1
|
Sheremeta CL, Yarlagadda S, Smythe ML, Noakes PG. Prostaglandins in the Inflamed Central Nervous System: Potential Therapeutic Targets. Curr Drug Targets 2024; 25:885-908. [PMID: 39177131 DOI: 10.2174/0113894501323980240815113851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/11/2024] [Accepted: 07/19/2024] [Indexed: 08/24/2024]
Abstract
The global burden of neurological disorders is evident, yet there remains limited efficacious therapeutics for their treatment. There is a growing recognition of the role of inflammation in diseases of the central nervous system (CNS); among the numerous inflammatory mediators involved, prostaglandins play a crucial role. Prostaglandins are small lipid mediators derived from arachidonic acid via multi-enzymatic pathways. The actions of prostaglandins are varied, with each prostaglandin having a specific role in maintaining homeostasis. In the CNS, prostaglandins can have neuroprotective or neurotoxic properties depending on their specific G-protein receptor. These G-protein receptors have varying subfamilies, tissue distribution, and signal transduction cascades. Further studies into the impact of prostaglandins in CNS-based diseases may contribute to the clarification of their actions, hopefully leading to the development of efficacious therapeutic strategies. This review focuses on the roles played by prostaglandins in neural degeneration, with a focus on Alzheimer's Disease, Multiple Sclerosis, and Amyotrophic Lateral Sclerosis in both preclinical and clinical settings. We further discuss current prostaglandin-related agonists and antagonists concerning suggestions for their use as future therapeutics.
Collapse
Affiliation(s)
- Chynna-Loren Sheremeta
- Institute for Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia
- School of Biomedical Sciences, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Sai Yarlagadda
- Institute for Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia
- School of Biomedical Sciences, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Mark L Smythe
- Institute for Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Peter G Noakes
- School of Biomedical Sciences, The University of Queensland, St. Lucia, QLD 4072, Australia
- Queensland Brain Institute, The University of Queensland, St. Lucia, QLD 4072, Australia
| |
Collapse
|
2
|
Jenkins BJ, Blagih J, Ponce-Garcia FM, Canavan M, Gudgeon N, Eastham S, Hill D, Hanlon MM, Ma EH, Bishop EL, Rees A, Cronin JG, Jury EC, Dimeloe SK, Veale DJ, Thornton CA, Vousden KH, Finlay DK, Fearon U, Jones GW, Sinclair LV, Vincent EE, Jones N. Canagliflozin impairs T cell effector function via metabolic suppression in autoimmunity. Cell Metab 2023; 35:1132-1146.e9. [PMID: 37230079 DOI: 10.1016/j.cmet.2023.05.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 02/03/2023] [Accepted: 05/02/2023] [Indexed: 05/27/2023]
Abstract
Augmented T cell function leading to host damage in autoimmunity is supported by metabolic dysregulation, making targeting immunometabolism an attractive therapeutic avenue. Canagliflozin, a type 2 diabetes drug, is a sodium glucose co-transporter 2 (SGLT2) inhibitor with known off-target effects on glutamate dehydrogenase and complex I. However, the effects of SGLT2 inhibitors on human T cell function have not been extensively explored. Here, we show that canagliflozin-treated T cells are compromised in their ability to activate, proliferate, and initiate effector functions. Canagliflozin inhibits T cell receptor signaling, impacting on ERK and mTORC1 activity, concomitantly associated with reduced c-Myc. Compromised c-Myc levels were encapsulated by a failure to engage translational machinery resulting in impaired metabolic protein and solute carrier production among others. Importantly, canagliflozin-treated T cells derived from patients with autoimmune disorders impaired their effector function. Taken together, our work highlights a potential therapeutic avenue for repurposing canagliflozin as an intervention for T cell-mediated autoimmunity.
Collapse
Affiliation(s)
- Benjamin J Jenkins
- Institute of Life Science, Swansea University Medical School, Swansea University, Swansea SA2 8PP, UK
| | - Julianna Blagih
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK; University of Montreal, Maisonneuve-Rosemont Hospital Research Centre, 5414 Assomption Blvd, Montreal, QC H1T 2M4, Canada
| | - Fernando M Ponce-Garcia
- Institute of Life Science, Swansea University Medical School, Swansea University, Swansea SA2 8PP, UK
| | - Mary Canavan
- Molecular Rheumatology, School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearce Street, Dublin, Ireland
| | - Nancy Gudgeon
- Institute of Immunology and Immunotherapy, Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Simon Eastham
- Cellular and Molecular Medicine, University of Bristol, Biomedical Sciences Building, Bristol BS8 1TD, UK
| | - David Hill
- Cellular and Molecular Medicine, University of Bristol, Biomedical Sciences Building, Bristol BS8 1TD, UK
| | - Megan M Hanlon
- Molecular Rheumatology, School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearce Street, Dublin, Ireland
| | - Eric H Ma
- Department of Metabolism and Nutritional Programming, Van Andel Institute, Grand Rapids, MI, USA; Rheos Medicines, Cambridge, MA, USA
| | - Emma L Bishop
- Institute of Immunology and Immunotherapy, Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - April Rees
- Institute of Life Science, Swansea University Medical School, Swansea University, Swansea SA2 8PP, UK
| | - James G Cronin
- Institute of Life Science, Swansea University Medical School, Swansea University, Swansea SA2 8PP, UK
| | - Elizabeth C Jury
- Centre for Rheumatology Research, Division of Medicine, University College London, London, UK
| | - Sarah K Dimeloe
- Institute of Immunology and Immunotherapy, Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Douglas J Veale
- EULAR Centre of Excellence, Centre for Arthritis and Rheumatic Diseases, St Vincent's University Hospital, Dublin, Ireland
| | - Catherine A Thornton
- Institute of Life Science, Swansea University Medical School, Swansea University, Swansea SA2 8PP, UK
| | - Karen H Vousden
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - David K Finlay
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearce Street, Dublin, Ireland
| | - Ursula Fearon
- Molecular Rheumatology, School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearce Street, Dublin, Ireland
| | - Gareth W Jones
- Cellular and Molecular Medicine, University of Bristol, Biomedical Sciences Building, Bristol BS8 1TD, UK
| | - Linda V Sinclair
- Division of Cell Signalling and Immunology, School of Life Sciences, University of Dundee, Dundee, UK
| | - Emma E Vincent
- School of Translational Health Sciences, University of Bristol, Dorothy Hodgkin Building, Bristol BS1 3NY, UK; Integrative Epidemiology Unit, School of Population Health Science, University of Bristol, Bristol BS8 2BN, UK
| | - Nicholas Jones
- Institute of Life Science, Swansea University Medical School, Swansea University, Swansea SA2 8PP, UK.
| |
Collapse
|
3
|
Grajchen E, Loix M, Baeten P, Côrte-Real BF, Hamad I, Vanherle S, Haidar M, Dehairs J, Broos JY, Ntambi JM, Zimmermann R, Breinbauer R, Stinissen P, Hellings N, Verberk SGS, Kooij G, Giera M, Swinnen JV, Broux B, Kleinewietfeld M, Hendriks JJA, Bogie JFJ. Fatty acid desaturation by stearoyl-CoA desaturase-1 controls regulatory T cell differentiation and autoimmunity. Cell Mol Immunol 2023; 20:666-679. [PMID: 37041314 DOI: 10.1038/s41423-023-01011-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 03/23/2023] [Indexed: 04/13/2023] Open
Abstract
The imbalance between pathogenic and protective T cell subsets is a cardinal feature of autoimmune disorders such as multiple sclerosis (MS). Emerging evidence indicates that endogenous and dietary-induced changes in fatty acid metabolism have a major impact on both T cell fate and autoimmunity. To date, however, the molecular mechanisms that underlie the impact of fatty acid metabolism on T cell physiology and autoimmunity remain poorly understood. Here, we report that stearoyl-CoA desaturase-1 (SCD1), an enzyme essential for the desaturation of fatty acids and highly regulated by dietary factors, acts as an endogenous brake on regulatory T-cell (Treg) differentiation and augments autoimmunity in an animal model of MS in a T cell-dependent manner. Guided by RNA sequencing and lipidomics analysis, we found that the absence of Scd1 in T cells promotes the hydrolysis of triglycerides and phosphatidylcholine through adipose triglyceride lipase (ATGL). ATGL-dependent release of docosahexaenoic acid enhanced Treg differentiation by activating the nuclear receptor peroxisome proliferator-activated receptor gamma. Our findings identify fatty acid desaturation by SCD1 as an essential determinant of Treg differentiation and autoimmunity, with potentially broad implications for the development of novel therapeutic strategies and dietary interventions for autoimmune disorders such as MS.
Collapse
Affiliation(s)
- Elien Grajchen
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
- University MS Center Hasselt, Pelt, Belgium
| | - Melanie Loix
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
- University MS Center Hasselt, Pelt, Belgium
| | - Paulien Baeten
- University MS Center Hasselt, Pelt, Belgium
- Neuro-Immune Connections and Repair Lab, Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Beatriz F Côrte-Real
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
- University MS Center Hasselt, Pelt, Belgium
- VIB Laboratory of Translational Immunomodulation, VIB Center for Inflammation Research, Hasselt University, Diepenbeek, Belgium
| | - Ibrahim Hamad
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
- University MS Center Hasselt, Pelt, Belgium
- VIB Laboratory of Translational Immunomodulation, VIB Center for Inflammation Research, Hasselt University, Diepenbeek, Belgium
| | - Sam Vanherle
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
- University MS Center Hasselt, Pelt, Belgium
| | - Mansour Haidar
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
- University MS Center Hasselt, Pelt, Belgium
| | - Jonas Dehairs
- Department of Oncology, Laboratory of Lipid Metabolism and Cancer, LKI - Leuven Cancer Institute, KU Leuven - University of Leuven, Leuven, Belgium
| | - Jelle Y Broos
- Department of Molecular Cell Biology and Immunology, Amsterdam University Medical Center, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, MS Center Amsterdam, Amsterdam, The Netherlands
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - James M Ntambi
- Department of Biochemistry, Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, USA
| | - Robert Zimmermann
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
| | - Rolf Breinbauer
- BioTechMed-Graz, Graz, Austria
- Institute of Organic Chemistry, Graz University of Technology, Graz, Austria
| | - Piet Stinissen
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
- University MS Center Hasselt, Pelt, Belgium
| | - Niels Hellings
- University MS Center Hasselt, Pelt, Belgium
- Neuro-Immune Connections and Repair Lab, Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Sanne G S Verberk
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
- University MS Center Hasselt, Pelt, Belgium
| | - Gijs Kooij
- Department of Molecular Cell Biology and Immunology, Amsterdam University Medical Center, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, MS Center Amsterdam, Amsterdam, The Netherlands
| | - Martin Giera
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - Johannes V Swinnen
- Department of Oncology, Laboratory of Lipid Metabolism and Cancer, LKI - Leuven Cancer Institute, KU Leuven - University of Leuven, Leuven, Belgium
| | - Bieke Broux
- University MS Center Hasselt, Pelt, Belgium
- Neuro-Immune Connections and Repair Lab, Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
- Cardiovascular Research Institute Maastricht, Department of Internal Medicine, Maastricht University, Maastricht, The Netherlands
| | - Markus Kleinewietfeld
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
- University MS Center Hasselt, Pelt, Belgium
- VIB Laboratory of Translational Immunomodulation, VIB Center for Inflammation Research, Hasselt University, Diepenbeek, Belgium
| | - Jerome J A Hendriks
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
- University MS Center Hasselt, Pelt, Belgium
| | - Jeroen F J Bogie
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium.
- University MS Center Hasselt, Pelt, Belgium.
| |
Collapse
|
4
|
Branigan GL, Torrandell-Haro G, Vitali F, Brinton RD, Rodgers K. Age and sex differences on anti-hyperglycemic medication exposure and risk of newly diagnosed multiple sclerosis in propensity score matched type 2 diabetics. Heliyon 2022; 8:e11196. [PMID: 36325137 PMCID: PMC9618986 DOI: 10.1016/j.heliyon.2022.e11196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 06/30/2022] [Accepted: 10/17/2022] [Indexed: 11/06/2022] Open
Abstract
Background The association between exposure to anti-hyperglycemic medications (A-HgM) for Type 2 Diabetes Mellitus (T2D) treatment and Multiple Sclerosis (MS) in T2D patients is unclear. Methods This retrospective cohort analysis used the Mariner claims database. Patient records were surveyed for a diagnosis of MS starting 12 months after diagnosis of T2D. Patients were required to be actively enrolled in the Mariner claims records for six months prior and at least three years after the diagnosis of T2D without a history of previous neurodegenerative disease. Survival analysis was used to determine the association between A-HgM exposure and diagnosis of MS. A propensity score approach was used to minimize measured and unmeasured selection bias. The analyses were conducted between January 1st and April 28th, 2021. Findings In T2D patients younger than 45, A-HgM exposure was associated with a reduced risk of developing MS (RR: 0.22, 95%CI: 0.17-0.29, p-value <0.001). In contrast, A-HgM exposure in patients older than 45 was associated with an increased risk of MS with women exhibiting greater risk (RR: 1.53, 95%CI: 1.39-1.69, p < 0.001) than men (RR: 1.17, 95%CI: 1.01-1.37, p = 0 · 04). Patients who developed MS had a higher incidence of baseline comorbidities. Mean follow-up was 6.2 years with a standard deviation of 1.8 years. Interpretation In this study, A-HgM exposure in patients with T2D was associated with reduced risk of MS in patients younger than 45 whereas in patients older than 45, exposure to A-HgM was associated with an increased risk of newly diagnosed MS, particularly in women.
Collapse
Affiliation(s)
- Gregory L. Branigan
- Center for Innovation in Brain Science; University of Arizona, Tucson, Arizona, USA
- Department of Pharmacology; University of Arizona College of Medicine, Tucson, Arizona, USA
- MD-PhD Training Program; University of Arizona College of Medicine, Tucson, Arizona, USA
| | - Georgina Torrandell-Haro
- Center for Innovation in Brain Science; University of Arizona, Tucson, Arizona, USA
- Department of Pharmacology; University of Arizona College of Medicine, Tucson, Arizona, USA
| | - Francesca Vitali
- Center for Innovation in Brain Science; University of Arizona, Tucson, Arizona, USA
- Department of Neurology; University of Arizona College of Medicine, Tucson, Arizona, USA
- Center for Biomedical Informatics and Biostatistics, University of Arizona, Tucson, Arizona, USA
| | - Roberta Diaz Brinton
- Center for Innovation in Brain Science; University of Arizona, Tucson, Arizona, USA
- Department of Pharmacology; University of Arizona College of Medicine, Tucson, Arizona, USA
- Department of Neurology; University of Arizona College of Medicine, Tucson, Arizona, USA
| | - Kathleen Rodgers
- Center for Innovation in Brain Science; University of Arizona, Tucson, Arizona, USA
- Department of Pharmacology; University of Arizona College of Medicine, Tucson, Arizona, USA
| |
Collapse
|
5
|
Yang S, Guo L, Wang D, Yang Y, Wang J. Research on Mechanism of miR-106a Nanoparticles Carrying Dexmedetomidine in Regulating Recovery and Metabolism of Nerve Cells in Hypoxia-Reoxygenation Injury. J Biomed Nanotechnol 2022; 18:343-351. [PMID: 35484744 DOI: 10.1166/jbn.2022.3244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
We studied the mechanism of miR-106a nanoparticles carrying dexmedetomidine (DEX) in regulating the recovery and metabolism of nerve cells in hypoxia-reoxygenation injury. Hippocampus neuron model in hypoxia-reoxygenation injury was prepared in vitro. Study groups were randomly divided into control set, ischemic reperfusion (IR) set, dexmedetomidine (DEX) set, miR-106a-nanoparticles (NPs) set and set of dexmedetomidine (DEX) and miR-106a-NPs. We studied miR-106a expression, proliferative and apoptotic activity, secretion of IL-6 and tumor necrosis factor (TNF)-α, quantity of Phosphocreatine (PCr), adenosine triphosphate (ATP) and total adenine nucleotide, and also content of reactive oxygen species (ROS) and superoxide dismutases (SOD). Expressions of of Bax, Bcl-2 and NF-κB were also detected. Results showed that the expression of miR-106a in hippocampus neuron was reduced, while proliferation was reduced and apoptotic activity was increased. The secretions of IL-6 and TNF-α were increased, while the quantities of Phosphocreatine (PCr), adenosine triphosphate (ATP) and total adenine nucleotide were reduced. Bax expression was also increased and Bcl-2 expression was reduced. Moreover, ROS content was increased and SOD activity was reduced, while the NF-κB presentation was increased. The above-mentioned changes could be reversed in IR set, DEX set and miR-106a-NPs set. The action was more notable in the DEX and miR-106a-NPs sets. Finally, the proliferation in hippocampus neuron in hypoxia-reoxygenation injury could be prompted and apoptosis could be restrained by DEX and miR-106a-NPs. The secretion of inflammatory factors could be restrained through restraining the inflammatory pathway and oxidative stress. The energy metabolism could therefore be improved effectively and recovery of nerve cells in HBI could be improved.
Collapse
Affiliation(s)
- Shu Yang
- Department of Neurology, The Affiliated Hospital of University of Electronic Science and Technology, Sichuan Provincial People's Hospital, Chengdu, Sichuan, 610072, China
| | - Lei Guo
- Department of Neurology, The Affiliated Hospital of University of Electronic Science and Technology, Sichuan Provincial People's Hospital, Chengdu, Sichuan, 610072, China
| | - Duozi Wang
- Department of Neurology, The Affiliated Hospital of University of Electronic Science and Technology, Sichuan Provincial People's Hospital, Chengdu, Sichuan, 610072, China
| | - Yanwei Yang
- Department of Traditional Chinese Medicine, The Affiliated Hospital of University of Electronic Science and Technology, Sichuan Provincial People's Hospital, Chengdu, Sichuan, 610072, China
| | - Jianhong Wang
- Department of Neurology, The Affiliated Hospital of University of Electronic Science and Technology, Sichuan Provincial People's Hospital, Chengdu, Sichuan, 610072, China
| |
Collapse
|
6
|
Balestri S, Del Giovane A, Sposato C, Ferrarelli M, Ragnini-Wilson A. The Current Challenges for Drug Discovery in CNS Remyelination. Int J Mol Sci 2021; 22:ijms22062891. [PMID: 33809224 PMCID: PMC8001072 DOI: 10.3390/ijms22062891] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/09/2021] [Accepted: 03/10/2021] [Indexed: 12/12/2022] Open
Abstract
The myelin sheath wraps around axons, allowing saltatory currents to be transmitted along neurons. Several genetic, viral, or environmental factors can damage the central nervous system (CNS) myelin sheath during life. Unless the myelin sheath is repaired, these insults will lead to neurodegeneration. Remyelination occurs spontaneously upon myelin injury in healthy individuals but can fail in several demyelination pathologies or as a consequence of aging. Thus, pharmacological intervention that promotes CNS remyelination could have a major impact on patient’s lives by delaying or even preventing neurodegeneration. Drugs promoting CNS remyelination in animal models have been identified recently, mostly as a result of repurposing phenotypical screening campaigns that used novel oligodendrocyte cellular models. Although none of these have as yet arrived in the clinic, promising candidates are on the way. Many questions remain. Among the most relevant is the question if there is a time window when remyelination drugs should be administrated and why adult remyelination fails in many neurodegenerative pathologies. Moreover, a significant challenge in the field is how to reconstitute the oligodendrocyte/axon interaction environment representative of healthy as well as disease microenvironments in drug screening campaigns, so that drugs can be screened in the most appropriate disease-relevant conditions. Here we will provide an overview of how the field of in vitro models developed over recent years and recent biological findings about how oligodendrocytes mature after reactivation of their staminal niche. These data have posed novel questions and opened new views about how the adult brain is repaired after myelin injury and we will discuss how these new findings might change future drug screening campaigns for CNS regenerative drugs.
Collapse
|
7
|
van der Poel M, Ulas T, Mizee MR, Hsiao CC, Miedema SSM, Adelia, Schuurman KG, Helder B, Tas SW, Schultze JL, Hamann J, Huitinga I. Transcriptional profiling of human microglia reveals grey-white matter heterogeneity and multiple sclerosis-associated changes. Nat Commun 2019; 10:1139. [PMID: 30867424 PMCID: PMC6416318 DOI: 10.1038/s41467-019-08976-7] [Citation(s) in RCA: 194] [Impact Index Per Article: 38.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 02/07/2019] [Indexed: 12/22/2022] Open
Abstract
Here we report the transcriptional profile of human microglia, isolated from normal-appearing grey matter (GM) and white matter (WM) of multiple sclerosis (MS) and non-neurological control donors, to find possible early changes related to MS pathology. Microglia show a clear region-specific profile, indicated by higher expression of type-I interferon genes in GM and higher expression of NF-κB pathway genes in WM. Transcriptional changes in MS microglia also differ between GM and WM. MS WM microglia show increased lipid metabolism gene expression, which relates to MS pathology since active MS lesion-derived microglial nuclei show similar altered gene expression. Microglia from MS GM show increased expression of genes associated with glycolysis and iron homeostasis, possibly reflecting microglia reacting to iron depositions. Except for ADGRG1/GPR56, expression of homeostatic genes, such as P2RY12 and TMEM119, is unaltered in normal-appearing MS tissue, demonstrating overall preservation of microglia homeostatic functions in the initiation phase of MS.
Collapse
Affiliation(s)
- Marlijn van der Poel
- Neuroimmunology Research Group, Netherlands Institute for Neuroscience, Meibergdreef 47, 1105BA, Amsterdam, The Netherlands
| | - Thomas Ulas
- Genomics and Immunoregulation, LIMES Institute, University of Bonn, Carl-Troll-Straße 31, 53115, Bonn, Germany
| | - Mark R Mizee
- Neuroimmunology Research Group, Netherlands Institute for Neuroscience, Meibergdreef 47, 1105BA, Amsterdam, The Netherlands
| | - Cheng-Chih Hsiao
- Department of Experimental Immunology, Amsterdam University Medical Centers, University of Amsterdam, Meibergdreef 9, 1105AZ, Amsterdam, The Netherlands
| | - Suzanne S M Miedema
- Neuroimmunology Research Group, Netherlands Institute for Neuroscience, Meibergdreef 47, 1105BA, Amsterdam, The Netherlands
| | - Adelia
- Netherlands Brain Bank, Netherlands Institute for Neuroscience, Meibergdreef 47, 1105BA, Amsterdam, The Netherlands
| | - Karianne G Schuurman
- Neuroimmunology Research Group, Netherlands Institute for Neuroscience, Meibergdreef 47, 1105BA, Amsterdam, The Netherlands
| | - Boy Helder
- Department of Experimental Immunology, Amsterdam University Medical Centers, University of Amsterdam, Meibergdreef 9, 1105AZ, Amsterdam, The Netherlands
- Department of Clinical Immunology and Rheumatology, Amsterdam Rheumatology and Immunology Center, Amsterdam University Medical Centers, University of Amsterdam, Meibergdreef 9, 1105AZ, Amsterdam, The Netherlands
| | - Sander W Tas
- Department of Experimental Immunology, Amsterdam University Medical Centers, University of Amsterdam, Meibergdreef 9, 1105AZ, Amsterdam, The Netherlands
- Department of Clinical Immunology and Rheumatology, Amsterdam Rheumatology and Immunology Center, Amsterdam University Medical Centers, University of Amsterdam, Meibergdreef 9, 1105AZ, Amsterdam, The Netherlands
| | - Joachim L Schultze
- Genomics and Immunoregulation, LIMES Institute, University of Bonn, Carl-Troll-Straße 31, 53115, Bonn, Germany
- PRECISE Platform for Single Cell Genomics and Epigenomics, German Center for Neurodegenerative Diseases, University of Bonn, Sigmund-Freud-Street 27, 53127, Bonn, Germany
| | - Jörg Hamann
- Neuroimmunology Research Group, Netherlands Institute for Neuroscience, Meibergdreef 47, 1105BA, Amsterdam, The Netherlands.
- Department of Experimental Immunology, Amsterdam University Medical Centers, University of Amsterdam, Meibergdreef 9, 1105AZ, Amsterdam, The Netherlands.
| | - Inge Huitinga
- Neuroimmunology Research Group, Netherlands Institute for Neuroscience, Meibergdreef 47, 1105BA, Amsterdam, The Netherlands.
| |
Collapse
|
8
|
Fakan B, Szalardy L, Vecsei L. Exploiting the Therapeutic Potential of Endogenous Immunomodulatory Systems in Multiple Sclerosis-Special Focus on the Peroxisome Proliferator-Activated Receptors (PPARs) and the Kynurenines. Int J Mol Sci 2019; 20:ijms20020426. [PMID: 30669473 PMCID: PMC6358998 DOI: 10.3390/ijms20020426] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 01/13/2019] [Accepted: 01/15/2019] [Indexed: 01/20/2023] Open
Abstract
Multiple sclerosis (MS) is a progressive neurodegenerative disease, characterized by autoimmune central nervous system (CNS) demyelination attributable to a disturbed balance between encephalitic T helper 1 (Th1) and T helper 17 (Th17) and immunomodulatory regulatory T cell (Treg) and T helper 2 (Th2) cells, and an alternatively activated macrophage (M2) excess. Endogenous molecular systems regulating these inflammatory processes have recently been investigated to identify molecules that can potentially influence the course of the disease. These include the peroxisome proliferator-activated receptors (PPARs), PPARγ coactivator-1alpha (PGC-1α), and kynurenine pathway metabolites. Although all PPARs ameliorate experimental autoimmune encephalomyelitis (EAE), recent evidence suggests that PPARα, PPARβ/δ agonists have less pronounced immunomodulatory effects and, along with PGC-1α, are not biomarkers of neuroinflammation in contrast to PPARγ. Small clinical trials with PPARγ agonists have been published with positive results. Proposed as immunomodulatory and neuroprotective, the therapeutic use of PGC-1α activation needs to be assessed in EAE/MS. The activation of indolamine 2,3-dioxygenase (IDO), the rate-limiting step of the kynurenine pathway of tryptophan (Trp) metabolism, plays crucial immunomodulatory roles. Indeed, Trp metabolites have therapeutic relevance in EAE and drugs with structural analogy to kynurenines, such as teriflunomide, are already approved for MS. Further studies are required to gain deeper knowledge of such endogenous immunomodulatory pathways with potential therapeutic implications in MS.
Collapse
Affiliation(s)
- Bernadett Fakan
- Department of Neurology, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, H-6725 Szeged, Semmelweis u. 6, Hungary.
| | - Levente Szalardy
- Department of Neurology, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, H-6725 Szeged, Semmelweis u. 6, Hungary.
| | - Laszlo Vecsei
- Department of Neurology, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, H-6725 Szeged, Semmelweis u. 6, Hungary.
- MTA-SZTE Neuroscience Research Group, H-6725 Szeged, Semmelweis u. 6, Hungary.
| |
Collapse
|
9
|
Chedrawe MAJ, Holman SP, Lamport AC, Akay T, Robertson GS. Pioglitazone is superior to quetiapine, clozapine and tamoxifen at alleviating experimental autoimmune encephalomyelitis in mice. J Neuroimmunol 2018; 321:72-82. [PMID: 29957391 DOI: 10.1016/j.jneuroim.2018.06.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 05/23/2018] [Accepted: 06/04/2018] [Indexed: 12/17/2022]
Abstract
Recent evidence suggests that clozapine and quetiapine (atypical antipsychotics), tamoxifen (selective-estrogen receptor modulator) and pioglitazone (PPARγ agonist) may improve functional recovery in multiple sclerosis (MS). We have compared the effectiveness of oral administration of these drugs, beginning at peak disease, at reducing ascending paralysis, motor deficits and demyelination in mice subjected to experimental autoimmune encephalomyelitis (EAE). Mice were immunized with an immunogenic peptide corresponding to amino acids 35-55 of the myelin oligodendrocyte glycoprotein (MOG35-55) in complete Freund's adjuvant and injected with pertussis toxin to induce EAE. Unlike clozapine, quetiapine and tamoxifen, administration of pioglitazone beginning at peak disease decreased both clinical scores and lumbar white matter loss in EAE mice. Using kinematic gait analysis, we found that pioglitazone also maintained normal movement of the hip, knee and ankle joints for at least 44 days after MOG35-55 immunization. This long-lasting preservation of hindleg joint movements was accompanied by reduced white matter loss, microglial and macrophage activation and the expression of pro-inflammatory genes in the lumbar spinal cords of EAE mice. These results support clinical findings that suggest pioglitazone may reduce the progressive loss of motor function in MS by decreasing inflammation and myelin damage.
Collapse
Affiliation(s)
- Matthew A J Chedrawe
- Department of Pharmacology, Brain Repair Centre, Faculty of Medicine, 2nd floor, Life Sciences Research Institute, 1348 Summer Street, P.O. Box 15000, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada.
| | - Scott P Holman
- Department of Pharmacology, Brain Repair Centre, Faculty of Medicine, 2nd floor, Life Sciences Research Institute, 1348 Summer Street, P.O. Box 15000, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Anna-Claire Lamport
- Department of Pharmacology, Brain Repair Centre, Faculty of Medicine, 2nd floor, Life Sciences Research Institute, 1348 Summer Street, P.O. Box 15000, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada.
| | - Turgay Akay
- Department of Medical Neuroscience, Brain Repair Centre, Faculty of Medicine, 3rd floor, Life Sciences Research Institute, 1348 Summer Street, P.O. Box 15000, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada.
| | - George S Robertson
- Department of Pharmacology, Brain Repair Centre, Faculty of Medicine, 2nd floor, Life Sciences Research Institute, 1348 Summer Street, P.O. Box 15000, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada; Department of Psychiatry, 5909 Veterans' Memorial Lane, 8th floor, Abbie J. Lane Memorial Building, QEII Health Sciences Centre, Halifax, Nova Scotia B3H 2E2, Canada.
| |
Collapse
|
10
|
Metabolic Dysfunction and Peroxisome Proliferator-Activated Receptors (PPAR) in Multiple Sclerosis. Int J Mol Sci 2018; 19:ijms19061639. [PMID: 29865151 PMCID: PMC6032172 DOI: 10.3390/ijms19061639] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Revised: 05/27/2018] [Accepted: 05/28/2018] [Indexed: 02/06/2023] Open
Abstract
Multiple sclerosis (MS) is an inflammatory and neurodegenerative disease of the central nervous system (CNS) probably caused, in most cases, by the interaction of genetic and environmental factors. This review first summarizes some clinical, epidemiological and pathological characteristics of MS. Then, the involvement of biochemical pathways is discussed in the development and repair of the CNS lesions and the immune dysfunction in the disease. Finally, the potential roles of peroxisome proliferator-activated receptors (PPAR) in MS are discussed. It is suggested that metabolic mechanisms modulated by PPAR provide a window to integrate the systemic and neurological events underlying the pathogenesis of the disease. In conclusion, the reviewed data highlight molecular avenues of understanding MS that may open new targets for improved therapies and preventive strategies for the disease.
Collapse
|
11
|
Peymani M, Ghaedi K, Hashemi MS, Ghoochani A, Kiani-Esfahani A, Nasr-Esfahani MH, Baharvand H. Ameliorating the Effect of Pioglitazone on LPS-Induced Inflammation of Human Oligodendrocyte Progenitor Cells. Cell Mol Neurobiol 2017; 38:517-527. [PMID: 28488008 DOI: 10.1007/s10571-017-0500-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 05/03/2017] [Indexed: 12/12/2022]
Abstract
Oligodendrocyte progenitor cells (OPCs) are appropriate model cells for studying the progress of neurodegenerative disorders and evaluation of pharmacological efficacies of small molecules for treatment of these disorders. Here, we focused on the therapeutic role of Pioglitazone, which is a selective agonist of peroxisome proliferator-activated receptor gamma (PPARγ), a respective nuclear receptor in inflammatory responses. Human embryonic stem cell-derived OPCs were pretreated by Pioglitazone at differing concentrations. Pretreated OPCs were further examined after induction of inflammation by LPS. Interestingly, Pioglitazone reversed the inflammatory conditions and enhanced OPC viability. Data showed that Pioglitazone reduced Nitric Oxide (NO) production. Moreover, Pioglitazone enhanced cell viability through distinct mechanisms including reduction of apoptosis and regulation of cell cycle markers. This study demonstrated that NO induces apoptosis through FOXO1 and degradation of β-catenin, while the presence of Pioglitazone inhibited these effects in rescuing human OPCs from apoptosis. Also, Pioglitazone did not show a significant influence on mRNA levels of TLR2, TRL4, and TNFα. Furthermore, simultaneous treatment of Pioglitazone with CHIR, a GSKβ inhibitor, facilitated anti-apoptotic responses of OPCs. Taken together, therapy with Pioglitazone represents a novel potential drug in alleviating the loss of OPCs in neurodegenerative conditions.
Collapse
Affiliation(s)
- Maryam Peymani
- Department of Biology, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran.,Department of Cellular Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, 816513-1378, Iran
| | - Kamran Ghaedi
- Department of Biology, Faculty of Sciences, University of Isfahan, Isfahan, Iran. .,Department of Cellular Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, 816513-1378, Iran.
| | - Motahare-Sadat Hashemi
- Department of Cellular Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, 816513-1378, Iran
| | - Ali Ghoochani
- Department of Cellular Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, 816513-1378, Iran
| | - Abbas Kiani-Esfahani
- Department of Cellular Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, 816513-1378, Iran
| | - Mohammad Hossein Nasr-Esfahani
- Department of Cellular Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, 816513-1378, Iran.
| | - Hossein Baharvand
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, P.O. Box 19395-4644, Tehran, Iran.
| |
Collapse
|
12
|
Development of a high throughput drug screening assay to identify compounds that protect oligodendrocyte viability and differentiation under inflammatory conditions. BMC Res Notes 2016; 9:444. [PMID: 27629829 PMCID: PMC5024459 DOI: 10.1186/s13104-016-2219-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 08/15/2016] [Indexed: 11/29/2022] Open
Abstract
Background Newly proliferated oligodendrocyte precursor cells (OPCs) migrate and surround lesions of patients with multiple sclerosis (MS) and other demyelinating diseases, but fail to differentiate into oligodendrocytes (OLs) and remyelinate remaining viable axons. The abundance of secreted inflammatory factors within and surrounding these lesions likely plays a major inhibitory role, promoting cell death and preventing OL differentiation and axon remyelination. To identify clinical candidate compounds that may protect existing and differentiating OLs in patients, we have developed a high throughput screening (HTS) assay that utilizes purified rat OPCs. Results Using a fluorescent indicator of cell viability coupled with image quantification, we developed an assay to allow the identification of compounds that promote OL viability and differentiation in the presence of the synergistic inflammatory cytokines, tumor necrosis factor α and interferon-γ. We have utilized this assay to screen the NIH clinical collection library and identify compounds that protect OLs and promote OL differentiation in the presence of these inflammatory cytokines. Conclusion This primary OL-based cytokine protection assay is adaptable for HTS and may be easily modified for profiling of compounds in the presence of other potentially inhibitory molecules found in MS lesions. This assay should be of use to those interested in identifying drugs for the treatment of MS and other demyelinating diseases. Electronic supplementary material The online version of this article (doi:10.1186/s13104-016-2219-8) contains supplementary material, which is available to authorized users.
Collapse
|
13
|
|
14
|
Park BV, Pan F. The role of nuclear receptors in regulation of Th17/Treg biology and its implications for diseases. Cell Mol Immunol 2015; 12:533-42. [PMID: 25958843 PMCID: PMC4579653 DOI: 10.1038/cmi.2015.21] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Revised: 02/20/2015] [Accepted: 02/21/2015] [Indexed: 12/15/2022] Open
Abstract
Nuclear receptors in the cell play essential roles in environmental sensing, differentiation, development, homeostasis,and metabolism and are thus highly conserved across multiple species. The anti-inflammatory role of nuclear receptors in immune cells has recently gained recognition. Nuclear receptors play critical roles in both myeloid and lymphoid cells, particularly in helper CD41 T-cell type 17 (Th17) and regulatory T cells (Treg). Th17 and Treg are closely related cell fates that are determined by orchestrated cytokine signaling. Recent studies have emphasized the interactions between nuclear receptors and the known cytokine signals and how such interaction affects Th17/Treg development and function.This review will focus on the most recent discoveries concerning the roles of nuclear receptors in the context of therapeutic applications in autoimmune diseases.
Collapse
|
15
|
Park BV, Pan F. The role of nuclear receptors in regulation of Th17/Treg biology and its implications for diseases. Cell Mol Immunol 2015. [DOI: 10.1038/cmi.2015.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|
16
|
Matched and mismatched metabolic fuels in lymphocyte function. Semin Immunol 2013; 24:405-13. [PMID: 23290889 DOI: 10.1016/j.smim.2012.12.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2012] [Accepted: 12/10/2012] [Indexed: 12/23/2022]
Abstract
Immunological function requires metabolic support to suit the needs of lymphocytes at a variety of distinct differentiation and activation states. It is now evident that the signaling pathways that drive lymphocyte survival and activity can directly control cellular metabolism. This linkage provides a mechanism by which activation and specific signaling pathways provide a supply of appropriate and required nutrients to support cell functions in a pro-active supply rather than consumption-based metabolic model. In this way, the metabolism and fuel choices of lymphocytes are guided to specifically match the anticipated needs. If the fuel choice or metabolic pathways of lymphocytes are dysregulated, however, metabolic checkpoints can become activated to disrupt immunological function. These changes are now shown in several immunological diseases and may open new opportunities to selectively enhance or suppress specific immune functions through targeting of glucose, lipid, or amino acid metabolism.
Collapse
|
17
|
Granja AG, Carrillo-Salinas F, Pagani A, Gómez-Cañas M, Negri R, Navarrete C, Mecha M, Mestre L, Fiebich BL, Cantarero I, Calzado MA, Bellido ML, Fernandez-Ruiz J, Appendino G, Guaza C, Muñoz E. A cannabigerol quinone alleviates neuroinflammation in a chronic model of multiple sclerosis. J Neuroimmune Pharmacol 2012; 7:1002-16. [PMID: 22971837 DOI: 10.1007/s11481-012-9399-3] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Accepted: 09/02/2012] [Indexed: 12/25/2022]
Abstract
Phytocannabinoids like ∆(9)-tetrahydrocannabinol (THC) and cannabidiol (CBD) show a beneficial effect on neuroinflammatory and neurodegenerative processes through cell membrane cannabinoid receptor (CBr)-dependent and -independent mechanisms. Natural and synthetic cannabinoids also target the nuclear receptor peroxisome proliferator-activated receptor-gamma (PPARγ), an attractive molecular target for the treatment of neuroinflammation. As part of a study on the SAR of phytocannabinoids, we have investigated the effect of the oxidation modification in the resorcinol moiety of cannabigerol (CBG) on CB(1), CB(2) and PPARγ binding affinities, identifying cannabigerol quinone (VCE-003) as a potent anti-inflammatory agent. VCE-003 protected neuronal cells from excitotoxicity, activated PPARγ transcriptional activity and inhibited the release of pro-inflammatory mediators in LPS-stimulated microglial cells. Theiler's murine encephalomyelitis virus (TMEV) model of multiple sclerosis (MS) was used to investigate the anti-inflammatory activity of this compound in vivo. Motor function performance was evaluated and the neuroinflammatory response and gene expression pattern in brain and spinal cord were studied by immunostaining and qRT-PCR. We found that VCE-003 ameliorated the symptoms associated to TMEV infection, decreased microglia reactivity and modulated the expression of genes involved in MS pathophysiology. These data lead us to consider VCE-003 to have high potential for drug development against MS and perhaps other neuroinflammatory diseases.
Collapse
Affiliation(s)
- Aitor G Granja
- Vivacell Biotechnology España S.L. Parque Científico Tecnológico Rabanales 21, c/Cecilia Payne, Parcela ID 8.1, 14014, Córdoba, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Kearney M, Orrell RW, Fahey M, Pandolfo M. Antioxidants and other pharmacological treatments for Friedreich ataxia. Cochrane Database Syst Rev 2012:CD007791. [PMID: 22513953 DOI: 10.1002/14651858.cd007791.pub3] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Friedreich ataxia is a rare inherited autosomal recessive neurological disorder, characterised initially by unsteadiness in standing and walking, slowly progressing to wheelchair dependency usually in the late teens or early twenties. It is associated with slurred speech, scoliosis and pes cavus. Heart abnormalities cause premature death in 60% to 80% of people with the disorder. There is no easily defined clinical or biochemical marker and no known treatment. This is the first update of a review published in 2009. OBJECTIVES To examine the efficacy of antioxidants and other pharmacological treatments for Friedreich ataxia. SEARCH METHODS We searched The Cochrane Neuromuscular Disease Group Specialized Register (11 July 2011), CENTRAL (2011, Issue 3), MEDLINE (January 1966 to July 2011), EMBASE (January 1980 to July 2011), AMED (January 1985 to July 2011), CINAHL Plus (January 1937 to July 2011), LILACS (January 1982 to July 2011), ORPHANET (1990 to July 2011), TRIP (1998 to July 2011) and PEDRO (October 1999 to July 2011). SELECTION CRITERIA Randomised controlled trials (RCTs) or quasi-RCTs of drug treatment in people with genetically confirmed Friedreich ataxia. The primary outcome was change in ataxia rating scale as measured by the International Co-operative Ataxia Rating Scale (ICARS) after 12 months. Secondary outcomes included change in left ventricular heart mass as measured by magnetic resonance imaging or echocardiography. We excluded trials of shorter duration than 12 months. DATA COLLECTION AND ANALYSIS Three authors selected the trials and two authors extracted data. We obtained missing data from the one RCT that met our inclusion criteria. We planned to collect adverse event data from included studies. MAIN RESULTS More than 10 studies used idebenone in the treatment of Friedreich ataxia but only one small RCT, with 29 participants, using the synthetic antioxidant idebenone 5 mg/kg, fulfilled the selection criteria for this review. Other RCTs were of insufficient duration. We identified no additional RCT when the searches were updated in 2011. In the included study, the primary outcome specified for this review, change in ICARS scale, did not reveal any significant differences with idebenone treatment compared to placebo. The secondary outcome of change in left ventricular heart mass index as measured by magnetic resonance spectroscopy was not assessed. The second secondary outcome, change in left ventricular mass as measured by echocardiography, did improve significantly; there was a 10.7% worsening after 12 months of treatment in the placebo group and a 5.6% improvement in the idebenone group. The mean difference was 16.37% (95% CI 95% 2% to 31%). There were no adverse events. We considered the included study at low risk of bias in five of the seven domains assessed. A larger trial using idebenone published an interm report in May 2010 stating that the study had failed to reach its primary endpoint, which was change in the ICARS scale. AUTHORS' CONCLUSIONS No RCT using idebenone or any other pharmacological treatment has shown significant benefit on neurological symptoms associated with Friedreich ataxia. Idebenone has shown a positive effect on left ventricular heart mass but the clinical relevance of this change was not assessed in the included study.
Collapse
Affiliation(s)
- Mary Kearney
- General Practice, Irish College of General Practitioners, Dunlavin, County Wicklow, Ireland.
| | | | | | | |
Collapse
|
19
|
Kemp DE, Ismail-Beigi F, Ganocy SJ, Conroy C, Gao K, Obral S, Fein E, Findling RL, Calabrese JR. Use of insulin sensitizers for the treatment of major depressive disorder: a pilot study of pioglitazone for major depression accompanied by abdominal obesity. J Affect Disord 2012; 136:1164-73. [PMID: 21782251 PMCID: PMC3225727 DOI: 10.1016/j.jad.2011.06.033] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2011] [Revised: 06/07/2011] [Accepted: 06/23/2011] [Indexed: 12/21/2022]
Abstract
OBJECTIVE This study was conducted to examine the safety and efficacy of pioglitazone, a thiazolidinedione insulin sensitizer, in adult outpatients with major depressive disorder. METHOD In a 12-week, open-label, flexible-dose study, 23 patients with major depressive disorder received pioglitazone monotherapy or adjunctive therapy initiated at 15 mg daily. Subjects were required to meet criteria for abdominal obesity (waist circumference>35 in. in women and >40 in. in men) or metabolic syndrome. The primary efficacy measure was the change from baseline to Week 12 on the Inventory of Depressive Symptomatology (IDS) total score. Partial responders (≥25% decrease in IDS total score) were eligible to participate in an optional extension phase for an additional three months. RESULTS Pioglitazone decreased depression symptom severity from a total IDS score of 40.3±1.8 to 19.2±1.8 at Week 12 (p<.001). Among partial responders (≥25% decrease in IDS total score), an improvement in depressive symptoms was maintained during an additional 3-month extension phase (total duration=24 weeks) according to IDS total scores (p<.001). Patients experienced a reduction in insulin resistance from baseline to Week 12 according to the log homeostasis model assessment (-0.8±0.75; p<.001) and a significant reduction in inflammation as measured by log highly- sensitive C-reactive protein (-0.87±0.72; p<.001). During the current episode, the majority of participants (74%, n=17), had already failed at least one antidepressant trial. The most common side effects were headache and dizziness; no patient discontinued due to side effects. LIMITATIONS These data are limited by a small sample size and an open-label study design with no placebo control. CONCLUSION Although preliminary, pioglitazone appears to reduce depression severity and improve several markers of cardiometabolic risk, including insulin resistance and inflammation. Larger, placebo-controlled studies are indicated.
Collapse
Affiliation(s)
- David E. Kemp
- Case Western Reserve University, University Hospitals Case Medical Center, Department of Psychiatry, Cleveland, OH, USA
| | - Faramarz Ismail-Beigi
- University Hospitals Case Medical Center and Cleveland VA Medical Center, Cleveland, OH, USA
| | - Stephen J. Ganocy
- Case Western Reserve University, University Hospitals Case Medical Center, Department of Psychiatry, Cleveland, OH, USA
| | - Carla Conroy
- Case Western Reserve University, University Hospitals Case Medical Center, Department of Psychiatry, Cleveland, OH, USA
| | - Keming Gao
- Case Western Reserve University, University Hospitals Case Medical Center, Department of Psychiatry, Cleveland, OH, USA
| | - Sarah Obral
- Case Western Reserve University, University Hospitals Case Medical Center, Department of Psychiatry, Cleveland, OH, USA
| | - Elizabeth Fein
- Case Western Reserve University, University Hospitals Case Medical Center, Department of Psychiatry, Cleveland, OH, USA
| | - Robert L. Findling
- Case Western Reserve University, University Hospitals Case Medical Center, Department of Psychiatry, Cleveland, OH, USA
| | - Joseph R. Calabrese
- Case Western Reserve University, University Hospitals Case Medical Center, Department of Psychiatry, Cleveland, OH, USA
| |
Collapse
|
20
|
Housley WJ, Adams CO, Vang AG, Brocke S, Nichols FC, LaCombe M, Rajan TV, Clark RB. Peroxisome proliferator-activated receptor gamma is required for CD4+ T cell-mediated lymphopenia-associated autoimmunity. THE JOURNAL OF IMMUNOLOGY 2011; 187:4161-9. [PMID: 21908737 DOI: 10.4049/jimmunol.1101731] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The nuclear hormone receptor peroxisome proliferator-activated receptor γ (PPARγ) was shown to play an immunoregulatory role in many immune-related cell types, and activation of PPARγ was reported to be an effective therapeutic approach in murine and human autoimmune disease. However, despite an association between lymphopenia and autoimmunity, there has been no study on the role of T cell PPARγ in lymphopenia-associated autoimmunity. In the present studies, we examined the role of PPARγ in CD4(+) T cells in two murine models of lymphopenia-associated autoimmunity. Surprisingly, we found that PPARγ expression in CD4(+) CD25(-) T cells (T effector cells [Teffs]) is actually required for development of autoimmunity under lymphopenic conditions. Mechanistically, the inability of PPARγ-deficient (T-PPAR) Teffs to mediate lymphopenic autoimmunity is associated with a significant decrease in accumulation of Teffs in the spleen, lymph nodes, and tissues after adoptive transfer. This abnormal accumulation of T-PPAR Teffs was associated with defects in both in vivo proliferation and survival. Additionally, T-PPAR Teffs demonstrated decreased cytokine production in inflammatory sites and decreased expression of the homing receptor α4β7. Finally, these abnormalities in T-PPAR Teff function were not elicited by lymphopenia alone but also required the additional activation involved in the mediation of autoimmunity. Thus, in contrast to its documented immunosuppressive role, we identified an unexpected function for PPARγ in Teffs: a role in Teff proliferation and survival in lymphopenia-associated autoimmunity. These findings highlight both the multifunctional role of PPARγ in T cells and the complexity of PPARγ as a potential therapeutic target in autoimmunity.
Collapse
Affiliation(s)
- William J Housley
- Center for Immunotherapy of Cancer and Infectious Diseases, University of Connecticut Health Center, Farmington, CT 06032, USA
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Regulation of Glial Cell Functions by PPAR-gamma Natural and Synthetic Agonists. PPAR Res 2011; 2008:864140. [PMID: 18464925 PMCID: PMC2367430 DOI: 10.1155/2008/864140] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2008] [Accepted: 03/12/2008] [Indexed: 11/18/2022] Open
Abstract
In the recent years, the peroxisome proliferator-activated receptor-γ (PPAR-γ), a well known target for type II diabetes treatment, has received an increasing attention for its therapeutic potential in inflammatory and degenerative brain disorders. PPAR-γ agonists, which include naturally occurring compounds (such as long chain fatty acids and the cyclopentenone prostaglandin 15-deoxy Δ12,14 prostaglandin J2), and synthetic agonists (among which the thiazolidinediones and few nonsteroidal anti-inflammatory drugs) have shown anti-inflammatory and protective effects in several experimental models of Alzheimer's and Parkinson's diseases, amyotrophic lateral sclerosis, multiple sclerosis and stroke, as well as in few clinical studies. The pleiotropic effects of PPAR-γ agonists are likely to be mediated by several mechanisms involving anti-inflammatory activities on peripheral immune cells (macrophages and lymphocytes), as well as direct effects on neural cells including cerebral vascular endothelial cells, neurons, and glia. In the present article, we will review the recent findings supporting a major role for PPAR-γ agonists in controlling neuroinflammation and neurodegeneration through their activities on glial cells, with a particular emphasis on microglial cells as major macrophage population of the brain parenchyma and main actors in brain inflammation.
Collapse
|
22
|
PPAR-gamma: Therapeutic Potential for Multiple Sclerosis. PPAR Res 2011; 2008:627463. [PMID: 18604287 PMCID: PMC2441778 DOI: 10.1155/2008/627463] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2008] [Accepted: 06/02/2008] [Indexed: 01/04/2023] Open
Abstract
The role of peroxisome proliferator-activated receptors (PPARs) in altering lipid and glucose metabolism is well established. More recent studies indicate that PPARs also play critical roles in controlling immune responses. We and others have previously demonstrated that PPAR-γ agonists modulate the development of experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis (MS). This review will discuss the cellular and molecular mechanisms by which these agonists are believed to modulate disease. The therapeutic potential of PPAR-γ agonists in the treatment of multiple sclerosis will also be considered.
Collapse
|
23
|
PPAR-gamma, Microglial Cells, and Ocular Inflammation: New Venues for Potential Therapeutic Approaches. PPAR Res 2011; 2008:295784. [PMID: 18382616 PMCID: PMC2276614 DOI: 10.1155/2008/295784] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2007] [Accepted: 01/25/2008] [Indexed: 01/06/2023] Open
Abstract
The last decade has witnessed an increasing interest for the role played by the peroxisome proliferator-activated receptor-γ (PPAR-γ) in controlling inflammation in peripheral organs as well as in the brain. Activation of PPAR-γ has been shown to control the response of microglial cells, the main macrophage population found in brain parenchyma, and limit the inflammation. The anti-inflammatory capacity of PPAR-γ agonists has led to the hypothesis that PPAR-γ might be targeted to modulate degenerative brain diseases in which inflammation has been increasingly recognized as a significant component. Recent experimental evidence suggests that PPAR-γ agonists could be exploited to treat ocular diseases such as diabetic retinopathy, age-related macular degeneration, autoimmune uveitis, and optic neuritis where inflammation has relevant role. Additional PPAR-γ agonist beneficial effects could involve amelioration of retinal microcirculation and inhibition of neovascularization. However, PPAR-γ activation could, in some instances, aggravate the ocular pathology, for example, by increasing the synthesis of vascular endothelial growth factor, a proangiogenic factor that could trigger a vicious circle and further deteriorate retinal perfusion. The development of new in vivo and in vitro models to study ocular inflammation and how to modulate for the eye benefit will be instrumental for the search of effective therapies.
Collapse
|
24
|
PPAR Regulation of Inflammatory Signaling in CNS Diseases. PPAR Res 2011; 2008:658520. [PMID: 18670616 PMCID: PMC2490815 DOI: 10.1155/2008/658520] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2007] [Revised: 04/22/2008] [Accepted: 05/12/2008] [Indexed: 12/25/2022] Open
Abstract
Central nervous system (CNS) is an immune privileged site, nevertheless inflammation associates with many CNS diseases. Peroxisome proliferator-activated receptors (PPARs) are a family of nuclear hormone receptors that regulate immune and inflammatory responses. Specific ligands for PPARα, γ, and δ isoforms have proven effective in the animal models of multiple sclerosis (MS), Alzheimer's disease, Parkinson's disease, and trauma/stroke, suggesting their use in the treatment of neuroinflammatory diseases. The activation of NF-κB and Jak-Stat signaling pathways and secretion of inflammatory cytokines are critical in the pathogenesis of CNS diseases. Interestingly, PPAR agonists mitigate CNS disease by modulating inflammatory signaling network in immune cells. In this manuscript, we review the current knowledge on how PPARs regulate neuroinflammatory signaling networks in CNS diseases.
Collapse
|
25
|
Peroxisome proliferator-activated receptors: "key" regulators of neuroinflammation after traumatic brain injury. PPAR Res 2011; 2008:538141. [PMID: 18382619 PMCID: PMC2276625 DOI: 10.1155/2008/538141] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2007] [Accepted: 01/29/2008] [Indexed: 11/24/2022] Open
Abstract
Traumatic brain injury is characterized by neuroinflammatory pathological sequelae which contribute to brain edema and delayed neuronal cell death. Until present, no specific pharmacological compound has been found, which attenuates these pathophysiological events and improves the outcome after head injury. Recent experimental studies suggest that targeting peroxisome proliferator-activated receptors (PPARs) may represent a new anti-inflammatory therapeutic concept for traumatic brain injury. PPARs are “key” transcription factors which inhibit NFκB activity and downstream transcription products, such as proinflammatory and proapoptotic cytokines. The present review outlines our current understanding of PPAR-mediated neuroprotective mechanisms in the injured brain and discusses potential future anti-inflammatory strategies for head-injured patients, with an emphasis on the putative beneficial combination therapy of synthetic cannabinoids (e.g., dexanabinol) with PPARα agonists (e.g., fenofibrate).
Collapse
|
26
|
Bieganski RM, Yarmush ML. Novel ligands that target the mitochondrial membrane protein mitoNEET. J Mol Graph Model 2011; 29:965-73. [PMID: 21531159 DOI: 10.1016/j.jmgm.2011.04.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2010] [Revised: 03/31/2011] [Accepted: 04/03/2011] [Indexed: 12/23/2022]
Abstract
Ligands of the thiazolidinedione (TZD) class of compounds, pioglitazone (Actos™) and rosiglitazone (Avandia™) are currently approved for treatment of type 2 diabetes and are known to bind to the PPAR-γ nuclear receptor subtype. Recent evidence suggesting PPAR-γ independent action of the TZDs led to the discovery of a novel integral outer mitochondrial membrane protein, mitoNEET. In spite of the several reported X-ray crystal structures of the unbound form of mitoNEET, the location and nature of the mitoNEET ligand binding sites (LBS) remain unknown. In this study, a molecular blind docking (BD) method was used to discover potential mitoNEET LBS and novel ligands, utilizing the program AutoDock Vina (v 1.0.2). Validation of BD was performed on the PPAR-γ receptor (PDB ID: 1ZGY) with the test compound rosiglitazone, demonstrating that the binding conformation of rosiglitazone determined by AutoDock Vina matches well with that of the cocrystallized ligand (root mean square deviation of the heavy atoms 1.45Å). The locations and a general ligand binding interaction model for the LBS were determined, leading to the discovery of novel mitoNEET ligands. An in vitro fluorescence binding assay utilizing purified recombinant mitoNEET protein was used to determine the binding affinity of a predicted mitoNEET ligand, and the data obtained is in good agreement with AutoDock Vina results. The discovery of potential mitoNEET ligand binding sites and novel ligands, opens up the possibility for detailed structural studies of mitoNEET-ligand complexes, as well as rational design of novel ligands specifically targeted for mitoNEET.
Collapse
Affiliation(s)
- Robert M Bieganski
- Center for Engineering in Medicine, Massachusetts General Hospital, Harvard Medical School and Shriners Hospitals for Children, Department of Surgery, 51 Blossom Street, Boston, MA 02114, United States
| | | |
Collapse
|
27
|
Anderson G, Rodriguez M. Multiple sclerosis, seizures, and antiepileptics: role of IL-18, IDO, and melatonin. Eur J Neurol 2010; 18:680-5. [DOI: 10.1111/j.1468-1331.2010.03257.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
28
|
Sauerbeck A, Gao J, Readnower R, Liu M, Pauly JR, Bing G, Sullivan PG. Pioglitazone attenuates mitochondrial dysfunction, cognitive impairment, cortical tissue loss, and inflammation following traumatic brain injury. Exp Neurol 2010; 227:128-35. [PMID: 20965168 DOI: 10.1016/j.expneurol.2010.10.003] [Citation(s) in RCA: 124] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2010] [Revised: 10/08/2010] [Accepted: 10/12/2010] [Indexed: 01/15/2023]
Abstract
Following traumatic brain injury (TBI) there is significant neuropathology which includes mitochondrial dysfunction, loss of cortical gray matter, microglial activation, and cognitive impairment. Previous evidence has shown that activation of the peroxisome proliferator-activated receptors (PPARs) provide neuroprotection following traumatic brain and spinal injuries. In the current study we hypothesized that treatment with the PPAR ligand Pioglitazone would promote neuroprotection following a rat controlled cortical impact model of TBI. Animals received a unilateral 1.5mm controlled cortical impact followed by administration of Pioglitazone at 10mg/kg beginning 15min after the injury and subsequently every 24h for 5days. Beginning 1day after the injury there was significant impairment in mitochondrial bioenergetic function which was attenuated by treatments with Pioglitazone at 15min and 24h (p<0.05). In an additional set of animals, cognitive function was assessed using the Morris Water Maze (MWM) and it was observed that over the course of 4days of testing the injury produced a significant increase in both latency (p<0.05) and distance (p<0.05) to the platform. Animals treated with Pioglitazone performed similarly to sham animals and did not exhibit any impairment in MWM performance. Sixteen days after the injury tissue sections through the lesion site were quantified to determine the size of the cortical lesion. Vehicle-treated animals had an average lesion size of 5.09±0.73mm(3) and treatment with Pioglitazone significantly reduced the lesion size by 55% to 2.27±0.27mm(3) (p<0.01). Co-administration of the antagonist T0070907 with Pioglitazone blocked the protective effect seen with administration of Pioglitazone by itself. Following the injury there was a significant increase in the number of activated microglia in the area of the cortex adjacent to the site of the lesion (p<0.05). Treatment with Pioglitazone prevented the increase in the number of activated microglia and no difference was observed between sham and Pioglitazone-treated animals. From these studies we conclude that following TBI Pioglitazone is capable ameliorating multiple aspects of neuropathology. These studies provide further support for the use of PPAR ligands, specifically Pioglitazone, for neuroprotection.
Collapse
Affiliation(s)
- Andrew Sauerbeck
- Department of Anatomy and Neurobiology, University of Kentucky, Lexington, KY 40536, USA.
| | | | | | | | | | | | | |
Collapse
|
29
|
Allami N, Javadi-Paydar M, Rayatnia F, Sehhat K, Rahimian R, Norouzi A, Dehpour AR. Suppression of nitric oxide synthesis by L-NAME reverses the beneficial effects of pioglitazone on scopolamine-induced memory impairment in mice. Eur J Pharmacol 2010; 650:240-8. [PMID: 20951129 DOI: 10.1016/j.ejphar.2010.10.007] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2010] [Revised: 09/19/2010] [Accepted: 10/04/2010] [Indexed: 12/17/2022]
Abstract
UNLABELLED Pioglitazone, an agonist of peroxisome proliferator-activated receptor gamma (PPARγ), which is widely used in treatment of type 2 diabetes, has shown some therapeutic effect in Alzheimer's disease. In this study, effects of acute pioglitazone on acquisition, consolidation and retrieval of memory, and also the involvement of nitric oxide (NO) in the effects of pioglitazone on spatial recognition memory has been investigated in a two-trial recognition Y-maze test and passive avoidance in mice. Memory impairment was induced by scopolamine (1mg/kg, i.p.). Pioglitazone (10 and 20mg/kg, p.o.) was administrated prior to either acquisition, consolidation or retention trials, while L-NAME (N-nitro-l-arginine methyl ester), a non-specific NO synthase inhibitor, was administered (10mg/kg, i.p.) 30min before each trial. RESULTS 1) pioglitazone improved the acquisition of recognition spatial memory-impaired by scopolamine; L-NAME dramatically reversed improving effects of pioglitazone on memory acquisition; 2) pioglitazone did not change the consolidation of spatial memory, impaired by scopolamine; 3) pioglitazone improved the retrieval of spatial memory and L-NAME did not alter the beneficial effect of pioglitazone; 4) pioglitazone did not affect scopolamine-induced cognitive impairments in the passive avoidance test. The present study demonstrates the beneficial effect of acute pioglitazone administration on acquisition and retrieval of scopolamine-induced cognitive deficits. This effect was reversed only in acquisition phase by nitric oxide synthase inhibitor, L-NAME, therefore, it could be concluded that NO might be involved in the pioglitazone beneficial effect of spatial memory acquisition.
Collapse
Affiliation(s)
- Nika Allami
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | | | | | | | | | | | |
Collapse
|
30
|
Ulzheimer JC, Meuth SG, Bittner S, Kleinschnitz C, Kieseier BC, Wiendl H. Therapeutic approaches to multiple sclerosis: an update on failed, interrupted, or inconclusive trials of immunomodulatory treatment strategies. BioDrugs 2010; 24:249-74. [PMID: 20623991 DOI: 10.2165/11537160-000000000-00000] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Multiple sclerosis (MS) continues to be a therapeutic challenge, and much effort is being made to develop new and more effective immune therapies. Particularly in the past decade, neuroimmunologic research has delivered new and highly effective therapeutic options, as seen in the growing number of immunotherapeutic agents and biologics in development. However, numerous promising clinical trials have failed to show efficacy or have had to be halted prematurely because of unexpected adverse events. Some others have shown results that are of unknown significance with regard to a reliable assessment of true efficacy versus safety. For example, studies of the highly innovative monoclonal antibodies that selectively target immunologic effector molecules have not only revealed the impressive efficacy of such treatments, they have also raised serious concerns about the safety profiles of these antibodies. These results add a new dimension to the estimation of risk-benefit ratios regarding acute or long-term adverse effects. Therapeutic approaches that have previously failed in MS have indicated that there are discrepancies between theoretical expectations and practical outcomes of different compounds. Learning from these defeats helps to optimize future study designs and to reduce the risks to patients. This review summarizes trials on MS treatments since 2001 that failed or were interrupted, attempts to analyze the underlying reasons for failure, and discusses the implications for our current view of MS pathogenesis, clinical practice, and design of future studies. In order to maintain clarity, this review focuses on anti-inflammatory therapies and does not include studies on already approved and effective disease-modifying therapies, albeit used in distinct administration routes or under different paradigms. Neuroprotective and alternative treatment strategies are presented elsewhere.
Collapse
|
31
|
Randy LH, Guoying B. Agonism of Peroxisome Proliferator Receptor-Gamma may have Therapeutic Potential for Neuroinflammation and Parkinson's Disease. Curr Neuropharmacol 2010; 5:35-46. [PMID: 18615152 DOI: 10.2174/157015907780077123] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2006] [Revised: 12/20/2006] [Accepted: 01/05/2007] [Indexed: 01/04/2023] Open
Abstract
Evidence suggests inflammation, mitochondria dysfunction, and oxidative stress play major roles in Parkinson's disease (PD), where the primary pathology is the significant loss of dopaminergic neurons in the substantia nigra (SN). Current methods used to treat PD focus mainly on replacing dopamine in the nigrostriatal system. However, with time these methods fail and worsen the symptoms of the disease. This implies there is more to the treatment of PD than just restoring dopamine or the dopaminergic neurons, and that a broader spectrum of factors must be changed in order to restore environmental homeostasis. Pharmacological agents that can protect against progressive neuronal degeneration, increase the level of dopamine in the nigrostriatal system, or restore the dopaminergic system offer various avenues for the treatment of PD. Drugs that reduce inflammation, restore mitochondrial function, or scavenge free radicals have also been shown to offer neuroprotection in various animal models of PD. The activation of peroxisome proliferator receptor- gamma (PPAR-gamma ) has been associated with altering insulin sensitivity, increasing dopamine, inhibiting inflammation, altering mitochondrial bioenergetics, and reducing oxidative stress - a variety of factors that are altered in PD. Therefore, PPAR-gamma activation may offer a new clinically relevant treatment approach to neuroinflammation and PD related neurodegeneration. This review will summarize the current understanding of the role of PPAR-gamma agonists in neuroinflammation and discuss their potential for the treatment of PD.
Collapse
Affiliation(s)
- L Hunter Randy
- Department of Anatomy and Neurobiology, University of Kentucky, Lexington KY 40536, USA
| | | |
Collapse
|
32
|
Zhang F, Liu F, Yan M, Ji H, Hu L, Li X, Qian J, He X, Zhang L, Shen A, Cheng C. Peroxisome proliferator-activated receptor-γ agonists suppress iNOS expression induced by LPS in rat primary Schwann cells. J Neuroimmunol 2010; 218:36-47. [DOI: 10.1016/j.jneuroim.2009.10.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2009] [Revised: 10/06/2009] [Accepted: 10/22/2009] [Indexed: 10/20/2022]
|
33
|
Effects of 15-deoxy-delta12,14-prostaglandin J2 (15d-PGJ2) and rosiglitazone on human gammadelta2 T cells. PLoS One 2009; 4:e7726. [PMID: 19888466 PMCID: PMC2766831 DOI: 10.1371/journal.pone.0007726] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2009] [Accepted: 10/09/2009] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Thiazolidinediones (TZD) class of drugs, and 15-deoxy-D12,14-prostaglandin J2 (15d-PGJ2) are immune regulators predicted to modulate human autoimmune disease. Their effects on gammadelta T cells, which are involved in animal model and human and animal autoimmune diseases, are unknown. METHODOLOGY/PRINCIPAL FINDINGS We characterized the activity of rosiglitazone (from the TZD class of drugs) and 15d-PGJ2 in human Vdelta2 T cells. We found that 15d-PGJ2 and rosiglitazone had different effects on Vdelta2 T cell functions. Both 15d-PGJ2 and rosiglitazone suppressed Vdelta2 T cell proliferation in response to IPP and IL2. However, only 15d-PGJ2 suppressed functional responses including cytokine production, degranulation and cytotoxicity against tumor cells. The mechanism for 15d-PGJ2 effects on Vdelta2 T cells acts through inhibiting Erk activation. In contrast, rosiglitazone did not affect Erk activation but the IL2 signaling pathway, which accounts for rosiglitazone suppression of IL2-dependent, Vdelta2 T cell proliferation without affecting TCR-dependent functions. Rosiglitazone and 15d-PGJ2 are designed to be peroxisome proliferator-activated receptor gamma (PPARgamma) ligands and PPARgamma was expressed in Vdelta2 T cell. Surprisingly, when PPARgamma levels were lowered by specific siRNA, 15d-PGJ2 and rosiglitazone were still active, suggesting their target of action induces cellular proteins other than PPARgamma. CONCLUSIONS/SIGNIFICANCE The current findings expand our understanding of how the immune system is regulated by rosiglitazone and 15d-PGJ2 and will be important to evaluate these compounds as therapeutic agents in human autoimmune disease.
Collapse
|
34
|
Kearney M, Orrell RW, Fahey M, Pandolfo M. Antioxidants and other pharmacological treatments for Friedreich ataxia. Cochrane Database Syst Rev 2009:CD007791. [PMID: 19821439 DOI: 10.1002/14651858.cd007791.pub2] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
BACKGROUND Friedreich ataxia is a rare inherited, autosomal recessive, neurological disorder characterised initially by unsteadiness in standing and walking, slowly progressing to wheelchair dependency usually in the late teens or early twenties. It is associated with slurred speech, scoliosis, pes cavus and heart abnormalities which may cause premature death in 60 to 80% of people. There is no easily defined clinical or biochemical marker and no known treatment. OBJECTIVES To examine the efficacy of antioxidants and other pharmacological treatments for Friedreich ataxia. SEARCH STRATEGY We searched The Cochrane Neuromuscular Disease Group Trials Specialized Register (17 December 2008), The Cochrane Central Register of Controlled Trials (The Cochrane Library Issue 4, 2008) MEDLINE (January 1950 to December 2008), EMBASE (January 1980 to December 2008) and other sources. SELECTION CRITERIA All randomised controlled trials (RCTs) or quasi-randomised trials which examined drug treatment in people with genetically confirmed Friedreich ataxia were examined. The primary outcome was change in ataxia rating scale as measured by the International Co-operative Ataxia Rating Scale (ICARS) after 12 months. Secondary outcomes included change in left ventricular heart mass as measured by magnetic resonance imaging or echocardiography. DATA COLLECTION AND ANALYSIS Three authors selected the trials and two authors extracted data. We obtained missing data from the one RCT that met our inclusion criteria. MAIN RESULTS Over 10 studies used idebenone in the treatment of Friedreich ataxia but only one small RCT, with 29 participants using the synthetic antioxidant, idebenone 5 mg/kg, fulfilled the selection criteria for this review. Another RCT was of insufficient duration and the other studies were open clinical trials. In the included study, the primary outcome, change in ICARS scale, did not reveal any significant differences with idebenone treatment. The secondary outcome, change in left ventricular heart mass index as measured by magnetic resonance spectroscopy was not carried out. The second secondary outcome, change in left ventricular mass, as measured by echocardiography, did improve significantly (P = 0.007). There were no adverse events. A larger RCT using idebenone is in progress, of which the primary outcome is change in the ICARS scale. However, the results are not yet available. AUTHORS' CONCLUSIONS No RCT using idebenone or any other pharmacological treatment has shown significant benefit on neurological symptoms associated with Friedreich ataxia. Idebenone has shown a positive effect on left ventricular heart mass but no research on clinical relevance of this change has been done.
Collapse
Affiliation(s)
- Mary Kearney
- General Practice, Irish College of General Practitioners, Dunlavin, County Wicklow, Ireland
| | | | | | | |
Collapse
|
35
|
Peroxisome proliferator-activated receptor-gamma agonists promote differentiation and antioxidant defenses of oligodendrocyte progenitor cells. J Neuropathol Exp Neurol 2009; 68:797-808. [PMID: 19535992 DOI: 10.1097/nen.0b013e3181aba2c1] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Several lines of evidence suggest that peroxisome proliferator-activated receptor-gamma (PPAR-gamma) agonists may control brain inflammation and, therefore, may be useful for the treatment of human CNS inflammatory conditions. The PPAR-gamma agonists delay the onset and ameliorate clinical manifestations in animal demyelinating disease models, in which the beneficial effects are thought to be mainly related to anti-inflammatory effects on peripheral and brain immune cells. Direct effects on neurons, oligodendrocytes, and other CNS resident cells cannot be excluded, however. To analyze potential direct actions of PPAR-gamma agonists on oligodendrocytes, we investigated the effects of both natural (15-deoxy Delta prostaglandin J2) and synthetic (pioglitazone) PPAR-gamma agonists in primary cultures of rat oligodendrocyte progenitor cells. The PPAR-gamma agonists promoted oligodendrocyte progenitor cell differentiation and enhanced their antioxidant defenses by increasing levels of catalase and copper-zinc superoxide dismutase while maintaining the overall homeostasis of the glutathione system. Protective effects were abolished in the presence of the specific PPAR-gamma antagonist GW9662, indicating that they are specifically dependent on PPAR-gamma. These observations suggest that in addition to their known anti-inflammatory effects, PPAR-gamma agonists may protect oligodendrocyte progenitor cells by preserving their integrity and favoring their differentiation into myelin-forming cells. Thus, PPAR-gamma may promote recovery from demyelination by direct effects on oligodendrocytes.
Collapse
|
36
|
A pilot test of pioglitazone as an add-on in patients with relapsing remitting multiple sclerosis. J Neuroimmunol 2009; 211:124-30. [DOI: 10.1016/j.jneuroim.2009.04.011] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2009] [Revised: 04/15/2009] [Accepted: 04/20/2009] [Indexed: 11/23/2022]
|
37
|
Bright JJ, Walline CC, Kanakasabai S, Chakraborty S. Targeting PPAR as a therapy to treat multiple sclerosis. Expert Opin Ther Targets 2009; 12:1565-75. [PMID: 19007323 DOI: 10.1517/14728220802515400] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND Multiple sclerosis (MS) is a neurological disorder that causes chronic paralysis and immense socio-economic problem among young adults. The etiology of MS is not known but it is generally viewed as an autoimmune inflammatory disease of the CNS. Over the past decade, several anti-inflammatory drugs have been developed to control MS symptoms but there is no medical cure. OBJECTIVE To evaluate the use and mechanism of action of agonists of PPAR, a family of nuclear receptor transcription factors that regulate inflammation, in treatment of MS. METHODS There are several reports showing beneficial effects of PPAR agonists in treating MS-like disease in animal models. We review recent advances in this field. RESULTS/CONCLUSIONS PPAR agonists regulate MS-like disease in animal models by blocking inflammatory signaling pathways, suggesting their use in treatment of MS. Current human trials are likely to confirm the safety and efficacy of PPAR agonists for MS treatment.
Collapse
Affiliation(s)
- John J Bright
- Methodist Research Institute, Neuroscience Research Laboratory, 1800 N Capitol Avenue, Noyes Bldg E-504C, Indianapolis, IN 46202, USA.
| | | | | | | |
Collapse
|
38
|
Eto M, Sumi H, Fujimura H, Yoshikawa H, Sakoda S. Pioglitazone promotes peripheral nerve remyelination after crush injury through CD36 upregulation. J Peripher Nerv Syst 2009; 13:242-8. [PMID: 18844791 DOI: 10.1111/j.1529-8027.2008.00183.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
In our previous study, we found that CD36-deficient mice showed significant delays in peripheral nerve remyelination after sciatic nerve crush injury and suggested that CD36 played an important role in the restoration of injured peripheral nerves. The aim of this study was to investigate whether CD36 upregulation can promote peripheral nerve remyelination. We made crush injury that caused demyelination and mild axonal degeneration to sciatic nerves and investigated the effect of pioglitazone (PIO) on the remyelination post-injury in C57Bl/6 wild-type and CD36-deficient mice. The immunohistochemistry with anti-CD36 antibody showed that CD36 was upregulated in macrophages infiltrating peripheral nerves from the wild-type mice by PIO administration at 1 week post-injury. The lectin histochemistry represented that infiltrating macrophages lessened in the wild-type mice at 3 weeks post-injury by PIO administration. General histopathology and morphometry indicated that thinly myelinated fibers and naked axons diminished in PIO-treated wild-type mice compared with non-treated wild-type mice at 3 weeks post-injury. No significant differences were observed in remyelination and number of infiltrating macrophages between PIO-treated and non-treated CD36-deficient mice. These results indicate that PIO promotes peripheral nerve remyelination possibly through CD36. It may be possible to apply PIO to the remedy against demyelinating neuropathies.
Collapse
Affiliation(s)
- Masaki Eto
- Department of Neurology, Osaka University Graduate School of Medicine, Osaka, Japan.
| | | | | | | | | |
Collapse
|
39
|
García-Bueno B, Caso JR, Leza JC. Stress as a neuroinflammatory condition in brain: Damaging and protective mechanisms. Neurosci Biobehav Rev 2008; 32:1136-51. [DOI: 10.1016/j.neubiorev.2008.04.001] [Citation(s) in RCA: 180] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2007] [Revised: 04/02/2008] [Accepted: 04/02/2008] [Indexed: 01/07/2023]
|
40
|
van Neerven S, Kampmann E, Mey J. RAR/RXR and PPAR/RXR signaling in neurological and psychiatric diseases. Prog Neurobiol 2008; 85:433-51. [PMID: 18554773 DOI: 10.1016/j.pneurobio.2008.04.006] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2007] [Revised: 02/12/2008] [Accepted: 04/28/2008] [Indexed: 01/09/2023]
Abstract
Retinoids are important signals in brain development. They regulate gene transcription by binding to retinoic acid receptors (RAR) and, as was discovered recently, a peroxisome proliferator-activated receptor (PPAR). Traditional ligands of PPAR are best known for their functions in lipid metabolism and inflammation. RAR and PPAR are ligand-activated transcription factors, which share members of the retinoid X receptor (RXR) family as heterodimeric partners. Both signal transduction pathways have recently been implicated in the progression of neurodegenerative and psychiatric diseases. Since inflammatory processes contribute to various neurodegenerative diseases, the anti-inflammatory activity of retinoids and PPARgamma agonists recommends them as potential therapeutic targets. In addition, genetic linkage studies, transgenic mouse models and experiments with vitamin A deprivation provide evidence that retinoic acid signaling is directly involved in physiology and pathology of motoneurons, of the basal ganglia and of cognitive functions. The activation of PPAR/RXR and RAR/RXR transcription factors has therefore been proposed as a therapeutic strategy in disorders of the central nervous system.
Collapse
|
41
|
Abstract
More than half a century of research on peroxisomes has revealed unique features of this ubiquitous subcellular organelle, which have often been in disagreement with existing dogmas in cell biology. About 50 peroxisomal enzymes have so far been identified, which contribute to several crucial metabolic processes such as β-oxidation of fatty acids, biosynthesis of ether phospholipids and metabolism of reactive oxygen species, and render peroxisomes indispensable for human health and development. It became obvious that peroxisomes are highly dynamic organelles that rapidly assemble, multiply and degrade in response to metabolic needs. However, many aspects of peroxisome biology are still mysterious. This review addresses recent exciting discoveries on the biogenesis, formation and degradation of peroxisomes, on peroxisomal dynamics and division, as well as on the interaction and cross talk of peroxisomes with other subcellular compartments. Furthermore, recent advances on the role of peroxisomes in medicine and in the identification of novel peroxisomal proteins are discussed.
Collapse
Affiliation(s)
- Michael Schrader
- Centre for Cell Biology and Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal.
| | | |
Collapse
|
42
|
Hou X, Liu R, Ross S, Smart EJ, Zhu H, Gong W. Crystallographic Studies of Human MitoNEET. J Biol Chem 2007; 282:33242-33246. [PMID: 17905743 DOI: 10.1074/jbc.c700172200] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
MitoNEET was identified as an outer mitochondrial membrane protein that can potentially bind the anti-diabetes drug pioglitazone. The crystal structure of the cytoplasmic mitoNEET (residues 33-108) is determined in this study. The structure presents a novel protein fold and contains a [2Fe-2S] cluster-binding domain. The [2Fe-2S] cluster is coordinated to the protein by Cys-72, Cys-74, Cys-83, and His-87 residues. This coordination is also novel compared with the traditional [2Fe-2S] cluster coordinated by four cysteines or two cysteines and two histidines. The cytoplasmic mitoNEET forms homodimers in solution and in crystal. The dimerization is mainly mediated by hydrophobic interactions as well as hydrogen bonds coordinated by two water molecules binding at the interface. His-87 residue, which plays an important role in the coordination of the [2Fe-2S] cluster, is exposed to the solvent on the dimer surface. It is proposed that mitoNEET dimer may interact with other proteins via the surface residues in close proximity to the [2Fe-2S] cluster.
Collapse
Affiliation(s)
- Xiaowei Hou
- National Key Laboratory of Macrobiomolecule, Center for Structural and Molecular Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, P. R. China; School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Rujuan Liu
- National Key Laboratory of Macrobiomolecule, Center for Structural and Molecular Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, P. R. China; School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China; Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky, 40536-0509
| | - Stuart Ross
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky, 40536-0509; Kentucky Pediatric Research Institute, Department of Pediatrics, College of Medicine, University of Kentucky, Lexington, Kentucky 40536-0509
| | - Eric J Smart
- Kentucky Pediatric Research Institute, Department of Pediatrics, College of Medicine, University of Kentucky, Lexington, Kentucky 40536-0509
| | - Haining Zhu
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky, 40536-0509.
| | - Weimin Gong
- National Key Laboratory of Macrobiomolecule, Center for Structural and Molecular Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, P. R. China; School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China.
| |
Collapse
|
43
|
Khanam R, Pillai KK. Effect of chronic chromium picolinate in animal models of anxiety and memory. Fundam Clin Pharmacol 2007; 21:531-4. [PMID: 17868206 DOI: 10.1111/j.1472-8206.2007.00503.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Diabetes mellitus is associated with certain neurological problems such as depression, anxiety, memory impairment, etc. As chromium picolinate (CrP), a widely used trace element is shown to have beneficial effects in diabetes and depression, we investigated its effects on elevated plus maze and spontaneous alternation behavior paradigm as a measure of anxiety and memory, respectively. CrP (8 microg/mL in drinking water) significantly increased percentage preference to open arm in elevated plus maze in diabetic and normal rats. However, no significant changes were observed in percentage alternation after CrP chronic treatment. The possible anxiolytic effect of CrP might be related to its effect on serotonergic transmission.
Collapse
Affiliation(s)
- Razia Khanam
- Department of Pharmacology, Faculty of Pharmacy, Jamia Hamdard, New Delhi - 100 062, India.
| | | |
Collapse
|
44
|
Abstract
Multiple sclerosis (MS) represents the prototypic inflammatory autoimmune disorder of the CNS. It is the most common cause of neurological disability in young adults and exhibits considerable clinical, radiological and pathological heterogeneity. Increased understanding of the immunopathological processes underlying this disease, advances in biotechnology and the development of powerful magnetic resonance imaging (MRI) technologies, together with improvements in clinical trial design, have led to a variety of valuable therapeutic approaches to MS. Therapy for MS has changed dramatically over the past decade, yielding significant progress in the treatment of relapsing remitting and secondary progressive forms; however, most of the clinically relevant therapeutic approaches are not yet available as oral formulations. A substantial number of preliminary and pivotal reports have provided promising results for oral therapies, and various phase III clinical trials are currently being initiated or are already underway evaluating the efficacy of a variety of orally administered agents, including cladribine, teriflunomide, laquinimod, fingolimod and fumaric acid. It is hoped that these trials will advance the development of oral therapies for MS.
Collapse
Affiliation(s)
- Bernd C Kieseier
- Department of Neurology, Heinrich-Heine University, Düsseldorf, Germany.
| | | |
Collapse
|
45
|
Alisky JM. Thiazolidinediones could be an effective treatment for HIV-associated progressive multifocal leukoencephalopathy. Int J Infect Dis 2007; 11:372-3. [PMID: 17236800 DOI: 10.1016/j.ijid.2006.09.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2006] [Accepted: 09/30/2006] [Indexed: 11/19/2022] Open
|
46
|
Woster AP, Combs CK. Differential ability of a thiazolidinedione PPARgamma agonist to attenuate cytokine secretion in primary microglia and macrophage-like cells. J Neurochem 2007; 103:67-76. [PMID: 17573821 DOI: 10.1111/j.1471-4159.2007.04706.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Peroxisome proliferator-activated receptor gamma (PPARgamma) agonists are known to inhibit select pro-inflammatory changes in models of CNS and systemic inflammation. Recent reports suggest that these anti-inflammatory effects are due to mechanisms other than canonical nuclear receptor-mediated transcriptional alteration. Using primary microglia and the monocytic cell line, THP-1, we demonstrate that rosiglitazone, a PPARgamma-activating thiazolidinedione, decreases pro-inflammatory cytokine secretion as measured by ELISA. Cells were pre-treated with various thiazolidinediones, including rosiglitazone, prior to stimulation with lipopolysaccharide or phorbol 12-myristate 13-acetate (PMA) to stimulate cytokine production. Tumor necrosis factor alpha (TNFalpha) secretion was significantly inhibited in both primary microglia and THP-1 cells differentiated for 72 h in the presence of PMA to induce a macrophage-like phenotype. No reduction in TNFalpha secretion was observed in undifferentiated THP-1 cells with rosiglitazone pre-treatment. Electrophoretic mobility shift assay revealed no significant difference in PPARgamma activation between PMA-differentiated and undifferentiated THP-1 cells. When PMA-differentiated and undifferentiated THP-1 cells were treated with the irreversible PPARgamma antagonist, GW 9662, a significant, dose-dependent decrease in TNFalpha secretion was observed. These results suggest that the anti-inflammatory benefit of PPARgamma ligands occur independently of classical PPARgamma activation.
Collapse
Affiliation(s)
- Andrew P Woster
- Department of Pharmacology, Physiology & Therapeutics, University of North Dakota, School of Medicine and Health Sciences, Grand Forks, North Dakota, USA
| | | |
Collapse
|
47
|
Kleinschnitz C, Meuth SG, Kieseier BC, Wiendl H. [Update on pathophysiologic and immunotherapeutic approaches for the treatment of multiple sclerosis]. DER NERVENARZT 2007; 78:883-911. [PMID: 17551708 DOI: 10.1007/s00115-007-2261-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Multiple sclerosis (MS) is a chronic disabling disease with significant implications for patients and society. The individual disease course is difficult to predict due to the heterogeneity of clinical presentation and of radiologic and pathologic findings. Although its etiology still remains unknown, the last decade has brought considerable understanding of the underlying pathophysiology of MS. In addition to its acceptance as a prototypic inflammatory autoimmune disorder, recent data reveal the importance of primary and secondary neurodegenerative mechanisms such as oligodendrocyte death, axonal loss, and ion channel dysfunction. The deepened understanding of its immunopathogenesis and the limited effectiveness of currently approved disease-modifying therapies have led to a tremendous number of trials investigating potential new drugs. Emerging treatments take into account the different immunopathological mechanisms and strategies, to protect against axonal damage and promote remyelination. This review provides a compilation of novel immunotherapeutic strategies and recently uncovered aspects of known immunotherapeutic agents. The pathogenetic rationale of these novel drugs for the treatment of MS and accompanying preclinical and clinical data are highlighted.
Collapse
Affiliation(s)
- C Kleinschnitz
- Neurologische Klinik und Poliklinik, Universitätsklinikum, Josef-Schneider-Strasse 11, 97080, Würzburg, Germany
| | | | | | | |
Collapse
|
48
|
Wohlfert EA, Nichols FC, Nevius E, Clark RB. Peroxisome Proliferator-Activated Receptor γ (PPARγ) and Immunoregulation: Enhancement of Regulatory T Cells through PPARγ-Dependent and -Independent Mechanisms. THE JOURNAL OF IMMUNOLOGY 2007; 178:4129-35. [PMID: 17371968 DOI: 10.4049/jimmunol.178.7.4129] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Peroxisome proliferator-activated receptor (PPAR)gamma is a nuclear hormone receptor primarily characterized for its effect on insulin metabolism. PPARgamma ligands, used to treat human type 2 diabetes, also down-regulate most immune system cells including APCs and pathogenic T cells. These effects putatively underlie the efficacy of PPARgamma ligands in treating animal models of autoimmunity, leading to projections of therapeutic potential in human autoimmunity. However, the relationship between PPARgamma ligands and CD4+CD25+ regulatory T cells (Tregs) has not been examined. Specifically, no studies have examined the role of Tregs in mediating the in vivo immunoregulatory effects of PPARgamma ligands, and there have been no investigations of the use of PPARgamma ligands to treat autoimmunity in the absence of Tregs. We now characterize the novel relationship between ciglitazone, a thiazolidinedione class of PPARgamma ligand, and both murine natural Tregs (nTregs) and inducible Tregs (iTregs). In vitro, ciglitazone significantly enhances generation of iTregs in a PPARgamma-independent manner. Surprisingly, and contrary to the current paradigm, we find that, in a model of graft-vs-host disease, the immunotherapeutic effect of ciglitazone requires the presence of nTregs that express PPARgamma. Overall, our results indicate that, unlike its down-regulatory effect on other cells of the immune system, ciglitazone has an enhancing effect on both iTregs and nTregs, and this finding may have important implications for using PPARgamma ligands in treating human autoimmune disease.
Collapse
Affiliation(s)
- Elizabeth A Wohlfert
- Department of Immunology, University of Connecticut Health Center, Farmington, CT 06032, USA
| | | | | | | |
Collapse
|
49
|
McTigue DM, Tripathi R, Wei P, Lash AT. The PPAR gamma agonist Pioglitazone improves anatomical and locomotor recovery after rodent spinal cord injury. Exp Neurol 2007; 205:396-406. [PMID: 17433295 PMCID: PMC1950250 DOI: 10.1016/j.expneurol.2007.02.009] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2006] [Revised: 02/14/2007] [Accepted: 02/20/2007] [Indexed: 01/04/2023]
Abstract
Traumatic spinal cord injury (SCI) is accompanied by a dramatic inflammatory response, which escalates over the first week post-injury and is thought to contribute to secondary pathology after SCI. Peroxisome proliferator-activated receptors (PPAR) are widely expressed nuclear receptors whose activation has led to diminished pro-inflammatory cascades in several CNS disorders. Therefore, we examined the efficacy of the PPARgamma agonist Pioglitazone in a rodent SCI model. Rats received a moderate mid-thoracic contusion and were randomly placed into groups receiving vehicle, low dose or high dose Pioglitazone. Drug or vehicle was injected i.p. at 15 min post-injury and then every 12 h for the first 7 days post-injury. Locomotor function was followed for 5 weeks using the BBB scale. BBB scores were greater in treated animals at 7 days post-injury and significant improvements in BBB subscores were noted, including better toe clearance, earlier stepping and more parallel paw position. Stereological measurements throughout the lesion revealed a significant increase in rostral spared white matter in both Pioglitazone treatment groups. Spinal cords from the high dose group also had significantly more gray matter sparing and motor neurons rostral and caudal to epicenter. Thus, our results reveal that clinical treatment with Pioglitazone, an FDA-approved drug used currently for diabetes, may be a feasible and promising strategy for promoting anatomical and functional repair after SCI.
Collapse
Affiliation(s)
- Dana M McTigue
- Department of Neuroscience, Center for Brain and Spinal Cord Repair and the Neuroscience Graduate Studies Program, Ohio State University, Columbus, OH 43210, USA.
| | | | | | | |
Collapse
|
50
|
McIntyre RS, Soczynska JK, Lewis GF, MacQueen GM, Konarski JZ, Kennedy SH. Managing psychiatric disorders with antidiabetic agents: translational research and treatment opportunities. Expert Opin Pharmacother 2006; 7:1305-21. [PMID: 16805717 DOI: 10.1517/14656566.7.10.1305] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The objective of this paper is to synthesise extant studies describing the neurotherapeutic effects of antidiabetic agents in neuropsychiatric disorders. The authors conducted a MedLine search of all English-language articles published between 1966 and March 2006. The search terms were the nonproprietary names of established and putative antidiabetic agents (e.g., insulin, insulin secretagogues and sensitisers) cross-referenced with the individual names of Diagnostic and Statistical Manual of Mental Disorders (DSM)-III-R/IV/-TR-defined mood, psychotic, anxiety and dementing disorders. The search was augmented with a manual review of article reference lists. Contemporary models of disease pathophysiology in major depressive disorder, bipolar disorder and several dementing disorders (e.g., Alzheimer's disease) emphasise alterations in cellular plasticity and cytoarchitecture, with associated regional abnormalities in neuronal and glial density and morphology. Antidiabetic treatments (e.g., thiazolidinediones) may be capable of attenuating this pathological process via disparate mechanisms (e.g., neuroprotective, neurotrophic, anti-inflammatory). Enhanced insulin signalling with antidiabetic treatments may preserve and/or augment cognitive function in several neuropsychiatric disorders. Antidiabetic treatments, which maintain euglycaemia, hold promise as potent and clinically significant therapeutic interventions for several neuropsychiatric disorders.
Collapse
Affiliation(s)
- Roger S McIntyre
- Mood Disorders Psychopharmacology Unit, University Health Network, 399 Bathurst Street-Toronto, ON, M5T 2S8, Canada.
| | | | | | | | | | | |
Collapse
|