1
|
Havelikar U, Ghorpade KB, Kumar A, Patel A, Singh M, Banjare N, Gupta PN. Comprehensive insights into mechanism of nanotoxicity, assessment methods and regulatory challenges of nanomedicines. DISCOVER NANO 2024; 19:165. [PMID: 39365367 PMCID: PMC11452581 DOI: 10.1186/s11671-024-04118-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 09/26/2024] [Indexed: 10/05/2024]
Abstract
Nanomedicine has the potential to transform healthcare by offering targeted therapies, precise diagnostics, and enhanced drug delivery systems. The National Institutes of Health has coined the term "nanomedicine" to describe the use of nanotechnology in biological system monitoring, control, diagnosis, and treatment. Nanomedicine continues to receive increasing interest for the rationalized delivery of therapeutics and pharmaceutical agents to achieve the required response while reducing its side effects. However, as nanotechnology continues to advance, concerns about its potential toxicological effects have also grown. This review explores the current state of nanomedicine, focusing on the types of nanoparticles used and their associated properties that contribute to nanotoxicity. It examines the mechanisms through which nanoparticles exert toxicity, encompassing various cellular and molecular interactions. Furthermore, it discusses the assessment methods employed to evaluate nanotoxicity, encompassing in-vitro and in-vivo models, as well as emerging techniques. The review also addresses the regulatory issues surrounding nanotoxicology, highlighting the challenges in developing standardized guidelines and ensuring the secure translation of nanomedicine into clinical settings. It also explores into the challenges and ethical issues associated with nanotoxicology, as understanding the safety profile of nanoparticles is essential for their effective translation into therapeutic applications.
Collapse
Affiliation(s)
- Ujwal Havelikar
- Department of Pharmaceutics, NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, 303121, India
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
| | - Kabirdas B Ghorpade
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER) - Raebareli, Lucknow, Uttar Pradesh, 226002, India
| | - Amit Kumar
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER) - Raebareli, Lucknow, Uttar Pradesh, 226002, India
| | - Akhilesh Patel
- Department of Pharmaceutics, NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, 303121, India
| | - Manisha Singh
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
| | - Nagma Banjare
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
| | - Prem N Gupta
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India.
| |
Collapse
|
2
|
Kuhn J, McDonald A, Mongoin C, Anderson G, Lafeuillade G, Mitchell S, Elfick APD, Bagnaninchi PO, Yiu HHP, Nelson LJ. Non-invasive methods of monitoring Fe 3O 4 magnetic nanoparticle toxicity in human liver HepaRG cells using impedance biosensing and Coherent anti-Stokes Raman spectroscopic (CARS) microscopy. Toxicol Lett 2024; 394:92-101. [PMID: 38428546 DOI: 10.1016/j.toxlet.2024.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 02/09/2024] [Accepted: 02/21/2024] [Indexed: 03/03/2024]
Abstract
Functionalized nanoparticles have been developed for use in nanomedicines for treating life threatening diseases including various cancers. To ensure safe use of these new nanoscale reagents, various assays for biocompatibility or cytotoxicity in vitro using cell lines often serve as preliminary assessments prior to in vivo animal testing. However, many of these assays were designed for soluble, colourless materials and may not be suitable for coloured, non-transparent nanoparticles. Moreover, cell lines are not always representative of mammalian organs in vivo. In this work, we use non-invasive impedance sensing methods with organotypic human liver HepaRG cells as a model to test the toxicity of PEG-Fe3O4 magnetic nanoparticles. We also use Coherent anti-Stokes Raman Spectroscopic (CARS) microscopy to monitor the formation of lipid droplets as a parameter to the adverse effect on the HepaRG cell model. The results were also compared with two commercial testing kits (PrestoBlue and ATP) for cytotoxicity. The results suggested that the HepaRG cell model can be a more realistic model than commercial cell lines while use of impedance monitoring of Fe3O4 nanoparticles circumventing the uncertainties due to colour assays. These methods can play important roles for scientists driving towards the 3Rs principle - Replacement, Reduction and Refinement.
Collapse
Affiliation(s)
- Joel Kuhn
- Institute of Chemical Sciences, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, Scotland EH14 4AS, UK
| | - Alison McDonald
- Institute for Bioengineering, School of Engineering, The University of Edinburgh, King's Buildings, Edinburgh EH9 3DW
| | - Cyril Mongoin
- Institute for Bioengineering, School of Engineering, The University of Edinburgh, King's Buildings, Edinburgh EH9 3DW
| | - Graham Anderson
- Centre for Regenerative Medicine. Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh BioQuarter, 5 Little France Drive, Edinburgh EH16 4UU, UK
| | - Guillemette Lafeuillade
- Institute for Bioengineering, School of Engineering, The University of Edinburgh, King's Buildings, Edinburgh EH9 3DW
| | - Stephen Mitchell
- School of Biological Sciences, The Daniel Rutherford Building, Max Born Crescent, Edinburgh EH9 3BF, UK
| | - Alistair P D Elfick
- Institute for Bioengineering, School of Engineering, The University of Edinburgh, King's Buildings, Edinburgh EH9 3DW
| | - Pierre O Bagnaninchi
- Centre for Regenerative Medicine. Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh BioQuarter, 5 Little France Drive, Edinburgh EH16 4UU, UK
| | - Humphrey H P Yiu
- Institute of Chemical Sciences, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, Scotland EH14 4AS, UK.
| | - Leonard J Nelson
- Institute for Bioengineering, School of Engineering, The University of Edinburgh, King's Buildings, Edinburgh EH9 3DW.
| |
Collapse
|
3
|
Martin L, Lopez K, Fritz S, Easterling CP, Krawchuck JA, Poerwoprajitno AR, Xu W. Determination of the optical interference of iron oxide nanoparticles in fluorometric cytotoxicity assays. Heliyon 2024; 10:e25378. [PMID: 38322934 PMCID: PMC10845919 DOI: 10.1016/j.heliyon.2024.e25378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 01/11/2024] [Accepted: 01/25/2024] [Indexed: 02/08/2024] Open
Abstract
Nanomaterials are known to exhibit unique interactions with light. Iron oxide nanoparticles (IONPs), composed of magnetite (black iron oxide) specifically, are known to be highly absorptive throughout the visible portion of the spectrum. We sought to investigate and overcome optical interference of IONPs in colorimetric, fluorometric and luminescence assays by introducing additional controls and determining the concentration-dependent contribution to optical artifacts which could confound, skew, or invalidate results. We tested the in vitro cytotoxicity of ∼8 nm spherical magnetite nanoparticles capped with alginate on a human lung carcinoma (A549) cell line for different exposure periods and at various concentrations. We observed significant interference with both the MTT reagent and the absorption at 590 nm, a concentration-dependent reduction in the luminescence, fluorescence at ∼490 nm (viability marker), and fluorescence at 530 nm (cytotoxicity marker). After introducing an additional correction, we obtained more accurate results, including a clear decrease in viability at 12-h post-treatment, with apparent near complete recovery after 24-h in addition to a dose-independent, time-dependent alteration in the cell proliferation rate. A small increase in cytotoxicity was noted at the 24-h timepoint at the two highest concentrations. According to our results, the MTT reagents appear to interact substantially with IONPs at concentrations above 0.1 mg/mL, therefore, this assay is not recommended for IONP cytotoxicity assessment at higher concentrations.
Collapse
Affiliation(s)
- Leisha Martin
- Department of Life Sciences, College of Science, Texas A&M University - Corpus Christi, Corpus Christi, TX, 78412, USA
| | - Kimberly Lopez
- Department of Physical and Environmental Sciences, College of Science, Texas A&M University - Corpus Christi, Corpus Christi, TX, 78412, USA
| | - Shayden Fritz
- Department of Life Sciences, College of Science, Texas A&M University - Corpus Christi, Corpus Christi, TX, 78412, USA
- Department of Physical and Environmental Sciences, College of Science, Texas A&M University - Corpus Christi, Corpus Christi, TX, 78412, USA
| | - Charles P. Easterling
- Center for Integrated Nanotechnologies, Sandia National Laboratories, Albuquerque, NM, 87185, USA
| | - Jacob A. Krawchuck
- Center for Integrated Nanotechnologies, Sandia National Laboratories, Albuquerque, NM, 87185, USA
| | - Agus R. Poerwoprajitno
- Center for Integrated Nanotechnologies, Sandia National Laboratories, Albuquerque, NM, 87185, USA
| | - Wei Xu
- Department of Life Sciences, College of Science, Texas A&M University - Corpus Christi, Corpus Christi, TX, 78412, USA
| |
Collapse
|
4
|
Hsiao TC, Han CL, Yang TT, Lee YL, Shen YF, Jheng YT, Lee CH, Chang JH, Chung KF, Kuo HP, Chuang HC. Importance of surface charge of soot nanoparticles in determining inhalation toxicity in mice. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:18985-18997. [PMID: 36223019 DOI: 10.1007/s11356-022-23444-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 09/30/2022] [Indexed: 06/16/2023]
Abstract
Physicochemical properties of nanoparticles are important in regulating nanoparticle toxicity; however, the contribution of nanoparticle charge remains unclear. The objective of this study was to investigate the pulmonary effects of inhalation of charged soot nanoparticles. We established a stably charged nanoparticle generation system for whole-body exposure in BALB/c mice, which produced positively charged, negatively charged, and neutral soot nanoparticles in a wide range of concentrations. After a 7-day exposure, pulmonary toxicity was assessed, together with proteomics analysis. The charged soot nanoparticles on average carried 1.17-1.35 electric charges, and the sizes for nanoparticles under different charging conditions were all fixed at 69 ~ 72 nm. We observed that charged soot nanoparticles induced cytotoxic LDH and increased lung permeability, with the release of 8-isoprostane and caspase-3 and systemic IL-6 in mice, especially for positively charged soot nanoparticles. Next, we observed that positive-charged soot nanoparticles upregulated Eif2, Eif4, sirtuin, mammalian target of rapamycin (mTOR), peroxisome proliferator-activated receptors (PPAR), and HIPPO-related signaling pathways in the lungs compared with negatively charged soot nanoparticles. HIF1α, sirt1, E-cadherin, and Yap were increased in mice's lungs by positively charged soot nanoparticle exposure. In conclusion, carbonaceous nanoparticles carrying electric ions, especially positive-charged, are particularly toxic when inhaled and should be of concern in terms of pulmonary health protection.
Collapse
Affiliation(s)
- Ta-Chih Hsiao
- Graduate Institute of Environmental Engineering, National Taiwan University, Taipei, Taiwan
| | - Chia-Li Han
- Master Program in Clinical Genomics and Proteomics, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Tzu-Ting Yang
- Department of Environmental Engineering and Health, Yuanpei University of Medical Technology, Hsin Chu City, Taiwan
| | - Yueh-Lun Lee
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yu-Fang Shen
- Graduate Institute of Environmental Engineering, National Center University, Tauyoun, Taiwan
| | - Yu-Teng Jheng
- Genome and Systems Biology Degree Program, Academia Sinica and National Taiwan University, Taipei, Taiwan
| | - Chii-Hong Lee
- Department of Pathology, Taipei City Hospital Heping Fuyou Branch, Taipei, Taiwan
| | - Jer-Hwa Chang
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Division of Pulmonary Medicine, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Kian Fan Chung
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Han-Pin Kuo
- Division of Pulmonary Medicine, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Hsiao-Chi Chuang
- Department of Pathology, Taipei City Hospital Heping Fuyou Branch, Taipei, Taiwan.
- Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan.
- Cell Physiology and Molecular Image Research Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
5
|
Armenia I, Cuestas Ayllón C, Torres Herrero B, Bussolari F, Alfranca G, Grazú V, Martínez de la Fuente J. Photonic and magnetic materials for on-demand local drug delivery. Adv Drug Deliv Rev 2022; 191:114584. [PMID: 36273514 DOI: 10.1016/j.addr.2022.114584] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 09/26/2022] [Accepted: 10/16/2022] [Indexed: 02/06/2023]
Abstract
Nanomedicine has been considered a promising tool for biomedical research and clinical practice in the 21st century because of the great impact nanomaterials could have on human health. The generation of new smart nanomaterials, which enable time- and space-controlled drug delivery, improve the limitations of conventional treatments, such as non-specific targeting, poor biodistribution and permeability. These smart nanomaterials can respond to internal biological stimuli (pH, enzyme expression and redox potential) and/or external stimuli (such as temperature, ultrasound, magnetic field and light) to further the precision of therapies. To this end, photonic and magnetic nanoparticles, such as gold, silver and iron oxide, have been used to increase sensitivity and responsiveness to external stimuli. In this review, we aim to report the main and most recent systems that involve photonic or magnetic nanomaterials for external stimulus-responsive drug release. The uniqueness of this review lies in highlighting the versatility of integrating these materials within different carriers. This leads to enhanced performance in terms of in vitro and in vivo efficacy, stability and toxicity. We also point out the current regulatory challenges for the translation of these systems from the bench to the bedside, as well as the yet unresolved matter regarding the standardization of these materials.
Collapse
Affiliation(s)
- Ilaria Armenia
- BioNanoSurf Group, Instituto de Nanociencia y Materiales de Aragón (INMA,CSIC-UNIZAR), Edificio I +D, 50018 Zaragoza, Spain.
| | - Carlos Cuestas Ayllón
- BioNanoSurf Group, Instituto de Nanociencia y Materiales de Aragón (INMA,CSIC-UNIZAR), Edificio I +D, 50018 Zaragoza, Spain
| | - Beatriz Torres Herrero
- BioNanoSurf Group, Instituto de Nanociencia y Materiales de Aragón (INMA,CSIC-UNIZAR), Edificio I +D, 50018 Zaragoza, Spain
| | - Francesca Bussolari
- BioNanoSurf Group, Instituto de Nanociencia y Materiales de Aragón (INMA,CSIC-UNIZAR), Edificio I +D, 50018 Zaragoza, Spain
| | - Gabriel Alfranca
- BioNanoSurf Group, Instituto de Nanociencia y Materiales de Aragón (INMA,CSIC-UNIZAR), Edificio I +D, 50018 Zaragoza, Spain
| | - Valeria Grazú
- BioNanoSurf Group, Instituto de Nanociencia y Materiales de Aragón (INMA,CSIC-UNIZAR), Edificio I +D, 50018 Zaragoza, Spain; Centro de Investigación Biomédica em Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Avenida Monforte de Lemos, 3-5, 28029 Madrid, Spain.
| | - Jesús Martínez de la Fuente
- BioNanoSurf Group, Instituto de Nanociencia y Materiales de Aragón (INMA,CSIC-UNIZAR), Edificio I +D, 50018 Zaragoza, Spain; Centro de Investigación Biomédica em Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Avenida Monforte de Lemos, 3-5, 28029 Madrid, Spain.
| |
Collapse
|
6
|
Novel Magnetic Elastic Phase-Change Nanodroplets as Dual Mode Contrast Agent for Ultrasound and Magnetic Resonance Imaging. Polymers (Basel) 2022; 14:polym14142915. [PMID: 35890691 PMCID: PMC9318938 DOI: 10.3390/polym14142915] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 06/05/2022] [Accepted: 06/08/2022] [Indexed: 01/25/2023] Open
Abstract
Recently, dual-mode imaging systems merging magnetic resonance imaging (MRI) and ultrasound (US) have been developed. Designing a dual-mode contrast agent is complex due to different mechanisms of enhancement. Herein, we describe novel phase change nanodroplets (PCNDs) with perfluoropentane encapsulated in a pre-polyglycerol sebacate (pre-PGS) shell loaded with polyethylene glycol (PEG)-coated iron oxide nanoparticles as having a dual-mode contrast agent effect. Iron oxide nanoparticles were prepared via the chemical co-precipitation method and PCNDs were prepared via the solvent displacement technique. PCNDs showed excellent enhancement in the in vitro US much more than Sonovue® microbubbles. Furthermore, they caused a susceptibility effect resulting in a reduction of signal intensity on MRI. An increase in the concentration of nanoparticles caused an increase in the MR contrast effect but a reduction in US intensity. The concentration of nanoparticles in a shell of PCNDs was optimized to obtain a dual-mode contrast effect. Biocompatibility, hemocompatibility, and immunogenicity assays showed that PCNDs were safe and non-immunogenic. Another finding was the dual-mode potential of unloaded PCNDs as T1 MR and US contrast agents. Results suggest the excellent potential of these PCNDs for use as dual-mode contrast agents for both MRI and US.
Collapse
|
7
|
Cao Y, Zhang S, Ma M, Zhang Y. Fluorinated PEG-PEI Coated Magnetic Nanoparticles for siRNA Delivery and CXCR4 Knockdown. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:1692. [PMID: 35630915 PMCID: PMC9146302 DOI: 10.3390/nano12101692] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/12/2022] [Accepted: 05/12/2022] [Indexed: 02/08/2023]
Abstract
CXC chemokine receptor 4 (CXCR4) is a promising therapeutic target. Previous studies have shown that intracellular delivery of siRNA to knockdown CXCR4 expression in cancer cells is an effective therapeutic strategy. To prepare efficient magnetic nucleic acid carriers, it is now necessary to improve the endocytosis efficiency of PEGylated magnetic nanoparticles. In our work, Heptafluorobutyryl-polyethylene glycol-polyethyleneimine (FPP) was first prepared and then used to coat magnetic nanoparticles (MNPs) to obtain magnetic nanocarriers FPP@MNPs. The materials were characterized by 19 F-Nuclear Magnetic Resonance (NMR), transmission electron microscope (TEM), energy dispersive spectroscopy (EDS), and dynamic light scattering (DLS). The biosecurity of FPP@MNPs was confirmed by cell viability and apoptosis experiments. Cellular uptake of FPP@MNPs and siRNA transfection enhanced by external magnetic fields were detected by fluorescence microscopy, confocal laser microscopy, and flow cytometry. The results show that the cellular uptake efficiency of FPP@MNPs was significantly improved, and transfection efficiency reached more than 90%. The knockdown of CXCR4 on the 4 T1 cell membrane was confirmed by real-time polymerase chain reaction (RT-PCR) and flow cytometry. In conclusion, the fluorinated cationic polymer-coated magnetic nanoparticles FPP@MNPs can be loaded with siRNA to reduce CXCR4 expression as well as be expected to be efficient universal siRNA carriers.
Collapse
Affiliation(s)
- Yixiang Cao
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Sciences and Medical Engineering, Southeast University, Nanjing 210096, China;
| | - Shiyin Zhang
- Nanjing Nanoeast Biotech Co., Ltd., Nanjing 211000, China;
| | - Ming Ma
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Sciences and Medical Engineering, Southeast University, Nanjing 210096, China;
| | - Yu Zhang
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Sciences and Medical Engineering, Southeast University, Nanjing 210096, China;
| |
Collapse
|
8
|
Ruifang E, Shi Y, Wang W, Qi M. Callistephin inhibits amyloid-β protein aggregation and determined cytotoxicity against cerebrovascular smooth muscle cells as an in vitro model of cerebral amyloid angiopathy. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2021.103605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
9
|
Chausov DN, Burmistrov DE, Kurilov AD, Bunkin NF, Astashev ME, Simakin AV, Vedunova MV, Gudkov SV. New Organosilicon Composite Based on Borosiloxane and Zinc Oxide Nanoparticles Inhibits Bacterial Growth, but Does Not Have a Toxic Effect on the Development of Animal Eukaryotic Cells. MATERIALS (BASEL, SWITZERLAND) 2021; 14:6281. [PMID: 34771805 PMCID: PMC8585151 DOI: 10.3390/ma14216281] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 10/08/2021] [Accepted: 10/18/2021] [Indexed: 11/30/2022]
Abstract
The present study a comprehensive analysis of the antibacterial properties of a composite material based on borosiloxane and zinc oxide nanoparticles (ZnO NPs). The effect of the polymer matrix and ZnO NPs on the generation of reactive oxygen species, hydroxyl radicals, and long-lived oxidized forms of biomolecules has been studied. All variants of the composites significantly inhibited the division of E. coli bacteria and caused them to detach from the substrate. It was revealed that the surfaces of a composite material based on borosiloxane and ZnO NPs do not inhibit the growth and division of mammalians cells. It is shown in the work that the positive effect of the incorporation of ZnO NPs into borosiloxane can reach 100% or more, provided that the viscoelastic properties of borosiloxane with nanoparticles are retained.
Collapse
Affiliation(s)
- Denis N. Chausov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Vavilova St. 38, 119991 Moscow, Russia; (D.N.C.); (D.E.B.); (A.D.K.); (N.F.B.); (M.E.A.); (A.V.S.); (M.V.V.)
| | - Dmitriy E. Burmistrov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Vavilova St. 38, 119991 Moscow, Russia; (D.N.C.); (D.E.B.); (A.D.K.); (N.F.B.); (M.E.A.); (A.V.S.); (M.V.V.)
| | - Alexander D. Kurilov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Vavilova St. 38, 119991 Moscow, Russia; (D.N.C.); (D.E.B.); (A.D.K.); (N.F.B.); (M.E.A.); (A.V.S.); (M.V.V.)
| | - Nikolai F. Bunkin
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Vavilova St. 38, 119991 Moscow, Russia; (D.N.C.); (D.E.B.); (A.D.K.); (N.F.B.); (M.E.A.); (A.V.S.); (M.V.V.)
- Bauman Moscow State Technical University, Vtoraya Baumanskaya ul. 5, 105005 Moscow, Russia
| | - Maxim E. Astashev
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Vavilova St. 38, 119991 Moscow, Russia; (D.N.C.); (D.E.B.); (A.D.K.); (N.F.B.); (M.E.A.); (A.V.S.); (M.V.V.)
| | - Alexander V. Simakin
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Vavilova St. 38, 119991 Moscow, Russia; (D.N.C.); (D.E.B.); (A.D.K.); (N.F.B.); (M.E.A.); (A.V.S.); (M.V.V.)
| | - Maria V. Vedunova
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Vavilova St. 38, 119991 Moscow, Russia; (D.N.C.); (D.E.B.); (A.D.K.); (N.F.B.); (M.E.A.); (A.V.S.); (M.V.V.)
- Institute of Biology and Biomedicine, Lobachevsky State, University of Nizhni Novgorod, 23 Gagarin Ave., 603950 Nizhny Novgorod, Russia
| | - Sergey V. Gudkov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Vavilova St. 38, 119991 Moscow, Russia; (D.N.C.); (D.E.B.); (A.D.K.); (N.F.B.); (M.E.A.); (A.V.S.); (M.V.V.)
- Institute of Biology and Biomedicine, Lobachevsky State, University of Nizhni Novgorod, 23 Gagarin Ave., 603950 Nizhny Novgorod, Russia
| |
Collapse
|
10
|
Mohtar N, Parumasivam T, Gazzali AM, Tan CS, Tan ML, Othman R, Fazalul Rahiman SS, Wahab HA. Advanced Nanoparticle-Based Drug Delivery Systems and Their Cellular Evaluation for Non-Small Cell Lung Cancer Treatment. Cancers (Basel) 2021; 13:3539. [PMID: 34298753 PMCID: PMC8303683 DOI: 10.3390/cancers13143539] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 06/18/2021] [Accepted: 06/23/2021] [Indexed: 12/12/2022] Open
Abstract
Lung cancers, the number one cancer killer, can be broadly divided into small cell lung cancer (SCLC) and non-small cell lung cancer (NSCLC), with NSCLC being the most commonly diagnosed type. Anticancer agents for NSCLC suffer from various limitations that can be partly overcome by the application of nanomedicines. Nanoparticles is a branch within nanomedicine that can improve the delivery of anticancer drugs, whilst ensuring the stability and sufficient bioavailability following administration. There are many publications available in the literature exploring different types of nanoparticles from different materials. The effectiveness of a treatment option needs to be validated in suitable in vitro and/or in vivo models. This includes the developed nanoparticles, to prove their safety and efficacy. Many researchers have turned towards in vitro models that use normal cells or specific cells from diseased tissues. However, in cellular works, the physiological dynamics that is available in the body could not be mimicked entirely, and hence, there is still possible development of false positive or false negative results from the in vitro models. This article provides an overview of NSCLC, the different nanoparticles available to date, and in vitro evaluation of the nanoparticles. Different types of cells suitable for in vitro study and the important precautions to limit the development of false results are also extensively discussed.
Collapse
Affiliation(s)
- Noratiqah Mohtar
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Gelugor 11800, Penang, Malaysia; (N.M.); (T.P.); (A.M.G.); (C.S.T.); (M.L.T.); (H.A.W.)
| | - Thaigarajan Parumasivam
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Gelugor 11800, Penang, Malaysia; (N.M.); (T.P.); (A.M.G.); (C.S.T.); (M.L.T.); (H.A.W.)
| | - Amirah Mohd Gazzali
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Gelugor 11800, Penang, Malaysia; (N.M.); (T.P.); (A.M.G.); (C.S.T.); (M.L.T.); (H.A.W.)
| | - Chu Shan Tan
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Gelugor 11800, Penang, Malaysia; (N.M.); (T.P.); (A.M.G.); (C.S.T.); (M.L.T.); (H.A.W.)
| | - Mei Lan Tan
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Gelugor 11800, Penang, Malaysia; (N.M.); (T.P.); (A.M.G.); (C.S.T.); (M.L.T.); (H.A.W.)
| | - Rozana Othman
- Faculty of Pharmacy, Universiti Malaya, Kuala Lumpur 50603, Malaysia
- Center for Natural Products Research and Drug Discovery (CENAR), Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Siti Sarah Fazalul Rahiman
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Gelugor 11800, Penang, Malaysia; (N.M.); (T.P.); (A.M.G.); (C.S.T.); (M.L.T.); (H.A.W.)
| | - Habibah A. Wahab
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Gelugor 11800, Penang, Malaysia; (N.M.); (T.P.); (A.M.G.); (C.S.T.); (M.L.T.); (H.A.W.)
| |
Collapse
|
11
|
Vardakas P, Skaperda Z, Tekos F, Trompeta AF, Tsatsakis A, Charitidis CA, Kouretas D. An integrated approach for assessing the in vitro and in vivo redox-related effects of nanomaterials. ENVIRONMENTAL RESEARCH 2021; 197:111083. [PMID: 33775680 DOI: 10.1016/j.envres.2021.111083] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/22/2021] [Accepted: 03/22/2021] [Indexed: 06/12/2023]
Abstract
Over the last few decades, nanotechnology has risen to the forefront of both the research and industrial interest, resulting in the manufacture and utilization of various nanomaterials, as well as in their integration into a wide range of fields. However, the consequent elevated exposure to such materials raises serious concerns regarding their effects on human health and safety. Existing scientific data indicate that the induction of oxidative stress, through the excessive generation of Reactive Oxygen Species (ROS), might be the principal mechanism of exerting their toxicity. Meanwhile, a number of nanomaterials exhibit antioxidant properties, either intrinsic or resulting from their functionalization with conventional antioxidants. Considering that their redox properties are implicated in the manifestation of their biological effects, we propose an integrated approach for the assessment of the redox-related activities of nanomaterials at three biological levels (in vitro-cell free systems, cell cultures, in vivo). Towards this direction, a battery of translational biomarkers is recommended, and a series of reliable protocols are presented in detail. The aim of the present approach is to acquire a better understanding with respect to the biological actions of nanomaterials in the interrelated fields of Redox Biology and Toxicology.
Collapse
Affiliation(s)
- Periklis Vardakas
- Department of Biochemistry-Biotechnology, University of Thessaly, 41500, Larissa, Greece
| | - Zoi Skaperda
- Department of Biochemistry-Biotechnology, University of Thessaly, 41500, Larissa, Greece
| | - Fotios Tekos
- Department of Biochemistry-Biotechnology, University of Thessaly, 41500, Larissa, Greece
| | - Aikaterini-Flora Trompeta
- Research Lab of Advanced, Composite, Nano-Materials and Nanotechnology, School of Chemical Engineering, National Technical University of Athens, 9 Heroon Polytechniou St. Zografos, 157 80, Athens, Greece
| | - Aristidis Tsatsakis
- Laboratory of Toxicology Science and Research, Medical School, University of Crete, 71003, Heraklion, Crete, Greece
| | - Constantinos A Charitidis
- Research Lab of Advanced, Composite, Nano-Materials and Nanotechnology, School of Chemical Engineering, National Technical University of Athens, 9 Heroon Polytechniou St. Zografos, 157 80, Athens, Greece
| | - Demetrios Kouretas
- Department of Biochemistry-Biotechnology, University of Thessaly, 41500, Larissa, Greece.
| |
Collapse
|
12
|
Martín MJ, Azcona P, Lassalle V, Gentili C. Doxorubicin delivery by magnetic nanotheranostics enhances the cell death in chemoresistant colorectal cancer-derived cells. Eur J Pharm Sci 2020; 158:105681. [PMID: 33347979 DOI: 10.1016/j.ejps.2020.105681] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 11/12/2020] [Accepted: 12/14/2020] [Indexed: 02/07/2023]
Abstract
Colorectal cancer (CRC) is a major cause of cancer death with a high probability of treatment failure. Doxorubicin (DOXO) is an efficient antitumor drug; however, most CRC cells show resistance to its effects. Magnetic nanoparticles (MNPs) are potential cancer management tools that can serve as diagnostic agents and also can optimize and personalize treatments. This work aims to evaluate the aptitude of magnetic nanotheranostics composed of magnetite (Fe3O4) nanoparticles coated with folic acid intended to the sustained release of DOXO. The administration of DOXO by means of these MNPs resulted in the enhancement of cell death respect to the free drug administration. Chromatin compaction and cytoplasmic protrusions were observed. Mitochondrial transmembrane potential disruption and increased PARP protein cleavage confirmed apoptosis. The nanosystem was also tested as a vectoring tool by exposing it to the stimuli of a static magnetic field in vitro. CRC-related magnetic nanotechnology still remains in pre-clinical trials. In this context, this contribution expands the knowledge of the behavior of MNPs in contact with in vitro models and proposes the nanodevices studied here as potential theranostic agents for the monitoring of the progress of CRC and the evolution of its treatment.
Collapse
Affiliation(s)
- María Julia Martín
- INBIOSUR, Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS)-CONICET, San Juan 671, 8000, Bahía Blanca, Argentina.; INQUISUR, Departamento de Química, Universidad Nacional del Sur (UNS)-CONICET, Av. Alem 1253, 8000 Bahía Blanca, Argentina
| | - Pamela Azcona
- INQUISUR, Departamento de Química, Universidad Nacional del Sur (UNS)-CONICET, Av. Alem 1253, 8000 Bahía Blanca, Argentina
| | - Verónica Lassalle
- INQUISUR, Departamento de Química, Universidad Nacional del Sur (UNS)-CONICET, Av. Alem 1253, 8000 Bahía Blanca, Argentina
| | - Claudia Gentili
- INBIOSUR, Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS)-CONICET, San Juan 671, 8000, Bahía Blanca, Argentina..
| |
Collapse
|
13
|
Kuhn J, Papanastasiou G, Tai CW, Moran CM, Jansen MA, Tavares AA, Lennen RJ, Corral CA, Wang C, Thomson AJ, Berry CC, Yiu HH. Tri-modal imaging of gold-dotted magnetic nanoparticles for magnetic resonance imaging, computed tomography and intravascular ultrasound: an in vitro study. Nanomedicine (Lond) 2020; 15:2433-2445. [PMID: 32914695 DOI: 10.2217/nnm-2020-0236] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Aim: To examine the multimodal contrasting ability of gold-dotted magnetic nanoparticles (Au*MNPs) for magnetic resonance (MR), computed tomography (CT) and intravascular ultrasound (IVUS) imaging. Materials & methods: Au*MNPs were prepared by adapting an impregnation method, without using surface capping reagents and characterized (transmission electron microscopy, x-ray diffraction and Fourier-transform infrared spectroscopy) with their in vitro cytotoxicity assessed, followed by imaging assessments. Results: The contrast-enhancing ability of Au*MNPs was shown to be concentration-dependent across MR, CT and IVUS imaging. The Au content of the Au*MNP led to evident increases of the IVUS signal. Conclusion: We demonstrated that Au*MNPs showed concentration-dependent contrast-enhancing ability in MRI and CT imaging, and for the first-time in IVUS imaging due to the Au content. These Au*MNPs are promising toward solidifying tri-modal imaging-based theragnostics.
Collapse
Affiliation(s)
- Joel Kuhn
- Chemical Engineering, School of Engineering & Physical Sciences, Heriot-Watt University, Edinburgh, EH14 4AS, UK
| | - Giorgos Papanastasiou
- School of Computer Science & Electronic Engineering, University of Essex, Colchester, CO4 3SQ, UK.,Edinburgh Imaging, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, EH16 4TJ, U.K
| | - Cheuk-Wai Tai
- Department of Materials & Environmental Chemistry, Arrhenius Laboratory, Stockholm University, Stockholm, SE-106 91, Sweden
| | - Carmel M Moran
- Edinburgh Imaging, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, EH16 4TJ, U.K.,Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, EH16 4TJ, UK
| | - Maurits A Jansen
- Edinburgh Imaging, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, EH16 4TJ, U.K.,Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, EH16 4TJ, UK
| | - Adriana As Tavares
- Edinburgh Imaging, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, EH16 4TJ, U.K.,Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, EH16 4TJ, UK
| | - Ross J Lennen
- Edinburgh Imaging, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, EH16 4TJ, U.K.,Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, EH16 4TJ, UK
| | - Carlos Alcaide Corral
- Edinburgh Imaging, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, EH16 4TJ, U.K.,Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, EH16 4TJ, UK
| | - Chengjia Wang
- Edinburgh Imaging, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, EH16 4TJ, U.K
| | - Adrian Jw Thomson
- Edinburgh Imaging, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, EH16 4TJ, U.K.,Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, EH16 4TJ, UK
| | - Catherine C Berry
- Centre for Cell Engineering, IMCSB, Joseph Black Building, University Avenue, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Humphrey Hp Yiu
- Chemical Engineering, School of Engineering & Physical Sciences, Heriot-Watt University, Edinburgh, EH14 4AS, UK
| |
Collapse
|
14
|
Nezhadi S, Saadat E, Handali S, Dorkoosh F. Nanomedicine and chemotherapeutics drug delivery: challenges and opportunities. J Drug Target 2020; 29:185-198. [PMID: 32772739 DOI: 10.1080/1061186x.2020.1808000] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cancer is considered as one of the biggest threats to humans worldwide. Researchers suggest that tumour is not just a single mass, it comprises cancerous cells surrounded by noncancerous cells such as immune cells, adipocytes and cancer stem cells (CSCs) in the extracellular matrix (ECM) containing distinct components such as proteins, glycoproteins and enzymes; thus tumour microenvironment (TME) is partially complex. Multiple interactions happen in the dynamic microenvironment (ME) lead to an acidic, hypoxic and stiff ME that is considered as one of the major contributors to cancer progression and metastasis. Furthermore, TME involves in drug resistance mechanisms and affects enhanced permeability and retention (EPR) in tumours. In such a scenario, the first step to accomplish satisfying results is the identification and recognition of this ME. Then designing proper drug delivery systems can perform selectively towards cancerous cells. In this way, several targeting and stimuli/enzyme responsive drug delivery systems have been designed. More importantly, it is necessary to design a drug delivery system that can penetrate deeper into the tumours, efficiently and selectively. Various drug delivery systems such as exosomes and size-switchable nanocarriers (NCs) could decrease side effects and increase tumour treatment results by selective accumulation in tumours. In this review, TME features, current drug delivery approaches, challenges and promising strategies towards cancer treatment are discussed.
Collapse
Affiliation(s)
- Sepideh Nezhadi
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Ir an
| | | | - Somayeh Handali
- Medical Biomaterial Research Center (MBRC), Tehran University of Medical Sciences, Tehran, Iran
| | - Farid Dorkoosh
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Ir an.,Medical Biomaterial Research Center (MBRC), Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
15
|
Methotrexate-conjugated chitosan-grafted pH- and thermo-responsive magnetic nanoparticles for targeted therapy of ovarian cancer. Int J Biol Macromol 2020; 154:1175-1184. [DOI: 10.1016/j.ijbiomac.2019.10.272] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 10/08/2019] [Accepted: 10/30/2019] [Indexed: 12/15/2022]
|
16
|
Foulkes R, Man E, Thind J, Yeung S, Joy A, Hoskins C. The regulation of nanomaterials and nanomedicines for clinical application: current and future perspectives. Biomater Sci 2020; 8:4653-4664. [DOI: 10.1039/d0bm00558d] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Nanomedicine research has increased drastically over the past ten years, however, before clinical translation many regulatory factors must be considered.
Collapse
Affiliation(s)
- Rachel Foulkes
- School of Pharmacy and Bioengineering
- Keele University
- Keele
- UK
| | - Ernest Man
- Department of Pure and Applied Chemistry
- University of Strathclyde
- Glasgow
- UK
| | - Jasmine Thind
- School of Pharmacy and Bioengineering
- Keele University
- Keele
- UK
| | - Suet Yeung
- School of Pharmacy and Bioengineering
- Keele University
- Keele
- UK
| | - Abigail Joy
- School of Pharmacy and Bioengineering
- Keele University
- Keele
- UK
| | - Clare Hoskins
- School of Pharmacy and Bioengineering
- Keele University
- Keele
- UK
- Department of Pure and Applied Chemistry
| |
Collapse
|
17
|
Kolosnjaj-Tabi J, Kralj S, Griseti E, Nemec S, Wilhelm C, Plan Sangnier A, Bellard E, Fourquaux I, Golzio M, Rols MP. Magnetic Silica-Coated Iron Oxide Nanochains as Photothermal Agents, Disrupting the Extracellular Matrix, and Eradicating Cancer Cells. Cancers (Basel) 2019; 11:E2040. [PMID: 31861146 PMCID: PMC6966508 DOI: 10.3390/cancers11122040] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 12/11/2019] [Accepted: 12/13/2019] [Indexed: 12/20/2022] Open
Abstract
Cancerous cells and the tumor microenvironment are among key elements involved in cancer development, progression, and resistance to treatment. In order to tackle the cells and the extracellular matrix, we herein propose the use of a class of silica-coated iron oxide nanochains, which have superior magnetic responsiveness and can act as efficient photothermal agents. When internalized by different cancer cell lines and normal (non-cancerous) cells, the nanochains are not toxic, as assessed on 2D and 3D cell culture models. Yet, upon irradiation with near infrared light, the nanochains become efficient cytotoxic photothermal agents. Besides, not only do they generate hyperthermia, which effectively eradicates tumor cells in vitro, but they also locally melt the collagen matrix, as we evidence in real-time, using engineered cell sheets with self-secreted extracellular matrix. By simultaneously acting as physical (magnetic and photothermal) effectors and chemical delivery systems, the nanochain-based platforms offer original multimodal possibilities for prospective cancer treatment, affecting both the cells and the extracellular matrix.
Collapse
Affiliation(s)
- Jelena Kolosnjaj-Tabi
- Institute of Pharmacology and Structural Biology, 205 Route de Narbonne, 31400 Toulouse, France; (E.G.); (E.B.); (M.G.); (M.-P.R.)
| | - Slavko Kralj
- Department for Materials Synthesis, Jožef Stefan Institute, Jamova cesta 39, 1000 Ljubljana, Slovenia;
- Faculty of Pharmacy, University of Ljubljana, Askerceva cesta 7, 1000 Ljubljana, Slovenia;
| | - Elena Griseti
- Institute of Pharmacology and Structural Biology, 205 Route de Narbonne, 31400 Toulouse, France; (E.G.); (E.B.); (M.G.); (M.-P.R.)
| | - Sebastjan Nemec
- Department for Materials Synthesis, Jožef Stefan Institute, Jamova cesta 39, 1000 Ljubljana, Slovenia;
- Faculty of Pharmacy, University of Ljubljana, Askerceva cesta 7, 1000 Ljubljana, Slovenia;
| | - Claire Wilhelm
- Laboratoire Matière et Systèmes Complexes (MSC), UMR 7057, Bâtiment Condorcet, Université Paris Diderot, 10 rue Alice Domon et Léonie Duquet, 75205 Paris, France;
| | - Anouchka Plan Sangnier
- Faculty of Pharmacy, University of Ljubljana, Askerceva cesta 7, 1000 Ljubljana, Slovenia;
| | - Elisabeth Bellard
- Institute of Pharmacology and Structural Biology, 205 Route de Narbonne, 31400 Toulouse, France; (E.G.); (E.B.); (M.G.); (M.-P.R.)
| | - Isabelle Fourquaux
- Centre de Microscopie Electronique Appliquée à la Biologie (CMEAB), Faculté de Médecine Rangueil, 133 Route de Narbonne, 31400 Toulouse, France;
| | - Muriel Golzio
- Institute of Pharmacology and Structural Biology, 205 Route de Narbonne, 31400 Toulouse, France; (E.G.); (E.B.); (M.G.); (M.-P.R.)
| | - Marie-Pierre Rols
- Institute of Pharmacology and Structural Biology, 205 Route de Narbonne, 31400 Toulouse, France; (E.G.); (E.B.); (M.G.); (M.-P.R.)
| |
Collapse
|
18
|
Avval ZM, Malekpour L, Raeisi F, Babapoor A, Mousavi SM, Hashemi SA, Salari M. Introduction of magnetic and supermagnetic nanoparticles in new approach of targeting drug delivery and cancer therapy application. Drug Metab Rev 2019; 52:157-184. [PMID: 31834823 DOI: 10.1080/03602532.2019.1697282] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
In this article, the recent applications of different types of magnetic nanoparticles such as α-Fe2O3 (hematite), γ-Fe2O3 (maghemite), Fe3O4 (magnetite), hexagonal (MFe12O19), garnet (M3Fe5O12) and spinel (MFe2O4), where M represents one or more bivalent transition metals (Mn, Fe, Co, Ni, Ba, Sr, Cu, and Zn), and different materials for coating the surface of magnetic nanoparticles like poly lactic acid (PLA), doxorubicin hydrophobic (DOX-HCL), paclitaxel (PTX), EPPT-FITC, oleic acid, tannin, 3-Aminopropyltriethoxysilane (APTES), multi-wall carbon nanotubes (CNTs), polyethylenimine (PEI) and polyarabic acid in drug delivery, biomedicine and treatment of cancer, specially chemotherapy, are reviewed. MNPs possess large surface area to volume ratios because of their nano-size, low surface charge at physiological pH and they aggregate easily in solution due to their essential magnetic nature. These materials are widely used in biology and medicine in many cases. One targeted delivery technique that has gained prominence in recent years is the use of magnetic nanoparticles. In these systems, therapeutic compounds are attached to biocompatible magnetic nanoparticles and magnetic fields generated outside the body are focused on specific targets in vivo. The fields capture the particle complex, resulting in enhanced delivery to the target site. Also, the application of brand new supermagnetic nanoparticles, like Ba,SrFe12O19, is considered and studied in this paper.
Collapse
Affiliation(s)
| | - Leila Malekpour
- Department of Chemistry, Payame Noor University, Ardabil, Iran
| | - Farzad Raeisi
- Department of Chemistry, Payame Noor University, Ardabil, Iran
| | - Aziz Babapoor
- Department of Chemical Engineering, University of Mohaghegh Ardabili (UMA), Ardabil, Iran
| | - Seyyed Mojtaba Mousavi
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyyed Alireza Hashemi
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Marjan Salari
- Department of Civil and Environmental Engineering, Sirjan University of Technology, Kerman, Iran
| |
Collapse
|
19
|
Amination degree of gelatin is critical for establishing structure-property-function relationships of biodegradable thermogels as intracameral drug delivery systems. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 98:897-909. [DOI: 10.1016/j.msec.2019.01.051] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Revised: 01/01/2019] [Accepted: 01/11/2019] [Indexed: 12/17/2022]
|
20
|
Song W, Gregory DA, Al-Janabi H, Muthana M, Cai Z, Zhao X. Magnetic-silk/polyethyleneimine core-shell nanoparticles for targeted gene delivery into human breast cancer cells. Int J Pharm 2019; 555:322-336. [PMID: 30448314 DOI: 10.1016/j.ijpharm.2018.11.030] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 11/10/2018] [Accepted: 11/12/2018] [Indexed: 12/19/2022]
Abstract
The lack of efficient and cost-effective methods for gene delivery has significantly hindered the applications of gene therapy. In this paper, a simple one step and cost effective salting-out method has been explored to fabricate silk-PEI nanoparticles (SPPs) and magnetic-silk/PEI core-shell nanoparticles (MSPPs) for targeted delivery of c-myc antisense oligodeoxynucleotides (ODNs) into MDA-MB-231 breast cancer cells. The size and zeta potential of the particles were controlled by adjusting the amount of silk fibroin in particle synthesis. Lower surface charges and reduced cytotoxicity were achieved for MSPPs compared with PEI coated magnetic nanoparticles (MPPs). Both SPPs and MSPPs were capable of delivering the ODNs into MDA-MB-231 cells and significantly inhibited the cell growth. Through magnetofection, high ODN uptake efficiencies (over 70%) were achieved within 20 min using MSPPs as carriers, exhibiting a significantly enhanced uptake effect compared to the same carriers via non-magnetofection. Both SPPs and MSPPs exhibited a significantly higher inhibition effect against MDA-MB-231 breast cancer cells compared to human dermal fibroblast (HDF) cells. Targeted ODN delivery was achieved using MSPPs with the help of a magnet, making them promising candidates for targeted gene therapy applications.
Collapse
Affiliation(s)
- Wenxing Song
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield S1 3JD, UK; School of Pharmaceutical Engineering and Life Science, Changzhou University, Changzhou 213164, China
| | - David A Gregory
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield S1 3JD, UK
| | - Haider Al-Janabi
- Department of Infection and Immunity, University of Sheffield, Sheffield S10 2RX, UK
| | - Munitta Muthana
- Department of Infection and Immunity, University of Sheffield, Sheffield S10 2RX, UK
| | - Zhiqiang Cai
- School of Pharmaceutical Engineering and Life Science, Changzhou University, Changzhou 213164, China
| | - Xiubo Zhao
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield S1 3JD, UK; School of Pharmaceutical Engineering and Life Science, Changzhou University, Changzhou 213164, China.
| |
Collapse
|
21
|
Modified gelatin nanoparticles for gene delivery. Int J Pharm 2019; 554:224-234. [DOI: 10.1016/j.ijpharm.2018.11.001] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 10/31/2018] [Accepted: 11/01/2018] [Indexed: 01/13/2023]
|
22
|
Fakhimikabir H, Tavakoli MB, Zarrabi A, Amouheidari A, Rahgozar S. Could FA-PG-SPIONs act as a hyperthermia sensitizing agent? An in vitro study. J Therm Biol 2018; 78:73-83. [DOI: 10.1016/j.jtherbio.2018.09.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 09/01/2018] [Accepted: 09/13/2018] [Indexed: 11/28/2022]
|
23
|
Vasireddi M, Crum A, May H, Katz D, Hilliard J. A novel antiviral inhibits Zika virus infection while increasing intracellular glutathione biosynthesis in distinct cell culture models. Antiviral Res 2018; 161:46-52. [PMID: 30217651 DOI: 10.1016/j.antiviral.2018.09.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 06/29/2018] [Accepted: 09/10/2018] [Indexed: 01/23/2023]
Abstract
We investigated the effects of a specific free-form amino acids formulation on Zika virus replication in two different cell culture model systems, one representative of humans and the other of Old World primates from whom Zika virus was first isolated. Here we present data demonstrating that the formulation of the specific free-form amino acid (FFAAP), comprising cystine, glycine, and a glutamate source, along with a minute concentration of selenium inhibited Zika virus replication by up to 90% with an ED90 (effective dose at which 90% of a dose of Zika virus was inhibited) of 2.5 mM in human cells and 4 mM Vero cells. The ED90 concentration of precursors was innocuous for uninfected cells, but resulted in reduced Zika virus replication by up to 90% at 2-5 mM concentrations in nonhuman primate cells and at 1-3 mM concentration in human placental cells. Two important observations were forthcoming: 1) Zika virus production was decreased by up to 90% in Vero and JEG-3 cells treated with FFAAP (ED90 4.0 mM, and 2.5 mM, respectively) throughout 48-72 h of post infection (hpi) compared to untreated infected cells and 2) Zika virus requires intracellular glutathione for replication in human placental cells, while showing enhanced replication in Vero cells with no glutathione. Relative increases in intracellular glutathione biosynthesis followed FFAAP treatment but blocking intracellular biosynthesis of glutathione in human cells resulted in virus inhibition in human placental cells. The blockade of biosynthesis actually increased Zika virus replication in Vero cells. These findings identify an efficacious inhibitor, FFAAP, of Zika virus replication in both human and nonhuman primate cells, while providing novel insight into the different roles of intracellular glutathione in Zika virus replication.
Collapse
Affiliation(s)
- Mugdha Vasireddi
- Viral Immunology Center, Department of Biology, Georgia State University, Atlanta, GA, 30303, USA
| | - Albert Crum
- ProImmune Research Institute, LLC, Rhinebeck, NY, 12572, USA
| | | | - David Katz
- Viral Immunology Center, Department of Biology, Georgia State University, Atlanta, GA, 30303, USA
| | - Julia Hilliard
- Viral Immunology Center, Department of Biology, Georgia State University, Atlanta, GA, 30303, USA.
| |
Collapse
|
24
|
Willmann W, Dringen R. How to Study the Uptake and Toxicity of Nanoparticles in Cultured Brain Cells: The Dos and Don't Forgets. Neurochem Res 2018; 44:1330-1345. [PMID: 30088236 DOI: 10.1007/s11064-018-2598-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 07/09/2018] [Accepted: 07/18/2018] [Indexed: 12/16/2022]
Abstract
Due to their exciting properties, engineered nanoparticles have obtained substantial attention over the last two decades. As many types of nanoparticles are already used for technical and biomedical applications, the chances that cells in the brain will encounter nanoparticles have strongly increased. To test for potential consequences of an exposure of brain cells to engineered nanoparticles, cell culture models for different types of neural cells are frequently used. In this review article we will discuss experimental strategies and important controls that should be used to investigate the physicochemical properties of nanoparticles for the cell incubation conditions applied as well as for studies on the biocompatibility and the cellular uptake of nanoparticles in neural cells. The main focus of this article will be the interaction of cultured neural cells with iron oxide nanoparticles, but similar considerations are important for studying the consequences of an exposure of other types of cultured cells with other types of nanoparticles. Our article aims to improve the understanding of the special technical challenges of working with nanoparticles on cultured neural cells, to identify potential artifacts and to prevent misinterpretation of data on the potential adverse or beneficial consequences of a treatment of cultured cells with nanoparticles.
Collapse
Affiliation(s)
- Wiebke Willmann
- Center for Biomolecular Interactions Bremen, Faculty 2 (Biology/Chemistry), University of Bremen, P.O. Box 330440, 28334, Bremen, Germany.,Center for Environmental Research and Sustainable Technology, Leobener Strasse, 28359, Bremen, Germany
| | - Ralf Dringen
- Center for Biomolecular Interactions Bremen, Faculty 2 (Biology/Chemistry), University of Bremen, P.O. Box 330440, 28334, Bremen, Germany. .,Center for Environmental Research and Sustainable Technology, Leobener Strasse, 28359, Bremen, Germany.
| |
Collapse
|
25
|
Spirou SV, Costa Lima SA, Bouziotis P, Vranješ-Djurić S, Efthimiadou EΚ, Laurenzana A, Barbosa AI, Garcia-Alonso I, Jones C, Jankovic D, Gobbo OL. Recommendations for In Vitro and In Vivo Testing of Magnetic Nanoparticle Hyperthermia Combined with Radiation Therapy. NANOMATERIALS (BASEL, SWITZERLAND) 2018; 8:E306. [PMID: 29734795 PMCID: PMC5977320 DOI: 10.3390/nano8050306] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 04/22/2018] [Accepted: 04/29/2018] [Indexed: 12/23/2022]
Abstract
Magnetic nanoparticle (MNP)-mediated hyperthermia (MH) coupled with radiation therapy (RT) is a novel approach that has the potential to overcome various practical difficulties encountered in cancer treatment. In this work, we present recommendations for the in vitro and in vivo testing and application of the two treatment techniques. These recommendations were developed by the members of Working Group 3 of COST Action TD 1402: Multifunctional Nanoparticles for Magnetic Hyperthermia and Indirect Radiation Therapy ("Radiomag"). The purpose of the recommendations is not to provide definitive answers and directions but, rather, to outline those tests and considerations that a researcher must address in order to perform in vitro and in vivo studies. The recommendations are divided into 5 parts: (a) in vitro evaluation of MNPs; (b) in vitro evaluation of MNP-cell interactions; (c) in vivo evaluation of the MNPs; (d) MH combined with RT; and (e) pharmacokinetic studies of MNPs. Synthesis and characterization of the MNPs, as well as RT protocols, are beyond the scope of this work.
Collapse
Affiliation(s)
- Spiridon V Spirou
- Department of Radiology, Sismanoglio General Hospital of Attica, Sismanogliou 1, Marousi 15126, Athens, Greece.
| | - Sofia A Costa Lima
- LAQV, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Porto 4050-313, Portugal.
| | - Penelope Bouziotis
- Institute of Nuclear & Radiological Sciences & Technology, Energy & Safety, National Center for Scientific Research "Demokritos", Aghia Paraskevi, Athens 15310, Greece.
| | - Sanja Vranješ-Djurić
- "Vinča" Institute of Nuclear Sciences, University of Belgrade, Belgrade 11351, Serbia.
| | - Eleni Κ Efthimiadou
- Inorganic Chemistry Laboratory, Chemistry Department, National and Kapodistrian University of Athens, Panepistimiopolis, Zografou 15784, Greece.
- Institute of Nanoscience and Nanotechnology, NCSR Demokritos, Agia Paraskevi Attikis, Athens 15310, Greece.
| | - Anna Laurenzana
- Department of Biomedical and Clinical Science "Mario Serio", University of Florence, 50134 Firenze, Italy.
| | - Ana Isabel Barbosa
- LAQV, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Porto 4050-313, Portugal.
| | - Ignacio Garcia-Alonso
- Department of Surgery, Radiology & Ph.M. University of the Basque Country, Bilbao E48940, Spain.
| | - Carlton Jones
- NanoTherics Ltd., Studio 3, Unit 3, Silverdale Enterprise Centre Kents Lane, Newcastle under Lyme ST5 6SR, UK.
| | - Drina Jankovic
- "Vinča" Institute of Nuclear Sciences, University of Belgrade, Belgrade 11351, Serbia.
| | - Oliviero L Gobbo
- School of Pharmacy and Pharmaceutical Sciences, Panoz Institute, Trinity College Dublin, D02PN40 Dublin, Ireland.
| |
Collapse
|
26
|
Fakhimikabir H, Tavakoli MB, Zarrabi A, Amouheidari A, Rahgozar S. The role of folic acid-conjugated polyglycerol coated iron oxide nanoparticles on radiosensitivity with clinical electron beam (6 MeV) on human cervical carcinoma cell line: In vitro study. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2018; 182:71-76. [DOI: 10.1016/j.jphotobiol.2018.03.023] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Revised: 03/19/2018] [Accepted: 03/26/2018] [Indexed: 10/17/2022]
|
27
|
Yang X, He L, Xu K, Yang Y, Lin W. The development of an ICT-based formaldehyde-responsive fluorescence turn-on probe with a high signal-to-noise ratio. NEW J CHEM 2018. [DOI: 10.1039/c8nj02467g] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An ICT-based formaldehyde fluorescence turn-on probe (PBD-FA) with a high signal-to-noise ratio was judiciously constructed for bio-applications.
Collapse
Affiliation(s)
- Xueling Yang
- Institute of Fluorescent Probes for Biological Imaging
- School of Chemistry and Chemical Engineering
- School of Materials Science and Engineering
- University of Jinan
- Jinan
| | - Longwei He
- Institute of Fluorescent Probes for Biological Imaging
- School of Chemistry and Chemical Engineering
- School of Materials Science and Engineering
- University of Jinan
- Jinan
| | - Kaixin Xu
- Institute of Fluorescent Probes for Biological Imaging
- School of Chemistry and Chemical Engineering
- School of Materials Science and Engineering
- University of Jinan
- Jinan
| | - Yunzhen Yang
- Institute of Fluorescent Probes for Biological Imaging
- School of Chemistry and Chemical Engineering
- School of Materials Science and Engineering
- University of Jinan
- Jinan
| | - Weiying Lin
- Institute of Fluorescent Probes for Biological Imaging
- School of Chemistry and Chemical Engineering
- School of Materials Science and Engineering
- University of Jinan
- Jinan
| |
Collapse
|
28
|
Malekigorji M, Alfahad M, Kong Thoo Lin P, Jones S, Curtis A, Hoskins C. Thermally triggered theranostics for pancreatic cancer therapy. NANOSCALE 2017; 9:12735-12745. [PMID: 28829476 DOI: 10.1039/c7nr02751f] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Hybrid iron oxide-gold nanoparticles (HNPs) show the ability to bind drugs onto their surface with a triggered release at elevated temperatures. The iron oxide core allows for diagnostic imaging whilst heating of the gold shell upon laser irradiation reverses drug binding. This study exploits the reversible binding of novel polyamine based drugs in order to provide a specific and effective method for pancreatic cancer treatment. Here we used a novel bisnaphthalamido (BNIP) based drug series. Our hybrid nanoparticles (50 nm) showed the ability to load drugs onto their surface (3 : 1 : 0.25, drug : Fe : Au). By exploiting the surface-to-drug electrostatic interaction of a range of BNIP agents, heat triggered drug release was achieved. A 12-fold reduction in IC50 after 24 h in vitro and a 5-fold reduction of tumour retardation in vivo compared with free drug in pancreatic models after treatment were achieved with the HNP-formulation and laser irradiation. This heat activated system could provide a key platform for future therapeutic strategies.
Collapse
Affiliation(s)
- Maryam Malekigorji
- Institute of Science and Technology in Medicine, School of Pharmacy, Faculty of Medicine and Health Sciences, Keele University, Keele, ST5 5BG, UK.
| | | | | | | | | | | |
Collapse
|
29
|
Baskar G, Ravi M, Panda JJ, Khatri A, Dev B, Santosham R, Sathiya S, Babu CS, Chauhan VS, Rayala SK, Venkatraman G. Efficacy of Dipeptide-Coated Magnetic Nanoparticles in Lung Cancer Models Under Pulsed Electromagnetic Field. Cancer Invest 2017; 35:431-442. [PMID: 28537455 DOI: 10.1080/07357907.2017.1318894] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Lung cancer is the leading cause of cancer deaths and the overall 5-year survival rate is less than 17%. Hyperthermia is an alternative approach for the treatment of lung cancer and is associated with fewer side effects. We employed ironoxide nanoparticles in inducing localized hyperthermia in lung cancer cells using a pulsed electromagnetic field (PEMF). We synthesized, characterized and determined the uptake of dipeptide-coated iron oxide nanoparticles. Further, their ability in inducing localized hyperthermia in PEMF on lung cancer cells was assessed. Results showed nanoparticles are non-cytotoxic and showed enhanced cellular uptake in lung cancer cells. In vivo studies in nude mice lung tumor xenografts confirmed the presence in the tumors. Lung cancer cells pretreated with dipeptide-coated magnetic nanoparticles upon PEMF exposure induced cell death.
Collapse
Affiliation(s)
- Ganga Baskar
- a Department of Human Genetics , Sri Ramachandra University , Chennai , India
| | - Mathangi Ravi
- a Department of Human Genetics , Sri Ramachandra University , Chennai , India
| | - Jiban Jyoti Panda
- b International Centre for Genetic Engineering and Biotechnology , New Delhi , India.,c Institute of Nano Science and Technology , Mohali , Punjab , India
| | - Anjali Khatri
- b International Centre for Genetic Engineering and Biotechnology , New Delhi , India
| | - Bhawna Dev
- d Department of Radiology , Sri Ramachandra University , Chennai , India
| | - Roy Santosham
- d Department of Radiology , Sri Ramachandra University , Chennai , India
| | - Sekar Sathiya
- e Centre for Toxicology and Developmental Research , Sri Ramachandra University , Chennai , India
| | | | | | - Suresh K Rayala
- f Department of Biotechnology , Indian Institute of Technology , Madras, Chennai , India
| | - Ganesh Venkatraman
- a Department of Human Genetics , Sri Ramachandra University , Chennai , India.,g Centre for Biomedical Nanotechnology , Sri Ramachandra University , Chennai , India
| |
Collapse
|
30
|
Grossen P, Witzigmann D, Sieber S, Huwyler J. PEG-PCL-based nanomedicines: A biodegradable drug delivery system and its application. J Control Release 2017; 260:46-60. [PMID: 28536049 DOI: 10.1016/j.jconrel.2017.05.028] [Citation(s) in RCA: 294] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 05/19/2017] [Accepted: 05/20/2017] [Indexed: 02/01/2023]
Abstract
The lack of efficient therapeutic options for many severe disorders including cancer spurs demand for improved drug delivery technologies. Nanoscale drug delivery systems based on poly(ethylene glycol)-poly(ε-caprolactone) copolymers (PEG-PCL) represent a strategy to implement therapies with enhanced drug accumulation at the site of action and decreased off-target effects. In this review, we discuss state-of-the-art nanomedicines based on PEG-PCL that have been investigated in a preclinical setting. We summarize the various synthesis routes and different preparation methods used for the production of PEG-PCL nanoparticles. Additionally, we review physico-chemical properties including biodegradability, biocompatibility, and drug loading. Finally, we highlight recent therapeutic applications investigated in vitro and in vivo using advanced systems such as triggered release, multi-component therapies, theranostics, or gene delivery systems.
Collapse
Affiliation(s)
- Philip Grossen
- Division of Pharmaceutical Technology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Dominik Witzigmann
- Division of Pharmaceutical Technology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Sandro Sieber
- Division of Pharmaceutical Technology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Jörg Huwyler
- Division of Pharmaceutical Technology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland.
| |
Collapse
|
31
|
Chen BY, Chen D, Lyu JX, Li KQ, Jiang MM, Zeng JJ, He XJ, Hao K, Tao HQ, Mou XZ, Ying YM, Zhang W, Zhu MH, Wang Z. Marsdeniae tenacissimae extract (MTE) suppresses cell proliferation by attenuating VEGF/VEGFR2 interactions and promotes apoptosis through regulating PKC pathway in human umbilical vein endothelial cells. Chin J Nat Med 2017; 14:922-930. [PMID: 28262119 DOI: 10.1016/s1875-5364(17)30017-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Indexed: 01/13/2023]
Abstract
Marsdeniae tenacissimae extract (MTE), commonly known as Xiao-Ai-Ping in China, is a traditional Chinese herb medicine capable of inhibiting proliferation and metastasis and boosting apoptosis in various cancer cells. However, little is known about the contribution of MTE towards tumor angiogenesis and the underlying mechanism. The present study aimed to evaluate the effects of MTE on the proliferation and apoptosis of human umbilical vein endothelial cells (HUVECs) and the molecular mechanism. 3-(4,5-dimethylthiazol-2-yl)-5(3-carboxymethoxyphenyl)-2-(4-sulfopheny)-2H-tetrazolium, inner salt (MTS) and PI-stained flow cytometry assays revealed that MTE dose-dependently reduced the proliferation of HUVECs by arresting cell cycle at S phase (P < 0.05). Annexin V-FITC/PI-stained flow cytometry confirmed that MTE (160 μL·L-1) enhanced the apoptosis of HUVECs significantly (P < 0.001). Real-time quantitative RT-PCR and Western blot analyses showed an increase in Bax expression and a sharply decline in Bcl-2 expression; caspase-3 was activated simultaneously in a dose-dependent manner (P < 0.05). Further study observed the dose-dependent down-regulation of vascular endothelial growth factor (VEGF) receptor-2 (VEGFR-2), P2Y6 receptor (P2Y6R), and chemokine (C-C motif) ligand 2 (CCL-2), along with the activation of PKC Δ and up-regulation of p53 in a dose-dependent manner in MTE-treated selected cells (P < 0.05). Collectively, the results from the present study suggested that MTE suppressed the proliferation by attenuating CCL-2-mediated VEGF/VEGFR2 interactions and promoted the apoptosis through PKCΔ-induced p53-dependent mitochondrial pathway in HUVECs, supporting that MTE may be developed as a potent anti-cancer medicine.
Collapse
Affiliation(s)
- Bing-Yu Chen
- Research Center of Blood Transfusion Medicine, Education Ministry Key Laboratory of Laboratory Medicine, Zhejiang Provincial People's Hospital, Hangzhou, 310014, China; Clinical Research Institute, Zhejiang Provincial People's Hospital, Hangzhou 310014, China
| | - Dong Chen
- Wenzhou Center for Disease Control and Prevention, Wenzhou 325001, China
| | - Jian-Xin Lyu
- Research Center of Blood Transfusion Medicine, Education Ministry Key Laboratory of Laboratory Medicine, Zhejiang Provincial People's Hospital, Hangzhou, 310014, China; School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou 325000, China
| | - Kai-Qiang Li
- Research Center of Blood Transfusion Medicine, Education Ministry Key Laboratory of Laboratory Medicine, Zhejiang Provincial People's Hospital, Hangzhou, 310014, China; Clinical Research Institute, Zhejiang Provincial People's Hospital, Hangzhou 310014, China
| | - Meng-Meng Jiang
- Research Center of Blood Transfusion Medicine, Education Ministry Key Laboratory of Laboratory Medicine, Zhejiang Provincial People's Hospital, Hangzhou, 310014, China; School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou 325000, China
| | - Jing-Jing Zeng
- Research Center of Blood Transfusion Medicine, Education Ministry Key Laboratory of Laboratory Medicine, Zhejiang Provincial People's Hospital, Hangzhou, 310014, China; School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou 325000, China
| | - Xu-Jun He
- Clinical Research Institute, Zhejiang Provincial People's Hospital, Hangzhou 310014, China
| | - Ke Hao
- Research Center of Blood Transfusion Medicine, Education Ministry Key Laboratory of Laboratory Medicine, Zhejiang Provincial People's Hospital, Hangzhou, 310014, China; Clinical Research Institute, Zhejiang Provincial People's Hospital, Hangzhou 310014, China
| | - Hou-Quan Tao
- Research Center of Blood Transfusion Medicine, Education Ministry Key Laboratory of Laboratory Medicine, Zhejiang Provincial People's Hospital, Hangzhou, 310014, China; Clinical Research Institute, Zhejiang Provincial People's Hospital, Hangzhou 310014, China
| | - Xiao-Zhou Mou
- Clinical Research Institute, Zhejiang Provincial People's Hospital, Hangzhou 310014, China
| | - You-Min Ying
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
| | - Wei Zhang
- Research Center of Blood Transfusion Medicine, Education Ministry Key Laboratory of Laboratory Medicine, Zhejiang Provincial People's Hospital, Hangzhou, 310014, China; Clinical Research Institute, Zhejiang Provincial People's Hospital, Hangzhou 310014, China
| | - Meng-Hua Zhu
- Research Center of Blood Transfusion Medicine, Education Ministry Key Laboratory of Laboratory Medicine, Zhejiang Provincial People's Hospital, Hangzhou, 310014, China.
| | - Zhen Wang
- Research Center of Blood Transfusion Medicine, Education Ministry Key Laboratory of Laboratory Medicine, Zhejiang Provincial People's Hospital, Hangzhou, 310014, China; School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou 325000, China.
| |
Collapse
|
32
|
Le Roux G, Moche H, Nieto A, Benoit JP, Nesslany F, Lagarce F. Cytotoxicity and genotoxicity of lipid nanocapsules. Toxicol In Vitro 2017; 41:189-199. [PMID: 28323104 DOI: 10.1016/j.tiv.2017.03.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 03/15/2017] [Accepted: 03/16/2017] [Indexed: 12/01/2022]
Abstract
Lipid nanocapsules (LNCs) offer a promising method for the entrapment and nanovectorisation of lipophilic molecules. This new type of nanocarrier, formulated according to a solvent-free process and using only regulatory-approved components, exhibits many prerequisites for being well tolerated. Although toxicological reference values have already been obtained in mice, interaction of LNCs at the cell level needs to be elucidated. LNCs, measuring from 27.0±0.1nm (25nm LNCs) and 112.1±1.8nm (100nm LNCs) and with a zeta potential between -38.7±1.2mV and +9.18±0.4mV, were obtained by a phase inversion process followed by post-insertion of carboxy- or amino-DSPE-PEG. Trypan blue, MTS and neutral red uptake (NRU) assays were performed to evaluate the cytotoxicity of LNCs on mouse macrophage-like cells RAW264.7 after 24h of exposure. The determination of 50% lethal concentration (LC50) showed a size effect of LNCs on toxicity profiles: LC50 ranged from 1.036mg/L (MTS) and 0.477mg/mL (NRU) for 25nm LNCs, to 4.42mg/mL (MTS) and 2.18mg/mL (NRU) for 100nm LNCs. Surfactant Solutol® HS15 has been shown to be the only constituent to exhibit cytotoxicity; its LC50 reached 0.427mg/mL. Moreover, LNCs were not more toxic than their components in simple mixtures. At sublethal concentration, 100nm LNCs only were able to induce a significant production of nitric oxide (NO) by RAW264.7 cells, as assessed by the Griess reaction. Again, surfactant was the only component responsible for an increased NO release (1.8±0.2-fold). Genotoxicity assays revealed no DNA damage on human lymphocytes in both the in vitro Comet and micronucleus assays using 4-hour and 24-hour treatments, respectively.
Collapse
Affiliation(s)
- Gaël Le Roux
- L'UNAM Université, Inserm U1066 MINT, CHU d'Angers, 49933 Angers Cedex 9, France.
| | - Hélène Moche
- Laboratoire de Toxicologie, Institut Pasteur de Lille, EA 4483, 59019 Lille Cedex, France
| | - Alejandro Nieto
- L'UNAM Université, Inserm U1066 MINT, CHU d'Angers, 49933 Angers Cedex 9, France
| | - Jean-Pierre Benoit
- L'UNAM Université, Inserm U1066 MINT, CHU d'Angers, 49933 Angers Cedex 9, France
| | - Fabrice Nesslany
- Laboratoire de Toxicologie, Institut Pasteur de Lille, EA 4483, 59019 Lille Cedex, France
| | - Frédéric Lagarce
- L'UNAM Université, Inserm U1066 MINT, CHU d'Angers, 49933 Angers Cedex 9, France
| |
Collapse
|
33
|
Kovaliov M, Li S, Korkmaz E, Cohen-Karni D, Tomycz N, Ozdoganlar OB, Averick S. Extended-release of opioids using fentanyl-based polymeric nanoparticles for enhanced pain management. RSC Adv 2017. [DOI: 10.1039/c7ra08450a] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Fentanyl-terminated polyesters provide linear release of therapeutics with an effective antinociceptive effect in vivo.
Collapse
Affiliation(s)
- Marina Kovaliov
- Neuroscience Disruptive Research Lab
- Allegheny Health Network Research Institute
- Allegheny General Hospital
- Pittsburgh
- USA
| | - Shaohua Li
- Neuroscience Disruptive Research Lab
- Allegheny Health Network Research Institute
- Allegheny General Hospital
- Pittsburgh
- USA
| | - Emrullah Korkmaz
- Department of Mechanical Engineering
- Carnegie Mellon University
- Pittsburgh
- USA
| | - Devora Cohen-Karni
- Neuroscience Disruptive Research Lab
- Allegheny Health Network Research Institute
- Allegheny General Hospital
- Pittsburgh
- USA
| | - Nestor Tomycz
- Neuroscience Institute
- Allegheny Health Network
- Allegheny General Hospital
- Pittsburgh
- USA
| | - O. Burak Ozdoganlar
- Department of Mechanical Engineering
- Carnegie Mellon University
- Pittsburgh
- USA
- Department of Biomedical Engineering
| | - Saadyah Averick
- Neuroscience Disruptive Research Lab
- Allegheny Health Network Research Institute
- Allegheny General Hospital
- Pittsburgh
- USA
| |
Collapse
|
34
|
Simeonidis K, Morales MP, Marciello M, Angelakeris M, de la Presa P, Lazaro-Carrillo A, Tabero A, Villanueva A, Chubykalo-Fesenko O, Serantes D. In-situ particles reorientation during magnetic hyperthermia application: Shape matters twice. Sci Rep 2016; 6:38382. [PMID: 27922119 PMCID: PMC5138615 DOI: 10.1038/srep38382] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 10/20/2016] [Indexed: 12/20/2022] Open
Abstract
Promising advances in nanomedicine such as magnetic hyperthermia rely on a precise control of the nanoparticle performance in the cellular environment. This constitutes a huge research challenge due to difficulties for achieving a remote control within the human body. Here we report on the significant double role of the shape of ellipsoidal magnetic nanoparticles (nanorods) subjected to an external AC magnetic field: first, the heat release is increased due to the additional shape anisotropy; second, the rods dynamically reorientate in the orthogonal direction to the AC field direction. Importantly, the heating performance and the directional orientation occur in synergy and can be easily controlled by changing the AC field treatment duration, thus opening the pathway to combined hyperthermic/mechanical nanoactuators for biomedicine. Preliminary studies demonstrate the high accumulation of nanorods into HeLa cells whereas viability analysis supports their low toxicity and the absence of apoptotic or necrotic cell death after 24 or 48 h of incubation.
Collapse
Affiliation(s)
| | - M. Puerto Morales
- Instituto de Ciencia de Materiales de Madrid, CSIC, Cantoblanco, ES-28049 Madrid, Spain
| | - Marzia Marciello
- Instituto de Ciencia de Materiales de Madrid, CSIC, Cantoblanco, ES-28049 Madrid, Spain
| | - Makis Angelakeris
- Department of Physics, Aristotle University of Thessaloniki, GR-54124 Thessaloniki Greece
| | - Patricia de la Presa
- Instituto de Magnetismo Aplicado (ADIF-UCM-CSIC), Las Rozas, Madrid 28230, Spain
- Departamento de Física de Materiales, Universidad Complutense de Madrid, Ciudad Universitaria, 28040 Madrid, Spain
| | - Ana Lazaro-Carrillo
- Departamento de Biología, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| | - Andrea Tabero
- Departamento de Biología, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| | - Angeles Villanueva
- Departamento de Biología, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
- IMDEA Nanociencia, Faraday 9, Cantoblanco, Madrid, Spain
| | | | - David Serantes
- Applied Physics Department and Instituto de Investigacións Tecnolóxicas, Universidade de Santiago de Compostela, 15782, Spain
- Department of Physics, University of York, Heslington, York YO10 5DD, United Kingdom
| |
Collapse
|
35
|
Aşık E, Akpınar Y, Güray NT, İşcan M, Demircigil GÇ, Volkan M. Cellular uptake, genotoxicity and cytotoxicity of cobalt ferrite magnetic nanoparticles in human breast cells. Toxicol Res (Camb) 2016; 5:1649-1662. [PMID: 30090464 PMCID: PMC6062407 DOI: 10.1039/c6tx00211k] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 09/01/2016] [Indexed: 01/10/2023] Open
Abstract
Magnetic nanoparticles (MNPs) have been increasingly used for many years as MRI agents and for gene delivery and hyperthermia therapy, although there have been conflicting results on their safety. In this study, cobalt ferrite magnetic nanoparticles (CoFe-MNPs) were prepared by the co-precipitation method and their surfaces were modified with silica by the sol-gel method. The particle and hydrodynamic sizes, morphology and crystal structure of the bare and silica-coated CoFe-MNPs were evaluated by transmission electron microscopy (TEM), dynamic light scattering (DLS), X-ray diffraction spectroscopy (XRD) and Fourier transform infrared spectroscopy (FTIR). The size of the bare CoFe-MNPs was in the range 8-20 nm and they were homogeneously coated with 3-4 nm silica shells. The bare and silica-coated CoFe-MNPs were agglomerated at physiological pH. However, the sizes of the agglomerates were below 200 nm both in water and complete medium. The cytotoxic and genotoxic potentials of the bare and silica-coated CoFe-MNPs were evaluated in a metastatic breast cancer cell line, MDA-MB-231, as well as a noncancerous mammary epithelial cell line, MCF-10A, by using XTT cytotoxicity, single-cell gel electrophoresis (comet), and cytokinesis-blocked (CB) micronucleus (CBMN) assays. Characterization studies with TEM, inductively coupled plasma optical emission spectroscopy (ICP-OES) and Prussian blue staining indicated that the CoFe-MNPs were internalized into the cells by energy-dependent endocytosis. The highest amount of uptake was observed in the cancer cells and the uptake of the silica-coated CoFe-MNPs was higher than that of the bare ones in both cell lines. The bare CoFe-MNPs showed higher levels of both cytotoxicity and genotoxicity than the silica-coated CoFe-MNPs. Moreover, the cancer cells seemed to be more susceptible to the CoFe-MNPs' toxicity compared to the noncancerous cells. There was a concentration and time-dependent increase in DNA damage and the micronucleus (MN) frequency, which was statistically significant starting with the lowest concentration of bare CoFe-MNPs (p < 0.05), while no significance was observed below the concentration of 250 μg mL-1 for the silica-coated MNPs. Also, the extent of both DNA damage and MN frequency was much higher in the cancer cells compared to the noncancerous cells. According to our results, the silica coating ameliorated both the cytotoxicity and genotoxicity as well the internalization of the CoFe-MNPs.
Collapse
Affiliation(s)
- Elif Aşık
- Department of Biotechnology , Middle East Technical University , Ankara 06800 , Turkey
| | - Yeliz Akpınar
- Department of Chemistry , Middle East Technical University , Ankara 06800 , Turkey
| | - N Tülin Güray
- Department of Biotechnology , Middle East Technical University , Ankara 06800 , Turkey
- Department of Biological Sciences , Middle East Technical University , Ankara 06800 , Turkey
| | - Mesude İşcan
- Department of Biotechnology , Middle East Technical University , Ankara 06800 , Turkey
- Department of Biological Sciences , Middle East Technical University , Ankara 06800 , Turkey
| | - Gonca Çakmak Demircigil
- Department of Toxicology , Faculty of Pharmacy , Gazi University , Ankara 06330 , Turkey . ; Tel: +90 312 2023089
| | - Mürvet Volkan
- Department of Biotechnology , Middle East Technical University , Ankara 06800 , Turkey
- Department of Chemistry , Middle East Technical University , Ankara 06800 , Turkey
| |
Collapse
|
36
|
Fernando W, Coombs MRP, Hoskin DW, Rupasinghe HPV. Docosahexaenoic acid-acylated phloridzin, a novel polyphenol fatty acid ester derivative, is cytotoxic to breast cancer cells. Carcinogenesis 2016; 37:1004-1013. [PMID: 27535497 DOI: 10.1093/carcin/bgw087] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 08/12/2016] [Indexed: 01/31/2023] Open
Abstract
Docosahexaenoic acid-acylated phloridzin (PZ-DHA), a novel polyphenol fatty acid ester derivative, was synthesized through a regioselective acylation reaction with the aim of increasing the bioactivity of phloridzin (PZ) and docosahexaenoic acid (DHA). In this study, PZ-DHA's cytotoxic activity was explored using in vitro and in vivo models of mammary carcinoma. PZ-DHA was selectively cytotoxic for mammary carcinoma (MDA-MB-231, MDA-MB-468, 4T1, MCF-7 and T-47D) cells compared to non-malignant human mammary epithelial cells (HMEC and MCF-10A) and fibroblasts by MTS assay and Annexin-V-FLUOS/propidium iodide staining. Flow cytometric analysis of Oregon Green 488- and Ki-67-stained MDA-MB-231 cells showed antiproliferative activity of PZ-DHA at a subcytotoxic concentration. PZ-DHA also arrested MDA-MB-231 cell division at the G2/M phase and down-regulated expression of cyclin B1 and cyclin-dependent kinase 1 (CDK1). PZ-DHA-induced apoptosis in MDA-MB-231 cells was confirmed by caspase 3/7 activation in a luminescence assay and DNA fragmentation by TUNEL staining. Moreover, MDA-MB-231 xenograft growth in non-obese diabetic severe combined immunodeficient mice was suppressed by intra-tumoral administration of PZ-DHA. This study shows that PZ-DHA is selectively cytotoxic to breast cancer cells in vitro and in vivo, suggesting that further investigations of PZ-DHA are warranted as a potential treatment for breast cancer.
Collapse
Affiliation(s)
| | | | - David W Hoskin
- Department of Pathology.,Department of Microbiology and Immunology and.,Department of Surgery, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada and
| | - H P Vasantha Rupasinghe
- Department of Pathology.,Department of Environmental Sciences, Faculty of Agriculture, Dalhousie University, Truro, Nova Scotia B2N 5E3, Canada
| |
Collapse
|
37
|
Chaiwangyen W, Ospina-Prieto S, Morales-Prieto DM, Pereira de Sousa FL, Pastuschek J, Fitzgerald JS, Schleussner E, Markert UR. Oncostatin M and leukaemia inhibitory factor trigger signal transducer and activator of transcription 3 and extracellular signal-regulated kinase 1/2 pathways but result in heterogeneous cellular responses in trophoblast cells. Reprod Fertil Dev 2016; 28:608-17. [DOI: 10.1071/rd14121] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Accepted: 08/28/2014] [Indexed: 11/23/2022] Open
Abstract
Leukaemia inhibitory factor (LIF) and oncostatin M (OSM) are pleiotropic cytokines present at the implantation site that are important for the normal development of human pregnancy. These cytokines share the cell membrane receptor subunit gp130, resulting in similar functions. The aim of this study was to compare the response to LIF and OSM in several trophoblast models with particular regard to intracellular mechanisms and invasion. Four trophoblast cell lines with different characteristics were used: HTR-8/SVneo, JEG-3, ACH-3P and AC1-M59 cells. Cells were incubated with LIF, OSM (both at 10 ng mL–1) and the signal transducer and activator of transcription (STAT) 3 inhibitor S3I-201 (200 µM). Expression and phosphorylation of STAT3 (tyr705) and extracellular regulated kinase (ERK) 1/2 (thr202/204) and the STAT3 DNA-binding capacity were analysed by Western blotting and DNA-binding assays, respectively. Cell viability and invasiveness were assessed by the methylthiazole tetrazolium salt (MTS) and Matrigel assays. Enzymatic activity of matrix metalloproteinase (MMP)-2 and MMP-9 was investigated by zymography. OSM and LIF triggered phosphorylation of STAT3 and ERK1/2, followed by a significant increase in STAT3 DNA-binding activity in all tested cell lines. Stimulation with LIF but not OSM significantly enhanced invasion of ACH-3P and JEG-3 cells, but not HTR-8/SVneo or AC1-M59 cells. Similarly, STAT3 inhibition significantly decreased the invasiveness of only ACH-3P and JEG-3 cells concomitant with decreases in secreted MMP-2 and MMP-9. OSM shares with LIF the capacity to activate ERK1/2 and STAT3 pathways in all cell lines tested, but their resulting effects are dependent on cell type. This suggests that LIF and OSM may partially substitute for each other in case of deficiencies or therapeutic interventions.
Collapse
|
38
|
Paolini A, Guarch CP, Ramos-López D, de Lapuente J, Lascialfari A, Guari Y, Larionova J, Long J, Nano R. Rhamnose-coated superparamagnetic iron-oxide nanoparticles: an evaluation of their in vitro cytotoxicity, genotoxicity and carcinogenicity. J Appl Toxicol 2015; 36:510-20. [PMID: 26708321 DOI: 10.1002/jat.3273] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Revised: 11/05/2015] [Accepted: 11/06/2015] [Indexed: 12/16/2022]
Abstract
Tumor recurrence after the incomplete removal of a tumor mass inside brain tissue is the main reason that scientists are working to identify new strategies in brain oncologic therapy. In particular, in the treatment of the most malignant astrocytic tumor glioblastoma, the use of magnetic nanoparticles seems to be one of the most promising keys in overcoming this problem, namely by means of magnetic fluid hyperthermia (MFH) treatment. However, the major unknown issue related to the use of nanoparticles is their toxicological behavior when they are in contact with biological tissues. In the present study, we investigated the interaction of glioblastoma and other tumor cell lines with superparamagnetic iron-oxide nanoparticles covalently coated with a rhamnose derivative, using proper cytotoxic assays. In the present study, we focused our attention on different strategies of toxicity evaluation comparing different cytotoxicological approaches in order to identify the biological damages induced by the nanoparticles. The data show an intensive internalization process of rhamnose-coated iron oxide nanoparticles by the cells, suggesting that rhamnose moiety is a promising biocompatible coating in favoring cells' uptake. With regards to cytotoxicity, a 35% cell death at a maximum concentration, mainly as a result of mitochondrial damages, was found. This cytotoxic behavior, along with the high uptake ability, could facilitate the use of these rhamnose-coated iron-oxide nanoparticles for future MFH therapeutic treatments.
Collapse
Affiliation(s)
- Alessandro Paolini
- Bambino Gesù Children's Hospital-IRCCS, Gene Expression - Microarrays Laboratory, Rome, Italy.,Department of Biology and Biotechnology 'Lazzaro Spallanzani', University of Pavia, Pavia, Italy
| | - Constança Porredon Guarch
- Unit of Experimental Toxicology and Ecotoxicology (UTOX-CERETOX), Barcelona Science Park, Barcelona, Spain
| | - David Ramos-López
- Unit of Experimental Toxicology and Ecotoxicology (UTOX-CERETOX), Barcelona Science Park, Barcelona, Spain
| | - Joaquín de Lapuente
- Unit of Experimental Toxicology and Ecotoxicology (UTOX-CERETOX), Barcelona Science Park, Barcelona, Spain
| | | | - Yannick Guari
- ICGM - UMR5253- Equipe IMNO, Université de Montpellier, Montpellier CEDEX 5, France
| | - Joulia Larionova
- ICGM - UMR5253- Equipe IMNO, Université de Montpellier, Montpellier CEDEX 5, France
| | - Jerome Long
- ICGM - UMR5253- Equipe IMNO, Université de Montpellier, Montpellier CEDEX 5, France
| | - Rosanna Nano
- Department of Biology and Biotechnology 'Lazzaro Spallanzani', University of Pavia, Pavia, Italy
| |
Collapse
|
39
|
Assessment of Immunotoxicity of Dextran Coated Ferrite Nanoparticles in Albino Mice. Mol Biol Int 2015; 2015:518527. [PMID: 26576301 PMCID: PMC4630405 DOI: 10.1155/2015/518527] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 09/17/2015] [Indexed: 01/05/2023] Open
Abstract
In this study, dextran coated ferrite nanoparticles (DFNPs) of size <25 nm were synthesized, characterized, and evaluated for cytotoxicity, immunotoxicity, and oxidative stress by in vitro and in vivo methods. Cytotoxicity was performed in vitro using splenocytes with different concentrations of DFNPs. Gene expression of selected cytokines (IL-1, IL-10, and TNF β) secretion by splenocytes was evaluated. Also, 100 mg of DFNPs was injected intraperitoneally to 18 albino mice for immunological stimulations. Six animals each were sacrificed at the end of 7, 14, and 21 days. Spleen was subjected to immunotoxic response and liver was analyzed for antioxidant parameters (lipid peroxidation, reduced glutathione, glutathione peroxidase, superoxide dismutase, and glutathione reductase). The results indicated that DFNPs failed to induce any immunological reactions and no significant alternation in antioxidant defense mechanism. Also, mRNA expression of the cytokines revealed an increase in IL-10 expression and subsequent decreased expression of IL-1 and TNF β. Eventually, DNA sequencing of liver actin gene revealed base alteration in nonconserved regions (10-20 bases) of all the treated groups when compared to control samples. Hence, it can be concluded that the DFNPs were nontoxic at the cellular level and nonimmunotoxic when exposed intraperitoneally to mice.
Collapse
|
40
|
Costa C, Brandão F, Bessa MJ, Costa S, Valdiglesias V, Kiliç G, Fernández-Bertólez N, Quaresma P, Pereira E, Pásaro E, Laffon B, Teixeira JP. In vitro cytotoxicity of superparamagnetic iron oxide nanoparticles on neuronal and glial cells. Evaluation of nanoparticle interference with viability tests. J Appl Toxicol 2015. [PMID: 26212026 DOI: 10.1002/jat.3213] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Superparamagnetic iron oxide nanoparticles (ION) have attracted great interest for use in several biomedical fields. In general, they are considered biocompatible, but little is known of their effects on the human nervous system. The main objective of this work was to evaluate the cytotoxicity of two ION (magnetite), coated with silica and oleic acid, previously determining the possible interference of the ION with the methodological procedures to assure the reliability of the results obtained. Human neuroblastoma SHSY5Y and glioblastoma A172 cells were exposed to different concentrations of ION (5-300 µg ml(-1)), prepared in complete and serum-free cell culture medium for three exposure times (3, 6 and 24 h). Cytotoxicity was evaluated by means of the MTT, neutral red uptake and alamar blue assays. Characterization of the main physical-chemical properties of the ION tested was also performed. Results demonstrated that both ION could significantly alter absorbance readings. To reduce these interferences, protocols were modified by introducing additional washing steps and cell-free systems. Significant decreases in cell viability were observed for both cell lines in specific conditions by all assays. In general, oleic acid-coated ION were less cytotoxic than silica-coated ION; besides, a serum-protective effect was observed for both ION studied and cell lines. These results contribute to increase the knowledge of the potential harmful effects of ION on the human nervous system. Understanding these effects is essential to establish satisfactory regulatory policies on the safe use of magnetite nanoparticles in biomedical applications.
Collapse
Affiliation(s)
- Carla Costa
- Department of Environmental Health, Portuguese National Institute of Health, Porto, Portugal.,EPIUnit - Institute of Public Health, University of Porto, Porto, Portugal
| | - Fátima Brandão
- Department of Environmental Health, Portuguese National Institute of Health, Porto, Portugal
| | - Maria João Bessa
- Department of Environmental Health, Portuguese National Institute of Health, Porto, Portugal
| | - Solange Costa
- Department of Environmental Health, Portuguese National Institute of Health, Porto, Portugal.,EPIUnit - Institute of Public Health, University of Porto, Porto, Portugal
| | - Vanessa Valdiglesias
- DICOMOSA Group, Department of Psychology, Area of Psychobiology, Universidade da Coruna, Campus Elviña s/n, A Coruña, Spain
| | - Gözde Kiliç
- DICOMOSA Group, Department of Psychology, Area of Psychobiology, Universidade da Coruna, Campus Elviña s/n, A Coruña, Spain.,Department of Cell and Molecular Biology, University of A Coruña, Campus de A Zapateira s/n, A Coruña, Spain
| | - Natalia Fernández-Bertólez
- DICOMOSA Group, Department of Psychology, Area of Psychobiology, Universidade da Coruna, Campus Elviña s/n, A Coruña, Spain.,Department of Cell and Molecular Biology, University of A Coruña, Campus de A Zapateira s/n, A Coruña, Spain
| | - Pedro Quaresma
- REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, Porto, Portugal
| | - Eulália Pereira
- REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, Porto, Portugal
| | - Eduardo Pásaro
- DICOMOSA Group, Department of Psychology, Area of Psychobiology, Universidade da Coruna, Campus Elviña s/n, A Coruña, Spain
| | - Blanca Laffon
- DICOMOSA Group, Department of Psychology, Area of Psychobiology, Universidade da Coruna, Campus Elviña s/n, A Coruña, Spain
| | - João Paulo Teixeira
- Department of Environmental Health, Portuguese National Institute of Health, Porto, Portugal.,EPIUnit - Institute of Public Health, University of Porto, Porto, Portugal
| |
Collapse
|
41
|
Nembo EN, Atsamo AD, Nguelefack TB, Kamanyi A, Hescheler J, Nguemo F. In vitro chronotropic effects of Erythrina senegalensis DC (Fabaceae) aqueous extract on mouse heart slice and pluripotent stem cell-derived cardiomyocytes. JOURNAL OF ETHNOPHARMACOLOGY 2015; 165:163-172. [PMID: 25680843 DOI: 10.1016/j.jep.2015.02.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Revised: 01/27/2015] [Accepted: 02/02/2015] [Indexed: 06/04/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Erythrina senegalensis DC (Fabaceae) bark is commonly used in sub-Saharan traditional medicine for the treatment of many diseases including gastrointestinal disorders and cardiovascular diseases. In this study, we investigated the effect of the aqueous extract of the stem bark of Erythrina senegalensis on the contractile properties of mouse ventricular slices and human induced pluripotent stem (hiPS) cell-derived cardiomyocytes. We also investigated the cytotoxic effect of the extract on mouse embryonic stem (ES) cells differentiating into cardiomyocytes (CMs). MATERIALS AND METHODS We used well-established electrophysiological technologies to assess the effect of Erythrina senegalensis aqueous extract (ESAE) on the beating activity of mouse ventricular slices, mouse ES and hiPS cell-derived CMs. To study the cytotoxic effect of our extract, differentiating mouse ES cells were exposed to different concentrations of ESAE. EB morphology was assessed by microscopy at different stages of differentiation whereas cell viability was measured by flow cytometry, fluorometry and immunocytochemistry. The electrical activity of CMs and heart slices were respectively captured by the patch clamp technique and microelectrode array (MEA) method following ESAE acute exposure. RESULTS Our findings revealed that ESAE exhibits a biphasic chronotropic activity on mouse ventricular slices with an initial low dose (0.001 and 0.01 µg/mL) decrease in beating activity followed by a corresponding significant increase in chronotropic activity at higher doses above 10 µg/mL. The muscarinic receptor blocker, atropine abolished the negative chronotropic activity of ESAE, while propranolol successfully blocked its positive chronotropic activity. ESAE showed a significant dose-dependent positive chronotropic activity on hiPS cell-derived CMs. Also, though not significantly, ESAE decreased cell viability and increased total caspase-3/7 activity of mouse ES cells in a concentration-dependent manner. CONCLUSION Erythrina senegalensis aqueous extract exhibits a biphasic chronotropic effect on mouse heart and a positive chronotropic activity on hiPS cell-derived CMs, suggesting a possible mechanism through muscarinic and β-adrenergic receptor pathways. Also, ESAE is not cytotoxic on mouse ES cells at concentrations up to 100 µg/mL.
Collapse
Affiliation(s)
| | - Albert Donatien Atsamo
- Laboratory of Animal Physiology and Phytopharmacology, Faculty of Science, University of Dschang, P.O. Box 67, Dschang, Cameroon
| | - Télesphore Benoît Nguelefack
- Laboratory of Animal Physiology and Phytopharmacology, Faculty of Science, University of Dschang, P.O. Box 67, Dschang, Cameroon
| | - Albert Kamanyi
- Laboratory of Animal Physiology and Phytopharmacology, Faculty of Science, University of Dschang, P.O. Box 67, Dschang, Cameroon
| | - Jürgen Hescheler
- Institute of Neurophysiology, University of Cologne, 50931 Cologne, Germany
| | - Filomain Nguemo
- Institute of Neurophysiology, University of Cologne, 50931 Cologne, Germany.
| |
Collapse
|
42
|
Veintemillas-Verdaguer S, Luengo Y, Serna CJ, Andrés-Vergés M, Varela M, Calero M, Lazaro-Carrillo A, Villanueva A, Sisniega A, Montesinos P, Morales MP. Bismuth labeling for the CT assessment of local administration of magnetic nanoparticles. NANOTECHNOLOGY 2015; 26:135101. [PMID: 25760138 DOI: 10.1088/0957-4484/26/13/135101] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Many therapeutic applications of magnetic nanoparticles involve the local administration of nanometric iron oxide based materials as seeds for magnetothermia or drug carriers. A simple and widespread way of controlling the process using x-ray computed tomography (CT) scanners is desirable. The combination of iron and bismuth in one entity will increase the atenuation of x-rays, offering such a possibility. In order to check this possibility core-shell nanocrystals of iron oxide@bismuth oxide have been synthesized by an aqueous route and stabilized in water by polyethylene glycol (PEG), and we have evaluated their ability to generate contrast by CT and magnetic resonance imaging (MRI) to measure the radiopacity and proton relaxivities using phantoms. High-resolution scanning transmission electron microscopy (STEM) revealed that the material consists of a highly crystalline 8 nm core of maghemite and a 1 nm shell of bismuth atoms either isolated or clustered on the nanocrystal's surface. The comparison of μCT and MRI images of mice acquired in the presence of the contrast shows that when local accumulations of the magnetic nanoparticles take place, CT images are more superior in the localization of the magnetic nanoparticles than MRI images, which results in magnetic field inhomogeneity artifacts.
Collapse
Affiliation(s)
- S Veintemillas-Verdaguer
- Instituto de Ciencia de Materiales de Madrid, CSIC, Sor Juana Inés de la Cruz 3, Cantoblanco, 28049, Madrid, Spain
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Calero M, Chiappi M, Lazaro-Carrillo A, Rodríguez MJ, Chichón FJ, Crosbie-Staunton K, Prina-Mello A, Volkov Y, Villanueva A, Carrascosa JL. Characterization of interaction of magnetic nanoparticles with breast cancer cells. J Nanobiotechnology 2015; 13:16. [PMID: 25880445 PMCID: PMC4403785 DOI: 10.1186/s12951-015-0073-9] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Accepted: 01/28/2015] [Indexed: 01/02/2023] Open
Abstract
Background Different superparamagnetic iron oxide nanoparticles have been tested for their potential use in cancer treatment, as they enter into cells with high effectiveness, do not induce cytotoxicity, and are retained for relatively long periods of time inside the cells. We have analyzed the interaction, internalization and biocompatibility of dimercaptosuccinic acid-coated superparamagnetic iron oxide nanoparticles with an average diameter of 15 nm and negative surface charge in MCF-7 breast cancer cells. Results Cells were incubated with dimercaptosuccinic acid-coated superparamagnetic iron oxide nanoparticles for different time intervals, ranging from 0.5 to 72 h. These nanoparticles showed efficient internalization and relatively slow clearance. Time-dependent uptake studies demonstrated the maximum accumulation of dimercaptosuccinic acid-coated superparamagnetic iron oxide nanoparticles after 24 h of incubation, and afterwards they were slowly removed from cells. Superparamagnetic iron oxide nanoparticles were internalized by energy dependent endocytosis and localized in endosomes. Transmission electron microscopy studies showed macropinocytosis uptake and clathrin-mediated internalization depending on the nanoparticles aggregate size. MCF-7 cells accumulated these nanoparticles without any significant effect on cell morphology, cytoskeleton organization, cell cycle distribution, reactive oxygen species generation and cell viability, showing a similar behavior to untreated control cells. Conclusions All these findings indicate that dimercaptosuccinic acid-coated superparamagnetic iron oxide nanoparticles have excellent properties in terms of efficiency and biocompatibility for application to target breast cancer cells. Electronic supplementary material The online version of this article (doi:10.1186/s12951-015-0073-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Macarena Calero
- Departamento de Biología, Universidad Autónoma de Madrid, Cantoblanco, 28049, Madrid, Spain. .,Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanociencia), Cantoblanco, 28049, Madrid, Spain.
| | - Michele Chiappi
- Department of Macromolecular Structure, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, 28049, Madrid, Spain.
| | - Ana Lazaro-Carrillo
- Departamento de Biología, Universidad Autónoma de Madrid, Cantoblanco, 28049, Madrid, Spain. .,Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanociencia), Cantoblanco, 28049, Madrid, Spain.
| | - María José Rodríguez
- Department of Macromolecular Structure, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, 28049, Madrid, Spain.
| | - Francisco Javier Chichón
- Department of Macromolecular Structure, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, 28049, Madrid, Spain.
| | - Kieran Crosbie-Staunton
- Department of Clinical Medicine, Trinity Centre for Health Science, James's Street, Dublin, 8, Ireland.
| | - Adriele Prina-Mello
- Department of Clinical Medicine, Trinity Centre for Health Science, James's Street, Dublin, 8, Ireland. .,Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN), and AMBER Centre, Trinity College Dublin, College Green, Dublin, 2, Ireland.
| | - Yuri Volkov
- Department of Clinical Medicine, Trinity Centre for Health Science, James's Street, Dublin, 8, Ireland. .,Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN), and AMBER Centre, Trinity College Dublin, College Green, Dublin, 2, Ireland.
| | - Angeles Villanueva
- Departamento de Biología, Universidad Autónoma de Madrid, Cantoblanco, 28049, Madrid, Spain. .,Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanociencia), Cantoblanco, 28049, Madrid, Spain.
| | - José L Carrascosa
- Department of Macromolecular Structure, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, 28049, Madrid, Spain. .,Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanociencia), Cantoblanco, 28049, Madrid, Spain.
| |
Collapse
|
44
|
Domey J, Bergemann C, Bremer-Streck S, Krumbein I, Reichenbach JR, Teichgräber U, Hilger I. Long-term prevalence of NIRF-labeled magnetic nanoparticles for the diagnostic and intraoperative imaging of inflammation. Nanotoxicology 2015; 10:20-31. [PMID: 25686713 PMCID: PMC4819594 DOI: 10.3109/17435390.2014.1000413] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Inflammation is a very common disease worldwide. In severe cases, surgery is often the method of choice. Today, there is a general need for the implementation of image-based guidance methodologies for reliable target resection. We investigated new near infrared fluorescence (NIRF)-nanoparticles (NPs) as a simple but effective bimodal magnetic resonance imaging (MRI) and optical contrast agent for diagnosis and intraoperative imaging of inflammation. Physicochemical analysis revealed that these NPs were highly fluorescent with similar characteristics like unlabeled NPs (hydrodynamic diameter about 130 nm and zeta potential about −10 mV). NP-uptake and NIR-dye labeling was biocompatible to macrophages (no impact on cellular ATP and reactive oxygen species production). These cells could successfully be tracked with MRI and NIRF-optical imaging. I.v. injection of fluorescent NPs into mice led to highly specific T2-weighted signal of edema due to uptake by phagocytic cells and subsequent migration to the site of inflammation. NIRF signals of the edema region were well detectable for up to 4 weeks, underlining the potential of the NPs for systematic planning and flexible time scheduling in intraoperative applications. NPs were degraded over a time period of 12 weeks, which was not altered due to inflammation. Redistribution of iron might be primarily due to inflammation and not to the presence of NPs per se in a concentration suitable for imaging. Our findings highlight the potential of the NPs to be used as a suitable tool for pre- and intraoperative imaging of inflammation.
Collapse
Affiliation(s)
- Jenny Domey
- a Department of Experimental Radiology , Institute of Diagnostic and Interventional Radiology, Jena University Hospital - Friedrich Schiller University Jena , Jena , Germany
| | | | - Sibylle Bremer-Streck
- c Institute of Clinical Chemistry and Laboratory Diagnostics, Jena University Hospital - Friedrich Schiller University Jena , Jena , Germany , and
| | - Ines Krumbein
- d Medical Physics Group, Institute of Diagnostic and Interventional Radiology, Jena University Hospital - Friedrich Schiller University Jena , Jena , Germany
| | - Jürgen R Reichenbach
- d Medical Physics Group, Institute of Diagnostic and Interventional Radiology, Jena University Hospital - Friedrich Schiller University Jena , Jena , Germany
| | - Ulf Teichgräber
- a Department of Experimental Radiology , Institute of Diagnostic and Interventional Radiology, Jena University Hospital - Friedrich Schiller University Jena , Jena , Germany
| | - Ingrid Hilger
- a Department of Experimental Radiology , Institute of Diagnostic and Interventional Radiology, Jena University Hospital - Friedrich Schiller University Jena , Jena , Germany
| |
Collapse
|
45
|
Rogers ML, Smith KS, Matusica D, Fenech M, Hoffman L, Rush RA, Voelcker NH. Non-viral gene therapy that targets motor neurons in vivo. Front Mol Neurosci 2014; 7:80. [PMID: 25352776 PMCID: PMC4196515 DOI: 10.3389/fnmol.2014.00080] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Accepted: 09/18/2014] [Indexed: 12/11/2022] Open
Abstract
A major challenge in neurological gene therapy is safe delivery of transgenes to sufficient cell numbers from the circulation or periphery. This is particularly difficult for diseases involving spinal cord motor neurons such as amyotrophic lateral sclerosis (ALS). We have examined the feasibility of non-viral gene delivery to spinal motor neurons from intraperitoneal injections of plasmids carried by “immunogene” nanoparticles targeted for axonal retrograde transport using antibodies. PEGylated polyethylenimine (PEI-PEG12) as DNA carrier was conjugated to an antibody (MLR2) to the neurotrophin receptor p75 (p75NTR). We used a plasmid (pVIVO2) designed for in vivo gene delivery that produces minimal immune responses, has improved nuclear entry into post mitotic cells and also expresses green fluorescent protein (GFP). MLR2-PEI-PEG12 carried pVIVO2 and was specific for mouse motor neurons in mixed cultures containing astrocytes. While only 8% of motor neurons expressed GFP 72 h post transfection in vitro, when the immunogene was given intraperitonealy to neonatal C57BL/6J mice, GFP specific motor neuron expression was observed in 25.4% of lumbar, 18.3% of thoracic and 17.0% of cervical motor neurons, 72 h post transfection. PEI-PEG12 carrying pVIVO2 by itself did not transfect motor neurons in vivo, demonstrating the need for specificity via the p75NTR antibody MLR2. This is the first time that specific transfection of spinal motor neurons has been achieved from peripheral delivery of plasmid DNA as part of a non-viral gene delivery agent. These results stress the specificity and feasibility of immunogene delivery targeted for p75NTR expressing motor neurons, but suggests that further improvements are required to increase the transfection efficiency of motor neurons in vivo.
Collapse
Affiliation(s)
- Mary-Louise Rogers
- Department of Human Physiology, Centre for Neuroscience, Flinders University Adelaide, SA, Australia
| | - Kevin S Smith
- Department of Human Physiology, Centre for Neuroscience, Flinders University Adelaide, SA, Australia
| | - Dusan Matusica
- Department of Anatomy and Histology, Centre for Neuroscience, Flinders University Adelaide, SA, Australia
| | - Matthew Fenech
- Department of Human Physiology, Centre for Neuroscience, Flinders University Adelaide, SA, Australia
| | - Lee Hoffman
- Department of Chemistry and Biochemistry, South Dakota State University Brookings, SD, USA
| | - Robert A Rush
- Department of Human Physiology, Centre for Neuroscience, Flinders University Adelaide, SA, Australia
| | - Nicolas H Voelcker
- Australian Research Council Centre of Excellence in Convergent Bio-Nano Science and Technology, Mawson Institute, University of South Australia Adelaide, SA, Australia
| |
Collapse
|
46
|
|
47
|
Mohammad F, Yusof NA. Doxorubicin-loaded magnetic gold nanoshells for a combination therapy of hyperthermia and drug delivery. J Colloid Interface Sci 2014; 434:89-97. [PMID: 25170601 DOI: 10.1016/j.jcis.2014.07.025] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Revised: 07/17/2014] [Accepted: 07/18/2014] [Indexed: 10/24/2022]
Abstract
In the present work, nanohybrid of an anticancer drug, doxorubicin (Dox) loaded gold-coated superparamagnetic iron oxide nanoparticles (SPIONs@Au) were prepared for a combination therapy of cancer by means of both hyperthermia and drug delivery. The Dox molecules were conjugated to SPIONs@Au nanoparticles with the help of cysteamine (Cyst) as a non-covalent space linker and the Dox loading efficiency was investigated to be as high as 0.32 mg/mg. Thus synthesized particles were characterized by HRTEM, UV-Vis, FT-IR, SQUID magnetic studies and further tested for heat and drug release at low frequency oscillatory magnetic fields. The hyperthermia studies investigated to be strongly influenced by the applied frequency and the solvents used. The Dox delivery studies indicated that the drug release efficacy is strongly improved by maintaining the acidic pH conditions and the oscillatory magnetic fields, i.e. an enhancement in the Dox release was observed from the oscillation of particles due to the applied frequency, and is not effected by heating of the solution. Finally, the in vitro cell viability and proliferation studies were conducted using two different immortalized cell lines containing a cancerous (MCF-7 breast cancer) and non-cancerous H9c2 cardiac cell type.
Collapse
Affiliation(s)
- Faruq Mohammad
- Institute of Advanced Technology, Universiti Putra Malaysia, Serdang, Selangor 43400, Malaysia; Environmental Toxicology, Southern University and A&M College, Baton Rouge, LA 70813, USA.
| | - Nor Azah Yusof
- Institute of Advanced Technology, Universiti Putra Malaysia, Serdang, Selangor 43400, Malaysia
| |
Collapse
|
48
|
Posimo JM, Unnithan AS, Gleixner AM, Choi HJ, Jiang Y, Pulugulla SH, Leak RK. Viability assays for cells in culture. J Vis Exp 2014:e50645. [PMID: 24472892 DOI: 10.3791/50645] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Manual cell counts on a microscope are a sensitive means of assessing cellular viability but are time-consuming and therefore expensive. Computerized viability assays are expensive in terms of equipment but can be faster and more objective than manual cell counts. The present report describes the use of three such viability assays. Two of these assays are infrared and one is luminescent. Both infrared assays rely on a 16 bit Odyssey Imager. One infrared assay uses the DRAQ5 stain for nuclei combined with the Sapphire stain for cytosol and is visualized in the 700 nm channel. The other infrared assay, an In-Cell Western, uses antibodies against cytoskeletal proteins (α-tubulin or microtubule associated protein 2) and labels them in the 800 nm channel. The third viability assay is a commonly used luminescent assay for ATP, but we use a quarter of the recommended volume to save on cost. These measurements are all linear and correlate with the number of cells plated, but vary in sensitivity. All three assays circumvent time-consuming microscopy and sample the entire well, thereby reducing sampling error. Finally, all of the assays can easily be completed within one day of the end of the experiment, allowing greater numbers of experiments to be performed within short timeframes. However, they all rely on the assumption that cell numbers remain in proportion to signal strength after treatments, an assumption that is sometimes not met, especially for cellular ATP. Furthermore, if cells increase or decrease in size after treatment, this might affect signal strength without affecting cell number. We conclude that all viability assays, including manual counts, suffer from a number of caveats, but that computerized viability assays are well worth the initial investment. Using all three assays together yields a comprehensive view of cellular structure and function.
Collapse
Affiliation(s)
- Jessica M Posimo
- Division of Pharmaceutical Sciences, Mylan School of Pharmacy, Duquesne University
| | | | | | | | | | | | | |
Collapse
|
49
|
Liu S, Masters D, Ferguson M, Thompson A. Vitamin E status and reproduction in sheep: potential implications for Australian sheep production. ANIMAL PRODUCTION SCIENCE 2014. [DOI: 10.1071/an13243] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Vitamin E concentrations in dried pastures, stubble and most grains are below the recommended requirement of 10–25 mg/kg dry matter (DM). Sheep grazing in an environment when dry pastures and cereal crop stubbles are their primary source of nutrients for a few months have a high risk of developing vitamin E deficiency. If the low vitamin E status coincides with late gestation, the neonate is likely to have a deficiency of vitamin E. Some of the consequences of this are well known, with nutritional myopathy (with high mortality) a risk in young growing sheep unless vitamin E supplements are provided. Vitamin E plays an important role in the management of oxidative stress. Sperm are subject to oxidative damage due to high metabolic rate and high concentration of polyunsaturated fatty acids in their membranes. Oxidative stress may also compromise follicular development and ovarian activity. Vitamin E is also involved with improvement in immune response. For these reasons, vitamin E status is important for reproductive efficiency in both males and females and in the survival of lambs and weaners. In addition, vitamin E deficiency is potentially exacerbated by a lack of other nutrients involved in the management of oxidative stress and immune function, such as selenium (Se) and sulfur amino acids. A Se concentration of 0.1 mg/kg DM in feedstuffs is required to maintain immune competency in sheep. In considering possible consequences for reproduction, further investigation is justified into: (i) effects of low vitamin E, in combination with low levels of other natural antioxidants, on the quality and quantity of sperm produced before and during mating; (ii) follicle development, fertilisation and embryonic mortality in Se-supplemented ewes; (iii) assessment of supplementing formulated antioxidants to rams and ewes during the mating season; (iv) managing oxidative stress in the newborn – consequences of large doses of vitamin E to ewes before parturition to boost lamb reserves; (v) potential benefits to lamb survival through boosting maternal innate immunity; (vi) choices for boosting antioxidant and immune function in ewes and lambs through ‘immune pack’ nutrient options that may target nutrients lacking in dry grass pastures; (vii) the potential role of heat stress in modifying the requirements for, and responses to, vitamin E in extensive grazing systems.
Collapse
|
50
|
Ucisik MH, Küpcü S, Schuster B, Sleytr UB. Characterization of CurcuEmulsomes: nanoformulation for enhanced solubility and delivery of curcumin. J Nanobiotechnology 2013; 11:37. [PMID: 24314310 PMCID: PMC4029586 DOI: 10.1186/1477-3155-11-37] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Accepted: 10/31/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Curcumin is a polyphenolic compound isolated from the rhizomes of the plant Curcuma longa and shows intrinsic anti-cancer properties. Its medical use remains limited due to its extremely low water solubility and bioavailability. Addressing this problem, drug delivery systems accompanied by nanoparticle technology have emerged. The present study introduces a novel nanocarrier system, so-called CurcuEmulsomes, where curcumin is encapsulated inside the solid core of emulsomes. RESULTS CurcuEmulsomes are spherical solid nanoparticles with an average size of 286 nm and a zeta potential of 37 mV. Encapsulation increases the bioavailability of curcumin by up to 10,000 fold corresponding to a concentration of 0.11 mg/mL. Uptaken by HepG2 human liver carcinoma cell line, CurcuEmulsomes show a significantly prolonged biological activity and demonstrated therapeutic efficacy comparable to free curcumin against HepG2 in vitro - with a delay in response, as assessed by cell viability, apoptosis and cell cycle studies. The delay is attributed to the solid character of the nanocarrier prolonging the release of curcumin inside the HepG2 cells. CONCLUSIONS Incorporation of curcumin into emulsomes results in water-soluble and stable CurcuEmulsome nanoformulations. CurcuEmulsomes do not only successfully facilitate the delivery of curcumin into the cell in vitro, but also enable curcumin to reach its effective concentrations inside the cell. The enhanced solubility of curcumin and the promising in vitro efficacy of CurcuEmulsomes highlight the potential of the system for the delivery of lipophilic drugs. Moreover, high degree of compatibility, prolonged release profile and tailoring properties feature CurcuEmulsomes for further therapeutic applications in vivo.
Collapse
Affiliation(s)
- Mehmet H Ucisik
- Department of Nanobiotechnology, Institute for Synthetic Bioarchitectures,
University of Natural Resources and Life Sciences (BOKU) Vienna, Muthgasse
11, Vienna 1190, Austria
| | - Seta Küpcü
- Department of Nanobiotechnology, Institute for Synthetic Bioarchitectures,
University of Natural Resources and Life Sciences (BOKU) Vienna, Muthgasse
11, Vienna 1190, Austria
| | - Bernhard Schuster
- Department of Nanobiotechnology, Institute for Synthetic Bioarchitectures,
University of Natural Resources and Life Sciences (BOKU) Vienna, Muthgasse
11, Vienna 1190, Austria
| | - Uwe B Sleytr
- Department of Nanobiotechnology, Institute for Biophysics, University of
Natural Resources and Life Sciences (BOKU) Vienna, Muthgasse 11, Vienna
1190, Austria
| |
Collapse
|