1
|
Knauer N, Meschaninova M, Muhammad S, Hänggi D, Majoral JP, Kahlert UD, Kozlov V, Apartsin EK. Effects of Dendrimer-microRNA Nanoformulations against Glioblastoma Stem Cells. Pharmaceutics 2023; 15:pharmaceutics15030968. [PMID: 36986829 PMCID: PMC10056969 DOI: 10.3390/pharmaceutics15030968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/06/2023] [Accepted: 03/15/2023] [Indexed: 03/19/2023] Open
Abstract
Glioblastoma is a rapidly progressing tumor quite resistant to conventional treatment. These features are currently assigned to a self-sustaining population of glioblastoma stem cells. Anti-tumor stem cell therapy calls for a new means of treatment. In particular, microRNA-based treatment is a solution, which in turn requires specific carriers for intracellular delivery of functional oligonucleotides. Herein, we report a preclinical in vitro validation of antitumor activity of nanoformulations containing antitumor microRNA miR-34a and microRNA-21 synthetic inhibitor and polycationic phosphorus and carbosilane dendrimers. The testing was carried out in a panel of glioblastoma and glioma cell lines, glioblastoma stem-like cells and induced pluripotent stem cells. We have shown dendrimer-microRNA nanoformulations to induce cell death in a controllable manner, with cytotoxic effects being more pronounced in tumor cells than in non-tumor stem cells. Furthermore, nanoformulations affected the expression of proteins responsible for interactions between the tumor and its immune microenvironment: surface markers (PD-L1, TIM3, CD47) and IL-10. Our findings evidence the potential of dendrimer-based therapeutic constructions for the anti-tumor stem cell therapy worth further investigation.
Collapse
Affiliation(s)
- Nadezhda Knauer
- Research Institute of Fundamental and Clinical Immunology, 630099 Novosibirsk, Russia
- Clinic for Neurosurgery, Medical Faculty, Heinrich-Heine University Medical Center Düsseldorf, 40225 Düsseldorf, Germany
| | - Mariya Meschaninova
- Institute of Chemical Biology and Fundamental Medicine SB RAS, 630090 Novosibirsk, Russia
| | - Sajjad Muhammad
- Clinic for Neurosurgery, Medical Faculty, Heinrich-Heine University Medical Center Düsseldorf, 40225 Düsseldorf, Germany
| | - Daniel Hänggi
- Clinic for Neurosurgery, Medical Faculty, Heinrich-Heine University Medical Center Düsseldorf, 40225 Düsseldorf, Germany
| | - Jean-Pierre Majoral
- Laboratoire de Chimie de Coordination, CNRS, 205 Route de Narbonne, CEDEX 04, 31077 Toulouse, France
| | - Ulf Dietrich Kahlert
- Molecular and Experimental Surgery, Clinic for General-, Visceral-, Vascular-, and Transplant-Surgery, Medical Faculty, University Hospital Magdeburg, 39120 Magdeburg, Germany
| | - Vladimir Kozlov
- Research Institute of Fundamental and Clinical Immunology, 630099 Novosibirsk, Russia
| | - Evgeny K. Apartsin
- Univ. Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, 33600 Pessac, France
- Correspondence:
| |
Collapse
|
2
|
Korbecki J, Rębacz-Maron E, Kupnicka P, Chlubek D, Baranowska-Bosiacka I. Synthesis and Significance of Arachidonic Acid, a Substrate for Cyclooxygenases, Lipoxygenases, and Cytochrome P450 Pathways in the Tumorigenesis of Glioblastoma Multiforme, Including a Pan-Cancer Comparative Analysis. Cancers (Basel) 2023; 15:cancers15030946. [PMID: 36765904 PMCID: PMC9913267 DOI: 10.3390/cancers15030946] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/25/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
Glioblastoma multiforme (GBM) is one of the most aggressive gliomas. New and more effective therapeutic approaches are being sought based on studies of the various mechanisms of GBM tumorigenesis, including the synthesis and metabolism of arachidonic acid (ARA), an omega-6 polyunsaturated fatty acid (PUFA). PubMed, GEPIA, and the transcriptomics analysis carried out by Seifert et al. were used in writing this paper. In this paper, we discuss in detail the biosynthesis of this acid in GBM tumors, with a special focus on certain enzymes: fatty acid desaturase (FADS)1, FADS2, and elongation of long-chain fatty acids family member 5 (ELOVL5). We also discuss ARA metabolism, particularly its release from cell membrane phospholipids by phospholipase A2 (cPLA2, iPLA2, and sPLA2) and its processing by cyclooxygenases (COX-1 and COX-2), lipoxygenases (5-LOX, 12-LOX, 15-LOX-1, and 15-LOX-2), and cytochrome P450. Next, we discuss the significance of lipid mediators synthesized from ARA in GBM cancer processes, including prostaglandins (PGE2, PGD2, and 15-deoxy-Δ12,14-PGJ2 (15d-PGJ2)), thromboxane A2 (TxA2), oxo-eicosatetraenoic acids, leukotrienes (LTB4, LTC4, LTD4, and LTE4), lipoxins, and many others. These lipid mediators can increase the proliferation of GBM cancer cells, cause angiogenesis, inhibit the anti-tumor response of the immune system, and be responsible for resistance to treatment.
Collapse
Affiliation(s)
- Jan Korbecki
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland
| | - Ewa Rębacz-Maron
- Department of Ecology and Anthropology, Institute of Biology, University of Szczecin, Wąska 13, 71-415 Szczecin, Poland
| | - Patrycja Kupnicka
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland
| | - Dariusz Chlubek
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland
| | - Irena Baranowska-Bosiacka
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland
- Correspondence: ; Tel.: +48-914-661-515
| |
Collapse
|
3
|
Pratt J, Haidara K, Annabi B. MT1-MMP Expression Levels and Catalytic Functions Dictate LDL Receptor-Related Protein-1 Ligand Internalization Capacity in U87 Glioblastoma Cells. Int J Mol Sci 2022; 23:ijms232214214. [PMID: 36430705 PMCID: PMC9692856 DOI: 10.3390/ijms232214214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 11/10/2022] [Accepted: 11/14/2022] [Indexed: 11/19/2022] Open
Abstract
Modulations in cell surface receptor ectodomain proteolytic shedding impact on receptor function and cancer biomarker expression. As such, heavily pursued therapeutic avenues have exploited LDL receptor-related protein-1 (LRP-1)-mediated capacity in internalizing Angiopep-2 (An2), a brain-penetrating peptide that allows An2-drug conjugates to cross the blood-brain tumor barrier (BBTB). Given that LRP-1 is proteolytically shed from the cell surface through matrix metalloproteinase (MMP) activity, the balance between MMP expression/function and LRP-1-mediated An2 internalization is unknown. In this study, we found that membrane type-1 (MT1)-MMP expression increased from grade 1 to 4 brain tumors, while that of LRP-1 decreased inversely. MMP pharmacological inhibitors such as Ilomastat, Doxycycline and Actinonin increased in vitro An2 internalization by up to 2.5 fold within a human grade IV-derived U87 glioblastoma cell model. Transient siRNA-mediated MT1-MMP gene silencing resulted in increased basal An2 cell surface binding and intracellular uptake, while recombinant MT1-MMP overexpression reduced both cell surface LRP-1 expression as well as An2 internalization. The addition of Ilomastat to cells overexpressing recombinant MT1-MMP restored LRP-1 expression at the cell surface and An2 uptake to levels comparable to those observed in control cells. Collectively, our data suggest that MT1-MMP expression status dictates An2-mediated internalization processes in part by regulating cell surface LRP-1 functions. Such evidence prompts preclinical evaluations of combined MMP inhibitors/An2-drug conjugate administration to potentially increase the treatment of high-MT1-MMP-expressing brain tumors.
Collapse
|
4
|
Huldani H, Rashid AI, Turaev KN, Opulencia MJC, Abdelbasset WK, Bokov DO, Mustafa YF, Al-Gazally ME, Hammid AT, Kadhim MM, Ahmadi SH. Concanavalin A as a promising lectin-based anti-cancer agent: the molecular mechanisms and therapeutic potential. Cell Commun Signal 2022; 20:167. [PMID: 36289525 PMCID: PMC9597983 DOI: 10.1186/s12964-022-00972-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 09/17/2022] [Indexed: 11/29/2022] Open
Abstract
Concanavalin A (ConA), the most studied plant lectin, has been known as a potent anti-neoplastic agent for a long time. Since initial reports on its capacity to kill cancer cells, much attention has been devoted to unveiling the lectin's exact molecular mechanism. It has been revealed that ConA can bind to several receptors on cancerous and normal cells and modulate the related signaling cascades. The most studied host receptor for ConA is MT1-MMP, responsible for most of the lectin's modulations, ranging from activating immune cells to killing tumor cells. In this study, in addition to studying the effect of ConA on signaling and immune cell function, we will focus on the most up-to-date advancements that unraveled the molecular mechanisms by which ConA can induce autophagy and apoptosis in various cancer cell types, where it has been found that P73 and JAK/STAT3 are the leading players. Moreover, we further discuss the main signaling molecules causing liver injury as the most significant side effect of the lectin injection. Altogether, these findings may shed light on the complex signaling pathways controlling the diverse responses created via ConA treatment, thereby modulating these complex networks to create more potent lectin-based cancer therapy. Video Abstract
Collapse
Affiliation(s)
- Huldani Huldani
- grid.443126.60000 0001 2193 0299Department of Physiology, Faculty of Medicine, Lambung Mangkurat University, Banjarmasin, South Kalimantan Indonesia
| | - Ahmed Ibraheem Rashid
- grid.427646.50000 0004 0417 7786Department of Pharmacology, Collage of Medicine, University of Babylon, Hilla, Iraq
| | - Khikmatulla Negmatovich Turaev
- grid.444694.f0000 0004 0403 0119Department of Clinical Pharmacology, Samarkand State Medical Institute, Samarkand, Uzbekistan ,grid.513581.b0000 0004 6356 9173Department of Scientific Affairs, Tashkent State Dental Institute, Makhtumkuli Street 103, Tashkent, Uzbekistan 100047
| | | | - Walid Kamal Abdelbasset
- grid.449553.a0000 0004 0441 5588Department of Health and Rehabilitation Sciences, College of Applied Medical Sciences, Prince Sattam Bin Abdulaziz University, Al Kharj, Saudi Arabia ,grid.7776.10000 0004 0639 9286Department of Physical Therapy, Kasr Al-Aini Hospital, Cairo University, Giza, Egypt
| | - Dmitry Olegovich Bokov
- grid.448878.f0000 0001 2288 8774Institute of Pharmacy, Sechenov First Moscow State Medical University, 8 Trubetskaya St., Bldg. 2, Moscow, 119991 Russian Federation ,grid.466474.3Laboratory of Food Chemistry, Federal Research Center of Nutrition, Biotechnology and Food Safety, 2/14 Ustyinsky Pr, Moscow, 109240 Russian Federation
| | - Yasser Fakri Mustafa
- grid.411848.00000 0000 8794 8152Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul-41001, Iraq
| | | | - Ali Thaeer Hammid
- grid.513683.a0000 0004 8495 7394Computer Engineering Techniques Department, Faculty of Information Technology, Imam Ja’afar Al-Sadiq University, Baghdad, Iraq
| | - Mustafa M. Kadhim
- Department of Dentistry, Kut University College, Kut, Wasit 52001 Iraq ,grid.444971.b0000 0004 6023 831XCollege of Technical Engineering, The Islamic University, Najaf, Iraq ,Department of Pharmacy, Osol Aldeen University College, Baghdad, Iraq
| | - Seyed Hossein Ahmadi
- grid.411705.60000 0001 0166 0922Research Center for Cell and Molecular Sciences, School of Medicine, Tehran University of Medical Sciences, PO Box 1417613151, Tehran, Iran
| |
Collapse
|
5
|
Walter Y, Hubbard A, Benoit A, Jank E, Salas O, Jordan D, Ekpenyong A. Development of In Vitro Assays for Advancing Radioimmunotherapy against Brain Tumors. Biomedicines 2022; 10:biomedicines10081796. [PMID: 35892697 PMCID: PMC9394411 DOI: 10.3390/biomedicines10081796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 07/08/2022] [Accepted: 07/21/2022] [Indexed: 11/16/2022] Open
Abstract
Glioblastoma (GBM) is the most common primary brain tumor. Due to high resistance to treatment, local invasion, and a high risk of recurrence, GBM patient prognoses are often dismal, with median survival around 15 months. The current standard of care is threefold: surgery, radiation therapy, and chemotherapy with temozolomide (TMZ). However, patient survival has only marginally improved. Radioimmunotherapy (RIT) is a fourth modality under clinical trials and aims at combining immunotherapeutic agents with radiotherapy. Here, we develop in vitro assays for the rapid evaluation of RIT strategies. Using a standard cell irradiator and an Electric Cell Impedance Sensor, we quantify cell migration following the combination of radiotherapy and chemotherapy with TMZ and RIT with durvalumab, a PD-L1 immune checkpoint inhibitor. We measure cell survival using a cloud-based clonogenic assay. Irradiated T98G and U87 GBM cells migrate significantly (p < 0.05) more than untreated cells in the first 20−40 h post-treatment. Addition of TMZ increases migration rates for T98G at 20 Gy (p < 0.01). Neither TMZ nor durvalumab significantly change cell survival in 21 days post-treatment. Interestingly, durvalumab abolishes the enhanced migration effect, indicating possible potency against local invasion. These results provide parameters for the rapid supplementary evaluation of RIT against brain tumors.
Collapse
Affiliation(s)
- Yohan Walter
- Department of Physics, Creighton University, Omaha, NE 68178, USA; (Y.W.); (A.H.); (A.B.); (E.J.); (O.S.)
| | - Anne Hubbard
- Department of Physics, Creighton University, Omaha, NE 68178, USA; (Y.W.); (A.H.); (A.B.); (E.J.); (O.S.)
| | - Allie Benoit
- Department of Physics, Creighton University, Omaha, NE 68178, USA; (Y.W.); (A.H.); (A.B.); (E.J.); (O.S.)
| | - Erika Jank
- Department of Physics, Creighton University, Omaha, NE 68178, USA; (Y.W.); (A.H.); (A.B.); (E.J.); (O.S.)
| | - Olivia Salas
- Department of Physics, Creighton University, Omaha, NE 68178, USA; (Y.W.); (A.H.); (A.B.); (E.J.); (O.S.)
| | - Destiny Jordan
- Department of Biology, Creighton University, Omaha, NE 68178, USA;
| | - Andrew Ekpenyong
- Department of Physics, Creighton University, Omaha, NE 68178, USA; (Y.W.); (A.H.); (A.B.); (E.J.); (O.S.)
- Correspondence: ; Tel.: +1-402-280-2208
| |
Collapse
|
6
|
An NF-κB- and Therapy-Related Regulatory Network in Glioma: A Potential Mechanism of Action for Natural Antiglioma Agents. Biomedicines 2022; 10:biomedicines10050935. [PMID: 35625673 PMCID: PMC9138293 DOI: 10.3390/biomedicines10050935] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 04/14/2022] [Accepted: 04/17/2022] [Indexed: 01/27/2023] Open
Abstract
High-grade gliomas are among the most aggressive malignancies, with significantly low median survival. Recent experimental research in the field has highlighted the importance of natural substances as possible antiglioma agents, also known for their antioxidant and anti-inflammatory action. We have previously shown that natural substances target several surface cluster of differentiation (CD) markers in glioma cells, as part of their mechanism of action. We analyzed the genome-wide NF-κB binding sites residing in consensus regulatory elements, based on ENCODE data. We found that NF-κB binding sites reside adjacent to the promoter regions of genes encoding CD markers targeted by antiglioma agents (namely, CD15/FUT4, CD28, CD44, CD58, CD61/SELL, CD71/TFRC, and CD122/IL2RB). Network and pathway analysis revealed that the markers are associated with a core network of genes that, altogether, participate in processes that associate tumorigenesis with inflammation and immune evasion. Our results reveal a core regulatory network that can be targeted in glioblastoma, with apparent implications in individuals that suffer from this devastating malignancy.
Collapse
|
7
|
Lu V, Tennyson M, Zhang J, Khan W. Mesenchymal Stem Cell-Derived Extracellular Vesicles in Tendon and Ligament Repair-A Systematic Review of In Vivo Studies. Cells 2021; 10:cells10102553. [PMID: 34685532 PMCID: PMC8533909 DOI: 10.3390/cells10102553] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/18/2021] [Accepted: 09/22/2021] [Indexed: 12/23/2022] Open
Abstract
Tendon and ligament injury poses an increasingly large burden to society. This systematic review explores whether mesenchymal stem cell-derived extracellular vesicles (MSC-EVs) can facilitate tendon/ligament repair in vivo. On 26 May 2021, a systematic search was performed on PubMed, Web of Science, Cochrane Library, Embase, to identify all studies that utilised MSC-EVs for tendon/ligament healing. Studies administering EVs isolated from human or animal-derived MSCs into in vivo models of tendon/ligament injury were included. In vitro, ex vivo, and in silico studies were excluded, and studies without a control group were excluded. Out of 383 studies identified, 11 met the inclusion criteria. Data on isolation, the characterisation of MSCs and EVs, and the in vivo findings in in vivo models were extracted. All included studies reported better tendon/ligament repair following MSC-EV treatment, but not all found improvements in every parameter measured. Biomechanics, an important index for tendon/ligament repair, was reported by only eight studies, from which evidence linking biomechanical alterations to functional improvement was weak. Nevertheless, the studies in this review showcased the safety and efficacy of MSC-EV therapy for tendon/ligament healing, by attenuating the initial inflammatory response and accelerating tendon matrix regeneration, providing a basis for potential clinical use in tendon/ligament repair.
Collapse
Affiliation(s)
- Victor Lu
- School of Clinical Medicine, University of Cambridge, Cambridge CB2 0SP, UK; (V.L.); (J.Z.)
| | - Maria Tennyson
- Department of Trauma and Orthopaedic Surgery, Addenbrooke’s Hospital, University of Cambridge, Cambridge CB2 0QQ, UK;
| | - James Zhang
- School of Clinical Medicine, University of Cambridge, Cambridge CB2 0SP, UK; (V.L.); (J.Z.)
| | - Wasim Khan
- Department of Trauma and Orthopaedic Surgery, Addenbrooke’s Hospital, University of Cambridge, Cambridge CB2 0QQ, UK;
- Correspondence: ; Tel.: +44-(0)-7791-025554
| |
Collapse
|
8
|
Yin D, Jin G, He H, Zhou W, Fan Z, Gong C, Zhao J, Xiong H. Celecoxib reverses the glioblastoma chemo-resistance to temozolomide through mitochondrial metabolism. Aging (Albany NY) 2021; 13:21268-21282. [PMID: 34497154 PMCID: PMC8457578 DOI: 10.18632/aging.203443] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Accepted: 07/01/2021] [Indexed: 01/04/2023]
Abstract
Temozolomide (TMZ) is used for the treatment of high-grade gliomas. Acquired chemoresistance is a serious limitation to the therapy with more than 90% of recurrent gliomas showing little response to a second line of chemotherapy. Therefore, it is necessary to explore an alternative strategy to enhance the sensitivity of glioblastoma (GBM) to TMZ in neuro-oncology. Celecoxib is well known and widely used in anti-inflammatory and analgesic. Cyclooxygenase-2 (COX-2) expression has been linked to the prognosis, angiogenesis, and radiation sensitivity of many malignancies such as primitive neuroectodermal tumor and advanced melanoma. The objective of this study was to explore the chemotherapy-sensitizing effect of celecoxib on TMZ in GBM cells and its potential mechanisms. From the study, we found that the combination therapy (TMZ 250uM+celecoxib 30uM) showed excellent inhibitory effect to the GBM, the LN229 and LN18, which were the TMZ resistant GBM cell lines. Our data suggest that the combination therapy may inhibits cell proliferation, increases apoptosis, and increases the autophagy on LN229 and LN18. The potential molecular mechanisms were related to mitochondrial metabolism and respiratory chain inhibition.
Collapse
Affiliation(s)
- Delong Yin
- Department of Orthopaedics, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China
| | - Guoqing Jin
- Department of Intensive Care Unit, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China
| | - Hong He
- Department of Obstetrics and Gynecology, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China
| | - Wei Zhou
- Department of Orthopaedics, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China
| | - Zhenbo Fan
- Department of Orthopaedics, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China
| | - Chen Gong
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jing Zhao
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Huihua Xiong
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
9
|
Cyclooxygenase Inhibition Alters Proliferative, Migratory, and Invasive Properties of Human Glioblastoma Cells In Vitro. Int J Mol Sci 2021; 22:ijms22094297. [PMID: 33919029 PMCID: PMC8122446 DOI: 10.3390/ijms22094297] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 03/02/2021] [Accepted: 03/11/2021] [Indexed: 02/06/2023] Open
Abstract
Prostaglandin E2 (PGE2) is known to increase glioblastoma (GBM) cell proliferation and migration while cyclooxygenase (COX) inhibition decreases proliferation and migration. The present study investigated the effects of COX inhibitors and PGE2 receptor antagonists on GBM cell biology. Cells were grown with inhibitors and dose response, viable cell counting, flow cytometry, cell migration, gene expression, Western blotting, and gelatin zymography studies were performed. The stimulatory effects of PGE2 and the inhibitory effects of ibuprofen (IBP) were confirmed in GBM cells. The EP2 and EP4 receptors were identified as important mediators of the actions of PGE2 in GBM cells. The concomitant inhibition of EP2 and EP4 caused a significant decrease in cell migration which was not reverted by exogenous PGE2. In T98G cells exogenous PGE2 increased latent MMP2 gelatinolytic activity. The inhibition of COX1 or COX2 caused significant alterations in MMP2 expression and gelatinolytic activity in GBM cells. These findings provide further evidence for the importance of PGE2 signalling through the EP2 and the EP4 receptor in the control of GBM cell biology. They also support the hypothesis that a relationship exists between COX1 and MMP2 in GBM cells which merits further investigation as a novel therapeutic target for drug development.
Collapse
|
10
|
Olivier C, Oliver L, Lalier L, Vallette FM. Drug Resistance in Glioblastoma: The Two Faces of Oxidative Stress. Front Mol Biosci 2021; 7:620677. [PMID: 33585565 PMCID: PMC7873048 DOI: 10.3389/fmolb.2020.620677] [Citation(s) in RCA: 86] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 12/08/2020] [Indexed: 12/26/2022] Open
Abstract
Glioblastomas (GBM) are the most common primary brain tumor with a median survival of 15 months. A population of cells with stem cell properties (glioblastoma stem cells, GSCs) drives the initiation and progression of GBM and is localized in specialized microenvironments which support their behavior. GBM are characterized as extremely resistant to therapy, resulting in tumor recurrence. Reactive oxygen species (ROS) control the cellular stability by influencing different signaling pathways. Normally, redox systems prevent cell oxidative damage; however, in gliomagenesis, the cellular redox mechanisms are highly impaired. Herein we review the dual nature of the redox status in drug resistance. ROS generation in tumor cells affects the cell cycle and is involved in tumor progression and drug resistance in GBM. However, excess ROS production has been found to induce cell death programs such as apoptosis and autophagy. Since GBM cells have a high metabolic rate and produce high levels of ROS, metabolic adaptation in these cells plays an essential role in resistance to oxidative stress-induced cell death. Finally, the microenvironment with the stromal components participates in the enhancement of the oxidative stress to promote tumor progression and drug resistance.
Collapse
Affiliation(s)
- Christophe Olivier
- Faculté des Sciences Pharmaceutiques et Biologiques, Nantes, France.,Université de Nantes, INSERM, CRCINA, Nantes, France
| | - Lisa Oliver
- Université de Nantes, INSERM, CRCINA, Nantes, France.,CHU de Nantes, Nantes, France
| | - Lisenn Lalier
- Université de Nantes, INSERM, CRCINA, Nantes, France.,LaBCT, ICO, Saint Herblain, France
| | - François M Vallette
- Université de Nantes, INSERM, CRCINA, Nantes, France.,LaBCT, ICO, Saint Herblain, France
| |
Collapse
|
11
|
Feng D, Liu M, Liu Y, Zhao X, Sun H, Zheng X, Zhu J, Shang F. Micheliolide suppresses the viability, migration and invasion of U251MG cells via the NF-κB signaling pathway. Oncol Lett 2020; 20:67. [PMID: 32863900 PMCID: PMC7436293 DOI: 10.3892/ol.2020.11928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Accepted: 06/16/2020] [Indexed: 11/06/2022] Open
Abstract
Micheliolide (MCL), a sesquiterpene lactone isolated from Michelia compressa and Michelia champaca, has been used previously to inhibit the NF-κB signaling pathway. MCL has exerted various therapeutic effects in numerous types of disease, such as inflammatory and cancer. However, to the best of our knowledge, its underlying anticancer mechanism remains to be understood. The present study aimed to investigate the effects of MCL on human glioma U251MG cells and to determine the potential anticancer mechanism of action of MCL. From Cell Counting Kit-8, colony formation assay, apoptosis assay and Confocal immunofluorescence imaging analysis, the results revealed that MCL significantly inhibited cell viability in vitro and induced cell apoptosis via activation of the cytochrome c/caspase-dependent apoptotic pathway. In addition, MCL also suppressed cell invasion and metastasis via the wound healing and Transwell invasion assays. Furthermore, western blot and reverse transcription PCR analyses demonstrated that MCL significantly downregulated cyclooxygenase-2 (COX-2) expression levels, which may have partially occurred through the inactivation of the NF-κB signaling pathway. In conclusion, the results of the present study indicated that MCL may inhibit glioma carcinoma growth by downregulating the NF-κB/COX-2 signaling pathway, which suggested that MCL may be a novel and alternative antitumor agent for the treatment of human glioma carcinoma.
Collapse
Affiliation(s)
- Dingkun Feng
- Department of Neurosurgery, The Affiliated Renhe Hospital, China Three Gorges University, Yichang, Hubei 443000, P.R. China
| | - Min Liu
- Department of Neurology, Xinhua Hospital affiliated to Dalian University, Dalian, Liaoning 116021, P.R. China
| | - Yanting Liu
- Department of Neurosurgery, The First College of Clinical Medical Science, China Three Gorges University & Yichang Central People's Hospital, Yichang, Hubei 443003, P.R. China.,Central Laboratory, The First College of Clinical Medical Science, China Three Gorges University & Yichang Central People's Hospital, Yichang, Hubei 443003, P.R. China
| | - Xiaojin Zhao
- Department of Gastroenterology, The Affiliated Renhe Hospital, China Three Gorges University, Yichang, Hubei 443000, P.R. China
| | - Huan Sun
- Department of Neurosurgery, The Affiliated Renhe Hospital, China Three Gorges University, Yichang, Hubei 443000, P.R. China
| | - Xu Zheng
- Department of Neurosurgery, The Affiliated Renhe Hospital, China Three Gorges University, Yichang, Hubei 443000, P.R. China
| | - Jiabin Zhu
- Department of Neurosurgery, The Affiliated Renhe Hospital, China Three Gorges University, Yichang, Hubei 443000, P.R. China.,Central Laboratory, The First College of Clinical Medical Science, China Three Gorges University & Yichang Central People's Hospital, Yichang, Hubei 443003, P.R. China
| | - Fajun Shang
- Department of Neurosurgery, The Affiliated Renhe Hospital, China Three Gorges University, Yichang, Hubei 443000, P.R. China
| |
Collapse
|
12
|
Palumbo P, Lombardi F, Augello FR, Giusti I, Dolo V, Leocata P, Cifone MG, Cinque B. Biological effects of selective COX-2 inhibitor NS398 on human glioblastoma cell lines. Cancer Cell Int 2020; 20:167. [PMID: 32435158 PMCID: PMC7222447 DOI: 10.1186/s12935-020-01250-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 05/07/2020] [Indexed: 12/14/2022] Open
Abstract
Background Cyclooxygenase-2 (COX-2), an inflammation-associated enzyme, has been implicated in tumorigenesis and progression of glioblastoma (GBM). The poor survival of GBM was mainly associated with the presence of glioma stem cells (GSC) and the markedly inflammatory microenvironment. To further explore the involvement of COX-2 in glioma biology, the effects of NS398, a selective COX-2 inhibitor, were evaluated on GSC derived from COX-2 expressing GBM cell lines, i.e., U87MG and T98G, in terms of neurospheres' growth, autophagy, and extracellular vesicle (EV) release. Methods Neurospheres' growth and morphology were evaluated by optical and scanning electron microscopy. Autophagy was measured by staining acidic vesicular organelles. Extracellular vesicles (EV), released from neurospheres, were analyzed by transmission electron microscopy. The autophagic proteins Beclin-1 and LC3B, as well as the EV markers CD63 and CD81, were analyzed by western blotting. The scratch assay test was used to evaluate the NS398 influence on GBM cell migration. Results Both cell lines were strongly influenced by NS398 exposure, as showed by morphological changes, reduced growth rate, and appearance of autophagy. Furthermore, the inhibitor led to a functional change of EV released by neurospheres. Indeed, EV secreted by NS398-treated GSC, but not those from control cells, were able to significantly inhibit adherent U87MG and T98G cell migration and induced autophagy in recipient cells, thus leading to effects quite similar to those directly caused by NS398 in the same cells. Conclusion Despite the intrinsic diversity and individual genetic features of U87MG and T98G, comparable effects were exerted by the COX-2 inhibitor NS398 on both GBM cell lines. Overall, our findings support the crucial role of the inflammatory-associated COX-2/PGE2 system in glioma and glioma stem cell biology.
Collapse
Affiliation(s)
- Paola Palumbo
- Department of Life, Health & Environmental Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Francesca Lombardi
- Department of Life, Health & Environmental Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | | | - Ilaria Giusti
- Department of Life, Health & Environmental Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Vincenza Dolo
- Department of Life, Health & Environmental Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Pietro Leocata
- Department of Life, Health & Environmental Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Maria Grazia Cifone
- Department of Life, Health & Environmental Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Benedetta Cinque
- Department of Life, Health & Environmental Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| |
Collapse
|
13
|
Umezawa K, Lin Y. Inhibition of matrix metalloproteinase expression and cellular invasion by NF-κB inhibitors of microbial origin. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2020; 1868:140412. [PMID: 32179183 DOI: 10.1016/j.bbapap.2020.140412] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 03/09/2020] [Accepted: 03/11/2020] [Indexed: 12/11/2022]
Abstract
Matrix metalloproteinases (MMPs) are zinc-dependent extracellular matrix remodeling endopeptidases. MMPs cleave various matrix proteins such as collagen, elastin, gelatin and casein. MMPs are often implicated in pathological processes, such as cancer progression including metastasis. Meanwhile, microorganisms produce various secondary metabolites having unique structures. We designed and synthesized dehydroxymethylepoxyquinomicin (DHMEQ) based on the structure of epoxyquinomicin C derived from Amycolatopsis as an inhibitor of NF-κB. This compound inhibited cancer cell migration and invasion. Since DHMEQ is comparatively unstable in the body, we designed and synthesized a stable DHMEQ analog, SEMBL. SEMBL also inhibited cancer cell migration and invasion. We also looked for inhibitors of cancer cell migration and invasion from microbial culture filtrates. As a result, we isolated a known compound, ketomycin, from Actinomycetes. DHMEQ, SEMBL, and ketomycin are all NF-κB inhibitors, and inhibited the expression of MMPs in the inhibition of cellular migration and invasion. These are all compounds with comparatively low toxicity, and may be useful for the development of anti-metastasis agents.
Collapse
Affiliation(s)
- Kazuo Umezawa
- Department of Molecular Target Medicine, Aichi Medical University, Nagakute 480-1195, Japan.
| | - Yinzhi Lin
- Department of Molecular Target Medicine, Aichi Medical University, Nagakute 480-1195, Japan
| |
Collapse
|
14
|
Prevention of early liver metastasis after pancreatectomy by perioperative administration of a nuclear factor-κB inhibitor in mice. Surgery 2019; 166:991-996. [PMID: 31353078 DOI: 10.1016/j.surg.2019.05.044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Revised: 05/08/2019] [Accepted: 05/27/2019] [Indexed: 12/24/2022]
Abstract
BACKGROUND Liver metastasis is a common problem after pancreatectomy for pancreatic cancer. In pancreatic cancer cells, nuclear factor-κB is activated constitutively. Nuclear factor-κB activates matrix metalloproteinase-2/9, which plays an important role in cancer metastasis. Because the serine protease inhibitor FUT-175 suppresses nuclear factor-κB, we hypothesized that perioperative treatment with FUT-175 for pancreatic cancer may help to prevent liver metastasis. METHODS We compared in vitro cell viability, cell invasiveness, nuclear factor-κB signaling, and the expression levels of matrix metalloproteinase signals between the control group (C group) and the FUT-175 group (F group) using the murine pancreatic cancer cells PAN02. In addition, we evaluated the in vivo effect of pretreatment with FUT-175 using an established model of liver metastasis in mice. Metastatic liver lesions were assessed with magnetic resonance imaging. Liver recurrence and overall survival were evaluated. Also, the antimetastatic effect of systemic administration of FUT-175 was examined. RESULTS FUT-175 did not suppress the cell viability of PAN02 cells at or after 24 hours of treatment (P > .05); however, cell invasion was suppressed in the F group compared with the C group (P < .05). The levels of nuclear factor-κB activation, membrane type-1 (MT-1) matrix metalloproteinase (MMP)/matrix metalloproteinase-14 (MMP-14), and matrix metalloproteinase-2/9 (MMP-2/9) were lower in the F group compared with the C group. In vivo, both disease-free and overall survivals were prolonged in the F group compared with the C group. Systemic administration was also effective in suppressing the number of metastases. CONCLUSION Perioperative treatment with FUT-175 may help to prevent early liver metastasis after pancreatectomy for pancreatic cancer.
Collapse
|
15
|
Luo L, Liang Y, Ding X, Ma X, Zhang G, Sun L. Significance of cyclooxygenase-2, prostaglandin E2 and CD133 levels in sunitinib-resistant renal cell carcinoma. Oncol Lett 2019; 18:1442-1450. [PMID: 31423209 DOI: 10.3892/ol.2019.10442] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Accepted: 04/24/2019] [Indexed: 01/14/2023] Open
Abstract
The current study investigated the mechanism underlying sunitinib resistance. The parental human renal cell carcinoma (RCC) cell line 786-O was continuously exposed to various doses of sunitinib to obtain sunitinib-resistant cells (786-O/S). Cell proliferation and colony formation assays were performed to assess the survival of 786-O/S cells. The half-inhibitory concentration for the drug-resistant cells was calculated. 786-O/S cells demonstrated notably morphological changes compared with parental cells. Compared with 786-O cells, 786-O/S cells exhibited stronger proliferative and colony-forming abilities. Western blot analysis was performed to measure the levels of cyclooxygenase 2 (COX-2) and prostaglandin E2 (PGE2). Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) was used to detect the expression of COX-2 and cluster of differentiation (CD) 133 in both 786-O and 786-O/S cells. Following incubation of the two cell lines with celecoxib, a COX-2 inhibitor, RT-qPCR was performed to detect the expression of COX-2 and CD133, and western blot analysis was used to assess the expression of CD133. The results revealed that the levels of COX-2 and PGE2 were significantly higher in 786-O/S cells compared with 786-O cells (P<0.01). Similarly, the expression of CD133 was 24-fold higher in 786-O/S compared with the parental cells (P<0.01). When celecoxib was incubated with the two cell lines, the expression of COX-2 and CD133 decreased significantly (P<0.0001). In summary, the results indicate that activation of the COX-2-PGE2 pathway in RCC leads to the development of sunitinib resistance and may serve an important role in the maintenance of the characteristics of stem cells that are closely associated with drug resistance.
Collapse
Affiliation(s)
- Lei Luo
- Department of Urology, The Affiliated Hospital of Qingdao University, Qingdao, Shangdong 266003, P.R. China
| | - Ye Liang
- Key Laboratory, Department of Urology and Andrology, The Affiliated Hospital of Qingdao University, Qingdao, Shangdong 266003, P.R. China
| | - Xuemei Ding
- Operating Room, The Affiliated Hospital of Qingdao University, Qingdao, Shangdong 266003, P.R. China
| | - Xiaocheng Ma
- Department of Urology, The Affiliated Hospital of Qingdao University, Qingdao, Shangdong 266003, P.R. China
| | - Guiming Zhang
- Department of Urology, The Affiliated Hospital of Qingdao University, Qingdao, Shangdong 266003, P.R. China
| | - Lijiang Sun
- Department of Urology, The Affiliated Hospital of Qingdao University, Qingdao, Shangdong 266003, P.R. China
| |
Collapse
|
16
|
Desjarlais M, Annabi B. Dual functions of ARP101 in targeting membrane type-1 matrix metalloproteinase: Impact on U87 glioblastoma cell invasion and autophagy signaling. Chem Biol Drug Des 2018; 93:272-282. [PMID: 30291676 DOI: 10.1111/cbdd.13410] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 08/24/2018] [Accepted: 09/20/2018] [Indexed: 12/11/2022]
Abstract
Membrane type-1 matrix metalloproteinase (MT1-MMP) possesses both extracellular proteolytic and intracellular signal-transducing functions in tumorigenesis. An imbalance in MT1-MMP expression and/or function triggers a metastatic, invasive, and therapy resistance phenotype. MT1-MMP is involved in extracellular matrix (ECM) proteolysis, activation of latent MMPs, as well as in autophagy signaling in human hepatoma and glioblastoma cells. A low autophagy index in tumorigenesis has been inferred by recent studies where autophagic capacity was decreased during tumor progression. Here, we establish ARP101 as a dual-function small-molecule inhibitor against MT1-MMP ECM hydrolysis and autophagy signal-transducing functions in a model of grade IV glioblastoma cells. ARP101 inhibited concanavalin-A-mediated proMMP-2 activation into MMP-2, as well as MT1-MMP auto-proteolytic processing. When overexpressing recombinant Wt MT1-MMP, ARP101 inhibited proMMP-2 activation and triggered the formation of MT1-MMP oligomers that required trafficking to the plasma membrane. ARP101 further induced cell autophagy as reflected by increased formation of acidic vacuole organelles, LC3 puncta, and autophagy-related protein ATG9 transcription. These were all significantly reversed upon siRNA-mediated gene silencing of MT1-MMP. ARP101 can thus concomitantly inhibit MT1-MMP extracellular catalytic function and exploit its intracellular transducing signal function to trigger autophagy-mediated cell death in U87 glioblastoma cancer cells.
Collapse
Affiliation(s)
- Michel Desjarlais
- Laboratoire d'Oncologie Moléculaire, Département de Chimie, Centre de recherche BIOMED, Université du Québec à Montréal, Montréal, Quebec, Canada
| | - Borhane Annabi
- Laboratoire d'Oncologie Moléculaire, Département de Chimie, Centre de recherche BIOMED, Université du Québec à Montréal, Montréal, Quebec, Canada
| |
Collapse
|
17
|
Downregulation of annexin A3 inhibits tumor metastasis and decreases drug resistance in breast cancer. Cell Death Dis 2018; 9:126. [PMID: 29374148 PMCID: PMC5833718 DOI: 10.1038/s41419-017-0143-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 10/25/2017] [Accepted: 11/10/2017] [Indexed: 12/17/2022]
Abstract
Annexin A3 (ANXA3) is dysregulated and plays an important role in various cancers. However, the role of ANXA3 in breast cancer is still unclear. Here, we observed that the expression level of ANXA3 was significantly upregulated in breast cancer tissues. ANXA3 knockdown inhibited cell invasion but promoted cell proliferation in both in vitro and in vivo assays. Furthermore, we found that ANXA3 knockdown inhibited the NFκB pathway via upregulating IκBα, resulting in mesenchymal–epithelial transition (MET) and a heterogeneity change of breast cancer stem cells (BCSCs). In addition, we demonstrated that ANXA3 knockdown increased the sensitivity of breast cancer cells to doxorubicin by increasing the drug uptake. The combination of ANXA3 knockdown and doxorubicin treatment simultaneously inhibited tumor growth and metastasis in vivo. This study described the role and mechanisms of ANXA3 in regulating BCSCs and breast cancer growth and metastasis, indicating that downregulating ANXA3 together with chemotherapy might be a novel therapeutic strategy for treating breast cancer.
Collapse
|
18
|
Sato-Dahlman M, Miura Y, Huang JL, Hajeri P, Jacobsen K, Davydova J, Yamamoto M. CD133-targeted oncolytic adenovirus demonstrates anti-tumor effect in colorectal cancer. Oncotarget 2017. [PMID: 29100290 DOI: 10.18632/oncotarget.18340.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Oncolytic Adenoviruses (OAds) are one of the most promising anti-cancer agents that can induce cancer specific cell death. Recently, we generated infectivity-selective OAd, and the resultant OAd tumor-specific binding shows strong efficacy and mitigates toxicity. In this study, we applied this strategy based on adenovirus library screening system for generation of CD133-targeted OAd, and examined their oncolytic activity against colorectal cancer (CRC) in vitro and in vivo. CD133 (Prominin-1) is an important cell surface marker of cancer stem (like) cells (CSCs) in various cancers, including CRC. Elimination of CSCs has a high likelihood to improve CRC treatment because CSCs population in the tumor contributes to recurrence, metastases, chemotherapy resistance, and poor survival. The OAd with CD133-targeting motif (AdML-TYML) selectively infected CD133+ cultured cells and lysed them efficiently. Treatment with AdML-TYML prior to tumor inoculation inhibited the establishment of tumor of CD133+ CRC cell lines in nude mice. AdML-TYML also showed strong antitumor effect after intratumoral injections in already established CD133+ CRC subcutaneous xenografts. Our results indicate that CD133-targeted OAd selectively infected CD133+ CRC, and exhibited anti-tumorigenicity and therapeutic effect in established tumors. This novel infectivity selective virus could be a potent tool for the prevention of metastases and relapses in CRC.
Collapse
Affiliation(s)
| | - Yoshiaki Miura
- Department of Surgery, University of Minnesota, Minneapolis, Minnesota, USA
| | - Jing Li Huang
- Department of Surgery, University of Minnesota, Minneapolis, Minnesota, USA
| | | | - Kari Jacobsen
- Department of Surgery, University of Minnesota, Minneapolis, Minnesota, USA
| | - Julia Davydova
- Department of Surgery, University of Minnesota, Minneapolis, Minnesota, USA.,Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA
| | - Masato Yamamoto
- Department of Surgery, University of Minnesota, Minneapolis, Minnesota, USA.,Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA.,Stem Cell Institute, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
19
|
Sato-Dahlman M, Miura Y, Huang JL, Hajeri P, Jacobsen K, Davydova J, Yamamoto M. CD133-targeted oncolytic adenovirus demonstrates anti-tumor effect in colorectal cancer. Oncotarget 2017; 8:76044-76056. [PMID: 29100290 PMCID: PMC5652684 DOI: 10.18632/oncotarget.18340] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 04/19/2017] [Indexed: 12/19/2022] Open
Abstract
Oncolytic Adenoviruses (OAds) are one of the most promising anti-cancer agents that can induce cancer specific cell death. Recently, we generated infectivity-selective OAd, and the resultant OAd tumor-specific binding shows strong efficacy and mitigates toxicity. In this study, we applied this strategy based on adenovirus library screening system for generation of CD133-targeted OAd, and examined their oncolytic activity against colorectal cancer (CRC) in vitro and in vivo. CD133 (Prominin-1) is an important cell surface marker of cancer stem (like) cells (CSCs) in various cancers, including CRC. Elimination of CSCs has a high likelihood to improve CRC treatment because CSCs population in the tumor contributes to recurrence, metastases, chemotherapy resistance, and poor survival. The OAd with CD133-targeting motif (AdML-TYML) selectively infected CD133+ cultured cells and lysed them efficiently. Treatment with AdML-TYML prior to tumor inoculation inhibited the establishment of tumor of CD133+ CRC cell lines in nude mice. AdML-TYML also showed strong antitumor effect after intratumoral injections in already established CD133+ CRC subcutaneous xenografts. Our results indicate that CD133-targeted OAd selectively infected CD133+ CRC, and exhibited anti-tumorigenicity and therapeutic effect in established tumors. This novel infectivity selective virus could be a potent tool for the prevention of metastases and relapses in CRC.
Collapse
Affiliation(s)
| | - Yoshiaki Miura
- Department of Surgery, University of Minnesota, Minneapolis, Minnesota, USA
| | - Jing Li Huang
- Department of Surgery, University of Minnesota, Minneapolis, Minnesota, USA
| | | | - Kari Jacobsen
- Department of Surgery, University of Minnesota, Minneapolis, Minnesota, USA
| | - Julia Davydova
- Department of Surgery, University of Minnesota, Minneapolis, Minnesota, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA
| | - Masato Yamamoto
- Department of Surgery, University of Minnesota, Minneapolis, Minnesota, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA
- Stem Cell Institute, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
20
|
Liu S, Zhang C, Zhang K, Gao Y, Wang Z, Li X, Cheng G, Wang S, Xue X, Li W, Zhang W, Zhang Y, Xing X, Li M, Hao Q. FOXP3 inhibits cancer stem cell self-renewal via transcriptional repression of COX2 in colorectal cancer cells. Oncotarget 2017; 8:44694-44704. [PMID: 28591725 PMCID: PMC5546511 DOI: 10.18632/oncotarget.17974] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 04/25/2017] [Indexed: 01/06/2023] Open
Abstract
Colon cancer stem cell (cCSC) is considered as the seed cell of colon cancer initiation and metastasis. Cyclooxygenase-2 (COX2), a downstream target of NFκB, is found to be essential in promoting cancer stem cell renewal. However, how COX2 is dysregulated in cCSCs is largely unknown. In this study, we found that the expression of transcription factor FOXP3 was much lower in the spheroids than that in the parental tumor cells. Overexpression of FOXP3 significantly decreased the numbers of spheres, reduced the side population. Accordingly, FOXP3 expression decreased the tumor size and weight in the xenograft model. The tumor inhibitory effects of FOXP3 were rarely seen when COX2 was additionally knocked down. Mechanically, FOXP3 transcriptionally repressed COX2 expression via interacting with and thus inhibiting p65 activity on the putative NFκB response elements in COX2 promoter. Taken together, we here revealed possible involvement of FOXP3 in regulating cCSC self-renewal via tuning COX2 expression, and thus providing a new target for the eradication of colon cancer stem cells.
Collapse
Affiliation(s)
- Shuo Liu
- The State Key Laboratory of Cancer Biology, Department of Biopharmaceutics, School of Pharmacy, The Fourth Military Medical University, Xi'an 710032, China
| | - Cun Zhang
- The State Key Laboratory of Cancer Biology, Department of Biopharmaceutics, School of Pharmacy, The Fourth Military Medical University, Xi'an 710032, China
| | - Kuo Zhang
- The State Key Laboratory of Cancer Biology, Department of Biopharmaceutics, School of Pharmacy, The Fourth Military Medical University, Xi'an 710032, China
| | - Yuan Gao
- The State Key Laboratory of Cancer Biology, Department of Biopharmaceutics, School of Pharmacy, The Fourth Military Medical University, Xi'an 710032, China
| | - Zhaowei Wang
- The State Key Laboratory of Cancer Biology, Department of Biopharmaceutics, School of Pharmacy, The Fourth Military Medical University, Xi'an 710032, China
| | - Xiaoju Li
- The State Key Laboratory of Cancer Biology, Department of Biopharmaceutics, School of Pharmacy, The Fourth Military Medical University, Xi'an 710032, China
| | - Guang Cheng
- Department of Neurosurgery, Xijing Hospital, The Fourth Military Medical University, Xi'an 710032, China
| | - Shuning Wang
- The State Key Laboratory of Cancer Biology, Department of Biopharmaceutics, School of Pharmacy, The Fourth Military Medical University, Xi'an 710032, China
| | - Xiaochang Xue
- The State Key Laboratory of Cancer Biology, Department of Biopharmaceutics, School of Pharmacy, The Fourth Military Medical University, Xi'an 710032, China
| | - Weina Li
- The State Key Laboratory of Cancer Biology, Department of Biopharmaceutics, School of Pharmacy, The Fourth Military Medical University, Xi'an 710032, China
| | - Wei Zhang
- The State Key Laboratory of Cancer Biology, Department of Biopharmaceutics, School of Pharmacy, The Fourth Military Medical University, Xi'an 710032, China
| | - Yingqi Zhang
- The State Key Laboratory of Cancer Biology, Department of Biopharmaceutics, School of Pharmacy, The Fourth Military Medical University, Xi'an 710032, China
| | - Xianghui Xing
- State Key Laboratory of Military Stomatology, Department of Pediatric Dentistry, School of Stomatology, The Fourth Military Medical University, Xi'an 710032, China
| | - Meng Li
- Department of Pharmacogenomics, School of Pharmacy, The Fourth Military Medical University, Xi'an 710032, China
| | - Qiang Hao
- The State Key Laboratory of Cancer Biology, Department of Biopharmaceutics, School of Pharmacy, The Fourth Military Medical University, Xi'an 710032, China
| |
Collapse
|
21
|
Brehar FM, Gafencu AV, Trusca VG, Fuior EV, Arsene D, Amaireh M, Giovani A, Gorgan MR. Preferential Association of Lissencephaly-1 Gene Expression with CD133+ Glioblastoma Cells. J Cancer 2017; 8:1284-1291. [PMID: 28607604 PMCID: PMC5463444 DOI: 10.7150/jca.17635] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 01/12/2017] [Indexed: 12/18/2022] Open
Abstract
Lissencephaly-1 (Lis1) protein is a dynein-binding protein involved in neural stem cell division, morphogenesis and motility. To determine whether Lis1 is a key factor in glioblastoma, we evaluated its expression and function in CD133+ glioblastoma cells. Global, Lis1 gene expression is similar in glioblastoma and normal samples. Interestingly, immunohistochemistry data indicate increased Lis1 expression colocalized with CD133 in a subset of glioma cells, including the tumor cells with perivascular localization. Lis1 gene expression is increased up to 60-fold in CD133 positive cells isolated from primary cultures of glioblastoma and U87 glioblastoma cell line as compared to CD133 negative cells. To investigate the potential role of Lis1 in CD133+ glioblastoma cells, we silenced Lis1 gene in U87 cell line obtaining shLis1-U87 cells. In shLis1-U87 cell culture we noticed a significant decrease of CD133+ cells fraction as compared with control cells and also, CD133+ cells isolated from shLis1-U87 were two times less adhesive, migratory and proliferative, as compared with control transfected U87 CD133+ cells. Moreover, Lis1 silencing decreased the proliferative capacity of irradiated U87 cells, an effect attributable to the lower percentage of CD133+ cells. This is the first report showing a preferential expression of Lis1 gene in CD133+ glioblastoma cells. Our data suggest a role of Lis1 in regulating CD133+ glioblastoma cells function.
Collapse
Affiliation(s)
- Felix Mircea Brehar
- "Carol Davila" University of Medicine and Pharmacy, 37 Dionisie Lupu Street, 020021 Bucharest, Romania.,"Bagdasar-Arseni" Clinical Hospital, Neurosurgery Clinic, 10-12 Berceni Street, 041915 Bucharest, Romania
| | - Anca Violeta Gafencu
- Institute of Cellular Biology and Pathology, "Nicolae Simionescu", 8 B. P. Hasdeu Street, 050568 Bucharest, Romania
| | - Violeta Georgeta Trusca
- Institute of Cellular Biology and Pathology, "Nicolae Simionescu", 8 B. P. Hasdeu Street, 050568 Bucharest, Romania
| | - Elena Valeria Fuior
- Institute of Cellular Biology and Pathology, "Nicolae Simionescu", 8 B. P. Hasdeu Street, 050568 Bucharest, Romania
| | - Dorel Arsene
- " Victor Babes" National Institute of Pathology, 99-101 Splaiul Independentei Street, 055096 Bucharest, Romania
| | - Mirela Amaireh
- "Bagdasar-Arseni" Clinical Hospital, Neurosurgery Clinic, 10-12 Berceni Street, 041915 Bucharest, Romania
| | - Andrei Giovani
- "Bagdasar-Arseni" Clinical Hospital, Neurosurgery Clinic, 10-12 Berceni Street, 041915 Bucharest, Romania
| | - Mircea Radu Gorgan
- "Carol Davila" University of Medicine and Pharmacy, 37 Dionisie Lupu Street, 020021 Bucharest, Romania.,"Bagdasar-Arseni" Clinical Hospital, Neurosurgery Clinic, 10-12 Berceni Street, 041915 Bucharest, Romania
| |
Collapse
|
22
|
Sheehy S, Annabi B. A Transcriptional Regulatory Role for the Membrane Type-1 Matrix Metalloproteinase in Carcinogen-Induced Inflammasome Gene Expression. GENE REGULATION AND SYSTEMS BIOLOGY 2017. [PMID: 28634425 PMCID: PMC5467917 DOI: 10.1177/1177625017713996] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Signal-transducing functions driven by the cytoplasmic domain of membrane type-1 matrix metalloproteinase (MT1-MMP) are believed to regulate many inflammation-associated cancer cell functions including migration, proliferation, and survival. Aside from upregulation of the inflammation biomarker cyclooxygenase-2 (COX-2) expression, MT1-MMP’s role in relaying intracellular signals triggered by extracellular pro-inflammatory cues remains poorly understood. Here, we triggered inflammation in HT1080 fibrosarcoma cells with phorbol-12-myristate-13-acetate (PMA), an inducer of COX-2 and of MT1-MMP. To assess the global transcriptional regulatory role that MT1-MMP may exert on inflammation biomarkers, we combined gene array screens with a transient MT1-MMP gene silencing strategy. Expression of MT1-MMP was found to exert both stimulatory and repressive transcriptional control of several inflammasome-related biomarkers such as interleukin (IL)-1B, IL-6, IL-12A, and IL-33, as well as of transcription factors such as EGR1, ELK1, and ETS1/2 in PMA-treated cells. Among the signal-transducing pathways explored, the silencing of MT1-MMP prevented PMA from phosphorylating extracellular signal–regulated kinase, inhibitor of κB, and p105 nuclear factor κB (NF-κB) intermediates. We also found a signaling axis linking MT1-MMP to MMP-9 transcriptional regulation. Altogether, our data indicate a significant involvement of MT1-MMP in the transcriptional regulation of inflammatory biomarkers consolidating its contribution to signal transduction functions in addition to its classical hydrolytic activity.
Collapse
Affiliation(s)
- Samuel Sheehy
- Laboratoire d'Oncologie Moléculaire, Département de Chimie, Centre de recherche BIOMED, Université du Québec à Montréal, Montréal, QC, Canada
| | - Borhane Annabi
- Laboratoire d'Oncologie Moléculaire, Département de Chimie, Centre de recherche BIOMED, Université du Québec à Montréal, Montréal, QC, Canada
| |
Collapse
|
23
|
Turunen SP, Tatti-Bugaeva O, Lehti K. Membrane-type matrix metalloproteases as diverse effectors of cancer progression. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2017; 1864:1974-1988. [PMID: 28390905 DOI: 10.1016/j.bbamcr.2017.04.002] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 04/02/2017] [Accepted: 04/03/2017] [Indexed: 12/12/2022]
Abstract
Membrane-type matrix metalloproteases (MT-MMP) are pivotal regulators of cell invasion, growth and survival. Tethered to the cell membranes by a transmembrane domain or GPI-anchor, the six MT-MMPs can exert these functions via cell surface-associated extracellular matrix degradation or proteolytic protein processing, including shedding or release of signaling receptors, adhesion molecules, growth factors and other pericellular proteins. By interactions with signaling scaffold or cytoskeleton, the C-terminal cytoplasmic tail of the transmembrane MT-MMPs further extends their functionality to signaling or structural relay. MT-MMPs are differentially expressed in cancer. The most extensively studied MMP14/MT1-MMP is induced in various cancers along malignant transformation via pathways activated by mutations in tumor suppressors or proto-oncogenes and changes in tumor microenvironment including cellular heterogeneity, extracellular matrix composition, tissue oxygenation, and inflammation. Classically such induction involves transcriptional programs related to epithelial-to-mesenchymal transition. Besides inhibition by endogenous tissue inhibitors, MT-MMP activities are spatially and timely regulated at multiple levels by microtubular vesicular trafficking, dimerization/oligomerization, other interactions and localization in the actin-based invadosomes, in both tumor and the stroma. The functions of MT-MMPs are multifaceted within reciprocal cellular responses in the evolving tumor microenvironment, which poses the importance of these proteases beyond the central function as matrix scissors, and necessitates us to rethink MT-MMPs as dynamic signaling proteases of cancer. This article is part of a Special Issue entitled: Matrix Metalloproteinases edited by Rafael Fridman.
Collapse
Affiliation(s)
- S Pauliina Turunen
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Nobels väg 16, SE-17177 Stockholm, Sweden
| | - Olga Tatti-Bugaeva
- Research Programs Unit, Genome-Scale Biology and Haartman Institute, University of Helsinki, and Helsinki University Hospital, P.O. Box 63, FI-00014 Helsinki, Finland
| | - Kaisa Lehti
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Nobels väg 16, SE-17177 Stockholm, Sweden; Research Programs Unit, Genome-Scale Biology and Haartman Institute, University of Helsinki, and Helsinki University Hospital, P.O. Box 63, FI-00014 Helsinki, Finland; K. Albin Johansson Foundation, Finnish Cancer Institute, P.O. Box 63, FI-00014, Helsinki, Finland.
| |
Collapse
|
24
|
Zhou TJ, Zhang SL, He CY, Zhuang QY, Han PY, Jiang SW, Yao H, Huang YJ, Ling WH, Lin YC, Lin ZN. Downregulation of mitochondrial cyclooxygenase-2 inhibits the stemness of nasopharyngeal carcinoma by decreasing the activity of dynamin-related protein 1. Am J Cancer Res 2017; 7:1389-1406. [PMID: 28435473 PMCID: PMC5399601 DOI: 10.7150/thno.17647] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 01/25/2017] [Indexed: 02/06/2023] Open
Abstract
Cancer stem cells (CSCs) are a small subset of malignant cells, possessing stemness, with strong tumorigenic capability, conferring resistance to therapy and leading to the relapse of nasopharyngeal carcinoma (NPC). Our previous study suggested that cyclooxygenase-2 (COX-2) would be a novel target for the CSCs-like side population (SP) cells in NPC. In the present study, we further found that COX-2 maintained the stemness of NPC by enhancing the activity of mitochondrial dynamin-related protein 1 (Drp1), a mitochondrial fission mediator, by studying both sorted SP cells from NPC cell lines and gene expression analyses in NPC tissues. Using both overexpression and knockdown of COX-2, we demonstrated that the localization of COX-2 at mitochondria promotes the stemness of NPC by recruiting the mitochondrial translocation of p53, increasing the activity of Drp1 and inducing mitochondrial fisson. Inhibition of the expression or the activity of Drp1 by siRNA or Mdivi-1 downregulates the stemness of NPC. The present study also found that inhibition of mitochondrial COX-2 with resveratrol (RSV), a natural phytochemical, increased the sensitivity of NPC to 5-fluorouracil (5-FU), a classical chemotherapy drug for NPC. The underlying mechanism is that RSV suppresses mitochondrial COX-2, thereby reducing NPC stemness by inhibiting Drp1 activity as demonstrated in both the in vitro and the in vivo studies. Taken together, the results of this study suggest that mitochondrial COX-2 is a potential theranostic target for the CSCs in NPC. Inhibition of mitochondrial COX-2 could be an attractive therapeutic option for the effective clinical treatment of therapy-resistant NPC.
Collapse
|
25
|
Dong BW, Qin GM, Luo Y, Mao JS. Metabolic enzymes: key modulators of functionality in cancer stem-like cells. Oncotarget 2017; 8:14251-14267. [PMID: 28009990 PMCID: PMC5355174 DOI: 10.18632/oncotarget.14041] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 11/07/2016] [Indexed: 12/22/2022] Open
Abstract
Cancer Stem-like Cells (CSCs) are a subpopulation of cancer cells with self-renewal capacity and are important for the initiation, progression and recurrence of cancer diseases. The metabolic profile of CSCs is consistent with their stem-like properties. Studies have indicated that enzymes, the main regulators of cellular metabolism, dictate functionalities of CSCs in both catalysis-dependent and catalysis-independent manners. This paper reviews diverse studies of metabolic enzymes, and describes the effects of these enzymes on metabolic adaptation, gene transcription and signal transduction, in CSCs.
Collapse
Affiliation(s)
- Bo-Wen Dong
- Department of Gastroenterology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Guang-Ming Qin
- Department of Clinical Laboratory Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Yan Luo
- School of Basic Medical Sciences, Zhejiang University, Hangzhou, China
| | - Jian-Shan Mao
- Department of Gastroenterology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
26
|
Zhang C, Mukherjee S, Tucker-Burden C, Ross JL, Chau MJ, Kong J, Brat DJ. TRIM8 regulates stemness in glioblastoma through PIAS3-STAT3. Mol Oncol 2017; 11:280-294. [PMID: 28100038 PMCID: PMC5332279 DOI: 10.1002/1878-0261.12034] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 12/23/2016] [Accepted: 01/05/2017] [Indexed: 12/27/2022] Open
Abstract
Glioblastoma (GBM) is the most malignant form of primary brain tumor, and GBM stem-like cells (GSCs) contribute to the rapid growth, therapeutic resistance, and clinical recurrence of these fatal tumors. STAT3 signaling supports the maintenance and proliferation of GSCs, yet regulatory mechanisms are not completely understood. Here, we report that tri-partite motif-containing protein 8 (TRIM8) activates STAT3 signaling to maintain stemness and self-renewing capabilities of GSCs. TRIM8 (also known as 'glioblastoma-expressed ring finger protein') is expressed equally in GBM and normal brain tissues, despite its hemizygous deletion in the large majority of GBMs, and its expression is highly correlated with stem cell markers. Experimental knockdown of TRIM8 reduced GSC self-renewal and expression of SOX2, NESTIN, and p-STAT3, and promoted glial differentiation. Overexpression of TRIM8 led to higher expression of p-STAT3, c-MYC, SOX2, NESTIN, and CD133, and enhanced GSC self-renewal. We found that TRIM8 activates STAT3 by suppressing the expression of PIAS3, an inhibitor of STAT3, most likely through E3-mediated ubiquitination and proteasomal degradation. Interestingly, we also found that STAT3 activation upregulates TRIM8, providing a mechanism for normalized TRIM8 expression in the setting of hemizygous gene deletion. These data demonstrate that bidirectional TRIM8-STAT3 signaling regulates stemness in GSC.
Collapse
Affiliation(s)
- Changming Zhang
- Department of Pathology and Laboratory Medicine, Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, USA.,Department of Neurosurgery, Xiangya Hospital, Central South University (CSU), Changsha, Hunan, China
| | - Subhas Mukherjee
- Department of Pathology and Laboratory Medicine, Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, USA
| | - Carol Tucker-Burden
- Department of Pathology and Laboratory Medicine, Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, USA
| | - James L Ross
- Department of Pathology and Laboratory Medicine, Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, USA.,Graduate Program in Cancer Biology, Laney Graduate School, Emory University, Atlanta, GA, USA
| | - Monica J Chau
- Department of Pathology and Laboratory Medicine, Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, USA
| | - Jun Kong
- Department of Biomedical Informatics, Emory University School of Medicine, Atlanta, GA, USA
| | - Daniel J Brat
- Department of Pathology and Laboratory Medicine, Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
27
|
Qiu J, Shi Z, Jiang J. Cyclooxygenase-2 in glioblastoma multiforme. Drug Discov Today 2016; 22:148-156. [PMID: 27693715 DOI: 10.1016/j.drudis.2016.09.017] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 08/25/2016] [Accepted: 09/21/2016] [Indexed: 02/06/2023]
Abstract
Glioblastoma multiforme (GBM) represents the most prevalent brain primary tumor, yet there is a lack of effective treatment. With current therapies, fewer than 5% of patients with GBM survive more than 5 years after diagnosis. Mounting evidence from epidemiological studies reveals that the regular use of nonsteroidal anti-inflammatory drugs (NSAIDs) is correlated with reduced incidence of GBM, suggesting that cyclooxygenase-2 (COX-2) and its major product within the brain, prostaglandin E2 (PGE2), are involved in the development and progression of GBM. Here, we highlight our current understanding of COX-2 in GBM proliferation, apoptosis, invasion, angiogenesis, and immunosuppression by focusing on recent in vitro and in vivo experimental data. We also discuss the feasibility of COX-2 as a therapeutic target for GBM in light of the latest human studies.
Collapse
Affiliation(s)
- Jiange Qiu
- Department of Cell Biology and Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, Guangdong Provincial Key Laboratory of Bioengineering Medicine, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong 510632, China; Division of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of Cincinnati Academic Health Center, Cincinnati, OH 45267-0514, USA
| | - Zhi Shi
- Department of Cell Biology and Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, Guangdong Provincial Key Laboratory of Bioengineering Medicine, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong 510632, China.
| | - Jianxiong Jiang
- Division of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of Cincinnati Academic Health Center, Cincinnati, OH 45267-0514, USA.
| |
Collapse
|
28
|
Cressey PB, Eskandari A, Bruno PM, Lu C, Hemann MT, Suntharalingam K. The Potent Inhibitory Effect of a Naproxen-Appended Cobalt(III)-Cyclam Complex on Cancer Stem Cells. Chembiochem 2016; 17:1713-8. [PMID: 27377813 DOI: 10.1002/cbic.201600368] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Indexed: 12/31/2022]
Abstract
We report the potency against cancer stem cells (CSCs) of a new cobalt(III)-cyclam complex (1) that bears the nonsteroidal anti-inflammatory drug, naproxen. The complex displays selective potency for breast CSC-enriched HMLER-shEcad cells over breast CSC-depleted HMLER cells. Additionally, it inhibited the formation of three-dimensional tumour-like mammospheres, and reduced their viability to a greater extent than clinically used breast cancer drugs (vinorelbine, cisplatin and paclitaxel). The anti-mammosphere potency of 1 was enhanced under hypoxia-mimicking conditions. Detailed mechanistic studies revealed that DNA damage and cyclooxygenase-2 (COX-2) inhibition contribute to the cytotoxic mechanism of 1. To the best of our knowledge, 1 is the first cobalt-containing compound to show selective potency for CSCs over bulk cancer cells.
Collapse
Affiliation(s)
- Paul B Cressey
- Department of Chemistry, King's College London, Britannia House, 7 Trinity Street, London, SE1 1DB, UK
| | - Arvin Eskandari
- Department of Chemistry, King's College London, Britannia House, 7 Trinity Street, London, SE1 1DB, UK
| | - Peter M Bruno
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Building 76, 500 Main Street, Cambridge, MA, 02139, USA
| | - Chunxin Lu
- Department of Chemistry, King's College London, Britannia House, 7 Trinity Street, London, SE1 1DB, UK
| | - Michael T Hemann
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Building 76, 500 Main Street, Cambridge, MA, 02139, USA
| | | |
Collapse
|
29
|
Duran CL, Lee DW, Jung JU, Ravi S, Pogue CB, Toussaint LG, Bayless KJ, Sitcheran R. NIK regulates MT1-MMP activity and promotes glioma cell invasion independently of the canonical NF-κB pathway. Oncogenesis 2016; 5:e231. [PMID: 27270613 PMCID: PMC4945740 DOI: 10.1038/oncsis.2016.39] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 05/03/2016] [Indexed: 12/25/2022] Open
Abstract
A growing body of evidence implicates the noncanonical NF-κB pathway as a key driver of glioma invasiveness and a major factor underlying poor patient prognoses. Here, we show that NF-κB-inducing kinase (NIK/MAP3K14), a critical upstream regulator of the noncanonical NF-κB pathway, is both necessary and sufficient for cell-intrinsic invasion, as well as invasion induced by the cytokine TWEAK, which is strongly associated with tumor pathogenicity. NIK promotes dramatic alterations in glioma cell morphology that are characterized by extensive membrane branching and elongated pseudopodial protrusions. Correspondingly, NIK increases the phosphorylation, enzymatic activity and pseudopodial localization of membrane type-1 matrix metalloproteinase (MT1-MMP/MMP14), which is associated with enhanced tumor cell invasion of three-dimensional collagen matrices. Moreover, NIK regulates MT1-MMP activity in cells lacking the canonical NF-κB p65 and cRel proteins. Finally, increased expression of NIK is associated with elevated MT1-MMP phosphorylation in orthotopic xenografts and co-expression of NIK and MT1-MMP in human tumors is associated with poor glioma patient survival. These data reveal a novel role of NIK to enhance pseudopodia formation, MT1-MMP enzymatic activity and tumor cell invasion independently of p65. Collectively, our findings underscore the therapeutic potential of approaches targeting NIK in highly invasive tumors.
Collapse
Affiliation(s)
- C L Duran
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, TX, USA
- Interdisciplinary Program in Genetics, Texas A&M University, College Station, TX, USA
| | - D W Lee
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, TX, USA
| | - J-U Jung
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, TX, USA
- Medical Sciences Graduate Program, Texas A&M Health Science Center, College Station, TX, USA
| | - S Ravi
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, TX, USA
| | - C B Pogue
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, TX, USA
| | - L G Toussaint
- Department of Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center, College Station, TX, USA
- The Texas Brain and Spine Institute, Bryan, TX, USA
| | - K J Bayless
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, TX, USA
- Interdisciplinary Program in Genetics, Texas A&M University, College Station, TX, USA
- Medical Sciences Graduate Program, Texas A&M Health Science Center, College Station, TX, USA
| | - R Sitcheran
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, TX, USA
- Interdisciplinary Program in Genetics, Texas A&M University, College Station, TX, USA
- Medical Sciences Graduate Program, Texas A&M Health Science Center, College Station, TX, USA
- The Texas Brain and Spine Institute, Bryan, TX, USA
| |
Collapse
|
30
|
Baskin R, Woods NT, Mendoza-Fandiño G, Forsyth P, Egan KM, Monteiro ANA. Functional analysis of the 11q23.3 glioma susceptibility locus implicates PHLDB1 and DDX6 in glioma susceptibility. Sci Rep 2015; 5:17367. [PMID: 26610392 PMCID: PMC4661592 DOI: 10.1038/srep17367] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 10/28/2015] [Indexed: 12/04/2022] Open
Abstract
Glioma is the most common malignant primary brain tumor and is associated with poor prognosis. Genetic factors contributing to glioma risk have recently been investigated through genome-wide association studies (GWAS), implicating seven independent glioma risk loci in six chromosomal regions. Here, we performed an in-depth functional analysis of the risk locus proximal to the PHLDB1 gene on 11q23.3. We retrieved all SNPs in linkage disequilibrium (r2 ≥ 0.2) with the glioma-associated SNP (rs498872) and performed a comprehensive bioinformatics and experimental functional analysis for the region. After testing candidate SNPs for allele-specific activity in a luciferase-based enhancer scanning assay, we established a subset of 10 functional SNPs in the promoters of PHLDB1 and DDX6, and in a putative enhancer element. Chromatin conformation capture (3C) identified a physical interaction between the enhancer element containing a functional SNP (rs73001406) and the promoter of the DDX6 gene. Knockdown experiments in cell culture and 3D assays to evaluate the role of PHLDB1 and DDX6 suggest that both genes may contribute to the phenotype. These studies reveal the functional landscape of the 11q23.3 glioma susceptibility locus and identify a network of functional SNPs in regulatory elements and two target genes as a possible mechanism driving glioma risk association.
Collapse
Affiliation(s)
- Rebekah Baskin
- Cancer Epidemiology Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Nicholas T Woods
- Cancer Epidemiology Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA.,Eppley Institute for Research in Cancer, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Gustavo Mendoza-Fandiño
- Cancer Epidemiology Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Peter Forsyth
- Department of Neuro-oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Kathleen M Egan
- Cancer Epidemiology Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Alvaro N A Monteiro
- Cancer Epidemiology Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| |
Collapse
|
31
|
Chen S, Han M, Chen W, He Y, Huang B, Zhao P, Huang Q, Gao L, Qu X, Li X. KIF1B promotes glioma migration and invasion via cell surface localization of MT1-MMP. Oncol Rep 2015; 35:971-7. [PMID: 26576027 DOI: 10.3892/or.2015.4426] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 10/19/2015] [Indexed: 11/06/2022] Open
Abstract
Malignant glioma is notorious for its aggressiveness and poor prognosis, and the invasiveness of glioma cells is the major obstacle. Accumulating evidence indicates that kinesin superfamily proteins (KIFs) may play key roles in tumor invasiveness, but the mechanisms remained unresolved. Our previous study demonstrated that membrane type 1-matrix metalloproteinase (MT1-MMP) was involved in Kinesin family member 1B (KIF1B)-modulated invasion of gastric cancer cells. Therefore, the role of KIF1B in glioma cell invasion and its relationship with MT1-MMP were explored in the present study. We found that aberrantly increased expression of KIF1B was associated with worse WHO pathological classification and Karnofsky performance status (KPS), which also showed a trend towards worse prognosis. In the transwell assay, knockdown of KIF1B using siRNA repressed U87MG and A172 glioma cell migration and invasion. Silencing KIF1B inhibited expression of membranal MT1-MMP; however, the amount of MT1-MMP in the whole cell lysate was not affected. In conclusion, targeting KIF1B may be an option for anti-invasive therapies targeting glioma.
Collapse
Affiliation(s)
- Songyu Chen
- Department of Neurosurgery, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| | - Mingzhi Han
- Department of Neurosurgery, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| | - Weiliang Chen
- Department of Neurosurgery, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| | - Ying He
- Institute of Basic Medical Sciences, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| | - Bin Huang
- Department of Neurosurgery, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| | - Peng Zhao
- Department of Neurosurgery, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| | - Qibing Huang
- Department of Neurosurgery, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| | - Liang Gao
- Department of Neurosurgery, Shanghai Tenth People's Hospital, Tongji University, Shanghai 200072, P.R. China
| | - Xun Qu
- Institute of Basic Medical Sciences, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| | - Xingang Li
- Department of Neurosurgery, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| |
Collapse
|
32
|
Guo Z, Jiang JH, Zhang J, Yang HJ, Yang FQ, Qi YP, Zhong YP, Su J, Yang RR, Li LQ, Xiang BD. COX-2 Promotes Migration and Invasion by the Side Population of Cancer Stem Cell-Like Hepatocellular Carcinoma Cells. Medicine (Baltimore) 2015; 94:e1806. [PMID: 26554780 PMCID: PMC4915881 DOI: 10.1097/md.0000000000001806] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Cancer stem cells (CSCs) are thought to be responsible for tumor relapse and metastasis due to their abilities to self-renew, differentiate, and give rise to new tumors. Cyclooxygenase-2 (COX-2) is highly expressed in several kinds of CSCs, and it helps promote stem cell renewal, proliferation, and radioresistance. Whether and how COX-2 contributes to CSC migration and invasion is unclear. In this study, COX-2 was overexpressed in the CSC-like side population (SP) of the human hepatocellular carcinoma (HCC) cell line HCCLM3. COX-2 overexpression significantly enhanced migration and invasion of SP cells, while reducing expression of metastasis-related proteins PDCD4 and PTEN. Treating SP cells with the selective COX-2 inhibitor celecoxib down-regulated COX-2 and caused a dose-dependent reduction in cell migration and invasion, which was associated with up-regulation of PDCD4 and PTEN. These results suggest that COX-2 exerts pro-metastatic effects on SP cells, and that these effects are mediated at least partly through regulation of PDCD4 and PTEN expression. These results further suggest that celecoxib may be a promising anti-metastatic agent to reduce migration and invasion by hepatic CSCs.
Collapse
Affiliation(s)
- Zhe Guo
- From the Department of Hepatobiliary Surgery, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, P.R. China (ZG, H-JY, F-QY, Y-PQ, L-QL, B-DX); Department of Thyroid and Breast Surgery, The Central Hospital of Wuhan, Wuhan, P.R. China (ZG); Department of General Surgery, The Second People's Hospital of The Second People's Hospital of Jingmen, Jingmen, P.R. China (J-HJ); Department of Ultrasound, Wuhan No. 1 Hospital, Wuhan, P.R. China (JZ); Medical Science Experimental Center, Guangxi Medical University, Nanning, P.R. China (Y-PZ, JS); Department of Immunology, School of Preclinical Medicine, Biological Targeting Diagnosis and Therapy Research Center, Guangxi Medical University, Nanning, P.R. China (R-RY)
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Arif M, Thakur SC, Datta K. Implication of thymoquinone as a remedy for polycystic ovary in rat. PHARMACEUTICAL BIOLOGY 2015; 54:674-85. [PMID: 26510692 DOI: 10.3109/13880209.2015.1072565] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
CONTEXT Thymoquinone (TQ), an active component of Nigella sativa L. (Ranunculaceae), possesses anti-inflammatory and anti-oxidative properties. Polycystic ovary syndrome exhibits chronic inflammatory behavior, thus might involve nuclear factor kappa B (NF-κB) signaling and related molecular factors. OBJECTIVE The objective of the present study is to investigate and validate the effect of TQ in polycystic ovary (PCO) rat. MATERIALS AND METHODS To validate the effect of TQ (1 µM/ml), NF-κB activation, COX2 (cyclooxygenase-2) expression and reactive oxygen species (ROS) induction were studied in the KK1 cell line. To evaluate the effect of TQ (2 mg/200 µl olive oil/rat; sc) with an in vivo system, ovulation rate, levels of key ovulation mediators, and ovarian gelatinases activity were compared in superovulated, PCO, and RU486 + TQ-treated Wistar rats. RESULTS In vitro studies showed that NF-κB nuclear translocation, COX2, and ROS expression were repressed via TQ supplementation in RU486-treated KK1 cells. Pretreatment of TQ in the PCO rat model induced significant restoration of normal physio-molecular behavior of ovary, such as reduced cysts formation, increased ovulation rate, and normalization of key ovarian factors [like TNF-α-stimulated gene/protein 6, hyaluronan, hyaluronan-binding protein 1, COX2, matrix metalloproteinases (membrane type 1-matrix metalloproteinase, MMP9 and MMP2)], tissue inhibitor of metalloproteinases (TIMP-1 and TIMP-2), and gelatinases (like MMP9 and -2) activity during follicular maturation. DISCUSSION AND CONCLUSION Overall, most of the above molecular changes are regulated via NF-κB pathway, thus TQ, due to its modulatory effect on the NF-κB signaling, could elevate normal ovarian phenotype and physiological function in the PCO model, indicating its remarkable potential as a remedy for rat PCO.
Collapse
Affiliation(s)
- Mohammed Arif
- a Biochemistry Laboratory, School of Environmental Sciences, Jawaharlal Nehru University , New Delhi , India and
- b Reproductive Toxicology Laboratory, Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia , New Delhi , India
| | - Sonu Chand Thakur
- b Reproductive Toxicology Laboratory, Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia , New Delhi , India
| | - Kasturi Datta
- a Biochemistry Laboratory, School of Environmental Sciences, Jawaharlal Nehru University , New Delhi , India and
| |
Collapse
|
34
|
Valacca C, Tassone E, Mignatti P. TIMP-2 Interaction with MT1-MMP Activates the AKT Pathway and Protects Tumor Cells from Apoptosis. PLoS One 2015; 10:e0136797. [PMID: 26331622 PMCID: PMC4558019 DOI: 10.1371/journal.pone.0136797] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 08/07/2015] [Indexed: 02/07/2023] Open
Abstract
Membrane-type 1 matrix metalloproteinase (MT1-MMP), a transmembrane proteinase with an extracellular catalytic domain and a short cytoplasmic tail, degrades a variety of extracellular matrix (ECM) components. In addition, MT1-MMP activates intracellular signaling through proteolysis-dependent and independent mechanisms. We have previously shown that binding of tissue inhibitor of metalloproteinases-2 (TIMP-2) to MT1-MMP controls cell proliferation and migration, as well as tumor growth in vivo by activating the Ras—extracellular signal regulated kinase-1 and -2 (ERK1/2) pathway through a mechanism that requires the cytoplasmic but not the proteolytic domain of MT1-MMP. Here we show that in MT1-MMP expressing cells TIMP-2 also induces rapid and sustained activation of AKT in a dose- and time-dependent manner and by a mechanism independent of the proteolytic activity of MT1-MMP. Fibroblast growth factor receptor-1 mediates TIMP-2 induction of ERK1/2 but not of AKT activation; however, Ras activation is necessary to transduce the TIMP-2-activated signal to both the ERK1/2 and AKT pathways. ERK1/2 and AKT activation by TIMP-2 binding to MT1-MMP protects tumor cells from apoptosis induced by serum starvation. Conversely, TIMP-2 upregulates apoptosis induced by three-dimensional type I collagen in epithelial cancer cells. Thus, TIMP-2 interaction with MT1-MMP provides tumor cells with either pro- or anti-apoptotic signaling depending on the extracellular environment and apoptotic stimulus.
Collapse
Affiliation(s)
- Cristina Valacca
- Department of Cardiothoracic Surgery, New York University School of Medicine, New York, New York, United States of America
| | - Evelyne Tassone
- Department of Cardiothoracic Surgery, New York University School of Medicine, New York, New York, United States of America
| | - Paolo Mignatti
- Department of Medicine, New York University School of Medicine, New York, New York, United States of America
- Department of Cell Biology, New York University School of Medicine, New York University School of Medicine, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
35
|
Li S, Gu Z, Xiao Z, Zhou T, Li J, Sun K. Anti-tumor effect and mechanism of cyclooxygenase-2 inhibitor through matrix metalloproteinase 14 pathway in PANC-1 cells. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2015; 8:1737-1742. [PMID: 25973062 PMCID: PMC4396316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 12/13/2014] [Accepted: 01/23/2015] [Indexed: 06/04/2023]
Abstract
OBJECTIVE To investigate whether celecoxib, a selective cyclooxygenase-2 (COX-2) inhibitor, can attenuate proliferation, migration, invasion and MMP-14 expression in pancreatic cancer cells PANC-1 and the possible anti-tumor mechanism of celecoxib. METHODS Human pancreatic cancer cell line PANC-1 cells were treated with diverse concentrations of celecoxib (20, 60, 100 μmol/L). Cell proliferation, invasion and migration capabilities were measured by MTT colorimetry, transwell invasion assay, and scratch assay separately. At the same time, the protein expression of COX-2 and MMP-14 was assessed by ELISA. RESULTS The capabilities of proliferation, invasion and migration in PANC-1 cells were attenuated in a concentration-dependent manner after treated with celecoxib, followed by the down-regulation of the protein expression of COX-2 and MMP-14. In addition, MMP-14 expression was significantly positively correlated with COX-2 expression. CONCLUSIONS COX-2 inhibitor celecoxib can inhibit the proliferation, invasion and migration of PANC-1 cells via down-regulating the expression of MMP-14 in a concentration-dependent manner, thus contributing to its anti-tumor effect in pancreatic cancer.
Collapse
Affiliation(s)
- Siyuan Li
- Medical College of Shihezi University, Key Laboratory of Ministry of Education, Xinjiang Endemic and Ethnic DiseasesShihezi 832002, China
| | - Zhuoyu Gu
- Medical College of Shihezi University, Key Laboratory of Ministry of Education, Xinjiang Endemic and Ethnic DiseasesShihezi 832002, China
| | - Zhiwei Xiao
- Medical College of Shihezi University, Key Laboratory of Ministry of Education, Xinjiang Endemic and Ethnic DiseasesShihezi 832002, China
| | - Ting Zhou
- Key Laboratory, First Affiliated Hospital, Medical College of Shihezi UniversityShihezi 832002, China
| | - Jun Li
- Department of Endocrinology, First Affiliated Hospital, Medical College of Shihezi UniversityShihezi 832002, China
| | - Kan Sun
- Department of Endocrinology, First Affiliated Hospital, Medical College of Shihezi UniversityShihezi 832002, China
| |
Collapse
|
36
|
Pratt J, Iddir M, Bourgault S, Annabi B. Evidence of MTCBP-1 interaction with the cytoplasmic domain of MT1-MMP: Implications in the autophagy cell index of high-grade glioblastoma. Mol Carcinog 2015; 55:148-60. [PMID: 25640948 DOI: 10.1002/mc.22264] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Accepted: 11/17/2014] [Indexed: 01/01/2023]
Abstract
Progression of astrocytic tumors is, in part, related to their dysregulated autophagy capacity. Recent evidence indicates that upstream autophagy signaling events can be triggered by MT1-MMP, a membrane-bound matrix metalloproteinase that contributes to the invasive phenotype of brain cancer cells. The signaling functions of MT1-MMP require its intracellular domain, and recent identification of MTCBP-1, a cytoplasmic 19 kDa protein involved in the inhibition of MT1-MMP-mediated cell migration, suggests that modulation of MT1-MMP cytoplasmic domain-mediated signaling may affect other carcinogenic processes. Using qPCR and screening of cDNA generated from brain tumor tissues of grades I, II, III, and IV, MT1-MMP gene expression was found to correlate with increased grade of tumors. Inversely, MTCBP-1 expression decreased with increasing grade of brain tumor. Confocal microscopy and fluorescence resonance energy transfer (FRET) analysis revealed that overexpressing a cytoplasmic-deleted MT1-MMP recombinant protein mutant prevented MTCBP-1 recruitment to the intracellular leaf of plasma membrane in U87 glioblastoma cells. The interaction between MTCBP-1 and the 20 amino acids peptide representing the MT1-MMP cytoplasmic domain was confirmed by surface plasmon resonance. Overexpression of a full-length Wt-MT1-MMP triggered acidic autophagy vesicle formation and autophagic puncta formation for green fluorescent microtubule-associated protein 1 light chain 3 (GFP-LC3). Autophagic vesicles and GFP-LC3 puncta formation were abrogated in the presence of MTCBP-1. Our data elucidate a new role for MTCBP-1 regulating the intracellular function of MT1-MMP-mediated autophagy. The inverse correlation between MTCBP-1 and MT1-MMP expression with brain tumor grades could also contribute to the decreased autophagic index observed in high-grade tumors.
Collapse
Affiliation(s)
- Jonathan Pratt
- Laboratoire d'Oncologie Moléculaire, Centre de recherche Biomed, Quebec, Canada
| | - Mustapha Iddir
- Laboratoire d'Oncologie Moléculaire, Centre de recherche Biomed, Quebec, Canada
| | - Steve Bourgault
- Centre de recherche Pharmaqam, Département de Chimie, Université du Québec à Montréal, Quebec, Canada
| | - Borhane Annabi
- Laboratoire d'Oncologie Moléculaire, Centre de recherche Biomed, Quebec, Canada
| |
Collapse
|
37
|
Liao K, Xia B, Zhuang QY, Hou MJ, Zhang YJ, Luo B, Qiu Y, Gao YF, Li XJ, Chen HF, Ling WH, He CY, Huang YJ, Lin YC, Lin ZN. Parthenolide inhibits cancer stem-like side population of nasopharyngeal carcinoma cells via suppression of the NF-κB/COX-2 pathway. Am J Cancer Res 2015; 5:302-21. [PMID: 25553117 PMCID: PMC4279193 DOI: 10.7150/thno.8387] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Accepted: 11/23/2014] [Indexed: 12/30/2022] Open
Abstract
Cancer stem cells play a central role in the pathogenesis of nasopharyngeal carcinoma and contribute to both disease initiation and relapse. In this study, cyclooxygenase-2 (COX-2) was found to regulate cancer stem-like side population cells of nasopharyngeal carcinoma cells and enhance cancer stem-like cells' characteristics such as higher colony formation efficiency and overexpression of stemness-associated genes. The regulatory effect of COX-2 on cancer stem-like characteristics may be mediated by ABCG2. COX-2 overexpression by a gain-of-function experiment increased the proportion of side population cells and their cancer stemness properties. The present study also demonstrated that in contrast to the classical chemotherapy drug 5-fluorouracil, which increased the proportion of side population cells and upregulated the expression of COX-2, parthenolide, a naturally occurring small molecule, preferentially targeted the side population cells of nasopharyngeal carcinoma cells and downregulated COX-2. Moreover, we found that the cancer stem-like cells' phenotype was suppressed by using COX-2 inhibitors NS-398 and CAY10404 or knocking down COX-2 with siRNA and shRNA. These findings suggest that COX-2 inhibition is the mechanism by which parthenolide induces cell death in the cancer stem-like cells of nasopharyngeal carcinoma. In addition, parthenolide exhibited an inhibitory effect on nuclear factor-kappa B (NF-κB) nucler translocation by suppressing both the phosphorylation of IκB kinase complex and IκBα degradation. Taken together, these results suggest that parthenolide may exert its cancer stem cell-targeted chemotherapy through the NF-κB/COX-2 pathway.
Collapse
|
38
|
Ohkawara H, Ishibashi T, Sugimoto K, Ikeda K, Ogawa K, Takeishi Y. Membrane type 1-matrix metalloproteinase/Akt signaling axis modulates TNF-α-induced procoagulant activity and apoptosis in endothelial cells. PLoS One 2014; 9:e105697. [PMID: 25162582 PMCID: PMC4146507 DOI: 10.1371/journal.pone.0105697] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Accepted: 07/28/2014] [Indexed: 11/18/2022] Open
Abstract
Membrane type 1–matrix metalloproteinase (MT1-MMP) functions as a signaling molecule in addition to a proteolytic enzyme. Our hypothesis was that MT1-MMP cooperates with protein kinase B (Akt) in tumor necrosis factor (TNF)-α-induced signaling pathways of vascular responses, including tissue factor (TF) procoagulant activity and endothelial apoptosis, in cultured human aortic endothelial cells (ECs). TNF-α (10 ng/mL) induced a decrease in Akt phosphorylation within 60 minutes in ECs. A chemical inhibitor of MMP, TIMP-2 and selective small interfering RNA (siRNA)-mediated suppression of MT1-MMP reversed TNF-α-triggered transient decrease of Akt phosphorylation within 60 minutes, suggesting that MT1-MMP may be a key regulator of Akt phosphorylation in TNF-α-stimulated ECs. In the downstream events, TNF-α increased TF antigen and activity, and suppressed the expression of thrombomodulin (TM) antigen. Inhibition of Akt markedly enhanced TNF-α-induced expression of TF antigen and activity, and further reduced the expression of TM antigen. Silencing of MT1-MMP by siRNA also reversed the changed expression of TF and TM induced by TNF-α. Moreover, TNF-α induced apoptosis of ECs through Akt- and forkhead box protein O1 (FoxO1)-dependent signaling pathway and nuclear factor-kB (NF-kB) activation. Knockdown of MT1-MMP by siRNA reversed apoptosis of ECs by inhibiting TNF-α-induced Akt-dependent regulation of FoxO1 in TNF-α-stimulated ECs. Immunoprecipitation demonstrated that TNF-α induced the changes in the associations between the cytoplasmic fraction of MT1-MMP and Akt in ECs. In conclusion, we show new evidence that MT1-MMP/Akt signaling axis is a key modifier for TNF-α-induced signaling pathways for modulation of procoagulant activity and apoptosis of ECs.
Collapse
Affiliation(s)
- Hiroshi Ohkawara
- Department of Cardiology and Hematology, Fukushima Medical University, Fukushima, Japan
- * E-mail:
| | - Toshiyuki Ishibashi
- Department of Cardiovascular Medicine, Ohara General Hospital Medical Center, Fukushima, Japan
| | - Koichi Sugimoto
- Department of Cardiology and Hematology, Fukushima Medical University, Fukushima, Japan
| | - Kazuhiko Ikeda
- Department of Cardiology and Hematology, Fukushima Medical University, Fukushima, Japan
| | - Kazuei Ogawa
- Department of Cardiology and Hematology, Fukushima Medical University, Fukushima, Japan
| | - Yasuchika Takeishi
- Department of Cardiology and Hematology, Fukushima Medical University, Fukushima, Japan
| |
Collapse
|
39
|
Ulasov I, Yi R, Guo D, Sarvaiya P, Cobbs C. The emerging role of MMP14 in brain tumorigenesis and future therapeutics. Biochim Biophys Acta Rev Cancer 2014; 1846:113-20. [DOI: 10.1016/j.bbcan.2014.03.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Revised: 02/12/2014] [Accepted: 03/15/2014] [Indexed: 02/08/2023]
|
40
|
Gu ZY, Li SY, Li J, Xiao ZW, Zhou T. Expression of MMP-14 and COX-2 in gastric cancer. Shijie Huaren Xiaohua Zazhi 2014; 22:2300-2305. [DOI: 10.11569/wcjd.v22.i16.2300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the protein expression of MMP-14 and COX-2 in gastric cancer to further reveal the pathogenesis of gastric cancer.
METHODS: The protein expression of MMP-14 and COX-2 was examined by immunohistochemistry in human gastric cancer tissues and normal gastric tissues, and the relationship between the protein expression and clinicopathological features was analyzed. The protein expression of MMP-14 in human gastric cancer tissues at different TNM stages was also explored.
RESULTS: The expression rates of MMP-14 and COX-2 in gastric cancer tissues were significantly higher than those in normal tissues (P < 0.01). The expression of MMP-14 was significantly correlated with the degree of differentiation, lymph node metastasis, invasion depth and TNM stage of gastric cancer (P < 0.01). The expression of COX-2 was correlated with invasion depth and TNM stage of gastric cancer (P < 0.05). MMP-14 expression was positively correlated with COX-2 expression in gastric cancer tissues (P < 0.01). MMP-14 expression increased with the elevation of TNM stage and showed a tendency from the cytoplasm to cell membrane.
CONCLUSION: Stimulating overexpression and intracellular translocation of MMP-14 may be one of mechanisms for COX-2 protein to contribute to the invasion and metastasis of human gastric cancer.
Collapse
|
41
|
Alvarez AA, Field M, Bushnev S, Longo MS, Sugaya K. The effects of histone deacetylase inhibitors on glioblastoma-derived stem cells. J Mol Neurosci 2014; 55:7-20. [PMID: 24874578 DOI: 10.1007/s12031-014-0329-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Accepted: 05/09/2014] [Indexed: 12/13/2022]
Abstract
Glioblastoma multiforme (GBM) is the most malignant brain tumor with limited effective treatment options. Cancer stem cells (CSCs), a subpopulation of cancer cells with stem cell properties found in GBMs, have been shown to be extremely resistant to radiation and chemotherapeutic agents and have the ability to readily reform tumors. Therefore, the development of therapeutic agents targeting CSCs is extremely important. In this study, we isolated glioblastoma-derived stem cells (GDSCs) from GBM tissue removed from patients during surgery and analyzed their gene expression using quantitative real-time PCR and immunocytochemistry. We examined the effects of histone deacetylase inhibitors trichostatin A (TSA) and valproic acid (VPA) on the proliferation and gene expression profiles of GDSCs. The GDSCs expressed significantly higher levels of both neural and embryonic stem cell markers compared to GBM cells expanded in conventional monolayer cultures. Treatment of GDSCs with histone deacetylase inhibitors, TSA and VPA, significantly reduced proliferation rates of the cells and expression of the stem cell markers, indicating differentiation of the cells. Since differentiation into GBM makes them susceptible to the conventional cancer treatments, we posit that use of histone deacetylase inhibitors may increase efficacy of the conventional cancer treatments for eliminating GDSCs.
Collapse
|
42
|
Westhoff MA, Zhou S, Nonnenmacher L, Karpel-Massler G, Jennewein C, Schneider M, Halatsch ME, Carragher NO, Baumann B, Krause A, Simmet T, Bachem MG, Wirtz CR, Debatin KM. Inhibition of NF-κB signaling ablates the invasive phenotype of glioblastoma. Mol Cancer Res 2013; 11:1611-23. [PMID: 24145173 DOI: 10.1158/1541-7786.mcr-13-0435-t] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
UNLABELLED Glioblastoma multiforme, the most common primary brain tumor, is highly refractory to therapy, mainly due to its ability to form micrometastases, which are small clusters or individual cells that rapidly transverse the brain and make full surgical resection impossible. Here, it is demonstrated that the invasive phenotype of glioblastoma multiforme is orchestrated by the transcription factor NF-κB which, via metalloproteinases (MMP), regulates fibronectin processing. Both, cell lines and tumor stem cells from primary glioblastoma multiforme, secrete high levels of fibronectin which when cleaved by MMPs forms an extracellular substrate. Subsequently, forming and interacting with their own microenvironment, glioblastoma multiforme cells are licensed to invade their surroundings. Mechanistic study revealed that NF-κB inhibition, either genetically or pharmacologically, by treatment with Disulfiram, significantly abolished the invasive phenotype in the chick chorioallantoic membrane assay. Furthermore, having delineated the underlying molecular mechanism of glioblastoma multiforme invasion, the potential of a disulfiram-based therapy was revealed in a highly invasive orthotrophic glioblastoma multiforme mouse model. IMPLICATIONS This study defines a novel therapeutic approach that inhibits micrometastases invasion and reverts lethal glioblastoma into a less aggressive disease.
Collapse
Affiliation(s)
- Mike-Andrew Westhoff
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Eythstrasse 24, D-89075 Ulm, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Vlachostergios PJ, Voutsadakis IA, Papandreou CN. The shaping of invasive glioma phenotype by the ubiquitin-proteasome system. ACTA ACUST UNITED AC 2013; 20:87-92. [PMID: 24004256 DOI: 10.3109/15419061.2013.833192] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Protein degradation is an indispensable process for cells which is often deregulated in various diseases, including malignant conditions. Depending on the specific cell type and functions of expressed proteins, this aberration may have different effects on the determination of malignant phenotypes. A discrete, inherent feature of malignant glioma is its profound invasive and migratory potential, regulated by the expression of signaling and effector proteins, many of which are also subjected to post-translational regulation by the ubiquitin-proteasome system (UPS). Here we provide an overview of this connection, focusing on important pro-invasive protein signals targeted by the UPS.
Collapse
Affiliation(s)
- Panagiotis J Vlachostergios
- Faculty of Medicine, Department of Medical Oncology, University of Thessaly University Hospital of Larissa , Larissa , Greece
| | | | | |
Collapse
|
44
|
Zgheib A, Lamy S, Annabi B. Epigallocatechin gallate targeting of membrane type 1 matrix metalloproteinase-mediated Src and Janus kinase/signal transducers and activators of transcription 3 signaling inhibits transcription of colony-stimulating factors 2 and 3 in mesenchymal stromal cells. J Biol Chem 2013; 288:13378-86. [PMID: 23548906 PMCID: PMC3650376 DOI: 10.1074/jbc.m113.456533] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Revised: 03/20/2013] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND CSF-2 and CSF-3 confer proangiogenic and immunomodulatory properties to mesenchymal stromal cells (MSCs). RESULTS Transcriptional regulation of CSF-2 and CSF-3 in concanavalin A-activated MSCs requires MT1-MMP signaling and is inhibited by EGCG. CONCLUSION The chemopreventive properties of diet-derived EGCG alter MT1-MMP-mediated intracellular signaling. SIGNIFICANCE Pharmacological targeting of MSCs proangiogenic functions may prevent their contribution to tumor development. Epigallocatechin gallate (EGCG), a major form of tea catechins, possesses immunomodulatory and antiangiogenic effects, both of which contribute to its chemopreventive properties. In this study, we evaluated the impact of EGCG treatment on the expression of colony-stimulating factors (CSF) secreted from human bone marrow-derived mesenchymal stromal cells (MSCs), all of which also contribute to the immunomodulatory and angiogenic properties of these cells. MSCs were activated with concanavalin A (ConA), a Toll-like receptor (TLR)-2 and TLR-6 agonist as well as a membrane type 1 matrix metalloproteinase (MT1-MMP) inducer, which increased granulocyte macrophage-CSF (GM-CSF, CSF-2), granulocyte CSF (G-CSF, CSF-3), and MT1-MMP gene expression. EGCG antagonized the ConA-induced CSF-2 and CSF-3 gene expression, and this process required an MT1-MMP-mediated sequential activation of the Src and JAK/STAT pathways. Gene silencing of MT1-MMP expression further demonstrated its requirement in the phosphorylation of Src and STAT3, whereas overexpression of a nonphosphorylatable MT1-MMP mutant (Y573F) abrogated CSF-2 and CSF-3 transcriptional increases. Given that MSCs are recruited within vascularizing tumors and are believed to contribute to tumor angiogenesis, possibly through secretion of CSF-2 and CSF-3, our study suggests that diet-derived polyphenols such as EGCG may exert chemopreventive action through pharmacological targeting of the MT1-MMP intracellular signaling.
Collapse
Affiliation(s)
- Alain Zgheib
- From the Laboratoire d'Oncologie Moléculaire, Centre de Recherche BIOMED, Département de Chimie, Université du Québec à Montreal, Montreal, Quebec, Canada H3C 3P8
| | - Sylvie Lamy
- From the Laboratoire d'Oncologie Moléculaire, Centre de Recherche BIOMED, Département de Chimie, Université du Québec à Montreal, Montreal, Quebec, Canada H3C 3P8
| | - Borhane Annabi
- From the Laboratoire d'Oncologie Moléculaire, Centre de Recherche BIOMED, Département de Chimie, Université du Québec à Montreal, Montreal, Quebec, Canada H3C 3P8
| |
Collapse
|
45
|
Yamaguchi Y, Shao Z, Sharif S, Du XY, Myles T, Merchant M, Harsh G, Glantz M, Recht L, Morser J, Leung LLK. Thrombin-cleaved fragments of osteopontin are overexpressed in malignant glial tumors and provide a molecular niche with survival advantage. J Biol Chem 2012. [PMID: 23204518 DOI: 10.1074/jbc.m112.362954] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Osteopontin (OPN), which is highly expressed in malignant glioblastoma (GBM), possesses inflammatory activity modulated by proteolytic cleavage by thrombin and plasma carboxypeptidase B2 (CPB2) at a highly conserved cleavage site. Full-length OPN (OPN-FL) was elevated in cerebrospinal fluid (CSF) samples from all cancer patients compared with noncancer patients. However, thrombin-cleaved OPN (OPN-R) and thrombin/CPB2-double-cleaved OPN (OPN-L) levels were markedly increased in GBM and non-GBM gliomas compared with systemic cancer and noncancer patients. Cleaved OPN constituted ∼23 and ∼31% of the total OPN in the GBM and non-GBM CSF samples, respectively. OPN-R was also elevated in GBM tissues. Thrombin-antithrombin levels were highly correlated with cleaved OPN, but not OPN-FL, suggesting that the cleaved OPN fragments resulted from increased thrombin and CPB2 in this extracellular compartment. Levels of VEGF and CCL4 were increased in CSF of GBM and correlated with the levels of cleaved OPN. GBM cell lines were more adherent to OPN-R and OPN-L than OPN-FL. Adhesion to OPN altered gene expression, in particular genes involved with cellular processes, cell cycle regulation, death, and inflammation. OPN and its cleaved forms promoted motility of U-87 MG cells and conferred resistance to apoptosis. Although functional mutation of the RGD motif in OPN largely abolished these functions, OPN(RAA)-R regained significant cell binding and signaling function, suggesting that the SVVYGLR motif in OPN-R may substitute for the RGD motif if the latter becomes inaccessible. OPN cleavage contributes to GBM development by allowing more cells to bind in niches where they acquire anti-apoptotic properties.
Collapse
Affiliation(s)
- Yasuto Yamaguchi
- Division of Hematology, Department of Medicine, Stanford University School of Medicine, Stanford, California 94305, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Schaer M, Schober M, Berger S, Boileau P, Zumstein MA. Biologically based strategies to augment rotator cuff tears. INTERNATIONAL JOURNAL OF SHOULDER SURGERY 2012; 6:51-60. [PMID: 22787334 PMCID: PMC3391785 DOI: 10.4103/0973-6042.96995] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Lesions of the rotator cuff (RC) are among the most frequent tendon injuries. In spite of the developments in both open and arthroscopic surgery, RC repair still very often fails. In order to reduce the failure rate after surgery, several experimental in vitro and in vivo therapy methods have been developed for biological improvement of the reinsertion. This article provides an overview of the current evidence for augmentation of RC reconstruction with growth factors. Furthermore, potential future therapeutic approaches are discussed. We performed a comprehensive search of the PubMed database using various combinations of the keywords “tendon,” “rotator cuff,” “augmentation,” “growth factor,” “platelet-rich fibrin,” and “platelet-rich plasma” for publications up to 2011. Given the linguistic capabilities of the research team, we considered publications in English, German, French, and Spanish. We excluded literature reviews, case reports, and letters to the editor.
Collapse
Affiliation(s)
- M Schaer
- Department of Orthopaedic Surgery and Traumatology, Inselspital, Bern, Switzerland
| | | | | | | | | |
Collapse
|
47
|
Lee JH, Kim SW, Kim UK, Oh SH, June-Kim S, Park BW, Kim JH, Hah YS, Kim DR, Rho GJ, Maeng GH, Jeon RH, Lee HC, Kim JR, Kim GC, Byun JH. Generation of osteogenic construct using periosteal-derived osteoblasts and polydioxanone/pluronic F127 scaffold with periosteal-derived CD146 positive endothelial-like cells. J Biomed Mater Res A 2012; 101:942-53. [PMID: 22961670 DOI: 10.1002/jbm.a.34393] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Revised: 06/21/2012] [Accepted: 07/23/2012] [Indexed: 12/15/2022]
Abstract
The purpose of this study was to generate tissue-engineered bone using human periosteal-derived osteoblasts (PO) and polydioxanone/pluronic F127 (PDO/pluronic F127) scaffold with preseeded human periosteal-derived CD146 positive endothelial-like cells (PE). PE were purified from the periosteal cell population by cell sorting. One of the important factors to consider in generating tissue-engineered bone using osteoprecursor and endothelial cells and a specific scaffold is whether the function of osteoprecursor and endothelial cells can be maintained in originally different culture medium conditions. After human PE were preseeded into PDO/pluronic F127 scaffold and cultured in endothelial cell basal medium-2 for 7 days, human PO were seeded into the PDO/pluronic F127 scaffold with PE, and then, this cell-scaffold construct was cultured in endothelial cell basal medium-2 with osteogenic induction factors, including ascorbic acid, dexamethasone, and β-glycerophosphate, for a further 7 days. Then, this 2-week cultured construct was grafted into the mandibular defect of miniature pig. Twelve weeks after implantation, the animal was sacrificed. Clinical examination revealed that newly formed bone was seen more clearly in the defect with human PO and PDO/pluronic F127 scaffold with preseeded human PE. The experimental results suggest that tissue-engineered bone formation using human PO and PDO/pluronic F127 scaffold with preseeded human PE can be used to restore skeletal integrity to various bony defects when used in clinics.
Collapse
Affiliation(s)
- Jin Ho Lee
- Department of Advanced Materials, College of Life Science and Nano Technology, Hannam University, Yuseong-gu, Daejeon 305-811, South Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Akla N, Pratt J, Annabi B. Concanavalin-A triggers inflammatory response through JAK/STAT3 signalling and modulates MT1-MMP regulation of COX-2 in mesenchymal stromal cells. Exp Cell Res 2012; 318:2498-506. [PMID: 22971618 DOI: 10.1016/j.yexcr.2012.08.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Revised: 08/02/2012] [Accepted: 08/20/2012] [Indexed: 12/22/2022]
Abstract
Pharmacological targeting of inflammation through STAT3 and NF-κB signaling pathways is, among other inflammatory biomarkers, associated with cyclooxygenase (COX)-2 inhibition and is believed to play a crucial role in prevention and therapy of cancer. Recently, inflammatory factors were found to impact on mesenchymal stromal cells (MSC) contribution to tumor angiogenesis. Given MSC chemotaxis and cell survival are regulated, in part, by the membrane type-1 matrix metalloproteinase (MT1-MMP), an MMP also involved in transducing NF-κB intracellular signaling pathways, we tested whether STAT3 regulation by MT1-MMP may also contribute to the expression balance of COX-2 in MSC. We demonstrate that STAT3 phosphorylation was triggered in MSC treated with the MT1-MMP inducer lectin Concanavalin-A (ConA), and that this phosphorylation was abrogated by the JAK2 inhibitor AG490. MT1-MMP gene silencing significantly inhibited ConA-induced STAT3 phosphorylation and this was correlated with reduced proMMP-2 activation and COX-2 expression. On the other hand, STAT3 gene silencing potentiated ConA-induced COX-2 expression, providing evidence for a new MT1-MMP/JAK/STAT3 signaling axis that may, in part, explain how MT1-MMP contributes to proinflammatory intracellular signaling. Given that MSC are avidly recruited within inflammatory microenvironments and within experimental vascularizing tumors, these mechanistic observations support a possible dual control of cell adaptation to inflammation by MT1-MMP and that may enable MSC to be active participants within inflamed tissues.
Collapse
Affiliation(s)
- Naoufal Akla
- Laboratoire d'Oncologie Moléculaire, Centre de recherche BIOMED, Département de Chimie, Université du Québec à Montréal, Quebec, Canada H3C 3P8
| | | | | |
Collapse
|
49
|
MT1-MMP expression level status dictates the in vitro action of lupeol on inflammatory biomarkers MMP-9 and COX-2 in medulloblastoma cells. Inflammopharmacology 2012; 21:91-9. [PMID: 22707305 DOI: 10.1007/s10787-012-0142-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Accepted: 05/28/2012] [Indexed: 10/28/2022]
|
50
|
Pratt J, Roy R, Annabi B. Concanavalin-A-induced autophagy biomarkers requires membrane type-1 matrix metalloproteinase intracellular signaling in glioblastoma cells. Glycobiology 2012; 22:1245-55. [PMID: 22692046 DOI: 10.1093/glycob/cws093] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Pre-clinical trials for cancer therapeutics support the anti-neoplastic properties of the lectin from Canavalia ensiformis (Concanavalin-A, ConA) in targeting apoptosis and autophagy in a variety of cancer cells. Given that membrane type-1 matrix metalloproteinase (MT1-MMP), a plasma membrane-anchored matrix metalloproteinase, is a glycoprotein strongly expressed in radioresistant and chemoresistant glioblastoma that mediates pro-apoptotic signalling in brain cancer cells, we investigated whether MT1-MMP could also signal autophagy. Among the four lectins tested, we found that the mannopyranoside/glucopyranoside-binding ConA, which is also well documented to trigger MT1-MMP expression, increases autophagic acidic vacuoles formation as demonstrated by Acridine Orange cell staining. Although siRNA-mediated MT1-MMP gene silencing effectively reversed ConA-induced autophagy, inhibition of the MT1-MMP extracellular catalytic function with Actinonin or Ilomastat did not. Conversely, direct overexpression of the recombinant Wt-MT1-MMP protein triggered proMMP-2 activation and green fluorescent protein-microtubule-associated protein light chain 3 puncta indicative of autophagosomes formation, while deletion of MT1-MMP's cytoplasmic domain disabled such autophagy induction. ConA-treated U87 cells also showed an upregulation of BNIP3 and of autophagy-related gene members autophagy-related protein 3, autophagy-related protein 12 and autophagy-related protein 16-like 1, where respective inductions were reversed when MT1-MMP gene expression was silenced. Altogether, we provide molecular evidence supporting the pro-autophagic mechanism of action of ConA in glioblastoma cells. We also highlight new signal transduction functions of MT1-MMP within apoptotic and autophagic pathways that often characterize cancer cell responses to chemotherapeutic drugs.
Collapse
Affiliation(s)
- Jonathan Pratt
- Laboratoire d'Oncologie Moléculaire, Centre de Recherche BioMED, Québec, Canada
| | | | | |
Collapse
|