1
|
Shi F, Cao J, Zhou D, Wang X, Yang H, Liu T, Chen Z, Zeng J, Du S, Yang L, Jia R, Zhang S, Zhang M, Guo Y, Lin X. Revealing the clinical effect and biological mechanism of acupuncture in COPD: A review. Biomed Pharmacother 2024; 170:115926. [PMID: 38035864 DOI: 10.1016/j.biopha.2023.115926] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 11/12/2023] [Accepted: 11/20/2023] [Indexed: 12/02/2023] Open
Abstract
BACKGROUND To provide new ideas for the clinical and mechanism research of acupuncture in the treatment of chronic obstructive pulmonary disease (COPD), this study systematically reviews clinical research and the progress of basic research of acupuncture in the treatment of COPD. METHODS PubMed and Web of Science databases were searched using acupuncture and COPD as keywords in the last 10 years, and the included literature was determined according to exclusion criteria. FINDINGS Acupuncture can relieve clinical symptoms, improve exercise tolerance, anxiety, and nutritional status, as well as hemorheological changes (blood viscosity), reduce the inflammatory response, and reduce the duration and frequency of COPD in patients with COPD. Mechanistically, acupuncture inhibits M1 macrophage activity, reduces neutrophil infiltration, reduces inflammatory factor production in alveolar type II epithelial cells, inhibits mucus hypersecretion of airway epithelial cells, inhibits the development of chronic inflammation in COPD, and slows tissue structure destruction. Acupuncture may control pulmonary COPD inflammation through the vagal-cholinergic anti-inflammatory, vagal-adrenomedullary-dopamine, vagal-dual-sensory nerve fiber-pulmonary, and CNS-hypothalamus-orexin pathways. Furthermore, acupuncture can increase endogenous cortisol levels by inhibiting the HPA axis, thus improving airway antioxidant capacity and reducing airway inflammation in COPD. In conclusion, the inhibition of the chronic inflammatory response is the key mechanism of acupuncture treatment for COPD.
Collapse
Affiliation(s)
- Fangyuan Shi
- Tianjin Key Laboratory of Modern Chinese Medicine Theory of Innovation and Application, School of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Research Center of Experimental Acupuncture Science, School of Acupuncture-Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Jiaojiao Cao
- Research Center of Experimental Acupuncture Science, School of Acupuncture-Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Dan Zhou
- Research Center of Experimental Acupuncture Science, School of Acupuncture-Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xue Wang
- Research Center of Experimental Acupuncture Science, School of Acupuncture-Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Haitao Yang
- Research Center of Experimental Acupuncture Science, School of Acupuncture-Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Tingting Liu
- Research Center of Experimental Acupuncture Science, School of Acupuncture-Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Zhihan Chen
- Research Center of Experimental Acupuncture Science, School of Acupuncture-Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Jiaming Zeng
- Research Center of Experimental Acupuncture Science, School of Acupuncture-Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Simin Du
- Research Center of Experimental Acupuncture Science, School of Acupuncture-Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Lin Yang
- Research Center of Experimental Acupuncture Science, School of Acupuncture-Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Ruo Jia
- Tianjin Key Laboratory of Modern Chinese Medicine Theory of Innovation and Application, School of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Siqi Zhang
- Ministry of Education, and State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, China
| | - Mingxing Zhang
- School of Intergrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Yi Guo
- Research Center of Experimental Acupuncture Science, School of Acupuncture-Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Xiaowei Lin
- Tianjin Key Laboratory of Modern Chinese Medicine Theory of Innovation and Application, School of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Research Center of Experimental Acupuncture Science, School of Acupuncture-Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| |
Collapse
|
2
|
Ren X, Wang L, Wang Z, Wang L, Kong Y, Guo Y, Sun L. Association between parental occupational exposure and the risk of asthma in offspring: A meta-analysis and systematic review. Medicine (Baltimore) 2023; 102:e36345. [PMID: 38050266 PMCID: PMC10695554 DOI: 10.1097/md.0000000000036345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 11/06/2023] [Indexed: 12/06/2023] Open
Abstract
BACKGROUND Previous epidemiological studies have shown inconsistent results regarding the relation between the risk of asthma in offspring and parental occupational exposure. Therefore, we conducted a comprehensive and systematic collection of currently available epidemiological data to quantify the correlation between the 2. METHODS Related studies published before March 2023 were identified through searches of the Cochrane Library, Embase, PubMed, and Web of Science databases. The quality of included studies was assessed using the Newcastle-Ottawa Scale, while pooled odds ratios (ORs) with 95% confidence intervals (CIs) were computed using fixed-effect or random-effects models. RESULTS This systematic review included 10 cohort studies, with a total of 89,571 parent-child pairs included in the quantitative analysis. The results exhibited a substantial association between parental occupational exposure to allergens (OR = 1.11; 95% CI: 1.00, 1.23; P = .051) and irritants (OR = 1.19; 95% CI: 1.07, 1.32; P = .001) and an increased risk of asthma in offspring. This association was also observed in the analysis of wheezing (OR = 1.22; 95% CI: 1.11, 1.35; P < .001 and OR = 1.19; 95% CI: 1.08, 1.32; P = .001). Subgroup analysis demonstrated that maternal occupational exposure to allergens (OR = 1.07; 95% CI: 1.02, 1.12; P = .008) and irritants (OR = 1.13; 95% CI: 1.05, 1.21; P = .001) significantly increased the risk of childhood asthma. Furthermore, parental postnatal occupational exposure to allergens (OR = 1.26; 95% CI: 1.10, 1.46; P = .001) and irritants (OR = 1.26; 95% CI: 1.06, 1.49; P = .009) had a more pronounced impact on childhood asthma. Higher levels of exposure (OR = 1.26; 95% CI: 1.10, 1.46; P = .001 and OR = 1.30; 95% CI: 1.16, 1.47; P < .001) were recognized as significant risk factors for childhood asthma. CONCLUSION Parental occupational exposure to allergens and irritants increases the risk of asthma and wheezing in offspring, with maternal exposure, postnatal exposure, and high-dose exposure being the primary risk factors for childhood asthma.
Collapse
Affiliation(s)
- Xiaoting Ren
- College of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Lie Wang
- Affiliated Hospital of Changchun University of Chinese Medicine, Changchun Jilin, China
| | - Zhongtian Wang
- College of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Lei Wang
- College of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Yibu Kong
- Affiliated Hospital of Changchun University of Chinese Medicine, Changchun Jilin, China
| | - Yinan Guo
- Affiliated Hospital of Changchun University of Chinese Medicine, Changchun Jilin, China
| | - Liping Sun
- Affiliated Hospital of Changchun University of Chinese Medicine, Changchun Jilin, China
| |
Collapse
|
3
|
Wang Y, Li Z, Rao J, Yang Y, Dai Z. Gene based message passing for drug repurposing. iScience 2023; 26:107663. [PMID: 37670781 PMCID: PMC10475505 DOI: 10.1016/j.isci.2023.107663] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/06/2023] [Accepted: 08/14/2023] [Indexed: 09/07/2023] Open
Abstract
The medicinal effect of a drug acts through a series of genes, and the pathological mechanism of a disease is also related to genes with certain biological functions. However, the complex information between drug or disease and a series of genes is neglected by traditional message passing methods. In this study, we proposed a new framework using two different strategies for gene-drug/disease and drug-disease networks, respectively. We employ long short-term memory (LSTM) network to extract the flow of message from series of genes (gene path) to drug/disease. Incorporating the resulting information of gene paths into drug-disease network, we utilize graph convolutional network (GCN) to predict drug-disease associations. Experimental results showed that our method GeneDR (gene-based drug repurposing) makes better use of the information in gene paths, and performs better in predicting drug-disease associations.
Collapse
Affiliation(s)
- Yuxing Wang
- School of Computer Science and Engineering, Sun Yat-sen University, Guangzhou 510000, China
| | - Zhiyang Li
- School of Computer Science and Engineering, Sun Yat-sen University, Guangzhou 510000, China
| | - Jiahua Rao
- School of Computer Science and Engineering, Sun Yat-sen University, Guangzhou 510000, China
| | - Yuedong Yang
- School of Computer Science and Engineering, Sun Yat-sen University, Guangzhou 510000, China
| | - Zhiming Dai
- School of Computer Science and Engineering, Sun Yat-sen University, Guangzhou 510000, China
| |
Collapse
|
4
|
Lu C, Yang W, Wang F, Li B, Liu Z, Liao H. Effects of intrauterine and post-natal exposure to air pollution on children's pneumonia: Key roles in different particulate matters exposure during critical time windows. JOURNAL OF HAZARDOUS MATERIALS 2023; 457:131837. [PMID: 37329598 DOI: 10.1016/j.jhazmat.2023.131837] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 06/05/2023] [Accepted: 06/10/2023] [Indexed: 06/19/2023]
Abstract
BACKGROUND Despite mounting evidence linked pneumonia with air pollution, it is unclear what main pollutant(s) exposure in which critical window(s) play a key role in pneumonia. OBJECTIVE To examine effects of intrauterine and post-natal exposure to air pollution on children's doctor-diagnosed pneumonia (DDP). METHODS A combination of cross-sectional and retrospective cohort study was conducted at Changsha, China during 2019-2020. Personal exposure to outdoor air pollutants at each child's home address was estimated using inverse distance weighted (IDW) method based on data from 10 air quality monitoring stations. Associations between personal air pollution exposure and DDP were evaluated. RESULTS Children's DDP was associated with intrauterine and post-natal exposure to PM2.5, PM2.5-10, and PM10, adjusted ORs (95% CI) of 1.17 (1.04-1.30), 1.09 (1.01-1.17), and 1.07 (1.00-1.14) for IQR increase in intrauterine exposure and 1.12 (1.02-1.22), 1.13 (1.06-1.21), and 1.28 (1.16-1.41) for post-natal exposure. Intrauterine PM2.5 exposure and post-natal PM10 exposure were associated with a higher risk of pneumonia. We identified the 2nd trimester, 3rd trimester, and first year as critical windows respectively for PM2.5, PM2.5-10, and PM10 exposure. Daytime exposure to traffic-related air pollution especially during early life increased DDP. CONCLUSION Intrauterine and post-natal exposure to particulate matters played a dominant role in children's DDP.
Collapse
Affiliation(s)
- Chan Lu
- XiangYa School of Public Health, Central South University, Changsha 410078, Hunan, China.
| | - Wenhui Yang
- XiangYa School of Public Health, Central South University, Changsha 410078, Hunan, China
| | - Faming Wang
- Division of Animal and Human Health Engineering, Department of Biosystems, KU Leuven, Leuven 3001, Belgium; Occupational Safety and Public Health Group, Xi'an University of Science and Technology, Xi'an 710054, Shanxi, China
| | - Bin Li
- School of Psychology, Central China Normal University, Wuhan 430070, China
| | - Zijing Liu
- XiangYa School of Public Health, Central South University, Changsha 410078, Hunan, China
| | - Hongsen Liao
- XiangYa School of Public Health, Central South University, Changsha 410078, Hunan, China
| |
Collapse
|
5
|
Shi Q, Qi K. Developmental origins of health and disease: Impact of paternal nutrition and lifestyle. Pediatr Investig 2023; 7:111-131. [PMID: 37324600 PMCID: PMC10262906 DOI: 10.1002/ped4.12367] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 01/29/2023] [Indexed: 09/20/2023] Open
Abstract
Most epidemiological and experimental studies have focused on maternal influences on offspring's health. The impact of maternal undernutrition, overnutrition, hypoxia, and stress is linked to adverse offspring outcomes across a range of systems including cardiometabolic, respiratory, endocrine, and reproduction among others. During the past decade, it has become evident that paternal environmental factors are also linked to the development of diseases in offspring. In this article, we aim to outline the current understanding of the impact of male health and environmental exposure on offspring development, health, and disease and explore the mechanisms underlying the paternal programming of offspring health. The available evidence suggests that poor paternal pre-conceptional nutrition and lifestyle, and advanced age can increase the risk of negative outcomes in offspring, via both direct (genetic/epigenetic) and indirect (maternal uterine environment) effects. Beginning at preconception, and during utero and the early life after birth, cells acquire an epigenetic memory of the early exposure which can be influential across the entire lifespan and program a child's health. Potentially not only mothers but also fathers should be advised that maintaining a healthy diet and lifestyle is important to improve offspring health as well as the parental health status. However, the evidence is mostly based on animal studies, and well-designed human studies are urgently needed to verify findings from animal data.
Collapse
Affiliation(s)
- Qiaoyu Shi
- Laboratory of Nutrition and Development, Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing Pediatric Research Institute, Beijing Children's HospitalCapital Medical University, National Center for Children's HealthBeijingChina
| | - Kemin Qi
- Laboratory of Nutrition and Development, Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing Pediatric Research Institute, Beijing Children's HospitalCapital Medical University, National Center for Children's HealthBeijingChina
| |
Collapse
|
6
|
Goud TJ. Epigenetic and Long-Term Effects of Nicotine on Biology, Behavior, and Health. Pharmacol Res 2023; 192:106741. [PMID: 37149116 DOI: 10.1016/j.phrs.2023.106741] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/15/2023] [Accepted: 03/20/2023] [Indexed: 05/08/2023]
Abstract
Tobacco and nicotine use are associated with disease susceptibility and progression. Health challenges associated with nicotine and smoking include developmental delays, addiction, mental health and behavioral changes, lung disease, cardiovascular disease, endocrine disorders, diabetes, immune system changes, and cancer. Increasing evidence suggests that nicotine-associated epigenetic changes may mediate or moderate the development and progression of a myriad of negative health outcomes. In addition, nicotine exposure may confer increased lifelong susceptibility to disease and mental health challenges through alteration of epigenetic signaling. This review examines the relationship between nicotine exposure (and smoking), epigenetic changes, and maladaptive outcomes that include developmental disorders, addiction, mental health challenges, pulmonary disease, cardiovascular disease, endocrine disorders, diabetes, immune system changes, and cancer. Overall, findings support the contention that nicotine (or smoking) associated altered epigenetic signaling is a contributing factor to disease and health challenges.
Collapse
Affiliation(s)
- Thomas J Goud
- Department of Biobehavioral Health, The Pennsylvania State University, Penn State University, University Park, PA, USA.
| |
Collapse
|
7
|
Kurihara C, Kuniyoshi KM, Rehan VK. Preterm Birth, Developmental Smoke/Nicotine Exposure, and Life-Long Pulmonary Sequelae. CHILDREN (BASEL, SWITZERLAND) 2023; 10:children10040608. [PMID: 37189857 DOI: 10.3390/children10040608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/20/2023] [Accepted: 03/21/2023] [Indexed: 05/17/2023]
Abstract
This review delineates the main pulmonary issues related to preterm birth, perinatal tobacco/nicotine exposure, and its effects on offspring, focusing on respiratory health and its possible transmission to subsequent generations. We review the extent of the problem of preterm birth, prematurity-related pulmonary effects, and the associated increased risk of asthma later in life. We then review the impact of developmental tobacco/nicotine exposure on offspring asthma and the significance of transgenerational pulmonary effects following perinatal tobacco/nicotine exposure, possibly via its effects on germline epigenetics.
Collapse
Affiliation(s)
- Chie Kurihara
- Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Katherine M Kuniyoshi
- Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Virender K Rehan
- Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
8
|
Castro EM, Lotfipour S, Leslie FM. Nicotine on the developing brain. Pharmacol Res 2023; 190:106716. [PMID: 36868366 PMCID: PMC10392865 DOI: 10.1016/j.phrs.2023.106716] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/23/2023] [Accepted: 02/28/2023] [Indexed: 03/05/2023]
Abstract
Developmental periods such as gestation and adolescence have enhanced plasticity leaving the brain vulnerable to harmful effects from nicotine use. Proper brain maturation and circuit organization is critical for normal physiological and behavioral outcomes. Although cigarette smoking has declined in popularity, noncombustible nicotine products are readily used. The misperceived safety of these alternatives lead to widespread use among vulnerable populations such as pregnant women and adolescents. Nicotine exposure during these sensitive developmental windows is detrimental to cardiorespiratory function, learning and memory, executive function, and reward related circuitry. In this review, we will discuss clinical and preclinical evidence of the adverse alterations in the brain and behavior following nicotine exposure. Time-dependent nicotine-induced changes in reward related brain regions and drug reward behaviors will be discussed and highlight unique sensitivities within a developmental period. We will also review long lasting effects of developmental exposure persisting into adulthood, along with permanent epigenetic changes in the genome which can be passed to future generations. Taken together, it is critical to evaluate the consequences of nicotine exposure during these vulnerable developmental windows due to its direct impact on cognition, potential trajectories for other substance use, and implicated mechanisms for the neurobiology of substance use disorders.
Collapse
Affiliation(s)
- Emily M Castro
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University of California, Irvine, Irvine, CA, USA
| | - Shahrdad Lotfipour
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University of California, Irvine, Irvine, CA, USA; Department of Emergency Medicine, School of Medicine, University of California, Irvine, Irvine, CA, USA; Department of Pathology and Laboratory Medicine, School of Medicine, University of California, Irvine, Irvine, CA, USA
| | - Frances M Leslie
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University of California, Irvine, Irvine, CA, USA.
| |
Collapse
|
9
|
Svanes C, Holloway JW, Krauss-Etschmann S. Preconception origins of asthma, allergies and lung function: The influence of previous generations on the respiratory health of our children. J Intern Med 2023; 293:531-549. [PMID: 36861185 DOI: 10.1111/joim.13611] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Abstract
Emerging research suggests that exposures occurring years before conception are important determinants of the health of future offspring and subsequent generations. Environmental exposures of both the father and mother, or exposure to disease processes such as obesity or infections, may influence germline cells and thereby cause a cascade of health outcomes in multiple subsequent generations. There is now increasing evidence that respiratory health is influenced by parental exposures that occur long before conception. The strongest evidence relates adolescent tobacco smoking and overweight in future fathers to increased asthma and lower lung function in their offspring, supported by evidence on parental preconception occupational exposures and air pollution. Although this literature is still sparse, the epidemiological analyses reveal strong effects that are consistent across studies with different designs and methodologies. The results are strengthened by mechanistic research from animal models and (scarce) human studies that have identified molecular mechanisms that can explain the epidemiological findings, suggesting transfer of epigenetic signals through germline cells, with susceptibility windows in utero (both male and female line) and prepuberty (male line). The concept that our lifestyles and behaviours may influence the health of our future children represents a new paradigm. This raises concerns for future health in decades to come with respect to harmful exposures but may also open for radical rethinking of preventive strategies that may improve health in multiple generations, reverse the imprint of our parents and forefathers, and underpin strategies that can break the vicious circle of propagation of health inequalities across generations.
Collapse
Affiliation(s)
- Cecilie Svanes
- Centre for International Health, Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway.,Department of Occupational Medicine, Haukeland University Hospital, Bergen, Norway
| | - John W Holloway
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Susanne Krauss-Etschmann
- Division of Early Life Origins of Chronic Lung Diseases, Research Center Borstel, Airway Research Center North (ARCN), German Center for Lung Research (DZL), Borstel, Germany.,Institute of Experimental Medicine, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| |
Collapse
|
10
|
Noël A, Yilmaz S, Farrow T, Schexnayder M, Eickelberg O, Jelesijevic T. Sex-Specific Alterations of the Lung Transcriptome at Birth in Mouse Offspring Prenatally Exposed to Vanilla-Flavored E-Cigarette Aerosols and Enhanced Susceptibility to Asthma. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:3710. [PMID: 36834405 PMCID: PMC9967225 DOI: 10.3390/ijerph20043710] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/07/2023] [Accepted: 02/14/2023] [Indexed: 06/18/2023]
Abstract
Currently, approximately 8 million adult Americans use electronic cigarettes (e-cigs) daily, including women of childbearing age. It is known that more than 10% of women smoke during their pregnancy, and recent surveys show that rates of maternal vaping are similar to rates of maternal cigarette smoking. However, the effects of inhaling e-cig aerosol on the health of fetuses remain unknown. The objective of the present study was to increase our understanding of the molecular effects caused by in utero exposures to e-cig aerosols on developing mouse lungs and, later in life, on the offspring's susceptibility to developing asthma. METHODS Pregnant mice were exposed throughout gestation to either filtered air or vanilla-flavored e-cig aerosols containing 18 mg/mL of nicotine. Male and female exposed mouse offspring were sacrificed at birth, and then the lung transcriptome was evaluated. Additionally, once sub-groups of male offspring mice reached 4 weeks of age, they were challenged with house dust mites (HDMs) for 3 weeks to assess asthmatic responses. RESULTS The lung transcriptomic responses of the mouse offspring at birth showed that in utero vanilla-flavored e-cig aerosol exposure significantly regulated 88 genes in males (62 genes were up-regulated and 26 genes were down-regulated), and 65 genes were significantly regulated in females (17 genes were up-regulated and 48 genes were down-regulated). Gene network analyses revealed that in utero e-cig aerosol exposure affected canonical pathways associated with CD28 signaling in T helper cells, the role of NFAT in the regulation of immune responses, and phospholipase C signaling in males, whereas the dysregulated genes in the female offspring were associated with NRF2-mediated oxidative stress responses. Moreover, we found that in utero exposures to vanilla-flavored e-cig aerosol exacerbated HDM-induced asthma in 7-week-old male mouse offspring compared to respective in utero air + HDM controls. CONCLUSIONS Overall, these data demonstrate that in utero e-cig aerosol exposure alters the developing mouse lung transcriptome at birth in a sex-specific manner and provide evidence that the inhalation of e-cig aerosols is detrimental to the respiratory health of offspring by increasing the offspring' susceptibility to developing lung diseases later in life.
Collapse
Affiliation(s)
- Alexandra Noël
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Sultan Yilmaz
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Tori Farrow
- Department of Environmental Toxicology, Southern University and A & M College, Baton Rouge, LA 70813, USA
| | | | - Oliver Eickelberg
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Tomislav Jelesijevic
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| |
Collapse
|
11
|
Yang W, Johnson MB, Liao H, Liu Z, Zheng X, Lu C. Combined effect of preconceptional and prenatal exposure to air pollution and temperature on childhood pneumonia: A case-control study. ENVIRONMENTAL RESEARCH 2023; 216:114806. [PMID: 36375503 DOI: 10.1016/j.envres.2022.114806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/26/2022] [Accepted: 11/11/2022] [Indexed: 06/16/2023]
Abstract
Mounting evidence have linked ambient air pollution and temperature with childhood pneumonia, but it is unclear whether there is an interaction between air pollution and temperature on childhood pneumonia. We aim to assess the combined effect of ambient air pollution and temperature exposure during preconception and pregnancy on pneumonia by a case-control study of 1510 children aged 0-14 years in Changsha, China. We obtained the data of childhood pneumonia from XiangYa Hospital electrical records. We estimated personal exposure to outdoor air pollution (PM10, SO2 and NO2) by inverse distance weighted (IDW) method and temperature indicators. Multiple logistic regression models were used to evaluate associations of childhood pneumonia with air pollution, temperature (T), and diurnal temperature variation (DTV). We found that exposure to industry-related air pollution (PM10 and SO2) during preconception and pregnancy were associated with childhood pneumonia, with ORs (95% CI) of 1.72 (1.48-1.98) and 2.96 (2.50-3.51) during 1 year before pregnancy and 1.83 (1.59-2.11) and 3.43 (2.83-4.17) in pregnancy. Childhood pneumonia was negatively associated with T exposure during 1 year before pregnancy and pregnancy, with ORs (95% CI) of 0.57 (0.41-0.80) and 0.85 (0.74-0.98). DTV exposure during pregnancy especially during the 1st and 2nd trimesters significantly increased pneumonia risk, with ORS (95% CI) of 1.77 (1.19-2.64), 1.47 (1.18-1.83), and 1.37 (1.07-1.76) respectively. We further observed interactions of PM10 and SO2 exposure with low T and high DTV during conception and pregnancy in relation to childhood pneumonia. This study suggests that there were interactions air pollution with temperature and DTV on pneumonia development.
Collapse
Affiliation(s)
- Wenhui Yang
- XiangYa School of Public Health, Central South University, Changsha 410078, China
| | | | - Hongsen Liao
- XiangYa School of Public Health, Central South University, Changsha 410078, China
| | - Zijing Liu
- XiangYa School of Public Health, Central South University, Changsha 410078, China
| | - Xiangrong Zheng
- Department of Pediatrics, XiangYa Hospital, Central South University, Changsha, China
| | - Chan Lu
- XiangYa School of Public Health, Central South University, Changsha 410078, China.
| |
Collapse
|
12
|
Aslaner DM, Alghothani O, Saldana TA, Ezell KG, Yallourakis MD, MacKenzie DM, Miller RA, Wold LE, Gorr MW. E-cigarette vapor exposure in utero causes long-term pulmonary effects in offspring. Am J Physiol Lung Cell Mol Physiol 2022; 323:L676-L682. [PMID: 36218276 PMCID: PMC9722245 DOI: 10.1152/ajplung.00233.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 10/04/2022] [Accepted: 10/04/2022] [Indexed: 11/22/2022] Open
Abstract
The in utero environment is sensitive to toxicant exposure, altering the health and growth of the fetus, and thus sensitive to contaminant exposure. Though recent clinical data suggest that e-cigarette use does no further harm to birth outcomes than a nicotine patch, this does not account for the effects of vaping during pregnancy on the long-term health of offspring. Pregnant mice were exposed to: 1) e-cigarette vapor with nicotine (PV + Nic; 2% Nic in 50:50 propylene glycol: vegetable glycerin), 2) e-cigarette vapor without nicotine [PV; (50:50 propylene glycol:vegetable glycerin)], or 3) HEPA filtered air (FA). Dams were removed from exposure upon giving birth. At 5 mo of age, pulmonary function tests on the offspring revealed female and male mice from the PV group had greater lung stiffness (Ers) and alveolar stiffness (H) compared with the FA group. Furthermore, baseline compliance (Crs) was reduced in female mice from the PV group and in male mice from the PV and PV + Nic groups. Lastly, female mice had decreased forced expiratory volume (FEV0.1) in the PV group, but not in the male groups, compared with the FA group. Lung histology revealed increased collagen deposition around the vessels/airways and in alveolar tissue in PV and PV + Nic groups. Furthermore, goblet hyperplasia was observed in PV male and PV/PV + Nic female mice. Our work shows that in utero exposure to e-cigarette vapor, regardless of nicotine presence, causes lung dysfunction and structural impairments that persist in the offspring to adulthood.
Collapse
Affiliation(s)
- David M Aslaner
- College of Nursing, The Ohio State University, Columbus, Ohio
| | - Omar Alghothani
- College of Nursing, The Ohio State University, Columbus, Ohio
| | - Ty A Saldana
- College of Nursing, The Ohio State University, Columbus, Ohio
| | | | | | | | - Roy A Miller
- College of Nursing, The Ohio State University, Columbus, Ohio
| | - Loren E Wold
- College of Nursing, The Ohio State University, Columbus, Ohio
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University, Columbus, Ohio
| | - Matthew W Gorr
- College of Nursing, The Ohio State University, Columbus, Ohio
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University, Columbus, Ohio
| |
Collapse
|
13
|
Lu C, Yang W, Liu Z, Liao H, Li Q, Liu Q. Effect of preconceptional, prenatal and postnatal exposure to home environmental factors on childhood pneumonia: A key role in early life exposure. ENVIRONMENTAL RESEARCH 2022; 214:114098. [PMID: 35981613 DOI: 10.1016/j.envres.2022.114098] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/08/2022] [Accepted: 08/09/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Increasing evidence have associated pneumonia with early exposure to ambient air pollution. However, the role of indoor environmental factors exposure in early life on childhood pneumonia remains unclear. OBJECTIVE To examine the association between indoor environmental factors exposure during different timing windows and childhood pneumonia, and to identify the key indoor factor(s) in different critical window(s). METHODS A retrospective cohort study of 8689 pre-schoolers was performed in Changsha, China during 2019-2020. Our questionnaire survey was designed to collect information on pre-schooler's outcome and residential environmental exposure containing indoor pollution and allergens during 1 year before pregnancy, pregnancy, first year, and past year. The associations were further estimated stratified by personal exposure level of outdoor NO2, CO, temperature (T) and different covariates. Associations were assessed by multiple logistic regression model in terms of odds ratio (OR) of 95% confidence interval (CI). RESULTS Pre-schooler's pneumonia was significantly related with exposure of new furniture, redecoration, mold/damp stains, and mold or damp clothing or bedding exposure during the four periods, with the strongest associations observed during 1 year before pregnancy based on multi-window model, with ORs (95% CI) of 1.27 (1.12-1.44), 1.26 (1.09-1.46), 1.34 (1.14-1.57), and 1.28 (1.05-1.56) respectively. Environmental tobacco smoke (ETS) including both parental and grandparental smoking were significantly related with increased risk of pre-schooler's pneumonia, and ETS played a more important role in early life, with ORs (95% CI) of 1.17 (1.01-1.36) and 1.19 (1.02-1.39) in pregnancy and first year. Indoor plants particularly nonflowering plants significantly elevated pneumonia risk but only in past year, with ORs (95% CI) of 1.17 (1.05-1.30) and 1.14 (1.03-1.26). Higher pneumonia risk was observed for renovation exposure in pre-birth compared to post-birth, while mold/dampness exerted an accumulative effect with the highest risk for exposure during both pre- and post-birth. Living near traffic road and exposure to high level of traffic-related air pollution and high temperature significantly increased pneumonia risk. Sensitivity analysis found that some sub-groups were more susceptible to pneumonia risk of home environment exposure. CONCLUSION Early life exposure to indoor environmental factors plays an important role in pneumonia development, supporting the hypothesis of "Preconceptional and Fetal Origin of Childhood Pneumonia" and "Developmental Origins of Health and Pneumonia".
Collapse
Affiliation(s)
- Chan Lu
- XiangYa School of Public Health, Central South University, Changsha, China.
| | - Wenhui Yang
- XiangYa School of Public Health, Central South University, Changsha, China
| | - Zijing Liu
- XiangYa School of Public Health, Central South University, Changsha, China
| | - Hongsen Liao
- XiangYa School of Public Health, Central South University, Changsha, China
| | - Qin Li
- XiangYa School of Public Health, Central South University, Changsha, China
| | - Qin Liu
- XiangYa School of Public Health, Central South University, Changsha, China
| |
Collapse
|
14
|
Berlanga-Acosta J, Fernandez-Mayola M, Mendoza-Mari Y, Garcia-Ojalvo A, Martinez-Jimenez I, Rodriguez-Rodriguez N, Garcia del Barco Herrera D, Guillén-Nieto G. Cell-Free Filtrates (CFF) as Vectors of a Transmissible Pathologic Tissue Memory Code: A Hypothetical and Narrative Review. Int J Mol Sci 2022; 23:11575. [PMID: 36232877 PMCID: PMC9570059 DOI: 10.3390/ijms231911575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/20/2022] [Accepted: 09/22/2022] [Indexed: 11/17/2022] Open
Abstract
Cellular memory is a controversial concept representing the ability of cells to "write and memorize" stressful experiences via epigenetic operators. The progressive course of chronic, non-communicable diseases such as type 2 diabetes mellitus, cancer, and arteriosclerosis, is likely driven through an abnormal epigenetic reprogramming, fostering the hypothesis of a cellular pathologic memory. Accordingly, cultured diabetic and cancer patient-derived cells recall behavioral traits as when in the donor's organism irrespective to culture time and conditions. Here, we analyze the data of studies conducted by our group and led by a cascade of hypothesis, in which we aimed to validate the hypothetical existence and transmissibility of a cellular pathologic memory in diabetes, arteriosclerotic peripheral arterial disease, and cancer. These experiments were based on the administration to otherwise healthy animals of cell-free filtrates prepared from human pathologic tissue samples representative of each disease condition. The administration of each pathologic tissue homogenate consistently induced the faithful recapitulation of: (1) Diabetic archetypical changes in cutaneous arterioles and nerves. (2) Non-thrombotic arteriosclerotic thickening, collagenous arterial encroachment, aberrant angiogenesis, and vascular remodeling. (3) Pre-malignant and malignant epithelial and mesenchymal tumors in different organs; all evocative of the donor's tissue histopathology and with no barriers for interspecies transmission. We hypothesize that homogenates contain pathologic tissue memory codes represented in soluble drivers that "infiltrate" host's animal cells, and ultimately impose their phenotypic signatures. The identification and validation of the actors in behind may pave the way for future therapies.
Collapse
Affiliation(s)
- Jorge Berlanga-Acosta
- Tissue Repair, Wound Healing and Cytoprotection Research Group, Biomedical Research Direction, Center for Genetic Engineering and Biotechnology, Ave. 31 S/N. e/ 158 and 190, Cubanacán, Playa, Havana 10600, Cuba
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Chen Y, Duan F, Liu L, Chen G, He Z, Huang H, Wang H. Sex differences and heritability of adrenal steroidogenesis in offspring rats induced by prenatal nicotine exposure. J Steroid Biochem Mol Biol 2022; 221:106102. [PMID: 35367371 DOI: 10.1016/j.jsbmb.2022.106102] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 03/24/2022] [Accepted: 03/28/2022] [Indexed: 12/28/2022]
Abstract
The epidemiological investigation has suggested prenatal nicotine exposure (PNE) induces multiorgan developmental toxicity and increases the risk of metabolic diseases in offspring. Our previous study found that the occurrence of fetal-originated diseases was associated with abnormal adrenal development in offspring. However, the long-term harmful effects on adrenal development in offspring induced by PNE remain unclear. Pregnant Wistar rats were injected subcutaneously with nicotine (2 mg/kg·d) from gestation day (GD) 9 to GD20 to obtain the adrenal gland from fetal and adult offspring rats of F1 and F2 generations. We found that the adrenal insulin-like growth factor 1 (IGF1) signaling pathway and steroidogenic function were increased in male while decreased in female of PNE fetal rats, which could extend into adulthood. Furthermore, the primary adrenal cells of fetal rats were treated with nicotine to observe the phenomena and clarify the possible mechanism of the sex difference. The results suggested that there are sex differences in IGF1 signaling pathway and steroidogenic function induced by PNE, which may be associated with sex differences in nAChRβ1 expression. In addition, the adrenal steroidogenic function was reduced in F2 offspring of F1 PNE female rats (regardless of mating with control or Male PNE rats). Therefore, the decrease of adrenal steroidogenic function in female offspring rats induced by PNE has maternal heritability. In conclusion, PNE could lead to sex differences and heritability of adrenal steroidogenic function in offspring rats.
Collapse
Affiliation(s)
- Yawen Chen
- Department of Pharmacology, Basic Medical College of Wuhan University, Wuhan 430071, China
| | - Fangfang Duan
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China
| | - Lian Liu
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China; Department of Pharmacology, Medical College of Yangtze University, Jingzhou 434023, China
| | - Guanghui Chen
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China
| | - Zheng He
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China
| | - Hegui Huang
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China
| | - Hui Wang
- Department of Pharmacology, Basic Medical College of Wuhan University, Wuhan 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China.
| |
Collapse
|
16
|
Wang L, Zhang W, Wu X, Liang X, Cao L, Zhai J, Yang Y, Chen Q, Liu H, Zhang J, Ding Y, Zhu F, Tang J. MIAOME: Human Microbiome Affect The Host Epigenome. Comput Struct Biotechnol J 2022; 20:2455-2463. [PMID: 35664224 PMCID: PMC9136154 DOI: 10.1016/j.csbj.2022.05.024] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 05/11/2022] [Accepted: 05/12/2022] [Indexed: 01/10/2023] Open
Abstract
Besides the genetic factors having tremendous influences on the regulations of the epigenome, the microenvironmental factors have recently gained extensive attention for their roles in affecting the host epigenome. There are three major types of microenvironmental factors: microbiota-derived metabolites (MDM), microbiota-derived components (MDC) and microbiota-secreted proteins (MSP). These factors can regulate host physiology by modifying host gene expression through the three highly interconnected epigenetic mechanisms (e.g. histone modifications, DNA modifications, and non-coding RNAs). However, no database was available to provide the comprehensive factors of these types. Herein, a database entitled 'Human Microbiome Affect The Host Epigenome (MIAOME)' was constructed. Based on the types of epigenetic modifications confirmed in the literature review, the MIAOME database captures 1068 (63 genus, 281 species, 707 strains, etc.) human microbes, 91 unique microbiota-derived metabolites & components (16 fatty acids, 10 bile acids, 10 phenolic compounds, 10 vitamins, 9 tryptophan metabolites, etc.) derived from 967 microbes; 50 microbes that secreted 40 proteins; 98 microbes that directly influence the host epigenetic modification, and provides 3 classifications of the epigenome, including (1) 4 types of DNA modifications, (2) 20 histone modifications and (3) 490 ncRNAs regulations, involved in 160 human diseases. All in all, MIAOME has compiled the information on the microenvironmental factors influence host epigenome through the scientific literature and biochemical databases, and allows the collective considerations among the different types of factors. It can be freely assessed without login requirement by all users at: http://miaome.idrblab.net/ttd/
Collapse
Affiliation(s)
- Lidan Wang
- School of Basic Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Wei Zhang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xianglu Wu
- Joint International Research Laboratory of Reproductive and Development, Department of Reproductive Biology, School of Public Health, Chongqing Medical University, Chongqing 400016, China
| | - Xiao Liang
- School of Basic Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Lijie Cao
- School of Basic Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Jincheng Zhai
- School of Basic Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Yiyang Yang
- School of Basic Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Qiuxiao Chen
- School of Basic Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Hongqing Liu
- School of Basic Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Jun Zhang
- School of Basic Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Yubin Ding
- Joint International Research Laboratory of Reproductive and Development, Department of Reproductive Biology, School of Public Health, Chongqing Medical University, Chongqing 400016, China
- Corresponding authors at: School of Basic Medicine, Chongqing Medical University, Chongqing 400016, China (J. Tang).
| | - Feng Zhu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Corresponding authors at: School of Basic Medicine, Chongqing Medical University, Chongqing 400016, China (J. Tang).
| | - Jing Tang
- School of Basic Medicine, Chongqing Medical University, Chongqing 400016, China
- Joint International Research Laboratory of Reproductive and Development, Department of Reproductive Biology, School of Public Health, Chongqing Medical University, Chongqing 400016, China
- Corresponding authors at: School of Basic Medicine, Chongqing Medical University, Chongqing 400016, China (J. Tang).
| |
Collapse
|
17
|
Francisco CM, Fischer LW, Vendramini V, de Oliva SU, Paccola CC, Miraglia SM. Resveratrol reverses male reproductive damage in rats exposed to nicotine during the intrauterine phase and breastfeeding. Andrology 2022; 10:951-972. [PMID: 35472028 DOI: 10.1111/andr.13183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 03/30/2022] [Accepted: 04/05/2022] [Indexed: 11/27/2022]
Abstract
BACKGROUND Nicotine leads to reproductive changes culminating in male infertility and subfertility. Resveratrol, a polyphenol, is a biological modulator. Sirtuin 1 (SIRT1) protein can positively act on male reproduction, and its expression can be affected by nicotine and modulated by resveratrol. OBJECTIVES The capability of resveratrol to reverse the reproductive damage in adult male offspring, which was nicotine-exposed during the intrauterine phase and breastfeeding, was investigated. MATERIALS AND METHODS Four groups were established with male offspring born from nicotine-exposed and non-exposed rat dams during pregnancy and lactation. Forty-eight male Wistar rats were distributed into four groups: sham control (SC), resveratrol (R), nicotine (N), and nicotine + resveratrol (NR). Rat dams of the N and NR offspring were exposed to nicotine (2 mg/kg/day) during pregnancy and lactation using a subcutaneously implanted minipump. The offspring of the R and NR groups received resveratrol (300 mg/kg of body weight, gavage) for 63 days from puberty. At 114 days of age, the male rats were euthanized. RESULTS Nicotine did not alter the body weight, biometry of reproductive organs, or quantitative sperm parameters of adult offspring but caused an evident worsening of all sperm qualitative parameters studied. Daily treatment with resveratrol from puberty up to adulthood improved all qualitative sperm parameters significantly, leading some of them close to the control values. Resveratrol also improved the morphological integrity and expression of SIRT1 in the seminiferous epithelium of nicotine-exposed offspring. CONCLUSION AND DISCUSSION Resveratrol reversed the male reproductive damage caused by nicotine. Nicotine crosses the blood-placental membrane and is present in the breast milk of mothers who smoke. Resveratrol restored the altered reproductive parameters in the male adult offspring that were nicotine-exposed during intrauterine life and breastfeeding. The epigenetic modulating action of resveratrol can be involved in this nicotine damage reversion. Resveratrol may be a promising candidate to be investigated regarding the adjuvant strategies in the treatment of male infertility.
Collapse
Affiliation(s)
| | | | - Vanessa Vendramini
- Department of Morphology and Genetics, Federal University of São Paulo, São Paulo, Brazil
| | - Samara Urban de Oliva
- Department of Morphology and Genetics, Federal University of São Paulo, São Paulo, Brazil
| | - Camila Cicconi Paccola
- Department of Morphology and Genetics, Federal University of São Paulo, São Paulo, Brazil
| | - Sandra Maria Miraglia
- Department of Morphology and Genetics, Federal University of São Paulo, São Paulo, Brazil
| |
Collapse
|
18
|
Azadi M, Aref E, Pazhoohan S, Raoufy MR, Semnanian S, Azizi H. Paternal preconception exposure to chronic morphine alters respiratory pattern in response to morphine in male offspring. Respir Physiol Neurobiol 2022; 296:103811. [PMID: 34740834 DOI: 10.1016/j.resp.2021.103811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 10/12/2021] [Accepted: 10/31/2021] [Indexed: 10/19/2022]
Abstract
The clinical use of opioids is restricted by its deleterious impacts on respiratory system. Gaining a better understanding of an individual's susceptibility to adverse opioid effects is important to recognize patients at risk. Ancestral drug addiction has been shown to be associated with alterations in drug responsiveness in the progenies. In the current study, we sought to evaluate the effects of preconception paternal morphine consumption on respiratory parameters in response to acute morphine in male offspring during adulthood, using plethysmography technique. Male Wistar rats administered 10 days of increasing doses of morphine in the period of adolescence. Thereafter, following a 30-day abstinence time, adult males copulated with naïve females. The adult male offspring were examined for breathing response to morphine. Our results indicated that sires who introduce chronic morphine during adolescence leads to increase irregularity of respiratory pattern and asynchronization between inter-breath interval (IBI) and respiratory volume (RV) time series in male offspring. These findings provide evidence that chronic morphine use by parents even before pregnancy can affect respiratory pattern and response to morphine in the offspring.
Collapse
Affiliation(s)
- Maryam Azadi
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Ehsan Aref
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Saeed Pazhoohan
- Department of Physiology, Faculty of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Mohammad Reza Raoufy
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Saeed Semnanian
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Hossein Azizi
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
19
|
Wang H, Liu J, Gao J, Yan W, Rehan VK. Perinatal Exposure to Nicotine Alters Sperm RNA Profiles in Rats. Front Endocrinol (Lausanne) 2022; 13:893863. [PMID: 35600600 PMCID: PMC9114732 DOI: 10.3389/fendo.2022.893863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 04/07/2022] [Indexed: 01/31/2023] Open
Abstract
Perinatal exposure to smoking has been associated with childhood asthma, one of the most common pediatric conditions affecting millions of children globally. Of great interest, this disease phenotype appears heritable as it can persist across multiple generations even in the absence of persistent exposure to smoking in subsequent generations. Although the molecular mechanisms underlying childhood asthma induced by perinatal exposure to smoking or nicotine remain elusive, an epigenetic mechanism has been proposed, which is supported by the data from our earlier analyses on germline DNA methylation (5mC) and histone marks (H3 and H4 acetylation). To further investigate the potential epigenetic inheritance of childhood asthma induced by perinatal nicotine exposure, we profiled both large and small RNAs in the sperm of F1 male rats. Our data revealed that perinatal exposure to nicotine leads to alterations in the profiles of sperm-borne RNAs, including mRNAs and small RNAs, and that rosiglitazone, a PPARγ agonist, can attenuate the effect of nicotine and reverse the sperm-borne RNA profiles of F1 male rats to close to placebo control levels.
Collapse
Affiliation(s)
- Hetan Wang
- Department of Medical Genetics, China Medical University, Shenyang, China
- The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, United States
| | - Jie Liu
- The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, United States
| | - Jianjun Gao
- The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, United States
| | - Wei Yan
- The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, United States
- David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA, United States
- *Correspondence: Wei Yan, ; Virender K. Rehan,
| | - Virender K. Rehan
- The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, United States
- David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA, United States
- *Correspondence: Wei Yan, ; Virender K. Rehan,
| |
Collapse
|
20
|
Bednarczuk N, Williams EE, Dassios T, Greenough A. Nicotine replacement therapy and e-cigarettes in pregnancy and infant respiratory outcomes. Early Hum Dev 2022; 164:105509. [PMID: 34823165 DOI: 10.1016/j.earlhumdev.2021.105509] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 11/10/2021] [Accepted: 11/16/2021] [Indexed: 11/25/2022]
Abstract
BACKGROUND Nicotine replacement therapy (NRT) and e-cigarettes are recommended to pregnant women who wish to stop smoking. Albeit eliminating other harmful components of cigarettes, those alternatives still expose the developing fetus to nicotine. The lungs may be particularly vulnerable to damage by nicotine as there is widespread nicotinic-acetylcholine receptor expression in the lungs. There is, however, a paucity of information about the effect of NRT and e-cigarette use in pregnancy on infant respiratory outcomes. AIMS To explore the effect of NRT and e-cigarettes on the developing lung. STUDY DESIGN A literature search was undertaken to examine the use and safety of nicotine-replacement strategies in pregnancy, with a focus on infant respiratory outcomes. This included experimental studies investigating the effect of isolated "gestational" nicotine on the developing lung. OUTCOME MEASURES Respiratory outcomes in animal studies and infants. RESULTS Animal studies investigating the effect of gestational nicotine exposure on fetal lung development demonstrated abnormal lung growth; including abnormal airway branching and alveolar development. Consequently, offspring display altered pulmonary mechanics, including both increased respiratory rate and airway resistance. These findings mirror respiratory pathology observed in infants born to smoking mothers. Human trials of NRT and e-cigarette use in pregnancy have not identified adverse perinatal outcomes regarding reduced birthweight or prematurity, but have not considered infant and childhood respiratory outcomes. CONCLUSIONS Nicotine can impair fetal lung development, leading to concerns regarding the safety of NRT and e-cigarettes in pregnancy. Studies have yet to explore the impact of these nicotine-containing products on infant respiratory outcomes.
Collapse
Affiliation(s)
- Nadja Bednarczuk
- Department of Women and Children's Health, School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London, SE5 9RS, United Kingdom
| | - Emma E Williams
- Department of Women and Children's Health, School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London, SE5 9RS, United Kingdom
| | - Theodore Dassios
- Department of Women and Children's Health, School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London, SE5 9RS, United Kingdom; Neonatal Intensive Care Centre, King's College Hospital NHS Foundation Trust, London, SE5 9RS, United Kingdom
| | - Anne Greenough
- Department of Women and Children's Health, School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London, SE5 9RS, United Kingdom; Asthma UK Centre for Allergic Mechanisms in Asthma, King's College London, SE1 9RT, United Kingdom; National Institute for Health Research (NIHR) Biomedical Research Centre based at Guy's and St Thomas' NHS Foundation Trust and King's College London, SE1 9RT, United Kingdom.
| |
Collapse
|
21
|
Xavier J, Singh S, Kumari P, Ravichandiran V. Neurological repercussions of neonatal nicotine exposure: A review. Int J Dev Neurosci 2021; 82:3-18. [PMID: 34913189 DOI: 10.1002/jdn.10163] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 12/13/2021] [Accepted: 12/13/2021] [Indexed: 12/25/2022] Open
Abstract
Smoking during pregnancy is hazardous to both the mother and the foetus, according to a substantial amount of recorded data. Exposure to nicotine and other compounds in cigarette smoke increases the risk of sudden infant death syndrome (SIDS) by two to five times during pregnancy. Serotonergic abnormalities have been discovered in SIDS infants in the zone of the medulla oblongata, which is known to control cardio-respiratory function. SIDS establishes a connection between depression, learning difficulties and behavioural disorders. Prenatal nicotine intake during the second trimester affects the dopaminergic neurological system, making the foetal brain more susceptible to nicotine and developing ADHD symptoms not just in a foetus but in adolescents also. Prenatal nicotine exposure alters the neurological route of neurotransmitters, acetylcholine and dopamine. Nicotine enhances neuronal activity in adults but desensitizes these processes in babies and young children exposed prenatally. The impact of a neurotoxin like nicotine is determined by the amount and duration of exposure. Continued exposure throughout pregnancy will influence a wide range of activities in the neurodevelopment, whereas exposure confined to a single stage of pregnancy may only affect the processes that are forming at that stage. To decrease the effect of nicotine on neonates due to maternal smoking strategies like nicotine replacement therapy (NRT), folic acid treatment and other behavioural treatments have been studied. Hence, this review focuses on the impact of exposure to nicotine on neonates, which results in various neurological consequences and smoking cessation therapies.
Collapse
Affiliation(s)
- Joyal Xavier
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Export Promotion Industrial Park (EPIP), Hajipur, India
| | - Sanjiv Singh
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Export Promotion Industrial Park (EPIP), Hajipur, India
| | - Priyanka Kumari
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Export Promotion Industrial Park (EPIP), Hajipur, India
| | - V Ravichandiran
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Export Promotion Industrial Park (EPIP), Hajipur, India
| |
Collapse
|
22
|
Mado H, Niesłony F, Niesłony D. Electronic Cigarettes and Pregnancy - What Do We Currently Know? ELECTRONIC JOURNAL OF GENERAL MEDICINE 2021. [DOI: 10.29333/ejgm/11410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
23
|
Socioeconomic circumstances and lung function growth from early adolescence to early adulthood. Pediatr Res 2021; 90:1235-1242. [PMID: 33603209 DOI: 10.1038/s41390-021-01380-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 10/17/2020] [Accepted: 01/11/2021] [Indexed: 11/08/2022]
Abstract
BACKGROUND A reduced lung function in early adulthood is associated with respiratory and non-respiratory diseases and is a long-term predictor of mortality. This study investigated the association between early socioeconomic circumstances (SEC) and lung function growth trajectories from early adolescence until early adulthood. METHODS We analysed data from the EPITeen population-based study, including adolescents born in 1990. Study waves occurred at 13, 17 and 21 years of age. Information on sociodemographic, behavioural and health factors, anthropometry and spirometry was collected. Early-life SEC were assessed using maternal education and paternal occupational position. The forced expiratory volume in the first second (FEV1) growth trajectories were drawn considering sex-and-height interactions over an 8-year period. Our sample included 2022 participants with complete information for the relevant variables. RESULTS Participants from most disadvantaged SEC presented lower FEV1 at early adolescence compared to high-SEC counterparts, but differences seem to diminish with height growth. The effect of paternal occupational position in lung function growth trajectories was moderated by height, thus individuals from fathers with less advantaged occupational position had lower FEV1 at early adolescence, but they had a faster FEV1 growth over time. CONCLUSIONS Individuals from most disadvantaged SEC presented lower lung function at early adolescence compared to high-SEC counterparts; nevertheless, a catch-up growth was observed. IMPACT Lower socioeconomic circumstances were previously associated with reduced lung function and a higher risk of respiratory diseases in adults. Fewer studies analysed the effects of early-life socioeconomic circumstances in lung function growth during adolescence. Disadvantaged socioeconomic circumstances were associated with lower lung function in early adolescence. However, social differences diminished over adolescence, suggesting a catch-up growth of lung function among those from lower socioeconomic circumstances. An improved understanding of the mechanism underlying lung function catch-up (or the absence of catch-up) might support interventions to narrow social inequalities in respiratory health and should be further investigated.
Collapse
|
24
|
López-Cervantes JP, Lønnebotn M, Jogi NO, Calciano L, Kuiper IN, Darby MG, Dharmage SC, Gómez-Real F, Hammer B, Bertelsen RJ, Johannessen A, Würtz AML, Mørkve Knudsen T, Koplin J, Pape K, Skulstad SM, Timm S, Tjalvin G, Krauss-Etschmann S, Accordini S, Schlünssen V, Kirkeleit J, Svanes C. The Exposome Approach in Allergies and Lung Diseases: Is It Time to Define a Preconception Exposome? INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:12684. [PMID: 34886409 PMCID: PMC8657011 DOI: 10.3390/ijerph182312684] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 11/26/2021] [Accepted: 11/29/2021] [Indexed: 12/30/2022]
Abstract
Emerging research suggests environmental exposures before conception may adversely affect allergies and lung diseases in future generations. Most studies are limited as they have focused on single exposures, not considering that these diseases have a multifactorial origin in which environmental and lifestyle factors are likely to interact. Traditional exposure assessment methods fail to capture the interactions among environmental exposures and their impact on fundamental biological processes, as well as individual and temporal factors. A valid estimation of exposure preconception is difficult since the human reproductive cycle spans decades and the access to germ cells is limited. The exposome is defined as the cumulative measure of external exposures on an organism (external exposome), and the associated biological responses (endogenous exposome) throughout the lifespan, from conception and onwards. An exposome approach implies a targeted or agnostic analysis of the concurrent and temporal multiple exposures, and may, together with recent technological advances, improve the assessment of the environmental contributors to health and disease. This review describes the current knowledge on preconception environmental exposures as related to respiratory health outcomes in offspring. We discuss the usefulness and feasibility of using an exposome approach in this research, advocating for the preconception exposure window to become included in the exposome concept.
Collapse
Affiliation(s)
- Juan Pablo López-Cervantes
- Center for International Health, Department of Global Public Health and Primary Care, University of Bergen, 5020 Bergen, Norway; (M.L.); (A.J.); (G.T.); (J.K.); (C.S.)
- Department of Occupational Medicine, Haukeland University Hospital, 5021 Bergen, Norway; (N.O.J.); (T.M.K.); (S.M.S.)
| | - Marianne Lønnebotn
- Center for International Health, Department of Global Public Health and Primary Care, University of Bergen, 5020 Bergen, Norway; (M.L.); (A.J.); (G.T.); (J.K.); (C.S.)
- Department of Occupational Medicine, Haukeland University Hospital, 5021 Bergen, Norway; (N.O.J.); (T.M.K.); (S.M.S.)
| | - Nils Oskar Jogi
- Department of Occupational Medicine, Haukeland University Hospital, 5021 Bergen, Norway; (N.O.J.); (T.M.K.); (S.M.S.)
- Department of Clinical Science, University of Bergen, 5021 Bergen, Norway; (F.G.-R.); (R.J.B.)
| | - Lucia Calciano
- Unit of Epidemiology and Medical Statistics, Department of Diagnostics and Public Health, University of Verona, 37134 Verona, Italy; (L.C.); (S.A.)
| | | | - Matthew G. Darby
- Institute of Infectious Disease and Molecular Medicine and Division of Immunology, University of Cape Town, Cape Town 7925, South Africa;
| | - Shyamali C. Dharmage
- School of Population and Global Health, University of Melbourne, Melbourne, VIC 3010, Australia; (S.C.D.); (J.K.)
| | - Francisco Gómez-Real
- Department of Clinical Science, University of Bergen, 5021 Bergen, Norway; (F.G.-R.); (R.J.B.)
- Department of Obstetrics and Gynecology, Haukeland University Hospital, 5053 Bergen, Norway
| | - Barbara Hammer
- Department of Pulmonology, Medical University of Vienna, 1090 Vienna, Austria;
| | | | - Ane Johannessen
- Center for International Health, Department of Global Public Health and Primary Care, University of Bergen, 5020 Bergen, Norway; (M.L.); (A.J.); (G.T.); (J.K.); (C.S.)
| | - Anne Mette Lund Würtz
- Danish Ramazzini Centre, Department of Public Health—Work, Environment and Health, Aarhus University, 8000 Aarhus, Denmark; (A.M.L.W.); (K.P.); (V.S.)
| | - Toril Mørkve Knudsen
- Department of Occupational Medicine, Haukeland University Hospital, 5021 Bergen, Norway; (N.O.J.); (T.M.K.); (S.M.S.)
- Department of Clinical Science, University of Bergen, 5021 Bergen, Norway; (F.G.-R.); (R.J.B.)
| | - Jennifer Koplin
- School of Population and Global Health, University of Melbourne, Melbourne, VIC 3010, Australia; (S.C.D.); (J.K.)
- Murdoch Children’s Research Institute, Melbourne, VIC 3052, Australia
| | - Kathrine Pape
- Danish Ramazzini Centre, Department of Public Health—Work, Environment and Health, Aarhus University, 8000 Aarhus, Denmark; (A.M.L.W.); (K.P.); (V.S.)
| | - Svein Magne Skulstad
- Department of Occupational Medicine, Haukeland University Hospital, 5021 Bergen, Norway; (N.O.J.); (T.M.K.); (S.M.S.)
| | - Signe Timm
- Department of Regional Health Research, University of Southern Denmark, 5230 Odense, Denmark;
- Research Unit, Kolding Hospital, University Hospital of Southern Denmark, 6000 Kolding, Denmark
| | - Gro Tjalvin
- Center for International Health, Department of Global Public Health and Primary Care, University of Bergen, 5020 Bergen, Norway; (M.L.); (A.J.); (G.T.); (J.K.); (C.S.)
- Department of Occupational Medicine, Haukeland University Hospital, 5021 Bergen, Norway; (N.O.J.); (T.M.K.); (S.M.S.)
| | | | - Simone Accordini
- Unit of Epidemiology and Medical Statistics, Department of Diagnostics and Public Health, University of Verona, 37134 Verona, Italy; (L.C.); (S.A.)
| | - Vivi Schlünssen
- Danish Ramazzini Centre, Department of Public Health—Work, Environment and Health, Aarhus University, 8000 Aarhus, Denmark; (A.M.L.W.); (K.P.); (V.S.)
- National Research Centre for the Working Environment, 2100 Copenhagen, Denmark
| | - Jorunn Kirkeleit
- Center for International Health, Department of Global Public Health and Primary Care, University of Bergen, 5020 Bergen, Norway; (M.L.); (A.J.); (G.T.); (J.K.); (C.S.)
- Department of Occupational Medicine, Haukeland University Hospital, 5021 Bergen, Norway; (N.O.J.); (T.M.K.); (S.M.S.)
| | - Cecilie Svanes
- Center for International Health, Department of Global Public Health and Primary Care, University of Bergen, 5020 Bergen, Norway; (M.L.); (A.J.); (G.T.); (J.K.); (C.S.)
- Department of Occupational Medicine, Haukeland University Hospital, 5021 Bergen, Norway; (N.O.J.); (T.M.K.); (S.M.S.)
| |
Collapse
|
25
|
Accordini S, Calciano L, Johannessen A, Benediktsdóttir B, Bertelsen RJ, Bråbäck L, Dharmage SC, Forsberg B, Gómez Real F, Holloway JW, Holm M, Janson C, Jõgi NO, Jõgi R, Malinovschi A, Marcon A, Martínez-Moratalla Rovira J, Sánchez-Ramos JL, Schlünssen V, Torén K, Jarvis D, Svanes C. Prenatal and prepubertal exposures to tobacco smoke in men may cause lower lung function in future offspring: a three-generation study using a causal modelling approach. Eur Respir J 2021; 58:2002791. [PMID: 33795316 PMCID: PMC8529197 DOI: 10.1183/13993003.02791-2020] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 03/11/2021] [Indexed: 11/24/2022]
Abstract
Mechanistic research suggests that lifestyle and environmental factors impact respiratory health across generations by epigenetic changes transmitted through male germ cells. Evidence from studies on humans is very limited.We investigated multigeneration causal associations to estimate the causal effects of tobacco smoking on lung function within the paternal line. We analysed data from 383 adult offspring (age 18-47 years; 52.0% female) and their 274 fathers, who had participated in the European Community Respiratory Health Survey (ECRHS)/Respiratory Health in Northern Europe, Spain and Australia (RHINESSA) generation study and had provided valid measures of pre-bronchodilator lung function. Two counterfactual-based, multilevel mediation models were developed with: paternal grandmothers' smoking in pregnancy and fathers' smoking initiation in prepuberty as exposures; fathers' forced expiratory volume in 1 s (FEV1) and forced vital capacity (FVC), or FEV1/FVC z-scores as potential mediators (proxies of unobserved biological mechanisms that are true mediators); and offspring's FEV1 and FVC, or FEV1/FVC z-scores as outcomes. All effects were summarised as differences (Δ) in expected z-scores related to fathers' and grandmothers' smoking history.Fathers' smoking initiation in prepuberty had a negative direct effect on both offspring's FEV1 (Δz-score -0.36, 95% CI -0.63- -0.10) and FVC (-0.50, 95% CI -0.80- -0.20) compared with fathers' never smoking. Paternal grandmothers' smoking in pregnancy had a negative direct effect on fathers' FEV1/FVC (-0.57, 95% CI -1.09- -0.05) and a negative indirect effect on offspring's FEV1/FVC (-0.12, 95% CI -0.21- -0.03) compared with grandmothers' not smoking before fathers' birth nor during fathers' childhood.Fathers' smoking in prepuberty and paternal grandmothers' smoking in pregnancy may cause lower lung function in offspring. Our results support the concept that lifestyle-related exposures during these susceptibility periods influence the health of future generations.
Collapse
Affiliation(s)
- Simone Accordini
- Unit of Epidemiology and Medical Statistics, Dept of Diagnostics and Public Health, University of Verona, Verona, Italy
- Equal contribution as first authors
| | - Lucia Calciano
- Unit of Epidemiology and Medical Statistics, Dept of Diagnostics and Public Health, University of Verona, Verona, Italy
- Equal contribution as first authors
| | - Ane Johannessen
- Centre for International Health, Dept of Global Public Health and Primary Care, University of Bergen, Bergen, Norway
| | | | - Randi Jacobsen Bertelsen
- Dept of Clinical Science, University of Bergen, Bergen, Norway
- Oral Health Centre of Expertise in Western Norway/Vestland, Bergen, Norway
| | - Lennart Bråbäck
- Section of Sustainable Health, Dept of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
| | - Shyamali C Dharmage
- Allergy and Lung Health Unit, School of Population and Global Health, University of Melbourne, Melbourne, Australia
| | - Bertil Forsberg
- Section of Sustainable Health, Dept of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
| | - Francisco Gómez Real
- Dept of Clinical Science, University of Bergen, Bergen, Norway
- Dept of Obstetrics and Gynecology, Haukeland University Hospital, Bergen, Norway
| | - John W Holloway
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Mathias Holm
- Occupational and Environmental Medicine, School of Public Health and Community Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Christer Janson
- Dept of Medical Sciences: Respiratory, Allergy and Sleep Research, Uppsala University, Uppsala, Sweden
| | - Nils O Jõgi
- Dept of Clinical Science, University of Bergen, Bergen, Norway
- Lung Clinic, Tartu University Hospital, Tartu, Estonia
| | - Rain Jõgi
- Lung Clinic, Tartu University Hospital, Tartu, Estonia
| | - Andrei Malinovschi
- Dept of Medical Sciences: Clinical Physiology, Uppsala University, Uppsala, Sweden
| | - Alessandro Marcon
- Unit of Epidemiology and Medical Statistics, Dept of Diagnostics and Public Health, University of Verona, Verona, Italy
| | - Jesús Martínez-Moratalla Rovira
- Servicio de Neumología, Complejo Hospitalario Universitario de Albacete (CHUA), Servicio de Salud de Castilla-La Mancha (SESCAM), Albacete, Spain
| | | | | | - Kjell Torén
- Occupational and Environmental Medicine, School of Public Health and Community Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Deborah Jarvis
- Faculty of Medicine, National Heart and Lung Institute, Imperial College London, London, UK
- MRC-PHE Centre for Environment and Health, Imperial College London, London, UK
- Equal contribution as last authors
| | - Cecilie Svanes
- Centre for International Health, Dept of Global Public Health and Primary Care, University of Bergen, Bergen, Norway
- Equal contribution as last authors
| |
Collapse
|
26
|
Altintaş A, Liu J, Fabre O, Chuang TD, Wang Y, Sakurai R, Chehabi GN, Barrès R, Rehan VK. Perinatal exposure to nicotine alters spermatozoal DNA methylation near genes controlling nicotine action. FASEB J 2021; 35:e21702. [PMID: 34153130 PMCID: PMC9231556 DOI: 10.1096/fj.202100215r] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 05/04/2021] [Accepted: 05/13/2021] [Indexed: 12/13/2022]
Abstract
Perinatal smoke/nicotine exposure alters lung development and causes asthma in exposed offspring, transmitted transgenerationally. The mechanism underlying the transgenerational inheritance of perinatal smoke/nicotine-induced asthma remains unknown, but germline epigenetic modulations may play a role. Using a well-established rat model of perinatal nicotine-induced asthma, we determined the DNA methylation pattern of spermatozoa of F1 rats exposed perinatally to nicotine in F0 gestation. To identify differentially methylated regions (DMRs), reduced representation bisulfite sequencing was performed on spermatozoa of F1 litters. The top regulated gene body and promoter DMRs were tested for lung gene expression levels, and key proteins involved in lung development and repair were determined. The overall CpG methylation in F1 sperms across gene bodies, promoters, 5'-UTRs, exons, introns, and 3'-UTRs was not affected by nicotine exposure. However, the methylation levels were different between the different genomic regions. Eighty one CpG sites, 16 gene bodies, and 3 promoter regions were differentially methylated. Gene enrichment analysis of DMRs revealed pathways involved in oxidative stress, nicotine response, alveolar and brain development, and cellular signaling. Among the DMRs, Dio1 and Nmu were the most hypermethylated and hypomethylated genes, respectively. Gene expression analysis showed that the mRNA expression and DNA methylation were incongruous. Key proteins involved in lung development and repair were significantly different (FDR < 0.05) between the nicotine and placebo-treated groups. Our data show that DNA methylation is remodeled in offspring spermatozoa upon perinatal nicotine exposure. These epigenetic alterations may play a role in transgenerational inheritance of perinatal smoke/nicotine induced asthma.
Collapse
Affiliation(s)
- Ali Altintaş
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Jie Liu
- Lundquist Institute for Biomedical Innovation at Harbor-ULCA Medical Center, David Geffen School of Medicine at UCLA, Torrance, CA, USA
| | - Odile Fabre
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Tsai-Der Chuang
- Lundquist Institute for Biomedical Innovation at Harbor-ULCA Medical Center, David Geffen School of Medicine at UCLA, Torrance, CA, USA
| | - Ying Wang
- Lundquist Institute for Biomedical Innovation at Harbor-ULCA Medical Center, David Geffen School of Medicine at UCLA, Torrance, CA, USA
| | - Reiko Sakurai
- Lundquist Institute for Biomedical Innovation at Harbor-ULCA Medical Center, David Geffen School of Medicine at UCLA, Torrance, CA, USA
| | - Galal Nazih Chehabi
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Romain Barrès
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Virender K. Rehan
- Lundquist Institute for Biomedical Innovation at Harbor-ULCA Medical Center, David Geffen School of Medicine at UCLA, Torrance, CA, USA
| |
Collapse
|
27
|
Breton CV, Landon R, Kahn LG, Enlow MB, Peterson AK, Bastain T, Braun J, Comstock SS, Duarte CS, Hipwell A, Ji H, LaSalle JM, Miller RL, Musci R, Posner J, Schmidt R, Suglia SF, Tung I, Weisenberger D, Zhu Y, Fry R. Exploring the evidence for epigenetic regulation of environmental influences on child health across generations. Commun Biol 2021; 4:769. [PMID: 34158610 PMCID: PMC8219763 DOI: 10.1038/s42003-021-02316-6] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 06/03/2021] [Indexed: 02/08/2023] Open
Abstract
Environmental exposures, psychosocial stressors and nutrition are all potentially important influences that may impact health outcomes directly or via interactions with the genome or epigenome over generations. While there have been clear successes in large-scale human genetic studies in recent decades, there is still a substantial amount of missing heritability to be elucidated for complex childhood disorders. Mounting evidence, primarily in animals, suggests environmental exposures may generate or perpetuate altered health outcomes across one or more generations. One putative mechanism for these environmental health effects is via altered epigenetic regulation. This review highlights the current epidemiologic literature and supporting animal studies that describe intergenerational and transgenerational health effects of environmental exposures. Both maternal and paternal exposures and transmission patterns are considered, with attention paid to the attendant ethical, legal and social implications.
Collapse
Affiliation(s)
- Carrie V Breton
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
| | - Remy Landon
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Linda G Kahn
- Department of Pediatrics, NYU Grossman School of Medicine, New York, NY, USA
| | - Michelle Bosquet Enlow
- Department of Psychiatry, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - Alicia K Peterson
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Theresa Bastain
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Joseph Braun
- Department of Epidemiology, Brown University School of Public Health, Providence, RI, USA
| | - Sarah S Comstock
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI, USA
| | - Cristiane S Duarte
- Department of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center and New York State Psychiatric Institute, New York, NY, USA
| | - Alison Hipwell
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Hong Ji
- Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, California National Primate Research Center, University of California, Davis, Davis, CA, USA
| | - Janine M LaSalle
- Department of Medical Microbiology and Immunology, MIND Institute, Genome Center, University of California, Davis, Davis, CA, USA
| | | | - Rashelle Musci
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Jonathan Posner
- Department of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center and New York State Psychiatric Institute, New York, NY, USA
| | - Rebecca Schmidt
- Department of Public Health Sciences, UC Davis School of Medicine, Davis, CA, USA
| | | | - Irene Tung
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Daniel Weisenberger
- Department of Biochemistry and Molecular Medicine, University of Southern California, Los Angeles, CA, USA
| | - Yeyi Zhu
- Division of Research, Kaiser Permanente Northern California and Department of Epidemiology and Biostatistics, University of California, San Francisco, Oakland, CA, USA
| | - Rebecca Fry
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, UNC Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
28
|
Genetic and epigenetic modifications of F1 offspring's sperm cells following in utero and lactational combined exposure to nicotine and ethanol. Sci Rep 2021; 11:12311. [PMID: 34112894 PMCID: PMC8192516 DOI: 10.1038/s41598-021-91739-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Accepted: 05/18/2021] [Indexed: 02/05/2023] Open
Abstract
It is well established that maternal lifestyle during pregnancy and lactation affects the intrauterine programming of F1 offspring. However, despite the co-use of alcohol and nicotine is a common habit, the effects of exposure to both substances on the reproductive system of F1 male offspring and the underlying mechanisms of developmental programming have not been investigated. The present study aimed to examine pre- and postnatal concurrent exposure to these substances on genetic and epigenetic alterations of sperm cells as well as testis properties of F1 offspring compared with exposure to each substance alone. Pregnant dams in the F0 generation randomly received normal saline, nicotine, ethanol, and combinations throughout full gestation and lactation periods. Sperm cells and testes of F1 male offspring were collected at postnatal day 90 for further experiments. High levels of sperm DNA fragmentation were observed in all exposed offspring. Regarding epigenetic alterations, there was a significant increase in the relative transcript abundance of histone deacetylase 1 and 2 in all exposed sperm cells. Moreover, despite a decrease in the expression level of DNA methyltransferase (DNMT) 3A, no marked differences were found in the expression levels of DNMT1 and 3B in any of the exposed sperm cells compared to non-exposed ones. Interestingly, combined exposure had less prominent effects relative to exposure to each substance alone. The changes in the testicular and sperm parameters were compatible with genetic and epigenetic alterations. However, MDA level as an oxidative stress indicator increased in all exposed pups, which may be responsible for such outputs. In conclusion, maternal co-exposure to these substances exhibited epigenotoxicity effects on germline cells of F1 male offspring, although these effects were less marked relative to exposure to each substance alone. These counteracting effects may be explained by cross-tolerance and probably less impairment of the antioxidant defense system.
Collapse
|
29
|
Effect of Grandmaternal Smoking on Body Size and Proportions at Birth. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18094985. [PMID: 34067158 PMCID: PMC8124860 DOI: 10.3390/ijerph18094985] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 05/04/2021] [Accepted: 05/05/2021] [Indexed: 11/16/2022]
Abstract
Many long-term adverse effects of smoking during pregnancy are known. Increasingly, adverse effects in the grandchild after grandmaternal smoking during pregnancy are reported. We explored this in a birth cohort of 24,000 grandmother–mother–child triads identified from the Finnish Medical Birth Register in 1991–2016. Multiple logistic regression was used to analyze the association between any smoking during pregnancy by both grandmother and mother, or only grandmother or mother on adverse birth outcomes. No smoking by neither grandmother nor mother was used as the reference. As endpoints, preterm birth, low birth weight, small for gestational age (birth weight, birth length, head circumference), and body proportionality (low ponderal index, high brain-to-body ratio, high head-to-length ratio) were included. Smoking by both grandmother and mother was consistently associated with higher risks than smoking only by the mother. Birth length and weight were especially sensitive to (grand)maternal smoking. In conclusion, the combined effect of grandmaternal and maternal smoking is associated with higher risks than only maternal smoking.
Collapse
|
30
|
Marshall P. Biology transcends the limits of computation. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2021; 165:88-101. [PMID: 33961842 DOI: 10.1016/j.pbiomolbio.2021.04.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 04/23/2021] [Accepted: 04/28/2021] [Indexed: 11/29/2022]
Abstract
Cognition-sensing and responding to the environment-is the unifying principle behind the genetic code, origin of life, evolution, consciousness, artificial intelligence, and cancer. However, the conventional model of biology seems to mistake cause and effect. According to the reductionist view, the causal chain in biology is chemicals → code → cognition. Despite this prevailing view, there are no examples in the literature to show that the laws of physics and chemistry can produce codes, or that codes produce cognition. Chemicals are just the physical layer of any information system. In contrast, although examples of cognition generating codes and codes controlling chemicals are ubiquitous in biology and technology, cognition remains a mystery. Thus, the central question in biology is: What is the nature and origin of cognition? In order to elucidate this pivotal question, we must cultivate a deeper understanding of information flows. Through this lens, we see that biological cognition is volitional (i.e., deliberate, intentional, or knowing), and while technology is constrained by deductive logic, living things make choices and generate novel information using inductive logic. Information has been called "the hard problem of life' and cannot be fully explained by known physical principles (Walker et al., 2017). The present paper uses information theory (the mathematical foundation of our digital age) and Turing machines (computers) to highlight inaccuracies in prevailing reductionist models of biology, and proposes that the correct causation sequence is cognition → code → chemicals.
Collapse
Affiliation(s)
- Perry Marshall
- Evolution 2.0, 805 Lake Street #295 Oak Park, IL, 60301, USA.
| |
Collapse
|
31
|
Sheikhpour M, Maleki M, Ebrahimi Vargoorani M, Amiri V. A review of epigenetic changes in asthma: methylation and acetylation. Clin Epigenetics 2021; 13:65. [PMID: 33781317 PMCID: PMC8008616 DOI: 10.1186/s13148-021-01049-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 03/04/2021] [Indexed: 12/30/2022] Open
Abstract
Several studies show that childhood and adulthood asthma and its symptoms can be modulated through epigenetic modifications. Epigenetic changes are inheritable modifications that can modify the gene expression without changing the DNA sequence. The most common epigenetic alternations consist of DNA methylation and histone modifications. How these changes lead to asthmatic phenotype or promote the asthma features, in particular by immune pathways regulation, is an understudied topic. Since external effects, like exposure to tobacco smoke, air pollution, and drugs, influence both asthma development and the epigenome, elucidating the role of epigenetic changes in asthma is of great importance. This review presents available evidence on the epigenetic process that drives asthma genes and pathways, with a particular focus on DNA methylation, histone methylation, and acetylation. We gathered and assessed studies conducted in this field over the past two decades. Our study examined asthma in different aspects and also shed light on the limitations and the important factors involved in the outcomes of the studies. To date, most of the studies in this area have been carried out on DNA methylation. Therefore, the need for diagnostic and therapeutic applications through this molecular process calls for more research on the histone modifications in this disease.
Collapse
Affiliation(s)
- Mojgan Sheikhpour
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran.
- Microbiology Research Center, Pasteur Institute of Iran, Tehran, Iran.
| | - Mobina Maleki
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran
| | - Maryam Ebrahimi Vargoorani
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran
- Department of Microbiology, College of Basic Sciences, Tehran North Branch, Islamic Azad University, Tehran, Iran
| | - Vahid Amiri
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
32
|
Mahon GM, Koppelman GH, Vonk JM. Grandmaternal smoking, asthma and lung function in the offspring: the Lifelines cohort study. Thorax 2021; 76:441-447. [PMID: 33542091 PMCID: PMC8070652 DOI: 10.1136/thoraxjnl-2020-215232] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 11/29/2020] [Accepted: 12/07/2020] [Indexed: 12/01/2022]
Abstract
Background/objective Limited research exists regarding the association between grandmaternal smoking during pregnancy and the risk for asthma and altered lung function in grandchildren. This study aimed to investigate this association in a three-generation design. Methods 37 291 participants (25 747 adults and 11 544 children) were included from the Lifelines study, a prospective longitudinal three generation cohort study in The Netherlands. Spirometry was available in 69.5% and 61.1% of the included adults and children. Logistic and linear regression were used to analyse the association between grandmaternal smoking during pregnancy and (1) asthma, (2) early childhood asthma (ie, onset before 6 years) and (3) lung function level. Maternal and paternal grandmaternal smoking were studied separately and the analyses were stratified by adult/child and by gender. The analyses were adjusted for gender, current smoking, birth variables and socioeconomic status. Results In the adult population, maternal grandmaternal smoking during pregnancy was associated with a higher risk for asthma (OR (95% CI): 1.38 (1.06 to 1.79)), early childhood asthma (1.49 (95% CI 1.06 to 2.11)) and a lower FEV1/FVC% predicted (B (95% CI): −1.04 (−1.91 to −0.16) in men. These findings were not observed in a separate analysis of children that participated in this study. There was also no significant association between paternal grandmaternal smoking and asthma/lung function. Conclusion Maternal grandmaternal smoking during pregnancy is associated with higher asthma risk and lower lung function in male grandchildren and a reverse effect in male grandchildren of subsequent generations. Our study highlights the deep-rooted effects of tobacco smoking across generations.
Collapse
Affiliation(s)
- Gillian M Mahon
- Department of Pediatric Pulmonology and Pediatric Allergology, GRIAC Research Institute, University Medical Center Groningen Beatrix Children's Hospital, Groningen, The Netherlands
| | - Gerard H Koppelman
- Department of Pediatric Pulmonology and Pediatric Allergology, GRIAC Research Institute, University Medical Center Groningen Beatrix Children's Hospital, Groningen, The Netherlands
| | - Judith M Vonk
- Department of Epidemiology, GRIAC Research Institute, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
33
|
Wang Q, Sundar IK, Blum JL, Ratner JR, Lucas JH, Chuang TD, Wang Y, Liu J, Rehan VK, Zelikoff JT, Rahman I. Prenatal Exposure to Electronic-Cigarette Aerosols Leads to Sex-Dependent Pulmonary Extracellular-Matrix Remodeling and Myogenesis in Offspring Mice. Am J Respir Cell Mol Biol 2021; 63:794-805. [PMID: 32853043 DOI: 10.1165/rcmb.2020-0036oc] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Electronic-cigarette (e-cig) vaping is a serious concern, as many pregnant women who vape consider it safe. However, little is known about the harmful effects of prenatal e-cig exposure on adult offspring, especially on extracellular-matrix (ECM) deposition and myogenesis in the lungs of offspring. We evaluated the biochemical and molecular implications of maternal exposure during pregnancy to e-cig aerosols on the adult offspring of both sexes, with a particular focus on pulmonary ECM remodeling and myogenesis. Pregnant CD-1 mice were exposed to e-cig aerosols with or without nicotine, throughout gestation, and lungs were collected from adult male and female offspring. Compared with the air-exposed control group, female mice exposed to e-cig aerosols, with or without nicotine, demonstrated increased lung protein abundance of LEF-1 (lymphoid enhancer-binding factor 1), fibronectin, and E-cadherin, whereas altered E-cadherin and PPARγ (peroxisome proliferator-activated receptor γ) levels were observed only in males exposed to e-cig aerosols with nicotine. Moreover, lipogenic and myogenic mRNAs were dysregulated in adult offspring in a sex-dependent manner. PAI-1 (plasminogen activator inhibitor-1), one of the ECM regulators, was significantly increased in females exposed prenatally to e-cig aerosols with nicotine and in males exposed to e-cig aerosols compared with control animals exposed to air. MMP9 (matrix metalloproteinase 9), a downstream target of PAI-1, was downregulated in both sexes exposed to e-cig aerosols with nicotine. No differences in lung histology were observed among any of the treatment groups. Overall, adult mice exposed prenatally to e-cig aerosols could be predisposed to developing pulmonary disease later in life. Thus, these findings suggest that vaping during pregnancy is unsafe and increases the propensity for later-life interstitial lung diseases.
Collapse
Affiliation(s)
- Qixin Wang
- Department of Environmental Medicine, School of Medicine and Dentistry, University of Rochester Medical Center, University of Rochester, Rochester, New York
| | - Isaac K Sundar
- Department of Environmental Medicine, School of Medicine and Dentistry, University of Rochester Medical Center, University of Rochester, Rochester, New York
| | - Jason L Blum
- Department of Environmental Medicine, School of Medicine, New York University, New York, New York; and
| | - Jill R Ratner
- Department of Environmental Medicine, School of Medicine, New York University, New York, New York; and
| | - Joseph H Lucas
- Department of Environmental Medicine, School of Medicine and Dentistry, University of Rochester Medical Center, University of Rochester, Rochester, New York
| | - Tsai-Der Chuang
- Department of Pediatrics, Lundquist Institute for Biomedical Innovation, Harbor-University of California Los Angeles Medical Center, David Geffen School of Medicine, University of California Los Angeles, Torrance, California
| | - Ying Wang
- Department of Pediatrics, Lundquist Institute for Biomedical Innovation, Harbor-University of California Los Angeles Medical Center, David Geffen School of Medicine, University of California Los Angeles, Torrance, California
| | - Jie Liu
- Department of Pediatrics, Lundquist Institute for Biomedical Innovation, Harbor-University of California Los Angeles Medical Center, David Geffen School of Medicine, University of California Los Angeles, Torrance, California
| | - Virender K Rehan
- Department of Pediatrics, Lundquist Institute for Biomedical Innovation, Harbor-University of California Los Angeles Medical Center, David Geffen School of Medicine, University of California Los Angeles, Torrance, California
| | - Judith T Zelikoff
- Department of Environmental Medicine, School of Medicine, New York University, New York, New York; and
| | - Irfan Rahman
- Department of Environmental Medicine, School of Medicine and Dentistry, University of Rochester Medical Center, University of Rochester, Rochester, New York
| |
Collapse
|
34
|
Salmanzadeh H, Ahmadi-Soleimani SM, Azadi M, Halliwell RF, Azizi H. Adolescent Substance Abuse, Transgenerational Consequences and Epigenetics. Curr Neuropharmacol 2021; 19:1560-1569. [PMID: 33655865 PMCID: PMC8762180 DOI: 10.2174/1570159x19666210303121519] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/13/2021] [Accepted: 02/12/2021] [Indexed: 11/22/2022] Open
Abstract
Adolescence is the transitional period between childhood and adulthood and a critical period in brain development. Adolescence in humans is also associated with increased expression of risk-taking behaviors. Epidemiological and clinical studies, for example, show a surge of drug abuse and raise the hypothesis that the adolescent brain undergoes critical changes resulting in diminished control. Determining how substance abuse during this critical period might cause longterm neurobiological changes in cognition and behavior is therefore critically important. The present work aims to provide an evaluation of the transgenerational and multi-generational phenotypes derived from parent animals exposed to drugs of abuse only during their adolescence. Specifically, we will consider changes found following the administration of cannabinoids, nicotine, alcohol and opiates. In addition, epigenetic modifications of the genome following drug exposure will be discussed as emerging evidence of the underlying adverse transgenerational effects. Notwithstanding, much of the new data discussed here is from animal models, indicating that future clinical studies are much needed to better understand the neurobiological consequences and mechanisms of drug actions on the human brains' development and maturation.
Collapse
Affiliation(s)
| | | | | | - Robert F. Halliwell
- Address correspondence to this author at the TJ Long School of Pharmacy, University of the Pacific, Stockton, California, USA; Tel: +1 (209) 946 2074; E-mail: and Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran; Tel: +98-21-82884587; Fax: +98-21-82884528; E-mail:
| | - Hossein Azizi
- Address correspondence to this author at the TJ Long School of Pharmacy, University of the Pacific, Stockton, California, USA; Tel: +1 (209) 946 2074; E-mail: and Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran; Tel: +98-21-82884587; Fax: +98-21-82884528; E-mail:
| |
Collapse
|
35
|
Jamshed L, Perono GA, Jamshed S, Holloway AC. Early Life Exposure to Nicotine: Postnatal Metabolic, Neurobehavioral and Respiratory Outcomes and the Development of Childhood Cancers. Toxicol Sci 2020; 178:3-15. [PMID: 32766841 PMCID: PMC7850035 DOI: 10.1093/toxsci/kfaa127] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Cigarette smoking during pregnancy is associated with numerous obstetrical, fetal, and developmental complications, as well as an increased risk of adverse health consequences in the adult offspring. Nicotine replacement therapy and electronic nicotine delivery systems (e-cigarettes) have been developed as a pharmacotherapy for smoking cessation and are considered safer alternatives for women to smoke during pregnancy. The safety of nicotine replacement therapy use during pregnancy has been evaluated in a limited number of short-term human trials, but there is currently no information on the long-term effects of developmental nicotine exposure in humans. However, animal studies suggest that nicotine alone may be a key chemical responsible for many of the long-term effects associated with maternal cigarette smoking on the offspring and increases the risk of adverse neurobehavioral outcomes, dysmetabolism, respiratory illness, and cancer. This review will examine the long-term effects of fetal and neonatal nicotine exposure on postnatal health.
Collapse
Affiliation(s)
- Laiba Jamshed
- Department of Obstetrics and Gynecology, McMaster University, Hamilton, Ontario L8N 3Z5, Canada
| | - Genevieve A Perono
- Department of Obstetrics and Gynecology, McMaster University, Hamilton, Ontario L8N 3Z5, Canada
| | - Shanza Jamshed
- Department of Obstetrics and Gynecology, McMaster University, Hamilton, Ontario L8N 3Z5, Canada
| | - Alison C Holloway
- Department of Obstetrics and Gynecology, McMaster University, Hamilton, Ontario L8N 3Z5, Canada
| |
Collapse
|
36
|
Bline AP, Dearfield KL, DeMarini DM, Marchetti F, Yauk CL, Escher J. Heritable hazards of smoking: Applying the "clean sheet" framework to further science and policy. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2020; 61:910-921. [PMID: 33064321 PMCID: PMC7756471 DOI: 10.1002/em.22412] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 09/26/2020] [Accepted: 10/11/2020] [Indexed: 05/06/2023]
Abstract
All the cells in our bodies are derived from the germ cells of our parents, just as our own germ cells become the bodies of our children. The integrity of the genetic information inherited from these germ cells is of paramount importance in establishing the health of each generation and perpetuating our species into the future. There is a large and growing body of evidence strongly suggesting the existence of substances that may threaten this integrity by acting as human germ cell mutagens. However, there generally are no absolute regulatory requirements to test agents for germ cell effects. In addition, the current regulatory testing paradigms do not evaluate the impacts of epigenetically mediated intergenerational effects, and there is no regulatory framework to apply new and emerging tests in regulatory decision making. At the 50th annual meeting of the Environmental Mutagenesis and Genomics Society held in Washington, DC, in September 2019, a workshop took place that examined the heritable effects of hazardous exposures to germ cells, using tobacco smoke as the example hazard. This synopsis provides a summary of areas of concern regarding heritable hazards from tobacco smoke exposures identified at the workshop and the value of the Clean Sheet framework in organizing information to address knowledge and testing gaps.
Collapse
Affiliation(s)
- Abigail P. Bline
- Fielding School of Public HealthUniversity of California Los AngelesLos AngelesCaliforniaUSA
| | | | | | - Francesco Marchetti
- Environmental Health Science Research Bureau, Health CanadaOttawaOntarioCanada
| | - Carole L. Yauk
- Department of BiologyUniversity of OttawaOttawaOntarioCanada
| | | | | |
Collapse
|
37
|
Liu J, Yu C, Doherty TM, Akbari O, Allard P, Rehan VK. Perinatal nicotine exposure-induced transgenerational asthma: Effects of reexposure in F1 gestation. FASEB J 2020; 34:11444-11459. [PMID: 32654256 PMCID: PMC7839813 DOI: 10.1096/fj.201902386r] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 04/24/2020] [Accepted: 05/01/2020] [Indexed: 01/31/2023]
Abstract
In a rat model, perinatal nicotine exposure results in an epigenetically driven multi- and trans-generationally transmitted asthmatic phenotype that tends to wane over successive generations. However, the effect of repeat nicotine exposure during the F1 (Filial 1) gestational period on the transmitted phenotype is unknown. Using a well-established rat model, we compared lung function, mesenchymal markers of airway reactivity, and global gonadal DNA methylation changes in F2 offspring in a sex-specific manner following perinatal exposure to nicotine in only the F0 gestation, in both F0 and F1 (F0/F1) gestations, and in neither (control group). Both F0 only and F0/F1 exposure groups showed an asthmatic phenotype, an effect that was more pronounced in the F0/F1 exposure group, especially in males. Testicular global DNA methylation increased, while ovarian global DNA methylation decreased in the F0/F1 exposed group. Since the offspring of smokers are more likely to smoke than the offspring of nonsmokers, this sets the stage for more severe asthma if both mother and grandmother had smoked during their pregnancies. Increased gonadal DNA methylation changes following nicotine reexposure in the F1 generation suggests that epigenetic mechanisms might well underlie the transgenerational inheritance of acquired phenotypic traits in general and nicotine-induced asthma in particular.
Collapse
Affiliation(s)
- Jie Liu
- Department of Pediatrics/Lundquist Institute for Biomedical Innovation, Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Celia Yu
- Lundquist Institute for Biomedical Innovation, Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Terence M. Doherty
- Lundquist Institute for Biomedical Innovation, Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Omid Akbari
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, USC, Los Angeles, CA, USA
| | - Patrick Allard
- David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
- Institute for Society and Genetics, UCLA, Los Angeles, CA, USA
| | - Virender K. Rehan
- Department of Pediatrics/Lundquist Institute for Biomedical Innovation, Harbor-UCLA Medical Center, Torrance, CA, USA
- David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
- Institute for Society and Genetics, UCLA, Los Angeles, CA, USA
| |
Collapse
|
38
|
Articular damages in multi-generational female offspring due to prenatal caffeine exposure correlates with H3K9 deacetylation of TGFβ signaling pathway. Toxicology 2020; 442:152533. [PMID: 32663519 DOI: 10.1016/j.tox.2020.152533] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 06/27/2020] [Accepted: 06/30/2020] [Indexed: 11/21/2022]
Abstract
Adverse environment during pregnancy could lead to maternal glucocorticoid overexposure in utero, and then induce the intrauterine growth retardation (IUGR) and the programmed change in cartilage development. The transforming growth factor β (TGFβ) signaling pathway plays a crucial role in the process of chondrogenesis, cartilage growth, development, maturation, and phenotype maintenance. Our previous results had shown that prenatal caffeine exposure (PCE) could result in the damaged articular cartilage in offspring rats. However, whether this change could transmit to multiple generations was still unknown. In this study, pregnant Wistar rats received either saline or caffeine (120 mg/kg, i.g.) once daily from gestational day 9-20 (GD9-20). The female offspring mated with normal male rats to generate the following generations. We obtained the articular cartilages in subsequent F1 to F3 female offspring. The H3K9 acetylation and expression of the TGFβ signaling pathway were detected; the content of the cartilage matrix was detected. The results showed that PCE reduced the H3K9 acetylation and the expression of the TGFβ signaling pathway, then reduced the extracellular matrix in F1, F2, and F3 generations. in vitro, corticosterone could induce the H3K9 deacetylation of the TGFβ signaling pathway, thus inhibiting the expression of the TGFβ signaling pathway and extracellular matrix. The overall results revealed that PCE induced a multi-generational damaged articular cartilage in female offspring rats, which was partially related to the maternal high glucocorticoid-induced H3K9 hypoacetylation of TGFβ signaling pathway.
Collapse
|
39
|
Ryan CP, Kuzawa CW. Germline epigenetic inheritance: Challenges and opportunities for linking human paternal experience with offspring biology and health. Evol Anthropol 2020; 29:180-200. [DOI: 10.1002/evan.21828] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 09/30/2019] [Accepted: 02/21/2020] [Indexed: 12/11/2022]
Affiliation(s)
- Calen P. Ryan
- Department of AnthropologyNorthwestern University Evanston Illinois USA
| | - Christopher W. Kuzawa
- Department of AnthropologyNorthwestern University Evanston Illinois USA
- Institute for Policy Research Northwestern University Evanston Illinois USA
| |
Collapse
|
40
|
McGrath-Morrow SA, Gorzkowski J, Groner JA, Rule AM, Wilson K, Tanski SE, Collaco JM, Klein JD. The Effects of Nicotine on Development. Pediatrics 2020; 145:peds.2019-1346. [PMID: 32047098 PMCID: PMC7049940 DOI: 10.1542/peds.2019-1346] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/05/2019] [Indexed: 01/08/2023] Open
Abstract
Recently, there has been a significant increase in the use of noncombustible nicotine-containing products, including electronic cigarettes (e-cigarettes). Of increasing popularity are e-cigarettes that can deliver high doses of nicotine over short periods of time. These devices have led to a rise in nicotine addiction in adolescent users who were nonsmokers. Use of noncombustible nicotine products by pregnant mothers is also increasing and can expose the developing fetus to nicotine, a known teratogen. In addition, young children are frequently exposed to secondhand and thirdhand nicotine aerosols generated by e-cigarettes, with little understanding of the effects these exposures can have on health. With the advent of these new nicotine-delivery systems, many concerns have arisen regarding the short- and long-term health effects of nicotine on childhood health during all stages of development. Although health studies on nicotine exposure alone are limited, educating policy makers and health care providers on the potential health effects of noncombustible nicotine is needed because public acceptance of these products has become so widespread. Most studies evaluating the effects of nicotine on health have been undertaken in the context of smoke exposure. Nevertheless, in vitro and in vivo preclinical studies strongly indicate that nicotine exposure alone can adversely affect the nervous, respiratory, immune, and cardiovascular systems, particularly when exposure occurs during critical developmental periods. In this review, we have included both preclinical and clinical studies to identify age-related health effects of nicotine exposure alone, examining the mechanisms underlying these effects.
Collapse
Affiliation(s)
- Sharon A. McGrath-Morrow
- Julius B. Richmond Center of Excellence, American Academy of Pediatrics, Itasca, Illinois;,Eudowood Division of Pediatric Respiratory Sciences, Department of Pediatrics, School of Medicine and
| | - Julie Gorzkowski
- Julius B. Richmond Center of Excellence, American Academy of Pediatrics, Itasca, Illinois
| | - Judith A. Groner
- Julius B. Richmond Center of Excellence, American Academy of Pediatrics, Itasca, Illinois;,Department of Pediatrics, Nationwide Children’s Hospital, Columbus, Ohio
| | - Ana M. Rule
- Julius B. Richmond Center of Excellence, American Academy of Pediatrics, Itasca, Illinois;,Department of Environmental Health and Engineering, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland
| | - Karen Wilson
- Julius B. Richmond Center of Excellence, American Academy of Pediatrics, Itasca, Illinois;,Department of Pediatrics, Icahn School of Medicine at Mount Sinai and Kravis Children’s Hospital, New York, New York
| | - Susanne E. Tanski
- Julius B. Richmond Center of Excellence, American Academy of Pediatrics, Itasca, Illinois;,Department of Pediatrics, Geisel School of Medicine, Dartmouth College, Lebanon, New Hampshire; and
| | - Joseph M. Collaco
- Julius B. Richmond Center of Excellence, American Academy of Pediatrics, Itasca, Illinois;,Eudowood Division of Pediatric Respiratory Sciences, Department of Pediatrics, School of Medicine and
| | - Jonathan D. Klein
- Julius B. Richmond Center of Excellence, American Academy of Pediatrics, Itasca, Illinois;,Department of Pediatrics, University of Illinois at Chicago, Chicago, Illinois
| |
Collapse
|
41
|
Dai J, Ji B, Zhao G, Lu Y, Liu Y, Mou Q, Sakurai R, Xie Y, Zhang Q, Xu S, Rehan VK. Developmental Timing Determines the Protective Effect of Maternal Electroacupuncture on Perinatal Nicotine Exposure-Induced Offspring Lung Phenotype. BIOMED RESEARCH INTERNATIONAL 2020; 2020:8030972. [PMID: 32190681 PMCID: PMC7064824 DOI: 10.1155/2020/8030972] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 12/31/2019] [Indexed: 12/17/2022]
Abstract
Introduction. Environmental exposure of the developing offspring to cigarette smoke or nicotine is an important predisposing factor for many chronic respiratory conditions, such as asthma, emphysema, pulmonary fibrosis, and so forth, in the exposed offspring. Studies showed that electroacupuncture (EA) applied to maternal "Zusanli" (ST36) acupoints during pregnancy and lactation protects against perinatal nicotine exposure- (PNE-) induced lung damage. However, the most effective time period, that is, prenatal vs. postnatal, to attain this effect has not been determined. OBJECTIVE To determine the most effective developmental timing of EA's protective effect against PNE-induced lung phenotype in the exposed offspring. METHODS Pregnant rats were given (1) saline ("S" group); (2) nicotine ("N" group); (3) nicotine + EA, exclusively prenatally ("Pre-EA" group); (4) nicotine + EA, exclusively postnatally ("Post-EA," group); and (5) nicotine + EA, administered both prenatally and postnatally ("Pre- and Post-EA" group). Nicotine was injected once daily (1 mg/kg, 100 μl) and EA was administered to bilateral ST36 acupoints once daily during the specified time-periods. At the end of the experimental periods, key hypothalamic pituitary adrenal (HPA) axis markers in pups and dams, and lung function, morphometry, and the central molecular markers of lung development in the offspring were determined. RESULTS After nicotine exposure, alveolar mean linear intercept (MLI) increased, but mean alveolar number (MAN) decreased and lung PPARγ level decreased, but glucocorticoid receptor (GR) and serum corticosterone (Cort) levels increased, in line with the known PNE-induced lung phenotype. In the nicotine exposed group, maternal hypothalamic corticotropin releasing hormone (CRH) level decreased, but pituitary adrenocorticotropic hormone (ACTH) and serum Cort levels increased. In the "Pre- and Post-EA" groups, PNE-induced alterations in lung morphometry, lung development markers, and HPA axis were blocked. In the "Pre-EA" group, PNE-induced changes in lung morphometry, GR, and maternal HPA axis improved; lung PPARγ level decreased, but glucocorticoid receptor (GR) and serum corticosterone (Cort) levels increased, in line with the known PNE-induced lung phenotype. In the nicotine exposed group, maternal hypothalamic corticotropin releasing hormone (CRH) level decreased, but pituitary adrenocorticotropic hormone (ACTH) and serum Cort levels increased. In the "Pre- and Post-EA" groups, PNE-induced alterations in lung morphometry, lung development markers, and HPA axis were blocked. In the "Pre-EA" group, PNE-induced changes in lung morphometry, GR, and maternal HPA axis improved; lung PPAR. CONCLUSIONS Maternal EA applied to ST36 acupoints during both pre- and postnatal periods preserves offspring lung structure and function despite perinatal exposure to nicotine. EA applied during the "prenatal period" affords only limited benefits, whereas EA applied during the "postnatal period" is ineffective, suggesting that the EA's effects in modulating PNE-induced lung phenotype are limited to specific time-periods during lung development.
Collapse
Affiliation(s)
- Jian Dai
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Bo Ji
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Guozhen Zhao
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yawen Lu
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yitian Liu
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Qiujie Mou
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Reiko Sakurai
- Department of Pediatrics, Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, David Geffen School of Medicine at UCLA, Los Angeles, CA 90502, USA
| | - Yana Xie
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Qin Zhang
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Shuang Xu
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Virender K. Rehan
- Department of Pediatrics, Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, David Geffen School of Medicine at UCLA, Los Angeles, CA 90502, USA
| |
Collapse
|
42
|
Noël A, Hansen S, Zaman A, Perveen Z, Pinkston R, Hossain E, Xiao R, Penn A. In utero exposures to electronic-cigarette aerosols impair the Wnt signaling during mouse lung development. Am J Physiol Lung Cell Mol Physiol 2020; 318:L705-L722. [PMID: 32083945 DOI: 10.1152/ajplung.00408.2019] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Currently, more than 9 million American adults, including women of childbearing age, use electronic-cigarettes (e-cigs). Further, the prevalence of maternal vaping now approaching 10% is similar to that of maternal smoking. Little, however, is known about the effects of fetal exposures to nicotine-rich e-cig aerosols on lung development. In this study, we assessed whether in utero exposures to e-cig aerosols compromised lung development in mice. A third-generation e-cig device was used to expose pregnant BALB/c mice by inhalation to 36 mg/mL of nicotine cinnamon-flavored e-cig aerosols for 14-31 days. This included exposures for either 12 days before mating plus during gestation (preconception groups) or only during gestation (prenatal groups). Respective control mice were exposed to filtered air. Subgroups of offspring were euthanized at birth or at 4 wk of age. Compared with respective air-exposed controls, both preconception and prenatal exposures to e-cig aerosols significantly decreased the offspring birth weight and body length. In the preconception group, 7 inflammation-related genes were downregulated, including 4 genes common to both dams and fetuses, denoting an e-cig immunosuppressive effect. Lung morphometry assessments of preconception e-cig-exposed offspring showed a significantly increased tissue fraction at birth. This result was supported by the downregulation of 75 lung genes involved in the Wnt signaling, which is essential to lung organogenesis. Thus, our data indicate that maternal vaping impairs pregnancy outcomes, alters fetal lung structure, and dysregulates the Wnt signaling. This study provides experimental evidence for future regulations of e-cig products for pregnant women and developmentally vulnerable populations.
Collapse
Affiliation(s)
- Alexandra Noël
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana
| | - Shannon Hansen
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana
| | - Anusha Zaman
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana
| | - Zakia Perveen
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana
| | - Rakeysha Pinkston
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana.,Health Research Center, Department of Environmental Toxicology, Southern University and A&M College, Baton Rouge, Louisiana
| | - Ekhtear Hossain
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana
| | - Rui Xiao
- Department of Anesthesiology, Columbia University Medical Center, New York, New York
| | - Arthur Penn
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana
| |
Collapse
|
43
|
Decrue F, Gorlanova O, Usemann J, Frey U. Lung functional development and asthma trajectories. Semin Immunopathol 2020; 42:17-27. [PMID: 31989229 DOI: 10.1007/s00281-020-00784-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 01/15/2020] [Indexed: 01/06/2023]
Abstract
Early life environmental risk factors are associated with chronic respiratory morbidity in child- and adulthood. A possible mechanism for this sustained effect is their influence on early life lung functional growth and development, a susceptible phase of rapid lung growth with increased plasticity. We summarize evidence of hereditary and environmental ante-, peri-, and early postnatal factors on lung functional development, such as air pollution, tobacco exposure, nutrition, intrauterine growth retardation, prematurity, early life infections, microbiome, and allergies and their effect on lung functional trajectories. While some of the factors (e.g., prematurity) directly impair lung growth, the influence of many environmental factors is mediated through inflammatory processes (e.g., recurrent infections or oxidative stress). The timing and nature of these influences and their impact result in degrees of impaired maximal lung functional capacity in early adulthood; and they potentially impact future long-term respiratory morbidity such as chronic asthma or chronic obstructive airway disease (COPD). We discuss possibilities to prevent or modify such early abnormal lung functional growth trajectories and the need for future studies and prevention programs.
Collapse
Affiliation(s)
- Fabienne Decrue
- University Children's Hospital (UKBB), University of Basel, Spitalstrasse 33, 4056, Basel, Switzerland
| | - Olga Gorlanova
- University Children's Hospital (UKBB), University of Basel, Spitalstrasse 33, 4056, Basel, Switzerland
| | - Jakob Usemann
- University Children's Hospital (UKBB), University of Basel, Spitalstrasse 33, 4056, Basel, Switzerland.,Division of Respiratory Medicin, University Children's Hospital Zurich, Zurich, Switzerland
| | - Urs Frey
- University Children's Hospital (UKBB), University of Basel, Spitalstrasse 33, 4056, Basel, Switzerland.
| |
Collapse
|
44
|
Perera BP, Faulk C, Svoboda LK, Goodrich JM, Dolinoy DC. The role of environmental exposures and the epigenome in health and disease. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2020; 61:176-192. [PMID: 31177562 PMCID: PMC7252203 DOI: 10.1002/em.22311] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 05/29/2019] [Accepted: 06/03/2019] [Indexed: 05/02/2023]
Abstract
The genetic material of every organism exists within the context of regulatory networks that govern gene expression, collectively called the epigenome. Epigenetics has taken center stage in the study of diseases such as cancer and diabetes, but its integration into the field of environmental health is still emerging. As the Environmental Mutagenesis and Genomics Society (EMGS) celebrates its 50th Anniversary this year, we have come together to review and summarize the seminal advances in the field of environmental epigenomics. Specifically, we focus on the role epigenetics may play in multigenerational and transgenerational transmission of environmentally induced health effects. We also summarize state of the art techniques for evaluating the epigenome, environmental epigenetic analysis, and the emerging field of epigenome editing. Finally, we evaluate transposon epigenetics as they relate to environmental exposures and explore the role of noncoding RNA as biomarkers of environmental exposures. Although the field has advanced over the past several decades, including being recognized by EMGS with its own Special Interest Group, recently renamed Epigenomics, we are excited about the opportunities for environmental epigenetic science in the next 50 years. Environ. Mol. Mutagen. 61:176-192, 2020. © 2019 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Bambarendage P.U. Perera
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, Michigan
| | - Christopher Faulk
- Department of Animal Sciences, University of Minnesota, St. Paul, Minnesota
| | - Laurie K. Svoboda
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, Michigan
| | - Jaclyn M. Goodrich
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, Michigan
| | - Dana C. Dolinoy
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, Michigan
- Department of Nutritional Sciences, University of Michigan School of Public Health, Ann Arbor, Michigan
- Correspondence to: Dana C. Dolinoy, Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, Michigan.
| |
Collapse
|
45
|
Hammer B, Wagner C, Divac Rankov A, Reuter S, Bartel S, Hylkema MN, Krüger A, Svanes C, Krauss-Etschmann S. In utero exposure to cigarette smoke and effects across generations: A conference of animals on asthma. Clin Exp Allergy 2019; 48:1378-1390. [PMID: 30244507 DOI: 10.1111/cea.13283] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 07/24/2018] [Accepted: 09/01/2018] [Indexed: 12/15/2022]
Abstract
BACKGROUND The prevalence of asthma and chronic obstructive pulmonary disease (COPD) has risen markedly over the last decades and is reaching epidemic proportions. However, underlying molecular mechanisms are not fully understood, hampering the urgently needed development of approaches to prevent these diseases. It is well established from epidemiological studies that prenatal exposure to cigarette smoke is one of the main risk factors for aberrant lung function development or reduced fetal growth, but also for the development of asthma and possibly COPD later in life. Of note, recent evidence suggests that the disease risk can be transferred across generations, that is, from grandparents to their grandchildren. While initial studies in mouse models on in utero smoke exposure have provided important mechanistic insights, there are still knowledge gaps that need to be filled. OBJECTIVE Thus, in this review, we summarize current knowledge on this topic derived from mouse models, while also introducing two other relevant animal models: the fruit fly Drosophila melanogaster and the zebrafish Danio rerio. METHODS This review is based on an intensive review of PubMed-listed transgenerational animal studies from 1902 to 2018 and focuses in detail on selected literature due to space limitations. RESULTS This review gives a comprehensive overview of mechanistic insights obtained in studies with the three species, while highlighting the remaining knowledge gaps. We will further discuss potential (dis)advantages of all three animal models. CONCLUSION/CLINICAL RELEVANCE Many studies have already addressed transgenerational inheritance of disease risk in mouse, zebrafish or fly models. We here propose a novel strategy for how these three model organisms can be synergistically combined to achieve a more detailed understanding of in utero cigarette smoke-induced transgenerational inheritance of disease risk.
Collapse
Affiliation(s)
- Barbara Hammer
- Early Life Origins of Chronic Lung Diseases, Research Center Borstel, Leibniz Lung Center, German Center for Lung Research (DZL), Borstel, Germany
| | - Christina Wagner
- Invertebrate Models, Research Center Borstel, Leibniz Lung Center, Borstel, Germany
| | - Aleksandra Divac Rankov
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Sebastian Reuter
- Department of Pulmonary Medicine, University Hospital Essen - Ruhrlandklinik, Essen, Germany
| | - Sabine Bartel
- Early Life Origins of Chronic Lung Diseases, Research Center Borstel, Leibniz Lung Center, German Center for Lung Research (DZL), Borstel, Germany
| | - Machteld N Hylkema
- GRIAC Research Institute, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.,Department of Pathology and Medical Biology, University Medical Center Groningen, Groningen, The Netherlands
| | - Arne Krüger
- Early Life Origins of Chronic Lung Diseases, Research Center Borstel, Leibniz Lung Center, German Center for Lung Research (DZL), Borstel, Germany.,Institute for Life Science and Technology, Hanze University of Applied Sciences, Groningen, The Netherlands
| | - Cecilie Svanes
- Centre for International Health, University of Bergen, Bergen, Norway.,Department of Occupational Medicine, Haukeland University Hospital, Bergen, Norway
| | - Susanne Krauss-Etschmann
- Early Life Origins of Chronic Lung Diseases, Research Center Borstel, Leibniz Lung Center, German Center for Lung Research (DZL), Borstel, Germany.,Institute for Experimental Medicine, Christian-Albrechts-Universitaet zu Kiel, Kiel, Germany
| |
Collapse
|
46
|
Kuniyoshi KM, Rehan VK. The impact of perinatal nicotine exposure on fetal lung development and subsequent respiratory morbidity. Birth Defects Res 2019; 111:1270-1283. [PMID: 31580538 DOI: 10.1002/bdr2.1595] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 08/13/2019] [Accepted: 09/05/2019] [Indexed: 01/18/2023]
Abstract
Maternal smoking during pregnancy remains as a significant public health crisis as it did decades ago. Although its prevalence is decreasing in high-income countries, it has worsened globally, along with a concerning emergence of electronic-cigarette usage within the last two decades. Extensive epidemiologic and experimental evidence exists from both human and animal studies, demonstrating the detrimental long-term pulmonary outcomes in the offspring of mothers who smoke during pregnancy. Even secondhand and thirdhand smoke exposure to the developing lung might be as or even more harmful than firsthand smoke exposure. Furthermore, these effects are not limited only to the exposed progeny, but can also be transmitted transgenerationally. There is compelling evidence to support that the majority of the effects of perinatal smoke exposure on the developing lung, including the transgenerational transmission of asthma, is mediated by nicotine. Nicotine exposure induces cell-specific molecular changes in lungs, which offers a unique opportunity to prevent, halt, and/or reverse the resultant damage through targeted molecular interventions. Experimentally, the proposed interventions, such as administration of peroxisome proliferator-activated receptor gamma (PPARγ) agonists can not only block but also potentially reverse the perinatal nicotine exposure-induced respiratory morbidity in the exposed offspring. However, the development of a safe and effective intervention is still many years away. In the meantime, electropuncture at specific acupoints appears to be emerging as a more practical and safe physiologic approach to block the harmful pulmonary consequences of perinatal nicotine exposure.
Collapse
Affiliation(s)
- Katherine M Kuniyoshi
- Department of Pediatrics, David Geffen School of Medicine, The Lundquist Institute for Biomedical Innovation at Harbor, UCLA Medical Center, Torrance, California
| | - Virender K Rehan
- Department of Pediatrics, David Geffen School of Medicine, The Lundquist Institute for Biomedical Innovation at Harbor, UCLA Medical Center, Torrance, California
| |
Collapse
|
47
|
Worku D, Worku E. A narrative review evaluating the safety and efficacy of e-cigarettes as a newly marketed smoking cessation tool. SAGE Open Med 2019; 7:2050312119871405. [PMID: 31452888 PMCID: PMC6700846 DOI: 10.1177/2050312119871405] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 08/01/2019] [Indexed: 12/28/2022] Open
Abstract
Introduction: E-cigarettes are an alternative to traditional tobacco-based cigarettes. While having considerable societal awareness, conflicting evidence exists to support their claims that they are an effective smoking cessation tool and are safe. Currently >7000 flavours exist with evidence that they exhibit detrimental cellular and tissue effects. A literature review was conducted utilising PubMed and Google Scholar Databases identifying papers between 2014 and 2019. The aims of this study were to accurately gauge the safety and efficacy of e-cigarettes as a smoking cessation tool. Methods: Search terms including ‘electronic cigarettes’ and ‘vaping’ were used to identify suitable references. A total of 314 articles were identified from which papers were excluded due to risk of bias, insufficient detail or were duplicate from which 58 papers were used in the final review. Results: Evidence shows that e-cigarettes can have detrimental effects on several cell lines and animal models with their flavourings and nicotine content implicated; this has, however, not translated into major health outcomes after 3.5 years follow-up but has been linked to chronic lung disease and cardiovascular disease. While advertised as an effective smoking cessation tool, no consensus can be made regarding their effectiveness although the first robust randomised controlled trial reports some success. This, however, is offset by the fact that the most common e-cigarette use is as a dual user and that there is evidence of threefold increased risk of future tobacco smoking. Conclusion: Future research is needed to evaluate the long-term health outcomes and efficacy of e-cigarettes as a smoking cessation tool with greater discussion between patients and clinicians regarding this smoking cessation tool.
Collapse
Affiliation(s)
| | - Elliott Worku
- Royal Brisbane and Women's Hospital Foundation, Herston, QLD, Australia
| |
Collapse
|
48
|
Bell AM, Hellmann JK. An Integrative Framework for Understanding the Mechanisms and Multigenerational Consequences of Transgenerational Plasticity. ANNUAL REVIEW OF ECOLOGY, EVOLUTION, AND SYSTEMATICS 2019; 50:97-118. [PMID: 36046014 PMCID: PMC9427003 DOI: 10.1146/annurev-ecolsys-110218-024613] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Transgenerational plasticity (TGP) occurs when the environment experienced by a parent influences the development of their offspring. In this article, we develop a framework for understanding the mechanisms and multi-generational consequences of TGP. First, we conceptualize the mechanisms of TGP in the context of communication between parents (senders) and offspring (receivers) by dissecting the steps between an environmental cue received by a parent and its resulting effects on the phenotype of one or more future generations. Breaking down the problem in this way highlights the diversity of mechanisms likely to be involved in the process. Second, we review the literature on multigenerational effects and find that the documented patterns across generations are diverse. We categorize different multigenerational patterns and explore the proximate and ultimate mechanisms that can generate them. Throughout, we highlight opportunities for future work in this dynamic and integrative area of study.
Collapse
Affiliation(s)
- Alison M Bell
- Department of Evolution, Ecology and Behavior, School of Integrative Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Program in Neuroscience and Program in Ecology, Evolution and Conservation, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Jennifer K Hellmann
- Department of Evolution, Ecology and Behavior, School of Integrative Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| |
Collapse
|
49
|
Escher J, Robotti S. Pregnancy drugs, fetal germline epigenome, and risks for next-generation pathology: A call to action. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2019; 60:445-454. [PMID: 30891817 DOI: 10.1002/em.22288] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 02/09/2019] [Accepted: 03/16/2019] [Indexed: 06/09/2023]
Abstract
Drugs taken during pregnancy can affect three generations at once: the gestating woman (F0), her exposed fetus (F1), and the fetal germ cells that confer heritable information for the grandchildren (F2). Unfortunately, despite growing evidence for connections between F0 drug exposures and F2 pathology, current approaches to risk assessment overlook this important dimension of risk. In this commentary, we argue that the unique molecular vulnerabilities of the fetal germline, particularly with regard to global epigenomic reprogramming, combined with empirical evidence for F2 effects of F1 in utero drug and other exposures, should change the way we consider potential long-term consequences of pregnancy drugs and alter toxicology's standard somatic paradigm. Specifically, we (1) suggest that pregnancy drugs common in the postwar decades should be investigated as potential contributors to the "missing heritability" of many pathologies now surging in prevalence; (2) call for inclusion of fetal germline risks in pregnancy drug safety assessment; and (3) highlight the need for intensified research to ascertain generational impacts of diethylstilbestrol, a vanguard question of human germline toxicity. Only by fully addressing this important dimension of transplacental exposure can we responsibly evaluate safety of drug exposures during pregnancy and convey the full scope of risks, while also retrospectively comprehending the generational legacy of recent history's unprecedented glut of evolutionarily novel intrauterine exposures. Environ. Mol. Mutagen. 60:445-454, 2019. © 2019 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Jill Escher
- Escher Fund for Autism, San Jose, California
| | | |
Collapse
|
50
|
Accordini S, Calciano L, Johannessen A, Portas L, Benediktsdóttir B, Bertelsen RJ, Bråbäck L, Carsin AE, Dharmage SC, Dratva J, Forsberg B, Gomez Real F, Heinrich J, Holloway JW, Holm M, Janson C, Jögi R, Leynaert B, Malinovschi A, Marcon A, Martínez-Moratalla Rovira J, Raherison C, Sánchez-Ramos JL, Schlünssen V, Bono R, Corsico AG, Demoly P, Dorado Arenas S, Nowak D, Pin I, Weyler J, Jarvis D, Svanes C. A three-generation study on the association of tobacco smoking with asthma. Int J Epidemiol 2019. [PMID: 29534228 PMCID: PMC6124624 DOI: 10.1093/ije/dyy031] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Background Mothers’ smoking during pregnancy increases asthma risk in their offspring. There is some evidence that grandmothers’ smoking may have a similar effect, and biological plausibility that fathers’ smoking during adolescence may influence offspring’s health through transmittable epigenetic changes in sperm precursor cells. We evaluated the three-generation associations of tobacco smoking with asthma. Methods Between 2010 and 2013, at the European Community Respiratory Health Survey III clinical interview, 2233 mothers and 1964 fathers from 26 centres reported whether their offspring (aged ≤51 years) had ever had asthma and whether it had coexisted with nasal allergies or not. Mothers and fathers also provided information on their parents’ (grandparents) and their own asthma, education and smoking history. Multilevel mediation models within a multicentre three-generation framework were fitted separately within the maternal (4666 offspring) and paternal (4192 offspring) lines. Results Fathers’ smoking before they were 15 [relative risk ratio (RRR) = 1.43, 95% confidence interval (CI): 1.01–2.01] and mothers’ smoking during pregnancy (RRR = 1.27, 95% CI: 1.01–1.59) were associated with asthma without nasal allergies in their offspring. Grandmothers’ smoking during pregnancy was associated with asthma in their daughters [odds ratio (OR) = 1.55, 95% CI: 1.17–2.06] and with asthma with nasal allergies in their grandchildren within the maternal line (RRR = 1.25, 95% CI: 1.02–1.55). Conclusions Fathers’ smoking during early adolescence and grandmothers’ and mothers’ smoking during pregnancy may independently increase asthma risk in offspring. Thus, risk factors for asthma should be sought in both parents and before conception. Funding European Union (Horizon 2020, GA-633212).
Collapse
Affiliation(s)
- Simone Accordini
- Unit of Epidemiology and Medical Statistics, Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | - Lucia Calciano
- Unit of Epidemiology and Medical Statistics, Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | - Ane Johannessen
- Centre for International Health, Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway
| | - Laura Portas
- Unit of Epidemiology and Medical Statistics, Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | | | - Randi Jacobsen Bertelsen
- Department of Clinical Science, University of Bergen, Bergen, Norway.,Department of Occupational Medicine, Haukeland University Hospital, Bergen, Norway
| | - Lennart Bråbäck
- Division of Occupational and Environmental Medicine, Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
| | - Anne-Elie Carsin
- ISGlobal, Centre for Research in Environmental Epidemiology (CREAL), Barcelona, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain.,CIBER Epidemiología y Salud Pública (CIBERESP), Barcelona, Spain
| | - Shyamali C Dharmage
- School of Population and Global Health, University of Melbourne, Melbourne, VIC, Australia
| | - Julia Dratva
- ZHAW School of Health Professions, Institute of Health Sciences, Winterthur, Switzerland.,Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Basel University, Basel, Switzerland
| | - Bertil Forsberg
- Division of Occupational and Environmental Medicine, Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
| | | | - Joachim Heinrich
- Institute and Outpatient Clinic for Occupational, Social and Environmental Medicine, Inner City Clinic, University Hospital Munich, Ludwig-Maximilians-Universität München, Munich, Germany
| | - John W Holloway
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Mathias Holm
- Department of Occupational and Environmental Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Christer Janson
- Department of Medical Sciences: Respiratory, Allergy and Sleep Research, Uppsala University, Uppsala, Sweden
| | - Rain Jögi
- Lung Clinic, Tartu University Hospital, Tartu, Estonia
| | - Bénédicte Leynaert
- INSERM UMR 1152, Pathophysiology and Epidemiology of Respiratory Diseases, Paris, France
| | - Andrei Malinovschi
- Department of Medical Sciences: Clinical Physiology, Uppsala University, Uppsala, Sweden
| | - Alessandro Marcon
- Unit of Epidemiology and Medical Statistics, Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | - Jesús Martínez-Moratalla Rovira
- Pneumology Service of the University Hospital Complex of Albacete (CHUA), Health Service of Castilla-La Mancha (SESCAM), Albacete, Spain.,School of Medicine, University of Castilla-La Mancha, Albacete, Spain
| | | | | | - Vivi Schlünssen
- Department of Public Health, Aarhus University, Aarhus, Denmark.,National Research Center for the Working Environment, Copenhagen, Denmark
| | - Roberto Bono
- Department of Public Health and Pediatrics, University of Turin, Turin, Italy
| | - Angelo G Corsico
- Division of Respiratory Diseases, IRCCS 'San Matteo' Hospital Foundation-University of Pavia, Pavia, Italy
| | - Pascal Demoly
- Département de Pneumologie et Addictologie, Hôpital Arnaud de Villeneuve, University of Montpellier, Montpellier, France.,Sorbonne Université, INSERM, IPLESP, Paris, France
| | | | - Dennis Nowak
- Institute and Outpatient Clinic for Occupational, Social and Environmental Medicine, Inner City Clinic, University Hospital Munich, Ludwig-Maximilians-Universität München, Munich, Germany.,Comprehensive Pneumology Center Munich, Member of the German Center for Lung Research, Munich, Germany
| | - Isabelle Pin
- Pediatrie, CHU Grenoble Alpes, Grenoble, France.,INSERM 1209, Institute for Advanced Biosciences, Grenoble, France.,Université Grenoble Alpes, Grenoble, France
| | - Joost Weyler
- Department of Epidemiology and Social Medicine and the StatUA Statistics Centre, University of Antwerp, Antwerp, Belgium
| | - Deborah Jarvis
- Population Health and Occupational Disease, National Heart & Lung Institute, Imperial College, London, UK.,MRC-PHE Centre for Environment and Health, Imperial College, London, UK
| | - Cecilie Svanes
- Centre for International Health, Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway.,Department of Occupational Medicine, Haukeland University Hospital, Bergen, Norway
| | | |
Collapse
|