1
|
Dou C, Wu L, Zhang J, He H, Xu T, Yu Z, Su P, Zhang X, Wang J, Miao YL, Zhou J. The transcriptional activator Klf5 recruits p300-mediated H3K27ac for maintaining trophoblast stem cell pluripotency. J Mol Cell Biol 2024; 15:mjad045. [PMID: 37533201 PMCID: PMC10768793 DOI: 10.1093/jmcb/mjad045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 04/14/2023] [Accepted: 05/11/2023] [Indexed: 08/04/2023] Open
Abstract
The effective proliferation and differentiation of trophoblast stem cells (TSCs) is indispensable for the development of the placenta, which is the key to maintaining normal fetal growth during pregnancy. Kruppel-like factor 5 (Klf5) is implicated in the activation of pluripotency gene expression in embryonic stem cells (ESCs), yet its function in TSCs is poorly understood. Here, we showed that Klf5 knockdown resulted in the downregulation of core TSC-specific genes, consequently causing rapid differentiation of TSCs. Consistently, Klf5-depleted embryos lost the ability to establish TSCs in vitro. At the molecular level, Klf5 preferentially occupied the proximal promoter regions and maintained an open chromatin architecture of key TSC-specific genes. Deprivation of Klf5 impaired the enrichment of p300, a major histone acetyl transferase of H3 lysine 27 acetylation (H3K27ac), and further reduced the occupancy of H3K27ac at promoter regions, leading to decreased transcriptional activity of TSC pluripotency genes. Thus, our findings highlight a novel mechanism of Klf5 in regulating the self-renewal and differentiation of TSCs and provide a reference for understanding placental development and improving pregnancy rates.
Collapse
Affiliation(s)
- Chengli Dou
- Institute of Stem Cell and Regenerative Biology, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction (Huazhong Agricultural University), Ministry of Education, Wuhan 430070, China
| | - Linhui Wu
- Institute of Stem Cell and Regenerative Biology, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction (Huazhong Agricultural University), Ministry of Education, Wuhan 430070, China
| | - Jingjing Zhang
- Institute of Stem Cell and Regenerative Biology, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction (Huazhong Agricultural University), Ministry of Education, Wuhan 430070, China
| | - Hainan He
- Institute of Stem Cell and Regenerative Biology, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction (Huazhong Agricultural University), Ministry of Education, Wuhan 430070, China
| | - Tian Xu
- Institute of Stem Cell and Regenerative Biology, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction (Huazhong Agricultural University), Ministry of Education, Wuhan 430070, China
| | - Zhisheng Yu
- Institute of Stem Cell and Regenerative Biology, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction (Huazhong Agricultural University), Ministry of Education, Wuhan 430070, China
| | - Peng Su
- Institute of Stem Cell and Regenerative Biology, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction (Huazhong Agricultural University), Ministry of Education, Wuhan 430070, China
| | - Xia Zhang
- Institute of Stem Cell and Regenerative Biology, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction (Huazhong Agricultural University), Ministry of Education, Wuhan 430070, China
| | - Junling Wang
- Department of Reproductive Medicine, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic, Edong Healthcare Group, Huangshi 435000, China
| | - Yi-Liang Miao
- Institute of Stem Cell and Regenerative Biology, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction (Huazhong Agricultural University), Ministry of Education, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Jilong Zhou
- Institute of Stem Cell and Regenerative Biology, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction (Huazhong Agricultural University), Ministry of Education, Wuhan 430070, China
| |
Collapse
|
2
|
Cheng X, Shen C, Liao Z. KLF2 transcription suppresses endometrial cancer cell proliferation, invasion, and migration through the inhibition of NPM1. J OBSTET GYNAECOL 2023; 43:2238827. [PMID: 37610103 DOI: 10.1080/01443615.2023.2238827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 07/16/2023] [Indexed: 08/24/2023]
Abstract
Endometrial cancer (EC) is the most common gynaecologic malignancy. This study was to explore the role of kruppel-like factor 2 (KLF2) in EC cell behaviours. The expression of KLF2 in EC and its correlation with NPM1 were first predicted on the database. Levels of KLF2 and nucleophosmin 1 (NPM1) in EC cell lines were then determined. After transfection of the overexpression vector of KLF2 or NPM1, cell proliferation, invasion, and migration were evaluated. The binding relationship between KLF2 and the NPM1 promoter was analysed. KLF2 was downregulated while NPM1 was upregulated in EC cells. KLF2 overexpression reduced the proliferation potential of EC cells and the number of invaded and migrated cells. KLF2 was enriched in the NPM1 promoter and inhibited NPM1 transcriptional level. NPM1 overexpression neutralised the effects of KLF2 overexpression on suppressing EC cell growth. Collectively, KLF2 was decreased in EC cells and KLF2 overexpression increased the binding to the NPM1 promoter to inhibit NPM1 transcription, thus suppressing EC cell growth.
Collapse
Affiliation(s)
- Xiyun Cheng
- Department of Obstetrics and Gynecology, Department of Gynecomatology, Ganzhou Cancer Hospital, Ganzhou, P.R. China
| | - Changmei Shen
- Department of Obstetrics and Gynecology, Department of Gynecomatology, Ganzhou Cancer Hospital, Ganzhou, P.R. China
| | - Zhenrong Liao
- Department of Obstetrics and Gynecology, Department of Gynecomatology, Ganzhou Cancer Hospital, Ganzhou, P.R. China
| |
Collapse
|
3
|
Swamynathan SK, Swamynathan S. Corneal epithelial development and homeostasis. Differentiation 2023; 132:4-14. [PMID: 36870804 PMCID: PMC10363238 DOI: 10.1016/j.diff.2023.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 01/27/2023] [Accepted: 02/20/2023] [Indexed: 03/06/2023]
Abstract
The corneal epithelium (CE), the most anterior cellular structure of the eye, is a self-renewing stratified squamous tissue that protects the rest of the eye from external elements. Each cell in this exquisite three-dimensional structure needs to have proper polarity and positional awareness for the CE to serve as a transparent, refractive, and protective tissue. Recent studies have begun to elucidate the molecular and cellular events involved in the embryonic development, post-natal maturation, and homeostasis of the CE, and how they are regulated by a well-coordinated network of transcription factors. This review summarizes the status of related knowledge and aims to provide insight into the pathophysiology of disorders caused by disruption of CE development, and/or homeostasis.
Collapse
Affiliation(s)
| | - Sudha Swamynathan
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| |
Collapse
|
4
|
Zeng L, Zhu Y, Moreno CS, Wan Y. New insights into KLFs and SOXs in cancer pathogenesis, stemness, and therapy. Semin Cancer Biol 2023; 90:29-44. [PMID: 36806560 PMCID: PMC10023514 DOI: 10.1016/j.semcancer.2023.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 09/04/2022] [Accepted: 02/08/2023] [Indexed: 02/17/2023]
Abstract
Despite the development of cancer therapies, the success of most treatments has been impeded by drug resistance. The crucial role of tumor cell plasticity has emerged recently in cancer progression, cancer stemness and eventually drug resistance. Cell plasticity drives tumor cells to reversibly convert their cell identity, analogous to differentiation and dedifferentiation, to adapt to drug treatment. This phenotypical switch is driven by alteration of the transcriptome. Several pluripotent factors from the KLF and SOX families are closely associated with cancer pathogenesis and have been revealed to regulate tumor cell plasticity. In this review, we particularly summarize recent studies about KLF4, KLF5 and SOX factors in cancer development and evolution, focusing on their roles in cancer initiation, invasion, tumor hierarchy and heterogeneity, and lineage plasticity. In addition, we discuss the various regulation of these transcription factors and related cutting-edge drug development approaches that could be used to drug "undruggable" transcription factors, such as PROTAC and PPI targeting, for targeted cancer therapy. Advanced knowledge could pave the way for the development of novel drugs that target transcriptional regulation and could improve the outcome of cancer therapy.
Collapse
Affiliation(s)
- Lidan Zeng
- Department of Pharmacology and Chemical Biology, Department of Hematology and oncology, Winship Cancer Institute, Emory University School of Medicine, USA
| | - Yueming Zhu
- Department of Pharmacology and Chemical Biology, Department of Hematology and oncology, Winship Cancer Institute, Emory University School of Medicine, USA
| | - Carlos S Moreno
- Department of Pathology and Laboratory Medicine, Department of Biomedical Informatics, Winship Cancer Institute, Emory University School of Medicine, USA.
| | - Yong Wan
- Department of Pharmacology and Chemical Biology, Department of Hematology and oncology, Winship Cancer Institute, Emory University School of Medicine, USA.
| |
Collapse
|
5
|
Liberti DC, Liberti Iii WA, Kremp MM, Penkala IJ, Cardenas-Diaz FL, Morley MP, Babu A, Zhou S, Fernandez Iii RJ, Morrisey EE. Klf5 defines alveolar epithelial type 1 cell lineage commitment during lung development and regeneration. Dev Cell 2022; 57:1742-1757.e5. [PMID: 35803279 DOI: 10.1016/j.devcel.2022.06.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/26/2022] [Accepted: 06/13/2022] [Indexed: 12/11/2022]
Abstract
Alveolar epithelial cell fate decisions drive lung development and regeneration. Using transcriptomic and epigenetic profiling coupled with genetic mouse and organoid models, we identified the transcription factor Klf5 as an essential determinant of alveolar epithelial cell fate across the lifespan. We show that although dispensable for both adult alveolar epithelial type 1 (AT1) and alveolar epithelial type 2 (AT2) cell homeostasis, Klf5 enforces AT1 cell lineage fidelity during development. Using infectious and non-infectious models of acute respiratory distress syndrome, we demonstrate that Klf5 represses AT2 cell proliferation and enhances AT2-AT1 cell differentiation in a spatially restricted manner during lung regeneration. Moreover, ex vivo organoid assays identify that Klf5 reduces AT2 cell sensitivity to inflammatory signaling to drive AT2-AT1 cell differentiation. These data define the roll of a major transcriptional regulator of AT1 cell lineage commitment and of the AT2 cell response to inflammatory crosstalk during lung regeneration.
Collapse
Affiliation(s)
- Derek C Liberti
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn Cardiovascular Institute, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn-CHOP Lung Biology Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Regenerative Medicine, University of Pennsylvania, Perelman School of Medicine Philadelphia, PA 19104, USA
| | - William A Liberti Iii
- Department of Electrical Engineering and Computer Sciences, UC Berkeley, Berkeley, CA 94720, USA
| | - Madison M Kremp
- Penn Cardiovascular Institute, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn-CHOP Lung Biology Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ian J Penkala
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn Cardiovascular Institute, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn-CHOP Lung Biology Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Regenerative Medicine, University of Pennsylvania, Perelman School of Medicine Philadelphia, PA 19104, USA
| | - Fabian L Cardenas-Diaz
- Penn Cardiovascular Institute, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn-CHOP Lung Biology Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Michael P Morley
- Penn Cardiovascular Institute, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn-CHOP Lung Biology Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Apoorva Babu
- Penn Cardiovascular Institute, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn-CHOP Lung Biology Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Su Zhou
- Penn Cardiovascular Institute, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn-CHOP Lung Biology Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Rafael J Fernandez Iii
- Medical Scientist Training Program, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Edward E Morrisey
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn Cardiovascular Institute, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn-CHOP Lung Biology Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Regenerative Medicine, University of Pennsylvania, Perelman School of Medicine Philadelphia, PA 19104, USA; Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
6
|
Borisova E, Nishimura K, An Y, Takami M, Li J, Song D, Matsuo-Takasaki M, Luijkx D, Aizawa S, Kuno A, Sugihara E, Sato TA, Yumoto F, Terada T, Hisatake K, Hayashi Y. Structurally-discovered KLF4 variants accelerate and stabilize reprogramming to pluripotency. iScience 2022; 25:103525. [PMID: 35106457 PMCID: PMC8786646 DOI: 10.1016/j.isci.2021.103525] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 09/14/2021] [Accepted: 11/23/2021] [Indexed: 02/07/2023] Open
Abstract
Non-genetically modified somatic cells can only be inefficiently and stochastically reprogrammed to pluripotency by exogenous expression of reprogramming factors. Low competence of natural reprogramming factors may prevent the majority of cells to successfully and synchronously reprogram. Here we screened DNA-interacting amino acid residues in the zinc-finger domain of KLF4 for enhanced reprogramming efficiency using alanine-substitution scanning methods. Identified KLF4 L507A mutant accelerated and stabilized reprogramming to pluripotency in both mouse and human somatic cells. By testing all the variants of L507 position, variants with smaller amino acid residues in the KLF4 L507 position showed higher reprogramming efficiency. L507A bound more to promoters or enhancers of pluripotency genes, such as KLF5, and drove gene expression of these genes during reprogramming. Molecular dynamics simulations predicted that L507A formed additional interactions with DNA. Our study demonstrates how modifications in amino acid residues of DNA-binding domains enable next-generation reprogramming technology with engineered reprogramming factors. KLF4 L507A variant accelerates and stabilizes reprogramming to pluripotency KLF4 L507A has distinctive features of transcriptional binding and activation KLF4 L507A may acquire a unique conformation with additional DNA interaction Smaller amino acid residues in L507 position cause higher reprogramming efficiency
Collapse
Affiliation(s)
- Evgeniia Borisova
- iPS Cell Advanced Characterization and Development Team, BioResource Research Center, RIKEN, 3-1-1 Koyadai, Tsukuba, Ibaraki 305-0074, Japan.,Laboratory of Gene Regulation, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Ken Nishimura
- Laboratory of Gene Regulation, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Yuri An
- iPS Cell Advanced Characterization and Development Team, BioResource Research Center, RIKEN, 3-1-1 Koyadai, Tsukuba, Ibaraki 305-0074, Japan
| | - Miho Takami
- iPS Cell Advanced Characterization and Development Team, BioResource Research Center, RIKEN, 3-1-1 Koyadai, Tsukuba, Ibaraki 305-0074, Japan.,Laboratory of Gene Regulation, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Jingyue Li
- iPS Cell Advanced Characterization and Development Team, BioResource Research Center, RIKEN, 3-1-1 Koyadai, Tsukuba, Ibaraki 305-0074, Japan.,Laboratory of Gene Regulation, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Dan Song
- iPS Cell Advanced Characterization and Development Team, BioResource Research Center, RIKEN, 3-1-1 Koyadai, Tsukuba, Ibaraki 305-0074, Japan
| | - Mami Matsuo-Takasaki
- iPS Cell Advanced Characterization and Development Team, BioResource Research Center, RIKEN, 3-1-1 Koyadai, Tsukuba, Ibaraki 305-0074, Japan
| | - Dorian Luijkx
- iPS Cell Advanced Characterization and Development Team, BioResource Research Center, RIKEN, 3-1-1 Koyadai, Tsukuba, Ibaraki 305-0074, Japan
| | - Shiho Aizawa
- Laboratory of Gene Regulation, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Akihiro Kuno
- Laboratory of Animal Resource Center, Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan.,Ph.D. Program in Human Biology, School of Integrative and Global Majors, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Eiji Sugihara
- Research and Development Center for Precision Medicine, University of Tsukuba, 1-2 Kasuga, Tsukuba, Ibaraki 305-8550, Japan.,The Center for Joint Research Facilities Support, Research Promotion and Support Headquarters, Fujita Health University School of Medicine, Toyoake, Aichi 470-1192, Japan
| | - Taka-Aki Sato
- Research and Development Center for Precision Medicine, University of Tsukuba, 1-2 Kasuga, Tsukuba, Ibaraki 305-8550, Japan
| | - Fumiaki Yumoto
- Institute of Materials Structure Science, High Energy Accelerator Research Organization in Tsukuba, 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan
| | - Tohru Terada
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Koji Hisatake
- Laboratory of Gene Regulation, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Yohei Hayashi
- iPS Cell Advanced Characterization and Development Team, BioResource Research Center, RIKEN, 3-1-1 Koyadai, Tsukuba, Ibaraki 305-0074, Japan
| |
Collapse
|
7
|
Presnell JS, Browne WE. Krüppel-like factor gene function in the ctenophore Mnemiopsis leidyi assessed by CRISPR/Cas9-mediated genome editing. Development 2021; 148:272041. [PMID: 34373891 DOI: 10.1242/dev.199771] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 07/26/2021] [Indexed: 12/21/2022]
Abstract
The Krüppel-like factor (Klf) gene family encodes transcription factors that play an important role in the regulation of stem cell proliferation, cell differentiation and development in bilaterians. Although Klf genes have been shown to specify functionally various cell types in non-bilaterian animals, their role in early-diverging animal lineages has not been assessed. Thus, the ancestral activity of these transcription factors in animal development is not well understood. The ctenophore Mnemiopsis leidyi has emerged as an important non-bilaterian model system for understanding early animal evolution. Here, we characterize the expression and functional role of Klf genes during M. leidyi embryogenesis. Zygotic Klf gene function was assessed with both CRISPR/Cas9-mediated genome editing and splice-blocking morpholino oligonucleotide knockdown approaches. Abrogation of zygotic Klf expression during M. leidyi embryogenesis resulted in abnormal development of several organs, including the pharynx, tentacle bulbs and apical organ. Our data suggest an ancient role for Klf genes in regulating endodermal patterning, possibly through regulation of cell proliferation.
Collapse
Affiliation(s)
- Jason S Presnell
- Department of Biology, University of Miami, Cox Science Center, 1301 Memorial Drive, Miami, FL 33146, USA
| | - William E Browne
- Department of Biology, University of Miami, Cox Science Center, 1301 Memorial Drive, Miami, FL 33146, USA
| |
Collapse
|
8
|
Paranjapye A, NandyMazumdar M, Browne JA, Leir SH, Harris A. Krüppel-like factor 5 regulates wound repair and the innate immune response in human airway epithelial cells. J Biol Chem 2021; 297:100932. [PMID: 34217701 PMCID: PMC8353497 DOI: 10.1016/j.jbc.2021.100932] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 06/17/2021] [Accepted: 06/29/2021] [Indexed: 12/23/2022] Open
Abstract
A complex network of transcription factors regulates genes involved in establishing and maintaining key biological properties of the human airway epithelium. However, detailed knowledge of the contributing factors is incomplete. Here we characterize the role of Krüppel-like factor 5 (KLF5), in controlling essential pathways of epithelial cell identity and function in the human lung. RNA-seq following siRNA-mediated depletion of KLF5 in the Calu-3 lung epithelial cell line identified significant enrichment of genes encoding chemokines and cytokines involved in the proinflammatory response and also components of the junctional complexes mediating cell adhesion. To determine direct gene targets of KLF5, we defined the cistrome of KLF5 using ChIP-seq in both Calu-3 and 16HBE14o- lung epithelial cell lines. Occupancy site concordance analysis revealed that KLF5 colocalized with the active histone modification H3K27ac and also with binding sites for the transcription factor CCAAT enhancer-binding protein beta (C/EBPβ). Depletion of KLF5 increased both the expression and secretion of cytokines including IL-1β, a response that was enhanced following exposure to Pseudomonas aeruginosa lipopolysaccharide. Calu-3 cells exhibited faster rates of repair after KLF5 depletion compared with negative controls in wound scratch assays. Similarly, CRISPR-mediated KLF5-null 16HBE14o- cells also showed enhanced wound closure. These data reveal a pivotal role for KLF5 in coordinating epithelial functions relevant to human lung disease.
Collapse
Affiliation(s)
- Alekh Paranjapye
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio, USA
| | - Monali NandyMazumdar
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio, USA
| | - James A Browne
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio, USA
| | - Shih-Hsing Leir
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio, USA
| | - Ann Harris
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio, USA.
| |
Collapse
|
9
|
López-Ferreras L, Martínez-García N, Maeso-Alonso L, Martín-López M, Díez-Matilla Á, Villoch-Fernandez J, Alonso-Olivares H, Marques MM, Marin MC. Deciphering the Nature of Trp73 Isoforms in Mouse Embryonic Stem Cell Models: Generation of Isoform-Specific Deficient Cell Lines Using the CRISPR/Cas9 Gene Editing System. Cancers (Basel) 2021; 13:cancers13133182. [PMID: 34202306 PMCID: PMC8268375 DOI: 10.3390/cancers13133182] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 06/13/2021] [Accepted: 06/17/2021] [Indexed: 12/15/2022] Open
Abstract
Simple Summary The Trp73 gene is involved in the regulation of multiple biological processes such as response to stress, differentiation and tissue architecture. This gene gives rise to structurally different N and C-terminal isoforms which lead to differences in its biological activity in a cell type dependent manner. However, there is a current lack of physiological models to study these isoforms. The aim of this study was to generate specific p73-isoform-deficient mouse embryonic stem cell lines using the CRISPR/Cas9 system. Their special features, self-renewal and pluripotency, make embryonic stem cells a useful research tool that allows the generation of cells from any of the three germ layers carrying specific inactivation of p73-isoforms. Characterization of the generated cell lines indicates that while the individual elimination of TA- or DN-p73 isoform is compatible with pluripotency, it results in alterations of the transcriptional profiles and the pluripotent state of the embryonic stem cells in an isoform-specific manner. Abstract The p53 family has been widely studied for its role in various physiological and pathological processes. Imbalance of p53 family proteins may contribute to developmental abnormalities and pathologies in humans. This family exerts its functions through a profusion of isoforms that are generated by different promoter usage and alternative splicing in a cell type dependent manner. In particular, the Trp73 gene gives rise to TA and DN-p73 isoforms that confer p73 a dual nature. The biological relevance of p73 does not only rely on its tumor suppression effects, but on its pivotal role in several developmental processes. Therefore, the generation of cellular models that allow the study of the individual isoforms in a physiological context is of great biomedical relevance. We generated specific TA and DN-p73-deficient mouse embryonic stem cell lines using the CRISPR/Cas9 gene editing system and validated them as physiological bona fide p73-isoform knockout models. Global gene expression analysis revealed isoform-specific alterations of distinctive transcriptional networks. Elimination of TA or DN-p73 is compatible with pluripotency but prompts naïve pluripotent stem cell transition into the primed state, compromising adequate lineage differentiation, thus suggesting that differential expression of p73 isoforms acts as a rheostat during early cell fate determination.
Collapse
Affiliation(s)
- Lorena López-Ferreras
- Instituto de Biomedicina (IBIOMED), Universidad de León, 24071 León, Spain; (L.L.-F.); (N.M.-G.); (L.M.-A.); (M.M.-L.); (Á.D.-M.); (J.V.-F.); (H.A.-O.)
- Departamento de Biología Molecular, Universidad de León, 24071 León, Spain
| | - Nicole Martínez-García
- Instituto de Biomedicina (IBIOMED), Universidad de León, 24071 León, Spain; (L.L.-F.); (N.M.-G.); (L.M.-A.); (M.M.-L.); (Á.D.-M.); (J.V.-F.); (H.A.-O.)
- Departamento de Producción Animal, Universidad de León, 24071 León, Spain
| | - Laura Maeso-Alonso
- Instituto de Biomedicina (IBIOMED), Universidad de León, 24071 León, Spain; (L.L.-F.); (N.M.-G.); (L.M.-A.); (M.M.-L.); (Á.D.-M.); (J.V.-F.); (H.A.-O.)
- Departamento de Biología Molecular, Universidad de León, 24071 León, Spain
| | - Marta Martín-López
- Instituto de Biomedicina (IBIOMED), Universidad de León, 24071 León, Spain; (L.L.-F.); (N.M.-G.); (L.M.-A.); (M.M.-L.); (Á.D.-M.); (J.V.-F.); (H.A.-O.)
- Biomar Microbial Technologies, Parque Tecnológico de León, Armunia, 24009 León, Spain
| | - Ángela Díez-Matilla
- Instituto de Biomedicina (IBIOMED), Universidad de León, 24071 León, Spain; (L.L.-F.); (N.M.-G.); (L.M.-A.); (M.M.-L.); (Á.D.-M.); (J.V.-F.); (H.A.-O.)
| | - Javier Villoch-Fernandez
- Instituto de Biomedicina (IBIOMED), Universidad de León, 24071 León, Spain; (L.L.-F.); (N.M.-G.); (L.M.-A.); (M.M.-L.); (Á.D.-M.); (J.V.-F.); (H.A.-O.)
- Departamento de Biología Molecular, Universidad de León, 24071 León, Spain
| | - Hugo Alonso-Olivares
- Instituto de Biomedicina (IBIOMED), Universidad de León, 24071 León, Spain; (L.L.-F.); (N.M.-G.); (L.M.-A.); (M.M.-L.); (Á.D.-M.); (J.V.-F.); (H.A.-O.)
- Departamento de Biología Molecular, Universidad de León, 24071 León, Spain
| | - Margarita M. Marques
- Departamento de Producción Animal, Universidad de León, 24071 León, Spain
- Instituto de Desarrollo Ganadero y Sanidad Animal (INDEGSAL), Universidad de León, 24071 León, Spain
- Correspondence: (M.M.M.); (M.C.M.); Tel.: +34-987-291757 (M.M.M.); +34-987-291490 (M.C.M.)
| | - Maria C. Marin
- Instituto de Biomedicina (IBIOMED), Universidad de León, 24071 León, Spain; (L.L.-F.); (N.M.-G.); (L.M.-A.); (M.M.-L.); (Á.D.-M.); (J.V.-F.); (H.A.-O.)
- Departamento de Biología Molecular, Universidad de León, 24071 León, Spain
- Correspondence: (M.M.M.); (M.C.M.); Tel.: +34-987-291757 (M.M.M.); +34-987-291490 (M.C.M.)
| |
Collapse
|
10
|
Xie Z, Chen J, Wang C, Zhang J, Wu Y, Yan X. Current knowledge of Krüppel-like factor 5 and vascular remodeling: providing insights for therapeutic strategies. J Mol Cell Biol 2021; 13:79-90. [PMID: 33493334 PMCID: PMC8104942 DOI: 10.1093/jmcb/mjaa080] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 11/23/2020] [Accepted: 12/08/2020] [Indexed: 12/18/2022] Open
Abstract
Vascular remodeling is a pathological basis of various disorders. Therefore, it is necessary to understand the occurrence, prevention, and treatment of vascular remodeling. Krüppel-like factor 5 (KLF5) has been identified as a significant factor in cardiovascular diseases during the last two decades. This review provides a mechanism network of function and regulation of KLF5 in vascular remodeling based on newly published data and gives a summary of its potential therapeutic applications. KLF5 modulates numerous biological processes, which play essential parts in the development of vascular remodeling, such as cell proliferation, phenotype switch, extracellular matrix deposition, inflammation, and angiogenesis by altering downstream genes and signaling pathways. Considering its essential functions, KLF5 could be developed as a potent therapeutic target in vascular disorders.
Collapse
Affiliation(s)
- Ziyan Xie
- Department of Cardiology, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Junye Chen
- Department of Vascular Surgery, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Chenyu Wang
- Department of Cardiology, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Jiahao Zhang
- Department of Cardiology, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Yanxiang Wu
- Department of Cardiology, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Xiaowei Yan
- Department of Cardiology, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing 100730, China
| |
Collapse
|
11
|
The Key Role of MicroRNAs in Self-Renewal and Differentiation of Embryonic Stem Cells. Int J Mol Sci 2020; 21:ijms21176285. [PMID: 32877989 PMCID: PMC7504502 DOI: 10.3390/ijms21176285] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 08/21/2020] [Accepted: 08/28/2020] [Indexed: 12/17/2022] Open
Abstract
Naïve pluripotent embryonic stem cells (ESCs) and epiblast stem cells (EpiSCs) represent distinctive developmental stages, mimicking the pre- and the post-implantation events during the embryo development, respectively. The complex molecular mechanisms governing the transition from ESCs into EpiSCs are orchestrated by fluctuating levels of pluripotency transcription factors (Nanog, Oct4, etc.) and wide-ranging remodeling of the epigenetic landscape. Recent studies highlighted the pivotal role of microRNAs (miRNAs) in balancing the switch from self-renewal to differentiation of ESCs. Of note, evidence deriving from miRNA-based reprogramming strategies underscores the role of the non-coding RNAs in the induction and maintenance of the stemness properties. In this review, we revised recent studies concerning the functions mediated by miRNAs in ESCs, with the aim of giving a comprehensive view of the highly dynamic miRNA-mediated tuning, essential to guarantee cell cycle progression, pluripotency maintenance and the proper commitment of ESCs.
Collapse
|
12
|
Bmi1 inhibitor PTC-209 promotes Chemically-induced Direct Cardiac Reprogramming of cardiac fibroblasts into cardiomyocytes. Sci Rep 2020; 10:7129. [PMID: 32346096 PMCID: PMC7189257 DOI: 10.1038/s41598-020-63992-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 04/06/2020] [Indexed: 12/13/2022] Open
Abstract
The development of therapeutic approaches based on direct cardiac reprogramming of fibroblasts into induced-cardiomyocytes (iCM) has emerged as an attractive strategy to repair the injured myocardium. The identification of the mechanisms driving lineage conversion represents a crucial step toward the development of new and more efficient regenerative strategies. To this aim, here we show that pre-treatment with the Bmi1 inhibitor PTC-209 is sufficient to increase the efficiency of Chemical-induced Direct Cardiac Reprogramming both in mouse embryonic fibroblasts and adult cardiac fibroblasts. PTC-209 induces an overall increase of spontaneously beating iCM at end-stage of reprogramming, expressing high levels of late cardiac markers Troponin T and myosin muscle light chain-2v. The inhibition of Bmi1 expression occurring upon PTC-209 pre-treatment was maintained throughout the reprogramming protocol, contributing to a significant gene expression de-regulation. RNA profiling revealed that, upon Bmi1 inhibition a significant down-regulation of genes associated with immune and inflammatory signalling pathways occurred, with repression of different genes involved in interleukin, cytokine and chemokine pathways. Accordingly, we observed the down-regulation of both JAK/STAT3 and MAPK/ERK1-2 pathway activation, highlighting the crucial role of these pathways as a barrier for cardiac reprogramming. These findings have significant implications for the development of new cardiac regenerative therapies.
Collapse
|
13
|
Gerhauser C, Favero F, Risch T, Simon R, Feuerbach L, Assenov Y, Heckmann D, Sidiropoulos N, Waszak SM, Hübschmann D, Urbanucci A, Girma EG, Kuryshev V, Klimczak LJ, Saini N, Stütz AM, Weichenhan D, Böttcher LM, Toth R, Hendriksen JD, Koop C, Lutsik P, Matzk S, Warnatz HJ, Amstislavskiy V, Feuerstein C, Raeder B, Bogatyrova O, Schmitz EM, Hube-Magg C, Kluth M, Huland H, Graefen M, Lawerenz C, Henry GH, Yamaguchi TN, Malewska A, Meiners J, Schilling D, Reisinger E, Eils R, Schlesner M, Strand DW, Bristow RG, Boutros PC, von Kalle C, Gordenin D, Sültmann H, Brors B, Sauter G, Plass C, Yaspo ML, Korbel JO, Schlomm T, Weischenfeldt J. Molecular Evolution of Early-Onset Prostate Cancer Identifies Molecular Risk Markers and Clinical Trajectories. Cancer Cell 2018; 34:996-1011.e8. [PMID: 30537516 PMCID: PMC7444093 DOI: 10.1016/j.ccell.2018.10.016] [Citation(s) in RCA: 170] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Revised: 08/17/2018] [Accepted: 10/29/2018] [Indexed: 12/28/2022]
Abstract
Identifying the earliest somatic changes in prostate cancer can give important insights into tumor evolution and aids in stratifying high- from low-risk disease. We integrated whole genome, transcriptome and methylome analysis of early-onset prostate cancers (diagnosis ≤55 years). Characterization across 292 prostate cancer genomes revealed age-related genomic alterations and a clock-like enzymatic-driven mutational process contributing to the earliest mutations in prostate cancer patients. Our integrative analysis identified four molecular subgroups, including a particularly aggressive subgroup with recurrent duplications associated with increased expression of ESRP1, which we validate in 12,000 tissue microarray tumors. Finally, we combined the patterns of molecular co-occurrence and risk-based subgroup information to deconvolve the molecular and clinical trajectories of prostate cancer from single patient samples.
Collapse
Affiliation(s)
- Clarissa Gerhauser
- Division of Epigenomics and Cancer Risk Factors, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Francesco Favero
- Finsen Laboratory, Rigshospitalet, DK-2200, Copenhagen, Denmark; Biotech Research & Innovation Centre (BRIC), University of Copenhagen, DK-2200, Copenhagen, Denmark
| | - Thomas Risch
- Max Planck Institute for Molecular Genetics, Otto Warburg Laboratory Gene Regulation and Systems Biology of Cancer, Ihnestrasse 63-73, 14195 Berlin, Germany
| | - Ronald Simon
- Department of Pathology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Lars Feuerbach
- Division Applied Bioinformatics, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Yassen Assenov
- Division of Epigenomics and Cancer Risk Factors, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Doreen Heckmann
- Division of Cancer Genome Research, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; German Cancer Consortium (DKTK), 69120 Heidelberg, Germany
| | - Nikos Sidiropoulos
- Finsen Laboratory, Rigshospitalet, DK-2200, Copenhagen, Denmark; Biotech Research & Innovation Centre (BRIC), University of Copenhagen, DK-2200, Copenhagen, Denmark
| | - Sebastian M Waszak
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, 69120 Heidelberg, Germany
| | - Daniel Hübschmann
- Division of Theoretical Bioinformatics, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; Department for Bioinformatics and Functional Genomics, Institute of Pharmacy and Molecular Biotechnology and Bioquant, University of Heidelberg, Heidelberg 69120, Germany; Department of Pediatric Immunology, Hematology and Oncology, University Hospital, Heidelberg 69120, Germany
| | - Alfonso Urbanucci
- Centre for Molecular Medicine Norway, Nordic European Molecular Biology Laboratory Partnership, Forskningsparken, University of Oslo, 0316 Oslo, Norway; Institute for Cancer Genetics and Informatics, Oslo University Hospital, 0316 Oslo, Norway; Department of Core Facilities, Institute for Cancer Research, Oslo University Hospital, 0316 Oslo, Norway
| | - Etsehiwot G Girma
- Finsen Laboratory, Rigshospitalet, DK-2200, Copenhagen, Denmark; Biotech Research & Innovation Centre (BRIC), University of Copenhagen, DK-2200, Copenhagen, Denmark
| | - Vladimir Kuryshev
- Division of Cancer Genome Research, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; German Cancer Consortium (DKTK), 69120 Heidelberg, Germany
| | - Leszek J Klimczak
- Integrative Bioinformatics Support Group, National Institute of Environmental Health Sciences, Durham, 27709 NC, USA
| | - Natalie Saini
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, Durham, 27709 NC, USA
| | - Adrian M Stütz
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, 69120 Heidelberg, Germany
| | - Dieter Weichenhan
- Division of Epigenomics and Cancer Risk Factors, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Lisa-Marie Böttcher
- Department of Pathology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Reka Toth
- Division of Epigenomics and Cancer Risk Factors, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Josephine D Hendriksen
- Finsen Laboratory, Rigshospitalet, DK-2200, Copenhagen, Denmark; Biotech Research & Innovation Centre (BRIC), University of Copenhagen, DK-2200, Copenhagen, Denmark
| | - Christina Koop
- Department of Pathology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Pavlo Lutsik
- Division of Epigenomics and Cancer Risk Factors, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Sören Matzk
- Max Planck Institute for Molecular Genetics, Otto Warburg Laboratory Gene Regulation and Systems Biology of Cancer, Ihnestrasse 63-73, 14195 Berlin, Germany
| | - Hans-Jörg Warnatz
- Max Planck Institute for Molecular Genetics, Otto Warburg Laboratory Gene Regulation and Systems Biology of Cancer, Ihnestrasse 63-73, 14195 Berlin, Germany
| | - Vyacheslav Amstislavskiy
- Max Planck Institute for Molecular Genetics, Otto Warburg Laboratory Gene Regulation and Systems Biology of Cancer, Ihnestrasse 63-73, 14195 Berlin, Germany
| | - Clarissa Feuerstein
- Division of Epigenomics and Cancer Risk Factors, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; Faculty of Biosciences, Heidelberg University, 69120 Heidelberg, Germany
| | - Benjamin Raeder
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, 69120 Heidelberg, Germany
| | - Olga Bogatyrova
- Division of Epigenomics and Cancer Risk Factors, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | | | - Claudia Hube-Magg
- Department of Pathology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Martina Kluth
- Department of Pathology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Hartwig Huland
- Martini-Clinic Prostate Cancer Center at the University Medical Center Hamburg-Eppendorf, Martinistrasse 52, D-20246 Hamburg, Germany
| | - Markus Graefen
- Martini-Clinic Prostate Cancer Center at the University Medical Center Hamburg-Eppendorf, Martinistrasse 52, D-20246 Hamburg, Germany
| | - Chris Lawerenz
- Division of Theoretical Bioinformatics, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Gervaise H Henry
- Department of Urology, UT Southwestern Medical Center, Dallas, TX 75390-9110, USA
| | - Takafumi N Yamaguchi
- Informatics & Biocomputing Program, Ontario Institute for Cancer Research, Toronto, Canada
| | - Alicia Malewska
- Department of Urology, UT Southwestern Medical Center, Dallas, TX 75390-9110, USA
| | - Jan Meiners
- Department of Pathology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Daniela Schilling
- Division of Cancer Genome Research, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; NCT Trial Center, National Center for Tumor Diseases and German Cancer Research Center, 69120 Heidelberg, Germany
| | - Eva Reisinger
- Division of Theoretical Bioinformatics, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Roland Eils
- Division of Theoretical Bioinformatics, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; Department for Bioinformatics and Functional Genomics, Institute of Pharmacy and Molecular Biotechnology and Bioquant, University of Heidelberg, Heidelberg 69120, Germany
| | - Matthias Schlesner
- Division of Theoretical Bioinformatics, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; Bioinformatics and Omics Data Analytics (B240), German Cancer Research Center (DKFZ), Heidelberg 69120, Germany
| | - Douglas W Strand
- Department of Urology, UT Southwestern Medical Center, Dallas, TX 75390-9110, USA
| | - Robert G Bristow
- Manchester Cancer Research Centre, University of Manchester, 555 Wilmslow Road, Manchester, UK
| | - Paul C Boutros
- Ontario Institute for Cancer Research, Toronto, Canada; Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Christof von Kalle
- German Cancer Consortium (DKTK), 69120 Heidelberg, Germany; Division of Translational Oncology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Dmitry Gordenin
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, Durham, 27709 NC, USA
| | - Holger Sültmann
- Division of Cancer Genome Research, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; German Cancer Consortium (DKTK), 69120 Heidelberg, Germany
| | - Benedikt Brors
- Division Applied Bioinformatics, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany; National Center for Tumor Diseases (NCT), 69120 Heidelberg, Germany; German Cancer Consortium (DKTK), 69120 Heidelberg, Germany
| | - Guido Sauter
- Department of Pathology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Christoph Plass
- Division of Epigenomics and Cancer Risk Factors, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; German Cancer Consortium (DKTK), 69120 Heidelberg, Germany
| | - Marie-Laure Yaspo
- Max Planck Institute for Molecular Genetics, Otto Warburg Laboratory Gene Regulation and Systems Biology of Cancer, Ihnestrasse 63-73, 14195 Berlin, Germany
| | - Jan O Korbel
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, 69120 Heidelberg, Germany.
| | - Thorsten Schlomm
- Martini-Clinic Prostate Cancer Center at the University Medical Center Hamburg-Eppendorf, Martinistrasse 52, D-20246 Hamburg, Germany; Charité Universitätsmedizin Berlin, Charitéplatz 1, D-10117 Berlin, Germany.
| | - Joachim Weischenfeldt
- Finsen Laboratory, Rigshospitalet, DK-2200, Copenhagen, Denmark; Biotech Research & Innovation Centre (BRIC), University of Copenhagen, DK-2200, Copenhagen, Denmark; European Molecular Biology Laboratory (EMBL), Genome Biology Unit, 69120 Heidelberg, Germany; Charité Universitätsmedizin Berlin, Charitéplatz 1, D-10117 Berlin, Germany.
| |
Collapse
|
14
|
Temporal expression of pluripotency-associated transcription factors in sheep and cattle preimplantation embryos. ZYGOTE 2018; 26:270-278. [PMID: 30033902 DOI: 10.1017/s0967199418000175] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
SummaryPluripotency-associated transcription factors (PATFs) modulate gene expression during early mammalian embryogenesis. Despite a strong understanding of PATFs during mouse embryogenesis, limited progress has been made in ruminants. This work aimed to describe the temporal expression of eight PATFs during both sheep and cattle preimplantation development. Transcript availability of PATFs was evaluated by reverse transcriptase quantitative polymerase chain reaction (RT-qPCR) in eggs, cleavage-stage embryos, morulae, and blastocysts. Transcripts of five genes were detected in all developmental stages of both species (KLF5, OCT4, RONIN, ZFP281, and ZFX). Furthermore, CMYC was detected in all cattle samples but was found from cleavage-stage onwards in sheep. In contrast, NR0B1 was detected in all sheep samples but was not detected in cattle morulae. GLIS1 displayed the most significant variation in temporal expression between species, as this PATF was only detected in cattle eggs and sheep cleavage-stage embryos and blastocysts. In silico analysis suggested that cattle and sheep PATFs share similar size, isometric point and molecular weight. A phenetic analysis showed two patterns of PATF clustering between cattle and sheep, among several mammalian species. In conclusion, the temporal expression of pluripotency-associated transcription factors differs between sheep and cattle, suggesting species-specific regulation during preimplantation development.
Collapse
|
15
|
Liu Y, Chidgey M, Yang VW, Bialkowska AB. Krüppel-like factor 5 is essential for maintenance of barrier function in mouse colon. Am J Physiol Gastrointest Liver Physiol 2017; 313:G478-G491. [PMID: 28864500 PMCID: PMC5792213 DOI: 10.1152/ajpgi.00172.2017] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 08/14/2017] [Accepted: 08/28/2017] [Indexed: 01/31/2023]
Abstract
Krüppel-like factor 5 (KLF5) is a member of the zinc finger family of transcription factors that regulates homeostasis of the intestinal epithelium. Previous studies suggested an indispensable role of KLF5 in maintaining intestinal barrier function. In the current study, we investigated the mechanisms by which KLF5 regulates colonic barrier function in vivo and in vitro. We used an inducible and a constitutive intestine-specific Klf5 knockout mouse models (Villin-CreERT2;Klf5fl/fl designated as Klf5ΔIND and Villin-Cre;Klf5fl/fl as Klf5ΔIS ) and studied an inducible KLF5 knockdown in Caco-2 BBe cells using a lentiviral Tet-on system (Caco-2 BBe KLF5ΔIND). Specific knockout of Klf5 in colonic tissues, either inducible or constitutive, resulted in increased intestinal permeability. The phenotype was accompanied by a significant reduction in Dsg2, which encodes desmoglein-2, a desmosomal cadherin, at both mRNA and protein levels. Transmission electron microscopy showed alterations of desmosomal morphology in both KLF5 knockdown Caco-2 BBe cells and Klf5 knockout mouse colonic tissues. Inducible knockdown of KLF5 in Caco-2BBe cells grown on Transwell plates led to impaired barrier function as evidenced by decreased transepithelial electrical resistance and increased paracellular permeability to fluorescein isothiocyanate-4 kDa dextran. Furthermore, DSG2 was significantly decreased in KLF5 knockdown cells, and DSG2 overexpression partially rescued the impaired barrier function caused by KLF5 knockdown. Electron microscopy studies demonstrated altered desmosomal morphology after KLF5 knockdown. In combination with chromatin immunoprecipitation analysis and promoter study, our data show that KLF5 regulates intestinal barrier function by mediating the transcription of DSG2, a gene encoding a major component of desmosome structures.NEW & NOTEWORTHY The study is original research on the direct function of a Krüppel-like factor on intestinal barrier function, which is commonly exerted by cell junctions, including tight junctions, adherens junctions, and desmosomes. Numerous previous studies were focused on tight junctions and adherens junctions. However, this study provided a new perspective on how the intestinal barrier function is regulated by KLF5 through DSG2, a component of desmosome complexes.
Collapse
Affiliation(s)
- Yang Liu
- 1Department of Medicine, Stony Brook University School of Medicine, Stony Brook, New York;
| | - Martyn Chidgey
- 3Department of Physiology and Biophysics, Stony Brook University School of Medicine, Stony Brook, New York
| | - Vincent W. Yang
- 1Department of Medicine, Stony Brook University School of Medicine, Stony Brook, New York; ,2School of Cancer Sciences, University of Birmingham, Birmingham, United Kingdom; and
| | | |
Collapse
|
16
|
Chen Z, Zhang Q, Wang H, Li W, Wang F, Wan C, Deng S, Chen H, Yin Y, Li X, Xie Z, Chen S. Klf5 Mediates Odontoblastic Differentiation through Regulating Dentin-Specific Extracellular Matrix Gene Expression during Mouse Tooth Development. Sci Rep 2017; 7:46746. [PMID: 28440310 PMCID: PMC5404268 DOI: 10.1038/srep46746] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 03/23/2017] [Indexed: 12/21/2022] Open
Abstract
Klf5, a member of the Krüppel-like transcription factor family, has essential roles during embryonic development, cell proliferation, differentiation, migration and apoptosis. This study was to define molecular mechanism of Klf5 during the odontoblastic differentiation. The expression of Klf5, odontoblast-differentiation markers, Dspp and Dmp1 was co-localized in odontoblastic cells at different stages of mouse tooth development and mouse dental papilla mesenchymal cells. Klf5 was able to promote odontoblastic differentiation and enhance mineral formation of mouse dental papilla mesenchymal cells. Furthermore, overexpression of Klf5 could up-regulate Dspp and Dmp1 gene expressions in mouse dental papilla mesenchymal cells. In silico analysis identified that several putative Klf5 binding sites in the promoter and first intron of Dmp1 and Dspp genes that are homologous across species lines. Electrophoretic mobility shift assay and chromatin immunoprecipitation analysis indicated that Klf5 bound to these motifs in vitro and in intact cells. The responsible regions of Dmp1 gene were located in the promoter region while effect of Klf5 on Dspp activity was in the first intron of Dspp gene. Our results identify Klf5 as an activator of Dmp1 and Dspp gene transcriptions by different mechanisms and demonstrate that Klf5 plays a pivotal role in odontoblast differentiation.
Collapse
Affiliation(s)
- Zhuo Chen
- Key Laboratory for Oral Biomedical Research of Zhejiang Province, Affiliated Hospital of Stomatology, Medical College, Zhejiang University, Hangzhou, China.,Department of Developmental Dentistry, Dental School, The University of Texas Health Science Center at San Antonio, San Antonio, United States of America
| | - Qi Zhang
- Department of Endodontics, School &Hospital of Stomatology, Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| | - Han Wang
- Shangyang Dental Clinic, Hangzhou, China
| | - Wentong Li
- Department of Developmental Dentistry, Dental School, The University of Texas Health Science Center at San Antonio, San Antonio, United States of America
| | - Feng Wang
- Department of Developmental Dentistry, Dental School, The University of Texas Health Science Center at San Antonio, San Antonio, United States of America
| | - Chunyan Wan
- Department of Developmental Dentistry, Dental School, The University of Texas Health Science Center at San Antonio, San Antonio, United States of America.,Department of Stomatology, Key Lab of Oral Clinical Medicine, the Affiliated Hospital of Qingdao University, College of Somatology, Qingdao University, Qingdao, China
| | - Shuli Deng
- Key Laboratory for Oral Biomedical Research of Zhejiang Province, Affiliated Hospital of Stomatology, Medical College, Zhejiang University, Hangzhou, China
| | - Hui Chen
- Key Laboratory for Oral Biomedical Research of Zhejiang Province, Affiliated Hospital of Stomatology, Medical College, Zhejiang University, Hangzhou, China
| | - Yixin Yin
- Department of Developmental Dentistry, Dental School, The University of Texas Health Science Center at San Antonio, San Antonio, United States of America
| | - Xiaoyan Li
- Department of Developmental Dentistry, Dental School, The University of Texas Health Science Center at San Antonio, San Antonio, United States of America
| | - Zhijian Xie
- Key Laboratory for Oral Biomedical Research of Zhejiang Province, Affiliated Hospital of Stomatology, Medical College, Zhejiang University, Hangzhou, China
| | - Shuo Chen
- Department of Developmental Dentistry, Dental School, The University of Texas Health Science Center at San Antonio, San Antonio, United States of America
| |
Collapse
|
17
|
Le Gras S, Keime C, Anthony A, Lotz C, De Longprez L, Brouillet E, Cassel JC, Boutillier AL, Merienne K. Altered enhancer transcription underlies Huntington's disease striatal transcriptional signature. Sci Rep 2017; 7:42875. [PMID: 28225006 PMCID: PMC5320509 DOI: 10.1038/srep42875] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 01/16/2017] [Indexed: 01/09/2023] Open
Abstract
Epigenetic and transcriptional alterations are both implicated in Huntington’s disease (HD), a progressive neurodegenerative disease resulting in degeneration of striatal neurons in the brain. However, how impaired epigenetic regulation leads to transcriptional dysregulation in HD is unclear. Here, we investigated enhancer RNAs (eRNAs), a class of long non-coding RNAs transcribed from active enhancers. We found that eRNAs are expressed from many enhancers of mouse striatum and showed that a subset of those eRNAs are deregulated in HD vs control mouse striatum. Enhancer regions producing eRNAs decreased in HD mouse striatum were associated with genes involved in striatal neuron identity. Consistently, they were enriched in striatal super-enhancers. Moreover, decreased eRNA expression in HD mouse striatum correlated with down-regulation of associated genes. Additionally, a significant number of RNA Polymerase II (RNAPII) binding sites were lost within enhancers associated with decreased eRNAs in HD vs control mouse striatum. Together, this indicates that loss of RNAPII at HD mouse enhancers contributes to reduced transcription of eRNAs, resulting in down-regulation of target genes. Thus, our data support the view that eRNA dysregulation in HD striatum is a key mechanism leading to altered transcription of striatal neuron identity genes, through reduced recruitment of RNAPII at super-enhancers.
Collapse
Affiliation(s)
- Stéphanie Le Gras
- GenomeEast Platform, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS/INSERM/University of Strasbourg-UMR 7104, 1 rue Laurent Fries, 67404 Illkirch, France
| | - Céline Keime
- GenomeEast Platform, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS/INSERM/University of Strasbourg-UMR 7104, 1 rue Laurent Fries, 67404 Illkirch, France
| | - Anne Anthony
- University of Strasbourg, Laboratory of Cognitive and Adaptive Neurosciences (LNCA), 12 rue Goethe, 67000 Strasbourg, France.,CNRS, LNCA UMR 7364, 12 rue Goethe, 67000 Strasbourg, France
| | - Caroline Lotz
- University of Strasbourg, Laboratory of Cognitive and Adaptive Neurosciences (LNCA), 12 rue Goethe, 67000 Strasbourg, France.,CNRS, LNCA UMR 7364, 12 rue Goethe, 67000 Strasbourg, France
| | - Lucie De Longprez
- Commissariat à l'Energie Atomique (CEA), Département de Recherches Fondamentales (DRF), Institut d'Imagerie Biomédicale (I2BM), Molecular Imaging Research Center (MIRCen), F-92260 Fontenay-aux-Roses, France.,Centre National de la Recherche Scientifique (CNRS), Université Paris-Sud, Université Paris-Saclay, UMR 9199, Neurodegenerative Diseases Laboratory, F-92260 Fontenay-aux-Roses, France
| | - Emmanuel Brouillet
- Commissariat à l'Energie Atomique (CEA), Département de Recherches Fondamentales (DRF), Institut d'Imagerie Biomédicale (I2BM), Molecular Imaging Research Center (MIRCen), F-92260 Fontenay-aux-Roses, France.,Centre National de la Recherche Scientifique (CNRS), Université Paris-Sud, Université Paris-Saclay, UMR 9199, Neurodegenerative Diseases Laboratory, F-92260 Fontenay-aux-Roses, France
| | - Jean-Christophe Cassel
- University of Strasbourg, Laboratory of Cognitive and Adaptive Neurosciences (LNCA), 12 rue Goethe, 67000 Strasbourg, France.,CNRS, LNCA UMR 7364, 12 rue Goethe, 67000 Strasbourg, France
| | - Anne-Laurence Boutillier
- University of Strasbourg, Laboratory of Cognitive and Adaptive Neurosciences (LNCA), 12 rue Goethe, 67000 Strasbourg, France.,CNRS, LNCA UMR 7364, 12 rue Goethe, 67000 Strasbourg, France
| | - Karine Merienne
- University of Strasbourg, Laboratory of Cognitive and Adaptive Neurosciences (LNCA), 12 rue Goethe, 67000 Strasbourg, France.,CNRS, LNCA UMR 7364, 12 rue Goethe, 67000 Strasbourg, France
| |
Collapse
|
18
|
Hammoud AA, Kirstein N, Mournetas V, Darracq A, Broc S, Blanchard C, Zeineddine D, Mortada M, Boeuf H. Murine Embryonic Stem Cell Plasticity Is Regulated through Klf5 and Maintained by Metalloproteinase MMP1 and Hypoxia. PLoS One 2016; 11:e0146281. [PMID: 26731538 PMCID: PMC4701481 DOI: 10.1371/journal.pone.0146281] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 12/15/2015] [Indexed: 12/12/2022] Open
Abstract
Mouse embryonic stem cells (mESCs) are expanded and maintained pluripotent in vitro in the presence of leukemia inhibitory factor (LIF), an IL6 cytokine family member which displays pleiotropic functions, depending on both cell maturity and cell type. LIF withdrawal leads to heterogeneous differentiation of mESCs with a proportion of the differentiated cells apoptosising. During LIF withdrawal, cells sequentially enter a reversible and irreversible phase of differentiation during which LIF addition induces different effects. However the regulators and effectors of LIF-mediated reprogramming are poorly understood. By employing a LIF-dependent 'plasticity' test, that we set up, we show that Klf5, but not JunB is a key LIF effector. Furthermore PI3K signaling, required for the maintenance of mESC pluripotency, has no effect on mESC plasticity while displaying a major role in committed cells by stimulating expression of the mesodermal marker Brachyury at the expense of endoderm and neuroectoderm lineage markers. We also show that the MMP1 metalloproteinase, which can replace LIF for maintenance of pluripotency, mimics LIF in the plasticity window, but less efficiently. Finally, we demonstrate that mESCs maintain plasticity and pluripotency potentials in vitro under hypoxic/physioxic growth conditions at 3% O2 despite lower levels of Pluri and Master gene expression in comparison to 20% O2.
Collapse
Affiliation(s)
- Aya Abou Hammoud
- Univ. Bordeaux, CIRID, UMR5164, F-33 000 Bordeaux, France
- CNRS, CIRID, UMR 5164, F-33 000 Bordeaux, France
- Lebanese University, Beyrouth, Liban
| | - Nina Kirstein
- Univ. Bordeaux, CIRID, UMR5164, F-33 000 Bordeaux, France
- CNRS, CIRID, UMR 5164, F-33 000 Bordeaux, France
| | - Virginie Mournetas
- Univ. Bordeaux, CIRID, UMR5164, F-33 000 Bordeaux, France
- CNRS, CIRID, UMR 5164, F-33 000 Bordeaux, France
| | - Anais Darracq
- Univ. Bordeaux, CIRID, UMR5164, F-33 000 Bordeaux, France
- CNRS, CIRID, UMR 5164, F-33 000 Bordeaux, France
| | - Sabine Broc
- Univ. Bordeaux, CIRID, UMR5164, F-33 000 Bordeaux, France
- CNRS, CIRID, UMR 5164, F-33 000 Bordeaux, France
| | - Camille Blanchard
- Univ. Bordeaux, CIRID, UMR5164, F-33 000 Bordeaux, France
- CNRS, CIRID, UMR 5164, F-33 000 Bordeaux, France
| | | | | | - Helene Boeuf
- Univ. Bordeaux, CIRID, UMR5164, F-33 000 Bordeaux, France
- CNRS, CIRID, UMR 5164, F-33 000 Bordeaux, France
- * E-mail:
| |
Collapse
|
19
|
Lappas M. KLF5 regulates infection- and inflammation-induced pro-labour mediators in human myometrium. Reproduction 2015; 149:413-24. [DOI: 10.1530/rep-14-0597] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The transcription factor Kruppel-like factor 5 (KLF5) has been shown to associate with nuclear factor kappa B (NFκB) to regulate genes involved in inflammation. However, there are no studies on the expression and regulation of KLF5 in the processes of human labour and delivery. Thus, the aims of this study were to determine the effect of i) human labour on KLF5 expression in both foetal membranes and myometrium; ii) the pro-inflammatory cytokine interleukin 1 beta (IL1β), bacterial product flagellin and the viral dsRNA analogue poly(I:C) on KLF5 expression and iii) KLF5 knockdown by siRNA in human myometrial primary cells on pro-inflammatory and pro-labour mediators. In foetal membranes, there was no effect of term or preterm labour on KLF5 expression. In myometrium, the term labour was associated with an increase in nuclear KLF5 protein expression. Moreover, KLF5 expression was also increased in myometrial cells treated with IL1β, flagellin or poly(IC), likely factors contributing to preterm birth. KLF5 silencing in myometrial cells significantly decreased IL1β-induced cytokine expression (IL6 and IL8 mRNA expression and release), COX2 mRNA expression, and subsequent release of prostaglandins PGE2 and PGF2α. KLF5 silencing also significantly reduced flagellin- and poly(I:C)-induced IL6 and IL8 mRNA expression. Lastly, IL1β-, flagellin- and poly(I:C)-stimulated NFκB transcriptional activity was significantly suppressed in KLF5-knockout myometrial cells. In conclusion, this study describes novel data in which KLF5 is increased in labouring myometrium, and KLF5 silencing decreased inflammation- and infection-induced pro-labour mediators.
Collapse
|
20
|
Liefke R, Shi Y. The PRC2-associated factor C17orf96 is a novel CpG island regulator in mouse ES cells. Cell Discov 2015; 1:15008. [PMID: 27462409 PMCID: PMC4860827 DOI: 10.1038/celldisc.2015.8] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 02/14/2015] [Indexed: 12/12/2022] Open
Abstract
CpG islands (CGIs) are key DNA regulatory elements in the vertebrate genome and are often found at gene promoters. In mammalian embryonic stem (ES) cells, CGIs are decorated by either the active or repressive histone marks, H3K4me3 and H3K27me3, respectively, or by both modifications ('bivalent domains'), but their precise regulation is incompletely understood. Remarkably, we find that the polycomb repressive complex 2 (PRC2)-associated protein C17orf96 (a.k.a. esPRC2p48 and E130012A19Rik) is present at most CGIs in mouse ES cells. At PRC2-rich CGIs, loss of C17orf96 results in an increased chromatin binding of Suz12 and elevated H3K27me3 levels concomitant with gene repression. In contrast, at PRC2-poor CGIs, located at actively transcribed genes, C17orf96 colocalizes with RNA polymerase II and its depletion leads to a focusing of H3K4me3 in the core of CGIs. Our findings thus identify C17orf96 as a novel context-dependent CGI regulator.
Collapse
Affiliation(s)
- Robert Liefke
- Division of Newborn Medicine and Program in Epigenetics, Department of Medicine, Boston Children's Hospital, Boston, MA, USA; Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Yang Shi
- Division of Newborn Medicine and Program in Epigenetics, Department of Medicine, Boston Children's Hospital, Boston, MA, USA; Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
21
|
Shibata M, Chiba T, Matsuoka T, Mihara N, Kawashiri S, Imai K. Krüppel-like factors 4 and 5 expression and their involvement in differentiation of oral carcinomas. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2015; 8:3701-3709. [PMID: 26097551 PMCID: PMC4466938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 03/16/2015] [Indexed: 06/04/2023]
Abstract
Proliferation-differentiation balance of epithelial cells is regulated by Krüppel-like factors (KLF) 4 and 5, and the unbalanced expression relates to carcinoma progression. However, little is known about the expression and role in oral carcinomas. This study examined expression of KLF4 and KLF 5 in the carcinomas by immunohistochemistry (n = 67) and the involvement in proliferation and differentiation of carcinoma cells. KLF4 was detected in keratinizing carcinoma cells and KLF5 in non-keratinizing cells. KLF4 staining declined in the patient with lymph node metastasis (P < 0.05) and in parallel with the histological dedifferentiation (P = 0.09). Exogenous overexpression of KLF4 arranged cells in a cobble-like structure with desmosomes and KLF5 elongated cells like fibroblasts without desmosomes. KLF4 suppressed fibronectin expression, and KLF5 down-regulated and degraded E-cadherin. The proliferation was not affected by KLFs. Thus, down-regulation of KLF4 and up-regulation of KLF5 may stimulate oral carcinoma progression through the dedifferentiation of carcinoma cells.
Collapse
Affiliation(s)
- Masaki Shibata
- Department of Biochemistry, School of Life Dentistry at Tokyo, The Nippon Dental UniversityFujimi 1-9-20, Chiyoda-ku, Tokyo 102-8159, Japan
| | - Tadashige Chiba
- Department of Biochemistry, School of Life Dentistry at Tokyo, The Nippon Dental UniversityFujimi 1-9-20, Chiyoda-ku, Tokyo 102-8159, Japan
| | - Takanori Matsuoka
- Department of Biology, School of Life Dentistry at Tokyo, The Nippon Dental UniversityFujimi 1-9-20, Chiyoda-ku, Tokyo 102-8159, Japan
| | - Nozomi Mihara
- Department of Biochemistry, School of Life Dentistry at Tokyo, The Nippon Dental UniversityFujimi 1-9-20, Chiyoda-ku, Tokyo 102-8159, Japan
| | - Shuichi Kawashiri
- Department of Oral Surgery, School of Medicine, Kanazawa UniversityTakara-machi 13-1, Kanazawa, Ishikawa, Japan
| | - Kazushi Imai
- Department of Biochemistry, School of Life Dentistry at Tokyo, The Nippon Dental UniversityFujimi 1-9-20, Chiyoda-ku, Tokyo 102-8159, Japan
| |
Collapse
|
22
|
Abstract
Krüppel-like factors (KLFs) comprise a highly conserved family of zinc finger transcription factors, that are involved in a plethora of cellular processes, ranging from proliferation and apoptosis to differentiation, migration and pluripotency. During the last few years, evidence on their role and deregulation in different human cancers has been emerging. This review will discuss current knowledge on Krüppel-like transcription in the epithelial-mesenchymal transition (EMT), invasion and metastasis, with a focus on epithelial cancer biology and the extensive interface with pluripotency. Furthermore, as KLFs are able to mediate different outcomes, important influences of the cellular and microenvironmental context will be highlighted. Finally, we attempt to integrate diverse findings on KLF functions in EMT and stem cell biology to ft in the current model of cellular plasticity as a tool for successful metastatic dissemination.
Collapse
|
23
|
Optimization of culture condition of human bone marrow stromal cells in terms of purification, proliferation, and pluripotency. In Vitro Cell Dev Biol Anim 2014; 50:822-30. [PMID: 24934232 DOI: 10.1007/s11626-014-9778-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2014] [Accepted: 05/15/2014] [Indexed: 10/25/2022]
Abstract
Human bone marrow stromal cells (hBMSCs) possess multilineage differentiation potential and play an important role in modern tissue engineering. However, the development of culture media to maintain hBMSCs in an undifferentiated, self-renewing state during their robust proliferation remains a challenge. We developed and tested modified growth medium [medium 1: epidermal growth factor (EGF), platelet-derived growth factor (PDGF), low glucose, 2% fetal calf serum (FCS)] on hBMSCs by comparing primary cell isolation, multipassage expansion, culture morphology, proliferation, and cellular phenotype, and performing an expression analysis of intrinsic-regulated genes to other two media. Cell morphology, proliferation, and phenotype varied among the media, while cells cultured in medium 1 displayed small, spindle-shaped morphology with the highest rate of growth capacities and the expected phenotype. RT-PCR analysis showed that medium 1 displayed the lowest expression levels of osteogenic genes, chondrogenic genes (osteonectin, runt-related transcription factor 2, cartilage oligo matrix protein, and SOX9), and adipogenic genes (lipoprotein lipase). The expression of another adipogenic gene, peroxisome proliferator-activator receptor-γ2, was higher in medium 1 but did not reach significance. In addition, hBMSCs expanded in medium 1 showed the highest expression ratio of self-renewing-related genes Krüppel-like factor 2 (KLF2) and KLF5. In conclusion, medium 1 allows for better expansion and pluripotency maintenance of hBMSCs and serves as a preferred alternative to traditional serum-containing media for research applications and future clinical use.
Collapse
|
24
|
Aksoy I, Giudice V, Delahaye E, Wianny F, Aubry M, Mure M, Chen J, Jauch R, Bogu GK, Nolden T, Himmelbauer H, Xavier Doss M, Sachinidis A, Schulz H, Hummel O, Martinelli P, Hübner N, Stanton LW, Real FX, Bourillot PY, Savatier P. Klf4 and Klf5 differentially inhibit mesoderm and endoderm differentiation in embryonic stem cells. Nat Commun 2014; 5:3719. [PMID: 24770696 DOI: 10.1038/ncomms4719] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Accepted: 03/24/2014] [Indexed: 01/04/2023] Open
Abstract
Krüppel-like factors (Klf) 4 and 5 are two closely related members of the Klf family, known to play key roles in cell cycle regulation, somatic cell reprogramming and pluripotency. Here we focus on the functional divergence between Klf4 and Klf5 in the inhibition of mouse embryonic stem (ES) cell differentiation. Using microarrays and chromatin immunoprecipitation coupled to ultra-high-throughput DNA sequencing, we show that Klf4 negatively regulates the expression of endodermal markers in the undifferentiated ES cells, including transcription factors involved in the commitment of pluripotent stem cells to endoderm differentiation. Knockdown of Klf4 enhances differentiation towards visceral and definitive endoderm. In contrast, Klf5 negatively regulates the expression of mesodermal markers, some of which control commitment to the mesoderm lineage, and knockdown of Klf5 specifically enhances differentiation towards mesoderm. We conclude that Klf4 and Klf5 differentially inhibit mesoderm and endoderm differentiation in murine ES cells.
Collapse
Affiliation(s)
- Irène Aksoy
- 1] Inserm, U846, 18 Avenue Doyen Lepine, Bron 69500, France [2] Stem Cell and Brain Research Institute, Bron 69500, France [3] Université de Lyon, Université Lyon 1, Lyon 69003, France [4] Genome Institute of Singapore, 60 Biopolis street, Singapore 138672, Singapore [5]
| | - Vincent Giudice
- 1] Inserm, U846, 18 Avenue Doyen Lepine, Bron 69500, France [2] Stem Cell and Brain Research Institute, Bron 69500, France [3] Université de Lyon, Université Lyon 1, Lyon 69003, France [4]
| | - Edwige Delahaye
- 1] Inserm, U846, 18 Avenue Doyen Lepine, Bron 69500, France [2] Stem Cell and Brain Research Institute, Bron 69500, France [3] Université de Lyon, Université Lyon 1, Lyon 69003, France
| | - Florence Wianny
- 1] Inserm, U846, 18 Avenue Doyen Lepine, Bron 69500, France [2] Stem Cell and Brain Research Institute, Bron 69500, France [3] Université de Lyon, Université Lyon 1, Lyon 69003, France
| | - Maxime Aubry
- 1] Inserm, U846, 18 Avenue Doyen Lepine, Bron 69500, France [2] Stem Cell and Brain Research Institute, Bron 69500, France [3] Université de Lyon, Université Lyon 1, Lyon 69003, France
| | - Magali Mure
- 1] Inserm, U846, 18 Avenue Doyen Lepine, Bron 69500, France [2] Stem Cell and Brain Research Institute, Bron 69500, France [3] Université de Lyon, Université Lyon 1, Lyon 69003, France
| | - Jiaxuan Chen
- Genome Institute of Singapore, 60 Biopolis street, Singapore 138672, Singapore
| | - Ralf Jauch
- 1] Genome Institute of Singapore, 60 Biopolis street, Singapore 138672, Singapore [2] Genome Regulation Laboratory, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Gireesh K Bogu
- Genome Institute of Singapore, 60 Biopolis street, Singapore 138672, Singapore
| | - Tobias Nolden
- Max Planck Institute for Molecular Genetics, Ihnestrasse 63-73, 14195 Berlin, Germany
| | - Heinz Himmelbauer
- 1] Max Planck Institute for Molecular Genetics, Ihnestrasse 63-73, 14195 Berlin, Germany [2] Center for Genomic Regulation (CRG), C. Dr. Aiguader 88, Barcelona 08003, Spain [3] Universitat Pompeu Fabra (UPF), C. Dr. Aiguader 88, Barcelona 08003, Spain
| | - Michael Xavier Doss
- 1] Universitat Pompeu Fabra (UPF), C. Dr. Aiguader 88, Barcelona 08003, Spain [2]
| | - Agapios Sachinidis
- Center of Physiology and Pathophysiology, Institute of Neurophysiology, Robert-Koch-Strasse. 39, Cologne 50931, Germany
| | - Herbert Schulz
- Max Delbrück Center for Molecular Medicine, Robert-Rössle-Strasse 10, Berlin 13125, Germany
| | - Oliver Hummel
- Max Delbrück Center for Molecular Medicine, Robert-Rössle-Strasse 10, Berlin 13125, Germany
| | - Paola Martinelli
- Centro Nacional de Investigaciones Oncológicas, Melchor Fernández Almagro 3, Madrid 28029, Spain
| | - Norbert Hübner
- Max Delbrück Center for Molecular Medicine, Robert-Rössle-Strasse 10, Berlin 13125, Germany
| | - Lawrence W Stanton
- Genome Institute of Singapore, 60 Biopolis street, Singapore 138672, Singapore
| | - Francisco X Real
- 1] Centro Nacional de Investigaciones Oncológicas, Melchor Fernández Almagro 3, Madrid 28029, Spain [2] Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona 08002, Spain
| | - Pierre-Yves Bourillot
- 1] Inserm, U846, 18 Avenue Doyen Lepine, Bron 69500, France [2] Stem Cell and Brain Research Institute, Bron 69500, France [3] Université de Lyon, Université Lyon 1, Lyon 69003, France
| | - Pierre Savatier
- 1] Inserm, U846, 18 Avenue Doyen Lepine, Bron 69500, France [2] Stem Cell and Brain Research Institute, Bron 69500, France [3] Université de Lyon, Université Lyon 1, Lyon 69003, France
| |
Collapse
|
25
|
Henderson GRW, Brahmasani SR, Yelisetti UM, Konijeti S, Katari VC, Sisinthy S. Candidate gene expression patterns in rabbit preimplantation embryos developed in vivo and in vitro. J Assist Reprod Genet 2014; 31:899-911. [PMID: 24760721 DOI: 10.1007/s10815-014-0233-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Accepted: 04/03/2014] [Indexed: 12/20/2022] Open
Abstract
PURPOSE The levels and timing of expression of genes like BCLXL, HDAC1 and pluripotency marker genes namely, OCT4, SOX2, NANOG and KLF4 are known to influence preimplantation embryo development. Despite this information, precise understanding of their influence during preimplantation embryo development is lacking. The present study attempts to compare the expression of these genes in the in vivo and in vitro developed preimplantation embryos. METHODS The in vivo and in vitro developed rabbit embryos collected at distinct developmental stages namely, pronuclear, 2 cell, 4 cell, 8 cell, 16 cell, Morula and blastocyst were compared at the transcriptional and translational levels using Real Time PCR and immunocytochemical studies respectively. RESULTS The study establishes the altered levels of candidate genes at the transcriptional level and translational level with reference to the zygotic genome activation (ZGA) phase of embryo development in the in vivo and in vitro developed embryos. The expression of OCT4, KLF4, NANOG and SOX2 genes were higher in the in vitro developed embryos whereas and HDAC1 was lower. BCLXL expression had its peak at ZGA in in vivo developed embryos. Protein expression of all the candidate genes was observed in the embryos. BCLXL, KLF4 and NANOG exhibited diffused localisation whereas HDAC1, OCT4, and SOX2 exhibited nuclear localisation. CONCLUSIONS This study leads to conclude that BCLXL peak expression at the ZGA phase may be a requirement for embryo development. Further expression of all the candidate genes was influenced by ZGA phase of development at the transcript level, but not at the protein level.
Collapse
|
26
|
Diakiw SM, D'Andrea RJ, Brown AL. The double life of KLF5: Opposing roles in regulation of gene-expression, cellular function, and transformation. IUBMB Life 2013; 65:999-1011. [DOI: 10.1002/iub.1233] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Accepted: 11/13/2013] [Indexed: 01/13/2023]
Affiliation(s)
- Sonya M. Diakiw
- Children's Cancer Institute Australia for Medical Research, Lowy Cancer Research Centre; University of New South Wales; Australia
- Department of Haematology; SA Pathology; Adelaide Australia
| | - Richard J. D'Andrea
- Department of Haematology; SA Pathology; Adelaide Australia
- School of Pharmacy and Medical Sciences; University of South Australia; Australia
- Centre for Cancer Biology, SA Pathology; Adelaide Australia
- School of Medicine; University of Adelaide; Adelaide Australia
| | - Anna L. Brown
- Department of Haematology; SA Pathology; Adelaide Australia
- School of Pharmacy and Medical Sciences; University of South Australia; Australia
- Centre for Cancer Biology, SA Pathology; Adelaide Australia
- School of Molecular and Biomedical Sciences; University of Adelaide; Adelaide Australia
| |
Collapse
|
27
|
Taniguchi Ishikawa E, Chang KH, Nayak R, Olsson HA, Ficker AM, Dunn SK, Madhu MN, Sengupta A, Whitsett JA, Grimes HL, Cancelas JA. Klf5 controls bone marrow homing of stem cells and progenitors through Rab5-mediated β1/β2-integrin trafficking. Nat Commun 2013; 4:1660. [PMID: 23552075 PMCID: PMC3627399 DOI: 10.1038/ncomms2645] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Accepted: 02/22/2013] [Indexed: 01/05/2023] Open
Abstract
Kruppel-like factor 5 (Klf5) regulates pluripotent stem cell self-renewal but its role in somatic stem cells is unknown. Here we show that Klf5 deficient haematopoietic stem cells and progenitors (HSC/P) fail to engraft after transplantation. This HSC/P defect is associated with impaired bone marrow homing and lodging and decreased retention in bone marrow, and with decreased adhesion to fibronectin and expression of membrane-bound β1/β2-integrins. In vivo inducible gain-of-function of Klf5 in HSCs increases HSC/P adhesion. The expression of Rab5 family members, mediators of β1/β2-integrin recycling in the early endosome, is decreased in Klf5Δ/Δ HSC/Ps. Klf5 binds directly to the promoter of Rab5a/b and overexpression of Rab5b rescues the expression of activated β1/β2-integrins, adhesion and bone marrow homing of Klf5Δ/Δ HSC/Ps. Altogether, these data indicate that Klf5 is indispensable for adhesion, homing, lodging and retention of HSC/Ps in the bone marrow through Rab5-dependent post-translational regulation of β1/β2 integrins.
Collapse
Affiliation(s)
- E Taniguchi Ishikawa
- Hoxworth Blood Center, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267-0055, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
KLF5 activates microRNA 200 transcription to maintain epithelial characteristics and prevent induced epithelial-mesenchymal transition in epithelial cells. Mol Cell Biol 2013; 33:4919-35. [PMID: 24126055 DOI: 10.1128/mcb.00787-13] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
KLF5 is an essential basic transcriptional factor that regulates a number of physiopathological processes. In this study, we tested whether and how KLF5 modulates the epithelial-mesenchymal transition (EMT). Using transforming growth factor β (TGF-β)- and epidermal growth factor (EGF)-treated epithelial cells as an established model of EMT, we found that KLF5 was downregulated during EMT and that knockdown of KLF5 induced EMT even in the absence of TGF-β and EGF treatment, as indicated by phenotypic and molecular EMT properties. Array-based screening suggested and biochemical analyses confirmed that the microRNA 200 (miR-200) microRNAs, a group of well-established EMT repressors, were transcriptionally activated by KLF5 via its direct binding to the GC boxes in miR-200 gene promoters. Functionally, overexpression of miR-200 prevented the EMT induced by KLF5 knockdown or by TGF-β and EGF treatment, and ectopic expression of KLF5 attenuated TGF-β- and EGF-induced EMT by rescuing the expression of miR-200. In mouse prostates, knockout of Klf5 downregulated the miR-200 family and induced molecular changes indicative of EMT. These findings indicate that KLF5 maintains epithelial characteristics and prevents EMT by transcriptionally activating the miR-200 family in epithelial cells.
Collapse
|
29
|
Mathieu ME, Faucheux C, Saucourt C, Soulet F, Gauthereau X, Fédou S, Trouillas M, Thézé N, Thiébaud P, Boeuf H. MRAS GTPase is a novel stemness marker that impacts mouse embryonic stem cell plasticity and Xenopus embryonic cell fate. Development 2013; 140:3311-22. [DOI: 10.1242/dev.091082] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Pluripotent mouse embryonic stem cells (mESCs), maintained in the presence of the leukemia inhibitory factor (LIF) cytokine, provide a powerful model with which to study pluripotency and differentiation programs. Extensive microarray studies on cultured cells have led to the identification of three LIF signatures. Here we focus on muscle ras oncogene homolog (MRAS), which is a small GTPase of the Ras family encoded within the Pluri gene cluster. To characterise the effects of Mras on cell pluripotency and differentiation, we used gain- and loss-of-function strategies in mESCs and in the Xenopus laevis embryo, in which Mras gene structure and protein sequence are conserved. We show that persistent knockdown of Mras in mESCs reduces expression of specific master genes and that MRAS plays a crucial role in the downregulation of OCT4 and NANOG protein levels upon differentiation. In Xenopus, we demonstrate the potential of Mras to modulate cell fate at early steps of development and during neurogenesis. Overexpression of Mras allows gastrula cells to retain responsiveness to fibroblast growth factor (FGF) and activin. Collectively, these results highlight novel conserved and pleiotropic effects of MRAS in stem cells and early steps of development.
Collapse
Affiliation(s)
- Marie-Emmanuelle Mathieu
- University of Bordeaux, CIRID, UMR 5164, F-33000 Bordeaux, France
- CNRS, CIRID, UMR 5164, F-33000 Bordeaux, France
| | - Corinne Faucheux
- University of Bordeaux, CIRID, UMR 5164, F-33000 Bordeaux, France
- CNRS, CIRID, UMR 5164, F-33000 Bordeaux, France
| | - Claire Saucourt
- University of Bordeaux, CIRID, UMR 5164, F-33000 Bordeaux, France
- CNRS, CIRID, UMR 5164, F-33000 Bordeaux, France
| | - Fabienne Soulet
- University of Bordeaux, CIRID, UMR 5164, F-33000 Bordeaux, France
- CNRS, CIRID, UMR 5164, F-33000 Bordeaux, France
| | - Xavier Gauthereau
- University of Bordeaux, CIRID, UMR 5164, F-33000 Bordeaux, France
- CNRS, CIRID, UMR 5164, F-33000 Bordeaux, France
| | - Sandrine Fédou
- University of Bordeaux, CIRID, UMR 5164, F-33000 Bordeaux, France
- CNRS, CIRID, UMR 5164, F-33000 Bordeaux, France
| | - Marina Trouillas
- University of Bordeaux, CIRID, UMR 5164, F-33000 Bordeaux, France
| | - Nadine Thézé
- University of Bordeaux, CIRID, UMR 5164, F-33000 Bordeaux, France
- CNRS, CIRID, UMR 5164, F-33000 Bordeaux, France
| | - Pierre Thiébaud
- University of Bordeaux, CIRID, UMR 5164, F-33000 Bordeaux, France
- CNRS, CIRID, UMR 5164, F-33000 Bordeaux, France
| | - Hélène Boeuf
- University of Bordeaux, CIRID, UMR 5164, F-33000 Bordeaux, France
- CNRS, CIRID, UMR 5164, F-33000 Bordeaux, France
| |
Collapse
|
30
|
Zhou X, Fukuda N, Matsuda H, Endo M, Wang X, Saito K, Ueno T, Matsumoto T, Matsumoto K, Soma M, Kobayashi N, Nishiyama A. Complement 3 activates the renal renin-angiotensin system by induction of epithelial-to-mesenchymal transition of the nephrotubulus in mice. Am J Physiol Renal Physiol 2013; 305:F957-67. [PMID: 23926185 DOI: 10.1152/ajprenal.00344.2013] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
We have demonstrated that mesenchymal cells from spontaneously hypertensive rats genetically express complement 3 (C3). Mature tubular epithelial cells can undergo epithelial-to-mesenchymal transition (EMT) that is linked to the pathogenesis of renal fibrosis and injury. In this study, we investigated the contribution of C3 in EMT and in the renal renin-angiotensin (RA) systems associated with hypertension. C3a induced EMT in mouse TCMK-1 epithelial cells, which displayed increased expression of renin and Krüppel-like factor 5 (KLF5) and nuclear localization of liver X receptor α (LXRα). C3 and renin were strongly stained in the degenerated nephrotubulus and colocalized with LXRα and prorenin receptor in unilateral ureteral obstruction (UUO) kidneys from wild-type mice. In C3-deficient mice, hydronephrus and EMT were suppressed, with no expression of renin and C3. After UUO, systolic blood pressure was increased in wild-type but not C3-deficient mice. In wild-type mice, intrarenal angiotensin II (ANG II) levels were markedly higher in UUO kidneys than normal kidneys and decreased with aliskiren. There were no increases in intrarenal ANG II levels after UUO in C3-deficient mice. Thus C3 induces EMT and dedifferentiation of epithelial cells, which produce renin through induction of LXRα. These data indicate for the first time that C3 may be a primary factor to activate the renal RA systems to induce hypertension.
Collapse
Affiliation(s)
- Xueli Zhou
- Div. of Nephrology, Hypertension, and Endocrinology, Dept. of Medicine, Nihon Univ. School of Medicine, Tokyo 173-8610, Japan.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
The PR/SET domain zinc finger protein Prdm4 regulates gene expression in embryonic stem cells but plays a nonessential role in the developing mouse embryo. Mol Cell Biol 2013; 33:3936-50. [PMID: 23918801 PMCID: PMC3811882 DOI: 10.1128/mcb.00498-13] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Prdm4 is a highly conserved member of the Prdm family of PR/SET domain zinc finger proteins. Many well-studied Prdm family members play critical roles in development and display striking loss-of-function phenotypes. Prdm4 functional contributions have yet to be characterized. Here, we describe its widespread expression in the early embryo and adult tissues. We demonstrate that DNA binding is exclusively mediated by the Prdm4 zinc finger domain, and we characterize its tripartite consensus sequence via SELEX (systematic evolution of ligands by exponential enrichment) and ChIP-seq (chromatin immunoprecipitation-sequencing) experiments. In embryonic stem cells (ESCs), Prdm4 regulates key pluripotency and differentiation pathways. Two independent strategies, namely, targeted deletion of the zinc finger domain and generation of a EUCOMM LacZ reporter allele, resulted in functional null alleles. However, homozygous mutant embryos develop normally and adults are healthy and fertile. Collectively, these results strongly suggest that Prdm4 functions redundantly with other transcriptional partners to cooperatively regulate gene expression in the embryo and adult animal.
Collapse
|
32
|
Gagliardi A, Mullin NP, Ying Tan Z, Colby D, Kousa AI, Halbritter F, Weiss JT, Felker A, Bezstarosti K, Favaro R, Demmers J, Nicolis SK, Tomlinson SR, Poot RA, Chambers I. A direct physical interaction between Nanog and Sox2 regulates embryonic stem cell self-renewal. EMBO J 2013; 32:2231-47. [PMID: 23892456 PMCID: PMC3746198 DOI: 10.1038/emboj.2013.161] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Accepted: 06/27/2013] [Indexed: 01/08/2023] Open
Abstract
Embryonic stem (ES) cell self-renewal efficiency is determined by the Nanog protein level. However, the protein partners of Nanog that function to direct self-renewal are unclear. Here, we identify a Nanog interactome of over 130 proteins including transcription factors, chromatin modifying complexes, phosphorylation and ubiquitination enzymes, basal transcriptional machinery members, and RNA processing factors. Sox2 was identified as a robust interacting partner of Nanog. The purified Nanog–Sox2 complex identified a DNA recognition sequence present in multiple overlapping Nanog/Sox2 ChIP-Seq data sets. The Nanog tryptophan repeat region is necessary and sufficient for interaction with Sox2, with tryptophan residues required. In Sox2, tyrosine to alanine mutations within a triple-repeat motif (S X T/S Y) abrogates the Nanog–Sox2 interaction, alters expression of genes associated with the Nanog-Sox2 cognate sequence, and reduces the ability of Sox2 to rescue ES cell differentiation induced by endogenous Sox2 deletion. Substitution of the tyrosines with phenylalanine rescues both the Sox2–Nanog interaction and efficient self-renewal. These results suggest that aromatic stacking of Nanog tryptophans and Sox2 tyrosines mediates an interaction central to ES cell self-renewal. This paper features a comprehensive proteomic view on the Nanog interactome. Further, it molecularly and functionally defines the intimate interplay of Nanog with another pluripotency determinant Sox2.
Collapse
Affiliation(s)
- Alessia Gagliardi
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
miR-125b regulates the early steps of ESC differentiation through dies1 in a TGF-independent manner. Int J Mol Sci 2013; 14:13482-96. [PMID: 23807506 PMCID: PMC3742198 DOI: 10.3390/ijms140713482] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Revised: 06/13/2013] [Accepted: 06/19/2013] [Indexed: 12/22/2022] Open
Abstract
Over the past few years, it has become evident that the distinctive pattern of miRNA expression seen in embryonic stem cells (ESCs) contributes to important signals in the choice of the cell fate. Thus, the identification of miRNAs and their targets, whose expression is linked to a specific step of differentiation, as well as the modulation of these miRNAs, may prove useful in the learning of how ESC potential is regulated. In this context, we have studied the expression profile of miRNAs during neural differentiation of ESCs. We have found that miR-125b is upregulated in the first steps of neural differentiation of ESCs. This miRNA targets the BMP4 co-receptor, Dies1, and, in turn, regulates the balance between BMP4 and Nodal/Activin signaling. The ectopic expression of miR-125b blocks ESC differentiation at the epiblast stage, and this arrest is rescued by restoring the expression of Dies1. Finally, opposite to miR-125a, whose expression is under the control of the BMP4, miR-125b is not directly regulated by Transforming Growth Factor beta (TGFβ) signals. These results highlight a new important role of miR-125b in the regulation of the transition from ESCs to the epiblast stage and add a new level of control on TGFβ signaling in ESCs.
Collapse
|
34
|
Long X, Singla DK. Inactivation of Klf5 by zinc finger nuclease downregulates expression of pluripotent genes and attenuates colony formation in embryonic stem cells. Mol Cell Biochem 2013; 382:113-9. [PMID: 23780512 DOI: 10.1007/s11010-013-1724-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Accepted: 05/29/2013] [Indexed: 01/17/2023]
Abstract
Recent studies suggest that Klf5 is required to maintain embryonic stem (ES) cells in an undifferentiated state. However, whether Klf5 can be inactivated by novel fusion technology of zinc finger nucleases (ZFN) has never before been examined. Therefore, we used ZFN technology to target the Klf5 gene in mouse ES cells, and examined the effects of the Klf5 gene on the expression of pluripotency-related genes, Oct3/4, Nanog, and Sox2 and on the self-renewal of ES cells. In Klf5-ZFN-transfected cells, expression of the Klf5 mRNA was downregulated by ~80% compared to the control. Furthermore, expression of the Oct3/4 and Nanog mRNAs was significantly decreased in the Klf5-ZFN-targeted cells. RT-PCR analysis, however, showed no significant change in the level of Sox2 mRNA, but a decreased trend was evident in the Klf5-ZFN-targeted cells. Moreover, we observed the spontaneous differentiation of Klf5-ZFN-transfected cells and quantitative analysis revealed a significant decrease in colony formation in Klf5-ZFN-transfected cells. In conclusion, our data suggest that ZFN methodology is an effective approach to target the Klf5 gene and that Klf5 plays an important role in the maintenance of ES cell self-renewal.
Collapse
Affiliation(s)
- Xilin Long
- Biomolecular Science Center, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, 32817, USA
| | | |
Collapse
|
35
|
Wang Q, Wagner RT, Cooney AJ. Regulatable in vivo biotinylation expression system in mouse embryonic stem cells. PLoS One 2013; 8:e63532. [PMID: 23667633 PMCID: PMC3646753 DOI: 10.1371/journal.pone.0063532] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Accepted: 04/03/2013] [Indexed: 11/19/2022] Open
Abstract
Embryonic stem (ES) cells have several unique attributes, the two most important of which are they can differentiate into all cell types in the body and they can proliferate indefinitely. To study the regulation of these phenomena, we developed a regulatable in vivo biotinylation expression system in mouse ES cells. The E. coli biotin ligase gene BirA, whose protein product can biotinylate a 15-aa peptide sequence, called the AviTag, was cloned downstream of an IRES. The primary vector containing the doxycycline controlled transactivator gene tTA and IRES-BirA was knocked into the ROSA26 locus by homologous recombination. The secondary vector containing the AviTag tagged hKlf4 gene was exchanged into the ROSA26 locus using Cre recombinase. Western blot analysis showed that the doxycycline induced BirA protein can biotinylate the doxycycline induced AviTag tagged hKlf4 protein. The induction of hKlf4 repressed cell growth in the presence or absence of LIF. Chromatin immunoprecipitation assays using streptavidin beads showed that the AviTag tagged hKlf4 protein could enrich the Nanog enhancer. Our results suggested that the regulatable biotinylation system is promising for the gene function studies in mouse ES cells.
Collapse
Affiliation(s)
- Qin Wang
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Ryan T. Wagner
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Austin J. Cooney
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
36
|
Bell SM, Zhang L, Xu Y, Besnard V, Wert SE, Shroyer N, Whitsett JA. Kruppel-like factor 5 controls villus formation and initiation of cytodifferentiation in the embryonic intestinal epithelium. Dev Biol 2012; 375:128-39. [PMID: 23266329 DOI: 10.1016/j.ydbio.2012.12.010] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Revised: 11/29/2012] [Accepted: 12/14/2012] [Indexed: 12/16/2022]
Abstract
Kruppel-like factor 5 (Klf5) is a transcription factor expressed by embryonic endodermal progenitors that form the lining of the gastrointestinal tract. A Klf5 floxed allele was efficiently deleted from the intestinal epithelium by a Cre transgene under control of the Shh promoter resulting in the inhibition of villus morphogenesis and epithelial differentiation. Although proliferation of the intestinal epithelium was maintained, the expression of Elf3, Pparγ, Atoh1, Ascl2, Neurog3, Hnf4α, Cdx1, and other genes associated with epithelial cell differentiation was inhibited in the Klf5-deficient intestines. At E18.5, Klf5(Δ/Δ) fetuses lacked the apical brush border characteristic of enterocytes, and a loss of goblet and enteroendocrine cells was observed. The failure to form villi was not attributable to the absence of HH or PDGF signaling, known mediators of this developmental process. Klf5-deletion blocked the decrease in FoxA1 and Sox9 expression that accompanies normal villus morphogenesis. KLF5 directly inhibited activity of the FoxA1 promoter, and in turn FOXA1 inhibited Elf3 gene expression in vitro, linking the observed loss of Elf3 with the persistent expression of FoxA1 observed in Klf5-deficient mice. Genetic network analysis identified KLF5 as a key transcription factor regulating intestinal cell differentiation and cell adhesion. These studies indicate a novel requirement for KLF5 to initiate morphogenesis of the early endoderm into a compartmentalized intestinal epithelium comprised of villi and terminally differentiated cells.
Collapse
Affiliation(s)
- Sheila M Bell
- Perinatal Institute, Divisions of Neonatology-Perinatal-Pulmonary Biology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| | | | | | | | | | | | | |
Collapse
|
37
|
Jean C, Aubel P, Soleihavoup C, Bouhallier F, Voisin S, Lavial F, Pain B. Pluripotent genes in avian stem cells. Dev Growth Differ 2012; 55:41-51. [DOI: 10.1111/dgd.12021] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2012] [Revised: 10/22/2012] [Accepted: 10/23/2012] [Indexed: 01/17/2023]
Affiliation(s)
| | | | | | | | | | - Fabrice Lavial
- Centre de Cancérologie de Lyon, INSERM, U1052, CNRS, UMR5286; Centre Léon Bérard; Université de Lyon; Lyon; France
| | | |
Collapse
|
38
|
Kenchegowda D, Harvey SAK, Swamynathan S, Lathrop KL, Swamynathan SK. Critical role of Klf5 in regulating gene expression during post-eyelid opening maturation of mouse corneas. PLoS One 2012; 7:e44771. [PMID: 23024760 PMCID: PMC3443110 DOI: 10.1371/journal.pone.0044771] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Accepted: 08/07/2012] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Klf5 plays an important role in maturation and maintenance of the mouse ocular surface. Here, we quantify WT and Klf5-conditional null (Klf5CN) corneal gene expression, identify Klf5-target genes and compare them with the previously identified Klf4-target genes to understand the molecular basis for non-redundant functions of Klf4 and Klf5 in the cornea. METHODOLOGY/PRINCIPAL FINDINGS Postnatal day-11 (PN11) and PN56 WT and Klf5CN corneal transcriptomes were quantified by microarrays to compare gene expression in maturing WT corneas, identify Klf5-target genes, and compare corneal Klf4- and Klf5-target genes. Whole-mount corneal immunofluorescent staining was employed to examine CD45+ cell influx and neovascularization. Effect of Klf5 on expression of desmosomal components was studied by immunofluorescent staining and transient co-transfection assays. Expression of 714 and 753 genes was increased, and 299 and 210 genes decreased in PN11 and PN56 Klf5CN corneas, respectively, with 366 concordant increases and 72 concordant decreases. PN56 Klf5CN corneas shared 241 increases and 98 decreases with those previously described in Klf4CN corneas. Xenobiotic metabolism related pathways were enriched among genes decreased in Klf5CN corneas. Expression of angiogenesis and immune response-related genes was elevated, consistent with neovascularization and CD45+ cell influx in Klf5CN corneas. Expression of 1574 genes was increased and 1915 genes decreased in WT PN56 compared with PN11 corneas. Expression of ECM-associated genes decreased, while that of solute carrier family members increased in WT PN56 compared with PN11 corneas. Dsg1a, Dsg1b and Dsp were down-regulated in Klf5CN corneas and their corresponding promoter activities were stimulated by Klf5 in transient co-transfection assays. CONCLUSIONS/SIGNIFICANCE Differences between PN11 and PN56 corneal Klf5-target genes reveal dynamic changes in functions of Klf5 during corneal maturation. Klf5 contributes to corneal epithelial homeostasis by regulating the expression of desmosomal components. Klf4- and Klf5-target genes are largely distinct, consistent with their non-redundant roles in the mouse cornea.
Collapse
Affiliation(s)
- Doreswamy Kenchegowda
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Stephen A. K. Harvey
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Sudha Swamynathan
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Kira L. Lathrop
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Shivalingappa K. Swamynathan
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Cell Biology and Physiology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
39
|
Scheubert L, Schmidt R, Repsilber D, Lustrek M, Fuellen G. Learning biomarkers of pluripotent stem cells in mouse. DNA Res 2011; 18:233-51. [PMID: 21791477 PMCID: PMC3158465 DOI: 10.1093/dnares/dsr016] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2011] [Accepted: 05/10/2011] [Indexed: 01/04/2023] Open
Abstract
Pluripotent stem cells are able to self-renew, and to differentiate into all adult cell types. Many studies report data describing these cells, and characterize them in molecular terms. Machine learning yields classifiers that can accurately identify pluripotent stem cells, but there is a lack of studies yielding minimal sets of best biomarkers (genes/features). We assembled gene expression data of pluripotent stem cells and non-pluripotent cells from the mouse. After normalization and filtering, we applied machine learning, classifying samples into pluripotent and non-pluripotent with high cross-validated accuracy. Furthermore, to identify minimal sets of best biomarkers, we used three methods: information gain, random forests and a wrapper of genetic algorithm and support vector machine (GA/SVM). We demonstrate that the GA/SVM biomarkers work best in combination with each other; pathway and enrichment analyses show that they cover the widest variety of processes implicated in pluripotency. The GA/SVM wrapper yields best biomarkers, no matter which classification method is used. The consensus best biomarker based on the three methods is Tet1, implicated in pluripotency just recently. The best biomarker based on the GA/SVM wrapper approach alone is Fam134b, possibly a missing link between pluripotency and some standard surface markers of unknown function processed by the Golgi apparatus.
Collapse
Affiliation(s)
- Lena Scheubert
- Institute of Computer Science, University of Osnabrück, Germany
| | | | | | | | | |
Collapse
|
40
|
Bell SM, Zhang L, Mendell A, Xu Y, Haitchi HM, Lessard JL, Whitsett JA. Kruppel-like factor 5 is required for formation and differentiation of the bladder urothelium. Dev Biol 2011; 358:79-90. [PMID: 21803035 DOI: 10.1016/j.ydbio.2011.07.020] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2011] [Revised: 07/08/2011] [Accepted: 07/09/2011] [Indexed: 12/20/2022]
Abstract
Kruppel-like transcription factor 5 (Klf5) was detected in the developing and mature murine bladder urothelium. Herein we report a critical role of KLF5 in the formation and terminal differentiation of the urothelium. The Shh(GfpCre) transgene was used to delete the Klf5(floxed) alleles from bladder epithelial cells causing prenatal hydronephrosis, hydroureter, and vesicoureteric reflux. The bladder urothelium failed to stratify and did not express terminal differentiation markers characteristic of basal, intermediate, and umbrella cells including keratins 20, 14, and 5, and the uroplakins. The effects of Klf5 deletion were unique to the developing bladder epithelium since maturation of the epithelium comprising the bladder neck and urethra was unaffected by the lack of KLF5. mRNA analysis identified reductions in Pparγ, Grhl3, Elf3, and Ovol1expression in Klf5 deficient fetal bladders supporting their participation in a transcriptional network regulating bladder urothelial differentiation. KLF5 regulated expression of the mGrhl3 promoter in transient transfection assays. The absence of urothelial Klf5 altered epithelial-mesenchymal signaling leading to the formation of an ectopic alpha smooth muscle actin positive layer of cells subjacent to the epithelium and a thinner detrusor muscle that was not attributable to disruption of SHH signaling, a known mediator of detrusor morphogenesis. Deletion of Klf5 from the developing bladder urothelium blocked epithelial cell differentiation, impaired bladder morphogenesis and function causing hydroureter and hydronephrosis at birth.
Collapse
Affiliation(s)
- Sheila M Bell
- Perinatal Institute of Cincinnati Children's Hospital Medical Center, Division of Neonatology-Perinatal-Pulmonary Biology, University of Cincinnati College of Medicine, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| | | | | | | | | | | | | |
Collapse
|
41
|
Qin J, Li MJ, Wang P, Zhang MQ, Wang J. ChIP-Array: combinatory analysis of ChIP-seq/chip and microarray gene expression data to discover direct/indirect targets of a transcription factor. Nucleic Acids Res 2011; 39:W430-6. [PMID: 21586587 PMCID: PMC3125757 DOI: 10.1093/nar/gkr332] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Chromatin immunoprecipitation (ChIP) coupled with high-throughput techniques (ChIP-X), such as next generation sequencing (ChIP-Seq) and microarray (ChIP–chip), has been successfully used to map active transcription factor binding sites (TFBS) of a transcription factor (TF). The targeted genes can be activated or suppressed by the TF, or are unresponsive to the TF. Microarray technology has been used to measure the actual expression changes of thousands of genes under the perturbation of a TF, but is unable to determine if the affected genes are direct or indirect targets of the TF. Furthermore, both ChIP-X and microarray methods produce a large number of false positives. Combining microarray expression profiling and ChIP-X data allows more effective TFBS analysis for studying the function of a TF. However, current web servers only provide tools to analyze either ChIP-X or expression data, but not both. Here, we present ChIP-Array, a web server that integrates ChIP-X and expression data from human, mouse, yeast, fruit fly and Arabidopsis. This server will assist biologists to detect direct and indirect target genes regulated by a TF of interest and to aid in the functional characterization of the TF. ChIP-Array is available at http://jjwanglab.hku.hk/ChIP-Array, with free access to academic users.
Collapse
Affiliation(s)
- Jing Qin
- Department of Biochemistry, LKS Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Hong Kong SAR, China
| | | | | | | | | |
Collapse
|
42
|
Regulatory role of Klf5 in early mouse development and in embryonic stem cells. VITAMINS AND HORMONES 2011; 87:381-97. [PMID: 22127252 DOI: 10.1016/b978-0-12-386015-6.00037-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Pluripotency and self-renewal of embryonic stem cells (ESCs) are maintained by regulatory mechanisms, based on a sophisticated network of transcription factors. Recently, a growing body of evidence has indicated that Klf5, a transcription factor highly expressed in mouse ESCs and during the early phases of mouse development, plays a crucial role in maintaining ESC self-renewal and pluripotency, in governing ESC fate decisions and proper development of blastocyst in vivo. Indeed, Klf5-null mice show developmental defects at blastocyst stage, due to the defective establishment of the inner cell mass. Moreover, Klf5 knockdown in ESCs results in the loss of undifferentiated phenotype, whereas its ectopic expression is sufficient to maintain ESC in the undifferentiated state, even in the absence of LIF. Finally, it has been recently reported that Klf5 activates the expression of self-renewal-promoting genes and, simultaneously, it inhibits the expression of differentiation-related genes. Here, we discuss the functional role of Klf5 in the control on ESC self-renewal and pluripotency and its integration in the core transcriptional network governing ESC state.
Collapse
|
43
|
Bourillot PY, Savatier P. Krüppel-like transcription factors and control of pluripotency. BMC Biol 2010; 8:125. [PMID: 20875146 PMCID: PMC2946285 DOI: 10.1186/1741-7007-8-125] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2010] [Accepted: 09/22/2010] [Indexed: 01/04/2023] Open
Abstract
Recent papers have demonstrated a role for Krüppel-like transcription factors 2, 4 and 5 in the control of mouse embryonic stem cell pluripotency. However, it is not clear whether each factor has a unique role or whether they are functionally redundant. A paper by Parisi and colleagues in BMC Biology now sheds light on the mechanism by which Klf5 regulates pluripotency. See research article http://www.biomedcentral.com/1741-7007/8/128
Collapse
|