of Science and Technology, The Technological and Higher Education Institute of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Wesley Yeuk Lung Chow
- Faculty of Science and Technology, The Technological and Higher Education Institute of Hong Kong, Hong Kong, Hong Kong SAR, China
| | | | - Chuanshan Xu
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
- *Correspondence: Chuanshan Xu,
| |
Collapse
|
20
|
Eliwa D, Ibrahim ARS, Kabbash A, El-Aasr M, Tomczyk M, Bin Jardan YA, Batiha GES, Ragab AE. Biotransformation of Modified Benzylisoquinoline Alkaloids: Boldine and Berberine and In Silico Molecular Docking Studies of Metabolites on Telomerase and Human Protein Tyrosine Phosphatase 1B. Pharmaceuticals (Basel) 2022; 15:1195. [PMID: 36297307 PMCID: PMC9611891 DOI: 10.3390/ph15101195] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 09/22/2022] [Accepted: 09/24/2022] [Indexed: 03/27/2024] Open
Abstract
Natural nitrogen heterocycles biotransformation has been extensively used to prepare synthetic drugs and explore the fate of therapeutic agents inside the body. Herein, the ability of filamentous fungi to biotransform boldine and berberine was investigated. Docking simulation studies of boldine, berberine and their metabolites on the target enzymes: telomerase (TERT) and human protein tyrosine phosphatase 1B (PTP-1B) were also performed to investigate the anticancer and antidiabetic potentials of compounds in silico. The biotransformation of boldine and berberine with Cunninghamella elegans NRRL 2310, Rhodotorula rubra NRRL y1592, Penicillium chrysogeneum ATCC 10002, Cunninghamella blackesleeana MR198 and Cunninghamella blackesleeana NRRL 1369 via demethylation, N- oxidation, glucosidation, oxidation and hydroxylation reactions produced seven metabolites, namely: 1,10-didesmethyl-boldine (1), laurolitsine (2), 1,10-didesmethyl-norboldine (3), boldine-9-O-β-D-glucoside (4), tridesmethyl berberine (5), demethylene berberine (6), and lambertine (7). Primarily, the structures of the metabolites were established by one-dimensional (1D) and two-dimensional (2D) nuclear magnetic resonance (NMR) analyses and mass spectrometry. In silico molecular docking simulation of the metabolites of boldine and berberine to the proteins TERT and PTP-1B, respectively, revealed good binding MolDock scores comparable to boldine and berberine and favorable interactions with the catalytic sites of the proteins. In conclusion, this study presented promising biologically prepared nitrogen scaffolds (isoquinolines) of boldine and berberine.
Collapse
Affiliation(s)
- Duaa Eliwa
- Department of Pharmacognosy, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt
| | | | - Amal Kabbash
- Department of Pharmacognosy, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt
| | - Mona El-Aasr
- Department of Pharmacognosy, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt
| | - Michał Tomczyk
- Department of Pharmacognosy, Medical University of Białystok, ul. Mickiewicza 2a, 15-230 Białystok, Poland
| | - Yousef A. Bin Jardan
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh P.O. Box 2455, Saudi Arabia
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, Egypt
| | - Amany E. Ragab
- Department of Pharmacognosy, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt
| |
Collapse
|
21
|
Liu X, Li W, Zhang H, Wang X, Huang Y, Li Y, Pan G. Biodistribution and pharmacokinetic profile of berberine and its metabolites in hepatocytes. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 104:154288. [PMID: 35785560 DOI: 10.1016/j.phymed.2022.154288] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 06/09/2022] [Accepted: 06/18/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Berberine has been shown in clinical studies to have many health benefits, including anti-inflammatory and antioxidant properties, along with gut-flora balancing properties. However, its clinical efficacy is hindered by its low oral bioavailability and rapid metabolism. PURPOSE This study aims to identify the berberine metabolites' forms and characterize their biodistribution patterns in and out of HepG2 cells. METHODS The qualitative analysis of metabolites of berberine in HepG2 cells was performed using the LC/MSn-IT-TOF method. Subsequent cellular pharmacokinetics characterization of intracellular and extracellular berberine and its metabolites was performed by LC-MS/MS analysis. RESULTS Berberine's metabolites of phase I metabolism were demethyleneberberine, jatrorrhizine, columbamine, berberrubine, etc., while its phase II metabolites were sulfate and glucuronide conjugates of phase I metabolites. Among the phase I metabolites of berberine, jatrorrhizine+columbamine accounted for over two-thirds of the total, followed by demethyleneberberine, which accounted for about a quarter. The intracellular demethyleneberberine is 25.14 times more enriched than extracellular demethyleneberberine. On the other hand, jatrorrhizine+columbamine and berberrubine were primarily distributed extracellularly, and their extracellular concentrations were 7.13 times and 15.61 times of their intracellular concentrations, respectively. Berberine metabolites produced in phase II metabolism are predominantly sulfate conjugates. CONCLUSION Our results show that demethyleneberberine is highly concentrated intracellularly in HepG2, possibly because it is an essential metabolite of berberine that likely contributes to berberine's efficacy. In light of our findings, berberine's poor plasma concentration-effectiveness characteristics have been partially explained.
Collapse
Affiliation(s)
- Xiaomei Liu
- Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai, Tianjin 301617, China
| | - Wenfang Li
- Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai, Tianjin 301617, China
| | - Han Zhang
- Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai, Tianjin 301617, China
| | - Xiaoming Wang
- Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai, Tianjin 301617, China.
| | - Yuhong Huang
- Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300250, China
| | - Yuhong Li
- Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai, Tianjin 301617, China
| | - Guixiang Pan
- Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300250, China.
| |
Collapse
|
22
|
Liu X, Wang L, Tan S, Chen Z, Wu B, Wu X. Therapeutic Effects of Berberine on Liver Fibrosis are associated With Lipid Metabolism and Intestinal Flora. Front Pharmacol 2022; 13:814871. [PMID: 35308208 PMCID: PMC8924518 DOI: 10.3389/fphar.2022.814871] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 01/28/2022] [Indexed: 12/12/2022] Open
Abstract
Liver cirrhosis is a form of liver fibrosis resulting from chronic hepatitis caused by various liver diseases, such as viral hepatitis, alcoholic liver damage, nonalcoholic steatohepatitis, autoimmune liver disease, and by parasitic diseases such as schistosomiasis. Liver fibrosis is the common pathological base and precursors of cirrhosis. Inflammation and disorders of lipid metabolism are key drivers in liver fibrosis. Studies have determined that parts of the arachidonic acid pathway, such as its metabolic enzymes and biologically active products, are hallmarks of inflammation, and that aberrant peroxisome proliferator-activated receptor gamma (PPARγ)-mediated regulation causes disorders of lipid metabolism. However, despite the ongoing research focus on delineating the mechanisms of liver fibrosis that underpin various chronic liver diseases, effective clinical treatments have yet to be developed. Berberine (BBR) is an isoquinoline alkaloid with multiple biological activities, such as anti-inflammatory, anti-bacterial, anti-cancer, and anti-hyperlipidemic activities. Many studies have also found that BBR acts via multiple pathways to alleviate liver fibrosis. Furthermore, the absorption of BBR is increased by nitroreductase-containing intestinal flora, and is strengthened via crosstalk with bile acid metabolism. This improves the oral bioavailability of BBR, thereby enhancing its clinical utility. The production of butyrate by intestinal anaerobic bacteria is dramatically increased by BBR, thereby amplifying butyrate-mediated alleviation of liver fibrosis. In this review, we discuss the effects of BBR on liver fibrosis and lipid metabolism, particularly the metabolism of arachidonic acid, and highlight the potential mechanisms by which BBR relieves liver fibrosis through lipid metabolism related and intestinal flora related pathways. We hope that this review will provide insights on the BBR-based treatment of liver cirrhosis and related research in this area, and we encourage further studies that increase the ability of BBR to enhance liver health.
Collapse
Affiliation(s)
- Xianzhi Liu
- Department of Gastroenterology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou, China.,Department of Laboratory Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Guangdong, China
| | - Lifu Wang
- KingMed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou, China
| | - Siwei Tan
- Department of Gastroenterology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou, China.,Department of Laboratory Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Guangdong, China
| | - Zebin Chen
- Department of Hepatic Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Bin Wu
- Department of Gastroenterology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou, China.,Department of Laboratory Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Guangdong, China
| | - Xiaoying Wu
- Department of Gastroenterology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou, China.,Department of Laboratory Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Guangdong, China
| |
Collapse
|
23
|
Shou JW, Shaw PC. Therapeutic Efficacies of Berberine against Neurological Disorders: An Update of Pharmacological Effects and Mechanisms. Cells 2022; 11:cells11050796. [PMID: 35269418 PMCID: PMC8909195 DOI: 10.3390/cells11050796] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 02/21/2022] [Accepted: 02/22/2022] [Indexed: 02/04/2023] Open
Abstract
Neurological disorders are ranked as the leading cause of disability and the second leading cause of death worldwide, underscoring an urgent necessity to develop novel pharmacotherapies. Berberine (BBR) is a well-known phytochemical isolated from a number of medicinal herbs. BBR has attracted much interest for its broad range of pharmacological actions in treating and/or managing neurological disorders. The discoveries in basic and clinical studies of the effects of BBR on neurological disorders in the last decade have provided novel evidence to support the potential therapeutical efficacies of BBR in treating neurological diseases. In this review, we summarized the pharmacological properties and therapeutic applications of BBR against neurological disorders in the last decade. We also emphasized the major pathways modulated by BBR, which provides firm evidence for BBR as a promising drug candidate for neurological disorders.
Collapse
Affiliation(s)
- Jia-Wen Shou
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong 852852, China;
| | - Pang-Chui Shaw
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong 852852, China;
- Li Dak Sum Yip Yio Chin R&D Centre for Chinese Medicine, The Chinese University of Hong Kong, Hong Kong 852852, China
- State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants and Institute of Chinese Medicine, The Chinese University of Hong Kong, Hong Kong 852852, China
- Correspondence:
| |
Collapse
|
24
|
Zhu Y, Xie N, Chai Y, Nie Y, Liu K, Liu Y, Yang Y, Su J, Zhang C. Apoptosis Induction, a Sharp Edge of Berberine to Exert Anti-Cancer Effects, Focus on Breast, Lung, and Liver Cancer. Front Pharmacol 2022; 13:803717. [PMID: 35153781 PMCID: PMC8830521 DOI: 10.3389/fphar.2022.803717] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 01/10/2022] [Indexed: 12/12/2022] Open
Abstract
Cancer is the leading cause of death and one of the greatest barriers to increased life expectancy worldwide. Currently, chemotherapy with synthetic drugs remains one of the predominant ways for cancer treatment, which may lead to drug resistance and normal organ damage. Increasing researches have suggested that apoptosis, a type of programmed cell death, is a promising way for cancer therapy. Furthermore, natural products are important sources for finding new drugs with high availability, low cost and low toxicity. As a well-known isoquinoline alkaloid, accumulating evidence has revealed that berberine (BBR) exerts potential pro-apoptotic effects on multiple cancers, including breast, lung, liver, gastric, colorectal, pancreatic, and ovarian cancers. The related potential signal pathways are AMP-activated protein kinase, mitogen-activated protein kinase, and protein kinase B pathways. In this review, we provide a timely and comprehensive summary of the detailed molecular mechanisms of BBR in treating three types of cancer (breast, lung and liver cancer) by inducing apoptosis. Furthermore, we also discuss the existing challenges and strategies to improve BBR’s bioavailability. Hopefully, this review provides valuable information for the comprehension of BBR in treating three types of cancer and highlight the pro-apoptotic effects of BBR, which would be beneficial for the further development of this natural compound as an effective clinical drug for treating cancers.
Collapse
Affiliation(s)
- Yi Zhu
- Department of Respiratory Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Na Xie
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yilu Chai
- Department of Respiratory Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yisen Nie
- Department of Respiratory Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ke Liu
- Department of Respiratory Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yufei Liu
- Department of Respiratory Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yang Yang
- Department of Respiratory Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jinsong Su
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chuantao Zhang
- Department of Respiratory Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
25
|
Wang C, Cheng Y, Zhang Y, Jin H, Zuo Z, Wang A, Huang J, Jiang J, Kong W. Berberine and Its Main Metabolite Berberrubine Inhibit Platelet Activation Through Suppressing the Class I PI3Kβ/Rasa3/Rap1 Pathway. Front Pharmacol 2021; 12:734603. [PMID: 34690771 PMCID: PMC8531212 DOI: 10.3389/fphar.2021.734603] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 09/06/2021] [Indexed: 12/16/2022] Open
Abstract
Background: Berberine (BBR), a natural product, was reported to inhibit platelet aggregation; however, the molecular mechanisms remain unclear. This study aims to investigate the effects and mechanisms of BBR in inhibiting platelet activation and thrombus formation. Methods: Flow cytometry, immunofluorescence, and Western blot were used to determine the inhibitory effects and mechanisms of BBR and its main metabolite berberrubine (M2) on platelet activation in vitro and ex vivo. Purified integrin αIIbβ3, class I PI3K kit, and molecular docking were used to identify the possible targets of BBR and M2. A carrageenan-induced mouse thrombosis model was used to evaluate the effects of BBR on thrombus formation in vivo. Results: In vitro, BBR and M2 significantly inhibited ADP-induced integrin αIIbβ3 activation, reduced the level of P-selectin on the platelet membrane, and suppressed the binding of fibrinogen to the platelets. In this process, BBR and M2 greatly suppressed the PI3K/Akt pathway and inhibited Rasa3 membrane translocation and Rap1 activation. Furthermore, BBR and M2 selectively inhibited class I PI3Kβ, perhaps through binding to its active site. The activities of BBR were stronger than those of M2. After oral administration, BBR significantly inhibited the PI3K/Akt pathway and Rap1 activation and suppressed ADP-induced platelet activation and carrageenan-induced thrombosis in mice without prolonging bleeding time. Conclusions: We reveal for the first time the possible targets and mechanisms of BBR and M2 in inhibiting platelet activation. Our research may support the future clinical application of BBR as an antiplatelet drug in the prevention or treatment of thrombotic diseases.
Collapse
Affiliation(s)
- Can Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China.,State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yangyang Cheng
- Department of Virology and NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yuanhui Zhang
- Department of Virology and NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hongtao Jin
- New Drug Safety Evaluation Center, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zengyan Zuo
- Department of Virology and NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Aiping Wang
- New Drug Safety Evaluation Center, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jianmei Huang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Jiandong Jiang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Department of Virology and NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Weijia Kong
- Department of Virology and NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
26
|
Plant isoquinoline alkaloids: Advances in the chemistry and biology of berberine. Eur J Med Chem 2021; 226:113839. [PMID: 34536668 DOI: 10.1016/j.ejmech.2021.113839] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 09/06/2021] [Accepted: 09/07/2021] [Indexed: 01/08/2023]
Abstract
Alkaloids are one of the most important classes of plant bioactives. Among these isoquinoline alkaloids possess varied structures and exhibit numerous biological activities. Basically these are biosynthetically produced via phenylpropanoid pathway. However, occasionally some mixed pathways may also occur to provide structural divergence. Among the various biological activities anticancer, antidiabetic, antiinflammatory, and antimicrobial are important. A few notable bioactive isoquinoline alkaloids are antidiabetic berberine, anti-tussive codeine, analgesic morphine, and muscle relaxant papaverine etc. Berberine is one of the most discussed bioactives from this class possessing broad-spectrum pharmacological activities. Present review aims at recent updates of isoquinoline alkaloids with major emphasis on berberine, its detailed chemistry, important biological activities, structure activity relationship and implementation in future research.
Collapse
|
27
|
Pharmacokinetics and Pharmacological Activities of Berberine in Diabetes Mellitus Treatment. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:9987097. [PMID: 34471420 PMCID: PMC8405293 DOI: 10.1155/2021/9987097] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 08/09/2021] [Accepted: 08/16/2021] [Indexed: 02/07/2023]
Abstract
Traditional Chinese medicine (TCM) has good clinical application prospects in diabetes treatment. In addition, TCM is less toxic and/or has fewer side effects and provides various therapeutic effects. Berberine (BBR) is isolated as the main component in many TCM kinds (e.g., Rhizoma Coptidis and Berberidis Cortex). Furthermore, BBR can reduce blood sugar and blood fat, alleviate inflammation, and improve the state of patients. Based on the recent study results of BBR in diabetes treatment, the BBR pharmacokinetics and mechanism on diabetes are mainly studied, and the specific molecular mechanism of related experimental BBR is systematically summarized and analyzed. Clinical studies have proved that BBR has a good therapeutic effect on diabetes, suggesting that BBR may be a promising drug candidate for diabetes. More detailed BBR mechanisms and pathways of BBR need to be studied further in depth, which will help understand the BBR pharmacology in diabetes treatment.
Collapse
|
28
|
Ma Y, Huang B, Tang W, Li P, Chen J. Characterization of chemical constituents and metabolites in rat plasma after oral administration of San Miao Wan by ultra-high performance liquid chromatography tandem Q-Exactive Orbitrap mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2021; 1178:122793. [PMID: 34130203 DOI: 10.1016/j.jchromb.2021.122793] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 05/14/2021] [Accepted: 05/19/2021] [Indexed: 10/21/2022]
Abstract
San Miao Wan (SMW), composed of Phellodendri Chinensis Cortex, Atractylodis Lanceae Rhizoma and Achyranthis Bidentatae Radix, is widely used for the treatment of gout, hyperuricemia and other diseases. In the present study, an overall identification strategy based on ultra-high performance liquid chromatography tandem Q-Exactive Orbitrap mass spectrometry (UPLC-Q-Exactive Orbitrap/MS) method was established to characterize the multiple chemical constituents of SMW and its metabolites in rat plasma after oral administration of SMW. A total of 76 constituents including alkaloids, organic acids, lactones, terpenes, saponins, sterones and others types of components were identified in the extract of SMW. After the oral administration of SMW, 47 prototype constituents and 66 metabolites were identified in rat plasma samples. The related metabolic pathways mainly involved reduction, demethylation, hydroxylation, methylation and glucuronide conjunction. The proposed method could be a useful approach to identify the chemical constituents of SMW and its metabolic components. Our study provide a universal strategy for the analysis of the components and metabolites of the traditional Chinese medicine prescription (TCP) extracts and plasma after administration using UPLC-Q-Exactive Orbitrap/MS method. It will assist with clarifying the substance basis of effective components in SMW. It also provides a rapid method for overall analysis of chemical constituents and metabolites of SMW.
Collapse
Affiliation(s)
- Yi Ma
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing, Jiangsu Province, PR China; Department of Pharmacognosy, School of Traditional Chinese Pharmacy, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing, Jiangsu Province, PR China
| | - Bixia Huang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing, Jiangsu Province, PR China; Department of Pharmacognosy, School of Traditional Chinese Pharmacy, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing, Jiangsu Province, PR China
| | - Weiwei Tang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing, Jiangsu Province, PR China; Department of Pharmacognosy, School of Traditional Chinese Pharmacy, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing, Jiangsu Province, PR China
| | - Ping Li
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing, Jiangsu Province, PR China; Department of Pharmacognosy, School of Traditional Chinese Pharmacy, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing, Jiangsu Province, PR China
| | - Jun Chen
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing, Jiangsu Province, PR China; Department of Pharmacognosy, School of Traditional Chinese Pharmacy, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing, Jiangsu Province, PR China.
| |
Collapse
|
29
|
Therapeutic Effects of Berberine in Metabolic Diseases and Diabetes Mellitus. REVISTA BRASILEIRA DE FARMACOGNOSIA 2021. [DOI: 10.1007/s43450-021-00159-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
30
|
Li QP, Dou YX, Huang ZW, Chen HB, Li YC, Chen JN, Liu YH, Huang XQ, Zeng HF, Yang XB, Su ZR, Xie JH. Therapeutic effect of oxyberberine on obese non-alcoholic fatty liver disease rats. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 85:153550. [PMID: 33831691 DOI: 10.1016/j.phymed.2021.153550] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 02/06/2021] [Accepted: 03/12/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Berberine (BBR) has been widely used to treat non-alcoholic fatty liver disease (NAFLD). The metabolites of BBR were believed to contribute significantly to its pharmacological effects. Oxyberberine (OBB), a gut microbiota-mediated oxidative metabolite of BBR, has been firstly identified in our recent work. PURPOSE Here, we aimed to comparatively investigate the anti-NAFLD properties of OBB and BBR. METHODS The anti-NAFLD effect was evaluated in high-fat diet-induced obese NAFLD rats with biochemical/ELISA tests and histological staining. The related gene and protein expressions were detected by qRT-PCR and Western blotting respectively. Molecular docking and dynamic simulation were also performed to provide further insight. RESULTS Results indicated OBB remarkably and dose-dependently attenuated the clinical manifestations of NAFLD, which (100 mg/kg) achieved similar therapeutic effect to metformin (300 mg/kg) and was superior to BBR of the same dose. OBB significantly inhibited aberrant phosphorylation of IRS-1 and up-regulated the downstream protein expression and phosphorylation (PI3K, p-Akt/Akt and p-GSK-3β/GSK-3β) to improve hepatic insulin signal transduction. Meanwhile, OBB treatment remarkably alleviated inflammation via down-regulating the mRNA expression of MCP-1, Cd68, Nos2, Cd11c, while enhancing Arg1 mRNA expression in white adipose tissue. Moreover, OBB exhibited closer affinity with AMPK in silicon and superior hyperphosphorylation of AMPK in vivo, leading to increased ACC mRNA expression in liver and UCP-1 protein expression in adipose tissue. CONCLUSION Taken together, compared with BBR, OBB was more capable of maintaining lipid homeostasis between liver and WAT via attenuating hepatic insulin pathway and adipocyte inflammation, which was associated with its property of superior AMPK activator.
Collapse
Affiliation(s)
- Qiao-Ping Li
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, PR China
| | - Yao-Xing Dou
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, PR China
| | - Zi-Wei Huang
- The First Affiliated Hospital of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China
| | - Han-Bin Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, SAR, PR China
| | - Yu-Cui Li
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, PR China
| | - Jian-Nan Chen
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, PR China
| | - Yu-Hong Liu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, PR China
| | - Xiao-Qi Huang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, PR China
| | - Hui-Fang Zeng
- The First Affiliated Hospital of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China
| | - Xiao-Bo Yang
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, PR China; State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, PR China
| | - Zi-Ren Su
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, PR China.
| | - Jian-Hui Xie
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, PR China; State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, PR China; Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou 510120, PR China.
| |
Collapse
|
31
|
Gaba S, Saini A, Singh G, Monga V. An insight into the medicinal attributes of berberine derivatives: A review. Bioorg Med Chem 2021; 38:116143. [PMID: 33848698 DOI: 10.1016/j.bmc.2021.116143] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/27/2021] [Accepted: 03/28/2021] [Indexed: 12/13/2022]
Abstract
In the last few decades, traditional natural products have been the center of attention for the scientific community and exploration of their therapeutic abilities is proceeding perpetually. Berberine, with remarkable therapeutic diversity, is a plant derived isoquinoline alkaloid which is widely used as a traditional medicine in China. Berberine has been tackled as a fascinating pharmacophore to make great contributions to the discovery and development of new therapeutic agents against variegated diseases. Despite its tremendous therapeutic potential, clinical utility of this alkaloid was significantly compromised due to undesirable pharmacokinetic properties. To overcome this limitation, several structural modifications were performed on this scaffold to improve its therapeutic efficacy. The collective efforts of the community have achieved the tremendous advancements, bringing berberine to clinical use and discovering new therapeutic opportunities by structural modifications on the berberine scaffold. In this review, recent advancements in the medicinal chemistry of berberine and its derivatives in the last few years (2016-2020) have been compiled to represent inclusive data associated with various biological activities of this alkaloid. The comprehensive structure-activity relationship studies along with molecular modelling and mechanistic studies have also been summarized. This article would be highly helpful for the scientific community to get better insight into medicinal research of berberine and become a compelling guide for the rational design of berberine based compounds.
Collapse
Affiliation(s)
- Sobhi Gaba
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, GT Road, Ghal Kalan, Moga-142001, Punjab, India
| | - Anjali Saini
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, GT Road, Ghal Kalan, Moga-142001, Punjab, India
| | - Gurpreet Singh
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, GT Road, Ghal Kalan, Moga-142001, Punjab, India
| | - Vikramdeep Monga
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, GT Road, Ghal Kalan, Moga-142001, Punjab, India.
| |
Collapse
|
32
|
Chen HB, Luo CD, Ai GX, Wang YF, Li CL, Tan LH, Lee SMY, Cheung AKK, Su ZR, Wu XL, Xie JH, Zeng HF. A comparative investigation of the interaction and pharmacokinetics of hemoglobin with berberine and its oxymetabolite. J Pharm Biomed Anal 2021; 199:114032. [PMID: 33774454 DOI: 10.1016/j.jpba.2021.114032] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 03/17/2021] [Accepted: 03/18/2021] [Indexed: 10/21/2022]
Abstract
Berberine (BBR), isolated from Coptis chinensis, is one type of isoquinoline alkaloids. BBR exerts numerous of bioactivities but the plasma concentration is really low. In our previous study, a new oxymetabolite (OBB) has been discovered and showed superior anti-inflammatory effect comparing with BBR. The aim of this study is to investigate the interaction, metabolite and pharmacokinetics of BBR with hemoglobin. Sprague-Dawley rats were used to carry out the interaction, metabolite and pharmacokinetics of BBR and OBB in vivo. Fluorescence spectra were used to analyse the interaction in vitro. Results showed that OBB could be generated after intravenous injection or incubating with BBR in vitro and in vivo; Both BBR and OBB exerted much stronger binding interaction with hemoglobin than plasma and affect the conformation of bovine hemoglobin and change the fluorescence spectral properties; BBR and OBB were mainly presented and transported in the proteins-bound form. These results provide a new insight to understand the dynamic equilibrium of BBR and OBB within body from the perspective of new metabolic pathways.
Collapse
Affiliation(s)
- Han-Bin Chen
- The First Affiliated Hospital of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510405, People's Republic of China; State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, People's Republic of China; Muscle Physiology Laboratory, Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong, People's Republic of China
| | - Chao-Dan Luo
- Guangxi Institute of Subtropical Agricultural Products Processing, Guangxi Subtropical Crops Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530001, People's Republic of China; School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, People's Republic of China
| | - Gao-Xiang Ai
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, People's Republic of China
| | - Yong-Fu Wang
- First School of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510120, People's Republic of China
| | - Cai-Lan Li
- Department of Pharmacology, Zunyi Medical University, Zhuhai Campus, Zhuhai, 519041, People's Republic of China
| | - Li-Hua Tan
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, People's Republic of China
| | - Simon Ming-Yuen Lee
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, People's Republic of China
| | - Alex Kwok-Kuen Cheung
- Muscle Physiology Laboratory, Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong, People's Republic of China
| | - Zi-Ren Su
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, People's Republic of China
| | - Xiao-Li Wu
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, People's Republic of China.
| | - Jian-Hui Xie
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, People's Republic of China; State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, People's Republic of China; Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou, 510120, People's Republic of China.
| | - Hui-Fang Zeng
- The First Affiliated Hospital of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510405, People's Republic of China.
| |
Collapse
|
33
|
Tian X, Xu Z, Hu P, Yu Y, Li Z, Ma Y, Chen M, Sun Z, Liu F, Li J, Huang C. Determination of the antidiabetic chemical basis of Phellodendri Chinensis Cortex by integrating hepatic disposition in vivo and hepatic gluconeogenese inhibition in vitro. JOURNAL OF ETHNOPHARMACOLOGY 2020; 263:113215. [PMID: 32768636 DOI: 10.1016/j.jep.2020.113215] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 07/07/2020] [Accepted: 07/23/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Phellodendri Chinensis Cortex (PCC) has been an herb clinically used to treat diabetes, but the chemical basis of its antidiabetic effects has remained unclear. AIM OF THIS STUDY Based on the efficacy of herbal medicine resulting from the cooperative response of the effective compounds in the target organs with sufficient exposure, the in vivo hepatic disposition and in vitro hepatic gluconeogenesis inhibition were integrated to elucidate the chemical basis for the antidiabetic effect of orally administered PCC from a target organ, liver, perspective. MATERIALS AND METHODS With a developed and validated HPLC-MS/MS method, three alkaloids and five metabolites were determined in the portal vein plasma, liver, and systemic plasma of rats orally administered PCC. The inhibition of hepatic gluconeogenesis by the eight compounds was evaluated in primary hepatocytes. RESULTS The in vivo results showed that magnoflorine was present at the highest concentration among the target constituents in the plasma, where berberine showed a low concentration. In contrast, berberine showed the highest concentration in the liver, and its five metabolites exhibited substantial hepatic accumulation. This discrepancy was strongly associated with the hepatic disposition of the compounds. The hepatic disposition prevented the transfer of 96.1% of the phellodendrine, 71.1% of the berberine and 47.5% of the magnoflorine from the portal vein plasma to the systemic plasma, which corresponded to their hepatic distribution and hepatic metabolism. In vitro, berberine, M1, M4 and M5 significantly and dose-dependently inhibited hepatic glucose production. By integrating the hepatic exposure and inhibitory activity data, we estimated that berberine contributed the most (74%) to the total glucose production inhibition of the orally administered PCC decoction, followed by M4 (14%), M1 (11%) and M5 (1%). CONCLUSION This study was the first to comprehensively describe the pharmacokinetic profiles and hepatic disposition of alkaloids in PCC, and concluded that berberine and its metabolites contributed the most to the total hepatic gluconeogenesis inhibition by orally administered PCC. These results reveal the chemical basis for the antidiabetic effect of orally administered PCC decoction, providing scientific evidence to support the clinical usage of PCC in diabetes treatment.
Collapse
Affiliation(s)
- Xiaoting Tian
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhou Xu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Pei Hu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yanyan Yu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhixiong Li
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuanjie Ma
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Mingcang Chen
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhaolin Sun
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Fang Liu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jingya Li
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Chenggang Huang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
34
|
Quasi-Irreversible Inhibition of CYP2D6 by Berberine. Pharmaceutics 2020; 12:pharmaceutics12100916. [PMID: 32987920 PMCID: PMC7600264 DOI: 10.3390/pharmaceutics12100916] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 09/21/2020] [Accepted: 09/22/2020] [Indexed: 12/16/2022] Open
Abstract
In our previous study, Hwang-Ryun-Hae-Dok-Tang, which contains berberine (BBR) as a main active ingredient, inhibited cytochrome P450 (CYP) 2D6 in a quasi-irreversible manner. However, no information is available on the detailed mechanism of BBR-induced CYP2D6 inhibition. Thus, the present study aimed to characterize the inhibition mode and kinetics of BBR and its analogues against CYP2D6 using pooled human liver microsomes (HLM). BBR exhibited selective quasi-irreversible inhibition of CYP2D6 with inactivation rate constant (kinact) of 0.025 min−1, inhibition constant (KI) of 4.29 µM, and kinact/KI of 5.83 mL/min/µmol. In pooled HLM, BBR was metabolized to thalifendine (TFD), demethyleneberberine (DMB), M1 (proposed as demethylene-TFD), and to a lesser extent berberrubine (BRB), showing moderate metabolic stability with a half-life of 35.4 min and a microsomal intrinsic clearance of 7.82 µL/min/mg protein. However, unlike BBR, those metabolites (i.e., TFD, DMB, and BRB) were neither selective nor potent inhibitors of CYP2D6, based on comparison of half-maximal inhibitory concentration (IC50). Notably, TFD, but not DMB, exhibited metabolism-dependent CYP2D6 inhibition as in the case of BBR, which suggests that methylenedioxybenzene moiety of BBR may play a critical role in the quasi-irreversible inhibition. Moreover, the metabolic clearance of nebivolol (β-blocker; CYP2D6 substrate) was reduced in the presence of BBR. The present results warrant further evaluation of BBR–drug interactions in clinical situations.
Collapse
|
35
|
Yang J, Ye LH, Wang B, Zheng H, Cao J. Electrochemical microreactor combined with mass spectrometry for online oxidation and real-time detection of alkaloids. J Sep Sci 2020; 43:3969-3981. [PMID: 32823375 DOI: 10.1002/jssc.202000506] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 08/06/2020] [Accepted: 08/14/2020] [Indexed: 12/23/2022]
Abstract
The main purpose of the present study was to investigate the prototypes and oxidation products of alkaloids with the use of an online electrochemistry/quadrupole time-of-flight mass spectrometry system. The metabolism of oxidative phase I and II was simulated in an electrochemical reaction cell. The metabolic processes for coptisine and jatrorrhizine were simulated in a thin-layer cell fitted with a glassy carbon working electrode, while the metabolic processes for berberine and palmatine were simulated by using a boron-doped diamond working electrode. By using the new experimental system, dehydrogenation, demethylation, methylation, hydroxylation, and the formation of two hydroxylation adducts were detected by applying different potentials to the electrochemical cell. The online reaction with glutathione yielded different covalent glutathione adducts. The results obtained from the electrochemical simulation were found to be in good accordance with those reported previously in vivo, showing that electrochemistry/mass spectrometry is an effective tool for studying metabolic reactions for various complex components. Moreover, analysis of alkaloids in liver microsomes by liquid chromatography coupled with mass spectrometry confirmed the possibility of using an electrochemistry technique to simulate the metabolism of target compounds.
Collapse
Affiliation(s)
- Juan Yang
- College of Material Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, P. R. China
| | - Li-Hong Ye
- Department of Traditional Chinese Medicine, Hangzhou Red Cross Hospital, Hangzhou, P. R. China
| | - Bin Wang
- Lianyungang Hospital of Traditional Chinese Medicine, Lianyungang, Jiangsu, P. R. China
| | - Hui Zheng
- College of Material Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, P. R. China
| | - Jun Cao
- College of Material Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, P. R. China
| |
Collapse
|
36
|
Singh A, Zhao K, Bell C, Shah AJ. Effect of berberine on in vitro metabolism of sulfonylureas: A herb-drug interactions study. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2020; 34 Suppl 4:e8651. [PMID: 31721320 DOI: 10.1002/rcm.8651] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 10/25/2019] [Accepted: 11/04/2019] [Indexed: 06/10/2023]
Abstract
UNLABELLED Patients with type 2 diabetes may co-ingest herbal and prescription medicines to control their blood sugar levels. Competitive binding of drug and herb may mutually affect their metabolism. This can alter the level of drug and its kinetics in the body, potentially causing toxicities or loss of efficacy. Understanding how the metabolism of sulfonylureas like glyburide and gliclazide can be affected by the presence of berberine and vice versa can provide valuable information on the possible risk of toxicities caused by co-ingestion of drugs. METHODS Berberine and sulfonylureas (glyburide and gliclazide) were co-incubated with rat liver microsomes in the presence of a NADPH-regenerating system. The metabolites of berberine and sulfonylureas were analysed using liquid chromatography with high-resolution mass spectrometry in the positive ion mode. The role of individual isozymes in the metabolism of berberine, glyburide and gliclazide was investigated by using specific inhibitors. RESULTS In vitro metabolism of berberine led to the formation of demethyleneberberine (B1a) and its isomer B1b through demethylenation. Berberrubine (B2a) and its isomer B2b were formed through demethylation. The isozymes CYP3A and CYP2D were found to be involved in the metabolism of berberine. In vitro metabolism of glyburide and gliclazide led to the formation of hydroxylated metabolites. The isozymes CYP3A and CYP2C were found to be involved in the metabolism of glyburide. Gliclazide was metabolised by CYP2C. In vitro co-incubation of glyburide or gliclazide with berberine showed that each drug's metabolism was compromised as they share a common isozyme. A strong negative linear correlation of glyburide or gliclazide metabolite levels and the concentration of berberine confirmed the effect of berberine on the metabolism of sulfonylureas. CONCLUSIONS The metabolism of sulfonylureas and berberine was affected when these compounds were co-incubated with each other. This may be attributable to competitive binding of the herb and drug to the catalytic sites of the same isozymes.
Collapse
Affiliation(s)
- Amrinder Singh
- Department of Natural Sciences, Middlesex University, The Burroughs, London, NW4 4BT, UK
| | - Kaicun Zhao
- Department of Natural Sciences, Middlesex University, The Burroughs, London, NW4 4BT, UK
| | - Celia Bell
- Department of Natural Sciences, Middlesex University, The Burroughs, London, NW4 4BT, UK
| | - Ajit J Shah
- Department of Natural Sciences, Middlesex University, The Burroughs, London, NW4 4BT, UK
| |
Collapse
|
37
|
Zhao J, Wang Y, Gao J, Jing Y, Xin W. Berberine Mediated Positive Inotropic Effects on Rat Hearts via a Ca 2+-Dependent Mechanism. Front Pharmacol 2020; 11:821. [PMID: 32581792 PMCID: PMC7289965 DOI: 10.3389/fphar.2020.00821] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 05/19/2020] [Indexed: 11/13/2022] Open
Abstract
Previous studies showed that berberine, an alkaloid from Coptis Chinensis Franch, might exert a positive inotropic effect on the heart. However, the underlying mechanisms were unclear. Here, we reported that berberine at 10–20 µM increased the left ventricular (LV) developed pressure and the maximal rate of the pressure rising, and it increased the maximal rate of the pressure descending at 20 µM in Langendorff-perfused isolated rat hearts. These effects diminished with the concentration of berberine increasing to 50 µM. In the concentration range of 50–300 µM, berberine increased the isometric tension of isolated left ventricular muscle (LVM) strips with or without electrical stimulations, and it (30–300 µM) also increased the intracellular Ca2+ level in the isolated LV myocytes. The removal of extracellular Ca2+ hindered the berberine-induced increases in the tension of LVM strips and the intracellular Ca2+ level of LV myocytes. These suggested that berberine might exert its positive inotropic effects via enhancing Ca2+ influx. The blockade of L-type Ca2+ channels (LTCCs) with nifedipine significantly attenuated 300 μM berberine-induced tension increase in LVM strips but not the increase in the intracellular Ca2+ level. Berberine (300 μM) further increased the LVM tension following the treatment with the LTCC opener FPL-64716 (10 μM), indicating an LTCC-independent effect of berberine. Lowering extracellular Na+ attenuated the berberine-induced increases in both the tension of LVM strips and the intracellular Ca2+ level of LV myocytes. In conclusion, berberine might exert a positive inotropic effect on the isolated rat heart by enhancing the Ca2+ influx in LV myocytes; these were extracellular Na+-dependent.
Collapse
Affiliation(s)
- Junli Zhao
- College of Pharmaceutical Sciences, Southwest University, Chongqing, China
| | - Yaqian Wang
- College of Pharmaceutical Sciences, Southwest University, Chongqing, China
| | - Jie Gao
- College of Pharmaceutical Sciences, Southwest University, Chongqing, China
| | - Yang Jing
- College of Pharmaceutical Sciences, Southwest University, Chongqing, China
| | - Wenkuan Xin
- College of Pharmaceutical Sciences, Southwest University, Chongqing, China
| |
Collapse
|
38
|
The Quest to Enhance the Efficacy of Berberine for Type-2 Diabetes and Associated Diseases: Physicochemical Modification Approaches. Biomedicines 2020; 8:biomedicines8040090. [PMID: 32325761 PMCID: PMC7235753 DOI: 10.3390/biomedicines8040090] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 04/14/2020] [Accepted: 04/15/2020] [Indexed: 12/12/2022] Open
Abstract
Berberine is a quaternary isoquinoline alkaloid that has been isolated from numerous plants which are still in use today as medicine and herbal supplements. The great deal of enthusiasm for intense research on berberine to date is based on its diverse pharmacological effects via action on multiple biological targets. Its poor bioavailability resulting from low intestinal absorption coupled with its efflux by the action of P-glycoprotein is, however, the major limitation. In this communication, the chemical approach of improving berberine's bioavailability and pharmacological efficacy is scrutinised with specific reference to type-2 diabetes and associated diseases such as hyperlipidaemia and obesity. The application of modern delivery systems, research from combination studies to preparation of berberine structural hybrids with known biologically active compounds (antidiabetic, antihyperlipidaemic and antioxidant), as well as synthesis approaches of berberine derivative are presented. Improvement of bioavailability and efficacy through in vitro and ex vivo transport studies, as well as animal models of bioavailability/efficacy in lipid metabolism and diabetes targets are discussed.
Collapse
|
39
|
Zhong F, Huang L, Qi L, Ma Y, Yan Z. Full-length transcriptome analysis of Coptis deltoidea and identification of putative genes involved in benzylisoquinoline alkaloids biosynthesis based on combined sequencing platforms. PLANT MOLECULAR BIOLOGY 2020; 102:477-499. [PMID: 31902069 DOI: 10.1007/s11103-019-00959-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 12/30/2019] [Indexed: 05/20/2023]
Abstract
The study carry out comprehensive transcriptome analysis of C. deltoidea and exploration of BIAs biosynthesis and accumulation based on UHPLC-MS/MS and combined sequencing platforms. Coptis deltoidea is an important medicinal plant with a long history of medicinal use, which is rich in benzylisoquinoline alkaloids (BIAs). In this study, Ultra performance liquid chromatography-electrospray ionization tandem mass spectrometry (UHPLC-ESI-MS/MS) and combined sequencing platforms were performed for exploration of BIAs biosynthesis, accumulation and comprehensive transcriptome analysis of C. deltoidea. By metabolism profiling, the accumulation of ten BIAs was analyzed using UHPLC-MS/MS and different contents were observed in different organs. From transcriptome sequencing result, we applied single-molecule real-time (SMRT) sequencing to C. deltoidea and generated a total of 75,438 full-length transcripts. We proposed the candidate biosynthetic pathway of tyrosine, precursor of BIAs, and identified 64 full length-transcripts encoding enzymes putatively involved in BIAs biosynthesis. RNA-Seq data indicated that the majority of genes exhibited relatively high expression level in roots. Transport of BIAs was also important for their accumulation. Here, 9 ABC transporters and 2 MATE transporters highly homologous to known alkaloid transporters related with BIAs transport in roots and rhizomes were identified. These findings based on the combined sequencing platforms provide valuable genetic information for C. deltoidea and the results of transcriptome combined with metabolome analysis can help us better understand BIAs biosynthesis and transport in this medicinal plant. The information will be critical for further characterization of C. deltoidea transcriptome and molecular-assisted breeding for this medicinal plant with scarce resources.
Collapse
Affiliation(s)
- Furong Zhong
- State Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Ling Huang
- State Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Luming Qi
- State Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yuntong Ma
- State Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Zhuyun Yan
- State Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| |
Collapse
|
40
|
Kong WJ, Vernieri C, Foiani M, Jiang JD. Berberine in the treatment of metabolism-related chronic diseases: A drug cloud (dCloud) effect to target multifactorial disorders. Pharmacol Ther 2020; 209:107496. [PMID: 32001311 DOI: 10.1016/j.pharmthera.2020.107496] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 01/17/2020] [Indexed: 12/23/2022]
Abstract
Berberine (BBR) is a multi-target drug (MTD) that has proven effective in the treatment of metabolism-related chronic diseases (CDs). However, the mode of action (MOA) of BBR remains to be clarified. At a cellular level, the inhibitory effect of BBR on mitochondrial enzymes is probably responsible for many of its biological activities, including the activation of low-density lipoprotein receptor (LDLR), AMP-activated protein kinase (AMPK) and insulin receptor (InsR); these biological activities contribute to ameliorate peripheral blood metabolic profiles, e.g. by reducing plasma lipids and glucose levels, thus improving signs and symptoms of metabolic disorders. In this perspective, BBR acts as a targeted therapy. However, it also exerts pleiotropic systemic activities on some root causes of CDs that include antioxidant / anti-inflammatory effects and modifications of gut microbiota composition and metabolism, which may also contribute to its disease-modifying effects. After reviewing the different MOA of BBR, here we propose that BBR acts through a drug-cloud (dCloud) mechanism, as different to a drug-target effect. The dCloud here is defined as a group of terminal molecular events induced by the drug (or/and related metabolites), as well as the network connections among them. In this scenario, the therapeutic efficacy of BBR is the result of its dCloud effect acting on symptoms/signs as well as on root causes of the diseases. The dCloud concept is applicable to other established MTDs, such as aspirin, metformin, statins as well as to nutrient starvation, thus providing a novel instrument for the design of effective therapies against multifactorial metabolism-related CDs.
Collapse
Affiliation(s)
- Wei-Jia Kong
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, 100050 Beijing, China
| | - Claudio Vernieri
- Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy; Fondazione Istituto FIRC di Oncologia Molecolare, 20139 Milan, Italy
| | - Marco Foiani
- Fondazione Istituto FIRC di Oncologia Molecolare, 20139 Milan, Italy; University of Milan, Italy.
| | - Jian-Dong Jiang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, 100050 Beijing, China; State Key Laboratory of Bioactive Natural Products and Function, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 100050 Beijing, China.
| |
Collapse
|
41
|
Raju M, Kulkarni YA, Wairkar S. Therapeutic potential and recent delivery systems of berberine: A wonder molecule. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.103517] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
42
|
Xu P, Xu C, Li X, Li D, Li Y, Jiang J, Yang P, Duan G. Rapid Identification of Berberine Metabolites in Rat Plasma by UHPLC-Q-TOF-MS. Molecules 2019; 24:molecules24101994. [PMID: 31137649 PMCID: PMC6572607 DOI: 10.3390/molecules24101994] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 05/12/2019] [Accepted: 05/22/2019] [Indexed: 01/13/2023] Open
Abstract
In this study, a reliable and rapid method based on ultra high performance liquid chromatography combined with quadrupole time-of-flight tandem mass spectrometry (UHPLC-Q-TOF-MS) technology and MetabolitePilotMT software was developed for berberine metabolites identification in rat plasma. The chemical structures of the metabolites and their product ions were tentatively characterized or identified according to the molecular weights detected and MS/MS data. In all, nine metabolites, including M1 (demethyleneberberine, C19H18NO4, m/z 324), M2 (glucuronic acid-conjugated demethyleneberberine, C25H26NO10, m/z 500), M3 (diglucuronide-conjugated demethyleneberberine, C31H34NO16, m/z 676), M4 (glucuronic acid-conjugated jatrorrhizine or glucuronic acid-conjugated columbamine, C26H28NO10, m/z 514), M5 (berberrubine or thalifendine, C19H16NO4, m/z 322), M6 (glucuronic acid-conjugated berberrubine or glucuronic acid-conjugated thalifendine, C25H24NO10, m/z 498), M7 (sulfite-conjugated berberrubine or sulfite-conjugated thalifendine, C19H16NO7S, m/z 402), M8 (dihydroxy berberrubine or dihydroxy thalifendine, C19H16NO6, m/z 354) and M9 (dihydroxy berberine, C20H18NO6, m/z 368) were tentatively characterized or identified. Several new deposition patterns and three new metabolites (M7, M8 and M9) are reported in this paper for the first time. This work not only provides significant insights into the understanding of the metabolic pathways of berberine, but also contributes in identifying potential active drug candidates from the metabolites.
Collapse
Affiliation(s)
- Peng Xu
- Department of Pharmaceutical Analysis, School of Pharmacy, Fudan University, Shanghai 201203, China.
| | - Chen Xu
- Department of Pharmaceutical Analysis, School of Pharmacy, Fudan University, Shanghai 201203, China.
| | - Xiaoxia Li
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai 201203, China.
| | - Dan Li
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai 201203, China.
| | - Yan Li
- Department of Pharmaceutical Analysis, School of Pharmacy, Fudan University, Shanghai 201203, China.
| | - Jiebing Jiang
- Department of Pharmaceutical Analysis, School of Pharmacy, Fudan University, Shanghai 201203, China.
| | - Ping Yang
- Instrumental Analysis Center, School of Pharmacy, Fudan University, Shanghai 201203, China.
| | - Gengli Duan
- Department of Pharmaceutical Analysis, School of Pharmacy, Fudan University, Shanghai 201203, China.
| |
Collapse
|
43
|
Yamazoe Y, Goto T, Tohkin M. Reconstitution of CYP3A4 active site through assembly of ligand interactions as a grid-template: Solving the modes of the metabolism and inhibition. Drug Metab Pharmacokinet 2019; 34:113-125. [DOI: 10.1016/j.dmpk.2018.10.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 09/30/2018] [Accepted: 10/10/2018] [Indexed: 01/16/2023]
|
44
|
Tian X, Liu F, Li Z, Lin Y, Liu H, Hu P, Chen M, Sun Z, Xu Z, Zhang Y, Han L, Zhang Y, Pan G, Huang C. Enhanced Anti-diabetic Effect of Berberine Combined With Timosaponin B2 in Goto-Kakizaki Rats, Associated With Increased Variety and Exposure of Effective Substances Through Intestinal Absorption. Front Pharmacol 2019; 10:19. [PMID: 30733676 PMCID: PMC6353801 DOI: 10.3389/fphar.2019.00019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Accepted: 01/08/2019] [Indexed: 12/28/2022] Open
Abstract
Objective: Inspired by the traditionally clinical application of herb pair Zhimu-Huangbo to treat diabetes, a combination of plant ingredients, timosaponin B2 (TB-2) and berberine (BBR), was evaluated for their anti-diabetic efficacy and cooperative mechanisms. Methods: The efficacy and pharmacokinetics of orally administered TB-2 (33.3 mg/kg/day), BBR (66.7 mg/kg/day), and TB-2+BBR (100 mg/kg/day) were evaluated in spontaneously non-obese diabetic Goto-Kakizaki (GK) rats, and metformin (200 mg/kg/day) was used as a positive control. The comparative exposure of the parent drugs, timosaponin A3 (TB-2 metabolite), and M1–M5 (BBR metabolites) was quantified in the portal vein plasma (before hepatic disposition), liver, and systemic plasma (after hepatic disposition) of normal rats on single and combination treatments. Cooperative mechanism of TB-2 and BBR on intestinal absorption and hepatic metabolism was investigated in Caco-2 cells and primary hepatocytes, respectively. Results: After a 6-week experiment, non-fasting and fasting blood glucose levels and oral glucose tolerance test results showed that TB-2+BBR treatments (100 mg/kg/day) displayed significantly anti-diabetic efficacy in GK rats, comparable to that on metformin treatments. However, no significant improvement was observed on TB-2 or BBR treatments alone. Compared to single treatments, combination treatments led to the increased circulating levels of BBR by 107% in GK rats. In normal rats, the hepatic exposure of BBR, timosaponin A3, and M1–M5 was several hundred folds higher than their circulating levels. Co-administration also improved the levels in the plasma and liver by 41–114% for BBR, 141–230% for TB-2, and 12–282% for M1–M5. In vitro, the interaction between TB-2 and BBR was mediated by intestinal absorption, rather than hepatic metabolism. Conclusion: Combining TB-2 and BBR enhanced the anti-diabetic efficacy by increasing the in vivo variety of effective substances, including the parent compounds and active metabolites, and improving the levels of those substances through intestinal absorption. This study is a new attempt to assess the effects of combined plant ingredients on diabetes by scientifically utilizing clinical experience of an herb pair.
Collapse
Affiliation(s)
- Xiaoting Tian
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Fang Liu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Zhixiong Li
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yunfei Lin
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Huan Liu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Pei Hu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Mingcang Chen
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Zhaolin Sun
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Zhou Xu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yiting Zhang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Li Han
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yuanyuan Zhang
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| | - Guoyu Pan
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Chenggang Huang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
45
|
Zhang YT, Yu YQ, Yan XX, Wang WJ, Tian XT, Wang L, Zhu WL, Gong LK, Pan GY. Different structures of berberine and five other protoberberine alkaloids that affect P-glycoprotein-mediated efflux capacity. Acta Pharmacol Sin 2019; 40:133-142. [PMID: 30442987 DOI: 10.1038/s41401-018-0183-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 10/10/2018] [Indexed: 11/09/2022] Open
Abstract
Berberine, berberrubine, thalifendine, demethyleneberberine, jatrorrhizine, and columbamine are six natural protoberberine alkaloid (PA) compounds that display extensive pharmacological properties and share the same protoberberine molecular skeleton with only slight substitution differences. The oral delivery of most PAs is hindered by their poor bioavailability, which is largely caused by P-glycoprotein (P-gp)-mediated drug efflux. Meanwhile, P-gp undergoes large-scale conformational changes (from an inward-facing to an outward-facing state) when transporting substrates, and these changes might strongly affect the P-gp-binding specificity. To confirm whether these six compounds are substrates of P-gp, to investigate the differences in efflux capacity caused by their trivial structural differences and to reveal the key to increasing their binding affinity to P-gp, we conducted a series of in vivo, in vitro, and in silico assays. Here, we first confirmed that all six compounds were substrates of P-gp by comparing the drug concentrations in wild-type and P-gp-knockout mice in vivo. The efflux capacity (net efflux) ranked as berberrubine > berberine > columbamine ~ jatrorrhizine > thalifendine > demethyleneberberine based on in vitro transport studies in Caco-2 monolayers. Using molecular dynamics simulation and molecular docking techniques, we determined the transport pathways of the six compounds and their binding affinities to P-gp. The results suggested that at the early binding stage, different hydrophobic and electrostatic interactions collectively differentiate the binding affinities of the compounds to P-gp, whereas electrostatic interactions are the main determinant at the late release stage. In addition to hydrophobic interactions, hydrogen bonds play an important role in discriminating the binding affinities.
Collapse
|
46
|
Feng G, Li S, Liu S, Song F, Pi Z, Liu Z. Targeted Screening Approach to Systematically Identify the Absorbed Effect Substances of Poria cocos in Vivo Using Ultrahigh Performance Liquid Chromatography Tandem Mass Spectrometry. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:8319-8327. [PMID: 29985616 DOI: 10.1021/acs.jafc.8b02753] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Poria cocos are extensively used as nutritious food, dietary supplements, and oriental medicine in Asia. However, the effect substances are still not very clear. In this study, a targeted screening approach was developed to systematically identify absorbed constituents of Poria cocos in vivo using ultrahigh performance liquid chromatography tandem mass spectrometry combined with UNIFI software. First, incubation reactions in vitro with rat intestinal microflora and rat liver microsomes were conducted to sum up metabolic rules of main constituents. Second, the absorbed constituents in vivo were picked out and identified based on the results of metabolic study in vitro. Finally, the absorbed active constituents in the treatment of Alzheimer's disease were screened by targeted network pharmacology analysis. A total of 62 absorbed prototypes and 59 metabolites were identified and characterized in dosed plasma. Thirty potential active constituents were screened, and 86 drug-targets shared by absorbed constituents and Alzheimer's disease were discovered by targeted network pharmacology analysis. In general, this proposed targeted strategy comprehensively provides new insight for active ingredients of Poria cocos.
Collapse
Affiliation(s)
- Guifang Feng
- State Key Laboratory of Electroanalytical Chemistry, National Center of Mass Spectrometry in Changchun, Jilin Province Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry , Chinese Academy of Sciences , Changchun 130022 , P. R. China
- University of Science and Technology of China , Hefei 230026 , P. R. China
| | - Shizhe Li
- State Key Laboratory of Electroanalytical Chemistry, National Center of Mass Spectrometry in Changchun, Jilin Province Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry , Chinese Academy of Sciences , Changchun 130022 , P. R. China
- University of Science and Technology of China , Hefei 230026 , P. R. China
- College of Chemistry , Jilin University , Changchun 130012 , China
| | - Shu Liu
- State Key Laboratory of Electroanalytical Chemistry, National Center of Mass Spectrometry in Changchun, Jilin Province Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry , Chinese Academy of Sciences , Changchun 130022 , P. R. China
| | - Fengrui Song
- State Key Laboratory of Electroanalytical Chemistry, National Center of Mass Spectrometry in Changchun, Jilin Province Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry , Chinese Academy of Sciences , Changchun 130022 , P. R. China
| | - Zifeng Pi
- State Key Laboratory of Electroanalytical Chemistry, National Center of Mass Spectrometry in Changchun, Jilin Province Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry , Chinese Academy of Sciences , Changchun 130022 , P. R. China
| | - Zhiqiang Liu
- State Key Laboratory of Electroanalytical Chemistry, National Center of Mass Spectrometry in Changchun, Jilin Province Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry , Chinese Academy of Sciences , Changchun 130022 , P. R. China
| |
Collapse
|
47
|
Yu J, Liu Q, Lu X, Li X, Li N, Liu B, Huang F, Qiu Z. Inhibitory and inductive effects of Corydalis saxicola Bunting total alkaloids (CSBTA) on cytochrome P450s in rats. Phytother Res 2018; 32:1818-1827. [PMID: 29806105 DOI: 10.1002/ptr.6117] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 04/21/2018] [Accepted: 04/26/2018] [Indexed: 01/22/2023]
Abstract
Corydalis saxicola Bunting, a well-known traditional Chinese medicine in south China, has been widely used for the treatment of various hepatic diseases. Its active ingredients are Corydalis saxicola Bunting total alkaloids (CSBTA), which primarily include dehydrocavidine, palmatine, and berberine. These representative alkaloids could be metabolized by hepatic CYP450s. Hence, it is necessary to investigate the potential influences of CSBTA on CYP450s to explore the possibility of herb-drug interactions. In present study, in vitro inhibition and in vivo induction studies were performed to evaluate the potential effects of CSBTA extract on CYP450s in rats. Inhibition assay illustrated that CSBTA exerted inhibitory effects on CYP1A2 (IC50 , 38.08 μg/ml; Ki , 14.3 μg/ml), CYP2D1 (IC50 , 20.89 μg/ml; Ki , 9.34 μg/ml), CYP2C6/11 (IC50 for diclofenac and S-mephenytoin, 56.98 and 31.59 μg/ml; Ki, 39.0 and 23.8 μg/ml), and CYP2B1 (IC50 , 48.49 μg/ml; Ki , 36.3 μg/ml) in a noncompetitive manner. Induction study showed CSBTA had obvious inhibitory rather than inductive effects on CYP1A2 and CYP2C6/11. Interestingly, neither inhibition nor induction on CYP3A was observed for CSBTA. In conclusion, CSBTA-drug interactions might occur through CYP450s inhibition, particularly CYP1A and CYP2D. Further studies are still needed to elucidate the underlying mechanisms of inhibition.
Collapse
Affiliation(s)
- Jiaojiao Yu
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Qiuyan Liu
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Xiaoyu Lu
- Clinical Pharmacokinetics Research Laboratory, China Pharmaceutical University, Nanjing, 210009, China
| | - Xiaonan Li
- Mosim Co., Ltd, Room 1207, South Tower, Jinmao Plaza 201 Zhongyang Road, Gulou District, Nanjing, 210009, China
| | - Ning Li
- Clinical Pharmacokinetics Research Laboratory, China Pharmaceutical University, Nanjing, 210009, China.,National Experimental Teaching Demonstration Center of Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Baolin Liu
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Fang Huang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Zhixia Qiu
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| |
Collapse
|
48
|
Feng R, Zhao ZX, Ma SR, Guo F, Wang Y, Jiang JD. Gut Microbiota-Regulated Pharmacokinetics of Berberine and Active Metabolites in Beagle Dogs After Oral Administration. Front Pharmacol 2018; 9:214. [PMID: 29618977 PMCID: PMC5871679 DOI: 10.3389/fphar.2018.00214] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 02/26/2018] [Indexed: 12/16/2022] Open
Abstract
Berberine (BBR) is considered a multi-target drug that has significant advantages. In contrast to its significant pharmacological effects in clinic, the plasma level of BBR is very low. Our previous work revealed that dihydroberberine (dhBBR) could be an absorbable form of BBR in the intestine, and butyrate is an active metabolite that is generated by gut bacteria in rats. In this study, for the first time we describe gut microbiota-regulated pharmacokinetics in beagle dogs after oral administration of BBR by single (50 mg/kg) or multiple doses (50 mg/kg/d) for 7 days. GC-MS, GC, LC-MS/MS, and LC/MSn-IT-TOF were used to detect dhBBR, butyrate and BBR as well as its Phase I and II metabolites, respectively. The results showed that dhBBR was not detected in dog plasma but was excreted in small amounts in the feces of dogs examined on days 3 and 7. Butyrate was generated by gut bacteria and increased by 1.3- and 1.2-fold in plasma or feces, respectively, after 7 days of BBR treatment compared to the levels before treatment. Changes of intestinal bacterial composition were analyzed by 16S rRNA genes analysis. The results presented that dogs treated with BBR for 7 days increased both the abundance of the butyrate- and the nitroreductases- producing bacteria. We also identified chemical structures of the Phase I and II metabolites and analyzed their contents in beagle dogs. Eleven metabolites were detected in plasma and feces after BBR oral administration (50 mg/kg) to dogs, including 8 metabolites of Phase I and III metabolites of Phase II. The pharmacokinetic profile indicated that the concentration of BBR in plasma was low, with a Cmax value of 36.88 ± 23.45 ng/mL. The relative content of glucuronic acid conjugates (M11) was higher than those of other metabolites (M1, M2, M12, and M14) in plasma. BBR was detected in feces, with high excreted amounts on day 3 (2625.04 ± 1726.94 μg/g) and day 7 (2793.43 ± 488.10 μg/g). In summary, this is the first study to describe gut microbiota-regulated pharmacokinetics in beagle dogs after oral administration of BBR, which is beneficial for discovery of drugs with poor absorption but good therapeutic efficacy.
Collapse
Affiliation(s)
- Ru Feng
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhen-Xiong Zhao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shu-Rong Ma
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Fang Guo
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yan Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jian-Dong Jiang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
49
|
Combined analytical approaches to define biodistribution and biological activity of semi-synthetic berberrubine, the active metabolite of natural berberine. Anal Bioanal Chem 2018; 410:3533-3545. [DOI: 10.1007/s00216-018-0884-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 12/20/2017] [Accepted: 01/15/2018] [Indexed: 12/24/2022]
|
50
|
Wang Y, Zhang Y, Xiao J, Xu R, Wang Q, Wang X. Simultaneous determination of baicalin, baicalein, wogonoside, wogonin, scutellarin, berberine, coptisine, ginsenoside Rb1 and ginsenoside Re of Banxia xiexin decoction in rat plasma by LC-MS/MS and its application to a pharmacokinetic study. Biomed Chromatogr 2017; 32. [DOI: 10.1002/bmc.4083] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 08/12/2017] [Accepted: 08/19/2017] [Indexed: 12/18/2022]
Affiliation(s)
- Ying Wang
- School of Pharmacy; Shanghai University of Traditional Chinese Medicine; Shanghai China
| | - Yifan Zhang
- School of Pharmacy; Shanghai University of Medicine and Health Sciences; Shanghai China
| | - Juan Xiao
- School of Pharmacy; Shanghai University of Traditional Chinese Medicine; Shanghai China
| | - Ranchi Xu
- School of Pharmacy; Shanghai University of Traditional Chinese Medicine; Shanghai China
| | - Qiangli Wang
- School of Basic Medical Sciences; Shanghai University of Traditional Chinese Medicine; Shanghai China
| | - Xinhong Wang
- School of Pharmacy; Shanghai University of Traditional Chinese Medicine; Shanghai China
| |
Collapse
|