1
|
Lee S, Silverman N, Gao FB. Emerging roles of antimicrobial peptides in innate immunity, neuronal function, and neurodegeneration. Trends Neurosci 2024; 47:949-961. [PMID: 39389804 PMCID: PMC11563872 DOI: 10.1016/j.tins.2024.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 08/31/2024] [Accepted: 09/11/2024] [Indexed: 10/12/2024]
Abstract
Antimicrobial peptides (AMPs), a collection of small proteins with important roles in classical innate immunity, have been extensively studied in multiple organisms, particularly in Drosophila melanogaster. Advances in CRISPR/Cas9 genome editing have allowed individual AMP functions to be dissected, revealing specific and selective roles in host defense. Recent findings have also revealed many unexpected contributions of endogenous AMPs to neuronal functions and neurodegenerative diseases, and have shed light on the intersections between innate immunity and neurobiology. We explore the intricate relationships between AMPs and sleep regulation, memory formation, as well as traumatic brain injury and several neurodegenerative diseases such as Alzheimer's disease (AD), frontotemporal dementia (FTD), and Parkinson's disease (PD). Understanding the diverse functions of AMPs opens new avenues for neuroinflammation and neurodegenerative disease research and potential therapeutic development.
Collapse
Affiliation(s)
- Soojin Lee
- Frontotemporal Dementia Research Center, RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Neal Silverman
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA.
| | - Fen-Biao Gao
- Frontotemporal Dementia Research Center, RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA.
| |
Collapse
|
2
|
Peel E, Hogg C, Belov K. Characterisation of defensins across the marsupial family tree. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2024; 158:105207. [PMID: 38797458 DOI: 10.1016/j.dci.2024.105207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 05/23/2024] [Accepted: 05/23/2024] [Indexed: 05/29/2024]
Abstract
Defensins are antimicrobial peptides involved in innate immunity, and gene number differs amongst eutherian mammals. Few studies have investigated defensins in marsupials, despite their potential involvement in immunological protection of altricial young. Here we use recently sequenced marsupial genomes and transcriptomes to annotate defensins in nine species across the marsupial family tree. We characterised 35 alpha and 286 beta defensins; gene number differed between species, although Dasyuromorphs had the largest repertoire. Defensins were encoded in three gene clusters within the genome, syntenic to eutherians, and were expressed in the pouch and mammary gland. Marsupial beta defensins were closely related to eutherians, however marsupial alpha defensins were more divergent. We identified marsupial orthologs of human DEFB3 and 6, and several marsupial-specific beta defensin lineages which may have novel functions. Marsupial predicted mature peptides were highly variable in length and sequence composition. We propose candidate peptides for future testing to elucidate the function of marsupial defensins.
Collapse
Affiliation(s)
- Emma Peel
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Sydney, New South Wales, 2006, Australia; Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, Australia.
| | - Carolyn Hogg
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Sydney, New South Wales, 2006, Australia; Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, Australia.
| | - Katherine Belov
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Sydney, New South Wales, 2006, Australia; Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, Australia.
| |
Collapse
|
3
|
Hsieh TC, Chiang HC. IMD signaling in the gut and the brain modulates Amyloid-beta-induced deficits in Drosophila. Life Sci 2023; 332:122118. [PMID: 37741318 DOI: 10.1016/j.lfs.2023.122118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/12/2023] [Accepted: 09/20/2023] [Indexed: 09/25/2023]
Abstract
AIMS Evidence indicates accumulating Aβ peptides in brain activates immune responses in neuronal and peripheral system, which may collaboratively influence pathogenesis of Alzheimer's disease (AD). We aim to investigate whether regulating intestinal innate immune signaling ameliorates Aβ-induced impairments in Drosophila melanogaster. MAIN METHODS Quantitative polymerase chain reaction (qPCR) was used to observe expression changes of innate immune responses related genes in brain and in gut under the circumstance of Aβ overexpressing in nerve system. Aversive olfactory conditioning and survival assay were used to investigate effects of modulating Attacin-A (AttA) and Dpitercin-A (DptA). Fluorometric assays of respiratory burst activity was introduced to explore whether reducing oxidative stress enables overexpressing intestinal AttA and DptA to reverse Aβ-induced deficits. KEY FINDINGS In vivo genetic analysis revealed that accumulating Aβ42 in neurons modulates innate immune signaling of the IMD pathway both in the brain and in the gut. Increased expression levels of the intestinal AttA and DptA improved learning performance and extended the lifespan of Aβ42 flies. The administration of apramycin led to alleviations of Aβ-induced behavioral changes, indicating that gram-negative bacteria are associated with the development of Aβ-induced pathologies. Further analysis showed that the neural expression of Aβ42 increased oxidative stress in the gut, which disrupted intestinal integrity and decreased learning performance. In addition, increased levels of AMPs targeting gram-negative bacteria and antioxidants reduced oxidative stress in the gut and reversed Aβ-induced behavioral damage. SIGNIFICANCE These findings suggest that innate immune responses in the gut play a pivotal role in modulating Aβ-induced pathologies.
Collapse
Affiliation(s)
- Tsung-Chi Hsieh
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Hsueh-Cheng Chiang
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Department of Pharmacology, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
4
|
Gibaly DE, Labib DA, Fayed HL, Eldash A. Serum human β-defensin-1 (hBD-1) and -20G/A DEFB1 gene polymorphism in Behçet’s disease patients: Relation to clinical characteristics. THE EGYPTIAN RHEUMATOLOGIST 2023. [DOI: 10.1016/j.ejr.2022.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
5
|
Wang G, Cui Y, Liu H, Tian Y, Li S, Fan Y, Sun S, Wu D, Peng C. Antibacterial peptides-loaded bioactive materials for the treatment of bone infection. Colloids Surf B Biointerfaces 2023; 225:113255. [PMID: 36924650 DOI: 10.1016/j.colsurfb.2023.113255] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 02/20/2023] [Accepted: 03/06/2023] [Indexed: 03/13/2023]
Abstract
Bacterial bone infection in open fractures is an urgent problem to solve in orthopedics. Antimicrobial peptides (AMPs), as a part of innate immune defense, have good biocompatibility. Their antibacterial mechanism and therapeutic application against bacteria have been widely studied. Compared with traditional antibiotics, AMPs do not easily cause bacterial resistance and can be a reliable substitute for antibiotics in the future. Therefore, various physical and chemical strategies have been developed for the combined application of AMPs and bioactive materials to infected sites, which are conducive to maintaining the local stability of AMPs, reducing many complications, and facilitating bone infection resolution. This review explored the molecular structure, function, and direct and indirect antibacterial mechanisms of AMPs, introduced two important AMPs (LL-37 and β-defensins) in bone tissues, and reviewed advanced AMP loading strategies and different bioactive materials. Finally, the latest progress and future development of AMPs-loaded bioactive materials for the promotion of bone infection repair were discussed. This study provided a theoretical basis and application strategy for the treatment of bone infection with AMP-loaded bioactive materials.
Collapse
Affiliation(s)
- Gan Wang
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, PR China
| | - Yutao Cui
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, PR China
| | - He Liu
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, PR China
| | - Yuhang Tian
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, PR China
| | - Shaorong Li
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, PR China
| | - Yi Fan
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, PR China
| | - Shouye Sun
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, PR China
| | - Dankai Wu
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, PR China.
| | - Chuangang Peng
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, PR China.
| |
Collapse
|
6
|
Inoue E, Minatozaki S, Katsuta Y, Nonaka S, Nakanishi H. Human β-Defensin 3 Inhibits Porphyromonas Gingivalis Lipopolysaccharide-Induced Oxidative and Inflammatory Responses of Microglia by Suppression of Cathepsins B and L. Int J Mol Sci 2022; 23:15099. [PMID: 36499428 PMCID: PMC9738813 DOI: 10.3390/ijms232315099] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/25/2022] [Accepted: 11/29/2022] [Indexed: 12/03/2022] Open
Abstract
Recently, the effects of antibacterial peptides are suggested to have therapeutic potential in Alzheimer's disease. Furthermore, systemic treatment of Porphyromonas gingivalis (Pg) lipopolysaccharide (LPS) induced Alzheimer's disease-like neuropathological changes in middle-aged mice. Then, we examined whether human β-defensins (hBDs), antimicrobial peptides produced by the oral mucosa and salivary glands, can suppress Pg LPS-induced oxidative and inflammatory responses by microglia. hBD3 (1 μM) significantly suppressed Pg LPS-induced production of nitric oxide and interleukin-6 (IL-6) by MG6 cells, a mouse microglial cell line. hBD3 (1 μM) also significantly inhibited Pg LPS-induced expression of IL-6 by HMC3 cells, a human microglial cell line. In contrast, neither hBD1, hBD2 nor hBD4 failed to inhibit their productions. Furthermore, hBD3 suppressed Pg LPS-induced p65 nuclear translocation through the IκBα degradation. Pg LPS-induced expression of IL-6 was significantly suppressed by E64d, a cysteine protease inhibitor, and CA-074Me, a known specific inhibitor for cathepsin B, but not by pepstatin A, an aspartic protease inhibitor. Interestingly, hBD3 significantly inhibited enzymatic activities of recombinant human cathepsins B and L, lysosomal cysteine proteases, and their intracellular activities in MG6 cells. Therefore, hBD3 suppressed oxidative and inflammatory responses of microglia through the inhibition of cathepsins B and L, which enzymatic activities are necessary for the NF-κB activation.
Collapse
Affiliation(s)
- Erika Inoue
- Faculty of Pharmacy, Yasuda Women’s University, Hiroshima 731-0153, Japan
| | - Shiyo Minatozaki
- Faculty of Pharmacy, Yasuda Women’s University, Hiroshima 731-0153, Japan
| | - Yui Katsuta
- Faculty of Pharmacy, Yasuda Women’s University, Hiroshima 731-0153, Japan
| | - Saori Nonaka
- Department of Pharmacology, Faculty of Pharmacy, Yasuda Women’s University, Hiroshima 731-0153, Japan
| | - Hiroshi Nakanishi
- Department of Pharmacology, Faculty of Pharmacy, Yasuda Women’s University, Hiroshima 731-0153, Japan
| |
Collapse
|
7
|
Elkjaer Greenwood Ormerod MB, Ueland T, Frogner Werner MC, Hjell G, Rødevand L, Sæther LS, Lunding SH, Johansen IT, Ueland T, Lagerberg TV, Melle I, Djurovic S, Andreassen OA, Steen NE. Composite immune marker scores associated with severe mental disorders and illness course. Brain Behav Immun Health 2022; 24:100483. [PMID: 35856063 PMCID: PMC9287150 DOI: 10.1016/j.bbih.2022.100483] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 06/28/2022] [Indexed: 12/29/2022] Open
Abstract
Background Low-grade inflammation has been implicated in the pathophysiology of severe mental disorders (SMDs) and a link between immune activation and clinical characteristics is suggested. However, few studies have investigated how patterns across immune markers are related to diagnosis and illness course. Methods A total of 948 participants with a diagnosis of schizophrenia (SCZ, N = 602) or bipolar (BD, N = 346) spectrum disorder, and 814 healthy controls (HC) were included. Twenty-five immune markers comprising cell adhesion molecules (CAMs), interleukin (IL)-18-system factors, defensins, chemokines and other markers, related to neuroinflammation, blood-brain barrier (BBB) function, inflammasome activation and immune cell orchestration were analyzed. Eight immune principal component (PC) scores were constructed by PC Analysis (PCA) and applied in general linear models with diagnosis and illness course characteristics. Results Three PC scores were significantly associated with a SCZ and/or BD diagnosis (HC reference), with largest, however small, effect sizes of scores based on CAMs, BBB markers and defensins (p < 0.001, partial η2 = 0.02-0.03). Number of psychotic episodes per year in SCZ was associated with a PC score based on IL-18 system markers and the potential neuroprotective cytokine A proliferation-inducing ligand (p = 0.006, partial η2 = 0.071). Conclusion Analyses of composite immune markers scores identified specific patterns suggesting CAMs-mediated BBB dysregulation pathways associated with SMDs and interrelated pro-inflammatory and neuronal integrity processes associated with severity of illness course. This suggests a complex pattern of immune pathways involved in SMDs and SCZ illness course.
Collapse
Affiliation(s)
| | - Thor Ueland
- NORMENT Centre, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Research Institute of Internal Medicine, Oslo University Hospital, Rikshospitalet, Oslo, Norway
- KG Jebsen Inflammatory Research Center, University of Oslo, Oslo, Norway
| | - Maren Caroline Frogner Werner
- NORMENT Centre, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Gabriela Hjell
- NORMENT Centre, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Psychiatry, Østfold Hospital, Graalum, Norway
| | - Linn Rødevand
- NORMENT Centre, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Linn Sofie Sæther
- NORMENT Centre, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
- Department of Psychology, University of Oslo, Oslo, Norway
| | - Synve Hoffart Lunding
- NORMENT Centre, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Ingrid Torp Johansen
- NORMENT Centre, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Torill Ueland
- NORMENT Centre, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Psychology, University of Oslo, Oslo, Norway
| | - Trine Vik Lagerberg
- NORMENT Centre, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Ingrid Melle
- NORMENT Centre, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Srdjan Djurovic
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway
- NORMENT, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Ole Andreas Andreassen
- NORMENT Centre, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Nils Eiel Steen
- NORMENT Centre, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
8
|
Smith KJ, Gwyer Findlay E. Expression of antimicrobial host defence peptides in the central nervous system during health and disease. DISCOVERY IMMUNOLOGY 2022; 1:kyac003. [PMID: 38566904 PMCID: PMC10917193 DOI: 10.1093/discim/kyac003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/13/2022] [Accepted: 07/21/2022] [Indexed: 04/04/2024]
Abstract
Antimicrobial host defence peptides (HDP) are critical for the first line of defence against bacterial, viral, and fungal pathogens. Over the past decade we have become more aware that, in addition to their antimicrobial roles, they also possess the potent immunomodulatory capacity. This includes chemoattracting immune cells, activating dendritic cells and macrophages, and altering T-cell differentiation. Most examinations of their immunomodulatory roles have focused on tissues in which they are very abundant, such as the intestine and the inflamed skin. However, HDP have now been detected in the brain and the spinal cord during a number of conditions. We propose that their presence in the central nervous system (CNS) during homeostasis, infection, and neurodegenerative disease has the potential to contribute to immunosurveillance, alter host responses and skew developing immunity. Here, we review the evidence for HDP expression and function in the CNS in health and disease. We describe how a wide range of HDP are expressed in the CNS of humans, rodents, birds, and fish, suggesting a conserved role in protecting the brain from pathogens, with evidence of production by resident CNS cells. We highlight differences in methodology used and how this may have resulted in the immunomodulatory roles of HDP being overlooked. Finally, we discuss what HDP expression may mean for CNS immune responses.
Collapse
Affiliation(s)
- Katie J Smith
- Centre for Inflammation Research, University of Edinburgh, 47 Little France Crescent, EH16 4TJ, Edinburgh, UK
| | - Emily Gwyer Findlay
- Centre for Inflammation Research, University of Edinburgh, 47 Little France Crescent, EH16 4TJ, Edinburgh, UK
| |
Collapse
|
9
|
Changing Perspectives from Oxidative Stress to Redox Signaling-Extracellular Redox Control in Translational Medicine. Antioxidants (Basel) 2022; 11:antiox11061181. [PMID: 35740078 PMCID: PMC9228063 DOI: 10.3390/antiox11061181] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/08/2022] [Accepted: 06/10/2022] [Indexed: 12/07/2022] Open
Abstract
Extensive research has changed the understanding of oxidative stress that has been linked to every major disease. Today we distinguish oxidative eu- and distress, acknowledging that redox modifications are crucial for signal transduction in the form of specific thiol switches. Long underestimated, reactive species and redox proteins of the Thioredoxin (Trx) family are indeed essential for physiological processes. Moreover, extracellular redox proteins, low molecular weight thiols and thiol switches affect signal transduction and cell–cell communication. Here, we highlight the impact of extracellular redox regulation for health, intermediate pathophenotypes and disease. Of note, recent advances allow the analysis of redox changes in body fluids without using invasive and expensive techniques. With this new knowledge in redox biochemistry, translational strategies can lead to innovative new preventive and diagnostic tools and treatments in life sciences and medicine.
Collapse
|
10
|
Bruno F, Malvaso A, Canterini S, Bruni AC. Antimicrobial Peptides (AMPs) in the Pathogenesis of Alzheimer's Disease: Implications for Diagnosis and Treatment. Antibiotics (Basel) 2022; 11:726. [PMID: 35740133 PMCID: PMC9220182 DOI: 10.3390/antibiotics11060726] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 05/25/2022] [Accepted: 05/26/2022] [Indexed: 02/04/2023] Open
Abstract
Alzheimer's disease (AD) represents the most frequent type of dementia in elderly people. There are two major forms of the disease: sporadic (SAD)-whose causes are not completely understood-and familial (FAD)-with clear autosomal dominant inheritance. The two main hallmarks of AD are extracellular deposits of amyloid-beta (Aβ) peptide and intracellular deposits of the hyperphosphorylated form of the tau protein (P-tau). An ever-growing body of research supports the infectious hypothesis of sporadic forms of AD. Indeed, it has been documented that some pathogens, such as herpesviruses and certain bacterial species, are commonly present in AD patients, prompting recent clinical research to focus on the characterization of antimicrobial peptides (AMPs) in this pathology. The literature also demonstrates that Aβ can be considered itself as an AMP; thus, representing a type of innate immune defense peptide that protects the host against a variety of pathogens. Beyond Aβ, other proteins with antimicrobial activity, such as lactoferrin, defensins, cystatins, thymosin β4, LL37, histatin 1, and statherin have been shown to be involved in AD. Here, we summarized and discussed these findings and explored the diagnostic and therapeutic potential of AMPs in AD.
Collapse
Affiliation(s)
- Francesco Bruno
- Regional Neurogenetic Centre (CRN), Department of Primary Care, ASP Catanzaro, 88046 Lamezia Terme, Italy
- Association for Neurogenetic Research (ARN), 88046 Lamezia Terme, Italy;
| | - Antonio Malvaso
- Neurology Unit, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy;
| | - Sonia Canterini
- Division of Neuroscience, Department of Psychology, University La Sapienza, 00158 Rome, Italy;
| | | |
Collapse
|
11
|
Mittli D, Tukacs V, Micsonai A, Ravasz L, Kardos J, Juhász G, Kékesi KA. The Single-Cell Transcriptomic Analysis of Prefrontal Pyramidal Cells and Interneurons Reveals the Neuronal Expression of Genes Encoding Antimicrobial Peptides and Immune Proteins. Front Immunol 2021; 12:749433. [PMID: 34759929 PMCID: PMC8574171 DOI: 10.3389/fimmu.2021.749433] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 10/06/2021] [Indexed: 12/30/2022] Open
Abstract
The investigation of the molecular background of direct communication of neurons and immune cells in the brain is an important issue for understanding physiological and pathological processes in the nervous system. Direct contacts between brain-infiltrating immune cells and neurons, and the neuromodulatory effect of immune cell-derived regulatory peptides are well established. Several aspects of the role of immune and glial cells in the direct neuro-immune communication are also well known; however, there remain many questions regarding the molecular details of signaling from neurons to immune cells. Thus, we report here on the neuronal expression of genes encoding antimicrobial and immunomodulatory peptides, as well as proteins of immune cell-specific activation and communication mechanisms. In the present study, we analyzed the single-cell sequencing data of our previous transcriptomic work, obtained from electrophysiologically identified pyramidal cells and interneurons of the murine prefrontal cortex. We filtered out the genes that may be associated with the direct communication between immune cells and neurons and examined their expression pattern in the neuronal transcriptome. The expression of some of these genes by cortical neurons has not yet been reported. The vast majority of antimicrobial (~53%) and immune cell protein (~94%) transcripts was identified in the transcriptome of the 84 cells, owing to the high sensitivity of ultra-deep sequencing. Several of the antimicrobial and immune process-related protein transcripts showed cell type-specific or enriched expression. Individual neurons transcribed only a fraction of the investigated genes with low copy numbers probably due to the bursting kinetics of gene expression; however, the comparison of our data with available transcriptomic datasets from immune cells and neurons suggests the functional relevance of the reported findings. Accordingly, we propose further experimental and in silico studies on the neuronal expression of immune system-related genes and the potential role of the encoded proteins in neuroimmunological processes.
Collapse
Affiliation(s)
- Dániel Mittli
- ELTE NAP Neuroimmunology Research Group, Department of Biochemistry, Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary
- Laboratory of Proteomics, Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Vanda Tukacs
- ELTE NAP Neuroimmunology Research Group, Department of Biochemistry, Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary
- Laboratory of Proteomics, Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - András Micsonai
- ELTE NAP Neuroimmunology Research Group, Department of Biochemistry, Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Lilla Ravasz
- ELTE NAP Neuroimmunology Research Group, Department of Biochemistry, Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary
- Clinical Research Units (CRU) Hungary Ltd., Göd, Hungary
| | - József Kardos
- ELTE NAP Neuroimmunology Research Group, Department of Biochemistry, Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Gábor Juhász
- ELTE NAP Neuroimmunology Research Group, Department of Biochemistry, Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary
- Laboratory of Proteomics, Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary
- Clinical Research Units (CRU) Hungary Ltd., Göd, Hungary
- InnoScience Ltd., Mátranovák, Hungary
| | - Katalin Adrienna Kékesi
- ELTE NAP Neuroimmunology Research Group, Department of Biochemistry, Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary
- Laboratory of Proteomics, Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary
- InnoScience Ltd., Mátranovák, Hungary
- Department of Physiology and Neurobiology, Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary
| |
Collapse
|
12
|
Molecular Basis of Neuronal Autophagy in Ageing: Insights from Caenorhabditis elegans. Cells 2021; 10:cells10030694. [PMID: 33800981 PMCID: PMC8004021 DOI: 10.3390/cells10030694] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/17/2021] [Accepted: 03/18/2021] [Indexed: 01/19/2023] Open
Abstract
Autophagy is an evolutionarily conserved degradation process maintaining cell homeostasis. Induction of autophagy is triggered as a response to a broad range of cellular stress conditions, such as nutrient deprivation, protein aggregation, organelle damage and pathogen invasion. Macroautophagy involves the sequestration of cytoplasmic contents in a double-membrane organelle referred to as the autophagosome with subsequent degradation of its contents upon delivery to lysosomes. Autophagy plays critical roles in development, maintenance and survival of distinct cell populations including neurons. Consequently, age-dependent decline in autophagy predisposes animals for age-related diseases including neurodegeneration and compromises healthspan and longevity. In this review, we summarize recent advances in our understanding of the role of neuronal autophagy in ageing, focusing on studies in the nematode Caenorhabditis elegans.
Collapse
|
13
|
Inyushin M, Zayas-Santiago A, Rojas L, Kucheryavykh L. On the Role of Platelet-Generated Amyloid Beta Peptides in Certain Amyloidosis Health Complications. Front Immunol 2020; 11:571083. [PMID: 33123145 PMCID: PMC7567018 DOI: 10.3389/fimmu.2020.571083] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 09/15/2020] [Indexed: 12/15/2022] Open
Abstract
As do many other immunity-related blood cells, platelets release antimicrobial peptides that kill bacteria, fungi, and even certain viruses. Here we review the literature suggesting that there is a similarity between the antimicrobials released by other blood cells and the amyloid-related Aβ peptide released by platelets. Analyzing the literature, we also propose that platelet-generated Aβ amyloidosis may be more common than currently recognized. This systemic Aβ from a platelet source may participate in various forms of amyloidosis in pathologies ranging from brain cancer, glaucoma, skin Aβ accumulation, and preeclampsia to Alzheimer’s disease and late-stage Parkinson’s disease. We also discuss the advantages and disadvantages of specific animal models for studying platelet-related Aβ. This field is undergoing rapid change, as it evaluates competing ideas in the light of new experimental observations. We summarized both in order to clarify the role of platelet-generated Aβ peptides in amyloidosis-related health disorders, which may be helpful to researchers interested in this growing area of investigation.
Collapse
Affiliation(s)
- Mikhail Inyushin
- Department of Physiology, Universidad Central del Caribe, Bayamon, Puerto Rico
| | - Astrid Zayas-Santiago
- Department of Pathology & Laboratory Medicine, Universidad Central del Caribe, Bayamon, Puerto Rico
| | - Legier Rojas
- Department of Physiology, Universidad Central del Caribe, Bayamon, Puerto Rico
| | - Lilia Kucheryavykh
- Department of Biochemistry, Universidad Central del Caribe, Bayamon, Puerto Rico
| |
Collapse
|
14
|
Iqbal UH, Zeng E, Pasinetti GM. The Use of Antimicrobial and Antiviral Drugs in Alzheimer's Disease. Int J Mol Sci 2020; 21:E4920. [PMID: 32664669 PMCID: PMC7404195 DOI: 10.3390/ijms21144920] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/09/2020] [Accepted: 07/10/2020] [Indexed: 12/15/2022] Open
Abstract
The aggregation and accumulation of amyloid-β plaques and tau proteins in the brain have been central characteristics in the pathophysiology of Alzheimer's disease (AD), making them the focus of most of the research exploring potential therapeutics for this neurodegenerative disease. With success in interventions aimed at depleting amyloid-β peptides being limited at best, a greater understanding of the physiological role of amyloid-β peptides is needed. The development of amyloid-β plaques has been determined to occur 10-20 years prior to AD symptom manifestation, hence earlier interventions might be necessary to address presymptomatic AD. Furthermore, recent studies have suggested that amyloid-β peptides may play a role in innate immunity as an antimicrobial peptide. These findings, coupled with the evidence of pathogens such as viruses and bacteria in AD brains, suggests that the buildup of amyloid-β plaques could be a response to the presence of viruses and bacteria. This has led to the foundation of the antimicrobial hypothesis for AD. The present review will highlight the current understanding of amyloid-β, and the role of bacteria and viruses in AD, and will also explore the therapeutic potential of antimicrobial and antiviral drugs in Alzheimer's disease.
Collapse
Affiliation(s)
| | | | - Giulio M. Pasinetti
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (U.H.I.); (E.Z.)
| |
Collapse
|
15
|
Tan N, Hu S, Hu Z, Wu Z, Wang B. Quantitative proteomic characterization of microvesicles/exosomes from the cerebrospinal fluid of patients with acute bilirubin encephalopathy. Mol Med Rep 2020; 22:1257-1268. [PMID: 32468033 PMCID: PMC7339682 DOI: 10.3892/mmr.2020.11194] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 05/06/2020] [Indexed: 01/10/2023] Open
Abstract
Severe hyperbilirubinemia causes neurotoxicity and may lead to acute bilirubin encephalopathy (ABE) during the critical period of central nervous system development. The aim of the present study was to identify differentially expressed proteins (DEPs) in microvesicles/exosomes (MV/E) isolated from the cerebrospinal fluid (CSF) of patients with ABE. Co-precipitation was used to isolate the MV/E from the CSF of patients with ABE and age-matched controls. Isobaric tagging for relative and absolute quantification-based proteomic technology combined with liquid chromatography/tandem mass spectrometry was used to identify DEPs in the MV/E. Bioinformatics analysis was subsequently performed to investigate Gene Ontology functional annotation and Kyoto Encyclopedia of Genes and Genomes enriched signaling pathways of these DEPs. A total of four proteins were selected for further validation via western blotting. A total of 291 dysregulated proteins were identified by comparing the patients with ABE with the controls. Bioinformatics analysis indicated the involvement of immune-inflammation-associated cellular processes and signaling pathways in the pathophysiology of ABE. In conclusion, the present study identified the proteomic profile of MV/E isolated from the CSF of patients with ABE. These results may provide an improved understanding of the pathogenesis of ABE and may help to identify early diagnostic biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Ning Tan
- Department of Pediatrics, Zhujiang Hospital, The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong 510280, P.R. China
| | - Shuiwang Hu
- Guangdong Provincial Key Laboratory of Proteomics, Department of Pathophysiology, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Zhen Hu
- National and Local Joint Engineering Laboratory for High‑through Molecular Diagnosis Technology, Translational Medicine Institute, Collaborative Research Center for Post‑doctoral Mobile Stations of Central South University, Affiliated The First People's Hospital of Chenzhou, Southern Medical University, University of South China, Chenzhou, Hunan 423000, P.R. China
| | - Zhouli Wu
- Department of Neonatology, Affiliated The First People's Hospital of Chenzhou, Southern Medical University, University of South China, Chenzhou, Hunan 423000, P.R. China
| | - Bin Wang
- Department of Pediatrics, Zhujiang Hospital, The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong 510280, P.R. China
| |
Collapse
|
16
|
Frost GR, Jonas LA, Li YM. Friend, Foe or Both? Immune Activity in Alzheimer's Disease. Front Aging Neurosci 2019; 11:337. [PMID: 31920620 PMCID: PMC6916654 DOI: 10.3389/fnagi.2019.00337] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 11/21/2019] [Indexed: 12/18/2022] Open
Abstract
Alzheimer's disease (AD) is marked by the presence of amyloid beta (Aβ) plaques, neurofibrillary tangles (NFT), neuronal death and synaptic loss, and inflammation in the brain. AD research has, in large part, been dedicated to the understanding of Aβ and NFT deposition as well as to the pharmacological reduction of these hallmarks. However, recent GWAS data indicates neuroinflammation plays a critical role in AD development, thereby redirecting research efforts toward unveiling the complexities of AD-associated neuroinflammation. It is clear that the innate immune system is intimately associated with AD progression, however, the specific roles of glia and neuroinflammation in AD pathology remain to be described. Moreover, inflammatory processes have largely been painted as detrimental to AD pathology, when in fact, many immune mechanisms such as phagocytosis aid in the reduction of AD pathologies. In this review, we aim to outline the delicate balance between the beneficial and detrimental aspects of immune activation in AD as a more thorough understanding of these processes is critical to development of effective therapeutics for AD.
Collapse
Affiliation(s)
- Georgia R. Frost
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, Manhattan, NY, United States
| | - Lauren A. Jonas
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, Manhattan, NY, United States
- Pharmacology Program, Weill Cornell Graduate School of Medical Sciences, Cornell University, Ithaca, NY, United States
| | - Yue-Ming Li
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, Manhattan, NY, United States
- Pharmacology Program, Weill Cornell Graduate School of Medical Sciences, Cornell University, Ithaca, NY, United States
| |
Collapse
|
17
|
Aono S, Dennis JC, He S, Wang W, Tao YX, Morrison EE. Exploring Pleiotropic Functions of Canine β-Defensin 103: Nasal Cavity Expression, Antimicrobial Activity, and Melanocortin Receptor Activity. Anat Rec (Hoboken) 2019; 304:210-221. [PMID: 31714028 DOI: 10.1002/ar.24300] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 09/06/2019] [Accepted: 09/09/2019] [Indexed: 01/24/2023]
Abstract
Canine β-defensin 103 (cBD103) and its common variant cBD103ΔG23 are multitasking polypeptides. As a β-defensin, cBD103 is one of many antimicrobial agents used by the innate immunity to thwart pathogenic colonization. In this study, we showed that cBD103 was expressed throughout the nasal cavity, with primary expression in the nares as well as respiratory and olfactory epithelia. In the rostral nasal concha, cBD103 was expressed in the epithelium, and to a lesser degree in the lamina propria, but was absent in goblet cells. In the main olfactory epithelium, virtually all cells in the epithelial layer and select cells associated with Bowman's glands expressed cBD103. We also showed that the ΔG23 mutation did not appreciably alter the antimicrobial activity of the peptide against several species of microorganisms tested in nutrient-rich or minimal media or minimal media with salt added. Moreover, we showed antimicrobial activity in minimal media did not necessarily predict the inhibitory action of the peptide in nutrient-rich media. Both forms of cBD103 caused ultrastructural changes (membrane blebbing, condensation of intracellular contents and cell wall lysis) in Escherichia coli and Staphylococcus aureus. As a ligand of the melanocortin receptors, we showed that cBD103ΔG23 increased ERK1/2 activation and cAMP accumulation when bound to the human or canine melanocortin-4 receptor, acting as a weak allosteric agonist.
Collapse
Affiliation(s)
- Shelly Aono
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, Alabama
| | - John C Dennis
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, Alabama
| | - Shan He
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, Alabama
| | - Wei Wang
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, Alabama
| | - Ya-Xiong Tao
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, Alabama
| | - Edward E Morrison
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, Alabama
| |
Collapse
|
18
|
E L, Zhou T, Koh S, Chuang M, Sharma R, Pujol N, Chisholm AD, Eroglu C, Matsunami H, Yan D. An Antimicrobial Peptide and Its Neuronal Receptor Regulate Dendrite Degeneration in Aging and Infection. Neuron 2019; 97:125-138.e5. [PMID: 29301098 DOI: 10.1016/j.neuron.2017.12.001] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 10/09/2017] [Accepted: 11/30/2017] [Indexed: 01/01/2023]
Abstract
Infections have been identified as possible risk factors for aging-related neurodegenerative diseases, but it remains unclear whether infection-related immune molecules have a causative role in neurodegeneration during aging. Here, we reveal an unexpected role of an epidermally expressed antimicrobial peptide, NLP-29 (neuropeptide-like protein 29), in triggering aging-associated dendrite degeneration in C. elegans. The age-dependent increase of nlp-29 expression is regulated by the epidermal tir-1/SARM-pmk-1/p38 MAPK innate immunity pathway. We further identify an orphan G protein-coupled receptor NPR-12 (neuropeptide receptor 12) acting in neurons as a receptor for NLP-29 and demonstrate that the autophagic machinery is involved cell autonomously downstream of NPR-12 to transduce degeneration signals. Finally, we show that fungal infections cause dendrite degeneration using a similar mechanism as in aging, through NLP-29, NPR-12, and autophagy. Our findings reveal an important causative role of antimicrobial peptides, their neuronal receptors, and the autophagy pathway in aging- and infection-associated dendrite degeneration.
Collapse
Affiliation(s)
- Lezi E
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Ting Zhou
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Sehwon Koh
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
| | - Marian Chuang
- Section of Neurobiology and Cell and Developmental Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Ruchira Sharma
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Nathalie Pujol
- Centre d'Immunologie de Marseille-Luminy, CIML, Aix Marseille Université, Inserm, CNRS, Marseille 13288, France
| | - Andrew D Chisholm
- Section of Neurobiology and Cell and Developmental Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Cagla Eroglu
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA; Department of Neurobiology and Duke Institute for Brain Sciences, Duke University Medical Center, Durham, NC 27710, USA
| | - Hiroaki Matsunami
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA; Department of Neurobiology and Duke Institute for Brain Sciences, Duke University Medical Center, Durham, NC 27710, USA
| | - Dong Yan
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA; Department of Neurobiology and Duke Institute for Brain Sciences, Duke University Medical Center, Durham, NC 27710, USA.
| |
Collapse
|
19
|
Kallel A, Ben Salem T, Hammami MB, Said F, Jemaa R, Houman MH, Feki M. Association of systemic beta-defensin-1 and -20G/A DEFB1 gene polymorphism with Behçet's disease. Eur J Intern Med 2019; 65:58-62. [PMID: 30819604 DOI: 10.1016/j.ejim.2019.02.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 12/22/2018] [Accepted: 02/10/2019] [Indexed: 11/25/2022]
Abstract
BACKGROUND Behçet's disease (BD) is a multisystem inflammatory disease of unknown etiology. Beta-defensins are antimicrobial peptides involved in epithelial host defense. To explore whether beta-defensins might be involved in BD pathogenesis, we examined plasma human beta-defensin-1 (hBD-1) and DEFB1 -20G/A polymorphism in BD patients. METHODS This case-control study included 106 BD patients fulfilling the criteria of the International Study Group for BD and 156 controls. The -20G/A genotypes were determined by PCR-RFLP analysis in all participants, and plasma hBD-1 was assessed by ELISA in 77 BD patients and 44 controls, only. Stepwise multiple regression models were applied to determine independent predictors for plasma hBD-1 in BD patients. RESULTS Distribution of -20G/A genotypes was different between BD patients and controls. Compared to GG genotype, "GA" genotype [OR (95% CI), 3.12 (1.56-6.16); p = .001] and "AA" genotype [2.57 (1.10-5.96); p = .027)] were associated with increased risk for BD. Plasma hBD-1 concentrations were significantly higher in BD patients than controls (9.81 ± 3.52 ng/mL vs. 5.30 ± 3.02 ng/mL; p < .001), and in BD patients with neurological involvement than those without (11.1 ± 4.12 ng/mL vs. 9.19 ± 3.10 ng/mL; p = .040). No variation was noted according to other clinical features, treatment received or -20G/A genotypes. In multivariate analysis, neurological involvement was the only predictor for plasma hBD-1 (β, 0.274; p = .029). CONCLUSIONS Findings suggest that hBD-1 and its encoding gene DEFB1 could modulate the risk for BD, especially for BD neurological involvement. Further work is needed for a better understanding of role of hBD-1 and its genetic variants in the pathogenesis of BD.
Collapse
Affiliation(s)
- Amani Kallel
- University of Tunis El Manar, Faculty of Medicine of Tunis, LR99ES11 Tunis, Tunisia; Rabta Hospital, Laboratory of Biochemistry, Jebbari 1007, Tunis, Tunisia
| | - Thouraya Ben Salem
- University of Tunis El Manar, Faculty of Medicine of Tunis, LR99ES11 Tunis, Tunisia; Rabta Hospital, Service of Internal Medicine, Jebbari 1007, Tunis, Tunisia
| | - Mohamed Bassem Hammami
- University of Tunis El Manar, Faculty of Medicine of Tunis, LR99ES11 Tunis, Tunisia; Rabta Hospital, Laboratory of Biochemistry, Jebbari 1007, Tunis, Tunisia
| | - Fatma Said
- University of Tunis El Manar, Faculty of Medicine of Tunis, LR99ES11 Tunis, Tunisia; Rabta Hospital, Service of Internal Medicine, Jebbari 1007, Tunis, Tunisia
| | - Riadh Jemaa
- University of Tunis El Manar, Faculty of Medicine of Tunis, LR99ES11 Tunis, Tunisia; Rabta Hospital, Laboratory of Biochemistry, Jebbari 1007, Tunis, Tunisia
| | - Mohamed Habib Houman
- University of Tunis El Manar, Faculty of Medicine of Tunis, LR99ES11 Tunis, Tunisia; Rabta Hospital, Service of Internal Medicine, Jebbari 1007, Tunis, Tunisia
| | - Moncef Feki
- University of Tunis El Manar, Faculty of Medicine of Tunis, LR99ES11 Tunis, Tunisia; Rabta Hospital, Laboratory of Biochemistry, Jebbari 1007, Tunis, Tunisia..
| |
Collapse
|
20
|
Zuena AR, Casolini P, Lattanzi R, Maftei D. Chemokines in Alzheimer's Disease: New Insights Into Prokineticins, Chemokine-Like Proteins. Front Pharmacol 2019; 10:622. [PMID: 31231219 PMCID: PMC6568308 DOI: 10.3389/fphar.2019.00622] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 05/15/2019] [Indexed: 12/31/2022] Open
Abstract
Alzheimer’s disease is the most common neurodegenerative disorder characterized by the presence of β-amyloid aggregates deposited as senile plaques and by the presence of neurofibrillary tangles of tau protein. To date, there is a broad consensus on the idea that neuroinflammation is one of the most important component in Alzheimer’s disease pathogenesis. Chemokines and their receptors, beside the well-known role in the immune system, are widely expressed in the nervous system, where they play a significant role in the neuroinflammatory processes. Prokineticins are a new family of chemokine-like molecules involved in numerous physiological and pathological processes including immunity, pain, inflammation, and neuroinflammation. Prokineticin 2 (PROK2) and its receptors PKR1 and PKR2 are widely expressed in the central nervous system in both neuronal and glial cells. In Alzheimer’s disease, PROK2 sustains the neuroinflammatory condition and contributes to neurotoxicity, since its expression is strongly upregulated by amyloid-β peptide and reversed by the PKR antagonist PC1. This review aims to summarize the current knowledge on the neurotoxic and/or neuroprotective function of chemokines in Alzheimer’s disease, focusing on the prokineticin system: it represents a new field of investigation that can stimulate the research of innovative pharmacotherapeutic strategies.
Collapse
Affiliation(s)
- Anna Rita Zuena
- Department of Physiology and Pharmacology "Vittorio Erspamer," Sapienza University of Rome, Rome, Italy
| | - Paola Casolini
- Department of Physiology and Pharmacology "Vittorio Erspamer," Sapienza University of Rome, Rome, Italy
| | - Roberta Lattanzi
- Department of Physiology and Pharmacology "Vittorio Erspamer," Sapienza University of Rome, Rome, Italy
| | - Daniela Maftei
- Department of Biochemical Sciences "Alessandro Rossi Fanelli," Sapienza University of Rome, Rome, Italy
| |
Collapse
|
21
|
Álvarez ÁH, Martínez Velázquez M, Prado Montes de Oca E. Human β-defensin 1 update: Potential clinical applications of the restless warrior. Int J Biochem Cell Biol 2018; 104:133-137. [PMID: 30236992 DOI: 10.1016/j.biocel.2018.09.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 08/15/2018] [Accepted: 09/15/2018] [Indexed: 01/06/2023]
Abstract
Human β-defensin 1 (hBD-1) is a multifaceted antimicrobial peptide being a tumour suppressor and, depending on call of duty, capable of inducing self-nets and neutrophil extracellular traps (NETs) to capture and/or kill bacteria, participates in inflammatory responses in chronic diseases including hBD-3 upregulation and also capable of up/downregulation in the presence of certain species of Lactobacillus sp. Thus, is regulated by host microbiota. Alleles, genotypes and/or altered gene expression of its coding gene, DEFB1, have been associated with several human diseases/conditions ranging from metabolic/chronic (e.g. cancer), infectious (e.g. tuberculosis, HIV/AIDS), inflammatory (gastrointestinal diseases), male infertility and more recently, neurologic (e.g. depression and Alzheimer) and autoimmune diseases (e.g. vitiligo and systemic lupus erythematosus). The present update focuses on novel DEFB1/hBD-1 properties and biomarker features, its biological function and the pharmaceutical potential uses of antimicrobial peptide elicitors (APEs) or the engineered peptide in the treatment of hBD-1-related human diseases.
Collapse
Affiliation(s)
- Ángel H Álvarez
- Personalized Medicine National Laboratory (LAMPER), Medical and Pharmaceutical Biotechnology Unit, Research Center of Technology and Design Assistance of Jalisco State (CIATEJ), National Council of Science and Technology (CONACYT), Av. Normalistas 800, Col. Colinas de la Normal, Guadalajara, Mexico
| | - Moisés Martínez Velázquez
- Personalized Medicine National Laboratory (LAMPER), Medical and Pharmaceutical Biotechnology Unit, Research Center of Technology and Design Assistance of Jalisco State (CIATEJ), National Council of Science and Technology (CONACYT), Av. Normalistas 800, Col. Colinas de la Normal, Guadalajara, Mexico
| | - Ernesto Prado Montes de Oca
- Personalized Medicine National Laboratory (LAMPER), Medical and Pharmaceutical Biotechnology Unit, Research Center of Technology and Design Assistance of Jalisco State (CIATEJ), National Council of Science and Technology (CONACYT), Av. Normalistas 800, Col. Colinas de la Normal, Guadalajara, Mexico.
| |
Collapse
|
22
|
Harris SA, Harris EA. Molecular Mechanisms for Herpes Simplex Virus Type 1 Pathogenesis in Alzheimer's Disease. Front Aging Neurosci 2018; 10:48. [PMID: 29559905 PMCID: PMC5845560 DOI: 10.3389/fnagi.2018.00048] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Accepted: 02/12/2018] [Indexed: 12/12/2022] Open
Abstract
This review focuses on research in the areas of epidemiology, neuropathology, molecular biology and genetics that implicates herpes simplex virus type 1 (HSV-1) as a causative agent in the pathogenesis of sporadic Alzheimer’s disease (AD). Molecular mechanisms whereby HSV-1 induces AD-related pathophysiology and pathology, including neuronal production and accumulation of amyloid beta (Aβ), hyperphosphorylation of tau proteins, dysregulation of calcium homeostasis, and impaired autophagy, are discussed. HSV-1 causes additional AD pathologies through mechanisms that promote neuroinflammation, oxidative stress, mitochondrial damage, synaptic dysfunction, and neuronal apoptosis. The AD susceptibility genes apolipoprotein E (APOE), phosphatidylinositol binding clathrin assembly protein (PICALM), complement receptor 1 (CR1) and clusterin (CLU) are involved in the HSV lifecycle. Polymorphisms in these genes may affect brain susceptibility to HSV-1 infection. APOE, for example, influences susceptibility to certain viral infections, HSV-1 viral load in the brain, and the innate immune response. The AD susceptibility gene cholesterol 25-hydroxylase (CH25H) is upregulated in the AD brain and is involved in the antiviral immune response. HSV-1 interacts with additional genes to affect cognition-related pathways and key enzymes involved in Aβ production, Aβ clearance, and hyperphosphorylation of tau proteins. Aβ itself functions as an antimicrobial peptide (AMP) against various pathogens including HSV-1. Evidence is presented supporting the hypothesis that Aβ is produced as an AMP in response to HSV-1 and other brain infections, leading to Aβ deposition and plaque formation in AD. Epidemiologic studies associating HSV-1 infection with AD and cognitive impairment are discussed. Studies are reviewed supporting subclinical chronic reactivation of latent HSV-1 in the brain as significant in the pathogenesis of AD. Finally, the rationale for and importance of clinical trials treating HSV-1-infected MCI and AD patients with antiviral medication is discussed.
Collapse
Affiliation(s)
- Steven A Harris
- St. Vincent Medical Group, Northside Internal Medicine, Indianapolis, IN, United States
| | - Elizabeth A Harris
- Department of Neurology, University of Chicago Medical Center, Chicago, IL, United States
| |
Collapse
|
23
|
Eiser AR. Why does Finland have the highest dementia mortality rate? Environmental factors may be generalizable. Brain Res 2017; 1671:14-17. [DOI: 10.1016/j.brainres.2017.06.032] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 06/28/2017] [Accepted: 06/30/2017] [Indexed: 12/12/2022]
|
24
|
Gene expression patterns associated with neurological disease in human HIV infection. PLoS One 2017; 12:e0175316. [PMID: 28445538 PMCID: PMC5405951 DOI: 10.1371/journal.pone.0175316] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 03/23/2017] [Indexed: 12/01/2022] Open
Abstract
The pathogenesis and nosology of HIV-associated neurological disease (HAND) remain incompletely understood. Here, to provide new insight into the molecular events leading to neurocognitive impairments (NCI) in HIV infection, we analyzed pathway dysregulations in gene expression profiles of HIV-infected patients with or without NCI and HIV encephalitis (HIVE) and control subjects. The Gene Set Enrichment Analysis (GSEA) algorithm was used for pathway analyses in conjunction with the Molecular Signatures Database collection of canonical pathways (MSigDb). We analyzed pathway dysregulations in gene expression profiles of patients from the National NeuroAIDS Tissue Consortium (NNTC), which consists of samples from 3 different brain regions, including white matter, basal ganglia and frontal cortex of HIV-infected and control patients. While HIVE is characterized by widespread, uncontrolled inflammation and tissue damage, substantial gene expression evidence of induction of interferon (IFN), cytokines and tissue injury is apparent in all brain regions studied, even in the absence of NCI. Various degrees of white matter changes were present in all HIV-infected subjects and were the primary manifestation in patients with NCI in the absence of HIVE. In particular, NCI in patients without HIVE in the NNTC sample is associated with white matter expression of chemokines, cytokines and β-defensins, without significant activation of IFN. Altogether, the results identified distinct pathways differentially regulated over the course of neurological disease in HIV infection and provide a new perspective on the dynamics of pathogenic processes in the course of HIV neurological disease in humans. These results also demonstrate the power of the systems biology analyses and indicate that the establishment of larger human gene expression profile datasets will have the potential to provide novel mechanistic insight into the pathogenesis of neurological disease in HIV infection and identify better therapeutic targets for NCI.
Collapse
|
25
|
Itzhaki RF, Lathe R, Balin BJ, Ball MJ, Bearer EL, Braak H, Bullido MJ, Carter C, Clerici M, Cosby SL, Del Tredici K, Field H, Fulop T, Grassi C, Griffin WST, Haas J, Hudson AP, Kamer AR, Kell DB, Licastro F, Letenneur L, Lövheim H, Mancuso R, Miklossy J, Otth C, Palamara AT, Perry G, Preston C, Pretorius E, Strandberg T, Tabet N, Taylor-Robinson SD, Whittum-Hudson JA. Microbes and Alzheimer's Disease. J Alzheimers Dis 2016; 51:979-84. [PMID: 26967229 DOI: 10.3233/jad-160152] [Citation(s) in RCA: 375] [Impact Index Per Article: 41.7] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Ruth F Itzhaki
- Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester, UK
| | - Richard Lathe
- Division of Infection and Pathway Medicine, University of Edinburgh, Little France, Edinburgh, UK
| | - Brian J Balin
- Center for Chronic Disorders of Aging, Philadelphia College of Osteopathic Medicine, Philadelphia, USA
| | - Melvyn J Ball
- Department of Pathology (Neuropathology), Oregon Health and Science University, Portland, OR, USA
| | - Elaine L Bearer
- Department of Pathology, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Heiko Braak
- Clinical Neuroanatomy Section, Department of Neurology, Center for Biomedical Research, University of Ulm, Ulm, Germany
| | - Maria J Bullido
- Centro de Biologia Molecular 'Severo Ochoa' (CSIC-UAM), Universidad Autonoma de Madrid, and Centro de Investigacion en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | | | - Mario Clerici
- University of Milano and IRCCS SM Nascente, Don C Gnocchi Foundation, Milan, Italy
| | - S Louise Cosby
- Centre for Infection and Immunity, Medical Biology Centre, Queen's University, Belfast, UK
| | - Kelly Del Tredici
- Clinical Neuroanatomy Section, Department of Neurology, Center for Biomedical Research, University of Ulm, Ulm, Germany
| | | | - Tamas Fulop
- Department of Medicine, Division of Geriatrics, Université de Sherbrooke, Sherbrooke, PQ, Canada
| | - Claudio Grassi
- Institute of Human Physiology, Medical School, Universitá Cattolica, Rome; San Raffaele Pisana Scientific Institute for Research, Hospitalization, and Health Care, Rome, Italy
| | - W Sue T Griffin
- Department of Geriatrics, University of Arkansas for Medical Sciences, and Geriatric Research, Education, and Clinical Center, Little Rock, AR, USA
| | - Jürgen Haas
- Division of Infection and Pathway Medicine, University of Edinburgh, Little France, Edinburgh, UK
| | - Alan P Hudson
- Department of Immunology and Microbiology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Angela R Kamer
- NYU College of Dentistry, Department of Periodontology and Implant Dentistry, New York, NY, USA
| | - Douglas B Kell
- School of Chemistry, Manchester Institute of Biotechnology, University of Manchester, Manchester, UK
| | - Federico Licastro
- Department of Experimental, Diagnostic, and Specialty Medicine, School of Medicine, University of Bologna, Bologna, Italy
| | | | - Hugo Lövheim
- Department of Community Medicine and Rehabilitation, Geriatric Medicine, Umeå University, Umeå, Sweden
| | | | - Judith Miklossy
- Prevention Alzheimer International Foundation, International Alzheimer Research Center, Martigny-Croix, Switzerland
| | - Carola Otth
- Institute of Clinical Microbiology, Faculty of Medicine, Austral University of Chile, Valdivia, Chile
| | - Anna Teresa Palamara
- Department of Public Health and Infectious Diseases, Institute Pasteur Cenci Bolognetti Foundation, Sapienza University of Rome; San Raffaele Pisana Scientific Institute for Research, Hospitalization, and Health Care, Rome, Italy
| | - George Perry
- College of Sciences, University of Texas at San Antonio, San Antonio, TX, USA
| | | | - Etheresia Pretorius
- Applied Morphology Research Centre, Department of Physiology, Faculty of Health Sciences, University of Pretoria, Arcadia, South Africa
| | - Timo Strandberg
- Helsinki University Hospital and University of Helsinki; University of Oulu, Centre of Life Course Health Research, Oulu, Finland
| | - Naji Tabet
- Division of Old Age Psychiatry, Brighton and Sussex Medical School, Brighton, UK
| | | | - Judith A Whittum-Hudson
- Departments of Immunology and Microbiology, Internal Medicine (Rheumatology), and Ophthalmology, Wayne State University School of Medicine, Detroit, MI, USA
| |
Collapse
|
26
|
Lustgarten MS. Classifying Aging As a Disease: The Role of Microbes. Front Genet 2016; 7:212. [PMID: 27990156 PMCID: PMC5130976 DOI: 10.3389/fgene.2016.00212] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 11/21/2016] [Indexed: 01/05/2023] Open
Affiliation(s)
- Michael S Lustgarten
- Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University Boston, MA, USA
| |
Collapse
|
27
|
Li CQ, Zheng Q, Wang Q, Zeng QP. Biotic/Abiotic Stress-Driven Alzheimer's Disease. Front Cell Neurosci 2016; 10:269. [PMID: 27932953 PMCID: PMC5120111 DOI: 10.3389/fncel.2016.00269] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 11/07/2016] [Indexed: 01/10/2023] Open
Affiliation(s)
- Chang-Qing Li
- Tropical Medicine Institute, Guangzhou University of Chinese Medicine Guangzhou, China
| | - Qing Zheng
- Department of Biopharmaceutics, College of Pharmacy, Jinan University Guangzhou, China
| | - Qi Wang
- Clinical Pharmacology Institute, Guangzhou University of Chinese Medicine Guangzhou, China
| | - Qing-Ping Zeng
- Tropical Medicine Institute, Guangzhou University of Chinese Medicine Guangzhou, China
| |
Collapse
|
28
|
Aibar S, Abaigar M, Campos-Laborie FJ, Sánchez-Santos JM, Hernandez-Rivas JM, De Las Rivas J. Identification of expression patterns in the progression of disease stages by integration of transcriptomic data. BMC Bioinformatics 2016; 17:432. [PMID: 28185568 PMCID: PMC5133487 DOI: 10.1186/s12859-016-1290-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Background In the study of complex diseases using genome-wide expression data from clinical samples, a difficult case is the identification and mapping of the gene signatures associated to the stages that occur in the progression of a disease. The stages usually correspond to different subtypes or classes of the disease, and the difficulty to identify them often comes from patient heterogeneity and sample variability that can hide the biomedical relevant changes that characterize each stage, making standard differential analysis inadequate or inefficient. Results We propose a methodology to study diseases or disease stages ordered in a sequential manner (e.g. from early stages with good prognosis to more acute or serious stages associated to poor prognosis). The methodology is applied to diseases that have been studied obtaining genome-wide expression profiling of cohorts of patients at different stages. The approach allows searching for consistent expression patterns along the progression of the disease through two major steps: (i) identifying genes with increasing or decreasing trends in the progression of the disease; (ii) clustering the increasing/decreasing gene expression patterns using an unsupervised approach to reveal whether there are consistent patterns and find genes altered at specific disease stages. The first step is carried out using Gamma rank correlation to identify genes whose expression correlates with a categorical variable that represents the stages of the disease. The second step is done using a Self Organizing Map (SOM) to cluster the genes according to their progressive profiles and identify specific patterns. Both steps are done after normalization of the genomic data to allow the integration of multiple independent datasets. In order to validate the results and evaluate their consistency and biological relevance, the methodology is applied to datasets of three different diseases: myelodysplastic syndrome, colorectal cancer and Alzheimer’s disease. A software script written in R, named genediseasePatterns, is provided to allow the use and application of the methodology. Conclusion The method presented allows the analysis of the progression of complex and heterogeneous diseases that can be divided in pathological stages. It identifies gene groups whose expression patterns change along the advance of the disease, and it can be applied to different types of genomic data studying cohorts of patients in different states. Electronic supplementary material The online version of this article (doi:10.1186/s12859-016-1290-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sara Aibar
- Bioinformatics and Functional Genomics research group, Cancer Research Center (IMBCC, CSIC/USAL) and Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
| | - Maria Abaigar
- Unidad de Diagnóstico Molecular y Celular del Cáncer, Cancer Research Center (IMBCC, CSIC/USAL) and Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain.,Servicio de Hematología, Hospital Universitario de Salamanca (HUS/IBSAL/USAL), Salamanca, Spain
| | - Francisco Jose Campos-Laborie
- Bioinformatics and Functional Genomics research group, Cancer Research Center (IMBCC, CSIC/USAL) and Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
| | - Jose Manuel Sánchez-Santos
- Bioinformatics and Functional Genomics research group, Cancer Research Center (IMBCC, CSIC/USAL) and Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain.,Department of Statistics, University of Salamanca (USAL), Salamanca, Spain
| | - Jesus M Hernandez-Rivas
- Unidad de Diagnóstico Molecular y Celular del Cáncer, Cancer Research Center (IMBCC, CSIC/USAL) and Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain.,Servicio de Hematología, Hospital Universitario de Salamanca (HUS/IBSAL/USAL), Salamanca, Spain
| | - Javier De Las Rivas
- Bioinformatics and Functional Genomics research group, Cancer Research Center (IMBCC, CSIC/USAL) and Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain.
| |
Collapse
|
29
|
Pisa D, Alonso R, Rábano A, Horst MN, Carrasco L. Fungal Enolase, β-Tubulin, and Chitin Are Detected in Brain Tissue from Alzheimer's Disease Patients. Front Microbiol 2016; 7:1772. [PMID: 27872620 PMCID: PMC5097921 DOI: 10.3389/fmicb.2016.01772] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 10/21/2016] [Indexed: 12/17/2022] Open
Abstract
Recent findings provide evidence that fungal structures can be detected in brain tissue from Alzheimer’s disease (AD) patients using rabbit polyclonal antibodies raised against whole fungal cells. In the present work, we have developed and tested specific antibodies that recognize the fungal proteins, enolase and β-tubulin, and an antibody that recognizes the fungal polysaccharide chitin. Consistent with our previous studies, a number of rounded yeast-like and hyphal structures were detected using these antibodies in brain sections from AD patients. Some of these structures were intracellular and, strikingly, some were found to be located inside nuclei from neurons, whereas other fungal structures were detected extracellularly. Corporya amylacea from AD patients also contained enolase and β-tubulin as revealed by these selective antibodies, but were devoid of fungal chitin. Importantly, brain sections from control subjects were usually negative for staining with the three antibodies. However, a few fungal structures can be observed in some control individuals. Collectively, these findings indicate the presence of two fungal proteins, enolase and β-tubulin, and the polysaccharide chitin, in CNS tissue from AD patients. These findings are consistent with our hypothesis that AD is caused by disseminated fungal infection.
Collapse
Affiliation(s)
- Diana Pisa
- Centro de Biología Molecular "Severo Ochoa," Universidad Autónoma de Madrid Madrid, Spain
| | - Ruth Alonso
- Centro de Biología Molecular "Severo Ochoa," Universidad Autónoma de Madrid Madrid, Spain
| | - Alberto Rábano
- Department of Neuropathology and Tissue Bank, Unidad de Investigación Proyecto Alzheimer, Fundación CIEN, Instituto de Salud Carlos III Madrid, Spain
| | - Michael N Horst
- Division of Basic Medical Sciences, Mercer University School of Medicine, Macon GA, USA
| | - Luis Carrasco
- Centro de Biología Molecular "Severo Ochoa," Universidad Autónoma de Madrid Madrid, Spain
| |
Collapse
|
30
|
Su F, Bai F, Zhou H, Zhang Z. Reprint of: Microglial toll-like receptors and Alzheimer's disease. Brain Behav Immun 2016; 55:166-178. [PMID: 27255539 DOI: 10.1016/j.bbi.2016.05.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2015] [Revised: 10/09/2015] [Accepted: 10/15/2015] [Indexed: 01/04/2023] Open
Abstract
Microglial activation represents an important pathological hallmark of Alzheimer's disease (AD), and emerging data highlight the involvement of microglial toll-like receptors (TLRs) in the course of AD. TLRs have been observed to exert both beneficial and detrimental effects on AD-related pathologies, and transgenic animal models have provided direct and credible evidence for an association between TLRs and AD. Moreover, analyses of genetic polymorphisms have suggested interactions between genetic polymorphisms in TLRs and AD risk, further supporting the hypothesis that TLRs are involved in AD. In this review, we summarize the key evidence in this field. Future studies should focus on exploring the mechanisms underlying the potential roles of TLRs in AD.
Collapse
Affiliation(s)
- Fan Su
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, China
| | - Feng Bai
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, China.
| | - Hong Zhou
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, China
| | - Zhijun Zhang
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, China
| |
Collapse
|
31
|
Gonzalez-Pena D, Nixon SE, Southey BR, Lawson MA, McCusker RH, Hernandez AG, Dantzer R, Kelley KW, Rodriguez-Zas SL. Differential Transcriptome Networks between IDO1-Knockout and Wild-Type Mice in Brain Microglia and Macrophages. PLoS One 2016; 11:e0157727. [PMID: 27314674 PMCID: PMC4912085 DOI: 10.1371/journal.pone.0157727] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 05/06/2016] [Indexed: 11/19/2022] Open
Abstract
Microglia in the brain and macrophages in peripheral organs are cell types responsible for immune response to challenges. Indoleamine 2,3-dioxygenase 1 (IDO1) is an immunomodulatory enzyme of the tryptophan pathway that is expressed in the brain. The higher activity of IDO1 in response to immune challenge has been implicated in behavioral disorders. The impact of IDO1 depletion on the microglia transcriptome has not been studied. An investigation of the transcript networks in the brain microglia from IDO1-knockout (IDO1-KO) mice was undertaken, relative to peripheral macrophages and to wild-type (WT) mice under unchallenged conditions. Over 105 transcript isoforms were differentially expressed between WT and IDO1-KO within cell type. Within microglia, Saa3 and Irg1 were over-expressed in IDO1-KO relative to WT. Within macrophages, Csf3 and Sele were over-expressed in IDO1-KO relative to WT. Among the genes differentially expressed between strains, enriched biological processes included ion homeostasis and ensheathment of neurons within microglia, and cytokine and chemokine expression within macrophages. Over 11,110 transcript isoforms were differentially expressed between microglia and macrophages and of these, over 10,800 transcripts overlapped between strains. Enriched biological processes among the genes over- and under-expressed in microglia relative to macrophages included cell adhesion and apoptosis, respectively. Detected only in microglia or macrophages were 421 and 43 transcript isoforms, respectively. Alternative splicing between cell types based on differential transcript isoform abundance was detected in 210 genes including Phf11d, H2afy, and Abr. Across strains, networks depicted a predominance of genes under-expressed in microglia relative to macrophages that may be a precursor for the different response of both cell types to challenges. The detected transcriptome differences enhance the understanding of the role of IDO1 in the microglia transcriptome under unchallenged conditions.
Collapse
Affiliation(s)
- Dianelys Gonzalez-Pena
- Department of Animal Sciences, University of Illinois Urbana-Champaign, Urbana, Illinois, United States of America
| | - Scott E. Nixon
- Department of Animal Sciences, University of Illinois Urbana-Champaign, Urbana, Illinois, United States of America
| | - Bruce R. Southey
- Department of Animal Sciences, University of Illinois Urbana-Champaign, Urbana, Illinois, United States of America
| | - Marcus A. Lawson
- Department of Animal Sciences, University of Illinois Urbana-Champaign, Urbana, Illinois, United States of America
| | - Robert H. McCusker
- Department of Animal Sciences, University of Illinois Urbana-Champaign, Urbana, Illinois, United States of America
| | - Alvaro G. Hernandez
- Department of Symptom Research, University of Texas M. D. Anderson Cancer Center, Houston, Texas, United States of America
| | - Robert Dantzer
- High-Throughput Sequencing and Genotyping Unit, Roy J. Carver Biotechnology Center, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Keith W. Kelley
- Department of Animal Sciences, University of Illinois Urbana-Champaign, Urbana, Illinois, United States of America
| | - Sandra L. Rodriguez-Zas
- Department of Animal Sciences, University of Illinois Urbana-Champaign, Urbana, Illinois, United States of America
- Department of Statistics, University of Illinois at Urbana-Champaign, Champaign, Illinois, United States of America
- Carle Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| |
Collapse
|
32
|
Egeberg A, Hansen PR, Gislason GH, Thyssen JP. Patients with rosacea have increased risk of dementia. Ann Neurol 2016; 79:921-8. [DOI: 10.1002/ana.24645] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 03/15/2016] [Accepted: 03/16/2016] [Indexed: 01/22/2023]
Affiliation(s)
- Alexander Egeberg
- National Allergy Research Center; Department of Dermato-Allergology; Herlev and Gentofte University Hospital, University of Copenhagen; Hellerup
- Department of Cardiology; Herlev and Gentofte Hospital, University of Copenhagen; Hellerup
| | - Peter R. Hansen
- Department of Cardiology; Herlev and Gentofte Hospital, University of Copenhagen; Hellerup
| | - Gunnar H. Gislason
- Department of Cardiology; Herlev and Gentofte Hospital, University of Copenhagen; Hellerup
- Danish Heart Foundation; Copenhagen
- National Institute of Public Health; University of Southern Denmark; Copenhagen Denmark
| | - Jacob P. Thyssen
- National Allergy Research Center; Department of Dermato-Allergology; Herlev and Gentofte University Hospital, University of Copenhagen; Hellerup
| |
Collapse
|
33
|
Blair JA, Wang C, Hernandez D, Siedlak SL, Rodgers MS, Achar RK, Fahmy LM, Torres SL, Petersen RB, Zhu X, Casadesus G, Lee HG. Individual Case Analysis of Postmortem Interval Time on Brain Tissue Preservation. PLoS One 2016; 11:e0151615. [PMID: 26982086 PMCID: PMC4794172 DOI: 10.1371/journal.pone.0151615] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 03/01/2016] [Indexed: 11/19/2022] Open
Abstract
At autopsy, the time that has elapsed since the time of death is routinely documented and noted as the postmortem interval (PMI). The PMI of human tissue samples is a parameter often reported in research studies and comparable PMI is preferred when comparing different populations, i.e., disease versus control patients. In theory, a short PMI may alleviate non-experimental protein denaturation, enzyme activity, and other chemical changes such as the pH, which could affect protein and nucleic acid integrity. Previous studies have compared PMI en masse by looking at many different individual cases each with one unique PMI, which may be affected by individual variance. To overcome this obstacle, in this study human hippocampal segments from the same individuals were sampled at different time points after autopsy creating a series of PMIs for each case. Frozen and fixed tissue was then examined by Western blot, RT-PCR, and immunohistochemistry to evaluate the effect of extended PMI on proteins, nucleic acids, and tissue morphology. In our results, immunostaining profiles for most proteins remained unchanged even after PMI of over 50 h, yet by Western blot distinctive degradation patterns were observed in different protein species. Finally, RNA integrity was lower after extended PMI; however, RNA preservation was variable among cases suggesting antemortem factors may play a larger role than PMI in protein and nucleic acid integrity.
Collapse
Affiliation(s)
- Jeffrey A. Blair
- Department of Biological Sciences and School of Biomedical Sciences, Kent State University, Kent, Ohio, United States of America
| | - Chunyu Wang
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio, United States of America
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Damarys Hernandez
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Sandra L. Siedlak
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Mark S. Rodgers
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Rojan K. Achar
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Lara M. Fahmy
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Sandy L. Torres
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Robert B. Petersen
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Xiongwei Zhu
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio, United States of America
- * E-mail: (HL); (XZ); (GC)
| | - Gemma Casadesus
- Department of Biological Sciences and School of Biomedical Sciences, Kent State University, Kent, Ohio, United States of America
- * E-mail: (HL); (XZ); (GC)
| | - Hyoung-gon Lee
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio, United States of America
- * E-mail: (HL); (XZ); (GC)
| |
Collapse
|
34
|
Su F, Bai F, Zhou H, Zhang Z. Microglial toll-like receptors and Alzheimer's disease. Brain Behav Immun 2016; 52:187-198. [PMID: 26526648 DOI: 10.1016/j.bbi.2015.10.010] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2015] [Revised: 10/09/2015] [Accepted: 10/15/2015] [Indexed: 02/08/2023] Open
Abstract
Microglial activation represents an important pathological hallmark of Alzheimer's disease (AD), and emerging data highlight the involvement of microglial toll-like receptors (TLRs) in the course of AD. TLRs have been observed to exert both beneficial and detrimental effects on AD-related pathologies, and transgenic animal models have provided direct and credible evidence for an association between TLRs and AD. Moreover, analyses of genetic polymorphisms have suggested interactions between genetic polymorphisms in TLRs and AD risk, further supporting the hypothesis that TLRs are involved in AD. In this review, we summarize the key evidence in this field. Future studies should focus on exploring the mechanisms underlying the potential roles of TLRs in AD.
Collapse
Affiliation(s)
- Fan Su
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, China.
| | - Feng Bai
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, China.
| | - Hong Zhou
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, China.
| | - Zhijun Zhang
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, China.
| |
Collapse
|
35
|
Brock AJ, Kasus-Jacobi A, Lerner M, Logan S, Adesina AM, Anne Pereira H. The antimicrobial protein, CAP37, is upregulated in pyramidal neurons during Alzheimer's disease. Histochem Cell Biol 2015; 144:293-308. [PMID: 26170148 PMCID: PMC4575391 DOI: 10.1007/s00418-015-1347-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/29/2015] [Indexed: 01/02/2023]
Abstract
Inflammation is a well-defined factor in Alzheimer's disease (AD). There is a strong need to identify the molecules contributing to neuroinflammation so that therapies can be designed to prevent immune-mediated neurotoxicity. The cationic antimicrobial protein of 37 kDa (CAP37) is an inflammatory mediator constitutively expressed in neutrophils (PMNs). In addition to antibiotic activity, CAP37 exerts immunomodulatory effects on microglia. We hypothesize that CAP37 mediates the neuroinflammation associated with AD. However, PMNs are not customarily associated with the pathology of AD. This study was therefore designed to identify non-neutrophilic source(s) of CAP37 in brains of AD patients. Brain tissues from patients and age-matched controls were analyzed for CAP37 expression using immunohistochemistry (IHC). To determine factors that induce CAP37 in AD, HCN-1A primary human neurons were treated with tumor necrosis factor-alpha (TNF-α) or amyloid β1-40 (Aβ) and analyzed by IHC. Western blotting and quantitative reverse transcription polymerase chain reaction (qRT-PCR) were used to confirm CAP37 expression in neurons and brain tissues. IHC revealed CAP37 in cortical neurons in temporal and parietal lobes as well as CA3 and CA4 hippocampal neurons in patients with AD. CAP37 was found in more neurons in AD patients compared with age-matched controls. qRT-PCR and Western blotting showed an increase in CAP37 transcript and protein in the AD temporal lobe, a brain region that is highly impacted in AD. qRT-PCR observations confirmed CAP37 expression in neurons. TNF-α and Aβ increased neuronal expression of CAP37. These findings support our hypothesis that neuronal CAP37 may modulate the neuroinflammatory response in AD.
Collapse
Affiliation(s)
- Amanda J Brock
- Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, 1110 N. Stonewall Ave., CPB 255, Oklahoma City, OK, 73117, USA
| | - Anne Kasus-Jacobi
- Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, 1110 N. Stonewall Ave., CPB 255, Oklahoma City, OK, 73117, USA.,Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center, 1110 N. Stonewall Ave., CPB 255, Oklahoma City, OK, 73117, USA
| | - Megan Lerner
- Department of Surgery, University of Oklahoma Health Sciences Center, 1122 NE 13th St., ORB 350, Oklahoma City, OK, 73117, USA
| | - Sreemathi Logan
- Department of Geriatrics, University of Oklahoma Health Sciences Center, 975 NE 10th St., BRC 1303, Oklahoma City, OK, 73104, USA
| | - Adekunle M Adesina
- Department of Pathology, Baylor College of Medicine, One Baylor Plaza, Rm 286A, Houston, TX, 77030, USA
| | - H Anne Pereira
- Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, 1110 N. Stonewall Ave., CPB 255, Oklahoma City, OK, 73117, USA. .,Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center, 1110 N. Stonewall Ave., CPB 255, Oklahoma City, OK, 73117, USA. .,Department of Cell Biology, University of Oklahoma Health Sciences Center, 1110 N. Stonewall Ave., CPB 329, Oklahoma City, OK, USA. .,Department of Pathology, University of Oklahoma Health Sciences Center, 1110 N. Stonewall Ave., CPB 329, Oklahoma City, OK, 73117, USA.
| |
Collapse
|
36
|
Rocha-Ferreira E, Hristova M. Antimicrobial peptides and complement in neonatal hypoxia-ischemia induced brain damage. Front Immunol 2015; 6:56. [PMID: 25729383 PMCID: PMC4325932 DOI: 10.3389/fimmu.2015.00056] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 01/29/2015] [Indexed: 12/22/2022] Open
Abstract
Hypoxic-ischemic encephalopathy (HIE) is a clinical condition in the neonate, resulting from oxygen deprivation around the time of birth. HIE affects 1-5/1000 live births worldwide and is associated with the development of neurological deficits, including cerebral palsy, epilepsy, and cognitive disabilities. Even though the brain is considered as an immune-privileged site, it has innate and adaptive immune response and can produce complement (C) components and antimicrobial peptides (AMPs). Dysregulation of cerebral expression of AMPs and C can exacerbate or ameliorate the inflammatory response within the brain. Brain ischemia triggers a prolonged inflammatory response affecting the progression of injury and secondary energy failure and involves both innate and adaptive immune systems, including immune-competent and non-competent cells. Following injury to the central nervous system (CNS), including neonatal hypoxia-ischemia (HI), resident microglia, and astroglia are the main cells providing immune defense to the brain in a stimulus-dependent manner. They can express and secrete pro-inflammatory cytokines and therefore trigger prolonged inflammation, resulting in neurodegeneration. Microglial cells express and release a wide range of inflammation-associated molecules including several components of the complement system. Complement activation following neonatal HI injury has been reported to contribute to neurodegeneration. Astrocytes can significantly affect the immune response of the CNS under pathological conditions through production and release of pro-inflammatory cytokines and immunomodulatory AMPs. Astrocytes express β-defensins, which can chemoattract and promote maturation of dendritic cells (DC), and can also limit inflammation by controlling the viability of these same DC. This review will focus on the balance of complement components and AMPs within the CNS following neonatal HI injury and the effect of that balance on the subsequent brain damage.
Collapse
Affiliation(s)
- Eridan Rocha-Ferreira
- Perinatal Brain Repair Group, Department of Maternal and Fetal Medicine, Institute for Women's Health, University College London , London , UK
| | - Mariya Hristova
- Perinatal Brain Repair Group, Department of Maternal and Fetal Medicine, Institute for Women's Health, University College London , London , UK
| |
Collapse
|
37
|
Molecular cloning, characterization and tissue distribution of two ostrich β-defensins: AvBD2 and AvBD7. Gene 2014; 552:1-7. [PMID: 25127671 DOI: 10.1016/j.gene.2014.08.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Revised: 07/20/2014] [Accepted: 08/06/2014] [Indexed: 01/31/2023]
|
38
|
Kountouras J, Deretzi G, Gavalas E, Zavos C, Polyzos SA, Kazakos E, Giartza-Taxidou E, Vardaka E, Kountouras C, Katsinelos P, Boziki M, Giouleme O. A proposed role of human defensins in Helicobacter pylori-related neurodegenerative disorders. Med Hypotheses 2014; 82:368-73. [PMID: 24472867 DOI: 10.1016/j.mehy.2013.12.025] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2013] [Revised: 12/13/2013] [Accepted: 12/27/2013] [Indexed: 12/18/2022]
Abstract
Cationic host defence peptides (CHDPs), also known as antimicrobial peptides (AMPs), are essential components of the innate immunity with antimicrobial and pleiotropic immunomodulatory properties. In mammals the two major families of CHDPs are defensins and cathelicidins that comprise an arsenal of innate regulators of principal importance in the host tissues. Research in the last decade has demonstrated that defensins are crucial effectors of both innate and adaptive immunity. Defensins can modulate immune responses, either by stimulation or suppression, thereby controlling inflammatory processes and infections. Currently only few data, mostly hypothetical, focus on the role of defensins in central nervous system (CNS) physiopathology and neurodegeneration. Defensins may function as an initial line of defense within the CNS either as an antimicrobial, immunomodulator, or both. A dysregulation of brain expression of specific defensins might either exacerbate or ameliorate the inflammatory response within the CNS depending upon which extracellular conditions predominate. It is proposed that reduction or abnormal elevation of AMP expression by cerebral microglia, astrocytes or choroid plexus epithelium might contribute to loss of AMP-induced regulation of immune responses, thereby promoting neuronal cell injury and death observed in Alzheimer's disease and possibly in other neurodegenerative disorders. Nevertheless, whether certain AMPs play a crucial role in the onset or promotion of the neuroinflammatory process and neurodegeneration is currently unknown, thereby emphasizing the necessity of further investigation into the regulatory mechanisms that control innate and adaptive immunity within the brain. Recent data indicate that Helicobacter pylori (H. pylori) induces defensins' release associated with chronic inflammatory tissue damage. However, it remains unclear whether and how H. pylori evades the attack by defensins. Moreover, recent evidence indicates that H. pylori infection might contribute to the pathogenesis of neurodegenerative diseases, by releasing several inflammatory mediators that could induce blood-brain barrier breakdown, thereby being involved in the pathogenesis of neurodegeneration. However, currently there are no data regarding the potential impact of human defensins on H. pylori-related neurodegenerative disorders. We herein propose that human defensins might contribute to the pathophysiology of H. pylori-related neurodegenerative disorders by modulating variably innate and adaptive immune system responses. Better understanding of the mechanisms regarding human defensins' possible involvement in H. pylori-induced neurodegeneration might help develop novel therapeutic strategies against H. pylori-related neurodegenerative disorders.
Collapse
Affiliation(s)
- Jannis Kountouras
- Department of Medicine, Second Medical Clinic, Aristotle University of Thessaloniki, Ippokration Hospital, Thessaloniki, Greece.
| | - Georgia Deretzi
- Department of Medicine, Second Medical Clinic, Aristotle University of Thessaloniki, Ippokration Hospital, Thessaloniki, Greece
| | - Emmanouel Gavalas
- Department of Medicine, Second Medical Clinic, Aristotle University of Thessaloniki, Ippokration Hospital, Thessaloniki, Greece
| | - Christos Zavos
- Department of Medicine, Second Medical Clinic, Aristotle University of Thessaloniki, Ippokration Hospital, Thessaloniki, Greece
| | - Stergios A Polyzos
- Department of Medicine, Second Medical Clinic, Aristotle University of Thessaloniki, Ippokration Hospital, Thessaloniki, Greece
| | - Evangelos Kazakos
- Department of Medicine, Second Medical Clinic, Aristotle University of Thessaloniki, Ippokration Hospital, Thessaloniki, Greece
| | - Evangelia Giartza-Taxidou
- Department of Medicine, Second Medical Clinic, Aristotle University of Thessaloniki, Ippokration Hospital, Thessaloniki, Greece
| | - Elisabeth Vardaka
- Department of Medicine, Second Medical Clinic, Aristotle University of Thessaloniki, Ippokration Hospital, Thessaloniki, Greece
| | - Constantinos Kountouras
- Department of Medicine, Second Medical Clinic, Aristotle University of Thessaloniki, Ippokration Hospital, Thessaloniki, Greece
| | - Panagiotis Katsinelos
- Department of Medicine, Second Medical Clinic, Aristotle University of Thessaloniki, Ippokration Hospital, Thessaloniki, Greece
| | - Marina Boziki
- Department of Medicine, Second Medical Clinic, Aristotle University of Thessaloniki, Ippokration Hospital, Thessaloniki, Greece
| | - Olga Giouleme
- Department of Medicine, Second Medical Clinic, Aristotle University of Thessaloniki, Ippokration Hospital, Thessaloniki, Greece
| |
Collapse
|