1
|
Wang M, Shen Y, Gao Y, Chen H, Duan F, Li S, Wang G. NQO1 polymorphism and susceptibility to ischemic stroke in a Chinese population. BMC Med Genomics 2024; 17:219. [PMID: 39174970 PMCID: PMC11342592 DOI: 10.1186/s12920-024-01992-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 08/16/2024] [Indexed: 08/24/2024] Open
Abstract
BACKGROUND Ischemic stroke (IS) is a major cause of death and disability worldwide. Genetic factors are important risk factors for the development of IS. The quinone oxidoreductase 1 gene (NQO1) has antioxidant, anti-inflammatory, and cytoprotective properties. Thus, in this study, we investigated the relationship between NQO1 gene polymorphism and the risk of IS. METHODS Peripheral blood was collected from 143 patients with IS and 124 the control groups in Yunnan, China, and NQO1 rs2917673, rs689455, and rs1800566 were genotyped. Logistic regression was used to analyze the relationship between the three NQO1 loci and IS susceptibility. The difference in the expression levels of NQO1 between the control groups and IS groups was verified using public databases and enzyme-linked immunosorbent assay. RESULTS The rs2917673 locus increased the risk of IS by 2.375 times in TT genotype carriers under the co-dominance model compared with CC carriers and was statistically associated with the risk of IS (OR = 2.375, 95% CI = 1.017-5.546, P = 0.046). In the recessive model, TT genotype carriers increased IS risk by 2.407 times compared with CC/CT carriers and were statistically associated with the risk of IS (OR = 2.407, 95% CI = 1.073-5.396, P = 0.033). CONCLUSIONS NQO1 rs2917673 polymorphism is significantly associated with IS. Mutant TT carriers are risk factors for IS.
Collapse
Affiliation(s)
- Min Wang
- School of Clinical Medicine, Dali University, Dali, Yunnan, 671000, PR China
| | - Ying Shen
- The First Hospital of Liangshan, Xichang, Sichuan, 615000, PR China
| | - Yuan Gao
- School of Clinical Medicine, Zhengzhou University, Zhengzhou, Henan, 450001, PR China
| | - Huaqiu Chen
- Xichang People's Hospital, Xichang, Sichuan, 615000, PR China
| | - Fuhui Duan
- Center of Genetic Testing, The First Affiliated Hospital of Dali University, Dali, Yunnan, 671000, PR China
| | - Siying Li
- Center of Genetic Testing, The First Affiliated Hospital of Dali University, Dali, Yunnan, 671000, PR China
| | - Guangming Wang
- School of Clinical Medicine, Dali University, Dali, Yunnan, 671000, PR China.
- Center of Genetic Testing, The First Affiliated Hospital of Dali University, Dali, Yunnan, 671000, PR China.
| |
Collapse
|
2
|
Zhao Y, Han C, Wu Y, Sun Q, Ma M, Xie Z, Sun R, Pei H. Extraction, structural characterization, and antioxidant activity of polysaccharides from three microalgae. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 931:172567. [PMID: 38643871 DOI: 10.1016/j.scitotenv.2024.172567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/10/2024] [Accepted: 04/16/2024] [Indexed: 04/23/2024]
Abstract
Microalgal polysaccharides have received much attention due to their potential value in preventing and regulating oxidative damage. This study aims to reveal the mechanisms of regulating oxidative stress and the differences in the yield, structure, and effect of polysaccharides extracted from three microalgae: Golenkinia sp. polysaccharides (GPS), Chlorella sorokiniana polysaccharides (CPS), and Spirulina subsalsa polysaccharides (SPS). Using the same extraction method, GPS, CPS, and SPS were all heteropoly- saccharides composed of small molecular fraction: the monosaccharides mainly comprised galactose (Gal). Among the three, SPS had a higher proportion of small molecular fraction, and a higher proportion of Gal; thus it had the highest yield and antioxidant activity. GPS, CPS, and SPS all showed strong antioxidant activity in vitro, and showed strong ability to regulate oxidative stress, among which SPS was slightly higher. From the analysis of gene expression, the Nrf2-ARE signalling pathway was an important pathway for GPS, CPS, and SPS to regulate cellular oxidative stress. This study provides a theoretical foundation for further research on the utilization of microalgae polysaccharides and product development.
Collapse
Affiliation(s)
- Yang Zhao
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Chun Han
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Yangyingdong Wu
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Qianchen Sun
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Meng Ma
- School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Zhen Xie
- School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Rong Sun
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Haiyan Pei
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China; School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China; Shandong Provincial Engineering Center on Environmental Science and Technology, Jinan 250061, China; Institute of Eco-Chongming (IEC), Shanghai 202162, China.
| |
Collapse
|
3
|
Dolezal T. How to eliminate pathogen without killing oneself? Immunometabolism of encapsulation and melanization in Drosophila. Front Immunol 2023; 14:1330312. [PMID: 38124757 PMCID: PMC10730662 DOI: 10.3389/fimmu.2023.1330312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 11/22/2023] [Indexed: 12/23/2023] Open
Abstract
Cellular encapsulation associated with melanization is a crucial component of the immune response in insects, particularly against larger pathogens. The infection of a Drosophila larva by parasitoid wasps, like Leptopilina boulardi, is the most extensively studied example. In this case, the encapsulation and melanization of the parasitoid embryo is linked to the activation of plasmatocytes that attach to the surface of the parasitoid. Additionally, the differentiation of lamellocytes that encapsulate the parasitoid, along with crystal cells, is accountable for the melanization process. Encapsulation and melanization lead to the production of toxic molecules that are concentrated in the capsule around the parasitoid and, at the same time, protect the host from this toxic immune response. Thus, cellular encapsulation and melanization represent primarily a metabolic process involving the metabolism of immune cell activation and differentiation, the production of toxic radicals, but also the production of melanin and antioxidants. As such, it has significant implications for host physiology and systemic metabolism. Proper regulation of metabolism within immune cells, as well as at the level of the entire organism, is therefore essential for an efficient immune response and also impacts the health and overall fitness of the organism that survives. The purpose of this "perspective" article is to map what we know about the metabolism of this type of immune response, place it in the context of possible implications for host physiology, and highlight open questions related to the metabolism of this important insect immune response.
Collapse
Affiliation(s)
- Tomas Dolezal
- Faculty of Science, University of South Bohemia, Ceske Budejovice, Czechia
| |
Collapse
|
4
|
Protective Effect of Peptides from Pinctada Martensii Meat on the H 2O 2-Induced Oxidative Injured HepG2 Cells. Antioxidants (Basel) 2023; 12:antiox12020535. [PMID: 36830093 PMCID: PMC9952140 DOI: 10.3390/antiox12020535] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/16/2023] [Accepted: 02/16/2023] [Indexed: 02/23/2023] Open
Abstract
Pinctada martensii is a major marine pearl cultured species in southern China, and its meat is rich in protein, which is an excellent material for the preparation of bioactive peptides. In this study, the peptides from Pinctada martensii meat were prepared by simulated gastrointestinal hydrolysis, and after multistep purification, the structures of the peptides were identified, followed by the solid-phase synthesis of the potential antioxidant peptides. Finally, the antioxidant activities of the peptides were verified using HepG2 cells, whose oxidative stress was induced by hydrogen peroxide (H2O2). It was shown that the antioxidant peptide (S4) obtained from Pinctada martensii meat could significantly increase the cell viability of HepG2 cells. S4 could also scavenge reactive oxygen species (ROS) and reduce the lactate dehydrogenase (LDH) level. In addition, it could enhance the production of glutathione (GSH) and catalase (CAT) in HepG2 cells, as well as the expression of key genes in the Nrf2 signaling pathway. Three novel antioxidant peptides, arginine-leucine (RL), arginine-glycine-leucine (RGL), and proline-arginine (PR), were also identified. In conclusion, peptides from Pinctada martensii meat and three synthetic peptides (RGL, RL, PR) showed antioxidant activity and could have the potential to be used as antioxidant candidates in functional foods.
Collapse
|
5
|
Xu Y, Deng T, Xie L, Qin T, Sun T. Neuroprotective effects of hawthorn leaf flavonoids in
Aβ
25–35
‐induced
Alzheimer's disease model. Phytother Res 2022; 37:1346-1365. [PMID: 36447359 DOI: 10.1002/ptr.7690] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 10/17/2022] [Accepted: 11/06/2022] [Indexed: 12/02/2022]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease characterized by β-amyloid (Aβ) plaques, neurofibrillary tangles, neuronal cell loss, and oxidative stress. Further deposition of Aβ in the brain induces oxidative stress, neuroinflammation, and memory dysfunction. Hawthorn (Crataegus pinnatifida Bge.) leaf, a known traditional Chinese medicine, is commonly used for the treatment of hyperlipidemia, heart palpitations, forgetfulness, and tinnitus, and its main bioactive components are Hawthorn Leaf Flavonoids (HLF). In this study, we investigated the neuroprotective effects of the HLF on the Aβ25-35 (bilateral hippocampus injection) rat model of AD. The results showed that the oral administration of HLF at a dose of 50, 100, and 200 mg/kg for 30 days significantly ameliorated neuronal cell damage and memory deficits, and markedly increased the enzyme activities of superoxide dismutase and catalase, and the content of glutathione whereas it decreased the malondialdehyde content in the Aβ25-35 rat model of AD as well as suppressed the activation of astrocytes. In addition, HLF up-regulated Nrf-2, NQO-1, and HO-1 protein expressions. Also, it reduced neuroinflammation by inhibiting activation of astrocytes. In summary, these results indicated that HLF decreased the oxidative stress via activating Nrf-2/antioxidant response element signaling pathways, and may suggest as a potential candidate for AD therapeutic agent.
Collapse
Affiliation(s)
- Ying Xu
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province Hospital of Chengdu University of Traditional Chinese Medicine Chengdu People's Republic of China
| | - Ting Deng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy Chengdu University of Traditional Chinese Medicine Chengdu People's Republic of China
| | - Linjiang Xie
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy Chengdu University of Traditional Chinese Medicine Chengdu People's Republic of China
| | - Tao Qin
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy Chengdu University of Traditional Chinese Medicine Chengdu People's Republic of China
| | - Tao Sun
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy Chengdu University of Traditional Chinese Medicine Chengdu People's Republic of China
| |
Collapse
|
6
|
Lu YH, Hong Y, Zhang TY, Chen YX, Wei ZJ, Gao CY. Rosmarinic acid exerts anti-inflammatory effect and relieves oxidative stress via Nrf2 activation in carbon tetrachloride-induced liver damage. Food Nutr Res 2022; 66:8359. [PMID: 36590857 PMCID: PMC9793765 DOI: 10.29219/fnr.v66.8359] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 06/24/2022] [Accepted: 08/15/2022] [Indexed: 11/19/2022] Open
Abstract
Background Rosmarinic acid (RA) has biological and pharmaceutical properties and shows hepatoprotective potential. However, the hepatoprotective mechanism of RA needs to be further elucidated in vivo and in vitro. Objective This study was aimed to evaluate the protective effect of RA on carbon tetrachloride (CCl4)-induced liver injury and elucidate the hepatoprotective mechanism of RA in vivo and in vitro. Design In vivo, the mice were orally administrated with RA (10, 20, and 40 mg/kg bw) daily for 28 consecutive days, and 1% CCl4 (5 mL/kg bw, dissolved in peanut oil) was used to induce liver injury. In vitro, the big rat liver (BRL) hepatocytes were pretreated with RA (0.2, 0.4, and 0.8 mg/mL) for 3 h, and then the hepatocytes were treated with CC14 (final concentration, 14 mM) for 3 h to induce cell injury. The related indexes, including hepatic function, oxidative stress, protein expression of nuclear-factor erythroid 2-related factor 2 (Nrf2) pathway, inflammation, histopathological change, hepatocyte apoptosis, and mitochondrial membrane potential, were evaluated. Results Oral administration of RA to mice considerably decreased the CCl4-induced elevation of serum alanine aminotransferase (ALT), alkaline phosphatase (ALP), triacylglycerols (TG), total cholesterol (TC), total bilirubin (TBIL), hepatic reactive oxygen species (ROS), malondialdehyde (MDA), nitric oxide (NO), 8-hydroxydeoxyguanosine (8-OHdG), tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and interleukin-8 (IL-8). RA also increased the levels of hepatic glutathione (GSH), superoxide dismutase (SOD), and catalase (CAT) and the protein expressions of Nrf2, quinine oxidoreductase (NQO1), and heme oxygenease-1 (HO-1). Histopathological examinations indicated that RA (20 and 40 mg/kg bw) alleviated the liver tissue injury induced by CCl4. Moreover, RA inhibited the hepatocyte apoptosis caused by CCl4 based on TUNEL assay. In vitro, RA pretreatment remarkably recovered the cell viability and reduced the CCl4-induced elevation of AST, ALT, lactate dehydrogenase (LDH), ROS, and 8-OHdG. Immunohistochemistry staining demonstrated that pretreatment with RA markedly inhibited the expression of IL-6, inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), and Caspase-3 in CCl4-treated hepatocytes. Additionally, RA pretreatment significantly decreased the elevation of mitochondrial membrane potential in CCl4-treated hepatocytes. Conclusions RA exerted a protective effect against CCl4-induced liver injury in mice through activating Nrf2 signaling pathway, reducing antioxidant damage, suppressing inflammatory response, and inhibiting hepatocyte apoptosis. RA could attenuate BRL hepatocyte ROS production, DNA oxidative damage, inflammatory response, and apoptosis induced by CCl4 exposure.
Collapse
Affiliation(s)
- Yue-hong Lu
- College of Bioscience and Bioengineering, North Minzu University, Yinchuan, China
| | - Yue Hong
- School of Public Health, Dali University, Dali, China
| | | | - You-xia Chen
- School of Public Health, Dali University, Dali, China
| | - Zhao-jun Wei
- College of Bioscience and Bioengineering, North Minzu University, Yinchuan, China,School of Food Science and Engineering, Hefei University of Technology, Hefei, China
| | - Chun-yan Gao
- College of Bioscience and Bioengineering, North Minzu University, Yinchuan, China,Chun-yan Gao, College of Bioscience and Bioengineering, North Minzu University, No. 204, North Street of Wenchang, Xixia district, Yinchuan 750021 China.
| |
Collapse
|
7
|
Significance of Specific Oxidoreductases in the Design of Hypoxia-Activated Prodrugs and Fluorescent Turn Off–On Probes for Hypoxia Imaging. Cancers (Basel) 2022; 14:cancers14112686. [PMID: 35681666 PMCID: PMC9179281 DOI: 10.3390/cancers14112686] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 05/08/2022] [Accepted: 05/26/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary Hypoxia-activated prodrugs (HAPs), selectively reduced by specific oxidoreductases under hypoxic conditions, form cytotoxic agents damaging the local cancer cells. On the basis of the reported clinical data concerning several HAPs, one can draw conclusions regarding their preclinical attractiveness and, regrettably, the low efficacy of Phase III clinical trials. Clinical failure may be explained, inter alia, by the lack of screening of patients on the basis of tumor hypoxia and low availability of specific oxidoreductases involved in HAP activation. There is surprisingly little information on the quantification of these enzymes in cells or tissues, compared to the advanced research associated with the use of HAPs. Our knowledge about the expression and activity of these enzymes in various cancer cell lines under hypoxic conditions is inadequate. Only in a few cases were researchers able to demonstrate the differences in the expression or activity of selected oxidoreductases, depending on the oxygen concentration. Additionally, it was cell line dependent. More systematic studies are required. The optical probes, based on turning on the fluorescence emission upon irreversible reduction catalyzed by the overexpressed oxidoreductases, can be helpful in this type of research. Ultimately, such sensors can estimate both the oxidoreductase activity and the degree of oxygenation in one step. To achieve this goal, their response must be correlated with the expression or activity of enzymes potentially involved in turning on their emissions, as determined by biochemical methods. In conclusion, the incorporation of biomarkers to identify hypoxia is a prerequisite for successful HAP therapies. However, it is equally important to assess the level of specific oxidoreductases required for their activation. Abstract Hypoxia is one of the hallmarks of the tumor microenvironment and can be used in the design of targeted therapies. Cellular adaptation to hypoxic stress is regulated by hypoxia-inducible factor 1 (HIF-1). Hypoxia is responsible for the modification of cellular metabolism that can result in the development of more aggressive tumor phenotypes. Reduced oxygen concentration in hypoxic tumor cells leads to an increase in oxidoreductase activity that, in turn, leads to the activation of hypoxia-activated prodrugs (HAPs). The same conditions can convert a non-fluorescent compound into a fluorescent one (fluorescent turn off–on probes), and such probes can be designed to specifically image hypoxic cancer cells. This review focuses on the current knowledge about the expression and activity of oxidoreductases, which are relevant in the activation of HAPs and fluorescent imaging probes. The current clinical status of HAPs, their limitations, and ways to improve their efficacy are briefly discussed. The fluorescence probes triggered by reduction with specific oxidoreductase are briefly presented, with particular emphasis placed on those for which the correlation between the signal and enzyme expression determined with biochemical methods is achievable.
Collapse
|
8
|
Islam F, Leung KK, Walker MD, Al Massri S, Shilton BH. The Unusual Cosubstrate Specificity of NQO2: Conservation Throughout the Amniotes and Implications for Cellular Function. Front Pharmacol 2022; 13:838500. [PMID: 35517822 PMCID: PMC9065289 DOI: 10.3389/fphar.2022.838500] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 03/23/2022] [Indexed: 12/19/2022] Open
Abstract
Human Quinone Reductase 2 (NQO2) is a pharmacological target and has appeared in numerous screening efforts as an off-target interactor with kinase-targeted drugs. However the cellular functions of NQO2 are not known. To gain insight into the potential cellular functions of NQO2, we have carried out a detailed evolutionary analysis. One of the most striking characteristics of NQO2 is that it uses conventional dihydronicotinamide cosubstrates, NADH and NADPH, extremely inefficiently, raising questions about an enzymatic function in cells. To characterize the ability of NQO2 to serve as an enzyme, the NQO2 gene was disrupted in HCT116 cells. These NQO2 knockouts along with the parental cells were used to demonstrate that cellular NQO2 is unable to catalyze the activation of the DNA cross-linking reagent, CB1954, without the addition of exogenous dihydronicotinamide riboside (NRH). To find whether the unusual cosubstrate specificity of NQO2 has been conserved in the amniotes, recombinant NQO2 from a reptile, Alligator mississippiensis, and a bird, Anas platyrhynchos, were cloned, purified, and their catalytic activity characterized. Like the mammalian enzymes, the reptile and bird NQO2 were efficient catalysts with the small and synthetic cosubstrate N-benzyl-1,4-dihydronicotinamide but were inefficient in their use of NADH and NADPH. Therefore, the unusual cosubstrate preference of NQO2 appears to be conserved throughout the amniotes; however, we found that NQO2 is not well-conserved in the amphibians. A phylogenetic analysis indicates that NQO1 and NQO2 diverged at the time, approximately 450 MYA, when tetrapods were beginning to evolve.
Collapse
Affiliation(s)
- Faiza Islam
- Department of Biochemistry, University of Western Ontario, London, ON, Canada
| | - Kevin K Leung
- Department of Biochemistry, University of Western Ontario, London, ON, Canada.,Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, United States
| | - Matthew D Walker
- Department of Biochemistry, University of Western Ontario, London, ON, Canada
| | - Shahed Al Massri
- Department of Biochemistry, University of Western Ontario, London, ON, Canada
| | - Brian H Shilton
- Department of Biochemistry, University of Western Ontario, London, ON, Canada
| |
Collapse
|
9
|
Nephrotoxicity evaluation and proteomic analysis in kidneys of rats exposed to thioacetamide. Sci Rep 2022; 12:6837. [PMID: 35477741 PMCID: PMC9046159 DOI: 10.1038/s41598-022-11011-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 04/18/2022] [Indexed: 11/18/2022] Open
Abstract
Thioacetamide (TAA) was administered orally at 0, 10, and 30 mg/kg body weight (BW) daily to Sprague–Dawley rats aged 6–7 weeks for 28 consecutive days. Nephrotoxicity and proteomics were evaluated in the kidneys of rats exposed to TAA. The BW decreased, however, the relative kidneys weight increased. No significant histopathologic abnormalities were found in the kidneys. The numbers of monocytes and platelets were significantly increased. However, the mean corpuscular volume and hematocrit values were decreased significantly in rats exposed to 30 mg/kg BW TAA. The expression levels of Kim-1 and NGAL were increased 4 to 5-fold in the kidneys, resulting in significant nephrotoxicity. Proteomic analysis was conducted and a total of 5221 proteins spots were resolved. Of these, 3 and 21 protein spots were up- and downregulated, respectively. The validation of seven proteins was performed by Western blot analysis. The expression level of ASAP2 was significantly upregulated, whereas RGS14, MAP7Dl, IL-3Rα, Tmod1, NQO2, and MUP were reduced. Sixteen isoforms of MUP were found by the 2DE immunoblot assay and were significantly downregulated with increasing exposure to TAA. MUP isoforms were compared in the liver, kidneys, and urine of untreated rats and a total of 43 isoforms were found.
Collapse
|
10
|
Shiraiwa M, Kitakaze T, Yamashita Y, Ukawa Y, Mukai K, Ashida H. Pectolinarigenin Induces Antioxidant Enzymes through Nrf2/ARE Pathway in HepG2 Cells. Antioxidants (Basel) 2022; 11:675. [PMID: 35453360 PMCID: PMC9029185 DOI: 10.3390/antiox11040675] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 03/24/2022] [Accepted: 03/29/2022] [Indexed: 02/04/2023] Open
Abstract
Pectolinarigenin (PG) and its glycoside pectolinarin (PN) were reported to have various health beneficial functions such as anti-inflammatory and anti-carcinogenic activities. It has also been reported that PG and PN have radical scavenging ability as direct antioxidant activity. However, the indirect antioxidant activity of PG and PN by inducing antioxidant enzymes in hepatocytes is not fully understood yet. In this study, we investigated whether PG and PN increase expression of antioxidant enzymes through the nuclear factor-erythroid-2-related factor 2 (Nrf2)-mediated pathway in human hepatoma HepG2 cells and the liver of male ICR mice. PG, but not PN, induced antioxidant enzymes, namely heme oxigenase-1, NAD(P)H:quinone oxidoreductase 1, and aldo-keto reductase family 1 member B10, in HepG2 cells. As for the induction mechanism of these enzymes, PG-induced nuclear accumulation of Nrf2 increased antioxidant response element (ARE)-mediated transcriptional activity and suppressed degradation of Nrf2 through modification of Kelch-like EXH-associated protein 1. Oral administration of PG also induced nuclear accumulation Nrf2 and expression of antioxidant enzymes in the liver of mice. Therefore, PG, but not PN, exhibits the indirect antioxidant activity by inducing antioxidant enzymes through the Nrf2/ARE pathway and may protect liver from oxidative stress.
Collapse
Affiliation(s)
- Mariko Shiraiwa
- Department of Agrobioscience, Graduate School of Agricultural Science, Kobe University, Nada-ku, Kobe 657-8501, Japan; (M.S.); (Y.Y.)
| | - Tomoya Kitakaze
- Graduate School of Life & Environmental Sciences, Osaka Prefecture University, Osaka 599-8531, Japan;
| | - Yoko Yamashita
- Department of Agrobioscience, Graduate School of Agricultural Science, Kobe University, Nada-ku, Kobe 657-8501, Japan; (M.S.); (Y.Y.)
| | - Yuichi Ukawa
- Healthcare SBU Business Strategy, Daicel Corporation, Tokyo 108-8259, Japan; (Y.U.); (K.M.)
| | - Katsuyuki Mukai
- Healthcare SBU Business Strategy, Daicel Corporation, Tokyo 108-8259, Japan; (Y.U.); (K.M.)
| | - Hitoshi Ashida
- Department of Agrobioscience, Graduate School of Agricultural Science, Kobe University, Nada-ku, Kobe 657-8501, Japan; (M.S.); (Y.Y.)
| |
Collapse
|
11
|
Preethi S, Arthiga K, Patil AB, Spandana A, Jain V. Review on NAD(P)H dehydrogenase quinone 1 (NQO1) pathway. Mol Biol Rep 2022; 49:8907-8924. [PMID: 35347544 DOI: 10.1007/s11033-022-07369-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 03/11/2022] [Indexed: 12/14/2022]
Abstract
NQO1 is an enzyme present in humans which is encoded by NQO1 gene. It is a protective antioxidant agent, versatile cytoprotective agent and regulates the oxidative stresses of chromatin binding proteins for DNA damage in cancer cells. The oxidization of cellular pyridine nucleotides causes structural alterations to NQO1 and changes in its capacity to binding of proteins. A strategy based on NQO1 to have protective effect against cancer was developed by organic components to enhance NQO1 expression. The quinone derivative compounds like mitomycin C, RH1, E09 (Apaziquone) and β-lapachone causes cell death by NQO1 reduction of two electrons. It was also known to be overexpressed in various tumor cells of breast, lung, cervix, pancreas and colon when it was compared with normal cells in humans. The mechanism of NQO1 by the reduction of FAD by NADPH to form FADH2 is by two ways to inhibit cancer cell development such as suppression of carcinogenic metabolic activation and prevention of carcinogen formation. The NQO1 exhibit suppression of chemical-mediated carcinogenesis by various properties of NQO1 which includes, detoxification of quinone scavenger of superoxide anion radical, antioxidant enzyme, protein stabilizer. This review outlines the NQO1 structure, mechanism of action to inhibit the cancer cell, functions of NQO1 against oxidative stress, drugs acting on NQO1 pathways, clinical significance.
Collapse
Affiliation(s)
- S Preethi
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Sri Shivarathreeshwara Nagar, Mysuru, Karnataka, 570015, India
| | - K Arthiga
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Sri Shivarathreeshwara Nagar, Mysuru, Karnataka, 570015, India
| | - Amit B Patil
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Sri Shivarathreeshwara Nagar, Mysuru, Karnataka, 570015, India
| | - Asha Spandana
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Sri Shivarathreeshwara Nagar, Mysuru, Karnataka, 570015, India
| | - Vikas Jain
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Sri Shivarathreeshwara Nagar, Mysuru, Karnataka, 570015, India.
| |
Collapse
|
12
|
Elhemely MA, Belgath AA, El-Sayed S, Burusco KK, Kadirvel M, Tirella A, Finegan K, Bryce RA, Stratford IJ, Freeman S. SAR of Novel 3-Arylisoquinolinones: meta-Substitution on the Aryl Ring Dramatically Enhances Antiproliferative Activity through Binding to Microtubules. J Med Chem 2022; 65:4783-4797. [PMID: 35290041 PMCID: PMC9098178 DOI: 10.1021/acs.jmedchem.1c01936] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A set of meta-substituted 3-arylisoquinolinones have been identified that show substantial cytotoxicity in breast, liver, lung and colon cancer cell lines; these are up to 700-fold more active than the corresponding para analogues. These compounds were initially proposed as inhibitors of N-ribosyl dihydronicotinamide (NRH): quinone oxidoreductase 2 (NQO2) but were found to be inactive against the enzyme. Instead, COMPARE analysis suggested that 6-fluoro-3-(meta-fluorophenyl)isoquinolin-1(2H)-one (4) could mimic colchicine and interact with microtubules, a recognized target for cancer therapy. Subsequent docking, molecular dynamics simulations, and free energy analysis further suggested that compound 4 bound well into the colchicine-binding pocket of tubulin. Indeed, 4 suppressed tubulin polymerization, caused G2/M cell cycle arrest, and induced apoptosis. Also, 4 inhibited the formation of endothelial cell capillary-like tubes and further disrupted the structure of preestablished tubes; the effects were not observed with para analogue 5. In accordance with this, the computed free energy of binding of 5 to tubulin was lower in magnitude than that for 4 and appeared to arise in part from the inability of the para substituent to occupy a tubulin subpocket, which is possible in the meta orientation. In conclusion, the antiproliferative potential of the novel 3-arylisoquinolinones is markedly influenced by a subtle change in the structure (meta versus para). The meta-substituted isoquinolinone 4 is a microtubule-destabilizing agent with potential tumor-selectivity and antiangiogenic and vascular disrupting features.
Collapse
Affiliation(s)
- Mai A Elhemely
- Division of Pharmacy & Optometry, School of Health Sciences, Faculty of Biology, Medicine & Health, University of Manchester, Manchester M13 9PT, U.K.,Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt
| | - Asma A Belgath
- Division of Pharmacy & Optometry, School of Health Sciences, Faculty of Biology, Medicine & Health, University of Manchester, Manchester M13 9PT, U.K
| | - Sherihan El-Sayed
- Division of Pharmacy & Optometry, School of Health Sciences, Faculty of Biology, Medicine & Health, University of Manchester, Manchester M13 9PT, U.K.,Department of Medicinal Chemistry, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| | - Kepa K Burusco
- Division of Pharmacy & Optometry, School of Health Sciences, Faculty of Biology, Medicine & Health, University of Manchester, Manchester M13 9PT, U.K
| | - Manikandan Kadirvel
- Division of Pharmacy & Optometry, School of Health Sciences, Faculty of Biology, Medicine & Health, University of Manchester, Manchester M13 9PT, U.K
| | - Annalisa Tirella
- Division of Pharmacy & Optometry, School of Health Sciences, Faculty of Biology, Medicine & Health, University of Manchester, Manchester M13 9PT, U.K.,BIOtech Center for Biomedical Technologies, Department of Industrial Engineering, University of Trento, Via delle Regole 101, Trento 38123, Italy
| | - Katherine Finegan
- Division of Pharmacy & Optometry, School of Health Sciences, Faculty of Biology, Medicine & Health, University of Manchester, Manchester M13 9PT, U.K
| | - Richard A Bryce
- Division of Pharmacy & Optometry, School of Health Sciences, Faculty of Biology, Medicine & Health, University of Manchester, Manchester M13 9PT, U.K
| | - Ian J Stratford
- Division of Pharmacy & Optometry, School of Health Sciences, Faculty of Biology, Medicine & Health, University of Manchester, Manchester M13 9PT, U.K
| | - Sally Freeman
- Division of Pharmacy & Optometry, School of Health Sciences, Faculty of Biology, Medicine & Health, University of Manchester, Manchester M13 9PT, U.K
| |
Collapse
|
13
|
Li X, Li Y, Ning KG, Chen S, Guo L, Bonzo JA, Mei N. The expression of Phase II drug-metabolizing enzymes in human B-lymphoblastoid TK6 cells. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART C, TOXICOLOGY AND CARCINOGENESIS 2022; 40:106-118. [PMID: 35895929 PMCID: PMC9346962 DOI: 10.1080/26896583.2022.2044242] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In vitro genotoxicity testing plays an important role in chemical risk assessment. The human B-lymphoblastoid cell line TK6 is widely used as a standard cell line for regulatory safety evaluations. Like many other mammalian cell lines, TK6 cells have limited metabolic capacity; therefore, usually require a source of exogenous metabolic activation for use in genotoxicity testing. Previously, we developed a set of TK6-derived cell lines that individually express one of fourteen cytochrome P450s (CYPs). In the present study, we surveyed a panel of major Phase II drug-metabolizing enzymes to characterize their baseline expression in TK6 cells. These results may serve as a reference enzymatic profile of this commonly used cell line.
Collapse
Affiliation(s)
- Xilin Li
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, USA
| | - Yuxi Li
- Division of Biochemical Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, USA
| | - Kylie G. Ning
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, USA
- Krieger School of Arts and Sciences, Johns Hopkins University, Baltimore, MD, USA
| | - Si Chen
- Division of Biochemical Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, USA
| | - Lei Guo
- Division of Biochemical Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, USA
| | - Jessica A. Bonzo
- Division of Pharmacology/Toxicology for Immunology and Inflammation, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, USA
| | - Nan Mei
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, USA
| |
Collapse
|
14
|
Research advances in NQO1-responsive prodrugs and nanocarriers for cancer treatment. Future Med Chem 2022; 14:363-383. [PMID: 35102756 DOI: 10.4155/fmc-2021-0289] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
NAD(P)H: quinine oxidoreductase (NQO1) is a class of flavoprotein enzymes commonly expressed in eukaryotic cells. It actively participates in the metabolism of various quinones and their in vivo bioactivation through electron reduction reactions. The expression level of NQO1 is highly upregulated in many solid tumor cells compared with that in normal cells. NQO1 has been considered a candidate molecular target because of its overexpression and bioactivity in different tumors. NQO1-responsive prodrugs and nanocarriers have recently been identified as effective objectives for achieving controlled drug release, reducing adverse reactions and improving clinical efficacy. This review systematically introduces the research advances in applying NQO1-responsive prodrugs and nanocarriers to cancer treatment. It also discusses the existing problems and the developmental prospects of these two antitumor drug delivery systems.
Collapse
|
15
|
Voronin MV, Kadnikov IA, Zainullina LF, Logvinov IO, Verbovaya ER, Antipova TA, Vakhitova YV, Seredenin SB. Neuroprotective Properties of Quinone Reductase 2 Inhibitor M-11, a 2-Mercaptobenzimidazole Derivative. Int J Mol Sci 2021; 22:13061. [PMID: 34884863 PMCID: PMC8658107 DOI: 10.3390/ijms222313061] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 11/29/2021] [Accepted: 11/29/2021] [Indexed: 01/03/2023] Open
Abstract
The ability of NQO2 to increase the production of free radicals under enhanced generation of quinone derivatives of catecholamines is considered to be a component of neurodegenerative disease pathogenesis. The present study aimed to investigate the neuroprotective mechanisms of original NQO2 inhibitor M-11 (2-[2-(3-oxomorpholin-4-il)-ethylthio]-5-ethoxybenzimidazole hydrochloride) in a cellular damage model using NQO2 endogenous substrate adrenochrome (125 µM) and co-substrate BNAH (100 µM). The effects of M-11 (10-100 µM) on the reactive oxygen species (ROS) generation, apoptosis and lesion of nuclear DNA were evaluated using flow cytometry and single-cell gel electrophoresis assay (comet assay). Results were compared with S29434, the reference inhibitor of NQO2. It was found that treatment of HT-22 cells with M-11 results in a decline of ROS production triggered by incubation of cells with NQO2 substrate and co-substrate. Pre-incubation of HT-22 cells with compounds M-11 or S29434 results in a decrease of DNA damage and late apoptotic cell percentage reduction. The obtained results provide a rationale for further development of the M-11 compound as a potential neuroprotective agent.
Collapse
Affiliation(s)
- Mikhail V. Voronin
- Department of Pharmacogenetics, Federal State Budgetary Institution “Research Zakusov Institute of Pharmacology”, Baltiyskaya Street 8, 125315 Moscow, Russia; (L.F.Z.); (I.O.L.); (E.R.V.); (T.A.A.)
| | - Ilya A. Kadnikov
- Department of Pharmacogenetics, Federal State Budgetary Institution “Research Zakusov Institute of Pharmacology”, Baltiyskaya Street 8, 125315 Moscow, Russia; (L.F.Z.); (I.O.L.); (E.R.V.); (T.A.A.)
| | | | | | | | | | - Yulia V. Vakhitova
- Department of Pharmacogenetics, Federal State Budgetary Institution “Research Zakusov Institute of Pharmacology”, Baltiyskaya Street 8, 125315 Moscow, Russia; (L.F.Z.); (I.O.L.); (E.R.V.); (T.A.A.)
| | - Sergei B. Seredenin
- Department of Pharmacogenetics, Federal State Budgetary Institution “Research Zakusov Institute of Pharmacology”, Baltiyskaya Street 8, 125315 Moscow, Russia; (L.F.Z.); (I.O.L.); (E.R.V.); (T.A.A.)
| |
Collapse
|
16
|
Liu H, Zhang W, Deng X, Ma Y, Liu Y. Association of NQO1 levels and its genetic polymorphism with susceptibility to methamphetamine dependence. Mol Genet Genomic Med 2021; 9:e1789. [PMID: 34467676 PMCID: PMC8580086 DOI: 10.1002/mgg3.1789] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 08/11/2021] [Accepted: 08/13/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND The quinone oxidoreductase 1 (NQO1) gene was involved in the pathophysiological process of illicit drugs abuse, and its polymorphisms might be associated with methamphetamine (METH) dependence susceptibility. The purpose of this study was to examine the NQO1 mRNA and protein levels and to analyze the 609C/T polymorphism (rs1800566) between METH-dependent patients and controls. METHODS A total of 392 METH-dependent patients (cases) and 669 healthy controls (controls) were enrolled in the study. The quantitative real-time polymerase chain reaction (RT-qPCR) and enzyme-linked immunosorbent assay (ELISA) were used to detect the relative expressions of NQO1 mRNA in PBMCs and protein levels in plasma, respectively. PCR-restriction fragment length polymorphism (RFLP-PCR) and direct-sequencing genotyping were used to detect the alleles and genotypes of NQO1 609C/T polymorphism. RESULTS The levels of NQO1 mRNA in cases (3.2650 ± 2.2943) was significantly higher than in controls (1.0125 ± 0.7959) (p < 0.001), the plasma protein in cases (0.2368 ± 0.1486) was significantly lower than in controls (0.5844 ± 0.1742) (p < 0.001). The T allele of the 609C/T polymorphism significantly increased the risk of METH dependence (p = 0.032, OR = 1.214, 95%CI = 1.017-1.450). The TC and TC/TT genotypes of 609C/T were observed significantly more frequently in cases than in controls, respectively (TC vs CC: p = 0.012, OR = 1.457, 95% CI = 1.087-1.952; TC/TT vs CC: p = 0.008, OR = 1.460, 95% CI = 1.102-1.935). Similar results were obtained after adjusting for age and sex. We failed to find that any genotype of 609C/T polymorphism affected the mRNA or plasma protein levels in controls, respectively (p > 0.05). CONCLUSION The findings suggested that NQO1 might play an important role in the pathophysiological process of METH dependence, and the 609C/T polymorphism might contribute to the susceptibility to METH dependence in a Chinese Han population.
Collapse
Affiliation(s)
- Huan Liu
- Department of Preventive MedicineNorth Sichuan Medical CollegeNanchongSichuanChina
- Department of Forensic MedicineNorth Sichuan Medical CollegeNanchongSichuanChina
| | - Wei Zhang
- Department of Forensic MedicineNorth Sichuan Medical CollegeNanchongSichuanChina
| | - Xiao‐Dong Deng
- Department of Forensic MedicineNorth Sichuan Medical CollegeNanchongSichuanChina
| | - Ying Ma
- Department of NeurologyAffiliated Hospital of North Sichuan Medical CollegeNanchongSichuanChina
| | - Yun Liu
- Department of Forensic MedicineNorth Sichuan Medical CollegeNanchongSichuanChina
- Sichuan Key Laboratory of Medical ImagingNorth Sichuan Medical CollegeNanchongSichuanChina
| |
Collapse
|
17
|
Empowering Melatonin Therapeutics with Drosophila Models. Diseases 2021; 9:diseases9040067. [PMID: 34698120 PMCID: PMC8544433 DOI: 10.3390/diseases9040067] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 09/14/2021] [Accepted: 09/22/2021] [Indexed: 12/15/2022] Open
Abstract
Melatonin functions as a central regulator of cell and organismal function as well as a neurohormone involved in several processes, e.g., the regulation of the circadian rhythm, sleep, aging, oxidative response, and more. As such, it holds immense pharmacological potential. Receptor-mediated melatonin function mainly occurs through MT1 and MT2, conserved amongst mammals. Other melatonin-binding proteins exist. Non-receptor-mediated activities involve regulating the mitochondrial function and antioxidant cascade, which are frequently affected by normal aging as well as disease. Several pathologies display diseased or dysfunctional mitochondria, suggesting melatonin may be used therapeutically. Drosophila models have extensively been employed to study disease pathogenesis and discover new drugs. Here, we review the multiple functions of melatonin through the lens of functional conservation and model organism research to empower potential melatonin therapeutics to treat neurodegenerative and renal diseases.
Collapse
|
18
|
Fukami T, Yokoi T, Nakajima M. Non-P450 Drug-Metabolizing Enzymes: Contribution to Drug Disposition, Toxicity, and Development. Annu Rev Pharmacol Toxicol 2021; 62:405-425. [PMID: 34499522 DOI: 10.1146/annurev-pharmtox-052220-105907] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Most clinically used drugs are metabolized in the body via oxidation, reduction, or hydrolysis reactions, which are considered phase I reactions. Cytochrome P450 (P450) enzymes, which primarily catalyze oxidation reactions, contribute to the metabolism of over 50% of clinically used drugs. In the last few decades, the function and regulation of P450s have been extensively studied, whereas the characterization of non-P450 phase I enzymes is still incomplete. Recent studies suggest that approximately 30% of drug metabolism is carried out by non-P450 enzymes. This review summarizes current knowledge of non-P450 phase I enzymes, focusing on their roles in controlling drug efficacy and adverse reactions as an important aspect of drug development. Expected final online publication date for the Annual Review of Pharmacology and Toxicology, Volume 62 is January 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Tatsuki Fukami
- Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences, and WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan;
| | - Tsuyoshi Yokoi
- Department of Drug Safety Sciences, Nagoya University Graduate School of Medicine, Showa-ku, Nagoya 466-8550, Japan
| | - Miki Nakajima
- Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences, and WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan;
| |
Collapse
|
19
|
Improving Sperm Oxidative Stress and Embryo Quality in Advanced Paternal Age Using Idebenone In Vitro-A Proof-of-Concept Study. Antioxidants (Basel) 2021; 10:antiox10071079. [PMID: 34356315 PMCID: PMC8301200 DOI: 10.3390/antiox10071079] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 06/25/2021] [Accepted: 07/02/2021] [Indexed: 12/29/2022] Open
Abstract
Advanced paternal age is associated with increased sperm reactive oxygen species (ROS) and decreased fertilization and pregnancy rates. Sperm washing during infertility treatment provides an opportunity to reduce high sperm ROS concentrations associated with advanced paternal age through the addition of idebenone. Sperm from men aged >40 years and older CBAF1 mice (12–18 months), were treated with 5 µM and 50 µM of idebenone and intracellular and superoxide ROS concentrations assessed. Following in vitro fertilization (IVF), embryo development, blastocyst differentiation, DNA damage and cryosurvival, pregnancy and implantation rates and fetal and placental weights were assessed. Five µM of idebenone given to aged human and mouse sperm reduced superoxide concentrations ~20% (p < 0.05), while both 5 and 50 µM reduced sperm intracellular ROS concentrations in mice ~30% (p < 0.05). Following IVF, 5 µM of idebenone to aged sperm increased fertilization rates (65% vs. 60%, p < 0.05), blastocyst total, trophectoderm and inner cell mass cell numbers (73 vs. 66, 53 vs. 47 and 27 vs. 24, respectively, p < 0.01). Treatment with idebenone also increased blastocyst cryosurvival rates (96% vs. 78%, p < 0.01) and implantation rates following embryo transfer (35% vs. 18%, p < 0.01). Placental weights were smaller (107 mg vs. 138 mg, p < 0.05), resulting in a larger fetal to placental weight ratio (8.3 vs. 6.3, p = 0.07) after sperm idebenone treatment. Increased sperm ROS concentrations associated with advanced paternal age are reduced with the addition of idebenone in vitro, and are associated with improved fertilization rates, embryo quality and implantation rates after IVF.
Collapse
|
20
|
Rashid MH, Babu D, Siraki AG. Interactions of the antioxidant enzymes NAD(P)H: Quinone oxidoreductase 1 (NQO1) and NRH: Quinone oxidoreductase 2 (NQO2) with pharmacological agents, endogenous biochemicals and environmental contaminants. Chem Biol Interact 2021; 345:109574. [PMID: 34228969 DOI: 10.1016/j.cbi.2021.109574] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 06/17/2021] [Accepted: 07/01/2021] [Indexed: 01/11/2023]
Abstract
NAD(P)H Quinone Oxidoreductase 1 (NQO1) is an antioxidant enzyme that catalyzes the two-electron reduction of several different classes of quinone-like compounds (quinones, quinone imines, nitroaromatics, and azo dyes). One-electron reduction of quinone or quinone-like metabolites is considered to generate semiquinones to initiate redox cycling that is responsible for the generation of reactive oxygen species and oxidative stress and may contribute to the initiation of adverse drug reactions and adverse health effects. On the other hand, the two-electron reduction of quinoid compounds appears important for drug activation (bioreductive activation) via chemical rearrangement or autoxidation. Two-electron reduction decreases quinone levels and opportunities for the generation of reactive species that can deplete intracellular thiol pools. Also, studies have shown that induction or depletion (knockout) of NQO1 were associated with decreased or increased susceptibilities to oxidative stress, respectively. Moreover, another member of the quinone reductase family, NRH: Quinone Oxidoreductase 2 (NQO2), has a significant functional and structural similarity with NQO1. The activity of both antioxidant enzymes, NQO1 and NQO2, becomes critically important when other detoxification pathways are exhausted. Therefore, this article summarizes the interactions of NQO1 and NQO2 with different pharmacological agents, endogenous biochemicals, and environmental contaminants that would be useful in the development of therapeutic approaches to reduce the adverse drug reactions as well as protection against quinone-induced oxidative damage. Also, future directions and areas of further study for NQO1 and NQO2 are discussed.
Collapse
Affiliation(s)
- Md Harunur Rashid
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Canada; Institute of Food and Radiation Biology, Bangladesh Atomic Energy Commission, Bangladesh
| | - Dinesh Babu
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Canada
| | - Arno G Siraki
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Canada.
| |
Collapse
|
21
|
Chang N, Zhao Y, Ge N, Qian L. A pH/ROS cascade-responsive and self-accelerating drug release nanosystem for the targeted treatment of multi-drug-resistant colon cancer. Drug Deliv 2021; 27:1073-1086. [PMID: 32706272 PMCID: PMC7470062 DOI: 10.1080/10717544.2020.1797238] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
The efficacy of chemotherapeutic agents for colon cancer treatment is limited by multidrug resistance (MDR) and insufficient intracellular release of the administered nanomedicine. To overcome these limitations, we constructed a pH/ROS cascade-responsive and self-accelerating drug release nanoparticle system (PLP-NPs) for the treatment of multidrug-resistant colon cancer. The PLP-NPs comprised a reactive oxygen species (ROS)-sensitive polymeric paclitaxel (PTX) prodrug (DEX-TK-PTX), a pH-sensitive poly(l-histidine) (PHis), and beta-lapachone (Lapa), a ROS-generating agent. We found that PLP-NPs could accumulate in tumor tissue through enhancement of the permeability and retention (EPR) effect, and were subsequently internalized by cancer cells via the endocytic pathway. Within the acidic endo-lysosomal environment, PHis protonation facilitated the escape of the PLP-NPs from the lysosome and release of Lapa. The released Lapa generated a large amount of ROS, consumed ATP, and downregulated P-glycoprotein (P-gp) production through the activity of NQO1, an enzyme that is specifically overexpressed in tumor cells. In addition, the generated ROS promoted the release of PTX from DEX-TK-PTX to kill cancer cells, while ATP depletion inhibited P-gp-mediated MDR. In vitro and in vivo experiments subsequently confirmed that PLP-NPs induced tumor-specific cytotoxicity and overcame the MDR of colon cancer. Our findings indicate that the use of the PLP-NPs system represents a promising strategy to counter MDR in the treatment of colon cancer.
Collapse
Affiliation(s)
- Na Chang
- Department of Radiation Oncology, Anhui Provincial Cancer Hospital (The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China), Hefei, China
| | - Yufei Zhao
- Department of Radiation Oncology, Anhui Provincial Cancer Hospital (The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China), Hefei, China
| | - Ning Ge
- Department of Radiation Oncology, Anhui Provincial Cancer Hospital (The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China), Hefei, China
| | - Liting Qian
- Department of Radiation Oncology, Anhui Provincial Cancer Hospital (The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China), Hefei, China
| |
Collapse
|
22
|
Li S, Jin H, Sun G, Zhang C, Wang J, Xu H, Zhang D, Wang S. Dietary Inorganic Nitrate Protects Hepatic Ischemia-Reperfusion Injury Through NRF2-Mediated Antioxidative Stress. Front Pharmacol 2021; 12:634115. [PMID: 34163351 PMCID: PMC8215696 DOI: 10.3389/fphar.2021.634115] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 03/08/2021] [Indexed: 12/30/2022] Open
Abstract
Objectives: Hepatic ischemia-reperfusion injury (HIRI) is of common occurrence during liver surgery and liver transplantation and may cause hepatic impairment, resulting in acute liver dysfunction. Nitrate plays an important physiological regulatory role in the human body. Whether dietary nitrate could prevent HIRI is, however, unknown. Methods: A HIRI mouse model was established in that the blood supply to the median lobe and left lateral lobe was blocked for 60 min through the portal vein and related structures using an atraumatic clip. Sodium nitrate (4 mM) was administrated in advance through drinking water to compare the influence of sodium nitrate and normal water on HIRI. Results: Liver necrosis and injury aggravated after HIRI. The group treated with sodium nitrate showed the lowest activities of plasma aminotransferase and lactate dehydrogenase and improved outcomes in histological investigation and TUNEL assay. Mechanistically, sodium nitrate intake increased plasma and liver nitric oxide levels, upregulated nuclear factor erythroid 2-related factor 2 (NRF2)-related molecules to reduce malondialdehyde level, and increased the activities of antioxidant enzymes to modulate hepatic oxidative stress. Conclusions: Dietary inorganic nitrate could prevent HIRI, possibly by activating the NRF2 pathway and modulating oxidative stress. Our study provides a novel therapeutic compound that could potentially prevent HIRI during liver transplantation or hepatic surgery.
Collapse
Affiliation(s)
- Shaorong Li
- Salivary Gland Disease Center and Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Beijing Laboratory of Oral Health, Capital Medical University School of Stomatology, Beijing, China.,Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Hua Jin
- Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Tolerance Induction and Organ Protection in Transplantation, Beijing, China
| | - Guangyong Sun
- Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Tolerance Induction and Organ Protection in Transplantation, Beijing, China
| | - Chunmei Zhang
- Salivary Gland Disease Center and Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Beijing Laboratory of Oral Health, Capital Medical University School of Stomatology, Beijing, China.,Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Jinsong Wang
- Salivary Gland Disease Center and Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Beijing Laboratory of Oral Health, Capital Medical University School of Stomatology, Beijing, China.,Department of Biochemistry and Molecular Biology, Capital Medical University School of Basic Medicine, Beijing, China
| | - Hufeng Xu
- Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Tolerance Induction and Organ Protection in Transplantation, Beijing, China
| | - Dong Zhang
- Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Tolerance Induction and Organ Protection in Transplantation, Beijing, China
| | - Songlin Wang
- Salivary Gland Disease Center and Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Beijing Laboratory of Oral Health, Capital Medical University School of Stomatology, Beijing, China.,Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,Department of Biochemistry and Molecular Biology, Capital Medical University School of Basic Medicine, Beijing, China
| |
Collapse
|
23
|
Alimardani M, Moghbeli M, Rastgar-Moghadam A, Shandiz FH, Abbaszadegan MR. Single nucleotide polymorphisms as the efficient prognostic markers in breast cancer. Curr Cancer Drug Targets 2021; 21:768-793. [PMID: 34036920 DOI: 10.2174/1568009621666210525151846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 03/15/2021] [Accepted: 04/19/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Breast cancer (BC) is known as the most common malignancy in women. Environmental and genetic factors are associated with BC progression. Genetic polymorphisms have been reported as important risk factors of BC prognosis and drug response. Main body: Therefore, in the present review, we have summarized all single nucleotide polymorphisms (SNPs) which have been significantly associated with drug response in BC patients around the world. We have also categorized the reported SNPs based on their related genes functions to clarify the molecular biology of drug responses in BC. CONCLUSION The majority of SNPs were reported in detoxifying enzymes, which introduced such genes as the main genetic risk factors during BC drug responses. This review paves the way for introducing a prognostic panel of SNPs for the BC patients in the world.
Collapse
Affiliation(s)
- Maliheh Alimardani
- Medical Genetics Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Meysam Moghbeli
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Azam Rastgar-Moghadam
- Medical Genetics Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh Homaei Shandiz
- Department of Radiotherapy/Oncology, Omid Hospital, Mashhad University of Medical Science, Mashhad, Iran
| | - Mohammad Reza Abbaszadegan
- Medical Genetics Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
24
|
Rodrigues AM, Kubitschek-Barreira PH, Pinheiro BG, Teixeira-Ferreira A, Hahn RC, de Camargo ZP. Immunoproteomic Analysis Reveals Novel Candidate Antigens for the Diagnosis of Paracoccidioidomycosis Due to Paracoccidioides lutzii. J Fungi (Basel) 2020; 6:jof6040357. [PMID: 33322269 PMCID: PMC7770604 DOI: 10.3390/jof6040357] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/04/2020] [Accepted: 12/08/2020] [Indexed: 12/13/2022] Open
Abstract
Paracoccidioidomycosis (PCM) is a life-threatening systemic infection caused by the fungal pathogen Paracoccidioides brasiliensis and related species. Whole-genome sequencing and stage-specific proteomic analysis of Paracoccidioides offer the opportunity to profile humoral immune responses against P. lutzii and P. brasiliensis s. str. infection using innovative screening approaches. Here, an immunoproteomic approach was used to identify PCM-associated antigens that elicit immune responses by combining 2-D electrophoresis of P. lutzii and P. brasiliensis proteomes, immunological detection using a gold-standard serum, and mass spectrometry analysis. A total of 16 and 25 highly immunoreactive proteins were identified in P. lutzii and P. brasiliensis, respectively, and 29 were shown to be the novel antigens for Paracoccidioides species, including seven uncharacterized proteins. Among the panel of proteins identified, most are involved in metabolic pathways, carbon metabolism, and biosynthesis of secondary metabolites in both immunoproteomes. Remarkably, six isoforms of the surface-associated enolase in the range of 54 kDa were identified as the major antigens in human PCM due to P. lutzii. These novel immunoproteomes of Paracoccidioides will be employed to develop a sensitive and affordable point-of-care diagnostic assay and an effective vaccine to identify infected hosts and prevent infection and development of human PCM. These findings provide a unique opportunity for the refinement of diagnostic tools of this important neglected systemic mycosis, which is usually associated with poverty.
Collapse
Affiliation(s)
- Anderson Messias Rodrigues
- Laboratory of Emerging Fungal Pathogens, Department of Microbiology, Immunology, and Parasitology, Discipline of Cellular Biology, Federal University of São Paulo (UNIFESP), São Paulo 04023062, Brazil;
- Correspondence: (A.M.R.); (Z.P.d.C.); Tel.: +55-1155764551 (ext. 1540) (A.M.R.); +55-1155764551 (ext. 1512) (Z.P.d.C.)
| | - Paula Helena Kubitschek-Barreira
- Department of Cellular Biology, Roberto Alcantara Gomes Institute of Biology, Rio de Janeiro State University (UERJ), Rio de Janeiro 20511010, Brazil;
| | - Breno Gonçalves Pinheiro
- Laboratory of Emerging Fungal Pathogens, Department of Microbiology, Immunology, and Parasitology, Discipline of Cellular Biology, Federal University of São Paulo (UNIFESP), São Paulo 04023062, Brazil;
| | - André Teixeira-Ferreira
- Toxinology Laboratory, Department of Physiology and Pharmacodynamics, Fiocruz, Rio de Janeiro 21040900, Brazil;
| | - Rosane Christine Hahn
- Laboratory of Mycology/Research, Faculty of Medicine, Federal University of Mato Grosso, Cuiabá 78060900, Brazil;
- Júlio Muller University Hospital, Federal University of Mato Grosso, Cuiabá 78048902, Brazil
| | - Zoilo Pires de Camargo
- Laboratory of Emerging Fungal Pathogens, Department of Microbiology, Immunology, and Parasitology, Discipline of Cellular Biology, Federal University of São Paulo (UNIFESP), São Paulo 04023062, Brazil;
- Department of Medicine, Discipline of Infectious Diseases, Federal University of São Paulo (UNIFESP), São Paulo 04023062, Brazil
- Correspondence: (A.M.R.); (Z.P.d.C.); Tel.: +55-1155764551 (ext. 1540) (A.M.R.); +55-1155764551 (ext. 1512) (Z.P.d.C.)
| |
Collapse
|
25
|
Tabari D, Scholl C, Steffens M, Weickhardt S, Elgner F, Bender D, Herrlein ML, Sabino C, Semkova V, Peitz M, Till A, Brüstle O, Hildt E, Stingl J. Impact of Zika Virus Infection on Human Neural Stem Cell MicroRNA Signatures. Viruses 2020; 12:E1219. [PMID: 33121145 PMCID: PMC7693339 DOI: 10.3390/v12111219] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/09/2020] [Accepted: 10/23/2020] [Indexed: 12/11/2022] Open
Abstract
Zika virus (ZIKV) is a mosquito-borne virus, which can cause brain abnormalities in newborns, including microcephaly. MicroRNAs (miRNAs) are small non-coding RNAs, which post- transcriptionally regulate gene expression. They are involved in various processes including neurological development and host responses to viral infection, but their potential role in ZIKV pathogenesis remains poorly understood. MiRNAs can be incorporated into extracellular vesicles (EVs) and mediate cell-to-cell communication. While it is well known that in viral infections EVs carrying miRNAs can play a crucial role in disease pathogenesis, ZIKV effects on EV-delivered miRNAs and their contribution to ZIKV pathogenesis have not been elucidated. In the present study, we profiled intracellular and EV-derived miRNAs by next generation sequencing and analyzed the host mRNA transcriptome of neural stem cells during infection with ZIKV Uganda and French Polynesia strains. We identified numerous miRNAs, including miR-4792, which were dysregulated at the intracellular level and had altered levels in EVs during ZIKV infection. Integrated analyses of differentially expressed genes and miRNAs showed that ZIKV infection had an impact on processes associated with neurodevelopment and oxidative stress. Our results provide insights into the roles of intracellular and EV-associated host miRNAs in ZIKV pathogenesis.
Collapse
Affiliation(s)
- Denna Tabari
- Research Division, Federal Institute for Drugs and Medical Devices, 53175 Bonn, Germany; (D.T.); (M.S.); (S.W.)
| | - Catharina Scholl
- Research Division, Federal Institute for Drugs and Medical Devices, 53175 Bonn, Germany; (D.T.); (M.S.); (S.W.)
| | - Michael Steffens
- Research Division, Federal Institute for Drugs and Medical Devices, 53175 Bonn, Germany; (D.T.); (M.S.); (S.W.)
| | - Sandra Weickhardt
- Research Division, Federal Institute for Drugs and Medical Devices, 53175 Bonn, Germany; (D.T.); (M.S.); (S.W.)
| | - Fabian Elgner
- Department of Virology, Paul-Ehrlich-Institut, 63225 Langen, Germany; (F.E.); (D.B.); (M.-L.H.); (C.S.); (E.H.)
| | - Daniela Bender
- Department of Virology, Paul-Ehrlich-Institut, 63225 Langen, Germany; (F.E.); (D.B.); (M.-L.H.); (C.S.); (E.H.)
| | - Marie-Luise Herrlein
- Department of Virology, Paul-Ehrlich-Institut, 63225 Langen, Germany; (F.E.); (D.B.); (M.-L.H.); (C.S.); (E.H.)
| | - Catarina Sabino
- Department of Virology, Paul-Ehrlich-Institut, 63225 Langen, Germany; (F.E.); (D.B.); (M.-L.H.); (C.S.); (E.H.)
| | - Vesselina Semkova
- Institute of Reconstructive Neurobiology, LIFE & BRAIN Center, University of Bonn Medical Faculty & University Hospital Bonn, 53127 Bonn, Germany; (V.S.); (M.P.); (A.T.); (O.B.)
| | - Michael Peitz
- Institute of Reconstructive Neurobiology, LIFE & BRAIN Center, University of Bonn Medical Faculty & University Hospital Bonn, 53127 Bonn, Germany; (V.S.); (M.P.); (A.T.); (O.B.)
- Cell Programming Core Facility, Medical Faculty, University of Bonn, 53172 Bonn, Germany
| | - Andreas Till
- Institute of Reconstructive Neurobiology, LIFE & BRAIN Center, University of Bonn Medical Faculty & University Hospital Bonn, 53127 Bonn, Germany; (V.S.); (M.P.); (A.T.); (O.B.)
| | - Oliver Brüstle
- Institute of Reconstructive Neurobiology, LIFE & BRAIN Center, University of Bonn Medical Faculty & University Hospital Bonn, 53127 Bonn, Germany; (V.S.); (M.P.); (A.T.); (O.B.)
| | - Eberhard Hildt
- Department of Virology, Paul-Ehrlich-Institut, 63225 Langen, Germany; (F.E.); (D.B.); (M.-L.H.); (C.S.); (E.H.)
| | - Julia Stingl
- Department of Clinical Pharmacology, University Hospital, RWTH Aachen University, 52074 Aachen, Germany;
| |
Collapse
|
26
|
Medina-Sanson A, Núñez-Enríquez JC, Hurtado-Cordova E, Pérez-Saldivar ML, Martínez-García A, Jiménez-Hernández E, Fernández-López JC, Martín-Trejo JA, Pérez-Lorenzana H, Flores-Lujano J, Amador-Sánchez R, Mora-Ríos FG, Peñaloza-González JG, Duarte-Rodríguez DA, Torres-Nava JR, Flores-Bautista JE, Espinosa-Elizondo RM, Román-Zepeda PF, Flores-Villegas LV, González-Ulivarri JE, Martínez-Silva SI, Espinoza-Anrubio G, Almeida-Hernández C, Ramírez-Colorado R, Hernández-Mora L, García-López LR, Cruz-Ojeda GA, Godoy-Esquivel AE, Contreras-Hernández I, Medina-Hernández A, López-Caballero MG, Hernández-Pineda NA, Granados-Kraulles J, Rodríguez-Vázquez MA, Torres-Valle D, Cortés-Reyes C, Medrano-López F, Pérez-Gómez JA, Martínez-Ríos A, Aguilar-De Los Santos A, Serafin-Díaz B, Bekker-Méndez VC, Mata-Rocha M, Morales-Castillo BA, Sepúlveda-Robles OA, Ramírez-Bello J, Rosas-Vargas H, Hidalgo-Miranda A, Mejía-Aranguré JM, Jiménez-Morales S. Genotype-Environment Interaction Analysis of NQO1, CYP2E1, and NAT2 Polymorphisms and the Risk of Childhood Acute Lymphoblastic Leukemia: A Report From the Mexican Interinstitutional Group for the Identification of the Causes of Childhood Leukemia. Front Oncol 2020; 10:571869. [PMID: 33072605 PMCID: PMC7537417 DOI: 10.3389/fonc.2020.571869] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 08/17/2020] [Indexed: 11/26/2022] Open
Abstract
Background: Acute lymphoblastic leukemia (ALL) is the main type of cancer in children. In Mexico and other Hispanic populations, the incidence of this neoplasm is one of the highest reported worldwide. Functional polymorphisms of various enzymes involved in the metabolism of xenobiotics have been associated with an increased risk of developing ALL, and the risk is different by ethnicity. The aims of the present study were to identify whether NQO1, CYP2E1, and NAT2 polymorphisms or some genotype-environmental interactions were associated with ALL risk in Mexican children. Methods: We conducted a case-control study including 478 pediatric patients diagnosed with ALL and 284 controls (children without leukemia). Ancestry composition of a subset of cases and controls was assessed using 32 ancestry informative markers. Genetic-environmental interactions for the exposure to hydrocarbons were assessed by logistic regression analysis. Results: The polymorphisms rs1801280 (OR 1.54, 95% CI 1.21–1.93), rs1799929 (OR 1.96, 95% CI 1.55–2.49), and rs1208 (OR 1.44, 95% CI 1.14–1.81) were found to increase the risk of ALL; being the risks higher under a recessive model (OR 2.20, 95% CI 1.30–1.71, OR 3.87, 95% CI 2.20–6.80, and OR 2.26, 95% CI 1.32–3.87, respectively). Gene-environment interaction analysis showed that NAT2 rs1799929 TT genotype confers high risk to ALL under exposure to fertilizers, insecticides, hydrocarbon derivatives, and parental tobacco smoking. No associations among NQO1, CYP2E1, and ALL were observed. Conclusion: Our study provides evidence for the association between NAT2 polymorphisms/gene-environment interactions, and the risk of childhood ALL in Mexican children.
Collapse
Affiliation(s)
- Aurora Medina-Sanson
- Departamento de Hemato-Oncología, Hospital Infantil de México Federico Gómez, Secretaría de Salud, Mexico City, Mexico.,Programa de Maestría y Doctorado en Ciencias Médicas de la Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM)Mexico City, Mexico
| | - Juan Carlos Núñez-Enríquez
- Unidad de Investigación Médica en Epidemiología Clínica, Unidad Médica de Alta Especialidad Hospital de Pediatría "Dr. Silvestre Frenk Freund", Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Eduardo Hurtado-Cordova
- Laboratorio de Genómica del Cáncer, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City, Mexico.,Universidad Xochicalco, Campos Tijuana, Tijuana, Mexico
| | - María Luisa Pérez-Saldivar
- Unidad de Investigación Médica en Epidemiología Clínica, Unidad Médica de Alta Especialidad Hospital de Pediatría "Dr. Silvestre Frenk Freund", Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Anayeli Martínez-García
- Laboratorio de Genómica del Cáncer, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City, Mexico.,Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Elva Jiménez-Hernández
- Servicio de Hematología Pediátrica, Centro Médico Nacional "La Raza", Hospital General "Gaudencio González Garza", Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico
| | | | - Jorge Alfonso Martín-Trejo
- Servicio de Hematología Pediátrica, Centro Médico Nacional "Siglo XXI", UMAE Hospital de Pediatría "Dr. Silvestre Frenk Freund", Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico
| | - Héctor Pérez-Lorenzana
- Servicio de Cirugía Pediátrica, Hospital General "Gaudencio González Garza", Centro Médico Nacional Siglo XXI (CMN) "La Raza", Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico
| | - Janet Flores-Lujano
- Unidad de Investigación Médica en Epidemiología Clínica, Unidad Médica de Alta Especialidad Hospital de Pediatría "Dr. Silvestre Frenk Freund", Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Raquel Amador-Sánchez
- Servicio de Hematología Pediátrica, Hospital General Regional "Carlos McGregor Sánchez Navarro", Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico
| | - Felix Gustavo Mora-Ríos
- Cirugía Pediátrica del Hospital Regional "General Ignacio Zaragoza", Instituto de Seguridad y Servicios Sociales de los Trabajadores del Estado (ISSSTE), Mexico City, Mexico
| | | | - David Aldebarán Duarte-Rodríguez
- Unidad de Investigación Médica en Epidemiología Clínica, Unidad Médica de Alta Especialidad Hospital de Pediatría "Dr. Silvestre Frenk Freund", Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - José Refugio Torres-Nava
- Servicio de Oncología, Hospital Pediátrico de Moctezuma, Secretaría de Salud de la Ciudad de México (SSCDMX), Mexico City, Mexico
| | | | | | - Pedro Francisco Román-Zepeda
- Coordinación Clínica y Servicio de Cirugía pediátrica, Hospital General Regional (HGR) No. 1 "Dr. Carlos Mac Gregor Sánchez Navarro", Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico
| | - Luz Victoria Flores-Villegas
- Servicio de Hematología Pediátrica, Centro Médico Nacional "20 de Noviembre", Instituto de Seguridad y Servicios Sociales de los Trabajadores del Estado (ISSSTE), Mexico City, Mexico
| | - Juana Esther González-Ulivarri
- Jefatura de Enseñanza, Hospital Pediátrico de Iztacalco, Secretaría de Salud de la Ciudad de México (SSCDMX), Mexico City, Mexico
| | - Sofía Irene Martínez-Silva
- Jefatura de Enseñanza, Hospital Pediátrico de Iztapalapa, Secretaría de Salud de la Ciudad de México (SSCDMX), Mexico City, Mexico
| | - Gilberto Espinoza-Anrubio
- Servicio de Pediatría, Hospital General Zona (HGZ) No. 8 "Dr. Gilberto Flores Izquierdo", Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico
| | - Carolina Almeida-Hernández
- Jefatura de Enseñanza, Hospital General de Ecatepec "Las Américas", Instituto de Salud del Estado de México (ISEM), Mexico City, Mexico
| | - Rosario Ramírez-Colorado
- Jefatura de Enseñanza, Hospital Pediátrico La Villa, Secretaría de Salud de la Ciudad de México (SSCDMX), Mexico City, Mexico
| | - Luis Hernández-Mora
- Jefatura de Enseñanza, Hospital Pediátrico San Juan de Aragón, Secretaría de Salud (SS), Mexico City, Mexico
| | - Luis Ramiro García-López
- Servicio de Pediatría, Hospital Pediátrico de Tacubaya, Secretaría de Salud de la Ciudad de México (SSCDMX), Mexico City, Mexico
| | - Gabriela Adriana Cruz-Ojeda
- Coordinación Clínica de Educación e Investigación en Salud, Hospital General de Zona (HGZ) No. 47, IMSS, Mexico City, Mexico
| | - Arturo Emilio Godoy-Esquivel
- Servicio de Cirugía Pediátrica, Hospital Pediátrico de Moctezuma, Secretaría de Salud de la Ciudad de México (SSCDMX), Mexico City, Mexico
| | - Iris Contreras-Hernández
- Coordinación de Investigación en Salud, Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico
| | - Abraham Medina-Hernández
- Pediatría, Hospital Materno-Pediátrico de Xochimilco, Secretaría de Salud de la Ciudad de México (SSCDMX), Mexico City, Mexico
| | - María Guadalupe López-Caballero
- Jefatura de Enseñanza, Hospital Pediátrico de Coyoacán, Secretaría de Salud de la Ciudad de México (SSCDMX), Mexico City, Mexico
| | - Norma Angélica Hernández-Pineda
- Coordinación Clínica y Pediatría del Hospital General de Zona 76, Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico
| | - Jorge Granados-Kraulles
- Coordinación Clínica y Pediatría del Hospital General de Zona 76, Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico
| | - María Adriana Rodríguez-Vázquez
- Coordinación Clínica y Pediatría del Hospital General de Zona 68, Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico
| | - Delfino Torres-Valle
- Coordinación Clínica y Pediatría del Hospital General de Zona 71, Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico
| | - Carlos Cortés-Reyes
- Pediatría, Hospital General Dr. Darío Fernández Fierro, Instituto de Seguridad y Servicios Sociales de los Trabajadores del Estado (ISSSTE), Mexico City, Mexico
| | - Francisco Medrano-López
- Coordinación Clínica y Servicio de Pediatría, Hospital General Regional (HGR) No. 72 "Dr. Vicente Santos Guajardo", Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico
| | - Jessica Arleet Pérez-Gómez
- Coordinación Clínica y Servicio de Pediatría, Hospital General Regional (HGR) No. 72 "Dr. Vicente Santos Guajardo", Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico
| | - Annel Martínez-Ríos
- Cirugía Pediátrica del Hospital Regional "General Ignacio Zaragoza", Instituto de Seguridad y Servicios Sociales de los Trabajadores del Estado (ISSSTE), Mexico City, Mexico
| | - Antonio Aguilar-De Los Santos
- Coordinación Clínica y Pediatría del Hospital General de Zona 98, Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico
| | - Berenice Serafin-Díaz
- Coordinación Clínica y Pediatría del Hospital General de Zona 57, Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico
| | - Vilma Carolina Bekker-Méndez
- Hospital de Infectología "Dr. Daniel Méndez Hernández", "La Raza", Instituto Mexicano del Seguro Social (IMSS), Unidad de Investigación Médica en Inmunología e Infectología, Mexico City, Mexico
| | - Minerva Mata-Rocha
- Unidad de Investigación Médica en Genética Humana, UMAE Hospital de Pediatría "Dr. Silvestre Frenk Freund", Centro Médico Nacional "Siglo XXI", Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico
| | - Blanca Angélica Morales-Castillo
- Unidad de Investigación Médica en Genética Humana, UMAE Hospital de Pediatría "Dr. Silvestre Frenk Freund", Centro Médico Nacional "Siglo XXI", Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico
| | - Omar Alejandro Sepúlveda-Robles
- Unidad de Investigación Médica en Genética Humana, UMAE Hospital de Pediatría "Dr. Silvestre Frenk Freund", Centro Médico Nacional "Siglo XXI", Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico
| | | | - Haydeé Rosas-Vargas
- Unidad de Investigación Médica en Genética Humana, UMAE Hospital de Pediatría "Dr. Silvestre Frenk Freund", Centro Médico Nacional "Siglo XXI", Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico
| | - Alfredo Hidalgo-Miranda
- Laboratorio de Genómica del Cáncer, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City, Mexico
| | - Juan Manuel Mejía-Aranguré
- Unidad de Investigación Médica en Epidemiología Clínica, Unidad Médica de Alta Especialidad Hospital de Pediatría "Dr. Silvestre Frenk Freund", Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico.,Coordinación de Investigación en Salud, Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico
| | - Silvia Jiménez-Morales
- Laboratorio de Genómica del Cáncer, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City, Mexico
| |
Collapse
|
27
|
Janda E, Nepveu F, Calamini B, Ferry G, Boutin JA. Molecular Pharmacology of NRH:Quinone Oxidoreductase 2: A Detoxifying Enzyme Acting as an Undercover Toxifying Enzyme. Mol Pharmacol 2020; 98:620-633. [DOI: 10.1124/molpharm.120.000105] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 08/11/2020] [Indexed: 01/02/2023] Open
|
28
|
Ameliorative effect of low molecular weight peptides from the head of red shrimp (Solenocera crassicornis) against cyclophosphamide-induced hepatotoxicity in mice. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.104085] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
29
|
Kondo K, Mori M, Tomita M, Arakawa K. Pre-treatment with D942, a furancarboxylic acid derivative, increases desiccation tolerance in an anhydrobiotic tardigrade Hypsibius exemplaris. FEBS Open Bio 2020; 10:1774-1781. [PMID: 32623826 PMCID: PMC7459401 DOI: 10.1002/2211-5463.12926] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 05/18/2020] [Accepted: 06/30/2020] [Indexed: 11/25/2022] Open
Abstract
The tardigrade Hypsibius exemplaris can undergo anhydrobiosis. Several chemicals that inhibit successful anhydrobiosis in H. exemplaris have been identified, and these chemicals inhibit the activity of signaling molecules. In the present study, we investigated whether upregulation of the activity of these signaling molecules could improve desiccation tolerance of H. exemplaris. Pre‐treatment with an indirect activator of AMP‐activated protein kinase [AMPK; which directly inhibits mammalian NAD(P)H dehydrogenase [quinone] 1 [NQO1] of mitochondrial complex I (D942)] significantly improved desiccation tolerance of H. exemplaris, whereas a direct activator of AMPK did not. To elucidate the underlying molecular mechanisms, we examined the proteome of tardigrades treated with D942. Two proteins, putative glutathione S‐transferase and pirin‐like protein, were upregulated by treatment. Both of these proteins are known to be associated with the response to oxidative stress. One of the downregulated proteins was serine/threonine‐proteinphosphatase 2A (PP2A) 65‐kDa regulatory subunit A alpha isoform, and it is interesting to note that PP2A activity was previously suggested to be required for successful anhydrobiosis in H. exemplaris. Taken together, our results suggest that D942 treatment may partially induce responses common to those of desiccation stress. The identification of a chemical that improves desiccation tolerance of H. exemplaris may facilitate further investigation into desiccation tolerance mechanisms.
Collapse
Affiliation(s)
- Koyuki Kondo
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata, Japan
| | - Masaru Mori
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata, Japan.,Systems Biology Program, Graduate School of Media and Governance, Keio University, Fujisawa, Japan
| | - Masaru Tomita
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata, Japan.,Systems Biology Program, Graduate School of Media and Governance, Keio University, Fujisawa, Japan
| | - Kazuharu Arakawa
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata, Japan.,Systems Biology Program, Graduate School of Media and Governance, Keio University, Fujisawa, Japan.,Exploratory Research Center on Life and Living Systems, National Institutes of Natural Sciences, Okazaki, Japan
| |
Collapse
|
30
|
Narayanan D, Ma S, Özcelik D. Targeting the Redox Landscape in Cancer Therapy. Cancers (Basel) 2020; 12:cancers12071706. [PMID: 32605023 PMCID: PMC7407119 DOI: 10.3390/cancers12071706] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 06/22/2020] [Accepted: 06/25/2020] [Indexed: 12/18/2022] Open
Abstract
Reactive oxygen species (ROS) are produced predominantly by the mitochondrial electron transport chain and by NADPH oxidases in peroxisomes and in the endoplasmic reticulum. The antioxidative defense counters overproduction of ROS with detoxifying enzymes and molecular scavengers, for instance, superoxide dismutase and glutathione, in order to restore redox homeostasis. Mutations in the redox landscape can induce carcinogenesis, whereas increased ROS production can perpetuate cancer development. Moreover, cancer cells can increase production of antioxidants, leading to resistance against chemo- or radiotherapy. Research has been developing pharmaceuticals to target the redox landscape in cancer. For instance, inhibition of key players in the redox landscape aims to modulate ROS production in order to prevent tumor development or to sensitize cancer cells in radiotherapy. Besides the redox landscape of a single cell, alternative strategies take aim at the multi-cellular level. Extracellular vesicles, such as exosomes, are crucial for the development of the hypoxic tumor microenvironment, and hence are explored as target and as drug delivery systems in cancer therapy. This review summarizes the current pharmaceutical and experimental interventions of the cancer redox landscape.
Collapse
Affiliation(s)
- Dilip Narayanan
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark; (D.N.); (S.M.)
| | - Sana Ma
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark; (D.N.); (S.M.)
| | - Dennis Özcelik
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark; (D.N.); (S.M.)
- current address: Chemistry | Biology | Pharmacy Information Center, ETH Zürich, Vladimir-Prelog-Weg 10, 8093 Zürich, Switzerland
- Correspondence:
| |
Collapse
|
31
|
Fuertes E, van der Plaat DA, Minelli C. Antioxidant genes and susceptibility to air pollution for respiratory and cardiovascular health. Free Radic Biol Med 2020; 151:88-98. [PMID: 32007521 DOI: 10.1016/j.freeradbiomed.2020.01.181] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 01/23/2020] [Accepted: 01/24/2020] [Indexed: 12/25/2022]
Abstract
Oxidative stress occurs when antioxidant defences, which are regulated by a complex network of genes, are insufficient to maintain the level of reactive oxygen species below a toxic threshold. Outdoor air pollution has long been known to adversely affect health and one prominent mechanism of action common to all pollutants is the induction of oxidative stress. An individual's susceptibility to the effects of air pollution partly depends on variation in their antioxidant genes. Thus, understanding antioxidant gene-pollution interactions has significant potential clinical and public health impacts, including the development of targeted and cost-effective preventive measures, such as setting appropriate standards which protect all members of the population. In this review, we aimed to summarize the latest epidemiological evidence on interactions between antioxidant genes and outdoor air pollution, in the context of respiratory and cardiovascular health. The evidence supporting the existence of interactions between antioxidant genes and outdoor air pollution is strongest for childhood asthma and wheeze, especially for interactions with GSTT1, GSTM1 and GSTP1, for lung function in both children and adults for several antioxidant genes (GSTT1, GSTM1, GSTP1, HMOX1, NQO1, and SOD2) and, to a more limited extent, for heart rate variability in adults for GSTM1 and HMOX1. Methodological challenges hampering a clear interpretation of these findings and understanding of true potential heterogeneity are discussed.
Collapse
Affiliation(s)
- Elaine Fuertes
- National Heart and Lung Institute, Imperial College London, London, United Kingdom.
| | | | - Cosetta Minelli
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| |
Collapse
|
32
|
Adduct Formation of Delamanid with NAD in Mycobacteria. Antimicrob Agents Chemother 2020; 64:AAC.01755-19. [PMID: 32152081 DOI: 10.1128/aac.01755-19] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 02/06/2020] [Indexed: 12/19/2022] Open
Abstract
Delamanid (DLM), a nitro-dihydroimidazooxazole derivative currently approved for pulmonary multidrug-resistant tuberculosis (TB) therapy, is a prodrug activated by mycobacterial 7,8-didemethyl-8-hydroxy 5-deazaflavin electron transfer coenzyme (F420)-dependent nitroreductase (Ddn). Despite inhibiting the biosynthesis of a subclass of mycolic acids, the active DLM metabolite remained unknown. Comparative liquid chromatography-mass spectrometry (LC-MS) analysis of DLM metabolites revealed covalent binding of reduced DLM with a nicotinamide ring of NAD derivatives (oxidized form) in DLM-treated Mycobacterium tuberculosis var. Bacille de Calmette et Guérin. Isoniazid-resistant mutations in the type II NADH dehydrogenase gene (ndh) showed a higher intracellular NADH/NAD ratio and cross-resistance to DLM, which were restored by complementation of the mutants with wild-type ndh Our data demonstrated for the first time the adduct formation of reduced DLM with NAD in mycobacterial cells and its importance in the action of DLM.
Collapse
|
33
|
Zhao TM, Wang Y, Deng Y, Fan XF, Cao XC, Hou LJ, Mao LH, Lin L, Zhao W, Wang BM, Jiang K, Zhao JW, Sun C. Bicyclol Attenuates Acute Liver Injury by Activating Autophagy, Anti-Oxidative and Anti-Inflammatory Capabilities in Mice. Front Pharmacol 2020; 11:463. [PMID: 32362825 PMCID: PMC7181473 DOI: 10.3389/fphar.2020.00463] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 03/25/2020] [Indexed: 12/25/2022] Open
Abstract
Bicyclol, a novel synthetic antihepatitis drug, has been shown to protect against liver injury via various pharmacological activities. The purpose of the current study was to further investigate the protective effect of bicyclol against carbon tetrachloride (CCl4)-induced acute liver injury (ALI) and its underlying molecular mechanism, particularly autophagic machinery, anti-oxidative, and anti-inflammatory potentials. Our results found that treatment with bicyclol significantly reduced CCl4-induced hepatotoxicity by alleviating histopathological liver changes, decreasing the alanine transaminase levels, promoting autophagic flux, attenuating the expression of inflammatory cytokines, and modulating oxidative markers. Furthermore, bicyclol efficiently induced the conversion of LC3 and enhanced the liver expressions of ATG7 and Beclin-1. Meanwhile, bicyclol induced the activation of nuclear factor erythroid 2-related factor 2 (Nrf2) and p62. These protective effects may be mediated by activation of AMP-activated protein kinase and inhibition of mTOR or MAPK signaling pathways. Taken together, our study firstly suggests that bicyclol has protective potential against CCl4-induced hepatotoxicity, which might be closely associated with induction of autophagy, concomitant anti-oxidative stress, and anti-inflammatory response.
Collapse
Affiliation(s)
- Tian-Ming Zhao
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Tianjin, China
| | - Ya Wang
- Department of Gastroenterology, Shanxi Academy of Medical Sciences Shanxi Bethune Hospital, Taiyuan, China
| | - You Deng
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Tianjin, China
| | - Xiao-Fei Fan
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Tianjin, China
| | - Xiao-Cang Cao
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Tianjin, China
| | - Li-Jun Hou
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Tianjin, China
| | - Li-Hong Mao
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Tianjin, China
| | - Lin Lin
- Department of Gastroenterology, Tianjin Medical University General Hospital Airport Hospital, Tianjin, China
| | - Wei Zhao
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Tianjin, China
| | - Bang-Mao Wang
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Tianjin, China
| | - Kui Jiang
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Tianjin, China
| | - Jing-Wen Zhao
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Tianjin, China
| | - Chao Sun
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Tianjin, China.,Department of Gastroenterology, Tianjin Medical University General Hospital Airport Hospital, Tianjin, China
| |
Collapse
|
34
|
Chinopoulos C. Acute sources of mitochondrial NAD + during respiratory chain dysfunction. Exp Neurol 2020; 327:113218. [PMID: 32035071 DOI: 10.1016/j.expneurol.2020.113218] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 01/24/2020] [Accepted: 01/30/2020] [Indexed: 01/07/2023]
Abstract
It is a textbook definition that in the absence of oxygen or inhibition of the mitochondrial respiratory chain by pharmacologic or genetic means, hyper-reduction of the matrix pyridine nucleotide pool ensues due to impairment of complex I oxidizing NADH, leading to reductive stress. However, even under these conditions, the ketoglutarate dehydrogenase complex (KGDHC) is known to provide succinyl-CoA to succinyl-CoA ligase, thus supporting mitochondrial substrate-level phosphorylation (mSLP). Mindful that KGDHC is dependent on provision of NAD+, hereby sources of acute NADH oxidation are reviewed, namely i) mitochondrial diaphorases, ii) reversal of mitochondrial malate dehydrogenase, iii) reversal of the mitochondrial isocitrate dehydrogenase as it occurs under acidic conditions, iv) residual complex I activity and v) reverse operation of the malate-aspartate shuttle. The concept of NAD+ import through the inner mitochondrial membrane as well as artificial means of manipulating matrix NAD+/NADH are also discussed. Understanding the above mechanisms providing NAD+ to KGDHC thus supporting mSLP may assist in dampening mitochondrial dysfunction underlying neurological disorders encompassing impairment of the electron transport chain.
Collapse
Affiliation(s)
- Christos Chinopoulos
- Department of Medical Biochemistry, Semmelweis University, Tuzolto st. 37-47, Budapest 1094, Hungary.
| |
Collapse
|
35
|
Yan Z, Zhong Y, Duan Y, Chen Q, Li F. Antioxidant mechanism of tea polyphenols and its impact on health benefits. ACTA ACUST UNITED AC 2020; 6:115-123. [PMID: 32542190 PMCID: PMC7283370 DOI: 10.1016/j.aninu.2020.01.001] [Citation(s) in RCA: 262] [Impact Index Per Article: 65.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 01/08/2020] [Accepted: 01/09/2020] [Indexed: 12/18/2022]
Abstract
Tea trees have a long history of cultivation and utilization. People in many countries have the habit of drinking tea and choosing green tea, oolong tea, or black tea according to different regions and personal tastes. Tea polyphenols are a general term for polyphenol compounds in tea, and has been shown to have good effects on antioxidant, anti-inflammatory, cancer prevention and regulation of lipid metabolism. Tea polyphenols have been widely used as antioxidants in disease treatment and animal husbandry, but their specific mechanism of action needs to be further clarified and revealed. This review focuses on the definition, classification, antioxidant activity and the regulation of signaling pathways of tea polyphenols. This paper also aims to examine the application of tea polyphenols in human and animal health, providing a scientific basis for this application in addition to proposing future directions for the development of this resource.
Collapse
Affiliation(s)
- Zhaoming Yan
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China.,Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture Chinese Academy of Sciences, Key Laboratory of Agro-ecological Processes in Subtropical Region, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha 410125, China
| | - Yinzhao Zhong
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Yehui Duan
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture Chinese Academy of Sciences, Key Laboratory of Agro-ecological Processes in Subtropical Region, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha 410125, China
| | - Qinghua Chen
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Fengna Li
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture Chinese Academy of Sciences, Key Laboratory of Agro-ecological Processes in Subtropical Region, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha 410125, China.,Hunan Co-Innovation Center of Animal Production Safety, Hunan Collaborative Innovation Center for Utilization of Botanical Functional Ingredients, Changsha 410128, China
| |
Collapse
|
36
|
Hou R, Liu X, Yan J, Xiang K, Wu X, Lin W, Chen G, Zheng M, Fu J. Characterization of natural melanin from Auricularia auricula and its hepatoprotective effect on acute alcohol liver injury in mice. Food Funct 2019; 10:1017-1027. [PMID: 30706914 DOI: 10.1039/c8fo01624k] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
This study characterized the natural melanin from Auricularia auricula and investigated its hepatoprotective effect on mice with acute alcoholic liver injury. The characterization of the melanin was analyzed based on elemental analysis, gel permeation chromatography (GPC), UV-visible spectroscopy (UV-visible), infrared spectrum (IR) and nuclear magnetic resonance spectra (NMR). To determine the liver protective effect of Auricularia auricula melanin, mice were administered with the melanin once daily for 3 weeks before ethanol induced liver injury. Biochemical parameters of liver function, histopathological sections, mRNA and protein expression of antioxidant enzyme were compared between mice with or without the melanin administered. Results showed that A. auricula melanin was a eumelanin and the average molecular weight was 48.99 kDa. The melanin can protect the mice from ethanol-induced liver injury by extending the duration of the righting reflex, and shortening the duration of the recovery. The liver index, serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), γ-glutamyl transpeptidase (γ-GT) and liver malondialdehyde (MDA) levels in mice treated with the melanin were significantly decreased. At the same time, the levels of liver alcohol dehydrogenase (ADH), and antioxidase such as catalase (CAT), and superoxide dismutase (SOD) were increased. Its protective effect may be related to the activation of nuclear factor E2-related factor 2 (Nrf2) and its downstream antioxidant enzymes such as glutamate cysteine ligase catalytic (GCLC), glutamate cysteine ligase modifier (GCLM), and NADP(H) quinine oxidoreductase 1 (NQO-1). These results suggested that A. auricula melanin may be an effective strategy to alleviate alcohol-induced liver damage.
Collapse
Affiliation(s)
- Ruolin Hou
- College of Food sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Cytoprotective Effect of Ligustrum robustum Polyphenol Extract against Hydrogen Peroxide-Induced Oxidative Stress via Nrf2 Signaling Pathway in Caco-2 Cells. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:5026458. [PMID: 31312223 PMCID: PMC6595363 DOI: 10.1155/2019/5026458] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 05/16/2019] [Accepted: 05/30/2019] [Indexed: 12/29/2022]
Abstract
Ligustrum robustum is a traditional herbal tea that is widely distributed in southwest China. The health effects of L. robustum are characteristics of clearing heat, antioxidant, inducing resurgence, and improving digestion. However, the molecular mechanisms related to these effects, particularly the antioxidant mechanism, have been seldom reported. The objective of this study was to assess antioxidative capacity of L. robustum, and its protective effects and mechanisms against hydrogen peroxide (H2O2) - induced toxicity in Caco-2 cells. Total phenolic contents, free radical scavenging activity, and reducing capacity of L. robustum were measured. The effects of L. robustum on the cell viability and antioxidant defense system were explored. The expression of nuclear factor E2 related factor 2 (Nrf2) and antioxidant genes: quinone oxidoreductase 1 (NQO1), heme oxygenase-1 (HO-1), and glutamate cysteine ligase (GCL) were analyzed by western blot and qPCR. Pretreatment of L. robustum could significantly reduce H2O2-induced toxicity, decrease the level of reactive oxygen species (ROS) and malondialdehyde (MDA), and increase the activities of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSH-Px), and glutathione reductase (GR). By activating the expression of Nrf2 and antioxidant genes (NQO1, HO-1, and GCL), L. robustum exerts cytoprotective effect in Caco-2 cells dealt with H2O2. Therefore, the well-established model of Caco-2 cells demonstrates that L. robustum may modulate the cytoprotective effect against the H2O2-induced oxidative stress through the Nrf2 signaling pathway.
Collapse
|
38
|
Bunik VI. Redox-Driven Signaling: 2-Oxo Acid Dehydrogenase Complexes as Sensors and Transmitters of Metabolic Imbalance. Antioxid Redox Signal 2019; 30:1911-1947. [PMID: 30187773 DOI: 10.1089/ars.2017.7311] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
SIGNIFICANCE This article develops a holistic view on production of reactive oxygen species (ROS) by 2-oxo acid dehydrogenase complexes. Recent Advances: Catalytic and structural properties of the complexes and their components evolved to minimize damaging effects of side reactions, including ROS generation, simultaneously exploiting the reactions for homeostatic signaling. CRITICAL ISSUES Side reactions of the complexes, characterized in vitro, are analyzed in view of protein interactions and conditions in vivo. Quantitative data support prevalence of the forward 2-oxo acid oxidation over the backward NADH oxidation in feeding physiologically significant ROS production by the complexes. Special focus on interactions between the active sites within 2-oxo acid dehydrogenase complexes highlights the central relevance of the complex-bound thiyl radicals in regulation of and signaling by complex-generated ROS. The thiyl radicals arise when dihydrolipoyl residues of the complexes regenerate FADH2 from the flavin semiquinone coproduced with superoxide anion radical in 1e- oxidation of FADH2 by molecular oxygen. FUTURE DIRECTIONS Interaction of 2-oxo acid dehydrogenase complexes with thioredoxins (TRXs), peroxiredoxins, and glutaredoxins mediates scavenging of the thiyl radicals and ROS generated by the complexes, underlying signaling of disproportional availability of 2-oxo acids, CoA, and NAD+ in key metabolic branch points through thiol/disulfide exchange and medically important hypoxia-inducible factor, mammalian target of rapamycin (mTOR), poly (ADP-ribose) polymerase, and sirtuins. High reactivity of the coproduced ROS and thiyl radicals to iron/sulfur clusters and nitric oxide, peroxynitrite reductase activity of peroxiredoxins and transnitrosylating function of thioredoxin, implicate the side reactions of 2-oxo acid dehydrogenase complexes in nitric oxide-dependent signaling and damage.
Collapse
Affiliation(s)
- Victoria I Bunik
- 1 Belozersky Institute of Physicochemical Biology, Lomonosov Moscow State University, Moscow, Russian Federation.,2 Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russian Federation
| |
Collapse
|
39
|
Beaver SK, Mesa-Torres N, Pey AL, Timson DJ. NQO1: A target for the treatment of cancer and neurological diseases, and a model to understand loss of function disease mechanisms. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2019; 1867:663-676. [PMID: 31091472 DOI: 10.1016/j.bbapap.2019.05.002] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 05/07/2019] [Accepted: 05/09/2019] [Indexed: 01/08/2023]
Abstract
NAD(P)H quinone oxidoreductase 1 (NQO1) is a multi-functional protein that catalyses the reduction of quinones (and other molecules), thus playing roles in xenobiotic detoxification and redox balance, and also has roles in stabilising apoptosis regulators such as p53. The structure and enzymology of NQO1 is well-characterised, showing a substituted enzyme mechanism in which NAD(P)H binds first and reduces an FAD cofactor in the active site, assisted by a charge relay system involving Tyr-155 and His-161. Protein dynamics play important role in physio-pathological aspects of this protein. NQO1 is a good target to treat cancer due to its overexpression in cancer cells. A polymorphic form of NQO1 (p.P187S) is associated with increased cancer risk and certain neurological disorders (such as multiple sclerosis and Alzheimer´s disease), possibly due to its roles in the antioxidant defence. p.P187S has greatly reduced FAD affinity and stability, due to destabilization of the flavin binding site and the C-terminal domain, which leading to reduced activity and enhanced degradation. Suppressor mutations partially restore the activity of p.P187S by local stabilization of these regions, and showing long-range allosteric communication within the protein. Consequently, the correction of NQO1 misfolding by pharmacological chaperones is a viable strategy, which may be useful to treat cancer and some neurological conditions, targeting structural spots linked to specific disease-mechanisms. Thus, NQO1 emerges as a good model to investigate loss of function mechanisms in genetic diseases as well as to improve strategies to discriminate between neutral and pathogenic variants in genome-wide sequencing studies.
Collapse
Affiliation(s)
- Sarah K Beaver
- School of Pharmacy and Biomolecular Sciences, University of Brighton, Huxley Building, Lewes Road, Brighton BN2 4GJ, UK
| | - Noel Mesa-Torres
- Department of Physical Chemistry, Faculty of Sciences, University of Granada, Av. Fuentenueva s/n, 18071, Spain
| | - Angel L Pey
- Department of Physical Chemistry, Faculty of Sciences, University of Granada, Av. Fuentenueva s/n, 18071, Spain.
| | - David J Timson
- School of Pharmacy and Biomolecular Sciences, University of Brighton, Huxley Building, Lewes Road, Brighton BN2 4GJ, UK.
| |
Collapse
|
40
|
Yang M, Zhang H, Tao B, Pan H, Lu L, Yi H, Tang S. Possible association of HMOX1 and NQO1 polymorphisms with anti-tuberculosis drug-induced liver injury: A matched case-control study. J Clin Pharm Ther 2019; 44:534-542. [PMID: 30776144 DOI: 10.1111/jcpt.12818] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 12/29/2018] [Accepted: 01/19/2019] [Indexed: 12/22/2022]
Abstract
WHAT IS KNOWN AND OBJECTIVE Reactive metabolites from anti-tuberculosis (anti-TB) drugs can result in abnormal accumulation of reactive oxygen species (ROS), which plays an important role in anti-TB drug-induced liver injury (ATLI). Liver cells could keep the production of ROS in balance by antioxidant activities. The heme oxygenase 1, encoded by the HMOX1 gene and NADH:quinone oxidoreductase 1, encoded by the NQO1 gene are crucial mediators of cellular defense against ROS. The present study aimed to investigate the associations between HMOX1 and NQO1 polymorphisms and ATLI in Chinese anti-TB treatment population. METHODS A matched case-control study was conducted using 314 ATLI cases and 628 controls. Multivariate conditional logistic regression analysis was used to estimate the association between genotypes and risk of ATLI by the odds ratios (ORs) with 95% confidence intervals (CIs), with weight and use of hepatoprotectant as covariates. RESULTS AND DISCUSSION Patients carrying the GG genotype at rs2071748 in HMOX1 were at a higher risk of ATLI than those with the AA genotype (adjusted OR = 1.503, 95% CI: 1.005-2.249, P = 0.047), and significant differences were also found under the recessive (P = 0.015) and additive (P = 0.045) models. Subgroup analysis confirmed the relationship in mild hepatotoxicity cases under the recessive and additive models (adjusted OR = 1.714, 95% CI: 1.169-2.513, P = 0.006; adjusted OR = 1.287, 95% CI: 1.015-1.631, P = 0.037, respectively). WHAT IS NEW AND CONCLUSION This is the first study to explore the relationship between HMOX1, NQO1 polymorphisms and ATLI in Chinese anti-TB treatment population. Based on a matched case-control study, genetic polymorphisms of HMOX1 may be associated with susceptibility to ATLI in the Chinese population.
Collapse
Affiliation(s)
- Miaomiao Yang
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Haiping Zhang
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Bilin Tao
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Hongqiu Pan
- Department of Tuberculosis, The Third People's Hospital of Zhenjiang Affiliated to Jiangsu University, Zhenjiang, China
| | - Lihuan Lu
- Department of Tuberculosis, The Second People's Hospital of Changshu, Changshu, China
| | - Honggang Yi
- Department of Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Shaowen Tang
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing, China
| |
Collapse
|
41
|
Son S, Won M, Green O, Hananya N, Sharma A, Jeon Y, Kwak JH, Sessler JL, Shabat D, Kim JS. Chemiluminescent Probe for the In Vitro and In Vivo Imaging of Cancers Over‐Expressing NQO1. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201813032] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Subin Son
- Department of ChemistryKorea University Seoul 02841 Korea
| | - Miae Won
- Department of ChemistryKorea University Seoul 02841 Korea
| | - Ori Green
- School of ChemistryRaymond and Beverly Sackler Faculty of Exact SciencesTel Aviv University Tel Aviv 69978 Israel
| | - Nir Hananya
- School of ChemistryRaymond and Beverly Sackler Faculty of Exact SciencesTel Aviv University Tel Aviv 69978 Israel
| | - Amit Sharma
- Department of ChemistryKorea University Seoul 02841 Korea
| | - Yukyoung Jeon
- School of PharmacySungkyunkwan University Suwon 16419 Korea
| | - Jong Hwan Kwak
- School of PharmacySungkyunkwan University Suwon 16419 Korea
| | - Jonathan L. Sessler
- Center for Supramolecular Chemistry and CatalysisShanghai University Shanghai 200444 China
- Department of ChemistryUniversity of Texas at Austin Austin TX 78712-1224 USA
| | - Doron Shabat
- School of ChemistryRaymond and Beverly Sackler Faculty of Exact SciencesTel Aviv University Tel Aviv 69978 Israel
| | - Jong Seung Kim
- Department of ChemistryKorea University Seoul 02841 Korea
| |
Collapse
|
42
|
Son S, Won M, Green O, Hananya N, Sharma A, Jeon Y, Kwak JH, Sessler JL, Shabat D, Kim JS. Chemiluminescent Probe for the In Vitro and In Vivo Imaging of Cancers Over-Expressing NQO1. Angew Chem Int Ed Engl 2019; 58:1739-1743. [PMID: 30561862 DOI: 10.1002/anie.201813032] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 12/17/2018] [Indexed: 01/08/2023]
Abstract
Activatable (turn-on) probes that permit the rapid, sensitive, selective, and accurate identification of cancer-associated biomarkers can help drive advances in cancer research. Herein, a NAD(P)H:quinone oxidoreductase-1 (NQO1)-specific chemiluminescent probe 1 is reported that allows the differentiation between cancer subtypes. Probe 1 incorporates an NQO1-specific trimethyl-locked quinone trigger moiety covalently tethered to a phenoxy-dioxetane moiety through a para-aminobenzyl alcohol linker. Bio-reduction of the quinone to the corresponding hydroquinone results in a chemiluminescent signal. As inferred from a combination of in vitro cell culture analyses and in vivo mice studies, the probe is safe, cell permeable, and capable of producing a "turn-on" luminescence response in an NQO1-positive A549 lung cancer model. On this basis, probe 1 can be used to identify cancerous cells and tissues characterized by elevated NQO1 levels.
Collapse
Affiliation(s)
- Subin Son
- Department of Chemistry, Korea University, Seoul, 02841, Korea
| | - Miae Won
- Department of Chemistry, Korea University, Seoul, 02841, Korea
| | - Ori Green
- School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Nir Hananya
- School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Amit Sharma
- Department of Chemistry, Korea University, Seoul, 02841, Korea
| | - Yukyoung Jeon
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Korea
| | - Jong Hwan Kwak
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Korea
| | - Jonathan L Sessler
- Center for Supramolecular Chemistry and Catalysis, Shanghai University, Shanghai, 200444, China.,Department of Chemistry, University of Texas at Austin, Austin, TX, 78712-1224, USA
| | - Doron Shabat
- School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Jong Seung Kim
- Department of Chemistry, Korea University, Seoul, 02841, Korea
| |
Collapse
|
43
|
Zhu Y, Han J, Zhang Q, Zhao Z, Wang J, Xu X, Hao H, Zhang J. A highly selective fluorescent probe for human NAD(P)H:quinone oxidoreductase 1 (hNQO1) detection and imaging in living tumor cells. RSC Adv 2019; 9:26729-26733. [PMID: 35528556 PMCID: PMC9070553 DOI: 10.1039/c9ra05650e] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 10/25/2019] [Accepted: 08/20/2019] [Indexed: 11/21/2022] Open
Abstract
Human NAD(P)H:quinone oxidoreductase (hNQO1) can be used as a biomarker for the early diagnosis of cancer.
Collapse
Affiliation(s)
- Ya Zhu
- School of Pharmacy
- China Pharmaceutical University
- Nanjing
- China
| | - Jialing Han
- School of Pharmacy
- China Pharmaceutical University
- Nanjing
- China
| | - Qian Zhang
- School of Pharmacy
- China Pharmaceutical University
- Nanjing
- China
| | - Zhou Zhao
- School of Pharmacy
- China Pharmaceutical University
- Nanjing
- China
| | - Jin Wang
- School of Pharmacy
- China Pharmaceutical University
- Nanjing
- China
| | - Xiaowei Xu
- School of Pharmacy
- China Pharmaceutical University
- Nanjing
- China
| | - Haiping Hao
- School of Pharmacy
- China Pharmaceutical University
- Nanjing
- China
| | - Jun Zhang
- School of Pharmacy
- Nanjing Medical University
- Nanjing
- China
| |
Collapse
|
44
|
Wang X, Wang Z, Wu H, Jia W, Teng L, Song J, Yang X, Wang D. Sarcodon imbricatus polysaccharides protect against cyclophosphamide-induced immunosuppression via regulating Nrf2-mediated oxidative stress. Int J Biol Macromol 2018; 120:736-744. [DOI: 10.1016/j.ijbiomac.2018.08.157] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 07/28/2018] [Accepted: 08/27/2018] [Indexed: 12/15/2022]
|
45
|
Vettorazzi A, Pastor L, Guruceaga E, López de Cerain A. Sex-dependent gene expression after ochratoxin A insult in F344 rat kidney. Food Chem Toxicol 2018; 123:337-348. [PMID: 30449730 DOI: 10.1016/j.fct.2018.10.057] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Revised: 10/19/2018] [Accepted: 10/24/2018] [Indexed: 02/02/2023]
Abstract
Ochratoxin A (OTA) is a potent rodent nephrocarcinogen; being males more sensitive than females. The objective was to study the response between sexes at gene expression level (whole genome transcriptomics) in kidneys of F344 rats treated with 0.21 or 0.50 mg/kg bw OTA for 21 days. DNA methylation analysis of selected genes was also studied (MALDI-TOF mass spectrometry). OTA-induced response was dose-dependent in males and females, although clearer in males. Females showed a higher number of altered genes than males but functional analysis revealed a higher number of significantly enriched toxicity lists in 0.21 mg/kg treated males. OTA modulated damage, signaling and metabolism related lists, as well as inflammation, proliferation and oxidative stress in both sexes. Eleven toxicity lists (damage, fibrosis, cell signaling and metabolism) were exclusively altered in males while renal safety biomarker and biogenesis of mitochondria lists were exclusively enriched in females. A high number of lists (39) were significantly enriched in both sexes. However, they contained many sex-biased OTA-modulated genes, mainly phase I and II, transporters and nuclear receptors, but also others related to cell proliferation/apoptosis. No biologically relevant changes were observed in the methylation of selected genes.
Collapse
Affiliation(s)
- Ariane Vettorazzi
- University of Navarra, Department of Pharmacology and Toxicology, Faculty of Pharmacy and Nutrition, E-31008, Pamplona, Spain; IdiSNA, Navarra Institute for Health Research, E-31008, Pamplona, Spain.
| | - Laura Pastor
- University of Navarra, Department of Pharmacology and Toxicology, Faculty of Pharmacy and Nutrition, E-31008, Pamplona, Spain.
| | - Elizabeth Guruceaga
- IdiSNA, Navarra Institute for Health Research, E-31008, Pamplona, Spain; Bioinformatics Platform, Center for Applied Medical Research (CIMA), University of Navarra, E-31008, Pamplona, Spain.
| | - Adela López de Cerain
- University of Navarra, Department of Pharmacology and Toxicology, Faculty of Pharmacy and Nutrition, E-31008, Pamplona, Spain; IdiSNA, Navarra Institute for Health Research, E-31008, Pamplona, Spain.
| |
Collapse
|
46
|
Huang N, Pei X, Lin W, Chiu JF, Tao T, Li G. DNA methylation of a non-CpG island promoter represses NQO1 expression in rat arsenic-transformed lung epithelial cells. Acta Biochim Biophys Sin (Shanghai) 2018; 50:733-739. [PMID: 29889218 DOI: 10.1093/abbs/gmy063] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Indexed: 02/05/2023] Open
Abstract
NAD(P)H:quinone oxidoreductase 1 (NQO1), a phase II flavoenzyme that catalyzes reduction reactions to protect cells against electrophiles and oxidants, is involved in tumorigenesis. Altered methylation of the NQO1 gene has been observed and is speculated to result in aberrant NQO1 expression in rat cells undergoing chemical carcinogenesis, although this has not been proven experimentally. In this study, we first investigated the potential epigenetic mechanisms underlying the phenomenon of NQO1 differential expression in individual subclones of rat arsenic-transformed lung epithelial cells (TLECs). NQO1 expression of TLEC subclones with or without 5-aza-2'-deoxycytidine (5-Aza-CdR) treatment was assessed by reverse transcriptase-polymerase chain reaction (RT-PCR), western blot analysis, and real-time PCR. Methylation status of the NQO1 promoter in TLEC subclones was analyzed by bisulfite sequencing. Transcriptional activity of NQO1 promoter in vitro methylated was determined by luciferase assay using a CpG-free luciferase reporter driven by the NQO1 promoter region (-435 to +229). We found that non-CpG island (non-CpGI) within the NQO1 promoter was hyper- or hypo-methylated in TLEC subclones and corresponded to low and high gene expressions, respectively. Following the treatment with 5-Aza-CdR, transcription of the NQO1 gene in the hypermethylated subclones was restored, accompanied by demethylation of the NQO1 promoter. In vitro promoter methylation almost completely silenced reporter activity in TLECs. These results indicate that DNA methylation of the non-CpGI promoter contributes to epigenetic silencing of NQO1 in rat TLECs.
Collapse
Affiliation(s)
- Ningyu Huang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Xiaojuan Pei
- Department of Pathology, Shenzhen Hospital of Southern Medical University, Shenzhen, China
| | - Wenbo Lin
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Jen-Fu Chiu
- Department of Biochemistry, The Key Lab of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou, China
- School of Biomedical Sciences, LKS Faculty of Medicine, University of Hong Kong, Hong Kong, China
| | - Tao Tao
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Guanwu Li
- Department of Biochemistry, The Key Lab of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou, China
| |
Collapse
|
47
|
Zou B, Xiao G, Xu Y, Wu J, Yu Y, Fu M. Persimmon vinegar polyphenols protect against hydrogen peroxide-induced cellular oxidative stress via Nrf2 signalling pathway. Food Chem 2018; 255:23-30. [DOI: 10.1016/j.foodchem.2018.02.028] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 01/08/2018] [Accepted: 02/06/2018] [Indexed: 01/08/2023]
|
48
|
Fortin O, Aguilar-Uscanga BR, Vu KD, Salmieri S, Lacroix M. Effect of Saccharomyces Boulardii Cell Wall Extracts on Colon Cancer Prevention in Male F344 Rats Treated with 1,2-Dimethylhydrazine. Nutr Cancer 2018; 70:632-642. [DOI: 10.1080/01635581.2018.1460672] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Olivier Fortin
- INRS-Institut Armand-Frappier, Research Laboratories in Sciences Applied to Food, Laval, Quebec, Canada
| | - Blanca R. Aguilar-Uscanga
- Laboratorio de Microbiología Industrial, Centro Universitario de Ciencias Exactas e Ingenierías, Universidad de Guadalajara (UdG), Jalisco, Mexico
| | - Khanh D. Vu
- INRS-Institut Armand-Frappier, Research Laboratories in Sciences Applied to Food, Laval, Quebec, Canada
| | - Stephane Salmieri
- INRS-Institut Armand-Frappier, Research Laboratories in Sciences Applied to Food, Laval, Quebec, Canada
| | - Monique Lacroix
- INRS-Institut Armand-Frappier, Research Laboratories in Sciences Applied to Food, Laval, Quebec, Canada
| |
Collapse
|
49
|
|
50
|
den Braver-Sewradj SP, den Braver MW, Toorneman RM, van Leeuwen S, Zhang Y, Dekker SJ, Vermeulen NPE, Commandeur JNM, Vos JC. Reduction and Scavenging of Chemically Reactive Drug Metabolites by NAD(P)H:Quinone Oxidoreductase 1 and NRH:Quinone Oxidoreductase 2 and Variability in Hepatic Concentrations. Chem Res Toxicol 2018; 31:116-126. [PMID: 29281794 PMCID: PMC5997408 DOI: 10.1021/acs.chemrestox.7b00289] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
![]()
Detoxicating
enzymes NAD(P)H:quinone oxidoreductase 1 (NQO1) and
NRH:quinone oxidoreductase 2 (NQO2) catalyze the two-electron reduction
of quinone-like compounds. The protective role of the polymorphic
NQO1 and NQO2 enzymes is especially of interest in the liver as the
major site of drug bioactivation to chemically reactive drug metabolites.
In the current study, we quantified the concentrations of NQO1 and
NQO2 in 20 human liver donors and NQO1 and NQO2 activities with quinone-like
drug metabolites. Hepatic NQO1 concentrations ranged from 8 to 213
nM. Using recombinant NQO1, we showed that low nM concentrations of
NQO1 are sufficient to reduce synthetic amodiaquine and carbamazepine
quinone-like metabolites in vitro. Hepatic NQO2 concentrations
ranged from 2 to 31 μM. NQO2 catalyzed the reduction of quinone-like
metabolites derived from acetaminophen, clozapine, 4′-hydroxydiclofenac,
mefenamic acid, amodiaquine, and carbamazepine. The reduction of the
clozapine nitrenium ion supports association studies showing that
NQO2 is a genetic risk factor for clozapine-induced agranulocytosis.
The 5-hydroxydiclofenac quinone imine, which was previously shown
to be reduced by NQO1, was not reduced by NQO2. Tacrine was identified
as a potent NQO2 inhibitor and was applied to further confirm the
catalytic activity of NQO2 in these assays. While the in vivo relevance of NQO2-catalyzed reduction of quinone-like metabolites
remains to be established by identification of the physiologically
relevant co-substrates, our results suggest an additional protective
role of the NQO2 protein by non-enzymatic scavenging of quinone-like
metabolites. Hepatic NQO1 activity in detoxication of quinone-like
metabolites becomes especially important when other detoxication pathways
are exhausted and NQO1 levels are induced.
Collapse
Affiliation(s)
- Shalenie P den Braver-Sewradj
- AIMMS-Division of Molecular Toxicology, Department of Chemistry and Pharmaceutical Sciences, Vrije Universiteit , De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | - Michiel W den Braver
- AIMMS-Division of Molecular Toxicology, Department of Chemistry and Pharmaceutical Sciences, Vrije Universiteit , De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | - Robin M Toorneman
- AIMMS-Division of Molecular Toxicology, Department of Chemistry and Pharmaceutical Sciences, Vrije Universiteit , De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | - Stephanie van Leeuwen
- AIMMS-Division of Molecular Toxicology, Department of Chemistry and Pharmaceutical Sciences, Vrije Universiteit , De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | - Yongjie Zhang
- AIMMS-Division of Molecular Toxicology, Department of Chemistry and Pharmaceutical Sciences, Vrije Universiteit , De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | - Stefan J Dekker
- AIMMS-Division of Molecular Toxicology, Department of Chemistry and Pharmaceutical Sciences, Vrije Universiteit , De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | - Nico P E Vermeulen
- AIMMS-Division of Molecular Toxicology, Department of Chemistry and Pharmaceutical Sciences, Vrije Universiteit , De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | - Jan N M Commandeur
- AIMMS-Division of Molecular Toxicology, Department of Chemistry and Pharmaceutical Sciences, Vrije Universiteit , De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | - J Chris Vos
- AIMMS-Division of Molecular Toxicology, Department of Chemistry and Pharmaceutical Sciences, Vrije Universiteit , De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| |
Collapse
|