1
|
Sharma S, Pasha Q. Chasing genes at high-altitude. Exp Physiol 2025; 110:185-188. [PMID: 39298311 PMCID: PMC11782165 DOI: 10.1113/ep091877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 09/06/2024] [Indexed: 09/21/2024]
Affiliation(s)
- Samantha Sharma
- Department of Medical and Molecular GeneticsIndiana UniversityIndianapolisIndianaUSA
| | | |
Collapse
|
2
|
Seifu WD, Bekele-Alemu A, Zeng C. Genomic and physiological mechanisms of high-altitude adaptation in Ethiopian highlanders: a comparative perspective. Front Genet 2025; 15:1510932. [PMID: 39840284 PMCID: PMC11747213 DOI: 10.3389/fgene.2024.1510932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 12/10/2024] [Indexed: 01/23/2025] Open
Abstract
High-altitude adaptation is a remarkable example of natural selection, yet the genomic and physiological adaptation mechanisms of Ethiopian highlanders remain poorly understood compared to their Andean and Tibetan counterparts. Ethiopian populations, such as the Amhara and Oromo, exhibit unique adaptive strategies characterized by moderate hemoglobin levels and enhanced arterial oxygen saturation, indicating distinct mechanisms of coping with chronic hypoxia. This review synthesizes current genomic insights into Ethiopian high-altitude adaptation, identifying key candidate genes involved in hypoxia tolerance and examining the influence of genetic diversity and historical admixture on adaptive responses. Furthermore, the review highlights significant research gaps, particularly the underrepresentation of Ethiopian populations in global genomic studies, the lack of comprehensive genotype-phenotype analyses, and inconsistencies in research methodologies. Addressing these gaps is crucial for advancing our understanding of the genetic basis of human adaptation to extreme environments and for developing a more complete picture of human physiological resilience. This review offers a comparative perspective with Tibetan and Andean highlanders, emphasizing the need for expanding genomic representation and refining methodologies to uncover the genetic mechanisms underlying high-altitude adaptation in Ethiopian populations.
Collapse
Affiliation(s)
- Wubalem Desta Seifu
- Center of Cellular and Genetic Science, Henan Academy of Sciences, Zhengzhou, China
- Institute of Biotechnology, Wolkite University, Wolkite, Ethiopia
| | - Abreham Bekele-Alemu
- Laboratory of Plant Molecular Biology and Biotechnology, Department of Biology, University of North Carolina Greensboro, Greensboro, NC, United States
| | - Changqing Zeng
- Center of Cellular and Genetic Science, Henan Academy of Sciences, Zhengzhou, China
| |
Collapse
|
3
|
Golomb R, Dahan O, Dahary D, Pilpel Y. Cell-autonomous adaptation: an overlooked avenue of adaptation in human evolution. Trends Genet 2025; 41:12-22. [PMID: 39732540 DOI: 10.1016/j.tig.2024.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/21/2024] [Accepted: 10/24/2024] [Indexed: 12/30/2024]
Abstract
Adaptation to environmental conditions occurs over diverse evolutionary timescales. In multi-cellular organisms, adaptive traits are often studied in tissues/organs relevant to the environmental challenge. We argue for the importance of an underappreciated layer of evolutionary adaptation manifesting at the cellular level. Cell-autonomous adaptations (CAAs) are inherited traits that boost organismal fitness by enhancing individual cell function. For instance, the cell-autonomous enhancement of mitochondrial oxygen utilization in hypoxic environments differs from an optimized erythropoiesis response, which involves multiple tissues. We explore the breadth of CAAs across challenges and highlight their counterparts in unicellular organisms. Applying these insights, we mine selection signals in Andean highlanders, revealing novel candidate CAAs. The conservation of CAAs across species may reveal valuable insights into multi-cellular evolution.
Collapse
Affiliation(s)
- Ruthie Golomb
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Orna Dahan
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Dvir Dahary
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Yitzhak Pilpel
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, 76100, Israel.
| |
Collapse
|
4
|
Zhao P, Li S, He Z, Ma X. Physiological and Genetic Basis of High-Altitude Indigenous Animals' Adaptation to Hypoxic Environments. Animals (Basel) 2024; 14:3031. [PMID: 39457960 PMCID: PMC11505238 DOI: 10.3390/ani14203031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/14/2024] [Accepted: 10/18/2024] [Indexed: 10/28/2024] Open
Abstract
Adaptation is one of the fundamental characteristics of life activities; humans and animals inhabiting high altitudes are well adapted to hypobaric hypoxic environments, and studies on the mechanisms of this adaptation emerged a hundred years ago. Based on these studies, this paper reviews the adaptive changes in hypoxia-sensitive tissues and organs, as well as at the molecular genetic level, such as pulmonary, cardiovascular, O2-consuming tissues, and the hemoglobin and HIF pathway, that occur in animals in response to the challenge of hypobaric hypoxia. High-altitude hypoxia adaptation may be due to the coordinated action of genetic variants in multiple genes and, as a result, adaptive changes in multiple tissues and organs at the physiological and biochemical levels. Unraveling their mechanisms of action can provide a reference for the prevention and treatment of multiple diseases caused by chronic hypoxia.
Collapse
Affiliation(s)
- Pengfei Zhao
- Faculty of Chemistry and Life Sciences, Gansu Minzu Normal University, Hezuo 747000, China;
| | - Shaobin Li
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China;
| | - Zhaohua He
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China;
| | - Xiong Ma
- Faculty of Chemistry and Life Sciences, Gansu Minzu Normal University, Hezuo 747000, China;
| |
Collapse
|
5
|
Wen J, Liu J, Feng Q, Lu Y, Yuan K, Zhang X, Zhang C, Gao Y, Wang X, Mamatyusupu D, Xu S. Ancestral origins and post-admixture adaptive evolution of highland Tajiks. Natl Sci Rev 2024; 11:nwae284. [PMID: 40040643 PMCID: PMC11879426 DOI: 10.1093/nsr/nwae284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 08/04/2024] [Accepted: 08/04/2024] [Indexed: 03/06/2025] Open
Abstract
It remains debatable how many genes and how various the mechanisms are behind human adaptation to extreme environments, such as high altitudes. Despite extensive studies on Tibetans, Andeans and Ethiopians, new insights are expected to be provided with careful analysis of underrepresented highlanders living in a different geographical region, such as the Tajiks, who reside on the Pamir Plateau at an average altitude exceeding 4000 meters. Moreover, genetic admixture, as we observed in the current whole-genome deep-sequencing study of Xinjiang Tajiks (XJT), offers a unique opportunity to explore how admixture may facilitate adaptation to high-altitude environments. Compared with other extensively studied highlanders, XJT showed pronounced admixture patterns: most of their ancestry are derived from West Eurasians (34.5%-48.3%) and South Asians (21.4%-40.0%), and some minor ancestry from East Asians and Siberians (3.62%-17.5%). The greater genetic diversity in XJT than in their ancestral source populations provides a genetic basis for their adaptation to high-altitude environments. The admixture gain of functional adaptive components from ancestral populations could facilitate adaptation to high-altitude environments. Specifically, admixture-facilitated adaptation was strongly associated with skin-related candidate genes that respond to UV radiation (e.g. HERC2 and BNC2) and cardiovascular-system-related genes (e.g. MPI and BEST1). Notably, no adaptive variants of genes showing outstanding natural selection signatures in the Tibetan or Andean highlanders were identified in XJT, including EPAS1 and EGLN1, indicating that a different set of genes contributed to XJT's survival on the Pamir Plateau, although some genes underlying natural selection in XJT have been previously reported in other highlanders. Our results highlight the unique genetic adaptations in XJT and propose that admixture may play a vital role in facilitating high-altitude adaptation. By introducing and elevating diversity, admixture likely induces novel genetic factors that contribute to the survival of populations in extreme environments like the highlands.
Collapse
Affiliation(s)
- Jia Wen
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, Zhangjiang Fudan International Innovation Center, Center for Evolutionary Biology, School of Life Sciences, Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Jiaojiao Liu
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, Zhangjiang Fudan International Innovation Center, Center for Evolutionary Biology, School of Life Sciences, Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Qidi Feng
- Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yan Lu
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, Zhangjiang Fudan International Innovation Center, Center for Evolutionary Biology, School of Life Sciences, Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Ministry of Education Key Laboratory of Contemporary Anthropology, Fudan University, Shanghai 200438, China
| | - Kai Yuan
- Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xiaoxi Zhang
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
- Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Chao Zhang
- Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yang Gao
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, Zhangjiang Fudan International Innovation Center, Center for Evolutionary Biology, School of Life Sciences, Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Xiaoji Wang
- Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Dolikun Mamatyusupu
- College of the Life Sciences and Technology, Xinjiang University, Urumqi 830046, China
| | - Shuhua Xu
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, Zhangjiang Fudan International Innovation Center, Center for Evolutionary Biology, School of Life Sciences, Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
- Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| |
Collapse
|
6
|
González-Buenfil R, Vieyra-Sánchez S, Quinto-Cortés CD, Oppenheimer SJ, Pomat W, Laman M, Cervantes-Hernández MC, Barberena-Jonas C, Auckland K, Allen A, Allen S, Phipps ME, Huerta-Sanchez E, Ioannidis AG, Mentzer AJ, Moreno-Estrada A. Genetic Signatures of Positive Selection in Human Populations Adapted to High Altitude in Papua New Guinea. Genome Biol Evol 2024; 16:evae161. [PMID: 39173139 PMCID: PMC11339866 DOI: 10.1093/gbe/evae161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/09/2024] [Indexed: 08/24/2024] Open
Abstract
Papua New Guinea (PNG) hosts distinct environments mainly represented by the ecoregions of the Highlands and Lowlands that display increased altitude and a predominance of pathogens, respectively. Since its initial peopling approximately 50,000 years ago, inhabitants of these ecoregions might have differentially adapted to the environmental pressures exerted by each of them. However, the genetic basis of adaptation in populations from these areas remains understudied. Here, we investigated signals of positive selection in 62 highlanders and 43 lowlanders across 14 locations in the main island of PNG using whole-genome genotype data from the Oceanian Genome Variation Project (OGVP) and searched for signals of positive selection through population differentiation and haplotype-based selection scans. Additionally, we performed archaic ancestry estimation to detect selection signals in highlanders within introgressed regions of the genome. Among highland populations we identified candidate genes representing known biomarkers for mountain sickness (SAA4, SAA1, PRDX1, LDHA) as well as candidate genes of the Notch signaling pathway (PSEN1, NUMB, RBPJ, MAML3), a novel proposed pathway for high altitude adaptation in multiple organisms. We also identified candidate genes involved in oxidative stress, inflammation, and angiogenesis, processes inducible by hypoxia, as well as in components of the eye lens and the immune response. In contrast, candidate genes in the lowlands are mainly related to the immune response (HLA-DQB1, HLA-DQA2, TAAR6, TAAR9, TAAR8, RNASE4, RNASE6, ANG). Moreover, we find two candidate regions to be also enriched with archaic introgressed segments, suggesting that archaic admixture has played a role in the local adaptation of PNG populations.
Collapse
Affiliation(s)
- Ram González-Buenfil
- Advanced Genomics Unit (UGA), Center for Research and Advanced Studies of the National Polytechnic Institute (Cinvestav), Irapuato, Guanajuato, Mexico
| | - Sofía Vieyra-Sánchez
- Advanced Genomics Unit (UGA), Center for Research and Advanced Studies of the National Polytechnic Institute (Cinvestav), Irapuato, Guanajuato, Mexico
| | - Consuelo D Quinto-Cortés
- Advanced Genomics Unit (UGA), Center for Research and Advanced Studies of the National Polytechnic Institute (Cinvestav), Irapuato, Guanajuato, Mexico
| | | | - William Pomat
- Vector-Borne Diseases Unit, Papua New Guinea Institute of Medical Research, Madang, Papua New Guinea
| | - Moses Laman
- Vector-Borne Diseases Unit, Papua New Guinea Institute of Medical Research, Madang, Papua New Guinea
| | - Mayté C Cervantes-Hernández
- Advanced Genomics Unit (UGA), Center for Research and Advanced Studies of the National Polytechnic Institute (Cinvestav), Irapuato, Guanajuato, Mexico
| | - Carmina Barberena-Jonas
- Advanced Genomics Unit (UGA), Center for Research and Advanced Studies of the National Polytechnic Institute (Cinvestav), Irapuato, Guanajuato, Mexico
| | | | - Angela Allen
- Department of Molecular Haematology, MRC Weatherall Institute of Molecular Medicine, Headley Way, Headington, Oxford, OX3 9DS, UK
| | - Stephen Allen
- Department of Clinical Sciences,Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - Maude E Phipps
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Subang Jaya 47500, Selangor, Malaysia
| | - Emilia Huerta-Sanchez
- Center for Computational Molecular Biology, Brown University, Providence, RI 02912, USA
- Department of Ecology, Evolution and Organismal Biology, Brown University, Providence, RI 02912, USA
| | - Alexander G Ioannidis
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, CA, USA
- Department of Biomedical Data Science, Stanford Medical School, Stanford, CA, USA
| | | | - Andrés Moreno-Estrada
- Advanced Genomics Unit (UGA), Center for Research and Advanced Studies of the National Polytechnic Institute (Cinvestav), Irapuato, Guanajuato, Mexico
| |
Collapse
|
7
|
Ibarra-Ibarra BR, Luna-Muñoz L, Mutchinick OM, Arteaga-Vázquez J. Moderate altitude as a risk factor for isolated congenital malformations. Results from a case-control multicenter-multiregional study. Birth Defects Res 2024; 116:e2335. [PMID: 39056527 DOI: 10.1002/bdr2.2335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 03/08/2024] [Accepted: 03/20/2024] [Indexed: 07/28/2024]
Abstract
BACKGROUND Living in high-altitude regions has been associated with a higher prevalence of some birth defects. Moderate altitudes (1500-2500 m) have been associated with some congenital heart diseases and low birth weight. However, no studies have been conducted for other isolated congenital malformations. OBJECTIVES To estimate the prevalence at birth of isolated congenital malformations in low and moderate altitudes and to determine if moderate altitudes are a risk factor, such as high altitudes, for isolated congenital malformations adjusted for other factors. METHODS The study consisted of a case-control multicenter-multiregional study of 13 isolated congenital malformations. Cases included live births with isolated congenital malformations and controls at low (10-1433 m) and moderate altitudes (1511-2426 m) from a Mexican registry from January 1978 to December 2019. Prevalence per 10,000 (95% CI) per altitude group was estimated. We performed unadjusted and adjusted logistic regression models (adjusted for maternal age, parity, malformed relatives, socioeconomic level, and maternal diabetes) for each isolated congenital malformation. RESULTS Hydrocephaly and microtia had a higher at-birth prevalence, and spina bifida, preauricular tag, and gastroschisis showed a lower at-birth prevalence in moderate altitudes. Moderate altitudes were a risk factor for hydrocephaly (aOR 1.39), microtia (aOR 1.60), cleft-lip-palate (aOR 1.27), and polydactyly (aOR 1.32) and a protective effect for spina bifida (aOR 0.87) compared with low altitudes. CONCLUSIONS Our findings provide evidence that moderate altitudes as higher altitudes are an associated risk or protective factor to some isolated congenital malformations, suggesting a possible gradient effect.
Collapse
Affiliation(s)
- Blanca Rebeca Ibarra-Ibarra
- Laboratory of Translational Medicine, UNAM-INC Unit, Instituto Nacional de Cardiología, Ignacio Chávez, Mexico City, Mexico
| | - Leonora Luna-Muñoz
- Department of Genetics, Instituto Nacional de Ciencias Médicas y Nutrición "Salvador Zubirán", Mexico City, Mexico
| | - Osvaldo M Mutchinick
- Department of Genetics, Instituto Nacional de Ciencias Médicas y Nutrición "Salvador Zubirán", Mexico City, Mexico
| | - Jazmín Arteaga-Vázquez
- Department of Genetics, Instituto Nacional de Ciencias Médicas y Nutrición "Salvador Zubirán", Mexico City, Mexico
| |
Collapse
|
8
|
Maxfield A, Hadley C, Hruschka DJ. The relationship between altitude and BMI varies across low- and middle-income countries. Am J Hum Biol 2024; 36:e24036. [PMID: 38213006 DOI: 10.1002/ajhb.24036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 11/15/2023] [Accepted: 12/15/2023] [Indexed: 01/13/2024] Open
Abstract
OBJECTIVES Studies suggest that living at high altitude decreases obesity risk, but this research is limited to single-country analyses. We examine the relationship between altitude and body mass index (BMI) among women living in a diverse sample of low- and middle-income countries. MATERIALS AND METHODS Using Demographic and Health Survey data from 1 583 456 reproductive age women (20-49 years) in 54 countries, we fit regression models predicting BMI and obesity by altitude controlling for a range of demographic factors-age, parity, breastfeeding status, wealth, and education. RESULTS A mixed-effects model with country-level random intercepts and slopes predicts an overall -0.162 kg/m2 (95% CI -0.220, -0.104) reduction in BMI and lower odds of obesity (OR 0.90, 95% CI 0.87, 0.95) for every 200 m increase in altitude. However, countries vary dramatically in whether they exhibit a negative or positive association between altitude and BMI (34 countries negative, 20 positive). Mixed findings also arise when examining odds of obesity. DISCUSSION We show that past findings of declining obesity risk with altitude are not universal. Increasing altitude predicts slightly lower BMIs at the global level, but the relationship within individual countries varies in both strength and direction.
Collapse
Affiliation(s)
- Amanda Maxfield
- Department of Anthropology, Emory University, Atlanta, Georgia, USA
| | - Craig Hadley
- Department of Anthropology, Emory University, Atlanta, Georgia, USA
- Department of Quantitative Theory and Methods, Emory University, Atlanta, Georgia, USA
| | - Daniel J Hruschka
- School of Human Evolution and Social Change, Arizona State University, Tempe, Arizona, USA
| |
Collapse
|
9
|
Leonard WR. Pearl Memorial Lecture. Humans at the extremes: Exploring human adaptation to ecological and social stressors. Am J Hum Biol 2024; 36:e24010. [PMID: 37974340 DOI: 10.1002/ajhb.24010] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/22/2023] [Accepted: 10/25/2023] [Indexed: 11/19/2023] Open
Abstract
The field of human biology has long explored how human populations have adapted to extreme environmental circumstances. Yet, it has become increasingly clear that conditions of social stress, poverty, and lifestyle change play equally important roles in shaping human biological variation and health. In this paper, I provide a brief background on the foundational human adaptability research of the International Biological Programme (IBP) from the 1960s, highlighting how its successes and critiques have shaped current research directions in the field. I then discuss and reflect on my own field research that has examined the influence of both environmental and social stresses on human populations living in different ecosystems: the Peruvian Andes, the Siberian arctic, and the Bolivian rainforest. Finally, I consider how the papers in this special issue advance our understanding of human adaptability to extreme conditions and offer directions for future research. Drawing on our field's distinctive evolutionary and biocultural perspectives, human biologists are uniquely positioned to examine how the interplay between social and ecological domains influences the human condition.
Collapse
Affiliation(s)
- William R Leonard
- Department of Anthropology & Program in Global Health Studies, Northwestern University, Evanston, Illinois, USA
| |
Collapse
|
10
|
Li L, Shen S, Bickler P, Jacobson MP, Wu LF, Altschuler SJ. Searching for molecular hypoxia sensors among oxygen-dependent enzymes. eLife 2023; 12:e87705. [PMID: 37494095 PMCID: PMC10371230 DOI: 10.7554/elife.87705] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 07/09/2023] [Indexed: 07/27/2023] Open
Abstract
The ability to sense and respond to changes in cellular oxygen levels is critical for aerobic organisms and requires a molecular oxygen sensor. The prototypical sensor is the oxygen-dependent enzyme PHD: hypoxia inhibits its ability to hydroxylate the transcription factor HIF, causing HIF to accumulate and trigger the classic HIF-dependent hypoxia response. A small handful of other oxygen sensors are known, all of which are oxygen-dependent enzymes. However, hundreds of oxygen-dependent enzymes exist among aerobic organisms, raising the possibility that additional sensors remain to be discovered. This review summarizes known and potential hypoxia sensors among human O2-dependent enzymes and highlights their possible roles in hypoxia-related adaptation and diseases.
Collapse
Affiliation(s)
- Li Li
- Department of Pharmaceutical Chemistry, University of California San Francisco, San FranciscoSan FranciscoUnited States
| | - Susan Shen
- Department of Pharmaceutical Chemistry, University of California San Francisco, San FranciscoSan FranciscoUnited States
- Department of Psychiatry, University of California, San FranciscoSan FranciscoUnited States
| | - Philip Bickler
- Hypoxia Research Laboratory, University of California San Francisco, San FranciscoSan FranciscoUnited States
- Center for Health Equity in Surgery and Anesthesia, University of California San Francisco, San FranciscoSan FranciscoUnited States
- Anesthesia and Perioperative Care, University of California San Francisco, San FranciscoSan FranciscoUnited States
| | - Matthew P Jacobson
- Department of Pharmaceutical Chemistry, University of California San Francisco, San FranciscoSan FranciscoUnited States
| | - Lani F Wu
- Department of Pharmaceutical Chemistry, University of California San Francisco, San FranciscoSan FranciscoUnited States
| | - Steven J Altschuler
- Department of Pharmaceutical Chemistry, University of California San Francisco, San FranciscoSan FranciscoUnited States
| |
Collapse
|
11
|
Silva L, Antunes A. Omics and Remote Homology Integration to Decipher Protein Functionality. Methods Mol Biol 2023; 2627:61-81. [PMID: 36959442 DOI: 10.1007/978-1-0716-2974-1_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2023]
Abstract
In the recent years, several "omics" technologies based on specific biomolecules (from DNA, RNA, proteins, or metabolites) have won growing importance in the scientific field. Despite each omics possess their own laboratorial protocols, they share a background of bioinformatic tools for data integration and analysis. A recent subset of bioinformatic tools, based on available templates or remote homology protocols, allow computational fast and high-accuracy prediction of protein structures. The quickly predict of actually unsolved protein structures, together with late omics findings allow a boost of scientific advances in multiple fields such as cancer, longevity, immunity, mitochondrial function, toxicology, drug design, biosensors, and recombinant protein engineering. In this chapter, we assessed methodological approaches for the integration of omics and remote homology inferences to decipher protein functionality, opening the door to the next era of biological knowledge.
Collapse
Affiliation(s)
- Liliana Silva
- CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Porto, Portugal
- Department of Biology, Faculty of Sciences, University of Porto, Porto, Portugal
| | - Agostinho Antunes
- CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Porto, Portugal.
- Department of Biology, Faculty of Sciences, University of Porto, Porto, Portugal.
| |
Collapse
|
12
|
Jorgensen K, Garcia OA, Kiyamu M, Brutsaert TD, Bigham AW. Genetic adaptations to potato starch digestion in the Peruvian Andes. AMERICAN JOURNAL OF BIOLOGICAL ANTHROPOLOGY 2023; 180:162-172. [PMID: 39882941 DOI: 10.1002/ajpa.24656] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 10/18/2022] [Accepted: 10/25/2022] [Indexed: 01/31/2025]
Abstract
OBJECTIVES Potatoes are an important staple crop across the world and particularly in the Andes, where they were cultivated as early as 10,000 years ago. Ancient Andean populations that relied upon this high-starch food to survive could possess genetic adaptation(s) to digest potato starch more efficiently. Here, we analyzed genomic data to identify whether this putative adaptation is still present in their modern-day descendants, namely Peruvians of Indigenous American ancestry. MATERIALS AND METHODS We applied several tests to detect signatures of natural selection in genes associated with starch-digestion, AMY1, AMY2, SI, and MGAM in Peruvians. These were compared to two populations who only recently incorporated potatoes into their diets, Han Chinese and West Africans. RESULTS Overlapping statistical results identified a regional haplotype in MGAM that is unique to Peruvians. The age of this haplotype was estimated to be around 9547 years old. DISCUSSION The MGAM haplotype in Peruvians lies within a region of high transcriptional activity associated with the REST protein. The timing of this haplotype suggests that it arose in response to increased potato cultivation and attendant consumption. For Peruvian populations that relied upon the high-starch potato as a major source of nutrition, natural selection likely favored these MGAM variant(s) that led to more efficient digestion and increased glucose production. This research provides further support that detecting subtle shifts in human diet can be a major driver of human evolutionary change, as these results indicate that there is global variation in human ability to better digest high-starch foods.
Collapse
Affiliation(s)
- Kelsey Jorgensen
- Department of Anthropology, University of California, Los Angeles, California, USA
- Department of Anthropology, Wayne State University, Detroit, Michigan, USA
| | - Obed A Garcia
- Department of Biomedical Data Science, Stanford University, Stanford, California, USA
| | - Melisa Kiyamu
- Departamento de Ciencias Biológicas y Fisiológicas, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Tom D Brutsaert
- Department of Exercise Science, Syracuse University, Syracuse, New York, USA
| | - Abigail W Bigham
- Department of Anthropology, University of California, Los Angeles, California, USA
| |
Collapse
|
13
|
Mimicking Gene-Environment Interaction of Higher Altitude Dwellers by Intermittent Hypoxia Training: COVID-19 Preventive Strategies. BIOLOGY 2022; 12:biology12010006. [PMID: 36671699 PMCID: PMC9855005 DOI: 10.3390/biology12010006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 11/30/2022] [Accepted: 12/07/2022] [Indexed: 12/24/2022]
Abstract
Cyclooxygenase 2 (COX2) inhibitors have been demonstrated to protect against hypoxia pathogenesis in several investigations. It has also been utilized as an adjuvant therapy in the treatment of COVID-19. COX inhibitors, which have previously been shown to be effective in treating previous viral and malarial infections are strong candidates for improving the COVID-19 therapeutic doctrine. However, another COX inhibitor, ibuprofen, is linked to an increase in the angiotensin-converting enzyme 2 (ACE2), which could increase virus susceptibility. Hence, inhibiting COX2 via therapeutics might not always be protective and we need to investigate the downstream molecules that may be involved in hypoxia environment adaptation. Research has discovered that people who are accustomed to reduced oxygen levels at altitude may be protected against the harmful effects of COVID-19. It is important to highlight that the study's conclusions only applied to those who regularly lived at high altitudes; they did not apply to those who occasionally moved to higher altitudes but still lived at lower altitudes. COVID-19 appears to be more dangerous to individuals residing at lower altitudes. The downstream molecules in the (COX2) pathway have been shown to adapt in high-altitude dwellers, which may partially explain why these individuals have a lower prevalence of COVID-19 infection. More research is needed, however, to directly address COX2 expression in people living at higher altitudes. It is possible to mimic the gene-environment interaction of higher altitude people by intermittent hypoxia training. COX-2 adaptation resulting from hypoxic exposure at altitude or intermittent hypoxia exercise training (IHT) seems to have an important therapeutic function. Swimming, a type of IHT, was found to lower COX-2 protein production, a pro-inflammatory milieu transcription factor, while increasing the anti-inflammatory microenvironment. Furthermore, Intermittent Hypoxia Preconditioning (IHP) has been demonstrated in numerous clinical investigations to enhance patients' cardiopulmonary function, raise cardiorespiratory fitness, and increase tissues' and organs' tolerance to ischemia. Biochemical activities of IHP have also been reported as a feasible application strategy for IHP for the rehabilitation of COVID-19 patients. In this paper, we aim to highlight some of the most relevant shared genes implicated with COVID-19 pathogenesis and hypoxia. We hypothesize that COVID-19 pathogenesis and hypoxia share a similar mechanism that affects apoptosis, proliferation, the immune system, and metabolism. We also highlight the necessity of studying individuals who live at higher altitudes to emulate their gene-environment interactions and compare the findings with IHT. Finally, we propose COX2 as an upstream target for testing the effectiveness of IHT in preventing or minimizing the effects of COVID-19 and other oxygen-related pathological conditions in the future.
Collapse
|
14
|
Nafie K, Hasan A, Alshakhrit WK, Ismail A, Abbadi O. Pathological features of early pregnancy disorders in women living at high altitude in KSA. J Taibah Univ Med Sci 2022; 18:499-505. [PMID: 36818185 PMCID: PMC9906012 DOI: 10.1016/j.jtumed.2022.10.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/25/2022] [Accepted: 10/27/2022] [Indexed: 11/23/2022] Open
Abstract
Objectives Pregnancy at high altitudes is relatively challenging because of hypobaric hypoxia, which is associated with a smaller uterine artery diameter and diminished blood flow. Here, we investigated the histopathological characteristics of early pregnancy disorders among pregnant women living in a high-altitude region (approximately 2200 m above sea level). Methods This cross-sectional study used retrospective data collection from a single tertiary hospital in a high-altitude region in KSA. Age and histopathology were analyzed in 495 women diagnosed with early pregnancy disorders (mainly miscarriage) in 2018-2020. Results Approximately one-fifth of pregnancies in this high-altitude region were lost before 24 weeks' gestation, whereas 1150/6044 experienced miscarriage; 495 samples from those participants were sent for histopathological analysis. A total of 269 (54.34%) patients were younger than 35 years. Missed miscarriages accounted for 49.3% of miscarriages, followed by inevitable miscarriages (34.2%), which had a relatively higher frequency among mothers older than 35 years. The correlation between age and inevitable miscarriage was significant; ectopic pregnancy was diagnosed in 6.8%, molar pregnancy was detected in 6.26%, and blighted ovum was observed in 3.4%. Conclusion The miscarriage rate in this high-altitude region was 19% of all pregnancies. Approximately half of the affected women were in their 30s. Missed miscarriage cases were relatively high in this region. The percentage of molar pregnancy was higher than those reported in prior studies, thus suggesting a need for monitoring and genetic workup practices. Furthermore, studies involving a larger population at high altitudes will be crucial for further risk assessment in addition to national studies on women living at sea level.
Collapse
Affiliation(s)
- Khalid Nafie
- Pathology and Laboratory Department, Prince Mishari bin Saud Hospital, Ministry of Health, Baljurashi, KSA
| | - Abdulkarim Hasan
- Pathology and Laboratory Department, Prince Mishari bin Saud Hospital, Ministry of Health, Baljurashi, KSA,Pathology Department, Faculty of Medicine, Al-Azhar University, Cairo, Egypt,Correspondence address: Department of Pathology, Prince Mishari Hospital, Balljurashi, 65624, Abha, KSA.
| | - Wesam K. Alshakhrit
- Obstetrics and Gynecology Department, Prince Mishari bin Saud Hospital, Ministry of Health, Baljurashi, KSA
| | - Amal Ismail
- Pharmacy Practice- Pathophysiology Department, Unaizah College of Pharmacy, Qassim University, KSA
| | - Osama Abbadi
- Biochemistry Department, Faculty of Medicine, Omdurman Islamic University, Sudan
| |
Collapse
|
15
|
Hufnagel A, Grant ID, Aiken CEM. Glucose and oxygen in the early intrauterine environment and their role in developmental abnormalities. Semin Cell Dev Biol 2022; 131:25-34. [PMID: 35410716 DOI: 10.1016/j.semcdb.2022.03.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 03/02/2022] [Accepted: 03/31/2022] [Indexed: 12/14/2022]
Abstract
The early life environment can have profound impacts on the developing conceptus in terms of both growth and morphogenesis. These impacts can manifest in a variety of ways, including congenital fetal anomalies, placental dysfunction with subsequent effects on fetal growth, and adverse perinatal outcomes, or via effects on long-term health outcomes that may not be detected until later childhood or adulthood. Two key examples of environmental influences on early development are explored: maternal hyperglycaemia and gestational hypoxia. These are increasingly common pregnancy exposures worldwide, with potentially profound impacts on population health. We explore what is known regarding the mechanisms by which these environmental exposures can impact early intrauterine development and thus result in adverse outcomes in the immediate, short, and long term.
Collapse
Affiliation(s)
- Antonia Hufnagel
- University of Cambridge Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
| | - Imogen D Grant
- Department of Obstetrics and Gynaecology, University of Cambridge, Box 223, The Rosie Hospital and NIHR Cambridge Comprehensive Biomedical Research Centre, Cambridge CB2 0SW, UK
| | - Catherine E M Aiken
- Department of Obstetrics and Gynaecology, University of Cambridge, Box 223, The Rosie Hospital and NIHR Cambridge Comprehensive Biomedical Research Centre, Cambridge CB2 0SW, UK; University of Cambridge Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK.
| |
Collapse
|
16
|
Yu JJ, Non AL, Heinrich EC, Gu W, Alcock J, Moya EA, Lawrence ES, Tift MS, O'Brien KA, Storz JF, Signore AV, Khudyakov JI, Milsom WK, Wilson SM, Beall CM, Villafuerte FC, Stobdan T, Julian CG, Moore LG, Fuster MM, Stokes JA, Milner R, West JB, Zhang J, Shyy JY, Childebayeva A, Vázquez-Medina JP, Pham LV, Mesarwi OA, Hall JE, Cheviron ZA, Sieker J, Blood AB, Yuan JX, Scott GR, Rana BK, Ponganis PJ, Malhotra A, Powell FL, Simonson TS. Time Domains of Hypoxia Responses and -Omics Insights. Front Physiol 2022; 13:885295. [PMID: 36035495 PMCID: PMC9400701 DOI: 10.3389/fphys.2022.885295] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 05/24/2022] [Indexed: 02/04/2023] Open
Abstract
The ability to respond rapidly to changes in oxygen tension is critical for many forms of life. Challenges to oxygen homeostasis, specifically in the contexts of evolutionary biology and biomedicine, provide important insights into mechanisms of hypoxia adaptation and tolerance. Here we synthesize findings across varying time domains of hypoxia in terms of oxygen delivery, ranging from early animal to modern human evolution and examine the potential impacts of environmental and clinical challenges through emerging multi-omics approaches. We discuss how diverse animal species have adapted to hypoxic environments, how humans vary in their responses to hypoxia (i.e., in the context of high-altitude exposure, cardiopulmonary disease, and sleep apnea), and how findings from each of these fields inform the other and lead to promising new directions in basic and clinical hypoxia research.
Collapse
Affiliation(s)
- James J. Yu
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Amy L. Non
- Department of Anthropology, Division of Social Sciences, University of California, San Diego, La Jolla, CA, United States
| | - Erica C. Heinrich
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA, United States
| | - Wanjun Gu
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, United States
- Herbert Wertheim School of Public Health and Longevity Sciences, University of California, San Diego, La Jolla, CA, United States
| | - Joe Alcock
- Department of Emergency Medicine, University of New Mexico, Albuquerque, MX, United States
| | - Esteban A. Moya
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Elijah S. Lawrence
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Michael S. Tift
- Department of Biology and Marine Biology, College of Arts and Sciences, University of North Carolina Wilmington, Wilmington, NC, United States
| | - Katie A. O'Brien
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, United States
- Department of Physiology, Development and Neuroscience, Faculty of Biology, School of Biological Sciences, University of Cambridge, Cambridge, ENG, United Kingdom
| | - Jay F. Storz
- School of Biological Sciences, College of Arts and Sciences, University of Nebraska-Lincoln, Lincoln, IL, United States
| | - Anthony V. Signore
- School of Biological Sciences, College of Arts and Sciences, University of Nebraska-Lincoln, Lincoln, IL, United States
| | - Jane I. Khudyakov
- Department of Biological Sciences, University of the Pacific, Stockton, CA, United States
| | | | - Sean M. Wilson
- Lawrence D. Longo, MD Center for Perinatal Biology, Loma Linda, CA, United States
| | | | | | | | - Colleen G. Julian
- School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Lorna G. Moore
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, Aurora, CO, United States
| | - Mark M. Fuster
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Jennifer A. Stokes
- Department of Kinesiology, Southwestern University, Georgetown, TX, United States
| | - Richard Milner
- San Diego Biomedical Research Institute, San Diego, CA, United States
| | - John B. West
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Jiao Zhang
- Department of Medicine, UC San Diego School of Medicine, San Diego, CA, United States
| | - John Y. Shyy
- Department of Medicine, UC San Diego School of Medicine, San Diego, CA, United States
| | - Ainash Childebayeva
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - José Pablo Vázquez-Medina
- Department of Integrative Biology, College of Letters and Science, University of California, Berkeley, Berkeley, CA, United States
| | - Luu V. Pham
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, School of Medicine, Johns Hopkins Medicine, Baltimore, MD, United States
| | - Omar A. Mesarwi
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - James E. Hall
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Zachary A. Cheviron
- Division of Biological Sciences, College of Humanities and Sciences, University of Montana, Missoula, MT, United States
| | - Jeremy Sieker
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Arlin B. Blood
- Department of Pediatrics Division of Neonatology, School of Medicine, Loma Linda University, Loma Linda, CA, United States
| | - Jason X. Yuan
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Graham R. Scott
- Department of Pediatrics Division of Neonatology, School of Medicine, Loma Linda University, Loma Linda, CA, United States
| | - Brinda K. Rana
- Moores Cancer Center, UC San Diego, La Jolla, CA, United States
- Department of Psychiatry, UC San Diego, La Jolla, CA, United States
| | - Paul J. Ponganis
- Center for Marine Biotechnology and Biomedicine, La Jolla, CA, United States
| | - Atul Malhotra
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Frank L. Powell
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Tatum S. Simonson
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, United States
| |
Collapse
|
17
|
Mendes M, Jonnalagadda M, Ozarkar S, Lima Torres FC, Borda Pua V, Kendall C, Tarazona-Santos E, Parra EJ. Identifying signatures of natural selection in Indian populations. PLoS One 2022; 17:e0271767. [PMID: 35925921 PMCID: PMC9352006 DOI: 10.1371/journal.pone.0271767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 07/06/2022] [Indexed: 11/18/2022] Open
Abstract
In this study, we present the results of a genome-wide scan for signatures of positive selection using data from four tribal groups (Kokana, Warli, Bhil, and Pawara) and two caste groups (Deshastha Brahmin and Kunbi Maratha) from West of the Maharashtra State In India, as well as two samples of South Asian ancestry from the 1KG project (Gujarati Indian from Houston, Texas and Indian Telugu from UK). We used an outlier approach based on different statistics, including PBS, xpEHH, iHS, CLR, Tajima's D, as well as two recently developed methods: Graph-aware Retrieval of Selective Sweeps (GRoSS) and Ascertained Sequentially Markovian Coalescent (ASMC). In order to minimize the risk of false positives, we selected regions that are outliers in all the samples included in the study using more than one method. We identified putative selection signals in 107 regions encompassing 434 genes. Many of the regions overlap with only one gene. The signals observed using microarray-based data are very consistent with our analyses using high-coverage sequencing data, as well as those identified with a novel coalescence-based method (ASMC). Importantly, at least 24 of these genomic regions have been identified in previous selection scans in South Asian populations or in other population groups. Our study highlights genomic regions that may have played a role in the adaptation of anatomically modern humans to novel environmental conditions after the out of Africa migration.
Collapse
Affiliation(s)
- Marla Mendes
- Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
- Department of Anthropology, University of Toronto—Mississauga Campus, Mississauga, ON, Canada
| | - Manjari Jonnalagadda
- Symbiosis School for Liberal Arts (SSLA), Symbiosis International University (SIU), Pune, India
| | - Shantanu Ozarkar
- Department of Anthropology, Savitribai Phule Pune University, Pune, India
| | - Flávia Carolina Lima Torres
- Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Victor Borda Pua
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, United States of America
| | - Christopher Kendall
- Department of Anthropology, University of Toronto—Mississauga Campus, Mississauga, ON, Canada
| | - Eduardo Tarazona-Santos
- Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Esteban J. Parra
- Department of Anthropology, University of Toronto—Mississauga Campus, Mississauga, ON, Canada
| |
Collapse
|
18
|
Caro-Consuegra R, Nieves-Colón MA, Rawls E, Rubin-de-Celis V, Lizárraga B, Vidaurre T, Sandoval K, Fejerman L, Stone AC, Moreno-Estrada A, Bosch E. Uncovering signals of positive selection in Peruvian populations from three ecological regions. Mol Biol Evol 2022; 39:6647595. [PMID: 35860855 PMCID: PMC9356722 DOI: 10.1093/molbev/msac158] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Perú hosts extremely diverse ecosystems which can be broadly classified into three major ecoregions: the Pacific desert coast, the Andean highlands, and the Amazon rainforest. Since its initial peopling approximately 12,000 years ago, the populations inhabiting such ecoregions might have differentially adapted to their contrasting environmental pressures. Previous studies have described several candidate genes underlying adaptation to hypobaric hypoxia among Andean highlanders. However, the adaptive genetic diversity of coastal and rainforest populations has been less studied. Here, we gathered genome-wide SNP-array data from 286 Peruvians living across the three ecoregions and analysed signals of recent positive selection through population differentiation and haplotype-based selection scans. Among highland populations, we identify candidate genes related to cardiovascular function (TLL1, DUSP27, TBX5, PLXNA4, SGCD), to the Hypoxia-Inducible Factor pathway (TGFA, APIP), to skin pigmentation (MITF), as well as to glucose (GLIS3) and glycogen metabolism (PPP1R3C, GANC). In contrast, most signatures of adaptation in coastal and rainforest populations comprise candidate genes related to the immune system (including SIGLEC8, TRIM21, CD44 and ICAM1 in the coast; CBLB and PRDM1 in rainforest and the BRD2- HLA-DOA- HLA-DPA1 region in both), possibly as a result of strong pathogen-driven selection. This study identifies candidate genes related to human adaptation to the diverse environments of South America.
Collapse
Affiliation(s)
- Rocio Caro-Consuegra
- Institute of Evolutionary Biology (UPF-CSIC), Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Catalonia, Spain
| | - Maria A Nieves-Colón
- Laboratorio Nacional de Genómica para la Biodiversidad, Unidad de Genómica Avanzada (UGA-LANGEBIO), CINVESTAV, Irapuato, Guanajuato, Mexico.,School of Human Evolution and Social Change, Arizona State University, Tempe, AZ, USA.,Department of Anthropology, University of Minnesota Twin Cities, Minneapolis, MN, USA
| | - Erin Rawls
- School of Human Evolution and Social Change, Arizona State University, Tempe, AZ, USA
| | - Verónica Rubin-de-Celis
- Laboratorio de Genómica Molecular Evolutiva, Instituto de Ciencia y Tecnología, Universidad Ricardo Palma, Lima, Perú
| | - Beatriz Lizárraga
- Emeritus Professor, Facultad de Ciencias Biológicas, Universidad Nacional Mayor de San Marcos, Lima, Perú
| | | | - Karla Sandoval
- Laboratorio Nacional de Genómica para la Biodiversidad, Unidad de Genómica Avanzada (UGA-LANGEBIO), CINVESTAV, Irapuato, Guanajuato, Mexico
| | - Laura Fejerman
- Department of Public Health Sciences, University of California Davis, Davis, CA, USA
| | - Anne C Stone
- School of Human Evolution and Social Change, Arizona State University, Tempe, AZ, USA.,Center for Evolution and Medicine, Arizona State University, Tempe, AZ, USA
| | - Andrés Moreno-Estrada
- Laboratorio Nacional de Genómica para la Biodiversidad, Unidad de Genómica Avanzada (UGA-LANGEBIO), CINVESTAV, Irapuato, Guanajuato, Mexico
| | - Elena Bosch
- Institute of Evolutionary Biology (UPF-CSIC), Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Catalonia, Spain.,Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Reus, Spain
| |
Collapse
|
19
|
Sharma V, Varshney R, Sethy NK. Human adaptation to high altitude: a review of convergence between genomic and proteomic signatures. Hum Genomics 2022; 16:21. [PMID: 35841113 PMCID: PMC9287971 DOI: 10.1186/s40246-022-00395-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 06/17/2022] [Indexed: 12/29/2022] Open
Abstract
Both genomics- and proteomics-based investigations have identified several essential genes, proteins, and pathways that may facilitate human adaptive genotype/phenotype in a population-specific manner. This comprehensive review provides an up-to-date list of genes and proteins identified for human adaptive responses to high altitudes. Genomics studies for indigenous high-altitude populations like Tibetans, Andeans, Ethiopians, and Sherpas have identified 169 genes under positive natural selection. Similarly, global proteomics studies have identified 258 proteins (± 1.2-fold or more) for Tibetan, Sherpa, and Ladakhi highlanders. The primary biological processes identified for genetic signatures include hypoxia-inducible factor (HIF)-mediated oxygen sensing, angiogenesis, and erythropoiesis. In contrast, major biological processes identified for proteomics signatures include 14–3-3 mediated sirtuin signaling, integrin-linked kinase (ILK), phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT), and integrin signaling. Comparing genetic and protein signatures, we identified 7 common genes/proteins (HBB/hemoglobin subunit beta, TF/serotransferrin, ANGPTL4/angiopoietin-related protein 4, CDC42/cell division control protein 42 homolog, GC/vitamin D-binding protein, IGFBP1/insulin-like growth factor-binding protein 1, and IGFBP2/insulin-like growth factor-binding protein 2) involved in crucial molecular functions like IGF-1 signaling, LXR/RXR activation, ferroptosis signaling, iron homeostasis signaling and regulation of cell cycle. Our combined multi-omics analysis identifies common molecular targets and pathways for human adaptation to high altitude. These observations further corroborate convergent positive selection of hypoxia-responsive molecular pathways in humans and advocate using multi-omics techniques for deciphering human adaptive responses to high altitude.
Collapse
Affiliation(s)
- Vandana Sharma
- Peptide and Proteomics Division, Defence Institute of Physiology and Allied Sciences (DIPAS), Defence Research and Development Organisation (DRDO), Lucknow Road, Timarpur, Delhi, 110054, India
| | - Rajeev Varshney
- Peptide and Proteomics Division, Defence Institute of Physiology and Allied Sciences (DIPAS), Defence Research and Development Organisation (DRDO), Lucknow Road, Timarpur, Delhi, 110054, India
| | - Niroj Kumar Sethy
- Peptide and Proteomics Division, Defence Institute of Physiology and Allied Sciences (DIPAS), Defence Research and Development Organisation (DRDO), Lucknow Road, Timarpur, Delhi, 110054, India.
| |
Collapse
|
20
|
Akin AT, Kaymak E, Ceylan T, Ozturk E, Basaran KE, Karabulut D, Ozdamar S, Yakan B. Chloroquine attenuates chronic hypoxia-induced testicular damage via suppressing endoplasmic reticulum stress and apoptosis in experimental rat model. Clin Exp Pharmacol Physiol 2022; 49:813-823. [PMID: 35579513 DOI: 10.1111/1440-1681.13669] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 04/28/2022] [Accepted: 05/09/2022] [Indexed: 11/30/2022]
Abstract
Chronic hypoxia negatively affects male fertility by causing pathological changes in male reproductive system. However, underlying mechanisms of this damage are unknown. Chloroquine (CLQ) is an anti-inflammatory agent which is widely used in the treatment of inflammation-related diseases such as malaria and rheumatoid arthritis. This study aimed to investigate the therapeutic effects of CLQ in the hypoxia-induced testicular damage via assessment of hypoxic response, endoplasmic reticulum stress and apoptosis. For this purpose, 32 Wistar albino rats were divided into 4 groups as Control (given %20-21 O2 , no treatment), CLQ (given 50 mg/kg and %20-21 O2 for 28 days), HX (given %10 O2 for 28 days) and HX + CLQ (given 50 mg/kg and %10 O2 for 28 days). After experiment, blood samples and testicular tissues were taken. Histopathological evaluation was performed on testicular tissues and HIF1-α, HSP70, HSP90 and GADD153 expression levels were detected via immunohistochemistry. Moreover, apoptotic cells were detected via TUNEL staining and serum testosterone levels were determined by ELISA assay. Histopathological changes, apoptotic cell numbers and HIF1-α, HSP70, HSP90 and GADD153 expressions significantly increased in HX group (p < 0.05). Moreover, serum testosterone levels decreased in this group (p > 0.05). However, CLQ exerted a strong ameliorative effect on all parameters in HX + CLQ group. According to our results, we suggested that CLQ can be considered as an alternative protective agent for eliminating the negative effects of hypoxic conditions on male fertility. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Ali Tugrul Akin
- Biology Department, Faculty of Science, Erciyes University, Kayseri, Turkey
| | - Emin Kaymak
- Histology-Embriology Department, Faculty of Medicine, Yozgat Bozok University, Yozgat, Turkey
| | - Tayfun Ceylan
- Program of Pathology Laboratory Techniques, Kapadokya Vocational High School, Kapadokya University, Nevsehir, Turkey
| | - Emel Ozturk
- Histology-Embriology Department, Faculty of Medicine, Harran University, Sanliurfa, Turkey
| | - Kemal Erdem Basaran
- Physiology Department, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Derya Karabulut
- Histology-Embriology Department, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Saim Ozdamar
- Histology-Embriology Department, Faculty of Medicine, Pamukkale University, Denizli, Turkey
| | - Birkan Yakan
- Histology-Embriology Department, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| |
Collapse
|
21
|
Germano C, Pilloni E, Rolfo A, Botta G, Parpinel G, Cortese P, Cotrino I, Attini R, Revelli A, Masturzo B. Consecutive chorioangiomas in the same pregnancy: A clinical case and review of literature. Health Sci Rep 2022; 5:e566. [PMID: 35415271 PMCID: PMC8982701 DOI: 10.1002/hsr2.566] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/22/2022] [Accepted: 02/27/2022] [Indexed: 11/12/2022] Open
Abstract
Background and Aims Aetiopathogenesis of chorioangioma is already unknown. Among the risk factors, hypoxia, environmental and genetic factors are believed to induce the overexpression of angiogenic cytokines promoting vascular proliferation. We reported a case of prenatally diagnosed 67 mm‐wide placental chorioangioma, which occurred at 32 weeks of gestational age, infarcted, and followed by the onset of a second infarcted chorioangioma at 35 weeks of gestational age. Besides, we discussed the hypothesis of chorioangioma aetiopathogenesis and behavior through a literature summary. Methods We carried out a literature search of chorioangioma cases without a time interval. Therefore, we carried out a literature summary on chorioangioma risk factors and etiology, by selecting articles within a time interval from 1995 to 2021. Results This is the first case of two consecutive chorioangiomas in the same pregnancy published in the literature. We found a possible genetic predisposition in women developing chorioangioma while infarction may be related to the abnormal structure of tumor vessels. The onset of a second lesion could reflect hypoxic stimuli following infarction and involves hypoxia‐induced factor‐1alpha, vascular endothelial growth factor, transforming growth factor‐beta, and soluble Fms‐like tyrosine kinase‐1 pathways. Chorangiosis can be coexistent and may reflect a mutual etiology in susceptible individuals. Conclusion In a predisposed placenta, that previously generated a chorioangioma, infarction of the chorioangioma should not represent a sign for pregnancy termination, but a marker for closer monitoring to early detect the possible onset of a second chorioangioma and a higher risk of umbilical cord thrombosis.
Collapse
Affiliation(s)
- Chiara Germano
- Department of Obstetrics and Gynaecology, Ospedale Degli Infermi, Biella University of Turin Turin Italy
- Department of Obstetrics and Gynaecology 2U Sant'Anna Hospital, University of Turin Turin Italy
| | - Eleonora Pilloni
- Department of Obstetrics and Gynaecology Sant'Anna Hospital Turin Italy
| | - Alessandro Rolfo
- Department of Obstetrics and Gynaecology 2U Sant'Anna Hospital, University of Turin Turin Italy
| | - Giovanni Botta
- Department of Foetal and Maternal Pathology Sant'Anna Hospital Turin Italy
| | - Giulia Parpinel
- Department of Obstetrics and Gynaecology 2U Sant'Anna Hospital, University of Turin Turin Italy
| | - Paolo Cortese
- Department of Obstetrics and Gynaecology Sant'Anna Hospital Turin Italy
| | - Ilenia Cotrino
- Department of Obstetrics and Gynaecology Sant'Anna Hospital Turin Italy
| | - Rossella Attini
- Department of Obstetrics and Gynaecology 2U Sant'Anna Hospital, University of Turin Turin Italy
| | - Alberto Revelli
- Department of Obstetrics and Gynaecology 2U Sant'Anna Hospital, University of Turin Turin Italy
| | - Bianca Masturzo
- Department of Obstetrics and Gynaecology, Ospedale Degli Infermi, Biella University of Turin Turin Italy
| |
Collapse
|
22
|
Mitogenomics provides new insights into the phylogenetic relationships and evolutionary history of deep-sea sea stars (Asteroidea). Sci Rep 2022; 12:4656. [PMID: 35304532 PMCID: PMC8933410 DOI: 10.1038/s41598-022-08644-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 02/25/2022] [Indexed: 12/22/2022] Open
Abstract
The deep sea (> 200 m) is considered as the largest and most remote biome, which characterized by low temperatures, low oxygen level, scarce food, constant darkness, and high hydrostatic pressure. The sea stars (class Asteroidea) are ecologically important and diverse echinoderms in all of the world’s oceans, occurring from the intertidal to the abyssal zone (to about 6000 m). To date, the phylogeny of the sea stars and the relationships of deep-sea and shallow water groups have not yet been fully resolved. Here, we recovered five mitochondrial genomes of deep-sea asteroids. The A+T content of the mtDNA in deep-sea asteroids were significantly higher than that of the shallow-water groups. The gene orders of the five new mitogenomes were identical to that of other asteroids. The phylogenetic analysis showed that the orders Valvatida, Paxillosida, Forcipulatida are paraphyletic. Velatida was the sister order of all the others and then the cladeValvatida-Spinulosida-Paxillosida-Notomyotida versus Forcipulatida-Brisingida. Deep-sea asteroids were nested in different lineages, instead of a well-supported clade. The tropical Western Pacific was suggested as the original area of asteroids, and the temperate water was initially colonized with asteroids by the migration events from the tropical and cold water. The time-calibrated phylogeny showed that Asteroidea originated during Devonian-Carboniferous boundary and the major lineages of Asteroidea originated during Permian–Triassic boundary. The divergence between the deep-sea and shallow-water asteroids coincided approximately with the Triassic-Jurassic extinction. Total 29 positively selected sites were detected in fifteen mitochondrial genes of five deep-sea lineages, implying a link between deep-sea adaption and mitochondrial molecular biology in asteroids.
Collapse
|
23
|
O’Brien KA, Murray AJ, Simonson TS. Notch Signaling and Cross-Talk in Hypoxia: A Candidate Pathway for High-Altitude Adaptation. Life (Basel) 2022; 12:437. [PMID: 35330188 PMCID: PMC8954738 DOI: 10.3390/life12030437] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/11/2022] [Accepted: 03/11/2022] [Indexed: 12/17/2022] Open
Abstract
Hypoxia triggers complex inter- and intracellular signals that regulate tissue oxygen (O2) homeostasis, adjusting convective O2 delivery and utilization (i.e., metabolism). Human populations have been exposed to high-altitude hypoxia for thousands of years and, in doing so, have undergone natural selection of multiple gene regions supporting adaptive traits. Some of the strongest selection signals identified in highland populations emanate from hypoxia-inducible factor (HIF) pathway genes. The HIF pathway is a master regulator of the cellular hypoxic response, but it is not the only regulatory pathway under positive selection. For instance, regions linked to the highly conserved Notch signaling pathway are also top targets, and this pathway is likely to play essential roles that confer hypoxia tolerance. Here, we explored the importance of the Notch pathway in mediating the cellular hypoxic response. We assessed transcriptional regulation of the Notch pathway, including close cross-talk with HIF signaling, and its involvement in the mediation of angiogenesis, cellular metabolism, inflammation, and oxidative stress, relating these functions to generational hypoxia adaptation.
Collapse
Affiliation(s)
- Katie A. O’Brien
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3EG, UK;
- Division of Pulmonary, Critical Care and Sleep Medicine, University of California San Diego School of Medicine, La Jolla, CA 92093, USA
| | - Andrew J. Murray
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3EG, UK;
| | - Tatum S. Simonson
- Division of Pulmonary, Critical Care and Sleep Medicine, University of California San Diego School of Medicine, La Jolla, CA 92093, USA
| |
Collapse
|
24
|
Sprengelmeyer QD, Lack JB, Braun DT, Monette MJ, Pool JE. The evolution of larger size in high-altitude Drosophila melanogaster has a variable genetic architecture. G3 GENES|GENOMES|GENETICS 2022; 12:6493269. [PMID: 35100377 PMCID: PMC8895999 DOI: 10.1093/g3journal/jkab454] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 12/21/2021] [Indexed: 11/12/2022]
Abstract
Important uncertainties persist regarding the genetic architecture of adaptive trait evolution in natural populations, including the number of genetic variants involved, whether they are drawn from standing genetic variation, and whether directional selection drives them to complete fixation. Here, we take advantage of a unique natural population of Drosophila melanogaster from the Ethiopian highlands, which has evolved larger body size than any other known population of this species. We apply a bulk segregant quantitative trait locus mapping approach to 4 unique crosses between highland Ethiopian and lowland Zambian populations for both thorax length and wing length. Results indicated a persistently variable genetic basis for these evolved traits (with largely distinct sets of quantitative trait loci for each cross), and at least a moderately polygenic architecture with relatively strong effects present. We complemented these mapping experiments with population genetic analyses of quantitative trait locus regions and gene ontology enrichment analysis, generating strong hypotheses for specific genes and functional processes that may have contributed to these adaptive trait changes. Finally, we find that the genetic architectures indicated by our quantitative trait locus mapping results for size traits mirror those from similar experiments on other recently evolved traits in this species. Collectively, these studies suggest a recurring pattern of polygenic adaptation in this species, in which causative variants do not approach fixation and moderately strong effect loci are present.
Collapse
Affiliation(s)
| | - Justin B Lack
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Dylan T Braun
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Matthew J Monette
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - John E Pool
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
25
|
Beckman EJ, Martins F, Suzuki TA, Bi K, Keeble S, Good JM, Chavez AS, Ballinger MA, Agwamba K, Nachman MW. The genomic basis of high-elevation adaptation in wild house mice (Mus musculus domesticus) from South America. Genetics 2022; 220:iyab226. [PMID: 34897431 PMCID: PMC9097263 DOI: 10.1093/genetics/iyab226] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 12/04/2021] [Indexed: 11/14/2022] Open
Abstract
Understanding the genetic basis of environmental adaptation in natural populations is a central goal in evolutionary biology. The conditions at high elevation, particularly the low oxygen available in the ambient air, impose a significant and chronic environmental challenge to metabolically active animals with lowland ancestry. To understand the process of adaptation to these novel conditions and to assess the repeatability of evolution over short timescales, we examined the signature of selection from complete exome sequences of house mice (Mus musculus domesticus) sampled across two elevational transects in the Andes of South America. Using phylogenetic analysis, we show that house mice colonized high elevations independently in Ecuador and Bolivia. Overall, we found distinct responses to selection in each transect and largely nonoverlapping sets of candidate genes, consistent with the complex nature of traits that underlie adaptation to low oxygen availability (hypoxia) in other species. Nonetheless, we also identified a small subset of the genome that appears to be under parallel selection at the gene and SNP levels. In particular, three genes (Col22a1, Fgf14, and srGAP1) bore strong signatures of selection in both transects. Finally, we observed several patterns that were common to both transects, including an excess of derived alleles at high elevation, and a number of hypoxia-associated genes exhibiting a threshold effect, with a large allele frequency change only at the highest elevations. This threshold effect suggests that selection pressures may increase disproportionately at high elevations in mammals, consistent with observations of some high-elevation diseases in humans.
Collapse
Affiliation(s)
- Elizabeth J Beckman
- Museum of Vertebrate Zoology and Department of Integrative Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Felipe Martins
- Museum of Vertebrate Zoology and Department of Integrative Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Taichi A Suzuki
- Museum of Vertebrate Zoology and Department of Integrative Biology, University of California, Berkeley, Berkeley, CA 94720, USA
- Department of Microbiome Science, Max Planck Institute for Developmental Biology, Tübingen 72076, Germany
| | - Ke Bi
- Museum of Vertebrate Zoology and Department of Integrative Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Sara Keeble
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA
| | - Jeffrey M Good
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA
- Wildlife Biology Program, University of Montana, Missoula, MT 59812, USA
| | - Andreas S Chavez
- Museum of Vertebrate Zoology and Department of Integrative Biology, University of California, Berkeley, Berkeley, CA 94720, USA
- Department of Evolution, Ecology, and Organismal Biology and the Translational Data Analytics Institute, The Ohio State University, Columbus, OH 43210, USA
| | - Mallory A Ballinger
- Museum of Vertebrate Zoology and Department of Integrative Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Kennedy Agwamba
- Museum of Vertebrate Zoology and Department of Integrative Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Michael W Nachman
- Museum of Vertebrate Zoology and Department of Integrative Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| |
Collapse
|
26
|
Adaptive cardiorespiratory changes to chronic continuous and intermittent hypoxia. HANDBOOK OF CLINICAL NEUROLOGY 2022; 188:103-123. [PMID: 35965023 PMCID: PMC9906984 DOI: 10.1016/b978-0-323-91534-2.00009-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
This chapter reviews cardiorespiratory adaptations to chronic hypoxia (CH) experienced at high altitude and cardiorespiratory pathologies elicited by chronic intermittent hypoxia (CIH) occurring with obstructive sleep apnea (OSA). Short-term CH increases breathing (ventilatory acclimatization to hypoxia) and blood pressure (BP) through carotid body (CB) chemo reflex. Hyperplasia of glomus cells, alterations in ion channels, and recruitment of additional excitatory molecules are implicated in the heightened CB chemo reflex by CH. Transcriptional activation of hypoxia-inducible factors (HIF-1 and 2) is a major molecular mechanism underlying respiratory adaptations to short-term CH. High-altitude natives experiencing long-term CH exhibit blunted hypoxic ventilatory response (HVR) and reduced BP due to desensitization of CB response to hypoxia and impaired processing of CB sensory information at the central nervous system. Ventilatory changes evoked by long-term CH are not readily reversed after return to sea level. OSA patients and rodents subjected to CIH exhibit heightened CB chemo reflex, increased hypoxic ventilatory response, and hypertension. Increased generation of reactive oxygen species (ROS) is a major cellular mechanism underlying CIH-induced enhanced CB chemo reflex and the ensuing cardiorespiratory pathologies. ROS generation by CIH is mediated by nontranscriptional, disrupted HIF-1 and HIF-2-dependent transcriptions as well as epigenetic mechanisms.
Collapse
|
27
|
Kun Á. Is there still evolution in the human population? Biol Futur 2022; 73:359-374. [PMID: 36592324 PMCID: PMC9806833 DOI: 10.1007/s42977-022-00146-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 12/08/2022] [Indexed: 01/03/2023]
Abstract
It is often claimed that humanity has stopped evolving because modern medicine erased all selection on survival. Even if that would be true, and it is not, there would be other mechanisms of evolution which could still led to changes in allelic frequencies. Here I show, by applying basic evolutionary genetics knowledge, that we expect humanity to evolve. The results from genome sequencing projects have repeatedly affirmed that there are still recent signs of selection in our genomes. I give some examples of such adaptation. Then I briefly discuss what our evolutionary future has in store for us.
Collapse
Affiliation(s)
- Ádám Kun
- grid.5591.80000 0001 2294 6276Department of Plant Systematics, Ecology and Theoretical Biology, Eötvös University, Budapest, Hungary ,Parmenides Center for the Conceptual Foundations of Science, Pöcking, Germany ,grid.481817.3Institute of Evolution, Centre for Ecological Research, Budapest, Hungary ,grid.5018.c0000 0001 2149 4407MTA-ELTE Theoretical Biology and Evolutionary Ecology Research Group, Budapest, Hungary ,grid.5018.c0000 0001 2149 4407MTA-ELTE-MTM Ecology Research Group, Budapest, Hungary
| |
Collapse
|
28
|
Li F, Qiao Z, Duan Q, Nevo E. Adaptation of mammals to hypoxia. Animal Model Exp Med 2021; 4:311-318. [PMID: 34977482 PMCID: PMC8690989 DOI: 10.1002/ame2.12189] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 10/27/2021] [Accepted: 10/31/2021] [Indexed: 12/19/2022] Open
Abstract
Oxygen plays a pivotal role in the metabolism and activities of mammals. However, oxygen is restricted in some environments-subterranean burrow systems or habitats at high altitude or deep in the ocean-and this could exert hypoxic stresses such as oxidative damage on organisms living in these environments. In order to cope with these stresses, organisms have evolved specific strategies to adapt to hypoxia, including changes in physiology, gene expression regulation, and genetic mutations. Here, we review how mammals have adapted to the three high-altitude plateaus of the world, the limited oxygen dissolved in deep water habitats, and underground tunnels, with the aim of better understanding the adaptation of mammals to hypoxia.
Collapse
Affiliation(s)
- Fang Li
- College of Life Sciences and TechnologyMudanjiang Normal UniversityMudanjiangChina
| | - Zhenglei Qiao
- College of Life Sciences and TechnologyMudanjiang Normal UniversityMudanjiangChina
| | - Qijiao Duan
- College of Natural Resources and EnvironmentSouth China Agriculture UniversityGuangzhouChina
| | - Eviatar Nevo
- Institute of EvolutionUniversity of HaifaHaifaIsrael
| |
Collapse
|
29
|
Basak N, Thangaraj K. High-altitude adaptation: Role of genetic and epigenetic factors. J Biosci 2021. [DOI: 10.1007/s12038-021-00228-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
30
|
Mohanty S, Kamolvit W, Zambrana S, Gonzales E, Tovi J, Brismar K, Östenson CG, Brauner A. HIF-1 mediated activation of antimicrobial peptide LL-37 in type 2 diabetic patients. J Mol Med (Berl) 2021; 100:101-113. [PMID: 34651203 PMCID: PMC8724101 DOI: 10.1007/s00109-021-02134-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 08/20/2021] [Accepted: 08/24/2021] [Indexed: 12/19/2022]
Abstract
Abstract Infections are common in patients with diabetes, but increasing antibiotic resistance hampers successful bacterial clearance and calls for alternative treatment strategies. Hypoxia-inducible factor 1 (HIF-1) is known to influence the innate immune defense and could therefore serve as a possible target. However, the impact of high glucose on HIF-1 has received little attention and merits closer investigation. Here, we show that higher levels of proinflammatory cytokines and CAMP, encoding for the antimicrobial peptide cathelicidin, LL-37, correlate with HIF-1 in type 2 diabetic patients. Chemical activation of HIF-1 further enhanced LL-37, IL-1β, and IL-8 in human uroepithelial cells exposed to high glucose. Moreover, HIF-1 activation of transurethrally infected diabetic mice resulted in lower bacterial load. Drugs activating HIF-1 could therefore in the future potentially have a therapeutic role in clearing bacteria in diabetic patients with infections where antibiotic treatment failed. Key messages • Mohanty et al. “HIF-1 mediated activation of antimicrobial peptide LL-37 in type 2 diabetic patients.” • Our study highlights induction of the antimicrobial peptide, LL-37, and strengthening of the innate immunity through hypoxia-inducible factor 1 (HIF-1) in diabetes. • Our key observations are: 1. HIF-1 activation increased LL-37 expression in human urothelial cells treated with high glucose. In line with that, we demonstrated that patients with type 2 diabetes living at high altitude had increased levels of the LL-37. 2. HIF-1 activation increased IL-1β and IL-8 in human uroepithelial cells treated with high glucose concentration. 3. Pharmacological activation of HIF-1 decreased bacterial load in the urinary bladder of mice with hereditary diabetes. • We conclude that enhancing HIF-1 may along with antibiotics in the future contribute to the treatment in selected patient groups where traditional therapy is not possible. Supplementary Information The online version contains supplementary material available at 10.1007/s00109-021-02134-7.
Collapse
Affiliation(s)
- Soumitra Mohanty
- Department of Microbiology, Tumor and Cell Biology, Division of Clinical Microbiology, Karolinska Institutet and Karolinska University Hospital, 17176, Stockholm, Sweden
| | - Witchuda Kamolvit
- Department of Microbiology, Tumor and Cell Biology, Division of Clinical Microbiology, Karolinska Institutet and Karolinska University Hospital, 17176, Stockholm, Sweden.,Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Silvia Zambrana
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.,Area de Farmacologia, Facultad de Ciencias Farmacéuticas Y Bioquimicas, Instituto de Investigaciones Farmaco Bioquimicas, Universidad Mayor de San Andres, La Paz, Bolivia
| | - Eduardo Gonzales
- Area de Farmacologia, Facultad de Ciencias Farmacéuticas Y Bioquimicas, Instituto de Investigaciones Farmaco Bioquimicas, Universidad Mayor de San Andres, La Paz, Bolivia
| | | | - Kerstin Brismar
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Claes-Göran Östenson
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Annelie Brauner
- Department of Microbiology, Tumor and Cell Biology, Division of Clinical Microbiology, Karolinska Institutet and Karolinska University Hospital, 17176, Stockholm, Sweden.
| |
Collapse
|
31
|
Jacovas VC, Michita RT, Bisso-Machado R, Reales G, Tarazona-Santos EM, Sandoval JR, Salazar-Granara A, Chies JAB, Bortolini MC. HLA-G 3'UTR haplotype frequencies in highland and lowland South Native American populations. Hum Immunol 2021; 83:27-38. [PMID: 34563386 DOI: 10.1016/j.humimm.2021.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 08/09/2021] [Accepted: 09/01/2021] [Indexed: 11/30/2022]
Abstract
Human Leukocyte Antigen (HLA)-G participates in several biological processes, including reproduction, vascular remodeling, immune tolerance, and hypoxia response. HLA-G is a potential candidate gene for high altitude adaptation since its expression is modulated in both micro and macro environment under hypoxia and constant cellular stress. Besides the promoter region, the HLA-G 3'untranslated region (UTR) influences HLA-G expression patterns through several post-transcriptional mechanisms. Currently, the 3'UTR genetic diversity in terms of altitude adaptation of Native American populations is still unexplored, particularly at high altitude ecoregions. Here, we evaluated 288 Native Americans from 9 communities located in the Andes [highland (HL); ≥2,500 m (range = 2,838-4,433 m)] and 8 populations located in lowland (LL) regions [<2,500 m (range = 80-431 m); Amazonian tropical forest, Brazilian central plateau, and Chaco] of South America. In total, nine polymorphic sites and ten haplotypes were observed. The most frequent haplotypes (UTR-1, UTR-2, and UTR-3) accounted for ∼ 77% of haplotypes found in LL, while in the HL, the same haplotypes reach ∼ 93%. Also, a remarkable high frequency of putative ancestral UTR-5 haplotype was observed in LL (21.5%), while in HL UTR-2 reaches up to 47%. Further, UTR-2 frequency positively correlates with altitude-related variables, while a negative correlation for UTR-5 was observed. From an evolutionary perspective, we observed a tendency towards balancing selection in HL and LL populations thus suggesting that haplotypes of ancient and more derived alleles may have been co-opted for relatively recent adaptations such as those experienced by modern humans in the highland and lowland of South America. We also discuss how long-term balancing selection can be a reservoir of genetic variants that can be positively selected. Finally, our study provides some pieces of evidence that HLA-G 3'UTR haplotypes may have contributed to high altitude adaptation in the Andes.
Collapse
Affiliation(s)
- Vanessa Cristina Jacovas
- Departamento de Genética, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Rafael Tomoya Michita
- Departamento de Genética, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil; Human Molecular Genetics Laboratory, Universidade Luterana do Brasil (ULBRA), Canoas, Rio Grande do Sul, Brazil
| | - Rafael Bisso-Machado
- Departamento de Genética, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Guillermo Reales
- Departamento de Genética, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Eduardo M Tarazona-Santos
- Departamento de Biologia Geral, Universidade Federal de Minas Gerais, Instituto de Ciências Biológicas, Belo Horizonte, Minas Gerais, Brazil
| | - José Raul Sandoval
- Departamento de Biologia Geral, Universidade Federal de Minas Gerais, Instituto de Ciências Biológicas, Belo Horizonte, Minas Gerais, Brazil
| | | | - José Artur Bogo Chies
- Departamento de Genética, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil.
| | - Maria Cátira Bortolini
- Departamento de Genética, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil.
| |
Collapse
|
32
|
Sturgess C, Montgomery H. Selection pressure at altitude for genes related to alcohol metabolism: A role for endogenous enteric ethanol synthesis? Exp Physiol 2021; 106:2155-2167. [PMID: 34487385 DOI: 10.1113/ep089628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 08/31/2021] [Indexed: 11/08/2022]
Abstract
NEW FINDINGS What is the topic of this review? Highland natives have undergone natural selection for genetic variants advantageous in adaptation to the hypobaric hypoxia experienced at high altitude. Why genes related to alcohol metabolism appear consistently selected for has not been greatly considered. We hypothesize that altitude-related changes in the gut microbiome offer one possible explanation. What advances does it highlight? Low intestinal oxygen tension might favour the production of ethanol through anaerobic fermentation by the gut microbiome. Subsequent increases in endogenous ethanol absorption could therefore provide a selection pressure for gene variants favouring its increased degradation, or perhaps reduced degradation if endogenously synthesized ethanol acts as a metabolic signalling molecule. ABSTRACT Reduced tissue availability of oxygen results from ascent to high altitude, where atmospheric pressure, and thus the partial pressure of inspired oxygen, fall (hypobaric hypoxia). In humans, adaptation to such hypoxia is necessary for survival. These functional changes remain incompletely characterized, although metabolic adaptation (rather than simple increases in convective oxygen delivery) appears to play a fundamental role. Those populations that have remained native to high altitude have undergone natural selection for genetic variants associated with advantageous phenotypic traits. Interestingly, a consistent genetic signal has implicated alcohol metabolism in the human adaptive response to hypobaric hypoxia. The reasons for this remain unclear. One possibility is that increased alcohol synthesis occurs through fermentation by gut bacteria in response to enteric hypoxia. There is growing evidence that anaerobes capable of producing ethanol become increasingly prevalent with high-altitude exposure. We hypothesize that: (1) ascent to high altitude renders the gut luminal environment increasingly hypoxic, favouring (2) an increase in the population of enteric fermenting anaerobes, hence (3) the synthesis of alcohol which, through systemic absorption, leads to (4) selection pressure on genes relating to alcohol metabolism. In theory, alcohol could be viewed as a toxic product, leading to selection of gene variants favouring its metabolism. On the contrary, alcohol is a metabolic substrate that might be beneficial. This mechanism could also account for some of the interindividual differences of lowlanders in acclimatization to altitude. Future research should be aimed at determining any shifts to favour ethanol-producing anaerobes after ascent to altitude.
Collapse
Affiliation(s)
- Connie Sturgess
- Institute for Human Health and Performance, Department of Medicine, University College London, London, UK
| | - Hugh Montgomery
- Institute for Human Health and Performance, Department of Medicine, University College London, London, UK
| |
Collapse
|
33
|
Wilsterman K, Cheviron ZA. Fetal growth, high altitude, and evolutionary adaptation: a new perspective. Am J Physiol Regul Integr Comp Physiol 2021; 321:R279-R294. [PMID: 34259046 PMCID: PMC8530763 DOI: 10.1152/ajpregu.00067.2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 07/07/2021] [Accepted: 07/09/2021] [Indexed: 11/22/2022]
Abstract
Residence at high altitude is consistently associated with low birthweight among placental mammals. This reduction in birthweight influences long-term health trajectories for both the offspring and mother. However, the physiological processes that contribute to fetal growth restriction at altitude are still poorly understood, and thus our ability to safely intervene remains limited. One approach to identify the factors that mitigate altitude-dependent fetal growth restriction is to study populations that are protected from fetal growth restriction through evolutionary adaptations (e.g., high altitude-adapted populations). Here, we examine human gestational physiology at high altitude from a novel evolutionary perspective that focuses on patterns of physiological plasticity, allowing us to identify 1) the contribution of specific physiological systems to fetal growth restriction and 2) the mechanisms that confer protection in highland-adapted populations. Using this perspective, our review highlights two general findings: first, that the beneficial value of plasticity in maternal physiology is often dependent on factors more proximate to the fetus; and second, that our ability to understand the contributions of these proximate factors is currently limited by thin data from altitude-adapted populations. Expanding the comparative scope of studies on gestational physiology at high altitude and integrating studies of both maternal and fetal physiology are needed to clarify the mechanisms by which physiological responses to altitude contribute to fetal growth outcomes. The relevance of these questions to clinical, agricultural, and basic research combined with the breadth of the unknown highlight gestational physiology at high altitude as an exciting niche for continued work.
Collapse
Affiliation(s)
- Kathryn Wilsterman
- Division of Biological Sciences, University of Montana, Missoula, Montana
| | - Zachary A Cheviron
- Division of Biological Sciences, University of Montana, Missoula, Montana
| |
Collapse
|
34
|
Padmasekar M, Savai R, Seeger W, Pullamsetti SS. Exposomes to Exosomes: Exosomes as Tools to Study Epigenetic Adaptive Mechanisms in High-Altitude Humans. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:8280. [PMID: 34444030 PMCID: PMC8392481 DOI: 10.3390/ijerph18168280] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/30/2021] [Accepted: 07/31/2021] [Indexed: 12/29/2022]
Abstract
Humans on earth inhabit a wide range of environmental conditions and some environments are more challenging for human survival than others. However, many living beings, including humans, have developed adaptive mechanisms to live in such inhospitable, harsh environments. Among different difficult environments, high-altitude living is especially demanding because of diminished partial pressure of oxygen and resulting chronic hypobaric hypoxia. This results in poor blood oxygenation and reduces aerobic oxidative respiration in the mitochondria, leading to increased reactive oxygen species generation and activation of hypoxia-inducible gene expression. Genetic mechanisms in the adaptation to high altitude is well-studied, but there are only limited studies regarding the role of epigenetic mechanisms. The purpose of this review is to understand the epigenetic mechanisms behind high-altitude adaptive and maladaptive phenotypes. Hypobaric hypoxia is a form of cellular hypoxia, which is similar to the one suffered by critically-ill hypoxemia patients. Thus, understanding the adaptive epigenetic signals operating in in high-altitude adjusted indigenous populations may help in therapeutically modulating signaling pathways in hypoxemia patients by copying the most successful epigenotype. In addition, we have summarized the current information about exosomes in hypoxia research and prospects to use them as diagnostic tools to study the epigenome of high-altitude adapted healthy or maladapted individuals.
Collapse
Affiliation(s)
- Manju Padmasekar
- Max-Planck Institute for Heart and Lung Research, Member of the German Center for Lung Research (DZL), Member of the Cardio-Pulmonary Institute (CPI), 61231 Bad Nauheim, Germany; (M.P.); (R.S.); (W.S.)
| | - Rajkumar Savai
- Max-Planck Institute for Heart and Lung Research, Member of the German Center for Lung Research (DZL), Member of the Cardio-Pulmonary Institute (CPI), 61231 Bad Nauheim, Germany; (M.P.); (R.S.); (W.S.)
- Institute for Lung Health (ILH), Justus Liebig University, 35392 Giessen, Germany
- Department of Internal Medicine, Justus-Liebig University Giessen, Member of the DZL, Member of CPI, 35392 Giessen, Germany
- Frankfurt Cancer Institute (FCI), Goethe University, 60438 Frankfurt am Main, Germany
| | - Werner Seeger
- Max-Planck Institute for Heart and Lung Research, Member of the German Center for Lung Research (DZL), Member of the Cardio-Pulmonary Institute (CPI), 61231 Bad Nauheim, Germany; (M.P.); (R.S.); (W.S.)
- Institute for Lung Health (ILH), Justus Liebig University, 35392 Giessen, Germany
- Department of Internal Medicine, Justus-Liebig University Giessen, Member of the DZL, Member of CPI, 35392 Giessen, Germany
| | - Soni Savai Pullamsetti
- Max-Planck Institute for Heart and Lung Research, Member of the German Center for Lung Research (DZL), Member of the Cardio-Pulmonary Institute (CPI), 61231 Bad Nauheim, Germany; (M.P.); (R.S.); (W.S.)
- Institute for Lung Health (ILH), Justus Liebig University, 35392 Giessen, Germany
- Department of Internal Medicine, Justus-Liebig University Giessen, Member of the DZL, Member of CPI, 35392 Giessen, Germany
| |
Collapse
|
35
|
Szpiech ZA, Novak TE, Bailey NP, Stevison LS. Application of a novel haplotype-based scan for local adaptation to study high-altitude adaptation in rhesus macaques. Evol Lett 2021; 5:408-421. [PMID: 34367665 PMCID: PMC8327953 DOI: 10.1002/evl3.232] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 02/24/2021] [Accepted: 05/04/2021] [Indexed: 12/17/2022] Open
Abstract
When natural populations split and migrate to different environments, they may experience different selection pressures that can lead to local adaptation. To capture the genomic patterns of a local selective sweep, we develop XP-nSL, a genomic scan for local adaptation that compares haplotype patterns between two populations. We show that XP-nSL has power to detect ongoing and recently completed hard and soft sweeps, and we then apply this statistic to search for evidence of adaptation to high altitude in rhesus macaques. We analyze the whole genomes of 23 wild rhesus macaques captured at high altitude (mean altitude > 4000 m above sea level) to 22 wild rhesus macaques captured at low altitude (mean altitude < 500 m above sea level) and find evidence of local adaptation in the high-altitude population at or near 303 known genes and several unannotated regions. We find the strongest signal for adaptation at EGLN1, a classic target for convergent evolution in several species living in low oxygen environments. Furthermore, many of the 303 genes are involved in processes related to hypoxia, regulation of ROS, DNA damage repair, synaptic signaling, and metabolism. These results suggest that, beyond adapting via a beneficial mutation in one single gene, adaptation to high altitude in rhesus macaques is polygenic and spread across numerous important biological systems.
Collapse
Affiliation(s)
- Zachary A Szpiech
- Department of Biology Pennsylvania State University University Park Pennsylvania 16801.,Institute for Computational and Data Sciences Pennsylvania State University University Park Pennsylvania 16801.,Department of Biological Sciences Auburn University Auburn Ala 36842 USA
| | - Taylor E Novak
- Department of Biological Sciences Auburn University Auburn Ala 36842 USA
| | - Nick P Bailey
- Department of Biological Sciences Auburn University Auburn Ala 36842 USA
| | - Laurie S Stevison
- Department of Biological Sciences Auburn University Auburn Ala 36842 USA
| |
Collapse
|
36
|
Martini D, Dussex N, Robertson BC, Gemmell NJ, Knapp M. Evolution of the "world's only alpine parrot": Genomic adaptation or phenotypic plasticity, behaviour and ecology? Mol Ecol 2021; 30:6370-6386. [PMID: 33973288 DOI: 10.1111/mec.15978] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 04/19/2021] [Accepted: 04/28/2021] [Indexed: 02/06/2023]
Abstract
Climate warming, in particular in island environments, where opportunities for species to disperse are limited, may become a serious threat to cold adapted alpine species. In order to understand how alpine species may respond to a warming world, we need to understand the drivers that have shaped their habitat specialisation and the evolutionary adaptations that allow them to utilize alpine habitats. The endemic, endangered New Zealand kea (Nestor notabilis) is considered the only alpine parrot in the world. As a species commonly found in the alpine zone it may be highly susceptible to climate warming. But is it a true alpine specialist? Is its evolution driven by adaptation to the alpine zone, or is the kea an open habitat generalist that simply uses the alpine zone to, for example, avoid lower lying anthropogenic landscapes? We use whole genome data of the kea and its close, forest adapted sister species, the kākā (Nestor meridionalis) to reconstruct the evolutionary history of both species and identify the functional genomic differences that underlie their habitat specialisations. Our analyses do not identify major functional genomic differences between kea and kākā in pathways associated with high-altitude. Rather, we found evidence that selective pressures on adaptations commonly found in alpine species are present in both Nestor species, suggesting that selection for alpine adaptations has not driven their divergence. Strongly divergent demographic responses to past climate warming between the species nevertheless highlight potential future threats to kea survival in a warming world.
Collapse
Affiliation(s)
- Denise Martini
- Department of Anatomy, University of Otago, Dunedin, New Zealand
| | - Nicolas Dussex
- Centre for Palaeogenetics, Stockholm, Sweden.,Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Stockholm, Sweden.,Department of Zoology, Stockholm University, Stockholm, Sweden
| | | | - Neil J Gemmell
- Department of Anatomy, University of Otago, Dunedin, New Zealand
| | - Michael Knapp
- Department of Anatomy, University of Otago, Dunedin, New Zealand
| |
Collapse
|
37
|
Sun S, Sha Z, Xiao N. The first two complete mitogenomes of the order Apodida from deep-sea chemoautotrophic environments: New insights into the gene rearrangement, origin and evolution of the deep-sea sea cucumbers. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2021; 39:100839. [PMID: 33933835 DOI: 10.1016/j.cbd.2021.100839] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 03/23/2021] [Accepted: 04/19/2021] [Indexed: 10/21/2022]
Abstract
The deep-sea ecosystem is considered as the largest and most remote biome of the world. It is meaningful and important to elucidate the life origins by exploring the origin and adaptive genetic mechanisms of the large deep-sea organisms. Sea cucumbers (Holothuroidea) are abundant and economically important group of echinoderms, living from the shallow-waters to deep-sea. In this study, we present the mitochondrial genomes of the sea cucumber Chiridota heheva and Chiridota sp. collected from the deep-sea cold seep and hydrothermal vent, respectively. This is the first reported mitochondrial genomes from the order Apodida. The mitochondrial genomes of C. heheva (17,200 bp) and Chiridota sp. (17,199 bp) display novel gene arrangements with the first protein-coding gene rearrangements in the class Holothuroidea. Bases composition analysis showed that the A + T content of deep-sea holothurians were significantly higher than that of the shallow-water groups. We compared the arrangement of genes from the 24 available holothurian mitogenomes and found that the transposition, reverse transposition and tandem-duplication-random-losses (TDRL) may be involved in the evolution of mitochondrial gene arrangements in Holothuroidea. Phylogenetic analysis revealed that the Apodida clustered with Elasipodida, forming two basal deep-sea holothurian clades. The divergence between the deep-sea and shallow-water holothurians was located at 386.93 Mya, during the Late Devonian. Mitochondrial protein-coding genes of deep-sea holothurians underwent relaxed purifying selection. There are 57 positive selected amino acids sites for some mitochondrial genes of the three deep-sea clades, implying they may involve in the adaption of deep-sea sea cucumbers.
Collapse
Affiliation(s)
- Shao'e Sun
- Institute of Oceanology, Chinese Academy of Science, Qingdao 266071, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
| | - Zhongli Sha
- Institute of Oceanology, Chinese Academy of Science, Qingdao 266071, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ning Xiao
- Institute of Oceanology, Chinese Academy of Science, Qingdao 266071, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China.
| |
Collapse
|
38
|
Ayoola AO, Zhang BL, Meisel RP, Nneji LM, Shao Y, Morenikeji OB, Adeola AC, Ng’ang’a SI, Ogunjemite BG, Okeyoyin AO, Roos C, Wu DD. Population Genomics Reveals Incipient Speciation, Introgression, and Adaptation in the African Mona Monkey (Cercopithecus mona). Mol Biol Evol 2021; 38:876-890. [PMID: 32986826 PMCID: PMC7947840 DOI: 10.1093/molbev/msaa248] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Guenons (tribe Cercopithecini) are the most widely distributed nonhuman primate in the tropical forest belt of Africa and show considerable phenotypic, taxonomic, and ecological diversity. However, genomic information for most species within this group is still lacking. Here, we present a high-quality de novo genome (total 2.90 Gb, contig N50 equal to 22.7 Mb) of the mona monkey (Cercopithecus mona), together with genome resequencing data of 13 individuals sampled across Nigeria. Our results showed differentiation between populations from East and West of the Niger River ∼84 ka and potential ancient introgression in the East population from other mona group species. The PTPRK, FRAS1, BNC2, and EDN3 genes related to pigmentation displayed signals of introgression in the East population. Genomic scans suggest that immunity genes such as AKT3 and IL13 (possibly involved in simian immunodeficiency virus defense), and G6PD, a gene involved in malaria resistance, are under positive natural selection. Our study gives insights into differentiation, natural selection, and introgression in guenons.
Collapse
Affiliation(s)
- Adeola Oluwakemi Ayoola
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- Kunming College of Life Science, University of the Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Bao-Lin Zhang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Richard P Meisel
- Department of Biology and Biochemistry, University of Houston, Houston, TX
| | - Lotanna M Nneji
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Yong Shao
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Olanrewaju B Morenikeji
- Department of Biomedical Sciences, Rochester Institute of Technology, Rochester, NY
- Department of Biology, Hamilton College, Clinton, NY
| | - Adeniyi C Adeola
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Said I Ng’ang’a
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- Kunming College of Life Science, University of the Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Babafemi G Ogunjemite
- Department of Ecotourism and Wildlife Management, Federal University of Technology, Akure, Nigeria
| | - Agboola O Okeyoyin
- National Park Service Headquarters, Federal Capital Territory, Abuja, Nigeria
| | - Christian Roos
- Gene Bank of Primates and Primate Genetics Laboratory, German Primate Center, Leibniz Institute for Primate Research, Göttingen, Germany
| | - Dong-Dong Wu
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- National Resource Center for Non-Human Primates, Kunming Primate Research Center, and National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, Yunnan, China
| |
Collapse
|
39
|
Storz JF. High-Altitude Adaptation: Mechanistic Insights from Integrated Genomics and Physiology. Mol Biol Evol 2021; 38:2677-2691. [PMID: 33751123 PMCID: PMC8233491 DOI: 10.1093/molbev/msab064] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Population genomic analyses of high-altitude humans and other vertebrates have identified numerous candidate genes for hypoxia adaptation, and the physiological pathways implicated by such analyses suggest testable hypotheses about underlying mechanisms. Studies of highland natives that integrate genomic data with experimental measures of physiological performance capacities and subordinate traits are revealing associations between genotypes (e.g., hypoxia-inducible factor gene variants) and hypoxia-responsive phenotypes. The subsequent search for causal mechanisms is complicated by the fact that observed genotypic associations with hypoxia-induced phenotypes may reflect second-order consequences of selection-mediated changes in other (unmeasured) traits that are coupled with the focal trait via feedback regulation. Manipulative experiments to decipher circuits of feedback control and patterns of phenotypic integration can help identify causal relationships that underlie observed genotype–phenotype associations. Such experiments are critical for correct inferences about phenotypic targets of selection and mechanisms of adaptation.
Collapse
Affiliation(s)
- Jay F Storz
- School of Biological Sciences, University of Nebraska, Lincoln, NE, USA
| |
Collapse
|
40
|
Lindo J, DeGiorgio M. Understanding the Adaptive Evolutionary Histories of South American Ancient and Present-Day Populations via Genomics. Genes (Basel) 2021; 12:360. [PMID: 33801556 PMCID: PMC8001801 DOI: 10.3390/genes12030360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 02/18/2021] [Accepted: 02/22/2021] [Indexed: 12/03/2022] Open
Abstract
The South American continent is remarkably diverse in its ecological zones, spanning the Amazon rainforest, the high-altitude Andes, and Tierra del Fuego. Yet the original human populations of the continent successfully inhabited all these zones, well before the buffering effects of modern technology. Therefore, it is likely that the various cultures were successful, in part, due to positive natural selection that allowed them to successfully establish populations for thousands of years. Detecting positive selection in these populations is still in its infancy, as the ongoing effects of European contact have decimated many of these populations and introduced gene flow from outside of the continent. In this review, we explore hypotheses of possible human biological adaptation, methods to identify positive selection, the utilization of ancient DNA, and the integration of modern genomes through the identification of genomic tracts that reflect the ancestry of the first populations of the Americas.
Collapse
Affiliation(s)
- John Lindo
- Department of Anthropology, Emory University, Atlanta, GA 30322, USA
| | - Michael DeGiorgio
- Department of Computer and Electrical Engineering and Computer Science, Florida Atlantic University, Boca Raton, FL 33431, USA
| |
Collapse
|
41
|
Hernandez M, Perry GH. Scanning the human genome for "signatures" of positive selection: Transformative opportunities and ethical obligations. Evol Anthropol 2021; 30:113-121. [PMID: 33788352 DOI: 10.1002/evan.21893] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 01/25/2021] [Accepted: 03/11/2021] [Indexed: 12/15/2022]
Abstract
The relationship history of evolutionary anthropology and genetics is complex. At best, genetics is a beautifully integrative part of the discipline. Yet this integration has also been fraught, with punctuated, disruptive challenges to dogma, periodic reluctance by some members of the field to embrace results from analyses of genetic data, and occasional over-assertions of genetic definitiveness by geneticists. At worst, evolutionary genetics has been a tool for reinforcing racism and colonialism. While a number of genetics/genomics papers have disproportionately impacted evolutionary anthropology, here we highlight the 2002 presentation of an elegantly powerful approach for identifying "signatures" of past positive selection from haplotype-based patterns of genetic variation. Together with technological advances in genotyping methods, this article transformed our field by facilitating genome-wide "scans" for signatures of past positive selection in human populations. This approach helped researchers test longstanding evolutionary anthropology hypotheses while simultaneously providing opportunities to develop entirely new ones. Genome-wide scans for signatures of positive selection have since been conducted in diverse worldwide populations, with striking findings of local adaptation and convergent evolution. Yet there are ethical considerations with respect to the ubiquity of these studies and the cross-application of the genome-wide scan approach to existing datasets, which we also discuss.
Collapse
Affiliation(s)
- Margarita Hernandez
- Department of Anthropology, Pennsylvania State University, University Park, Pennsylvania, USA
| | - George H Perry
- Department of Anthropology, Pennsylvania State University, University Park, Pennsylvania, USA
- Department of Biology, Pennsylvania State University, University Park, Pennsylvania, USA
- Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania, USA
| |
Collapse
|
42
|
|
43
|
Richalet JP. [Adaption to chronic hypoxaemia by populations living at high altitude]. Rev Mal Respir 2021; 38:395-403. [PMID: 33541755 DOI: 10.1016/j.rmr.2020.11.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 10/13/2020] [Indexed: 12/14/2022]
Abstract
Permanent life at high altitude induces important physiological stresses linked to the exposure to chronic hypoxia. Various strategies have been adopted by diverse populations living in the Andes, Tibet or East Africa. The main mechanism is an increase in red blood cell production, more marked in Andeans than in Tibetans or Ethiopians. Other changes are observed in the cardiovascular or respiratory systems, as well as in the utero-placental circulation. Sometimes, a de-adaptation process to hypoxia develops, when erythrocytosis becomes excessive and leads to haematological, vascular and cerebral complications (Monge's disease or chronic mountain sickness). Pulmonary hypertension may also appear. Therapeutic options are available but not sufficiently used. Genetic studies have recently been undertaken to try to better understand the evolution of the human genome in populations living in various high altitude regions of the world, as well as the genetic risk factors for chronic diseases. A new model has appeared, intermittent chronic hypoxia, due to the development of economic activities (mainly mining) in desert regions of the Altiplano.
Collapse
Affiliation(s)
- J-P Richalet
- Laboratoire « Hypoxie & Poumon », UMR Inserm U1272, Université Sorbonne Paris Nord 13, 74, rue Marcel-Cachin, 93017 Bobigny cedex, France.
| |
Collapse
|
44
|
Yu Y, Li H, Sun X, Liu X, Yang F, Hou L, Liu L, Yan R, Yu Y, Jing M, Xue H, Cao W, Wang Q, Zhong H, Xue F. Identification and Estimation of Causal Effects Using a Negative-Control Exposure in Time-Series Studies With Applications to Environmental Epidemiology. Am J Epidemiol 2021; 190:468-476. [PMID: 32830845 DOI: 10.1093/aje/kwaa172] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 08/11/2020] [Accepted: 08/12/2020] [Indexed: 12/17/2022] Open
Abstract
The initial aim of environmental epidemiology is to estimate the causal effects of environmental exposures on health outcomes. However, due to lack of enough covariates in most environmental data sets, current methods without enough adjustments for confounders inevitably lead to residual confounding. We propose a negative-control exposure based on a time-series studies (NCE-TS) model to effectively eliminate unobserved confounders using an after-outcome exposure as a negative-control exposure. We show that the causal effect is identifiable and can be estimated by the NCE-TS for continuous and categorical outcomes. Simulation studies indicate unbiased estimation by the NCE-TS model. The potential of NCE-TS is illustrated by 2 challenging applications: We found that living in areas with higher levels of surrounding greenness over 6 months was associated with less risk of stroke-specific mortality, based on the Shandong Ecological Health Cohort during January 1, 2010, to December 31, 2018. In addition, we found that the widely established negative association between temperature and cancer risks was actually caused by numbers of unobserved confounders, according to the Global Open Database from 2003-2012. The proposed NCE-TS model is implemented in an R package (R Foundation for Statistical Computing, Vienna, Austria) called NCETS, freely available on GitHub.
Collapse
|
45
|
Azad P, Villafuerte FC, Bermudez D, Patel G, Haddad GG. Protective role of estrogen against excessive erythrocytosis in Monge's disease. Exp Mol Med 2021; 53:125-135. [PMID: 33473144 PMCID: PMC8080600 DOI: 10.1038/s12276-020-00550-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 11/12/2020] [Accepted: 11/19/2020] [Indexed: 01/29/2023] Open
Abstract
Monge's disease (chronic mountain sickness (CMS)) is a maladaptive condition caused by chronic (years) exposure to high-altitude hypoxia. One of the defining features of CMS is excessive erythrocytosis with extremely high hematocrit levels. In the Andean population, CMS prevalence is vastly different between males and females, being rare in females. Furthermore, there is a sharp increase in CMS incidence in females after menopause. In this study, we assessed the role of sex hormones (testosterone, progesterone, and estrogen) in CMS and non-CMS cells using a well-characterized in vitro erythroid platform. While we found that there was a mild (nonsignificant) increase in RBC production with testosterone, we observed that estrogen, in physiologic concentrations, reduced sharply CD235a+ cells (glycophorin A; a marker of RBC), from 56% in the untreated CMS cells to 10% in the treated CMS cells, in a stage-specific and dose-responsive manner. At the molecular level, we determined that estrogen has a direct effect on GATA1, remarkably decreasing the messenger RNA (mRNA) and protein levels of GATA1 (p < 0.01) and its target genes (Alas2, BclxL, and Epor, p < 0.001). These changes result in a significant increase in apoptosis of erythroid cells. We also demonstrate that estrogen regulates erythropoiesis in CMS patients through estrogen beta signaling and that its inhibition can diminish the effects of estrogen by significantly increasing HIF1, VEGF, and GATA1 mRNA levels. Taken altogether, our results indicate that estrogen has a major impact on the regulation of erythropoiesis, particularly under chronic hypoxic conditions, and has the potential to treat blood diseases, such as high altitude severe erythrocytosis.
Collapse
Affiliation(s)
- Priti Azad
- Department of Pediatrics, Division of Respiratory Medicine, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Francisco C Villafuerte
- Laboratorio de Fisiologia del Transporte de Oxigeno/Fisiología Comparada, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, San Martin de Porres, Lima 31, Peru
| | - Daniela Bermudez
- Laboratorio de Fisiologia del Transporte de Oxigeno/Fisiología Comparada, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, San Martin de Porres, Lima 31, Peru
| | - Gargi Patel
- Department of Pediatrics, Division of Respiratory Medicine, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Gabriel G Haddad
- Department of Pediatrics, Division of Respiratory Medicine, University of California, San Diego, La Jolla, CA, 92093, USA.
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, 92093, USA.
- Rady Children's Hospital, San Diego, CA, 92123, USA.
| |
Collapse
|
46
|
Talaminos-Barroso A, Roa-Romero LM, Ortega-Ruiz F, Cejudo-Ramos P, Márquez-Martín E, Reina-Tosina J. Effects of genetics and altitude on lung function. CLINICAL RESPIRATORY JOURNAL 2020; 15:247-256. [PMID: 33112470 DOI: 10.1111/crj.13300] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 09/11/2020] [Accepted: 10/23/2020] [Indexed: 12/13/2022]
Abstract
OBJECTIVES The aim of this work is to present a review on the impact of genetics and altitude on lung function from classic and recent studies. DATA SOURCE A systematic search has been carried out in different databases of scientific studies, using keywords related to lung volumes, spirometry, altitude and genetics. RESULTS The results of this work have been structured into three parts. First, the relationship between genes and lung function. Next, a review of the genetic predispositions related to respiratory adaptation of people who inhabit high-altitude regions for millennia. Finally, temporary effects and long-term acclimatisation on respiratory physiology at high altitude are presented. CONCLUSIONS The works focused on the influence of genetics and altitude on lung function are currently of interest in terms of studying the interactions between genetic, epigenetic and environmental factors in the configuration of the pathophysiological adaptation patterns.
Collapse
Affiliation(s)
| | | | - Francisco Ortega-Ruiz
- Medical-Surgical Unit of Respiratory Diseases, University Hospital Virgen del Rocio, Seville, Spain.,Spanish Networking Center on Biomedical Research, Area of Respiratory Diseases (CIBERES), Madrid, Spain
| | - Pilar Cejudo-Ramos
- Medical-Surgical Unit of Respiratory Diseases, University Hospital Virgen del Rocio, Seville, Spain.,Spanish Networking Center on Biomedical Research, Area of Respiratory Diseases (CIBERES), Madrid, Spain
| | - Eduardo Márquez-Martín
- Medical-Surgical Unit of Respiratory Diseases, University Hospital Virgen del Rocio, Seville, Spain
| | | |
Collapse
|
47
|
Vinueza Veloz AF, Yaulema Riss AK, De Zeeuw CI, Carpio Arias TV, Vinueza Veloz MF. Blood Pressure in Andean Adults Living Permanently at Different Altitudes. High Alt Med Biol 2020; 21:360-369. [PMID: 32845744 DOI: 10.1089/ham.2019.0101] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Vinueza Veloz, Andrés Fernando, Aymaru Kailli Yaulema Riss, Chris I. De Zeeuw, Tannia Valeria Carpio Arias, and María Fernanda Vinueza Veloz. Blood pressure in Andean adults living permanently at different altitudes. High Alt Med Biol. 21:360-369, 2020. Aims: To estimate the association between blood pressure (BP) and chronic exposure to altitude in nonhypertensive Andean adults, while taking ethnicity into consideration. Materials and Methods: Sample included 10,041 nonhypertensive adults with indigenous or mixed ethnic background (the latter also referred to as mestizos), who permanently lived at different altitudes. BP was measured following international recommendations. Altitude was measured in meters above the sea level (masl) using a global positioning system. Data were analyzed through linear regression models with restricted cubic splines. Results: A significant nonlinear relation between altitude and systolic blood pressure (SBP) as well as diastolic blood pressure (DBP) was found (both p < 0.001). BP described a j-shaped curve, where the minimum was observed between 750 and 1250 masl, from where both SBP and DBP rose as altitude increased. These associations were independent from sex, age, index of economic wellbeing, body mass index, and years of education. Interestingly, at all altitudes indigenous people had lower SBP and DBP in comparison to mestizos (both p < 0.001). Conclusions: Living permanently at altitudes ≥750 masl is associated with higher SBP and DBP in Andean dwellers and this association is modulated by their ethnic background.
Collapse
Affiliation(s)
- Andrés Fernando Vinueza Veloz
- Chapintza Health Center, Ministerio de Salud Pública del Ecuador, Chapintza, Ecuador.,Abteilung Gastroenterologie und Diabetologie, Gemeinschaftskrankenhaus Havelhöhe, Berlin, Germany
| | - Aymaru Kailli Yaulema Riss
- Chapintza Health Center, Ministerio de Salud Pública del Ecuador, Chapintza, Ecuador.,Abteilung Gastroenterologie und Diabetologie, Gemeinschaftskrankenhaus Havelhöhe, Berlin, Germany
| | - Chris I De Zeeuw
- Department of Neuroscience, Erasmus MC, Rotterdam, The Netherlands.,Netherlands Institute for Neuroscience, Royal Academy of Arts and Sciences, Amsterdam, The Netherlands
| | - Tannia Valeria Carpio Arias
- Research Group GIANH, School of Nutrition and Dietetics, Faculty of Public Health, Escuela Superior Politécnica de Chimborazo, Riobamba, Ecuador
| | - María Fernanda Vinueza Veloz
- Department of Neuroscience, Erasmus MC, Rotterdam, The Netherlands.,School of Medicine, Faculty of Public Health, Escuela Superior Politécnica de Chimborazo, Riobamba, Ecuador
| |
Collapse
|
48
|
Pamenter ME, Hall JE, Tanabe Y, Simonson TS. Cross-Species Insights Into Genomic Adaptations to Hypoxia. Front Genet 2020; 11:743. [PMID: 32849780 PMCID: PMC7387696 DOI: 10.3389/fgene.2020.00743] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Accepted: 06/22/2020] [Indexed: 12/13/2022] Open
Abstract
Over millions of years, vertebrate species populated vast environments spanning the globe. Among the most challenging habitats encountered were those with limited availability of oxygen, yet many animal and human populations inhabit and perform life cycle functions and/or daily activities in varying degrees of hypoxia today. Of particular interest are species that inhabit high-altitude niches, which experience chronic hypobaric hypoxia throughout their lives. Physiological and molecular aspects of adaptation to hypoxia have long been the focus of high-altitude populations and, within the past decade, genomic information has become increasingly accessible. These data provide an opportunity to search for common genetic signatures of selection across uniquely informative populations and thereby augment our understanding of the mechanisms underlying adaptations to hypoxia. In this review, we synthesize the available genomic findings across hypoxia-tolerant species to provide a comprehensive view of putatively hypoxia-adaptive genes and pathways. In many cases, adaptive signatures across species converge on the same genetic pathways or on genes themselves [i.e., the hypoxia inducible factor (HIF) pathway). However, specific variants thought to underlie function are distinct between species and populations, and, in most cases, the precise functional role of these genomic differences remains unknown. Efforts to standardize these findings and explore relationships between genotype and phenotype will provide important clues into the evolutionary and mechanistic bases of physiological adaptations to environmental hypoxia.
Collapse
Affiliation(s)
- Matthew E. Pamenter
- Department of Biology, University of Ottawa, Ottawa, ON, Canada
- Ottawa Brain and Mind Research Institute, University of Ottawa, Ottawa, ON, Canada
| | - James E. Hall
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, School of Medicine, University of California, San Diego, San Diego, CA, United States
| | - Yuuka Tanabe
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, School of Medicine, University of California, San Diego, San Diego, CA, United States
| | - Tatum S. Simonson
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, School of Medicine, University of California, San Diego, San Diego, CA, United States
| |
Collapse
|
49
|
Mitochondrial DNA genomes revealed different patterns of high-altitude adaptation in high-altitude Tajiks compared with Tibetans and Sherpas. Sci Rep 2020; 10:10592. [PMID: 32601317 PMCID: PMC7324373 DOI: 10.1038/s41598-020-67519-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 06/05/2020] [Indexed: 02/06/2023] Open
Abstract
High-altitude Tajiks (HA-Tajiks), Tibetans and Sherpas are three groups of high-altitude native people in China. The differences in the mtDNA genome between the three populations and the role of the mtDNA genome in the high-altitude adaptation of HA-Tajiks were seldom investigated. In this study, 80 HA-Tajiks were enrolled, and their whole mtDNA genomes were sequenced. The haplogroup of each subject was determined by comparison to the revised Cambridge Reference Sequence (rCRS). Ten additional populations from East Asia and Central Asia, including Tibetans and Sherpas, were selected as references. The top haplogroup was U, followed by H, T and J. Principle component analysis and genetic distance analysis indicated that HA-Tajiks showed a close relationship with Wakhi Tajiks, Pamiri Tajiks and Sarikoli Tajiks, indicating that they should be considered one nation scattered around the Pamirs. The difference in the mtDNA genome between HA-Tajiks and Sherpas was significantly greater than that between HA-Tajiks and Tibetans. Among the 13 genes related to the OXPHOS pathway encoded by the mtDNA genome, HA-Tajiks showed more significant differences in ND3 and CYTB compared to Tibetans. Compared to Sherpas, HA-Tajiks showed more significant differences in ND1, ND2, COX1, ATP8, ATP6, ND3, ND4L, ND4, ND5 and CYTB. The associated functional changes and underlying molecular mechanisms should be explored by molecular and biochemical investigations in further studies.
Collapse
|
50
|
Affiliation(s)
- Chung-I Wu
- School of Life Sciences, Sun Yat-Sen University, China
| | - Guo-Dong Wang
- Kunming Institute of Zoology, Chinese Academy of Sciences, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, China
| | - Shuhua Xu
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, China
- CAS-MPG Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, China
| |
Collapse
|