1
|
Snik ME, Stouthamer NE, Hovius JW, van Gool MM. Bridging the gap: Insights in the immunopathology of Lyme borreliosis. Eur J Immunol 2024; 54:e2451063. [PMID: 39396370 PMCID: PMC11628917 DOI: 10.1002/eji.202451063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 09/16/2024] [Accepted: 09/18/2024] [Indexed: 10/15/2024]
Abstract
Lyme borreliosis (LB), caused by Borrelia burgdorferi sensu lato (Bbsl) genospecies transmitted by Ixodes spp. ticks, is a significant public health concern in the Northern Hemisphere. This review highlights the complex interplay between Bbsl infection and host-immune responses, impacting clinical manifestations and long-term immunity. Early localized disease is characterized by erythema migrans (EM), driven by T-helper 1 (Th1) responses and proinflammatory cytokines. Dissemination to the heart and CNS can lead to Lyme carditis and neuroborreliosis respectively, orchestrated by immune cell infiltration and chemokine dysregulation. More chronic manifestations, including acrodermatitis chronica atrophicans and Lyme arthritis, involve prolonged inflammation as well as the development of autoimmunity. In addition, dysregulated immune responses impair long-term immunity, with compromised B-cell memory and antibody responses. Experimental models and clinical studies underscore the role of Th1/Th2 balance, B-cell dysfunction, and autoimmunity in LB pathogenesis. Moreover, LB-associated autoimmunity parallels mechanisms observed in other infectious and autoimmune diseases. Understanding immune dysregulation in LB provides insights into disease heterogeneity and could provide new strategies for diagnosis and treatment.
Collapse
Affiliation(s)
- Marijn E. Snik
- Center for Experimental and Molecular Medicine, Amsterdam UMCUniversity of AmsterdamAmsterdamthe Netherlands
| | - Noor E.I.M. Stouthamer
- Center for Experimental and Molecular Medicine, Amsterdam UMCUniversity of AmsterdamAmsterdamthe Netherlands
| | - Joppe W. Hovius
- Center for Experimental and Molecular Medicine, Amsterdam UMCUniversity of AmsterdamAmsterdamthe Netherlands
- Amsterdam Institute for Immunology and Infectious DiseasesAmsterdamthe Netherlands
- Division of Infectious DiseasesDepartment of Internal MedicineAmsterdam UMC Multidisciplinary Lyme borreliosis CenterAmsterdam UMCUniversity of AmsterdamAmsterdamthe Netherlands
| | - Melissa M.J. van Gool
- Center for Experimental and Molecular Medicine, Amsterdam UMCUniversity of AmsterdamAmsterdamthe Netherlands
- Amsterdam Institute for Immunology and Infectious DiseasesAmsterdamthe Netherlands
| |
Collapse
|
2
|
Aznar E, Strazielle N, Costa L, Poyart C, Tazi A, Ghersi-Egea JF, Guignot J. The hypervirulent Group B Streptococcus HvgA adhesin promotes central nervous system invasion through transcellular crossing of the choroid plexus. Fluids Barriers CNS 2024; 21:66. [PMID: 39152442 PMCID: PMC11330020 DOI: 10.1186/s12987-024-00564-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 08/01/2024] [Indexed: 08/19/2024] Open
Abstract
BACKGROUND Group B Streptococcus (GBS) is the leading cause of neonatal meningitis responsible for a substantial cause of death and disability worldwide. The vast majority of GBS neonatal meningitis cases are due to the CC17 hypervirulent clone. However, the cellular and molecular pathways involved in brain invasion by GBS CC17 isolates remain largely elusive. Here, we studied the specific interaction of the CC17 clone with the choroid plexus, the main component of the blood-cerebrospinal fluid (CSF) barrier. METHODS The interaction of GBS CC17 or non-CC17 strains with choroid plexus cells was studied using an in vivo mouse model of meningitis and in vitro models of primary and transformed rodent choroid plexus epithelial cells (CPEC and Z310). In vivo interaction of GBS with the choroid plexus was assessed by microscopy. Bacterial invasion and cell barrier penetration were examined in vitro, as well as chemokines and cytokines in response to infection. RESULTS GBS CC17 was found associated with the choroid plexus of the lateral, 3rd and 4th ventricles. Infection of choroid plexus epithelial cells revealed an efficient internalization of the bacteria into the cells with GBS CC17 displaying a greater ability to invade these cells than a non-CC17 strain. Internalization of the GBS CC17 strain involved the CC17-specific HvgA adhesin and occurred via a clathrin-dependent mechanism leading to transcellular transcytosis across the choroid plexus epithelial monolayer. CPEC infection resulted in the secretion of several chemokines, including CCL2, CCL3, CCL20, CX3CL1, and the matrix metalloproteinase MMP3, as well as immune cell infiltration. CONCLUSION Our findings reveal a GBS strain-specific ability to infect the blood-CSF barrier, which appears to be an important site of bacterial entry and an active site of immune cell trafficking in response to infection.
Collapse
Affiliation(s)
- Eva Aznar
- Université Paris Cité, CNRS, Inserm, Institut Cochin, Paris, 22 rue Méchain, F-75014, France
| | - Nathalie Strazielle
- Fluid Team Lyon Neurosciences Research Center, INSERM U1028, CNRS UMR5292, Lyon University, Bron, France
- Lyon Neurosciences Research Center, BIP Facility, Bron, France
| | - Lionel Costa
- Université Paris Cité, CNRS, Inserm, Institut Cochin, Paris, 22 rue Méchain, F-75014, France
| | - Claire Poyart
- Université Paris Cité, CNRS, Inserm, Institut Cochin, Paris, 22 rue Méchain, F-75014, France
- Service de Bactériologie, Centre National de Référence des Streptocoques, AP-HP, Hôpital Cochin, Paris, F-75014, France
- Fédération Hospitalo-Universitaire Préma, Paris, F-75014, France
| | - Asmaa Tazi
- Université Paris Cité, CNRS, Inserm, Institut Cochin, Paris, 22 rue Méchain, F-75014, France
- Service de Bactériologie, Centre National de Référence des Streptocoques, AP-HP, Hôpital Cochin, Paris, F-75014, France
- Fédération Hospitalo-Universitaire Préma, Paris, F-75014, France
| | - Jean-François Ghersi-Egea
- Fluid Team Lyon Neurosciences Research Center, INSERM U1028, CNRS UMR5292, Lyon University, Bron, France
- Lyon Neurosciences Research Center, BIP Facility, Bron, France
| | - Julie Guignot
- Université Paris Cité, CNRS, Inserm, Institut Cochin, Paris, 22 rue Méchain, F-75014, France.
- Fédération Hospitalo-Universitaire Préma, Paris, F-75014, France.
| |
Collapse
|
3
|
Saunders NR, Dziegielewska KM, Fame RM, Lehtinen MK, Liddelow SA. The choroid plexus: a missing link in our understanding of brain development and function. Physiol Rev 2023; 103:919-956. [PMID: 36173801 PMCID: PMC9678431 DOI: 10.1152/physrev.00060.2021] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 09/01/2022] [Accepted: 09/17/2022] [Indexed: 11/22/2022] Open
Abstract
Studies of the choroid plexus lag behind those of the more widely known blood-brain barrier, despite a much longer history. This review has two overall aims. The first is to outline long-standing areas of research where there are unanswered questions, such as control of cerebrospinal fluid (CSF) secretion and blood flow. The second aim is to review research over the past 10 years where the focus has shifted to the idea that there are choroid plexuses located in each of the brain's ventricles that make specific contributions to brain development and function through molecules they generate for delivery via the CSF. These factors appear to be particularly important for aspects of normal brain growth. Most research carried out during the twentieth century dealt with the choroid plexus, a brain barrier interface making critical contributions to the composition and stability of the brain's internal environment throughout life. More recent research in the twenty-first century has shown the importance of choroid plexus-generated CSF in neurogenesis, influence of sex and other hormones on choroid plexus function, and choroid plexus involvement in circadian rhythms and sleep. The advancement of technologies to facilitate delivery of brain-specific therapies via the CSF to treat neurological disorders is a rapidly growing area of research. Conversely, understanding the basic mechanisms and implications of how maternal drug exposure during pregnancy impacts the developing brain represents another key area of research.
Collapse
Affiliation(s)
- Norman R Saunders
- Department of Neuroscience, The Alfred Centre, Monash University, Melbourne, Victoria, Australia
| | | | - Ryann M Fame
- Department of Pathology, Boston Children's Hospital, Boston, Massachusetts
| | - Maria K Lehtinen
- Department of Pathology, Boston Children's Hospital, Boston, Massachusetts
| | - Shane A Liddelow
- Neuroscience Institute, NYU Grossman School of Medicine, New York, New York
- Department of Neuroscience and Physiology, NYU Grossman School of Medicine, New York, New York
- Department of Ophthalmology, NYU Grossman School of Medicine, New York, New York
- Parekh Center for Interdisciplinary Neurology, NYU Grossman School of Medicine, New York, New York
| |
Collapse
|
4
|
Speidel A, Theile M, Pfeiffer L, Herrmann A, Figarella K, Ishikawa H, Schwerk C, Schroten H, Duszenko M, Mogk S. Transmigration of Trypanosoma brucei across an in vitro blood-cerebrospinal fluid barrier. iScience 2022; 25:104014. [PMID: 35313698 PMCID: PMC8933718 DOI: 10.1016/j.isci.2022.104014] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 01/24/2022] [Accepted: 02/28/2022] [Indexed: 11/28/2022] Open
Abstract
Trypanosoma brucei is the causative agent of human African trypanosomiasis. The parasite transmigrates from blood vessels across the choroid plexus epithelium to enter the central nervous system, a process that leads to the manifestation of second stage sleeping sickness. Using an in vitro model of the blood-cerebrospinal fluid barrier, we investigated the mechanism of the transmigration process. For this, a monolayer of human choroid plexus papilloma cells was cultivated on a permeable membrane that mimics the basal lamina underlying the choroid plexus epithelial cells. Plexus cells polarize and interconnect forming tight junctions. Deploying different T. brucei brucei strains, we observed that geometry and motility are important for tissue invasion. Using fluorescent microscopy, the parasite's moving was visualized between plexus epithelial cells. The presented model provides a simple tool to screen trypanosome libraries for their ability to infect cerebrospinal fluid or to test the impact of chemical substances on transmigration.
Collapse
Affiliation(s)
- Annika Speidel
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany
| | - Marianne Theile
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany
| | - Lena Pfeiffer
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany
| | - Alexander Herrmann
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany
| | | | - Hiroshi Ishikawa
- Laboratory of Clinical Regenerative Medicine, Department of Neurosurgery, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Christian Schwerk
- Pediatric Infectious Diseases, Department of Pediatrics, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Horst Schroten
- Pediatric Infectious Diseases, Department of Pediatrics, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Michael Duszenko
- Department of Neurophysiology, University of Tübingen, Tübingen, Germany
| | - Stefan Mogk
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany
| |
Collapse
|
5
|
Martens A, de Buhr N, Ishikawa H, Schroten H, von Köckritz-Blickwede M. Characterization of Oxygen Levels in an Uninfected and Infected Human Blood-Cerebrospinal-Fluid-Barrier Model. Cells 2022; 11:cells11010151. [PMID: 35011713 PMCID: PMC8750020 DOI: 10.3390/cells11010151] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 12/23/2021] [Accepted: 12/30/2021] [Indexed: 02/07/2023] Open
Abstract
The host–pathogen interaction during meningitis can be investigated with blood-cerebrospinal-fluid-barrier (BCSFB) cell culture models. They are commonly handled under atmospheric oxygen conditions (19–21% O2), although the physiological oxygen conditions are significantly lower in cerebrospinal fluid (CSF) (7–8% O2). We aimed to characterize oxygen levels in a Streptococcus (S.) suis-infected BCSFB model with transmigrating neutrophils. A BCSFB model with human choroid plexus epithelial cells growing on transwell-filters was used. The upper “blood”-compartment was infected and blood-derived neutrophils were added. S. suis and neutrophils transmigrated through the BCSFB into the “CSF”-compartment. Here, oxygen and pH values were determined with the non-invasive SensorDish® reader. Slight orbital shaking improved the luminescence-based measurement technique for detecting free oxygen. In the non-infected BCSFB model, an oxygen value of 7% O2 was determined. However, with S. suis and transmigrating neutrophils, the oxygen value significantly decreased to 2% O2. The pH level decreased slightly in all groups. In conclusion, we characterized oxygen levels in the BCSFB model and demonstrated the oxygen consumption by cells and bacteria. Oxygen values in the non-infected BCSFB model are comparable to in vivo values determined in pigs in the CSF. Infection and transmigrating neutrophils decrease the oxygen value to lower values.
Collapse
Affiliation(s)
- Alexander Martens
- Department of Biochemistry, University of Veterinary Medicine Hannover, 30559 Hannover, Germany;
- Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, 30559 Hannover, Germany
| | - Nicole de Buhr
- Department of Biochemistry, University of Veterinary Medicine Hannover, 30559 Hannover, Germany;
- Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, 30559 Hannover, Germany
- Correspondence: (N.d.B.); (M.v.K.-B.); Tel.: +49-511-953-6119 (N.d.B.)
| | - Hiroshi Ishikawa
- Laboratory of Clinical Regenerative Medicine, Department of Neurosurgery, University of Tsukuba, Tsukuba-City, Inaraki 305-8575, Japan;
| | - Horst Schroten
- Department of Pediatrics, Pediatric Infectious Diseases, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany;
| | - Maren von Köckritz-Blickwede
- Department of Biochemistry, University of Veterinary Medicine Hannover, 30559 Hannover, Germany;
- Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, 30559 Hannover, Germany
- Correspondence: (N.d.B.); (M.v.K.-B.); Tel.: +49-511-953-6119 (N.d.B.)
| |
Collapse
|
6
|
Haas J, Rudolph H, Costa L, Faller S, Libicher S, Würthwein C, Jarius S, Ishikawa H, Stump-Guthier C, Tenenbaum T, Schwerk C, Schroten H, Wildemann B. The Choroid Plexus Is Permissive for a Preactivated Antigen-Experienced Memory B-Cell Subset in Multiple Sclerosis. Front Immunol 2021; 11:618544. [PMID: 33574821 PMCID: PMC7870993 DOI: 10.3389/fimmu.2020.618544] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 12/09/2020] [Indexed: 12/25/2022] Open
Abstract
The role of B cells in multiple sclerosis (MS) is increasingly recognized. B cells undergo compartmentalized redistribution in blood and cerebrospinal fluid (CSF) during active MS, whereby memory B cells accumulate in the CSF. While B-cell trafficking across the blood-brain barrier has been intensely investigated, cellular diapedesis through the blood-CSF barrier (BCSFB) is incompletely understood. To investigate how B cells interact with the choroid plexus to transmigrate into the CSF we isolated circulating B cells from healthy donors (HC) and MS patients, utilized an inverted cell culture filter system of human choroid plexus papilloma (HIBCPP) cells to determine transmigration rates of B-cell subsets, immunofluorescence, and electron microscopy to analyze migration routes, and qRT-PCR to determine cytokines/chemokines mediating B-cell diapedesis. We also screened the transcriptome of intrathecal B cells from MS patients. We found, that spontaneous transmigration of HC- and MS-derived B cells was scant, yet increased significantly in response to B-cell specific chemokines CXCL-12/CXCL-13, was further boosted upon pre-activation and occurred via paracellular and transcellular pathways. Migrating cells exhibited upregulation of several genes involved in B-cell activation/migration and enhanced expression of chemokine receptors CXCR4/CXCR5, and were predominantly of isotype class switched memory phenotype. This antigen-experienced migratory subset displayed more pronounced chemotactic activities in MS than in HC and was retrieved in intrathecal B cells from patients with active MS. Trafficking of class-switched memory B cells was downscaled in a small cohort of natalizumab-exposed MS patients and the proportions of these phenotypes were reduced in peripheral blood yet were enriched intrathecally in patients who experienced recurrence of disease activity after withdrawal of natalizumab. Our findings highlight the relevance of the BCSFB as important gate for the entry of potentially harmful activated B cells into the CSF.
Collapse
Affiliation(s)
- Jürgen Haas
- Molecular Neuroimmunology Group, Department of Neurology, University Hospital of Heidelberg, Heidelberg, Germany
| | - Henriette Rudolph
- Department of Pediatrics, Pediatric Infectious Diseases, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| | - Leonardo Costa
- Molecular Neuroimmunology Group, Department of Neurology, University Hospital of Heidelberg, Heidelberg, Germany
| | - Simon Faller
- Molecular Neuroimmunology Group, Department of Neurology, University Hospital of Heidelberg, Heidelberg, Germany
| | - Saskia Libicher
- Molecular Neuroimmunology Group, Department of Neurology, University Hospital of Heidelberg, Heidelberg, Germany
| | - Cornelia Würthwein
- Molecular Neuroimmunology Group, Department of Neurology, University Hospital of Heidelberg, Heidelberg, Germany
| | - Sven Jarius
- Molecular Neuroimmunology Group, Department of Neurology, University Hospital of Heidelberg, Heidelberg, Germany
| | - Hiroshi Ishikawa
- Laboratory of Clinical Regenerative Medicine, Department of Neurosurgery, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Carolin Stump-Guthier
- Department of Pediatrics, Pediatric Infectious Diseases, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| | - Tobias Tenenbaum
- Department of Pediatrics, Pediatric Infectious Diseases, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| | - Christian Schwerk
- Department of Pediatrics, Pediatric Infectious Diseases, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| | - Horst Schroten
- Department of Pediatrics, Pediatric Infectious Diseases, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| | - Brigitte Wildemann
- Molecular Neuroimmunology Group, Department of Neurology, University Hospital of Heidelberg, Heidelberg, Germany
| |
Collapse
|
7
|
Thompson D, Watt JA, Brissette CA. Host transcriptome response to Borrelia burgdorferi sensu lato. Ticks Tick Borne Dis 2020; 12:101638. [PMID: 33360384 DOI: 10.1016/j.ttbdis.2020.101638] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 11/30/2020] [Accepted: 12/02/2020] [Indexed: 10/22/2022]
Abstract
The host immune response to infection is a well-coordinated system of innate and adaptive immune cells working in concert to prevent the colonization and dissemination of a pathogen. While this typically leads to a beneficial outcome and the suppression of disease pathogenesis, the Lyme borreliosis bacterium, Borrelia burgdorferi sensu lato, can elicit an immune profile that leads to a deleterious state. As B. burgdorferi s.l. produces no known toxins, it is suggested that the immune and inflammatory response of the host are responsible for the manifestation of symptoms, including flu-like symptoms, musculoskeletal pain, and cognitive disorders. The past several years has seen a substantial increase in the use of microarray and sequencing technologies to investigate the transcriptome response induced by B. burgdorferi s.l., thus enabling researchers to identify key factors and pathways underlying the pathophysiology of Lyme borreliosis. In this review we present the major host transcriptional outcomes induced by the bacterium across several studies and discuss the overarching theme of the host inflammatory and immune response, and how it influences the pathology of Lyme borreliosis.
Collapse
Affiliation(s)
- Derick Thompson
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, ND, United States.
| | - John A Watt
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, ND, United States.
| | - Catherine A Brissette
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, ND, United States.
| |
Collapse
|
8
|
Interactions and Signal Transduction Pathways Involved during Central Nervous System Entry by Neisseria meningitidis across the Blood-Brain Barriers. Int J Mol Sci 2020; 21:ijms21228788. [PMID: 33233688 PMCID: PMC7699760 DOI: 10.3390/ijms21228788] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 11/18/2020] [Indexed: 11/20/2022] Open
Abstract
The Gram-negative diplococcus Neisseria meningitidis, also called meningococcus, exclusively infects humans and can cause meningitis, a severe disease that can lead to the death of the afflicted individuals. To cause meningitis, the bacteria have to enter the central nervous system (CNS) by crossing one of the barriers protecting the CNS from entry by pathogens. These barriers are represented by the blood–brain barrier separating the blood from the brain parenchyma and the blood–cerebrospinal fluid (CSF) barriers at the choroid plexus and the meninges. During the course of meningococcal disease resulting in meningitis, the bacteria undergo several interactions with host cells, including the pharyngeal epithelium and the cells constituting the barriers between the blood and the CSF. These interactions are required to initiate signal transduction pathways that are involved during the crossing of the meningococci into the blood stream and CNS entry, as well as in the host cell response to infection. In this review we summarize the interactions and pathways involved in these processes, whose understanding could help to better understand the pathogenesis of meningococcal meningitis.
Collapse
|
9
|
Thompson D, Sorenson J, Greenmyer J, Brissette CA, Watt JA. The Lyme disease bacterium, Borrelia burgdorferi, stimulates an inflammatory response in human choroid plexus epithelial cells. PLoS One 2020; 15:e0234993. [PMID: 32645014 PMCID: PMC7347220 DOI: 10.1371/journal.pone.0234993] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 06/05/2020] [Indexed: 11/19/2022] Open
Abstract
The main functions of the choroid plexus (CP) are the production of cerebral spinal fluid (CSF), the formation of the blood-CSF barrier, and regulation of immune response. This barrier allows for the exchange of specific nutrients, waste, and peripheral immune cells between the blood stream and CSF. Borrelia burgdorferi (Bb), the causative bacteria of Lyme disease, is associated with neurological complications including meningitis-indeed, Bb has been isolated from the CSF of patients. While it is accepted that B. burgdorferi can enter the central nervous system (CNS) of patients, it is unknown how the bacteria crosses this barrier and how the pathogenesis of the disease leads to the observed symptoms in patients. We hypothesize that during infection Borrelia burgdorferi will induce an immune response conducive to the chemotaxis of immune cells and subsequently lead to a pro-inflammatory state with the CNS parenchyma. Primary human choroid plexus epithelial cells were grown in culture and infected with B. burgdorferi strain B31 MI-16 for 48 hours. RNA was isolated and used for RNA sequencing and RT-qPCR validation. Secreted proteins in the supernatant were analyzed via ELISA. Transcriptome analysis based on RNA sequencing determined a total of 160 upregulated genes and 98 downregulated genes. Pathway and biological process analysis determined a significant upregulation in immune and inflammatory genes specifically in chemokine and interferon related pathways. Further analysis revealed downregulation in genes related to cell to cell junctions including tight and adherens junctions. These results were validated via RT-qPCR. Protein analysis of secreted factors showed an increase in inflammatory chemokines, corresponding to our transcriptome analysis. These data further demonstrate the role of the CP in the modulation of the immune response in a disease state and give insight into the mechanisms by which Borrelia burgdorferi may disseminate into, and act upon, the CNS. Future experiments aim to detail the impact of B. burgdorferi on the blood-CSF-barrier (BCSFB) integrity and inflammatory response within animal models.
Collapse
Affiliation(s)
- Derick Thompson
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, North Dakota, United States of America
| | - Jordyn Sorenson
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, North Dakota, United States of America
| | - Jacob Greenmyer
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, North Dakota, United States of America
| | - Catherine A. Brissette
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, North Dakota, United States of America
| | - John A. Watt
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, North Dakota, United States of America
| |
Collapse
|
10
|
Wiatr M, Stump-Guthier C, Latorre D, Uhlig S, Weiss C, Ilonen J, Engelhardt B, Ishikawa H, Schwerk C, Schroten H, Tenenbaum T, Rudolph H. Distinct migratory pattern of naive and effector T cells through the blood-CSF barrier following Echovirus 30 infection. J Neuroinflammation 2019; 16:232. [PMID: 31752904 PMCID: PMC6868812 DOI: 10.1186/s12974-019-1626-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 10/28/2019] [Indexed: 01/04/2023] Open
Abstract
Background Echovirus 30 (E-30) is one of the most frequently isolated pathogens in aseptic meningitis worldwide. To gain access to the central nervous system (CNS), E-30 and immune cells have to cross one of the two main barriers of the CNS, the epithelial blood–cerebrospinal fluid barrier (BCSFB) or the endothelial blood–brain barrier (BBB). In an in vitro model of the BCSFB, it has been shown that E-30 can infect human immortalized brain choroid plexus papilloma (HIBCPP) cells. Methods In this study we investigated the migration of different T cell subpopulations, naive and effector T cells, through HIBCPP cells during E-30 infection. Effects of E-30 infection and the migration process were evaluated via immunofluorescence and flow cytometry analysis, as well as transepithelial resistance and dextran flux measurement. Results Th1 effector cells and enterovirus-specific effector T cells migrated through HIBCPP cells more efficiently than naive CD4+ T cells following E-30 infection of HIBCPP cells. Among the different naive T cell populations, CD8+ T cells crossed the E-30-infected HIBCPP cell layer in a significantly higher number than CD4+ T cells. A large amount of effector T cells also remained attached to the basolateral side of the HIBCPP cells compared with naive T cells. Analysis of HIBCPP barrier function showed significant alteration after E-30 infection and trans- as well as paracellular migration of T cells independent of the respective subpopulation. Morphologic analysis of migrating T cells revealed that a polarized phenotype was induced by the chemokine CXCL12, but reversed to a round phenotype after E-30 infection. Further characterization of migrating Th1 effector cells revealed a downregulation of surface adhesion proteins such as LFA-1 PSGL-1, CD44, and CD49d. Conclusion Taken together these results suggest that naive CD8+ and Th1 effector cells are highly efficient to migrate through the BCSFB in an inflammatory environment. The T cell phenotype is modified during the migration process through HIBCPP cells.
Collapse
Affiliation(s)
- Marie Wiatr
- Pediatric Infectious Diseases, University Children's Hospital Mannheim, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | - Carolin Stump-Guthier
- Pediatric Infectious Diseases, University Children's Hospital Mannheim, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | - Daniela Latorre
- Institute for Research in Biomedicine, Università della Svizzera italiana, 6500, Bellinzona, Switzerland.,Institute of Microbiology, ETH Zurich, 8093, Zurich, Switzerland
| | - Stefanie Uhlig
- Flowcore Mannheim, Ludolf-Krehl-Strasse 13 - 17, 68167, Mannheim, Germany
| | - Christel Weiss
- Institute of Medical Statistics and Biomathematics, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Jorma Ilonen
- Immunogenetics Laboratory, Institute of Biomedicine, and Clinical Microbiology, Turku University Hospital, University of Turku, Turku, Finland
| | | | - Hiroshi Ishikawa
- Department of NDU Life Sciences, School of Life Dentistry, Nippon Dental University, Tokyo, Japan
| | - Christian Schwerk
- Pediatric Infectious Diseases, University Children's Hospital Mannheim, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | - Horst Schroten
- Pediatric Infectious Diseases, University Children's Hospital Mannheim, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | - Tobias Tenenbaum
- Pediatric Infectious Diseases, University Children's Hospital Mannheim, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany.
| | - Henriette Rudolph
- Pediatric Infectious Diseases, University Children's Hospital Mannheim, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| |
Collapse
|
11
|
Choroid plexus transcriptome and ultrastructure analysis reveals a TLR2-specific chemotaxis signature and cytoskeleton remodeling in leukocyte trafficking. Brain Behav Immun 2019; 79:216-227. [PMID: 30822467 PMCID: PMC6591031 DOI: 10.1016/j.bbi.2019.02.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Revised: 01/09/2019] [Accepted: 02/06/2019] [Indexed: 01/15/2023] Open
Abstract
Perinatal infection and inflammation are major risk factors for injury in the developing brain, however, underlying mechanisms are not fully understood. Leukocyte migration to the cerebrospinal fluid (CSF) and brain is a hallmark of many pathologies of the central nervous system including those in neonates. We previously reported that systemic activation of Toll-like receptor (TLR) 2, a major receptor for gram-positive bacteria, by agonist Pam3CSK4 (P3C) resulted in dramatic neutrophil and monocyte infiltration to the CSF and periventricular brain of neonatal mice, an effect that was absent by the TLR4 agonist, LPS. Here we first report that choroid plexus is a route of TLR2-mediated leukocyte infiltration to the CSF by performing flow cytometry and transmission electron microscopy (TEM) of the choroid plexus. Next, we exploited the striking discrepancy between P3C and LPS effects on cell migration to determine the pathways regulating leukocyte trafficking through the choroid plexus. We performed RNA sequencing on the choroid plexus after administration of P3C and LPS to postnatal day 8 mice. A cluster gene analysis revealed a TLR2-specific signature of chemotaxis represented by 80-fold increased expression of the gene Ccl3 and 1000-fold increased expression of the gene Cxcl2. Ingenuity pathway analysis (IPA) revealed TLR2-specific molecular signaling related to cytoskeleton organization (e.g. actin signaling) as well as inositol phospholipids biosynthesis and degradation. This included upregulation of genes such as Rac2 and Micall2. In support of IPA results, ultrastructural analysis by TEM revealed clefting and perforations in the basement membrane of the choroid plexus epithelial cells in P3C-treated mice. In summary, we show that the choroid plexus is a route of TLR2-mediated transmigration of neutrophils and monocytes to the developing brain, and reveal previously unrecognized mechanisms that includes a specific chemotaxis profile as well as pathways regulating cytoskeleton and basement membrane remodeling.
Collapse
|
12
|
Lauer AN, März M, Meyer S, Meurer M, de Buhr N, Borkowski J, Weiß C, Schroten H, Schwerk C. Optimized cultivation of porcine choroid plexus epithelial cells, a blood-cerebrospinal fluid barrier model, for studying granulocyte transmigration. J Transl Med 2019; 99:1245-1255. [PMID: 30996296 DOI: 10.1038/s41374-019-0250-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 02/13/2019] [Accepted: 02/25/2019] [Indexed: 12/16/2022] Open
Abstract
The blood-cerebrospinal fluid barrier (BCSFB) plays important roles during the transport of substances into the brain, the pathogenesis of central nervous system (CNS) diseases, and neuro-immunological processes. Along these lines, transmigration of granulocytes across the blood-cerebrospinal fluid (CSF) barrier (BCSFB) is a hallmark of inflammatory events in the CNS. Choroid plexus (CP) epithelial cells are an important tool to generate in vitro models of the BCSFB. A porcine CP epithelial cell line (PCP-R) has been shown to present properties of the BCSFB, including a strong barrier function, when cultivated on cell culture filter inserts containing a membrane with 0.4 µm pore size. For optimal analysis of pathogen and host immune cell interactions with the basolateral side of the CP epithelium, which presents the physiologically relevant "blood side", the CP epithelial cells need to be grown on the lower face of the filter in an inverted cell culture insert model, with the supporting membrane possessing a pore size of at least 3.0 µm. Here, we demonstrate that PCP-R cells cultivated in the inverted model on filter support membranes with a pore size of 3.0 µm following a "conventional" protocol grow through the pores and cross the membrane, forming a second layer on the upper face. Therefore, we developed a cell cultivation protocol, which strongly reduces crossing of the membrane by the cells. Under these conditions, PCP-R cells retain important properties of a BCSFB model, as was observed by the formation of continuous tight junctions and a strong barrier function demonstrated by a high transepithelial electrical resistance and a low permeability for macromolecules. Importantly, compared with the conventional cultivation conditions, our optimized model allows improved investigations of porcine granulocyte transmigration across the PCP-R cell layer.
Collapse
Affiliation(s)
- Alexa N Lauer
- Department of Pediatrics, Pediatric Infectious Diseases, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Martin März
- Department of Pediatrics, Pediatric Infectious Diseases, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Svenja Meyer
- Department of Pediatrics, Pediatric Infectious Diseases, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Marita Meurer
- Department of Physiological Chemistry, University of Veterinary Medicine Hannover, Hannover, Germany.,Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, Hannover, Germany
| | - Nicole de Buhr
- Department of Physiological Chemistry, University of Veterinary Medicine Hannover, Hannover, Germany.,Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, Hannover, Germany
| | - Julia Borkowski
- Department of Pediatrics, Pediatric Infectious Diseases, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Christel Weiß
- Institute of Medical Statistics and Biomathematics, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Horst Schroten
- Department of Pediatrics, Pediatric Infectious Diseases, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Christian Schwerk
- Department of Pediatrics, Pediatric Infectious Diseases, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.
| |
Collapse
|
13
|
Schraermeyer U, Schmelzle S, Tschulakow AV. Data showing the shapes of cones and Müller cells within the fovea of monkeys reconstructed from serial sections and focused ion beam analysis. Data Brief 2018; 20:1332-1336. [PMID: 30246112 PMCID: PMC6146564 DOI: 10.1016/j.dib.2018.08.195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 08/22/2018] [Accepted: 08/29/2018] [Indexed: 11/30/2022] Open
Abstract
The data presented in this article are related to the research paper entitled “The anatomy of the foveola reinvestigated” (Tschulakow et al., 2018) [1]. Here we show the original aligned serial sections through the foveal centre of monkeys at different planes of section and 3 D models of central foveal cells.
Collapse
Affiliation(s)
- Ulrich Schraermeyer
- Division of Experimental Vitreoretinal Surgery, Center for Ophthalmology, University Hospital Tuebingen, Schleichstr. 12/1, 72072 Tuebingen, Germany.,STZ Ocutox, Burgackerstr. 1, 72379 Hechingen, Germany
| | - Sebastian Schmelzle
- Ecological Networks, Department of Biology, Technische Universitaet Darmstadt, Darmstadt, Germany
| | - Alexander V Tschulakow
- Division of Experimental Vitreoretinal Surgery, Center for Ophthalmology, University Hospital Tuebingen, Schleichstr. 12/1, 72072 Tuebingen, Germany
| |
Collapse
|
14
|
März M, Meyer S, Erb U, Georgikou C, Horstmann MA, Hetjens S, Weiß C, Fallier-Becker P, Vandenhaute E, Ishikawa H, Schroten H, Dürken M, Karremann M. Pediatric acute lymphoblastic leukemia-Conquering the CNS across the choroid plexus. Leuk Res 2018; 71:47-54. [PMID: 30005184 DOI: 10.1016/j.leukres.2018.07.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 06/16/2018] [Accepted: 07/02/2018] [Indexed: 12/20/2022]
Abstract
Despite the high prevalence of central nervous system (CNS) involvement in relapsing pediatric acute lymphoblastic leukemia (ALL), our understanding of CNS invasion is still vague. As lymphoblasts have to overcome the physiological blood-CNS barriers to enter the CNS, we investigated the cellular interactions of lymphoblasts with the choroid plexus (CP) epithelium of the blood-cerebrospinal fluid barrier (BCSFB). Both a precurser B cell ALL (pB-ALL) cell line (SD-1) and a T cell ALL (T-ALL) cell line (P12-Ishikawa) were able to actively cross the CP epithelium in a human in vitro model. We could illustrate a transcellular and (supposedly) paracellular transmigration by 3-dimensional immunofluorescence microscopy as well as electron microscopy. Chemotactic stimulation with CXCL12 during this process led to a significantly increased transmigration and blocking CXCL12/CXCR4-signaling by the CXCR4-inhibitor AMD3100 inhibited this effect. However, CXCR4 expression in primary ALL samples did not correlate to CNS disease, indicating that CXCR4-driven CNS invasion across the BCSFB might be a general property of pediatric ALL. Notably, we present a unique in vitro BCSFB model suitable to study CNS invasion of lymphoblasts in a human setting, providing the opportunity to investigate experimental variables, which may determine CNS disease childhood ALL.
Collapse
Affiliation(s)
- Martin März
- Department of Pediatrics, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Svenja Meyer
- Department of Pediatrics, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Ulrike Erb
- Department of Pediatrics, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Christina Georgikou
- Department of Pediatrics, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Martin A Horstmann
- Research Institute Children's Cancer Center and Clinic of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Svetlana Hetjens
- Institute of Medical Statistics and Biomathematics, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Christel Weiß
- Institute of Medical Statistics and Biomathematics, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Petra Fallier-Becker
- Institute of Pathology and Neuropathology, University Hospital of Tuebingen, Tuebingen, Germany
| | - Elodie Vandenhaute
- Laboratoire de la Barrière Hémato-Encéphalique (LBHE, EA 2465), Faculté des Sciences Jean Perrin, Université d'Artois, Lens, France
| | - Hiroshi Ishikawa
- Department of NDU Life Sciences, Nippon Dental University, School of Life Dentistry, Chyoda-ku, Tokyo, Japan
| | - Horst Schroten
- Department of Pediatrics, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Matthias Dürken
- Department of Pediatrics, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Michael Karremann
- Department of Pediatrics, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.
| |
Collapse
|
15
|
Tschulakow AV, Oltrup T, Bende T, Schmelzle S, Schraermeyer U. The anatomy of the foveola reinvestigated. PeerJ 2018; 6:e4482. [PMID: 29576957 PMCID: PMC5853608 DOI: 10.7717/peerj.4482] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 02/20/2018] [Indexed: 01/22/2023] Open
Abstract
Objective In the foveola of the eye, photoreceptors and Müller cells with a unique morphology have been described, but little is known about their 3D structure and orientation. Considering that there is an angle-dependent change in the foveolar photoreceptor response for the same light beam, known as the Stiles Crawford Effect of the first kind (SCE I), which is still not fully understood, a detailed analysis of the anatomy of the foveolar cells might help to clarify this phenomenon. Methods Serial semithin and ultrathin sections, and focused ion beam (FIB) tomography were prepared from 32 foveolae from monkeys (Macaca fascicularis) and humans. Foveolae were also analyzed under the electron microscope. Serial sections and FIB analysis were then used to construct 3D models of central Müller and photoreceptor cells. In addition, we measured the transmission of collimated light under the light microscope at different angles after it had passed through human foveae from flat mounted isolated retinae. Results In monkeys, outer segments of central foveolar cones are twice as long as those from parafoveal cones and do not run completely parallel to the incident light. Unique Müller cells are present in the central foveolae (area of 200 µm in diameter) of humans and monkeys. Light entering the fovea center, which is composed only of cones and Müller cells, at an angle of 0° causes a very bright spot after passing through this area. However, when the angle of the light beam is changed to 10°, less light is measured after transpasssing through the retina, the foveolar center becomes darker and the SCE-like phenomenon is directly visible. Measurements of the intensities of light transmission through the central foveola for the incident angles 0 and 10° resemble the relative luminance efficiency for narrow light bundles as a function of the location where the beam enters the pupil as reported by Stiles and Crawford. The effect persisted after carefully brushing away the outer segments. Conclusion We show that unique cones and Müller cells with light fibre-like properties are present in the center of the fovea. These unique Müller cells cause an angle dependent, SCE-like drop in the intensity of light guided through the foveola. Outer segments from the foveolar cones of monkeys are not straight.
Collapse
Affiliation(s)
- Alexander V Tschulakow
- Division of Experimental Vitreoretinal Surgery, Centre for Ophthalmology, University Hospital Tübingen, Tübingen, Germany
| | - Theo Oltrup
- Division of Experimental Ophthalmic Surgery, Centre for Ophthalmology, University Hospital Tübingen, Tübingen, Germany
| | - Thomas Bende
- Division of Experimental Ophthalmic Surgery, Centre for Ophthalmology, University Hospital Tübingen, Tübingen, Germany
| | - Sebastian Schmelzle
- Ecological Networks, Department of Biology, Technische Universität Darmstadt, Darmstadt, Germany
| | - Ulrich Schraermeyer
- Division of Experimental Vitreoretinal Surgery, Centre for Ophthalmology, University Hospital Tübingen, Tübingen, Germany.,Ocutox (www.ocutox.com), Hechingen, Germany
| |
Collapse
|
16
|
Dahm T, Adams O, Boettcher S, Diedrich S, Morozov V, Hansman G, Fallier-Becker P, Schädler S, Burkhardt CJ, Weiss C, Stump-Guthier C, Ishikawa H, Schroten H, Schwerk C, Tenenbaum T, Rudolph H. Strain-dependent effects of clinical echovirus 30 outbreak isolates at the blood-CSF barrier. J Neuroinflammation 2018; 15:50. [PMID: 29463289 PMCID: PMC5819246 DOI: 10.1186/s12974-018-1061-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 01/09/2018] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Echovirus (E) 30 (E-30) meningitis is characterized by neuroinflammation involving immune cell pleocytosis at the protective barriers of the central nervous system (CNS). In this context, infection of the blood-cerebrospinal fluid barrier (BCSFB), which has been demonstrated to be involved in enteroviral CNS pathogenesis, may affect the tight junction (TJ) and adherens junction (AJ) function and morphology. METHODS We used an in vitro human choroid plexus epithelial (HIBCPP) cell model to investigate the effect of three clinical outbreak strains (13-311, 13-759, and 14-397) isolated in Germany in 2013, and compared them to E-30 Bastianni. Conducting transepithelial electrical resistance (TEER), paracellular dextran flux measurement, quantitative real-time polymerase chain reaction (qPCR), western blot, and immunofluorescence analysis, we investigated TJ and AJ function and morphology as well as strain-specific E-30 infection patterns. Additionally, transmission electron and focused ion beam microscopy electron microscopy (FIB-SEM) was used to evaluate the mode of leukocyte transmigration. Genome sequencing and phylogenetic analyses were performed to discriminate potential genetic differences among the outbreak strains. RESULTS We observed a significant strain-dependent decrease in TEER with strains E-30 Bastianni and 13-311, whereas paracellular dextran flux was only affected by E-30 Bastianni. Despite strong similarities among the outbreak strains in replication characteristics and particle distribution, strain 13-311 was the only outbreak isolate revealing comparable disruptive effects on TJ (Zonula Occludens (ZO) 1 and occludin) and AJ (E-cadherin) morphology to E-30 Bastianni. Notwithstanding significant junctional alterations upon E-30 infection, we observed both para- and transcellular leukocyte migration across HIBCPP cells. Complete genome sequencing revealed differences between the strains analyzed, but no explicit correlation with the observed strain-dependent effects on HIBCPP cells was possible. CONCLUSION The findings revealed distinct E-30 strain-specific effects on barrier integrity and junctional morphology. Despite E-30-induced barrier alterations leukocyte trafficking did not exclusively occur via the paracellular route.
Collapse
Affiliation(s)
- Tobias Dahm
- Pediatric Infectious Diseases, University Children’s Hospital Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Ortwin Adams
- Institute of Virology, University Hospital, Heinrich-Heine-University, Düsseldorf, Germany
| | - Sindy Boettcher
- National Reference Centre for Poliomyelitis and Enteroviruses, Robert Koch-Institute, Berlin, Germany
| | - Sabine Diedrich
- National Reference Centre for Poliomyelitis and Enteroviruses, Robert Koch-Institute, Berlin, Germany
| | - Vasily Morozov
- Schaller Research Group, University of Heidelberg and the DKFZ, Heidelberg, Germany
- Department of Infectious Diseases, Virology, University of Heidelberg, Heidelberg, Germany
| | - Grant Hansman
- Schaller Research Group, University of Heidelberg and the DKFZ, Heidelberg, Germany
- Department of Infectious Diseases, Virology, University of Heidelberg, Heidelberg, Germany
| | - Petra Fallier-Becker
- Institute of Pathology and Neuropathology, University Hospital of Tübingen, Tübingen, Germany
| | | | - Claus J. Burkhardt
- NMI Natural and Medical Sciences Institute, University of Tübingen, Reutlingen, Germany
| | - Christel Weiss
- Institute of Medical Statistics and Biomathematics, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Carolin Stump-Guthier
- Pediatric Infectious Diseases, University Children’s Hospital Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Hiroshi Ishikawa
- Department of NDU Life Sciences, School of life Dentistry, The Nippon Dental University, Tokyo, Japan
| | - Horst Schroten
- Pediatric Infectious Diseases, University Children’s Hospital Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Christian Schwerk
- Pediatric Infectious Diseases, University Children’s Hospital Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Tobias Tenenbaum
- Pediatric Infectious Diseases, University Children’s Hospital Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Henriette Rudolph
- Pediatric Infectious Diseases, University Children’s Hospital Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| |
Collapse
|
17
|
Lauer AN, Tenenbaum T, Schroten H, Schwerk C. The diverse cellular responses of the choroid plexus during infection of the central nervous system. Am J Physiol Cell Physiol 2017; 314:C152-C165. [PMID: 29070490 DOI: 10.1152/ajpcell.00137.2017] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The choroid plexus (CP) is responsible for the production of a large amount of the cerebrospinal fluid (CSF). As a highly vascularized structure, the CP also presents a significant frontier between the blood and the central nervous system (CNS). To seal this border, the epithelium of the CP forms the blood-CSF barrier, one of the most important barriers separating the CNS from the blood. During the course of infectious disease, cells of the CP can experience interactions with intruding pathogens, especially when the CP is used as gateway for entry into the CNS. In return, the CP answers to these encounters with diverse measures. Here, we will review the distinct responses of the CP during infection of the CNS, which include engaging of signal transduction pathways, the regulation of gene expression in the host cells, inflammatory cell response, alterations of the barrier, and, under certain circumstances, cell death. Many of these actions may contribute to stage an immunological response against the pathogen and subsequently help in the clearance of the infection.
Collapse
Affiliation(s)
- Alexa N Lauer
- Department of Pediatrics, Pediatric Infectious Diseases, Medical Faculty Mannheim, Heidelberg University , Mannheim , Germany
| | - Tobias Tenenbaum
- Department of Pediatrics, Pediatric Infectious Diseases, Medical Faculty Mannheim, Heidelberg University , Mannheim , Germany
| | - Horst Schroten
- Department of Pediatrics, Pediatric Infectious Diseases, Medical Faculty Mannheim, Heidelberg University , Mannheim , Germany
| | - Christian Schwerk
- Department of Pediatrics, Pediatric Infectious Diseases, Medical Faculty Mannheim, Heidelberg University , Mannheim , Germany
| |
Collapse
|
18
|
Dahm T, Frank F, Adams O, Lindner HA, Ishikawa H, Weiss C, Schwerk C, Schroten H, Tenenbaum T, Rudolph H. Sequential transmigration of polymorphonuclear cells and naive CD3 + T lymphocytes across the blood-cerebrospinal-fluid barrier in vitro following infection with Echovirus 30. Virus Res 2017; 232:54-62. [PMID: 28161477 DOI: 10.1016/j.virusres.2017.01.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 01/25/2017] [Accepted: 01/26/2017] [Indexed: 10/20/2022]
Abstract
Viral meningitis by non-polio enteroviruses (NPEV) is a major public health burden causing fatal outcomes especially in the younger population. Strong evidence exists that the blood-cerebrospinal-fluid (CSF) barrier (BCSFB) serves as an entry point for enterovirus and leucocytes into the central nervous system (CNS). Moreover, analysis of clinical CSF specimens of patients with a NPEV infection revealed a predominance of polymorphonuclear granulocytes (PMN) in the early phase and mononuclear cells in the later course of meningitis. By applying a functional in vitro model of the BCSFB consisting of human choroid plexus papilloma (HIBCPP) cells, we aimed to analyse the mechanisms of sequential migration of PMN and naive CD3+ T lymphocytes following infection with Echovirus 30 (EV30). EV30 infection led to increased transmigration of PMN and naive CD3+ T lymphocytes. Transmigration of PMN was significantly enhanced in the presence of naive CD3+ T lymphocytes, but not vice versa. The barrier function was not differentially altered under the respective conditions. Infection with EV30 led to an upregulation of CXCL3 and CXCL11 on the RNA-level. Additional analysis of cytokine secretion revealed relatively high concentrations of IL-8, CCL20, CXCL3, CXCL10 and M-CSF. Overall, there was a predominantly polar direction of cytokine secretion to the basolateral side. IL-7 was the only cytokine which was strongly secreted to the apical side and that was enhanced following EV30 infection in our model. In conclusion, this study highlights the role of the choroid plexus and cytokines in regulating leucocyte entry into the CNS in the context of EV30 infection.
Collapse
Affiliation(s)
- Tobias Dahm
- Paediatric Infectious Diseases, University Children's Hospital Mannheim, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
| | - Franziska Frank
- Paediatric Infectious Diseases, University Children's Hospital Mannheim, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
| | - Ortwin Adams
- Institute for Virology, University Hospital, Heinrich-Heine-University, Düsseldorf, Germany
| | - Holger A Lindner
- Department of Anaesthesiology and Surgical Intensive Care Medicine, University Medical Centre Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
| | - Hiroshi Ishikawa
- Department of Anatomy, Jikei University School of Medicine, 3-25-8, Nishi-Shinbashi, Minatoku, Tokyo 105-8461, Japan
| | - Christel Weiss
- Department of Statistics, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Christian Schwerk
- Paediatric Infectious Diseases, University Children's Hospital Mannheim, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
| | - Horst Schroten
- Paediatric Infectious Diseases, University Children's Hospital Mannheim, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
| | - Tobias Tenenbaum
- Paediatric Infectious Diseases, University Children's Hospital Mannheim, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
| | - Henriette Rudolph
- Paediatric Infectious Diseases, University Children's Hospital Mannheim, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany.
| |
Collapse
|
19
|
Klein RS, Garber C, Howard N. Infectious immunity in the central nervous system and brain function. Nat Immunol 2017; 18:132-141. [PMID: 28092376 DOI: 10.1038/ni.3656] [Citation(s) in RCA: 141] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 12/02/2016] [Indexed: 11/09/2022]
Abstract
Inflammation is emerging as a critical mechanism underlying neurological disorders of various etiologies, yet its role in altering brain function as a consequence of neuroinfectious disease remains unclear. Although acute alterations in mental status due to inflammation are a hallmark of central nervous system (CNS) infections with neurotropic pathogens, post-infectious neurologic dysfunction has traditionally been attributed to irreversible damage caused by the pathogens themselves. More recently, studies indicate that pathogen eradication within the CNS may require immune responses that interfere with neural cell function and communication without affecting their survival. In this Review we explore inflammatory processes underlying neurological impairments caused by CNS infection and discuss their potential links to established mechanisms of psychiatric and neurodegenerative diseases.
Collapse
Affiliation(s)
- Robyn S Klein
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA.,Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA.,Department of Neuroscience, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Charise Garber
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Nicole Howard
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA.,Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
20
|
Dinner S, Kaltschmidt J, Stump-Guthier C, Hetjens S, Ishikawa H, Tenenbaum T, Schroten H, Schwerk C. Mitogen-activated protein kinases are required for effective infection of human choroid plexus epithelial cells by Listeria monocytogenes. Microbes Infect 2016; 19:18-33. [PMID: 27671041 DOI: 10.1016/j.micinf.2016.09.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 08/30/2016] [Accepted: 09/14/2016] [Indexed: 01/01/2023]
Abstract
Listeria monocytogenes, a Gram-positive bacterium, can cause meningitis after invading the human central nervous system. The blood-cerebrospinal fluid barrier (BCSFB), located at the epithelium of the choroid plexus, is a possible entry site for L. monocytogenes into the brain, and in vitro L. monocytogenes invades human choroid plexus epithelial papilloma (HIBCPP) cells. Although host cell signal transduction subsequent to infection by L. monocytogenes has been investigated, the role of mitogen-activated protein kinases (MAPK) is not clarified yet. We show that infection with L. monocytogenes causes activation of the MAPKs Erk1/2 and p38 preferentially when bacteria are added to the physiologically more relevant basolateral side of HIBCPP cells. Deletion of the listerial virulence factors Internalin (InlA) and InlB reduces MAPK activation. Whereas inhibition of either Erk1/2 or p38 signaling significantly attenuates infection of HIBCPP cells with L. monocytogenes, simultaneous inhibition of both MAPK pathways shows an additive effect, and Erk1/2 and p38 are involved in regulation of cytokine and chemokine expression following infection. Blocking of endocytosis with the synthetic dynamin inhibitor dynasore strongly abrogates infection of HIBCPP cells with L. monocytogenes. Concurrent inhibition of MAPK signaling further reduces infection, suggesting MAPKs mediate infection with L. monocytogenes during inhibition of dynamin-mediated endocytosis.
Collapse
Affiliation(s)
- Stefanie Dinner
- Pediatric Infectious Diseases, Department of Pediatrics, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Julian Kaltschmidt
- Pediatric Infectious Diseases, Department of Pediatrics, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Carolin Stump-Guthier
- Pediatric Infectious Diseases, Department of Pediatrics, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Svetlana Hetjens
- Institute of Medical Statistics and Biomathematics, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Hiroshi Ishikawa
- Department of NDU Life Sciences, Nippon Dental University, School of Life Dentistry, Chyoda-ku, Tokyo, Japan
| | - Tobias Tenenbaum
- Pediatric Infectious Diseases, Department of Pediatrics, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Horst Schroten
- Pediatric Infectious Diseases, Department of Pediatrics, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Christian Schwerk
- Pediatric Infectious Diseases, Department of Pediatrics, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.
| |
Collapse
|
21
|
de Buhr N, Reuner F, Neumann A, Stump-Guthier C, Tenenbaum T, Schroten H, Ishikawa H, Müller K, Beineke A, Hennig-Pauka I, Gutsmann T, Valentin-Weigand P, Baums CG, von Köckritz-Blickwede M. Neutrophil extracellular trap formation in the Streptococcus suis-infected cerebrospinal fluid compartment. Cell Microbiol 2016; 19. [PMID: 27450700 DOI: 10.1111/cmi.12649] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2015] [Revised: 07/08/2016] [Accepted: 07/11/2016] [Indexed: 12/15/2022]
Abstract
Streptococcus suis is an important meningitis-causing pathogen in pigs and humans. Neutrophil extracellular traps (NETs) have been identified as host defense mechanism against different pathogens. Here, NETs were detected in the cerebrospinal fluid (CSF) of S. suis-infected piglets despite the presence of active nucleases. To study NET-formation and NET-degradation after transmigration of S. suis and neutrophils through the choroid plexus epithelial cell barrier, a previously described model of the human blood-CSF barrier was used. NETs and respective entrapment of streptococci were recorded in the "CSF compartment" despite the presence of active nucleases. Comparative analysis of S. suis wildtype and different S. suis nuclease mutants did not reveal significant differences in NET-formation or bacterial survival. Interestingly, transcript expression of the human cathelicidin LL-37, a NET-stabilizing factor, increased after transmigration of neutrophils through the choroid plexus epithelial cell barrier. In good accordance, the porcine cathelicidin PR-39 was significantly increased in CSF of piglets with meningitis. Furthermore, we confirmed that PR-39 is associated with NETs in infected CSF and inhibits neutrophil DNA degradation by bacterial nucleases. In conclusion, neutrophils form NETs after breaching the infected choroid plexus epithelium, and those NETs may be protected by antimicrobial peptides against bacterial nucleases.
Collapse
Affiliation(s)
- Nicole de Buhr
- Department of Physiological Chemistry, Department of Infectious Diseases, University of Veterinary Medicine Hannover, Hannover, Germany.,Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, Hannover, Germany.,Institute for Microbiology, Department of Infectious Diseases, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Friederike Reuner
- Department of Physiological Chemistry, Department of Infectious Diseases, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Ariane Neumann
- Department of Physiological Chemistry, Department of Infectious Diseases, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Carolin Stump-Guthier
- Department of Pediatrics, Pediatric Infectious Diseases, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Tobias Tenenbaum
- Department of Pediatrics, Pediatric Infectious Diseases, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Horst Schroten
- Department of Pediatrics, Pediatric Infectious Diseases, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Hiroshi Ishikawa
- Department of NDU Life Sciences, School of Life Dentistry at Tokyo, The Nippon Dental University, Chiyoda-ku, Tokyo, Japan
| | - Kristin Müller
- Institute for Veterinary Pathology, Faculty of Veterinary Medicine, University Leipzig, Germany
| | - Andreas Beineke
- Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Isabel Hennig-Pauka
- University Clinic for Swine, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Thomas Gutsmann
- Research group Biophysics, Research Centre Borstel, Borstel, Germany
| | - Peter Valentin-Weigand
- Institute for Microbiology, Department of Infectious Diseases, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Christoph G Baums
- Institute for Bacteriology and Mycology, Centre for Infectious Diseases, Faculty of Veterinary Medicine, University Leipzig, Germany
| | - Maren von Köckritz-Blickwede
- Department of Physiological Chemistry, Department of Infectious Diseases, University of Veterinary Medicine Hannover, Hannover, Germany.,Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, Hannover, Germany
| |
Collapse
|
22
|
Dinner S, Borkowski J, Stump-Guthier C, Ishikawa H, Tenenbaum T, Schroten H, Schwerk C. A Choroid Plexus Epithelial Cell-based Model of the Human Blood-Cerebrospinal Fluid Barrier to Study Bacterial Infection from the Basolateral Side. J Vis Exp 2016. [PMID: 27213495 DOI: 10.3791/54061] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The epithelial cells of the choroid plexus (CP), located in the ventricular system of the brain, form the blood-cerebrospinal fluid barrier (BCSFB). The BCSFB functions in separating the cerebrospinal fluid (CSF) from the blood and restricting the molecular exchange to a minimum extent. An in vitro model of the BCSFB is based on cells derived from a human choroid plexus papilloma (HIBCPP). HIBCPP cells display typical barrier functions including formation of tight junctions (TJs), development of a transepithelial electrical resistance (TEER), as well as minor permeabilities for macromolecules. There are several pathogens that can enter the central nervous system (CNS) via the BCSFB and subsequently cause severe disease like meningitis. One of these pathogens is Neisseria meningitidis (N. meningitidis), a human-specific bacterium. Employing the HIBCPP cells in an inverted cell culture filter insert system enables to study interactions of pathogens with cells of the BCSFB from the basolateral cell side, which is relevant in vivo. In this article, we describe seeding and culturing of HIBCPP cells on cell culture inserts. Further, infection of the cells with N. meningitidis along with analysis of invaded and adhered bacteria via double immunofluorescence is demonstrated. As the cells of the CP are also involved in other diseases, including neurodegenerative disorders like Alzheimer`s disease and Multiple Sclerosis, as well as during the brain metastasis of tumor cells, the model system can also be applied in other fields of research. It provides the potential to decipher molecular mechanisms and to identify novel therapeutic targets.
Collapse
Affiliation(s)
- Stefanie Dinner
- Department of Pediatrics, Medical Faculty Mannheim, Heidelberg University
| | - Julia Borkowski
- Department of Pediatrics, Medical Faculty Mannheim, Heidelberg University
| | | | | | - Tobias Tenenbaum
- Department of Pediatrics, Medical Faculty Mannheim, Heidelberg University
| | - Horst Schroten
- Department of Pediatrics, Medical Faculty Mannheim, Heidelberg University
| | - Christian Schwerk
- Department of Pediatrics, Medical Faculty Mannheim, Heidelberg University;
| |
Collapse
|
23
|
Podvin S, Miller MC, Rossi R, Chukwueke J, Donahue JE, Johanson CE, Baird A, Stopa EG. The Orphan C2orf40 Gene is a Neuroimmune Factor in Alzheimer's Disease. JSM ALZHEIMER'S DISEASE AND RELATED DEMENTIA 2016; 3:1020. [PMID: 27990492 PMCID: PMC5157699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Expression of the orphan C2orf40 gene is associated with the aggregation of the neurofibrillary tangle-protein tau in transgenic mice, tumor suppression, the induction of senescence in CNS, and the activation of microglia and peripheral mononuclear leukocytes. This gene also encodes several secreted pro- and anti-inflammatory neuropeptide-like cytokines, suggesting they might be implicated in the inflammatory component(s) of Alzheimer's disease (AD). Accordingly, we evaluated human AD and control brains for expression changes by RT-qPCR, Western blot, and histological changes by immunolabeling. RT-qPCR demonstrated increased cortical gene expression in AD. The molecular form of Ecrg4 detected in cortex was 8-10 kDa, which was shown previously to interact with the innate immunity receptor complex. Immunocytochemical studies showed intensely stained microglia and intravascular blood-borne monocytes within cerebral cortical white matter of AD patients. Staining was diminished within cortical neurons, except for prominent staining in neurofibrillary tangles. Choroid plexuses showed a decreasing trend. These findings support our hypothesis that c2orf40 participates in the neuroimmune response in AD.
Collapse
Affiliation(s)
- Sonia Podvin
- Department of Surgery, University of California San Diego School of Medicine, USA
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, USA
| | - Miles C. Miller
- Department of Pathology, Rhode Island Hospital, USA
- Department of Neurosurgery, Warren Alpert Medical School of Brown University, USA
| | - Ryan Rossi
- Department of Pathology, Rhode Island Hospital, USA
| | | | | | - Conrad E. Johanson
- Department of Neurosurgery, Warren Alpert Medical School of Brown University, USA
| | - Andrew Baird
- Department of Surgery, University of California San Diego School of Medicine, USA
| | - Edward G. Stopa
- Department of Pathology, Rhode Island Hospital, USA
- Department of Neurosurgery, Warren Alpert Medical School of Brown University, USA
| |
Collapse
|
24
|
Kaur C, Rathnasamy G, Ling EA. The Choroid Plexus in Healthy and Diseased Brain. J Neuropathol Exp Neurol 2016; 75:198-213. [DOI: 10.1093/jnen/nlv030] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023] Open
|
25
|
He X, Shi X, Puthiyakunnon S, Zhang L, Zeng Q, Li Y, Boddu S, Qiu J, Lai Z, Ma C, Xie Y, Long M, Du L, Huang SH, Cao H. CD44-mediated monocyte transmigration across Cryptococcus neoformans-infected brain microvascular endothelial cells is enhanced by HIV-1 gp41-I90 ectodomain. J Biomed Sci 2016; 23:28. [PMID: 26897523 PMCID: PMC4761181 DOI: 10.1186/s12929-016-0247-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 02/15/2016] [Indexed: 12/19/2022] Open
Abstract
Background Cryptococcus neoformans (Cn) is an important opportunistic pathogen in the immunocompromised people, including AIDS patients, which leads to fatal cryptococcal meningitis with high mortality rate. Previous researches have shown that HIV-1 gp41-I90 ectodomain can enhance Cn adhesion to and invasion of brain microvascular endothelial cell (BMEC), which constitutes the blood brain barrier (BBB). However, little is known about the role of HIV-1 gp41-I90 in the monocyte transmigration across Cn-infected BBB. In the present study, we provide evidence that HIV-1 gp41-I90 and Cn synergistically enhance monocytes transmigration across the BBB in vitro and in vivo. The underlying mechanisms for this phenomenon require further study. Methods In this study, the enhancing role of HIV-1 gp41-I90 in monocyte transmigration across Cn-infected BBB was demonstrated by performed transmigration assays in vitro and in vivo. Results Our results showed that the transmigration rate of monocytes are positively associated with Cn and/or HIV-1 gp41-I90, the co-exposure (HIV-1 gp41-I90 + Cn) group showed a higher THP-1 transmigration rate (P < 0.01). Using CD44 knock-down HBMEC or CD44 inhibitor Bikunin in the assay, the facilitation of transmigration rates of monocyte enhanced by HIV-1 gp41-I90 was significantly suppressed. Western blotting analysis and biotin/avidin enzyme-linked immunosorbent assays (BA-ELISAs) showed that Cn and HIV-1 gp41-I90 could increase the expression of CD44 and ICAM-1 on the HBMEC. Moreover, Cn and/or HIV-1 gp41-I90 could also induce CD44 redistribution to the membrane lipid rafts. By establishing the mouse cryptococcal meningitis model, we found that HIV-1 gp41-I90 and Cn could synergistically enhance the monocytes transmigration, increase the BBB permeability and injury in vivo. Conclusions Collectively, our findings suggested that HIV-1 gp41-I90 ectodomain can enhance the transmigration of THP-1 through Cn-infected BBB, which may be mediated by CD44. This novel study enlightens the future prospects to elaborate the inflammatory responses induced by HIV-1 gp41-I90 ectodomain and to effectively eliminate the opportunistic infections in AIDS patients.
Collapse
Affiliation(s)
- Xiaolong He
- Department of Microbiology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health and Tropical Medicine, Southern Medical University, Guangzhou, 510515, China.
| | - Xiaolu Shi
- Department of Microbiology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health and Tropical Medicine, Southern Medical University, Guangzhou, 510515, China.
| | - Santhosh Puthiyakunnon
- Department of Microbiology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health and Tropical Medicine, Southern Medical University, Guangzhou, 510515, China.
| | - Like Zhang
- Department of Microbiology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health and Tropical Medicine, Southern Medical University, Guangzhou, 510515, China.
| | - Qing Zeng
- Department of Microbiology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health and Tropical Medicine, Southern Medical University, Guangzhou, 510515, China.
| | - Yan Li
- Department of Microbiology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health and Tropical Medicine, Southern Medical University, Guangzhou, 510515, China.
| | - Swapna Boddu
- Department of Microbiology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health and Tropical Medicine, Southern Medical University, Guangzhou, 510515, China.
| | - Jiawen Qiu
- Department of Microbiology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health and Tropical Medicine, Southern Medical University, Guangzhou, 510515, China.
| | - Zhihao Lai
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China.
| | - Chao Ma
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China.
| | - Yulong Xie
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China.
| | - Min Long
- Department of Microbiology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health and Tropical Medicine, Southern Medical University, Guangzhou, 510515, China.
| | - Lei Du
- Department of Microbiology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health and Tropical Medicine, Southern Medical University, Guangzhou, 510515, China.
| | - Sheng-He Huang
- Department of Microbiology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health and Tropical Medicine, Southern Medical University, Guangzhou, 510515, China. .,Saban Research Institute, Children's Hospital Los Angeles, University of Southern California, Los Angeles, CA, 90027, USA.
| | - Hong Cao
- Department of Microbiology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health and Tropical Medicine, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
26
|
Wang S, Peng L, Gai Z, Zhang L, Jong A, Cao H, Huang SH. Pathogenic Triad in Bacterial Meningitis: Pathogen Invasion, NF-κB Activation, and Leukocyte Transmigration that Occur at the Blood-Brain Barrier. Front Microbiol 2016; 7:148. [PMID: 26925035 PMCID: PMC4760054 DOI: 10.3389/fmicb.2016.00148] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 01/26/2016] [Indexed: 12/13/2022] Open
Abstract
Bacterial meningitis remains the leading cause of disabilities worldwide. This life-threatening disease has a high mortality rate despite the availability of antibiotics and improved critical care. The interactions between bacterial surface components and host defense systems that initiate bacterial meningitis have been studied in molecular and cellular detail over the past several decades. Bacterial meningitis commonly exhibits triad hallmark features (THFs): pathogen penetration, nuclear factor-kappaB (NF-κB) activation in coordination with type 1 interferon (IFN) signaling and leukocyte transmigration that occur at the blood-brain barrier (BBB), which consists mainly of brain microvascular endothelial cells (BMEC). This review outlines the progression of these early inter-correlated events contributing to the central nervous system (CNS) inflammation and injury during the pathogenesis of bacterial meningitis. A better understanding of these issues is not only imperative to elucidating the pathogenic mechanism of bacterial meningitis, but may also provide the in-depth insight into the development of novel therapeutic interventions against this disease.
Collapse
Affiliation(s)
- Shifu Wang
- Department of Children's Medical Laboratory Diagnosis Center, Qilu Children's Hospital of Shandong UniversityJinan, China; Children's Hospital Los Angeles, Keck School of Medicine, University of Southern CaliforniaLos Angeles, CA, USA
| | - Liang Peng
- Department of Clinical Laboratory, The Second Affiliated Hospital of Guangzhou Medical University Guangzhou, China
| | - Zhongtao Gai
- Department of Children's Medical Laboratory Diagnosis Center, Qilu Children's Hospital of Shandong University Jinan, China
| | - Lehai Zhang
- Department of Children's Medical Laboratory Diagnosis Center, Qilu Children's Hospital of Shandong University Jinan, China
| | - Ambrose Jong
- Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California Los Angeles, CA, USA
| | - Hong Cao
- Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Microbiology, School of Public Health and Tropical Medicine, Southern Medical University Guangzhou, China
| | - Sheng-He Huang
- Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California Los Angeles, CA, USA
| |
Collapse
|
27
|
Lazarevic I, Engelhardt B. Modeling immune functions of the mouse blood-cerebrospinal fluid barrier in vitro: primary rather than immortalized mouse choroid plexus epithelial cells are suited to study immune cell migration across this brain barrier. Fluids Barriers CNS 2016; 13:2. [PMID: 26833402 PMCID: PMC4734852 DOI: 10.1186/s12987-016-0027-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 01/19/2016] [Indexed: 01/19/2023] Open
Abstract
Background The blood–cerebrospinal fluid barrier (BCSFB) established by the choroid plexus (CP) epithelium has been recognized as a potential entry site of immune cells into the central nervous system during immunosurveillance and neuroinflammation. The location of the choroid plexus impedes in vivo analysis of immune cell trafficking across the BCSFB. Thus, research on cellular and molecular mechanisms of immune cell migration across the BCSFB is largely limited to in vitro models. In addition to forming contact-inhibited epithelial monolayers that express adhesion molecules, the optimal in vitro model must establish a tight permeability barrier as this influences immune cell diapedesis. Methods We compared cell line models of the mouse BCSFB derived from the Immortomouse® and the ECPC4 line to primary mouse choroid plexus epithelial cell (pmCPEC) cultures for their ability to establish differentiated and tight in vitro models of the BCSFB. Results We found that inducible cell line models established from the Immortomouse® or the ECPC4 tumor cell line did not express characteristic epithelial proteins such as cytokeratin and E-cadherin and failed to reproducibly establish contact-inhibited epithelial monolayers that formed a tight permeability barrier. In contrast, cultures of highly-purified pmCPECs expressed cytokeratin and displayed mature BCSFB characteristic junctional complexes as visualized by the junctional localization of E-cadherin, β-catenin and claudins-1, -2, -3 and -11. pmCPECs formed a tight barrier with low permeability and high electrical resistance. When grown in inverted filter cultures, pmCPECs were suitable to study T cell migration from the basolateral to the apical side of the BCSFB, thus correctly modelling in vivo migration of immune cells from the blood to the CSF. Conclusions Our study excludes inducible and tumor cell line mouse models as suitable to study immune functions of the BCSFB in vitro. Rather, we introduce here an in vitro inverted filter model of the primary mouse BCSFB suited to study the cellular and molecular mechanisms mediating immune cell migration across the BCSFB during immunosurveillance and neuroinflammation.
Collapse
Affiliation(s)
- Ivana Lazarevic
- Theodor Kocher Institute, University of Bern, Freiestrasse 1, 3012, Bern, Switzerland.
| | - Britta Engelhardt
- Theodor Kocher Institute, University of Bern, Freiestrasse 1, 3012, Bern, Switzerland.
| |
Collapse
|
28
|
Yau B, Mitchell AJ, Too LK, Ball HJ, Hunt NH. Interferon-γ-Induced Nitric Oxide Synthase-2 Contributes to Blood/Brain Barrier Dysfunction and Acute Mortality in Experimental Streptococcus pneumoniae Meningitis. J Interferon Cytokine Res 2015; 36:86-99. [PMID: 26418460 DOI: 10.1089/jir.2015.0078] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The proinflammatory cytokine interferon-gamma (IFNγ) recently was shown to play a crucial role in experimental pneumococcal meningitis (PM) pathogenesis, and we aimed in this study to investigate IFNγ-driven nitric oxide synthase-2 (NOS2)-mediated pathogenesis of murine PM. We demonstrate that costimulation of toll-like receptors and IFNγ receptors was synergistic for NOS2 expression in cultured murine microglia. Using an experimental PM model, wild-type mice treated with anti-IFNγ antibody, as well as IFNγ and NOS2 gene knockout (GKO) mice, were inoculated intracerebroventricularly with 10(3) colony-forming units of Streptococcus pneumoniae (WU2 strain). Mice were monitored daily during a 200-h disease course to assess survival rate and blood-brain barrier (BBB) permeability measured at 48 h. IFNγ deficiency was protective in PM, with an approximate 3-fold increase in survival rates in both antibody-treated and IFNγ GKO mice compared to controls (P < 0.01). At 48 h postinoculation, brain NOS2 mRNA expression was significantly increased in an IFNγ-dependent manner. Mortality was significantly delayed in NOS2 GKO mice compared to controls (P < 0.01), and BBB dysfunction was reduced by 54% in IFNγ GKO mice and abolished in NOS2 GKO. These data suggest that IFNγ-dependent expression of NOS2 in the brain contributes to BBB breakdown and early mortality in murine PM.
Collapse
Affiliation(s)
- Belinda Yau
- 1 Molecular Immunopathology Unit, School of Medical Sciences, Sydney Medical School, University of Sydney , Sydney, New South Wales, Australia
| | - Andrew J Mitchell
- 1 Molecular Immunopathology Unit, School of Medical Sciences, Sydney Medical School, University of Sydney , Sydney, New South Wales, Australia .,2 Centenary Institute for Cancer Medicine and Cell Biology , Newtown, New South Wales, Australia
| | - Lay Khoon Too
- 1 Molecular Immunopathology Unit, School of Medical Sciences, Sydney Medical School, University of Sydney , Sydney, New South Wales, Australia
| | - Helen J Ball
- 1 Molecular Immunopathology Unit, School of Medical Sciences, Sydney Medical School, University of Sydney , Sydney, New South Wales, Australia
| | - Nicholas H Hunt
- 1 Molecular Immunopathology Unit, School of Medical Sciences, Sydney Medical School, University of Sydney , Sydney, New South Wales, Australia
| |
Collapse
|
29
|
Bergmann S, Steinert M. From Single Cells to Engineered and Explanted Tissues: New Perspectives in Bacterial Infection Biology. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2015; 319:1-44. [PMID: 26404465 DOI: 10.1016/bs.ircmb.2015.06.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Cell culture techniques are essential for studying host-pathogen interactions. In addition to the broad range of single cell type-based two-dimensional cell culture models, an enormous amount of coculture systems, combining two or more different cell types, has been developed. These systems enable microscopic visualization and molecular analyses of bacterial adherence and internalization mechanisms and also provide a suitable setup for various biochemical, immunological, and pharmacological applications. The implementation of natural or synthetical scaffolds elevated the model complexity to the level of three-dimensional cell culture. Additionally, several transwell-based cell culture techniques are applied to study bacterial interaction with physiological tissue barriers. For keeping highly differentiated phenotype of eukaryotic cells in ex vivo culture conditions, different kinds of microgravity-simulating rotary-wall vessel systems are employed. Furthermore, the implementation of microfluidic pumps enables constant nutrient and gas exchange during cell cultivation and allows the investigation of long-term infection processes. The highest level of cell culture complexity is reached by engineered and explanted tissues which currently pave the way for a more comprehensive view on microbial pathogenicity mechanisms.
Collapse
Affiliation(s)
- Simone Bergmann
- Institute of Microbiology, Technische Universität Braunschweig, Braunschweig, Lower Saxony, Germany
| | - Michael Steinert
- Institute of Microbiology, Technische Universität Braunschweig, Braunschweig, Lower Saxony, Germany
| |
Collapse
|
30
|
Lukaszewicz AC, Faivre V, Bout H, Gayat E, Lagergren T, Damoisel C, Bresson D, Paugam C, Mantz J, Payen D. Multicenter testing of the rapid quantification of radical oxygen species in cerebrospinal fluid to diagnose bacterial meningitis. PLoS One 2015; 10:e0128286. [PMID: 26011286 PMCID: PMC4444193 DOI: 10.1371/journal.pone.0128286] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Accepted: 04/27/2015] [Indexed: 01/26/2023] Open
Abstract
Purpose Meningitis is a serious concern after traumatic brain injury (TBI) or neurosurgery. This study tested the level of reactive oxygen species (ROS) in cerebrospinal fluid (CSF) to diagnose meningitis in febrile patients several days after trauma or surgery. Methods Febrile patients (temperature > 38°C) after TBI or neurosurgery were included prospectively. ROS were measured in CSF within 4 hours after sampling using luminescence in the basal state and after cell stimulation with phorbol 12-myristate 13-acetate (PMA). The study was conducted in a single-center cohort 1 (n = 54, training cohort) and then in a multicenter cohort 2 (n = 136, testing cohort) in the Intensive Care and Neurosurgery departments of two teaching hospitals. The performance of the ROS test was compared with classical CSF criteria, and a diagnostic decision for meningitis was made by two blinded experts. Results The production of ROS was higher in the CSF of meningitis patients than in non-infected CSF, both in the basal state and after PMA stimulation. In cohort 1, ROS production was associated with a diagnosis of meningitis with an AUC of 0.814 (95% confidence interval (CI) [0.684–0.820]) for steady-state and 0.818 (95% CI [0.655–0.821]) for PMA-activated conditions. The best threshold value obtained in cohort 1 was tested in cohort 2 and showed high negative predictive values and low negative likelihood ratios of 0.94 and 0.36 in the basal state, respectively, and 0.96 and 0.24 after PMA stimulation, respectively. Conclusion The ROS test in CSF appeared suitable for eliminating a diagnosis of bacterial meningitis.
Collapse
Affiliation(s)
- Anne-Claire Lukaszewicz
- Department of Anesthesiology and Critical Care, Lariboisière Hospital, Univ Paris Diderot, Sorbonne Paris Cité, Paris, France
- * E-mail:
| | - Valérie Faivre
- Department of Anesthesiology and Critical Care, Lariboisière Hospital, Univ Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Hélène Bout
- Department of Anesthesiology and Critical Care, Beaujon Hospital, Univ Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Etienne Gayat
- Department of Anesthesiology and Critical Care, Lariboisière Hospital, Univ Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Tina Lagergren
- Department of Anesthesiology and Critical Care, Lariboisière Hospital, Univ Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Charles Damoisel
- Department of Anesthesiology and Critical Care, Lariboisière Hospital, Univ Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Damien Bresson
- Department of Neurosurgery, Lariboisière Hospital, Univ Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Catherine Paugam
- Department of Anesthesiology and Critical Care, Beaujon Hospital, Univ Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Jean Mantz
- Department of Anesthesiology and Critical Care, Beaujon Hospital, Univ Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Didier Payen
- Department of Anesthesiology and Critical Care, Lariboisière Hospital, Univ Paris Diderot, Sorbonne Paris Cité, Paris, France
| |
Collapse
|
31
|
Characterization of efflux transport proteins of the human choroid plexus papilloma cell line HIBCPP, a functional in vitro model of the blood-cerebrospinal fluid barrier. Pharm Res 2015; 32:2973-82. [PMID: 25986174 DOI: 10.1007/s11095-015-1679-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Accepted: 03/18/2015] [Indexed: 01/06/2023]
Abstract
PURPOSE To characterize the human choroid plexus (CP) papilloma cell line HIBCPP with respect to ABC export protein expression and function in order to evaluate its use as an in vitro model to study carrier-mediated transport processes at the CP. METHODS Expression profiles of ABC transporters were studied by quantitative real-time PCR and Western Blot analysis. Functionality of transporters was investigated by means of uptake experiments and permeation studies carried out on permeable filter systems. In addition, immunohistochemistry served to study localization of ABCC1 and ABCC4. RESULTS Both qPCR and Western Blot revealed that ABC transporters known to be expressed in CP are also expressed in HIBCPP cells. Immunohistochemistry confirmed basolateral expression of ABCC1. Functionality of ABCC1, ABCC4, ABCB1 and ABCG2 could be shown in uptake assays. CONCLUSIONS Altogether, the HIBCPP cells promise to be a functional and relevant in vitro tool to investigate transport processes at the blood-cerebrospinal fluid barrier.
Collapse
|
32
|
Demeestere D, Libert C, Vandenbroucke RE. Clinical implications of leukocyte infiltration at the choroid plexus in (neuro)inflammatory disorders. Drug Discov Today 2015; 20:928-41. [PMID: 25979470 DOI: 10.1016/j.drudis.2015.05.003] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Revised: 04/30/2015] [Accepted: 05/05/2015] [Indexed: 12/29/2022]
Abstract
The choroid plexus (CP) is a highly vascularized organ located in the brain ventricles and contains a single epithelial cell layer forming the blood-cerebrospinal fluid barrier (BCSFB). This barrier is crucial for immune surveillance in health and is an underestimated gate for entry of immune cells during numerous inflammatory disorders. Several of these disorders are accompanied by disturbance of the BCSFB and increased leukocyte infiltration, which affects neuroinflammation. Understanding the mechanism of immune cell entry at the CP might lead to identification of new therapeutic targets. Here, we focus on current knowledge of leukocyte infiltration at the CP in inflammatory conditions and its therapeutic implications.
Collapse
Affiliation(s)
- Delphine Demeestere
- Inflammation Research Center, VIB, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Claude Libert
- Inflammation Research Center, VIB, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Roosmarijn E Vandenbroucke
- Inflammation Research Center, VIB, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium.
| |
Collapse
|
33
|
Schwerk C, Tenenbaum T, Kim KS, Schroten H. The choroid plexus-a multi-role player during infectious diseases of the CNS. Front Cell Neurosci 2015; 9:80. [PMID: 25814932 PMCID: PMC4357259 DOI: 10.3389/fncel.2015.00080] [Citation(s) in RCA: 111] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 02/23/2015] [Indexed: 12/22/2022] Open
Abstract
The choroid plexus (CP) is the source of cerebrospinal fluid (CSF) production and location of the blood-CSF barrier (BCSFB), which is constituted by the epithelial cells of the CP. Several infectious pathogens including viruses, bacteria, fungi and parasites cross the BCSFB to enter the central nervous system (CNS), ultimately leading to inflammatory infectious diseases like meningitis and meningoencephalitis. The CP responds to this challenge by the production of chemokines and cytokines as well as alterations of the barrier function of the BCSFB. During the course of CNS infectious disease host immune cells enter the CNS, eventually contributing to the cellular damage caused by the disease. Additional complications, which are in certain cases caused by choroid plexitis, can arise due to the response of the CP to the pathogens. In this review we will give an overview on the multiple functions of the CP during brain infections highlighting the CP as a multi-role player during infectious diseases of the CNS. In this context the importance of tools for investigation of these CP functions and a possible suitability of the CP as therapeutic target will be discussed.
Collapse
Affiliation(s)
- Christian Schwerk
- Department of Pediatrics, Pediatric Infectious Diseases, Medical Faculty Mannheim, Heidelberg University Mannheim, Germany
| | - Tobias Tenenbaum
- Department of Pediatrics, Pediatric Infectious Diseases, Medical Faculty Mannheim, Heidelberg University Mannheim, Germany
| | - Kwang Sik Kim
- Division of Pediatric Infectious Diseases, Johns Hopkins University School of Medicine Baltimore, MD, USA
| | - Horst Schroten
- Department of Pediatrics, Pediatric Infectious Diseases, Medical Faculty Mannheim, Heidelberg University Mannheim, Germany
| |
Collapse
|
34
|
Borkowski J, Li L, Steinmann U, Quednau N, Stump-Guthier C, Weiss C, Findeisen P, Gretz N, Ishikawa H, Tenenbaum T, Schroten H, Schwerk C. Neisseria meningitidis elicits a pro-inflammatory response involving IκBζ in a human blood-cerebrospinal fluid barrier model. J Neuroinflammation 2014; 11:163. [PMID: 25347003 PMCID: PMC4172843 DOI: 10.1186/s12974-014-0163-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Accepted: 08/29/2014] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND The human-specific, Gram-negative bacterium Neisseria meningitidis (Nm) is a leading cause of bacterial meningitis worldwide. The blood-cerebrospinal fluid barrier (BCSFB), which is constituted by the epithelial cells of the choroid plexus (CP), has been suggested as one of the potential entry sites of Nm into the CSF and can contribute to the inflammatory response during infectious diseases of the brain. Toll-like receptors (TLRs) are involved in mediating signal transduction caused by the pathogens. METHODS Using a recently established in vitro model of the human BCSFB based on human malignant CP papilloma (HIBCPP) cells we investigated the cellular response of HIBCPP cells challenged with the meningitis-causing Nm strain, MC58, employing transcriptome and RT-PCR analysis, cytokine bead array, and enzyme-linked immunosorbent assay (ELISA). In comparison, we analyzed the answer to the closely related unencapsulated carrier isolate Nm α14. The presence of TLRs in HIBCPP and their role during signal transduction caused by Nm was studied by RT-PCR and the use of specific agonists and mutant bacteria. RESULTS We observed a stronger transcriptional response after infection with strain MC58, in particular with its capsule-deficient mutant MC58siaD-, which correlated with bacterial invasion levels. Expression evaluation and Gene Set Enrichment Analysis pointed to a NFκB-mediated pro-inflammatory immune response involving up-regulation of the transcription factor IκBζ. Infected cells secreted significant levels of pro-inflammatory chemokines and cytokines, including, among others, IL8, CXCL1-3, and the IκBζ target gene product IL6. The expression profile of pattern recognition receptors in HIBCPP cells and the response to specific agonists indicates that TLR2/TLR6, rather than TLR4 or TLR2/TLR1, is involved in the cellular reaction following Nm infection. CONCLUSIONS Our data show that Nm can initiate a pro-inflammatory response in human CP epithelial cells probably involving TLR2/TLR6 signaling and the transcriptional regulator IκBζ.
Collapse
|
35
|
Ding P, Wu H, Fang L, Wu M, Liu R. Transmigration and phagocytosis of macrophages in an airway infection model using four-dimensional techniques. Am J Respir Cell Mol Biol 2014; 51:1-10. [PMID: 24678629 DOI: 10.1165/rcmb.2013-0390te] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
During infection, recruited phagocytes transmigrate across the epithelium to remove the pathogens deposited on the airway surface. However, it is difficult to directly observe cellular behaviors (e.g., transmigration) in single-cell layer cultures or in live animals. Combining a three-dimensional (3D) cell coculture model mimicking airway infection with time-lapse confocal imaging as a four-dimensional technique allowed us to image the behaviors of macrophages in 3D over time. The airway infection model was moved to a glass-bottomed dish for live-cell imaging by confocal laser scanning microscopy. Using time-lapse confocal imaging, we recorded macrophages transmigrating across the polyethylene terephthalate (PET) membrane of the inserts through the 5-μm pores in the PET membrane. Macrophages on the apical side of the insert exhibited essentially three types of movements, one of which was transmigrating across the epithelial cell monolayer and arriving at the surface of monolayer. We found that adding Staphylococcus aureus to the model increased the transmigration index but not the transmigration time of the macrophages. Only in the presence of S. aureus were the macrophages able to transmigrate across the epithelial cell monolayer. Apical-to-basal transmigration of macrophages was visualized dynamically. We also imaged the macrophages phagocytizing S. aureus deposited on the surface of the monolayer in the airway infection model. This work provides a useful tool to study the cellular behaviors of immune cells spatially and temporally during infection.
Collapse
|
36
|
Peddie CJ, Collinson LM. Exploring the third dimension: Volume electron microscopy comes of age. Micron 2014; 61:9-19. [DOI: 10.1016/j.micron.2014.01.009] [Citation(s) in RCA: 245] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Revised: 01/30/2014] [Accepted: 01/30/2014] [Indexed: 12/12/2022]
|
37
|
Gorina R, Lyck R, Vestweber D, Engelhardt B. β2 integrin-mediated crawling on endothelial ICAM-1 and ICAM-2 is a prerequisite for transcellular neutrophil diapedesis across the inflamed blood-brain barrier. THE JOURNAL OF IMMUNOLOGY 2013; 192:324-37. [PMID: 24259506 DOI: 10.4049/jimmunol.1300858] [Citation(s) in RCA: 128] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
In acute neuroinflammatory states such as meningitis, neutrophils cross the blood-brain barrier (BBB) and contribute to pathological alterations of cerebral function. The mechanisms that govern neutrophil migration across the BBB are ill defined. Using live-cell imaging, we show that LPS-stimulated BBB endothelium supports neutrophil arrest, crawling, and diapedesis under physiological flow in vitro. Investigating the interactions of neutrophils from wild-type, CD11a(-/-), CD11b(-/-), and CD18(null) mice with wild-type, junctional adhesion molecule-A(-/-), ICAM-1(null), ICAM-2(-/-), or ICAM-1(null)/ICAM-2(-/-) primary mouse brain microvascular endothelial cells, we demonstrate that neutrophil arrest, polarization, and crawling required G-protein-coupled receptor-dependent activation of β2 integrins and binding to endothelial ICAM-1. LFA-1 was the prevailing ligand for endothelial ICAM-1 in mediating neutrophil shear resistant arrest, whereas Mac-1 was dominant over LFA-1 in mediating neutrophil polarization on the BBB in vitro. Neutrophil crawling was mediated by endothelial ICAM-1 and ICAM-2 and neutrophil LFA-1 and Mac-1. In the absence of crawling, few neutrophils maintained adhesive interactions with the BBB endothelium by remaining either stationary on endothelial junctions or displaying transient adhesive interactions characterized by a fast displacement on the endothelium along the direction of flow. Diapedesis of stationary neutrophils was unchanged by the lack of endothelial ICAM-1 and ICAM-2 and occurred exclusively via the paracellular pathway. Crawling neutrophils, although preferentially crossing the BBB through the endothelial junctions, could additionally breach the BBB via the transcellular route. Thus, β2 integrin-mediated neutrophil crawling on endothelial ICAM-1 and ICAM-2 is a prerequisite for transcellular neutrophil diapedesis across the inflamed BBB.
Collapse
Affiliation(s)
- Roser Gorina
- Theodor Kocher Institute, University of Bern, Bern CH-3012, Switzerland
| | | | | | | |
Collapse
|