1
|
Mora VP, Kalergis AM, Bohmwald K. Neurological Impact of Respiratory Viruses: Insights into Glial Cell Responses in the Central Nervous System. Microorganisms 2024; 12:1713. [PMID: 39203555 PMCID: PMC11356956 DOI: 10.3390/microorganisms12081713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/30/2024] [Accepted: 06/01/2024] [Indexed: 09/03/2024] Open
Abstract
Respiratory viral infections pose a significant public health threat, particularly in children and older adults, with high mortality rates. Some of these pathogens are the human respiratory syncytial virus (hRSV), severe acute respiratory coronavirus-2 (SARS-CoV-2), influenza viruses (IV), human parvovirus B19 (B19V), and human bocavirus 1 (HBoV1). These viruses cause various respiratory symptoms, including cough, fever, bronchiolitis, and pneumonia. Notably, these viruses can also impact the central nervous system (CNS), leading to acute manifestations such as seizures, encephalopathies, encephalitis, neurological sequelae, and long-term complications. The precise mechanisms by which these viruses affect the CNS are not fully understood. Glial cells, specifically microglia and astrocytes within the CNS, play pivotal roles in maintaining brain homeostasis and regulating immune responses. Exploring how these cells interact with viral pathogens, such as hRSV, SARS-CoV-2, IVs, B19V, and HBoV1, offers crucial insights into the significant impact of respiratory viruses on the CNS. This review article examines hRSV, SARS-CoV-2, IV, B19V, and HBoV1 interactions with microglia and astrocytes, shedding light on potential neurological consequences.
Collapse
Affiliation(s)
- Valentina P. Mora
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago 8910060, Chile;
| | - Alexis M. Kalergis
- Millennium Institute on Immunology and Immunotherapy (MIII), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile;
- Departamento de Endocrinología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| | - Karen Bohmwald
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago 8910060, Chile;
| |
Collapse
|
2
|
Li J, Wang Y, Yang Y, Ren X, Qiang Y, Zhang L, Guo L, Liu K. Reactive astrogliosis induced by TNF-α is associated with upregulated AEG-1 together with activated NF-κB pathway in vitro. Neurosci Lett 2024; 837:137899. [PMID: 39019146 DOI: 10.1016/j.neulet.2024.137899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 07/09/2024] [Accepted: 07/14/2024] [Indexed: 07/19/2024]
Abstract
Astrocyte-elevated gene-1 (AEG-1/MTDH/LYRIC) has garnered signficant attention in cancer research, yet, its role in inflammation-associated astrogliosis remains underexplored. This study aims to elucidate the effects of AEG-1 on reactive astrogliosis, including proliferation, migration, and glutamate uptake in primary astrocytes derived from rats. We first confirmed the effect of AEG-1 on these parameters. Subsequently, we investigated whether AEG-1 plays a role in the process of pro-inflammation factors such as tumor necrosis factor-alpha (TNF-α) induced astrogliosis. Our findings revealed that AEG-1-lentivirus infection led to hypertrophic cell bodies and enhanced expression of astrogliosis markers, including glial fibrillary acidic protein (GFAP) and vimentin. Additionally, AEG-1 was found to upregulate the mRNA and protein expression levels of EAAT2, a major glutamate transporter in the brain predominantly expressed by astrocytes and responsible for 90% of glutamate clearance. Furthermore, TNF-α was shown to promote astrogliosis, as well as astrocyte proliferation and migration, by upregulating AEG-1 expression through the NF-κB pathway. Collectively, these results suggest a potential role for AEG-1 in inflammation-related astrogliosis.
Collapse
Affiliation(s)
- Juanjuan Li
- Ningxia Key Laboratory of Craniocerebral Disease, Ningxia Medical University, Yinchuan 750004, China.
| | - Yahe Wang
- Ningxia Key Laboratory of Craniocerebral Disease, Ningxia Medical University, Yinchuan 750004, China.
| | - Yong Yang
- Ningxia Key Laboratory of Craniocerebral Disease, Ningxia Medical University, Yinchuan 750004, China.
| | - Xiaofan Ren
- Ningxia Key Laboratory of Craniocerebral Disease, Ningxia Medical University, Yinchuan 750004, China.
| | - Yuanyuan Qiang
- Ningxia Key Laboratory of Craniocerebral Disease, Ningxia Medical University, Yinchuan 750004, China.
| | - Lianxiang Zhang
- Ningxia Key Laboratory of Craniocerebral Disease, Ningxia Medical University, Yinchuan 750004, China.
| | - Le Guo
- School of Laboratory Medicine, Ningxia Medical University, Yinchuan 750004, China.
| | - Kunmei Liu
- Ningxia Key Laboratory of Craniocerebral Disease, Ningxia Medical University, Yinchuan 750004, China.
| |
Collapse
|
3
|
Jiang J, Wang L, Li Q, Wang Y, Wang Z. HIV-1 gp120 amplifies astrocyte elevated gene-1 activity to compromise the integrity of the outer blood-retinal barrier. AIDS 2024; 38:779-789. [PMID: 38578957 DOI: 10.1097/qad.0000000000003844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2024]
Abstract
OBJECTIVE This study aims to investigate the functions and mechanistic pathways of Astrocyte Elevated Gene-1 (AEG-1) in the disruption of the blood-retinal barrier (BRB) caused by the HIV-1 envelope glycoprotein gp120. DESIGN We utilized ARPE-19 cells challenged with gp120 as our model system. METHODS Several analytical techniques were employed to decipher the intricate interactions at play. These included PCR, Western blot, and immunofluorescence assays for the molecular characterization, and transendothelial electrical resistance (TEER) measurements to evaluate barrier integrity. RESULTS We observed that AEG-1 expression was elevated, whereas the expression levels of tight junction proteins ZO-1, Occludin, and Claudin5 were downregulated in gp120-challenged cells. TEER measurements corroborated these findings, indicating barrier dysfunction. Additional mechanistic studies revealed that the activation of NFκB and MMP2/9 pathways mediated the AEG-1-induced barrier destabilization. Through the use of lentiviral vectors, we engineered cell lines with modulated AEG-1 expression levels. Silencing AEG-1 alleviated gp120-induced downregulation of tight junction proteins and barrier impairment while concurrently inhibiting the NFκB and MMP2/9 pathways. Conversely, overexpression of AEG-1 exacerbated these pathological changes, further compromising the integrity of the BRB. CONCLUSION Gp120 upregulates the expression of AEG-1 and activates the NFκB and MMP2/9 pathways. This in turn leads to the downregulation of tight junction proteins, resulting in the disruption of barrier function.
Collapse
Affiliation(s)
- Jing Jiang
- Department of Ophthalmology, Huashan Hospital, Fudan University, Shanghai, China
| | | | | | | | | |
Collapse
|
4
|
Wang X, Zhou J, Wang Y, Li X, Hu Q, Luo L, Liu X, Liu W, Ye J. Effect of astrocyte GPER on the optic nerve inflammatory response following optic nerve injury in mice. Heliyon 2024; 10:e29428. [PMID: 38638966 PMCID: PMC11024623 DOI: 10.1016/j.heliyon.2024.e29428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 04/05/2024] [Accepted: 04/08/2024] [Indexed: 04/20/2024] Open
Abstract
Activated astrocytes are a primary source of inflammatory factors following traumatic optic neuropathy (TON). Accumulation of inflammatory factors in this context leads to increased axonal damage and loss of retinal ganglion cells (RGCs). Therefore, in the present study, we explored the role of the astrocyte G protein-coupled estrogen receptor (GPER) in regulating inflammatory factors following optic nerve crush (ONC), and analyzed its potential regulatory mechanisms. Overall, our results showed that GPER was abundantly expressed in the optic nerve, and co-localized with glial fibrillary acidic proteins (GFAP). Exogenous administration of G-1 led to a significant reduction in astrocyte activation and expression of inflammation-related factors (including IL-1β, TNF-α, NFκB, and p-NFκB). Additionally, it dramatically increased the survival of RGCs. In contrast, astrocytes were activated to a greater extent by exogenous G15 administration; however, RGCs survival was significantly reduced. In vitro, GPER activation significantly reduced astrocyte activation and the release of inflammation-related factors. In conclusion, activation of astrocyte GPER significantly reduced ONC inflammation levels, and should be explored as a potential target pathway for protecting the optic nerve and RGCs after TON.
Collapse
Affiliation(s)
- Xuan Wang
- Department of Ophthalmology, Daping Hospital, Army Medical Center of PLA, Army Medical University, Chongqing, 400042, China
| | - Jiaxing Zhou
- Department of Ophthalmology, Daping Hospital, Army Medical Center of PLA, Army Medical University, Chongqing, 400042, China
| | - Yuwen Wang
- Department of Ophthalmology, Xinqiao Hospital, Army Medical University, Xinqiao Road, Shapingba District, Chongqing, 400032, China
| | - Xue Li
- Department of Ophthalmology, Daping Hospital, Army Medical Center of PLA, Army Medical University, Chongqing, 400042, China
| | - Qiumei Hu
- Department of Ophthalmology, Daping Hospital, Army Medical Center of PLA, Army Medical University, Chongqing, 400042, China
| | - Linlin Luo
- Department of Ophthalmology, Daping Hospital, Army Medical Center of PLA, Army Medical University, Chongqing, 400042, China
| | - Xuemei Liu
- Department of Ophthalmology, Daping Hospital, Army Medical Center of PLA, Army Medical University, Chongqing, 400042, China
| | - Wei Liu
- Department of Ophthalmology, Daping Hospital, Army Medical Center of PLA, Army Medical University, Chongqing, 400042, China
| | - Jian Ye
- Department of Ophthalmology, Daping Hospital, Army Medical Center of PLA, Army Medical University, Chongqing, 400042, China
| |
Collapse
|
5
|
Shi L, Hao M, Qu G, Xu Y, Cui Z, Geng L, Kuang H. The Key Role of Liraglutide in Preventing Autophagy of Vascular Smooth Muscle Cells in High Glucose Conditions. Balkan Med J 2024; 41:54-63. [PMID: 37953594 PMCID: PMC10767783 DOI: 10.4274/balkanmedj.galenos.2023.2023-8-44] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 10/05/2023] [Indexed: 11/14/2023] Open
Abstract
Background The glucagon-like peptide-1 (GLP-1) receptor agonist liraglutide (LIRA) is a potential hypoglycemic drug with anti-atherosclerosis (AS) effects. Autophagy in the vascular smooth muscle cells (VSMCs) facilitates AS. However, the role of autophagy in the anti-AS mechanism of LIRA remains unclear. Aims To examine the role and mechanisms of autophagy in LIRA’s improvement of the biological characteristics of VSMCs in high glucose conditions. Study Design Experimental animal study. Methods VSMCs isolated from the thoracic aorta of male SD rats were subjected to a high glucose (HG) condition (25 mM) in Dulbecco’s Modified Eagle’s Medium with or without LIRA, the GLP-1 receptor antagonist exendin9-39 (Exe9-39), a phosphatidylinositol 3-kinase (PI3K) inhibitor (LY294002), and autophagy inhibitors (3-methyladenine [3-MA] and bafilomycin A1 [Baf A1]). Acridine orange staining, western blotting, transmission electron microscopy, and mCherry-GFP-LC3 transfection were performed to evaluate the autophagy flux. Additionally, VSMC migration, calcification, proliferation, and apoptosis in HG conditions were observed. Results Addition of LIRA alone or in combination with autophagy inhibitors significantly downregulated Beclin, increased the LC3-II/LC3-I ratio, and upregulated p62 in VSMCs in HG conditions. Furthermore, autophagolysosome formation was markedly curbed after treatment with LIRA and/or autophagy inhibitors. Inhibition of autophagy by LIRA and/or the autophagy inhibitors attenuated VSMC phenotype conversion, proliferation, migration, and calcification and promoted VSMC apoptosis in HG conditions. This protective role of LIRA was augmented by LY294002, but inhibited by Exe9-39. Conclusion LIRA plays a significant role in the improvement of the biological features of VSMCs in HG conditions.
Collapse
Affiliation(s)
- Lili Shi
- Department of Cadre Ward, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- These authors contributed equally
| | - Ming Hao
- Department of Endocrinology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- These authors contributed equally
| | - Guangjing Qu
- Department of Cadre Ward, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yingying Xu
- Department of Cadre Ward, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zhe Cui
- Department of Cadre Ward, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Lin Geng
- Department of Cadre Ward, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Hongyu Kuang
- Department of Endocrinology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
6
|
Kim H, Choi M, Han S, Park SY, Jeong M, Kim SR, Hwang EM, Lee SG. Expression patterns of AEG-1 in the normal brain. Brain Struct Funct 2023; 228:1629-1641. [PMID: 37421418 DOI: 10.1007/s00429-023-02676-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 06/20/2023] [Indexed: 07/10/2023]
Abstract
Astrocyte elevated gene-1 (AEG-1) is a well-known oncogene implicated in various types of human cancers, including brain tumors. Recently, AEG-1 has also been reported to play pivotal roles in glioma-associated neurodegeneration and neurodegenerative diseases like Parkinson's disease and amyotrophic lateral sclerosis. However, the normal physiological functions and expression patterns of AEG-1 in the brain are not well understood. In this study, we investigated the expression patterns of AEG-1 in the normal mouse brain and found that AEG-1 is widely expressed in neurons and neuronal precursor cells, but little in glial cells. We observed differential expression levels of AEG-1 in various brain regions, and its expression was mainly localized in the cell body of neurons rather than the nucleus. Additionally, AEG-1 was expressed in the cytoplasm of Purkinje cells in both the mouse and human cerebellum, suggesting its potential role in this brain region. These findings suggest that AEG-1 may have important functions in normal brain physiology and warrant further investigation. Our results may also shed light on the differential expression patterns of AEG-1 in normal and pathological brains, providing insights into its roles in various neurological disorders.
Collapse
Affiliation(s)
- Hail Kim
- Graduate School, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Minji Choi
- Graduate School, Kyung Hee University, Seoul, 02447, Republic of Korea
- Clinical Research Institute, Kyung Hee University Medical Center, Seoul, 02447, Republic of Korea
| | - Sanghee Han
- Graduate School, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Sang-Yoon Park
- Graduate School, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Myoungseok Jeong
- Graduate School, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Sang Ryong Kim
- Brain Science and Engineering Institute, School of Life Sciences, BK21 Four KNU Creative BioResearch Group, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Eun Mi Hwang
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Division of Bio-Medical Science & Technology, KIST School, University of Science and Technology, Seoul, 02792, Republic of Korea.
| | - Seok-Geun Lee
- Graduate School, Kyung Hee University, Seoul, 02447, Republic of Korea.
| |
Collapse
|
7
|
Zhang Q, Li D, Zhao H, Zhang X. Decitabine attenuates ischemic stroke by reducing astrocytes proliferation in rats. PLoS One 2022; 17:e0272482. [PMID: 35917376 PMCID: PMC9345475 DOI: 10.1371/journal.pone.0272482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 07/14/2022] [Indexed: 11/18/2022] Open
Abstract
DNA methylation regulates epigenetic gene expression in ischemic stroke. Decitabine attenuates ischemic stroke by inhibiting DNA methylation. However, the underlying mechanism of this effect is not known. A model of ischemic stroke in Sprague-Dawley rats was induced through middle cerebral artery occlusion followed by reperfusion step. The rats were randomly treated with decitabine or vehicle by a one-time intraperitoneal injection. Sham rats received similar treatments. Four days after treatment, the rats were perfused with saline or 4% paraformaldehyde after which the brain was excised. DNA methylation level and brain infarct volume were determined by dot blot and histochemistry, respectively. The cellular co-localization and quantitative analysis of DNA methylation were assessed by immunohistochemistry and expression levels of cdkn1b (p27) mRNA and protein were measured by qRT-PCR and immunohistochemistry, respectively. The proliferation of astrocytes and number of neurons were determined by immunohistochemistry. Rats treated with decitabine showed hypomethylation and reduced infarct volume in the cortex. DNA methylation was decreased in astrocytes. Decitabine upregulated p27 mRNA and protein expression levels and attenuated the proliferation of astrocytes in vivo and vitro. Decitabine promotes p27 gene expression possibly by inhibiting its DNA methylation, thereby decreases the proliferation of astrocytes, neuronal death and infarct volume after ischemic stroke.
Collapse
Affiliation(s)
- Qi Zhang
- Department of Human Anatomy, College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Dan Li
- Department of Human Anatomy, College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Haihua Zhao
- Department of Human Anatomy, College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Xu Zhang
- Department of Human Anatomy, College of Basic Medical Sciences, China Medical University, Shenyang, China
- * E-mail:
| |
Collapse
|
8
|
Abdel Ghafar MT, Soliman NA. Metadherin (AEG-1/MTDH/LYRIC) expression: Significance in malignancy and crucial role in colorectal cancer. Adv Clin Chem 2022; 106:235-280. [PMID: 35152973 DOI: 10.1016/bs.acc.2021.09.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Metadherin (AEG-1/MTDH/LYRIC) is a 582-amino acid transmembrane protein, encoded by a gene located at chromosome 8q22, and distributed throughout the cytoplasm, peri-nuclear region, nucleus, and nucleolus as well as the endoplasmic reticulum (ER). It contains several structural and interacting domains through which it interacts with transcription factors such as nuclear factor-κB (NF-κB), promyelocytic leukemia zinc finger (PLZF), staphylococcal nuclease domain containing 1 (SND1) and lung homing domain (LHD). It is regulated by miRNAs and mediates its oncogenic function via activation of cell proliferation, survival, migration and metastasis, as well as, angiogenesis and chemoresistance via phosphatidylinositol-3-kinase/AKT (PI3K/AKT), NF-κB, mitogen-activated protein kinase (MAPK) and Wnt signaling pathways. In this chapter, metadherin is reviewed highlighting its role in mediating growth, metastasis and chemoresistance in colorectal cancer (CRC). Metadherin, as well as its variants, and antibodies are associated with CRC progression, poorer prognosis, decreased survival and advanced clinico-pathology. The potential of AEG-1/MTDH/LYRIC as a diagnostic and prognostic marker as well as a therapeutic target in CRC is explored.
Collapse
Affiliation(s)
| | - Nema A Soliman
- Department of Medical Biochemistry, Faculty of Medicine, Tanta University, Tanta, Egypt
| |
Collapse
|
9
|
Chen Y, Huang S, Guo R, Chen D. Metadherin-mediated mechanisms in human malignancies. Biomark Med 2021; 15:1769-1783. [PMID: 34783585 DOI: 10.2217/bmm-2021-0298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Metadherin (MTDH) has been recognized as a novel protein that is critical for the progression of multiple types of human malignancies. Studies have reported that MTDH enhances the metastatic potential of cancer cells by regulating multiple signaling pathways. miRNAs and various tumor-related proteins have been shown to interact with MTDH, making it a potential therapeutic target as well as a biomarker in human malignancies. MTDH plays a critical role in inflammation, angiogenesis, hypoxia, epithelial-mesenchymal transition and autophagy. In this review, we present the function and mechanisms of MTDH for cancer initiation and progression.
Collapse
Affiliation(s)
- Yuyuan Chen
- The Second Department of Breast Surgery, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming, 650000, PR China
| | - Sheng Huang
- The Second Department of Breast Surgery, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming, 650000, PR China
| | - Rong Guo
- The Second Department of Breast Surgery, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming, 650000, PR China
| | - Dedian Chen
- The Second Department of Breast Surgery, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming, 650000, PR China
| |
Collapse
|
10
|
Hart CG, Karimi-Abdolrezaee S. Recent insights on astrocyte mechanisms in CNS homeostasis, pathology, and repair. J Neurosci Res 2021; 99:2427-2462. [PMID: 34259342 DOI: 10.1002/jnr.24922] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 06/06/2021] [Accepted: 06/24/2021] [Indexed: 12/20/2022]
Abstract
Astrocytes play essential roles in development, homeostasis, injury, and repair of the central nervous system (CNS). Their development is tightly regulated by distinct spatial and temporal cues during embryogenesis and into adulthood throughout the CNS. Astrocytes have several important responsibilities such as regulating blood flow and permeability of the blood-CNS barrier, glucose metabolism and storage, synapse formation and function, and axon myelination. In CNS pathologies, astrocytes also play critical parts in both injury and repair mechanisms. Upon injury, they undergo a robust phenotypic shift known as "reactive astrogliosis," which results in both constructive and deleterious outcomes. Astrocyte activation and migration at the site of injury provides an early defense mechanism to minimize the extent of injury by enveloping the lesion area. However, astrogliosis also contributes to the inhibitory microenvironment of CNS injury and potentiate secondary injury mechanisms, such as inflammation, oxidative stress, and glutamate excitotoxicity, which facilitate neurodegeneration in CNS pathologies. Intriguingly, reactive astrocytes are increasingly a focus in current therapeutic strategies as their activation can be modulated toward a neuroprotective and reparative phenotype. This review will discuss recent advancements in knowledge regarding the development and role of astrocytes in the healthy and pathological CNS. We will also review how astrocytes have been genetically modified to optimize their reparative potential after injury, and how they may be transdifferentiated into neurons and oligodendrocytes to promote repair after CNS injury and neurodegeneration.
Collapse
Affiliation(s)
- Christopher G Hart
- Department of Physiology and Pathophysiology, Spinal Cord Research Centre, Children's Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB, Canada
| | - Soheila Karimi-Abdolrezaee
- Department of Physiology and Pathophysiology, Spinal Cord Research Centre, Children's Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
11
|
Manna D, Sarkar D. Multifunctional Role of Astrocyte Elevated Gene-1 (AEG-1) in Cancer: Focus on Drug Resistance. Cancers (Basel) 2021; 13:cancers13081792. [PMID: 33918653 PMCID: PMC8069505 DOI: 10.3390/cancers13081792] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 03/31/2021] [Accepted: 04/04/2021] [Indexed: 12/15/2022] Open
Abstract
Simple Summary Chemotherapy is a major mode of treatment for cancers. However, cancer cells adapt to survive in stressful conditions and in many cases, they are inherently resistant to chemotherapy. Additionally, after initial response to chemotherapy, the surviving cancer cells acquire new alterations making them chemoresistant. Genes that help adapt the cancer cells to cope with stress often contribute to chemoresistance and one such gene is Astrocyte elevated gene-1 (AEG-1). AEG-1 levels are increased in all cancers studied to date and AEG-1 contributes to the development of highly aggressive, metastatic cancers. In this review, we provide a comprehensive description of the mechanism by which AEG-1 augments tumor development with special focus on its ability to regulate chemoresistance. We also discuss potential ways to inhibit AEG-1 to overcome chemoresistance. Abstract Cancer development results from the acquisition of numerous genetic and epigenetic alterations in cancer cells themselves, as well as continuous changes in their microenvironment. The plasticity of cancer cells allows them to continuously adapt to selective pressures brought forth by exogenous environmental stresses, the internal milieu of the tumor and cancer treatment itself. Resistance to treatment, either inherent or acquired after the commencement of treatment, is a major obstacle an oncologist confronts in an endeavor to efficiently manage the disease. Resistance to chemotherapy, chemoresistance, is an important hallmark of aggressive cancers, and driver oncogene-induced signaling pathways and molecular abnormalities create the platform for chemoresistance. The oncogene Astrocyte elevated gene-1/Metadherin (AEG-1/MTDH) is overexpressed in a diverse array of cancers, and its overexpression promotes all the hallmarks of cancer, such as proliferation, invasion, metastasis, angiogenesis and chemoresistance. The present review provides a comprehensive description of the molecular mechanism by which AEG-1 promotes tumorigenesis, with a special emphasis on its ability to regulate chemoresistance.
Collapse
|
12
|
AEG-1 Regulates TWIK-1 Expression as an RNA-Binding Protein in Astrocytes. Brain Sci 2021; 11:brainsci11010085. [PMID: 33440655 PMCID: PMC7827766 DOI: 10.3390/brainsci11010085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/07/2021] [Accepted: 01/08/2021] [Indexed: 11/17/2022] Open
Abstract
AEG-1, also called MTDH, has oncogenic potential in numerous cancers and is considered a multifunctional modulator because of its involvement in developmental processes and inflammatory and degenerative brain diseases. However, the role of AEG-1 in astrocytes remains unknown. This study aimed to investigate proteins directly regulated by AEG-1 by analyzing their RNA expression patterns in astrocytes transfected with scramble shRNA and AEG-1 shRNA. AEG-1 knockdown down-regulated TWIK-1 mRNA. Real-time quantitative PCR (qPCR) and immunocytochemistry assays confirmed that AEG-1 modulates TWIK-1 mRNA and protein expression. Electrophysiological experiments further revealed that AEG-1 further regulates TWIK-1-mediated potassium currents in normal astrocytes. An RNA immunoprecipitation assay to determine how AEG-1 regulates the expression of TWIK-1 revealed that AEG-1 binds directly to TWIK-1 mRNA. Furthermore, TWIK-1 mRNA stability was significantly increased upon overexpression of AEG-1 in cultured astrocytes (p < 0.01). Our findings show that AEG-1 serves as an RNA-binding protein to regulate TWIK-1 expression in normal astrocytes.
Collapse
|
13
|
Jia H, Li Z, Chang Y, Fang B, Zhou Y, Ma H. Downregulation of Long Noncoding RNA TUG1 Attenuates MTDH-Mediated Inflammatory Damage via Targeting miR-29b-1-5p After Spinal Cord Ischemia Reperfusion. J Neuropathol Exp Neurol 2020; 80:254-264. [PMID: 33225366 DOI: 10.1093/jnen/nlaa138] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Long noncoding RNAs and microRNAs (miRNAs) play a vital role in spinal cord ischemia reperfusion (IR) injury. The aim of this study was to identify the potential interactions between taurine upregulated gene 1 (TUG1) and miRNA-29b-1-5p in a rat model of spinal cord IR. The IR injury was established by 14-minute occlusion of aortic arch. TUG1 and metadherin (MTDH) knockdown were induced by respective siRNAs, and miR-29b-1-5p expression was modulated using specific inhibitor or mimics. The interactions between TUG1, miR-29b-1-5p, and the target genes were determined using the dual-luciferase reporter assay. We found that IR respectively downregulated and upregulated miR-29b-1-5p and TUG1, and significantly increased MTDH expression. MTDH was predicted as a target of miR-29b-1-5p and its knockdown downregulated NF-κB and IL-1β levels. A direct interaction was observed between TUG1 and miR-29b-1-5p, and knocking down TUG1 upregulated the latter. Furthermore, overexpression of miR-29b-1-5p or knockdown of TUG1 alleviated blood-spinal cord barrier leakage and improved hind-limb motor function by suppressing MTDH and its downstream pro-inflammatory cytokines. Knocking down TUG1 also alleviated MTDH/NF-κB/IL-1β pathway-mediated inflammatory damage after IR by targeting miR-29b-1-5p, whereas blocking the latter reversed the neuroprotective effect of TUG1 knockdown and restored MTDH/NF-κB/IL-1β levels.
Collapse
Affiliation(s)
- Hui Jia
- From the Department of Anesthesiology, First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Zhe Li
- From the Department of Anesthesiology, First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yi Chang
- From the Department of Anesthesiology, First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Bo Fang
- From the Department of Anesthesiology, First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yongjian Zhou
- From the Department of Anesthesiology, First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Hong Ma
- From the Department of Anesthesiology, First Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
14
|
Robinson KF, Narasipura SD, Wallace J, Ritz EM, Al-Harthi L. β-Catenin and TCFs/LEF signaling discordantly regulate IL-6 expression in astrocytes. Cell Commun Signal 2020; 18:93. [PMID: 32546183 PMCID: PMC7296971 DOI: 10.1186/s12964-020-00565-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 03/23/2020] [Indexed: 12/12/2022] Open
Abstract
Background The Wnt/β-catenin signaling pathway is a prolific regulator of cell-to-cell communication and gene expression. Canonical Wnt/β-catenin signaling involves partnering of β-catenin with members of the TCF/LEF family of transcription factors (TCF1, TCF3, TCF4, LEF1) to regulate gene expression. IL-6 is a key cytokine involved in inflammation and is particularly a hallmark of inflammation in the brain. Astrocytes, specialized glial cells in the brain, secrete IL-6. How astrocytes regulate IL-6 expression is not entirely clear, although in other cells NFκB and C/EBP pathways play a role. We evaluated here the interface between β-catenin, TCFs/LEF and C/EBP and NF-κB in relation to IL-6 gene regulation in astrocytes. Methods We performed molecular loss and/or gain of function studies of β-catenin, TCF/LEF, NFκB, and C/EBP to assess IL-6 regulation in human astrocytes. Specifically, siRNA mediated target gene knockdown, cDNA over expression of target gene, and pharmacological agents for regulation of target proteins were used. IL-6 levels was evaluated by real time quantitative PCR and ELISA. We also cloned the IL-6 promoter under a firefly luciferase reporter and used bioinformatics, site directed mutagenesis, and chromatin immunoprecipitation to probe the interaction between β-catenin/TCFs/LEFs and IL-6 promoter activity. Results β-catenin binds to TCF/LEF to inhibits IL-6 while TCFs/LEF induce IL-6 transcription through interaction with ATF-2/SMADs. β-catenin independent of TCFs/LEF positively regulates C/EBP and NF-κB, which in turn activate IL-6 expression. The IL-6 promoter has two putative regions for TCFs/LEF binding, a proximal site located at -91 nt and a distal site at -948 nt from the transcription start site, both required for TCF/LEF induction of IL-6 independent of β-catenin. Conclusion IL-6 regulation in human astrocytes engages a discordant interaction between β-catenin and TCF/LEF. These findings are intriguing given that no role for β-catenin nor TCFs/LEF to date is associated with IL-6 regulation and suggest that β-catenin expression in astrocytes is a critical regulator of anti-inflammatory responses and its disruption can potentially mediate persistent neuroinflammation. Video Abstract
Graphical abstract ![]()
Collapse
Affiliation(s)
- KaReisha F Robinson
- Rush University Medical Center, Department of Microbial Pathogens and Immunity, Rush University Medical College, 1735 W. Harrison Street, 614 Cohn, Chicago, IL, 60612, USA
| | - Srinivas D Narasipura
- Rush University Medical Center, Department of Microbial Pathogens and Immunity, Rush University Medical College, 1735 W. Harrison Street, 614 Cohn, Chicago, IL, 60612, USA
| | - Jennillee Wallace
- Rush University Medical Center, Department of Microbial Pathogens and Immunity, Rush University Medical College, 1735 W. Harrison Street, 614 Cohn, Chicago, IL, 60612, USA
| | - Ethan M Ritz
- Rush Biostatistics Core, Rush University Medical College, Chicago, IL, USA
| | - Lena Al-Harthi
- Rush University Medical Center, Department of Microbial Pathogens and Immunity, Rush University Medical College, 1735 W. Harrison Street, 614 Cohn, Chicago, IL, 60612, USA.
| |
Collapse
|
15
|
Kim A, Jung HG, Kim SC, Choi M, Park JY, Lee SG, Hwang EM. Astrocytic AEG-1 regulates expression of TREK-1 under acute hypoxia. Cell Biochem Funct 2019; 38:167-175. [PMID: 31782179 DOI: 10.1002/cbf.3469] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 08/29/2019] [Accepted: 10/13/2019] [Indexed: 12/16/2022]
Abstract
TREK-1 (TWIK-related K+ channel), a member of the two-pore domain K+ (K2P) channel family, is highly expressed in astrocytes, where it plays a key role in glutamate release and passive conductance. In addition, TREK-1 is induced to protect neurons under pathological conditions such as hypoxia. However, the upstream regulation of TREK-1 remains poorly understood. In this study, we found that AEG-1 (astrocyte elevated gene-1) regulates the expression of astrocytic TREK-1 under hypoxic conditions. Upregulation of AEG-1 increased expression of TREK-1 in astrocytes, and knockdown of AEG-1 dramatically decreased the mRNA and protein levels of TREK-1, which were restored by expression of shRNA-insensitive AEG-1. In addition, expression of TREK-1 was not regulated in the absence of AEG-1, even when HIF1α was present. Together, these results suggest that AEG-1 acts as a major upstream regulator of TREK-1 channels in astrocytes under hypoxia. SIGNIFICANCE OF THE STUDY: Previous studies have reported that hypoxia increases the expression of astrocytic TREK-1 and that increased TREK-1 expression protects neuronal cells from apoptosis. However, its cellular mechanism is not clear. In this study we first showed that AEG-1 is a major mediator of hypoxic-regulated TREK-1 expression in normal astrocytes independently of HIF-1α.
Collapse
Affiliation(s)
- Ajung Kim
- Center for Functional Connectomics, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea.,KHU-KIST Department of Converging Science and Technology, Graduate School, Kyung Hee University, Seoul, Republic of Korea
| | - Hyun-Gug Jung
- Center for Functional Connectomics, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea.,School of Biosystem and Biomedical Science, College of Health Science, Korea University, Seoul, Republic of Korea
| | - Seung-Chan Kim
- Center for Functional Connectomics, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea.,School of Biosystem and Biomedical Science, College of Health Science, Korea University, Seoul, Republic of Korea
| | - Minji Choi
- Department of Science in Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Jae-Yong Park
- School of Biosystem and Biomedical Science, College of Health Science, Korea University, Seoul, Republic of Korea
| | - Seok-Geun Lee
- KHU-KIST Department of Converging Science and Technology, Graduate School, Kyung Hee University, Seoul, Republic of Korea.,Department of Science in Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Eun Mi Hwang
- Center for Functional Connectomics, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea.,KHU-KIST Department of Converging Science and Technology, Graduate School, Kyung Hee University, Seoul, Republic of Korea
| |
Collapse
|
16
|
Robertson CL, Mendoza RG, Jariwala N, Dozmorov M, Mukhopadhyay ND, Subler MA, Windle JJ, Lai Z, Fisher PB, Ghosh S, Sarkar D. Astrocyte Elevated Gene-1 Regulates Macrophage Activation in Hepatocellular Carcinogenesis. Cancer Res 2018; 78:6436-6446. [PMID: 30181179 PMCID: PMC6239947 DOI: 10.1158/0008-5472.can-18-0659] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 07/25/2018] [Accepted: 08/28/2018] [Indexed: 01/22/2023]
Abstract
Chronic inflammation is a known hallmark of cancer and is central to the onset and progression of hepatocellular carcinoma (HCC). Hepatic macrophages play a critical role in the inflammatory process leading to HCC. The oncogene Astrocyte elevated gene-1 (AEG-1) regulates NFκB activation, and germline knockout of AEG-1 in mice (AEG-1-/-) results in resistance to inflammation and experimental HCC. In this study, we developed conditional hepatocyte- and myeloid cell-specific AEG-1-/- mice (AEG-1ΔHEP and AEG-1ΔMAC, respectively) and induced HCC by treatment with N-nitrosodiethylamine (DEN) and phenobarbital (PB). AEG-1ΔHEP mice exhibited a significant reduction in disease severity compared with control littermates, while AEG-1ΔMAC mice were profoundly resistant. In vitro, AEG-1-/- hepatocytes exhibited increased sensitivity to stress and senescence. Notably, AEG-1-/- macrophages were resistant to either M1 or M2 differentiation with significant inhibition in migration, endothelial adhesion, and efferocytosis activity, indicating that AEG-1 ablation renders macrophages functionally anergic. These results unravel a central role of AEG-1 in regulating macrophage activation and indicate that AEG-1 is required in both tumor cells and tumor microenvironment to stimulate hepatocarcinogenesis.Significance: These findings distinguish a novel role of macrophage-derived oncogene AEG-1 from hepatocellular AEG-1 in promoting inflammation and driving tumorigenesis. Cancer Res; 78(22); 6436-46. ©2018 AACR.
Collapse
Affiliation(s)
- Chadia L Robertson
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia
| | - Rachel G Mendoza
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia
| | - Nidhi Jariwala
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia
| | - Mikhail Dozmorov
- Department of Biostatistics, Virginia Commonwealth University, Richmond, Virginia
- Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia
| | - Nitai D Mukhopadhyay
- Department of Biostatistics, Virginia Commonwealth University, Richmond, Virginia
- Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia
| | - Mark A Subler
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia
| | - Jolene J Windle
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia
- Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia
| | - Zhao Lai
- Greehey Children's Cancer Research Institute, University of Texas Health Science Center San Antonio, San Antonio, Texas
| | - Paul B Fisher
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia
- Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia
- VCU Institute of Molecular Medicine (VIMM), Virginia Commonwealth University, Richmond, Virginia
| | - Shobha Ghosh
- Department of Internal Medicine, Virginia Commonwealth University, Richmond, Virginia
| | - Devanand Sarkar
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia.
- Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia
- VCU Institute of Molecular Medicine (VIMM), Virginia Commonwealth University, Richmond, Virginia
| |
Collapse
|
17
|
Yin X, Wang S, Qi Y, Wang X, Jiang H, Wang T, Yang Y, Wang Y, Zhang C, Feng H. Astrocyte elevated gene-1 is a novel regulator of astrogliosis and excitatory amino acid transporter-2 via interplaying with nuclear factor-κB signaling in astrocytes from amyotrophic lateral sclerosis mouse model with hSOD1 G93A mutation. Mol Cell Neurosci 2018; 90:1-11. [PMID: 29777762 DOI: 10.1016/j.mcn.2018.05.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Revised: 05/14/2018] [Accepted: 05/14/2018] [Indexed: 12/16/2022] Open
Abstract
AEG-1 has received extensive attention on cancer research. However, little is known about its roles in astrogliosis of Amyotrophic lateral sclerosis (ALS). In this study, we detected AEG-1 expression in hSOD1G93A-positive (mut-SOD1) astrocytes and wild type (wt-SOD1) astrocytes, and intend to elucidate its potential functions in ALS related astrogliosis and the always accompanied dysregulated glutamate clearance. Results showed elevated protein and mRNA levels of AEG-1 in mut-SOD1 astrocytes; Also, NF-κB signaling pathway related proteins and inflammatory cytokines were upregulated in mut-SOD1 astrocytes; AEG-1 knockdown attenuated astrocytes proliferation and pro-inflammatory release; also we found that AEG-1 silence inhibited translocation of p65 from cytoplasma to nuclear, which was associated with inhibited NF-κB signaling. Besides, excitatory amino acid transporter-2 (EAAT2) expression levels were significantly decreased, accompanied by impaired glutamate clearance ability, in mut-SOD1 astrocytes; yin yang 1 (YY1), a transcriptional inhibitor for EAAT2, increased in nucleus of mut-SOD1 astrocytes. AEG-1 silence inhibited translocation of YY1 to nucleus, increased EAAT2 expression levels, and enhanced astrocytic ability of glutamate clearance, ultimately exerted the neuronal protection. Findings from this study implicate potential function of AEG-1 in mut-SOD1 related astrogliosis and the accompanied excitatory cytotoxic mechanism in ALS.
Collapse
Affiliation(s)
- Xiang Yin
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, PR China; Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun 130021, People's Republic of China
| | - Shuyu Wang
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, PR China
| | - Yan Qi
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, PR China
| | - Xudong Wang
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, PR China
| | - Hongquan Jiang
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, PR China
| | - Tianhang Wang
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, PR China
| | - Yueqing Yang
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, PR China
| | - Ying Wang
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, PR China
| | - Chunting Zhang
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, PR China
| | - Honglin Feng
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, PR China.
| |
Collapse
|
18
|
Nooka S, Ghorpade A. HIV-1-associated inflammation and antiretroviral therapy regulate astrocyte endoplasmic reticulum stress responses. Cell Death Discov 2017; 3:17061. [PMID: 29354290 PMCID: PMC5712632 DOI: 10.1038/cddiscovery.2017.61] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 07/02/2017] [Indexed: 12/28/2022] Open
Abstract
Antiretroviral (ARV) therapy (ART) has effectively suppressed the incidence of human immunodeficiency virus (HIV)-associated dementia in HIV-1 positive individuals. However, the prevalence of more subtle forms of neurocognitive dysfunction continues to escalate. Recently, endoplasmic reticulum (ER) stress has been linked to many neurological diseases; yet, its role in HIV/neuroAIDS remains largely unexplored. Furthermore, upregulation of astrocyte elevated gene-1 (AEG-1), a novel HIV-1 inducible gene, along with ER stress markers in a Huntington’s disease model, suggests a possible role in HIV-associated ER stress. The current study is focused on unfolded protein responses (UPRs) and AEG-1 regulation in primary human astrocytes exposed to HIV-associated neurocognitive disorders (HAND)-relevant stimuli (HIV-1 virions, inflammation and ARV drugs). Interleukin (IL)-1β and the nucleoside reverse transcriptase inhibitor abacavir upregulated expression of ER stress markers in human astrocytes, including binding immunoglobulin protein (BiP), C/EBP homologous protein (CHOP), and calnexin. In addition, IL-1β activated all three well-known UPR pathways: protein kinase RNA-like ER kinase (PERK); activating transcription factor 6 (ATF-6); and inositol-requiring enzyme 1α (IRE1α). AEG-1 upregulation correlated to ER stress and demonstrated astrocyte AEG-1 interaction with the calcium-binding chaperone, calnexin. IL-1β and abacavir enhanced intracellular calcium signaling in astrocytes in the absence of extracellular calcium, illustrating ER-associated calcium release. Alternatively, calcium evoked in response to HAND-relevant stimuli led to mitochondrial permeability transition pore (mPTP) opening in human astrocytes. Importantly, IL-1β- and abacavir-induced UPR and mPTP opening were inhibited by the intracellular calcium chelation, indicating the critical role of calcium signaling in HAND-relevant ER stress in astrocytes. In summary, our study highlights that ARV drugs and IL-1β induced UPR, AEG-1 expression, intracellular calcium, and mitochondrial depolarization in astrocytes. This study uncovers astrocyte ER stress as a novel therapeutic target in the management of HIV-1-associated neurotoxicity and possibly in the treatment of neuroAIDS.
Collapse
Affiliation(s)
- Shruthi Nooka
- Institute for Molecular Medicine, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Anuja Ghorpade
- Institute for Molecular Medicine, University of North Texas Health Science Center, Fort Worth, TX, USA
| |
Collapse
|
19
|
Shi L, Ji Y, Liu D, Liu Y, Xu Y, Cao Y, Jiang X, Xu C. Sitagliptin attenuates high glucose-induced alterations in migration, proliferation, calcification and apoptosis of vascular smooth muscle cells through ERK1/2 signal pathway. Oncotarget 2017; 8:77168-77180. [PMID: 29100378 PMCID: PMC5652771 DOI: 10.18632/oncotarget.20417] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 06/05/2017] [Indexed: 12/11/2022] Open
Abstract
Background/Aims This study investigated the effects of sitagliptin on migration, proliferation, calcification and apoptosis of vascular smooth muscle cells (VSMCs) under high glucose (HG) conditions. Methods VSMCs were isolated from the thoracic aorta of Sprague Dawley rats. The cultured VSMCs were subjected to control medium, mannitol medium, HG medium (25 mM), pretreatment with 200 nM sitagliptin in control or HG medium, or the ERK1/2 inhibitor PD98059 in HG medium. Cell proliferation, migration, apoptosis and calcification were determined. Results HG conditions promoted the proliferation, migration, calcification and impairment of apoptosis in VSMCs compared with controls (P<0.05). Pretreatment with sitagliptin effectively attenuated proliferation, migration, calcification of cells and increased apoptosis of HG-cultured VSMCs as compared with the HG group (P<0.05). Culture with HG resulted in the up-regulation of p-ERK1/2 in VSMCs, whereas sitagliptin pretreatment could inhibit HG-induced p-ERK1/2 expression. In addition, the ERK1/2 inhibitor PD98059, inhibited proliferation, migration, calcification and promoted the apoptosis of HG-cultured VSMCs compared with the HG group (P<0.05). Conclusion The effects of sitagliptin on VSMC under high glucose condition were achieved through ERK1/2 signaling pathways.
Collapse
Affiliation(s)
- Lili Shi
- Department of Endocrinology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Ye Ji
- Department of Orthopedics, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Dandan Liu
- Department of Endocrinology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Ying Liu
- Department of Endocrinology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Ying Xu
- Department of Endocrinology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Yang Cao
- Department of Endocrinology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Xiaoyan Jiang
- Department of Endocrinology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Changqing Xu
- Department of Pathophysiology, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| |
Collapse
|
20
|
Yin X, Feng H. Roles of AEG-1 in CNS neurons and astrocytes during noncancerous processes. J Neurosci Res 2017; 95:2086-2090. [PMID: 28370184 DOI: 10.1002/jnr.24044] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 02/03/2017] [Accepted: 02/03/2017] [Indexed: 11/08/2022]
Affiliation(s)
- Xiang Yin
- Department of Neurology and Neuroscience Center; First Hospital of Jilin University; Changchun People's Republic of China
| | - Honglin Feng
- Department of Neurology; First Affiliated Hospital of Harbin Medical University; Harbin People's Republic of China
| |
Collapse
|
21
|
Metadherin facilitates podocyte apoptosis in diabetic nephropathy. Cell Death Dis 2016; 7:e2477. [PMID: 27882943 PMCID: PMC5260885 DOI: 10.1038/cddis.2016.335] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 09/23/2016] [Accepted: 09/23/2016] [Indexed: 02/01/2023]
Abstract
Apoptosis, one of the major causes of podocyte loss, has been reported to have a vital role in diabetic nephropathy (DN) pathogenesis, and understanding the mechanisms underlying the regulation of podocyte apoptosis is crucial. Metadherin (MTDH) is an important oncogene, which is overexpressed in most cancers and responsible for apoptosis, metastasis, and poor patient survival. Here we show that the expression levels of Mtdh and phosphorylated p38 mitogen-activated protein kinase (MAPK) are significantly increased, whereas those of the microRNA-30 family members (miR-30s) are considerably reduced in the glomeruli of DN rat model and in high glucose (HG)-induced conditionally immortalized mouse podocytes (MPC5). These levels are positively correlated with podocyte apoptosis rate. The inhibition of Mtdh expression, using small interfering RNA, but not Mtdh overexpression, was shown to inhibit HG-induced MPC5 apoptosis and p38 MAPK pathway, and Bax and cleaved caspase 3 expression. This was shown to be similar to the effects of p38 MAPK inhibitor (SB203580). Furthermore, luciferase assay results demonstrated that Mtdh represents the target of miR-30s. Transient transfection experiments, using miR-30 microRNA (miRNA) inhibitors, led to the increase in Mtdh expression and induced the apoptosis of MPC5, whereas the treatment with miR-30 miRNA mimics led to the reduction in Mtdh expression and apoptosis of HG-induced MPC5 cells in comparison with their respective controls. Our results demonstrate that Mtdh is a potent modulator of podocyte apoptosis, and that it represents the target of miR-30 miRNAs, facilitating podocyte apoptosis through the activation of HG-induced p38 MAPK-dependent pathway.
Collapse
|
22
|
Cytotoxic Effects of Environmental Toxins on Human Glial Cells. Neurotox Res 2016; 31:245-258. [PMID: 27796937 DOI: 10.1007/s12640-016-9678-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 09/29/2016] [Accepted: 10/14/2016] [Indexed: 12/18/2022]
Abstract
Toxins produced by cyanobacteria and dinoflagellates have increasingly become a public health concern due to their degenerative effects on mammalian tissue and cells. In particular, emerging evidence has called attention to the neurodegenerative effects of the cyanobacterial toxin β-N-methylamino-L-alanine (BMAA). Other toxins such as the neurotoxins saxitoxin and ciguatoxin, as well as the hepatotoxic microcystin, have been previously shown to have a range of effects upon the nervous system. However, the capacity of these toxins to cause neurodegeneration in human cells has not, to our knowledge, been previously investigated. This study aimed to examine the cytotoxic effects of BMAA, microcystin-LR (MC-LR), saxitoxin (STX) and ciguatoxin (CTX-1B) on primary adult human astrocytes. We also demonstrated that α-lipoate attenuated MC-LR toxicity in primary astrocytes and characterised changes in gene expression which could potentially be caused by these toxins in primary astrocytes. Herein, we are the first to show that all of these toxins are capable of causing physiological changes consistent with neurodegeneration in glial cells, via oxidative stress and excitotoxicity, leading to a reduction in cell proliferation culminating in cell death. In addition, MC-LR toxicity was reduced significantly in astrocytes-treated α-lipoic acid. While there were no significant changes in gene expression, many of the probes that were altered were associated with neurodegenerative disease pathogenesis. Overall, this is important in advancing our current understanding of the mechanism of toxicity of MC-LR on human brain function in vitro, particularly in the context of neurodegeneration.
Collapse
|
23
|
Ezra A, Rabinovich-Nikitin I, Rabinovich-Toidman P, Solomon B. Multifunctional Effect of Human Serum Albumin Reduces Alzheimer's Disease Related Pathologies in the 3xTg Mouse Model. J Alzheimers Dis 2016; 50:175-88. [PMID: 26682687 DOI: 10.3233/jad-150694] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Alzheimer's disease (AD), the prevalent dementia in the elderly, involves many related and interdependent pathologies that manifests simultaneously, eventually leading to cognitive impairment and death. No treatment is currently available; however, an agent addressing several key pathologies simultaneously has a better therapeutic potential. Human serum albumin (HSA) is a highly versatile protein, harboring multifunctional properties that are relevant to key pathologies underlying AD. This study provides insight into the mechanism for HSA's therapeutic effect. In vivo, a myriad of beneficial effects were observed by pumps infusing HSA intracerebroventricularly, for the first time in an AD 3xTg mice model. A significant effect on amyloid-β (Aβ) pathology was observed. Aβ1-42, soluble oligomers, and total plaque area were reduced. Neuroblastoma SHSY5Y cell line confirmed that the reduction in Aβ1-42 toxicity was due to direct binding rather than other properties of HSA. Total and hyperphosphorylated tau were reduced along with an increase in tubulin, suggesting increased microtubule stability. HSA treatment also reduced brain inflammation, affecting both astrocytes and microglia markers. Finally, evidence for blood-brain barrier and myelin integrity repair was observed. These multidimensional beneficial effects of intracranial administrated HSA, together or individually, contributed to an improvement in cognitive tests, suggesting a non-immune or Aβ efflux dependent means for treating AD.
Collapse
|
24
|
Filous AR, Silver J. "Targeting astrocytes in CNS injury and disease: A translational research approach". Prog Neurobiol 2016; 144:173-87. [PMID: 27026202 PMCID: PMC5035184 DOI: 10.1016/j.pneurobio.2016.03.009] [Citation(s) in RCA: 108] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 02/03/2016] [Accepted: 03/03/2016] [Indexed: 12/31/2022]
Abstract
Astrocytes are a major constituent of the central nervous system. These glia play a major role in regulating blood-brain barrier function, the formation and maintenance of synapses, glutamate uptake, and trophic support for surrounding neurons and glia. Therefore, maintaining the proper functioning of these cells is crucial to survival. Astrocyte defects are associated with a wide variety of neuropathological insults, ranging from neurodegenerative diseases to gliomas. Additionally, injury to the CNS causes drastic changes to astrocytes, often leading to a phenomenon known as reactive astrogliosis. This process is important for protecting the surrounding healthy tissue from the spread of injury, while it also inhibits axonal regeneration and plasticity. Here, we discuss the important roles of astrocytes after injury and in disease, as well as potential therapeutic approaches to restore proper astrocyte functioning.
Collapse
Affiliation(s)
- Angela R Filous
- Department of Neurosciences, Case Western Reserve University, Cleveland, OH 216-368-4615, United States.
| | - Jerry Silver
- Department of Neurosciences, Case Western Reserve University, Cleveland, OH 216-368-4615, United States.
| |
Collapse
|
25
|
Wang Y, Zhang W, Zhu X, Wang Y, Mao X, Xu X, Wang Y. Upregulation of AEG-1 Involves in Schwann Cell Proliferation and Migration After Sciatic Nerve Crush. J Mol Neurosci 2016; 60:248-57. [PMID: 27351433 DOI: 10.1007/s12031-016-0782-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2016] [Accepted: 06/17/2016] [Indexed: 12/18/2022]
Abstract
Astrocyte-elevated gene-1 (AEG-1), also known as metadherin (MTDH) and lysine-rich CEACAM1 coisolated (LYRIC), has emerged as an important oncogene that regulates key cellular processes including apoptosis, migration, invasion, proliferation, and differentiation. It was reported that AEG-1 enhanced breast cancer cells migration in a NF-κB-dependent manner. Also, AEG-1 contributed cell proliferation through the PI3K-Akt/cyclin pathway. Besides, AEG-1 is implicated in diverse physiological and pathological diseases of the central nervous system (CNS), such as brain tumors, neuroblastomas, neurodegeneration, and neuronal development. However, the role of AEG-1 in the process of peripheral nervous regeneration after injury remains virtually unknown. In this study, we investigated the spatiotemporal expression of AEG-1 in a rat sciatic nerve crush model. At its peak expression, AEG-1 was expressed mainly in Schwann cells of the distal sciatic nerve segment from injury, but had few colocalizations in axons. Besides, the peak expression of AEG-1 was in parallel with proliferating cell nuclear antigen (PCNA). In vitro, we detected the increased expression of AEG-1 during the process of tumor necrosis factor α (TNF-α)-induced Schwann cell proliferation. Meanwhile, interference of AEG-1 inhibited both proliferation and migration of Schwann cells. In conclusion, we speculated that AEG-1 is involved in biochemical and physiological responses after sciatic nerve crush (SNC).
Collapse
Affiliation(s)
- Youhua Wang
- Department of Orthopaedics, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China.
| | - Weidong Zhang
- Department of Orthopaedics, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China
| | - Xudong Zhu
- Undergraduate Student of Medical School of Nantong University, Class 125, 19 Qi-Xiu Road, Nantong, 226001, Jiangsu Province, China
| | - Yi Wang
- Undergraduate Student of Medical Imaging Department of Medical School of Nantong University, Class 151, 19 Qi-Xiu Road, Nantong, 226001, Jiangsu Province, China
| | - Xingxing Mao
- Department of Orthopaedics, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China
| | - Xinbao Xu
- Department of Orthopaedics, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China
| | - Youhua Wang
- Department of Orthopaedics, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China
| |
Collapse
|
26
|
Emdad L, Das SK, Hu B, Kegelman T, Kang DC, Lee SG, Sarkar D, Fisher PB. AEG-1/MTDH/LYRIC: A Promiscuous Protein Partner Critical in Cancer, Obesity, and CNS Diseases. Adv Cancer Res 2016; 131:97-132. [PMID: 27451125 DOI: 10.1016/bs.acr.2016.05.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Since its original discovery in 2002, AEG-1/MTDH/LYRIC has emerged as a primary regulator of several diseases including cancer, inflammatory diseases, and neurodegenerative diseases. AEG-1/MTDH/LYRIC has emerged as a key contributory molecule in almost every aspect of cancer progression, including uncontrolled cell growth, evasion of apoptosis, increased cell migration and invasion, angiogenesis, chemoresistance, and metastasis. Additionally, recent studies highlight a seminal role of AEG-1/MTDH/LYRIC in neurodegenerative diseases and obesity. By interacting with multiple protein partners, AEG-1/MTDH/LYRIC plays multifaceted roles in the pathogenesis of a wide variety of diseases. This review discusses the current state of understanding of AEG-1/MTDH/LYRIC regulation and function in cancer and other diseases with a focus on its association/interaction with several pivotal protein partners.
Collapse
Affiliation(s)
- L Emdad
- Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States.
| | - S K Das
- Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States
| | - B Hu
- Virginia Commonwealth University, School of Medicine, Richmond, VA, United States
| | - T Kegelman
- Virginia Commonwealth University, School of Medicine, Richmond, VA, United States
| | - D-C Kang
- Ilsong Institute of Life Science, Hallym University, Anyang, Republic of Korea
| | - S-G Lee
- Cancer Preventive Material Development Research Center, Institute of Korean Medicine, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - D Sarkar
- Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States
| | - P B Fisher
- Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States.
| |
Collapse
|
27
|
Vartak-Sharma N, Nooka S, Ghorpade A. Astrocyte elevated gene-1 (AEG-1) and the A(E)Ging HIV/AIDS-HAND. Prog Neurobiol 2016; 157:133-157. [PMID: 27090750 DOI: 10.1016/j.pneurobio.2016.03.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2015] [Revised: 03/11/2016] [Accepted: 03/19/2016] [Indexed: 12/23/2022]
Abstract
Recent attempts to analyze human immunodeficiency virus (HIV)-1-induced gene expression changes in astrocytes uncovered a multifunctional oncogene, astrocyte elevated gene-1 (AEG-1). Our previous studies revealed that AEG-1 regulates reactive astrocytes proliferation, migration and inflammation, hallmarks of aging and CNS injury. Moreover, the involvement of AEG-1 in neurodegenerative disorders, such as Huntington's disease and migraine, and its induction in the aged brain suggest a plausible role in regulating overall CNS homeostasis and aging. Therefore, it is important to investigate AEG-1 specifically in aging-associated cognitive decline. In this study, we decipher the common mechanistic links in cancer, aging and HIV-1-associated neurocognitive disorders that likely contribute to AEG-1-based regulation of astrocyte responses and function. Despite AEG-1 incorporation into HIV-1 virions and its induction by HIV-1, tumor necrosis factor-α and interleukin-1β, the specific role(s) of AEG-1 in astrocyte-driven HIV-1 neuropathogenesis are incompletely defined. We propose that AEG-1 plays a central role in a multitude of cellular stress responses involving mitochondria, endoplasmic reticulum and the nucleolus. It is thus important to further investigate AEG-1-based cellular and molecular regulation in order to successfully develop better therapeutic approaches that target AEG-1 to combat cancer, HIV-1 and aging.
Collapse
Affiliation(s)
- Neha Vartak-Sharma
- Department of Cell Biology and Immunology, University of North Texas Health Science Center, Fort Worth, TX, 76107-2699, USA; Institute for Integrated Cell-Material Sciences, Kyoto University, Japan; Institute for Stem Cell Research and Regenerative Medicine, National Center for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India
| | - Shruthi Nooka
- Department of Cell Biology and Immunology, University of North Texas Health Science Center, Fort Worth, TX, 76107-2699, USA
| | - Anuja Ghorpade
- Department of Cell Biology and Immunology, University of North Texas Health Science Center, Fort Worth, TX, 76107-2699, USA.
| |
Collapse
|
28
|
Robertson CL, Srivastava J, Rajasekaran D, Gredler R, Akiel MA, Jariwala N, Siddiq A, Emdad L, Fisher PB, Sarkar D. The role of AEG-1 in the development of liver cancer. Hepat Oncol 2015; 2:303-312. [PMID: 26798451 DOI: 10.2217/hep.15.10] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
AEG-1 is an oncogene that is overexpressed in all cancers, including hepatocellular carcinoma. AEG-1 plays a seminal role in promoting cancer development and progression by augmenting proliferation, invasion, metastasis, angiogenesis and chemoresistance, all hallmarks of aggressive cancer. AEG-1 mediates its oncogenic function predominantly by interacting with various protein complexes. AEG-1 acts as a scaffold protein, activating multiple protumorigenic signal transduction pathways, such as MEK/ERK, PI3K/Akt, NF-κB and Wnt/β-catenin while regulating gene expression at transcriptional, post-transcriptional and translational levels. Our recent studies document that AEG-1 is fundamentally required for activation of inflammation. A comprehensive and convincing body of data currently points to AEG-1 as an essential component critical to the onset and progression of cancer. The present review describes the current knowledge gleaned from patient and experimental studies as well as transgenic and knockout mouse models, on the impact of AEG-1 on hepatocarcinogenesis.
Collapse
Affiliation(s)
- Chadia L Robertson
- Department of Human & Molecular Genetics, Virginia Commonwealth University, Sanger Hall, Room 11-0051101 East Marshall Street, PO Box 980033, Richmond, VA 23298-0033, USA
| | - Jyoti Srivastava
- Department of Human & Molecular Genetics, Virginia Commonwealth University, Sanger Hall, Room 11-0051101 East Marshall Street, PO Box 980033, Richmond, VA 23298-0033, USA
| | - Devaraja Rajasekaran
- Department of Human & Molecular Genetics, Virginia Commonwealth University, Sanger Hall, Room 11-0051101 East Marshall Street, PO Box 980033, Richmond, VA 23298-0033, USA
| | - Rachel Gredler
- Department of Human & Molecular Genetics, Virginia Commonwealth University, Sanger Hall, Room 11-0051101 East Marshall Street, PO Box 980033, Richmond, VA 23298-0033, USA
| | - Maaged A Akiel
- Department of Human & Molecular Genetics, Virginia Commonwealth University, Sanger Hall, Room 11-0051101 East Marshall Street, PO Box 980033, Richmond, VA 23298-0033, USA
| | - Nidhi Jariwala
- Department of Human & Molecular Genetics, Virginia Commonwealth University, Sanger Hall, Room 11-0051101 East Marshall Street, PO Box 980033, Richmond, VA 23298-0033, USA
| | - Ayesha Siddiq
- Department of Human & Molecular Genetics, Virginia Commonwealth University, Sanger Hall, Room 11-0051101 East Marshall Street, PO Box 980033, Richmond, VA 23298-0033, USA
| | - Luni Emdad
- Department of Human & Molecular Genetics, Virginia Commonwealth University, Sanger Hall, Room 11-0051101 East Marshall Street, PO Box 980033, Richmond, VA 23298-0033, USA; VCU Massey Cancer Center, Virginia Commonwealth University, 401 College Street, Richmond, VA 23298, USA
| | - Paul B Fisher
- Department of Human & Molecular Genetics, Virginia Commonwealth University, Sanger Hall, Room 11-0051101 East Marshall Street, PO Box 980033, Richmond, VA 23298-0033, USA; VCU Massey Cancer Center, Virginia Commonwealth University, 401 College Street, Richmond, VA 23298, USA; VCU Institute of Molecular Medicine, Virginia Commonwealth University, Molecular Medicine Research Building 1220 East Broad Street, 7th Floor PO Box 980033, Richmond, VA 23298-0033, USA
| | - Devanand Sarkar
- Department of Human & Molecular Genetics, Virginia Commonwealth University, Sanger Hall, Room 11-0051101 East Marshall Street, PO Box 980033, Richmond, VA 23298-0033, USA; VCU Massey Cancer Center, Virginia Commonwealth University, 401 College Street, Richmond, VA 23298, USA; VCU Institute of Molecular Medicine, Virginia Commonwealth University, Molecular Medicine Research Building 1220 East Broad Street, 7th Floor PO Box 980033, Richmond, VA 23298-0033, USA
| |
Collapse
|
29
|
Shi L, Ji Y, Jiang X, Zhou L, Xu Y, Li Y, Jiang W, Meng P, Liu X. Liraglutide attenuates high glucose-induced abnormal cell migration, proliferation, and apoptosis of vascular smooth muscle cells by activating the GLP-1 receptor, and inhibiting ERK1/2 and PI3K/Akt signaling pathways. Cardiovasc Diabetol 2015; 14:18. [PMID: 25855361 PMCID: PMC4327797 DOI: 10.1186/s12933-015-0177-4] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Accepted: 01/06/2015] [Indexed: 12/18/2022] Open
Abstract
Background As a new anti-diabetic medicine, Liraglutide (LIRA), one of GLP-1 analogues, has been found to have an anti-atherosclerotic effect. Since vascular smooth muscle cells (VSMCs) play pivotal roles in the occurrence of diabetic atherosclerosis, it is important to investigate the role of LIRA in reducing the harmful effects of high-glucose (HG) treatment in cultured VSMCs, and identifying associated molecular mechanisms. Methods Primary rat VSMCs were exposed to low or high glucose-containing medium with or without LIRA. They were challenged with HG in the presence of phosphatidylinositol 3-kinase (PI3K), extracellular signal-regulated kinase (ERK)1/2, or glucagon-like peptide receptor (GLP-1R) inhibitors. Cell proliferation and viability was evaluated using a Cell Counting Kit-8. Cell migration was determined by Transwell migration and scratch wound assays. Flow cytometry and Western blotting were used to determine apoptosis and protein expression, respectively. Results Under the HG treatment, VSMCs exhibited increased migration, proliferation, and phosphorylation of protein kinase B (Akt) and ERK1/2, along with reduced apoptosis (all p < 0.01 vs. control). These effects were significantly attenuated with LIRA co-treatment (all p < 0.05 vs. HG alone). Inhibition of PI3K kinase and ERK1/2 similarly attenuated the HG-induced effects (all p < 0.01 vs. HG alone). GLP-1R inhibitors effectively reversed the beneficial effects of LIRA on HG treatment (all p < 0.05). Conclusions HG treatment may induce abnormal phenotypes in VSMCs via PI3K and ERK1/2 signaling pathways activated by GLP-1R, and LIRA may protect cells from HG damage by acting on these same pathways.
Collapse
|
30
|
Liu S, Shen G, Deng S, Wang X, Wu Q, Guo A. Hyperbaric oxygen therapy improves cognitive functioning after brain injury. Neural Regen Res 2014; 8:3334-43. [PMID: 25206655 PMCID: PMC4145948 DOI: 10.3969/j.issn.1673-5374.2013.35.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Accepted: 11/02/2013] [Indexed: 01/09/2023] Open
Abstract
Hyperbaric oxygen therapy has been widely applied and recognized in the treatment of brain injury; however, the correlation between the protective effect of hyperbaric oxygen therapy and changes of metabolites in the brain remains unclear. To investigate the effect and potential mechanism of hyperbaric oxygen therapy on cognitive functioning in rats, we established traumatic brain injury models using Feeney's free falling method. We treated rat models with hyperbaric oxygen therapy at 0.2 MPa for 60 minutes per day. The Morris water maze test for spatial navigation showed that the average escape latency was significantly prolonged and cognitive function decreased in rats with brain injury. After treatment with hyperbaric oxygen therapy for 1 and 2 weeks, the rats’ spatial learning and memory abilities were improved. Hydrogen proton magnetic resonance spectroscopy analysis showed that the N-acetylaspartate/creatine ratio in the hippocampal CA3 region was significantly increased at 1 week, and the N-acetylaspartate/choline ratio was significantly increased at 2 weeks after hyperbaric oxygen therapy. Nissl staining and immunohistochemical staining showed that the number of nerve cells and Nissl bodies in the hippocampal CA3 region was significantly increased, and glial fibrillary acidic protein positive cells were decreased after a 2-week hyperbaric oxygen therapy treatment. Our findings indicate that hyperbaric oxygen therapy significantly improves cognitive functioning in rats with traumatic brain injury, and the potential mechanism is mediated by metabolic changes and nerve cell restoration in the hippocampal CA3 region.
Collapse
Affiliation(s)
- Su Liu
- Department of Rehabilitation Medicine, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu Province, China
| | - Guangyu Shen
- Department of Rehabilitation Medicine, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu Province, China
| | - Shukun Deng
- Department of Rehabilitation Medicine, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu Province, China
| | - Xiubin Wang
- Department of Imaging, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu Province, China
| | - Qinfeng Wu
- Department of Rehabilitation Medicine, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu Province, China
| | - Aisong Guo
- Department of Rehabilitation Medicine, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu Province, China
| |
Collapse
|
31
|
Huang Y, Li LEP. Progress of cancer research on astrocyte elevated gene-1/Metadherin (Review). Oncol Lett 2014; 8:493-501. [PMID: 25009642 PMCID: PMC4081432 DOI: 10.3892/ol.2014.2231] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Accepted: 05/23/2014] [Indexed: 12/15/2022] Open
Abstract
Tumor development is initiated by an accumulation of numerous genetic and epigenetic alterations that promote tumor initiation, invasion and metastasis. Astrocyte elevated gene-1 [AEG-1; also known as Metadherin (MTDH) and Lysine-rich CEACAM1 co-isolated (LYRIC)] has emerged in recent years as a potentially crucial mediator of tumor malignancy, and a key converging point of a complex network of oncogenic signaling pathways. AEG-1/MTDH has a multifunctional role in tumor development that has been found to be involved in the following signaling cascades: i) The Ha-Ras and PI3K/Akt pathways; ii) the nuclear factor-κB signaling pathway; iii) the ERK/mitogen-activated protein kinase and Wnt/β-catenin pathways; and iv) the Aurora-A kinase signaling pathway. Studies have established that AEG-1/MTDH is crucial in tumor progression, including transformation, the evasion of apoptosis, invasion, angiogenesis and metastasis. In addition, recent clinical studies have convincingly associated AEG-1/MTDH with tumor progression and poor prognosis in a number of cancer types, including hepatocellular, esophageal squamous cell, gallbladder and renal cell carcinomas, breast, non-small cell lung, prostate, gastric and colorectal cancers, and glioma, melanoma, neuroblastoma and osteosarcoma. AEG-1/MTDH may be used as a biomarker to identify subgroups of patients who require more intensive treatments and who are likely to benefit from AEG-1/MTDH-targeted therapies. The therapeutic targeting of AEG-1/MTDH may simultaneously block metastasis, suppress tumor growth and enhance the efficacy of chemotherapeutic treatments.
Collapse
Affiliation(s)
- Yong Huang
- Department of Gastrointestinal Surgery, Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China ; Department of General Surgery, Zao Zhuang Municipal Hospital, Zaozhuang, Shandong 277101, P.R. China
| | - LE-Ping Li
- Department of Gastrointestinal Surgery, Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| |
Collapse
|
32
|
Vartak-Sharma N, Gelman BB, Joshi C, Borgamann K, Ghorpade A. Astrocyte elevated gene-1 is a novel modulator of HIV-1-associated neuroinflammation via regulation of nuclear factor-κB signaling and excitatory amino acid transporter-2 repression. J Biol Chem 2014; 289:19599-612. [PMID: 24855648 DOI: 10.1074/jbc.m114.567644] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Astrocyte elevated gene-1 (AEG-1), a novel human immunodeficiency virus (HIV)-1 and tumor necrosis factor (TNF)-α-inducible oncogene, has generated significant interest in the field of cancer research as a therapeutic target for many metastatic aggressive tumors. However, little is known about its role in astrocyte responses during HIV-1 central nervous system (CNS) infection and whether it contributes toward the development of HIV-associated neurocognitive disorders (HAND). Therefore, in this study, we investigated changes in AEG-1 CNS expression in HIV-1-infected brain tissues and elucidated a potential mechanism of AEG-1-mediated regulation of HAND. Immunoblotting and immunohistochemical analyses of HIV-1 seropositive and HIV-1 encephalitic human brain tissues revealed significantly elevated levels of AEG-1 protein. Immunohistochemical analyses of HIV-1 Tat transgenic mouse brain tissues also showed a marked increase in AEG-1 staining. Similar to in vivo observations, cultured astrocytes expressing HIV-1 Tat also revealed AEG-1 and cytokine up-regulation. Astrocytes treated with HAND-relevant stimuli, TNF-α, interleukin (IL)-1β, and HIV-1, also significantly induced AEG-1 expression and nuclear translocation via activation of the nuclear factor (NF)-κB pathway. Co-immunoprecipitation studies demonstrated IL-1β- or TNF-α-induced AEG-1 interaction with NF-κB p65 subunit. AEG-1 knockdown decreased NF-κB activation, nuclear translocation, and transcriptional output in TNF-α-treated astrocytes. Moreover, IL-1β treatment of AEG-1-overexpressing astrocytes significantly lowered expression of excitatory amino acid transporter 2, increased expression of excitatory amino acid transporter 2 repressor ying yang 1, and reduced glutamate clearance, a major transducer of excitotoxic neuronal damage. Findings from this study identify a novel transcriptional co-factor function of AEG-1 and further implicate AEG-1 in HAND-associated neuroinflammation.
Collapse
Affiliation(s)
- Neha Vartak-Sharma
- From the Department of Cell Biology and Immunology, University of North Texas Health Science Center, Fort Worth, Texas 76107 and
| | - Benjamin B Gelman
- the Departments of Pathology and Neuroscience & Cell Biology, University of Texas Medical Branch, Galveston, Texas 77555
| | - Chaitanya Joshi
- From the Department of Cell Biology and Immunology, University of North Texas Health Science Center, Fort Worth, Texas 76107 and
| | - Kathleen Borgamann
- From the Department of Cell Biology and Immunology, University of North Texas Health Science Center, Fort Worth, Texas 76107 and
| | - Anuja Ghorpade
- From the Department of Cell Biology and Immunology, University of North Texas Health Science Center, Fort Worth, Texas 76107 and
| |
Collapse
|
33
|
Emdad L, Das SK, Dasgupta S, Hu B, Sarkar D, Fisher PB. AEG-1/MTDH/LYRIC: signaling pathways, downstream genes, interacting proteins, and regulation of tumor angiogenesis. Adv Cancer Res 2014; 120:75-111. [PMID: 23889988 DOI: 10.1016/b978-0-12-401676-7.00003-6] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Astrocyte elevated gene-1 (AEG-1), also known as metadherin (MTDH) and lysine-rich CEACAM1 coisolated (LYRIC), was initially cloned in 2002. AEG-1/MTDH/LYRIC has emerged as an important oncogene that is overexpressed in multiple types of human cancer. Expanded research on AEG-1/MTDH/LYRIC has established a functional role of this molecule in several crucial aspects of tumor progression, including transformation, proliferation, cell survival, evasion of apoptosis, migration and invasion, metastasis, angiogenesis, and chemoresistance. The multifunctional role of AEG-1/MTDH/LYRIC in tumor development and progression is associated with a number of signaling cascades, and recent studies identified several important interacting partners of AEG-1/MTDH/LYRIC in regulating cancer promotion and other biological functions. This review evaluates the current literature on AEG-1/MTDH/LYRIC function relative to signaling changes, interacting partners, and angiogenesis and highlights new perspectives of this molecule, indicating its potential as a significant target for the clinical treatment of various cancers and other diseases.
Collapse
Affiliation(s)
- Luni Emdad
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA.
| | | | | | | | | | | |
Collapse
|
34
|
Lee SG, Kang DC, DeSalle R, Sarkar D, Fisher PB. AEG-1/MTDH/LYRIC, the beginning: initial cloning, structure, expression profile, and regulation of expression. Adv Cancer Res 2014; 120:1-38. [PMID: 23889986 DOI: 10.1016/b978-0-12-401676-7.00001-2] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Since its initial identification as a HIV-1-inducible gene in 2002, astrocyte elevated gene-1 (AEG-1), subsequently cloned as metadherin (MTDH) and lysine-rich CEACAM1 coisolated (LYRIC), has emerged over the past 10 years as an important oncogene providing a valuable prognostic marker in patients with various cancers. Recent studies demonstrate that AEG-1/MTDH/LYRIC is a pleiotropic protein that can localize in the cell membrane, cytoplasm, endoplasmic reticulum (ER), nucleus, and nucleolus, and contributes to diverse signaling pathways such as PI3K-AKT, NF-κB, MAPK, and Wnt. In addition to tumorigenesis, this multifunctional protein is implicated in various physiological and pathological processes including development, neurodegeneration, and inflammation. The present review focuses on the discovery of AEG-1/MTDH/LYRIC and conceptualizes areas of future direction for this intriguing gene. We begin by describing how AEG-1, MTDH, and LYRIC were initially identified by different research groups and then discuss AEG-1 structure, functions, localization, and evolution. We conclude with a discussion of the expression profile of AEG-1/MTDH/LYRIC in the context of cancer, neurological disorders, inflammation, and embryogenesis, and discuss how AEG-1/MTDH/LYRIC is regulated. This introductory discussion of AEG-1/MTDH/LYRIC will serve as the basis for the detailed discussions in other chapters of the unique properties of this intriguing molecule.
Collapse
Affiliation(s)
- Seok-Geun Lee
- Cancer Preventive Material Development Research Center, Institute of Korean Medicine, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Dong-Chul Kang
- Ilsong Institute of Life Science, Hallym University, Anyang, Kyonggi-do, Republic of Korea
| | - Rob DeSalle
- Division of Invertebrate Zoology, American Museum of Natural History, New York, New York, USA.,Department of Biology, New York University, New York, New York, USA
| | - Devanand Sarkar
- Department of Human and Molecular Genetics, VCU Institute of Molecular Medicine, VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
| | - Paul B Fisher
- Department of Human and Molecular Genetics, VCU Institute of Molecular Medicine, VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
| |
Collapse
|
35
|
Abstract
Astrocyte-elevated gene-1 (AEG-1/MTDH/LYRIC) is a potent oncogene that regulates key cellular processes underlying disease of the central nervous system (CNS). From its involvement in human immunodeficiency virus (HIV)-1 infection to its role in neurodegenerative disease and malignant brain tumors, AEG-1/MTDH/LYRIC facilitates cellular survival and proliferation through the control of a multitude of molecular signaling cascades. AEG-1/MTDH/LYRIC induction by HIV-1 and TNF highlights its importance in viral infection, and its incorporation into viral vesicles supports its potential role in active viral replication. Overexpression of AEG-1/MTDH/LYRIC in the brains of Huntington's disease patients suggests its function in neurodegenerative disease, and its association with genetic polymorphisms in large genome-wide association studies of migraine patients suggests a possible role in the pathogenesis of migraine headaches. In the field of cancer, AEG-1/MTDH/LYRIC promotes angiogenesis, migration, invasion, and enhanced tumor metabolism through key oncogenic signaling cascades. In response to external stress cues and cellular mechanisms to inhibit further growth, AEG-1/MTDH/LYRIC activates pathways that bypass cell checkpoints and potentiates signals to enhance survival and tumorigenesis. As an oncogene that promotes aberrant cellular processes within the CNS, AEG-1/MTDH/LYRIC represents an important therapeutic target for the treatment of neurological disease.
Collapse
Affiliation(s)
- Evan K Noch
- Department of Neurology and Neuroscience, Weill-Cornell Medical Center-New York Presbyterian Hospital, New York, NY, USA.
| | | |
Collapse
|
36
|
Chen X, Yao Y, Guan J, Chen X, Zhang F. Up-regulation of FoxN4 expression in adult spinal cord after injury. J Mol Neurosci 2013; 52:403-9. [PMID: 24217796 PMCID: PMC3924027 DOI: 10.1007/s12031-013-0166-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Accepted: 10/28/2013] [Indexed: 11/26/2022]
Abstract
FoxN4 (forkhead box N4), which is a transcription factor involved in developing spinal cord and spinal neurogenesis, implied important roles in the central nervous system (CNS). However, its expression and function in the adult CNS lesion are still unclear. In this study, we established a spinal cord injury (SCI) model in adult rats and investigated the expression of FoxN4 in the spinal cord. Western blot analysis revealed that FoxN4 was present in normal spinal cord. It gradually increased, peaked at day 3 after SCI, and then decreased during the following days. Immunohistochemistry further confirmed that FoxN4 was expressed at low levels in gray and white matters in normal condition and increased after SCI. Double immunofluorescence staining showed that FoxN4 is located on neurons and astrocytes, and FoxN4 expression was increased progressively in reactive astrocytes within the vicinity of the lesion, predominately in the white matter. In addition, almost all FoxN4-positive cells also expressed nestin or PCNA. Our data suggested that FoxN4 might play important roles in CNS pathophysiology after SCI.
Collapse
Affiliation(s)
- Xiangdong Chen
- Department of Spine Surgery, Affiliated Hospital of Nantong University, Nantong, 226001 Jiangsu People’s Republic of China
| | - Yu Yao
- Department of Spine Surgery, Affiliated Hospital of Nantong University, Nantong, 226001 Jiangsu People’s Republic of China
| | - Junjie Guan
- Department of Spine Surgery, Affiliated Hospital of Nantong University, Nantong, 226001 Jiangsu People’s Republic of China
| | - Xiaoqing Chen
- Department of Spine Surgery, Affiliated Hospital of Nantong University, Nantong, 226001 Jiangsu People’s Republic of China
| | - Feng Zhang
- Department of Spine Surgery, Affiliated Hospital of Nantong University, Nantong, 226001 Jiangsu People’s Republic of China
| |
Collapse
|
37
|
Zou L, Li H, Jin G, Tian M, Qin J, Zhao H. Fimbria-fornix (FF)-transected hippocampal extracts induce the activation of astrocytes in vitro. In Vitro Cell Dev Biol Anim 2013; 50:174-82. [PMID: 24203634 DOI: 10.1007/s11626-013-9709-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Accepted: 10/17/2013] [Indexed: 10/26/2022]
Abstract
Hippocampus is one of the neurogenesis areas in adult mammals, but the function of astrocytes in this area is still less known. In our previous study, the fimbria-fornix (FF)-transected hippocampal extracts promoted the proliferation and neuronal differentiation of radial glial cells in vitro. To explore the effects of hippocampal extracts on gliogenesis, the hippocampal astrocytes were treated by normal or ff-transected hippocampal extracts in vitro. The cells were immunostained by brain lipid-binding protein (BLBP), nestin, and SOX2 to assess their state of activation. The effects of astrocyte-conditioned medium on the neuronal differentiation of hippocampal neural stem cells (NSCs) were also investigated. After treatment of FF-transected hippocampal extracts, the number of BLBP, nestin, and Sox-positive cells were obviously more than the cells which treated by normal hippocampal extracts, these cells maintained a state of activation and the activated astrocyte-conditioned medium also promoted the differentiation of NSCs into more neurons. These findings suggest that the astrocytes can be activated by FF-transected hippocampal extracts and these activated cells also can promote the neuronal differentiation of hippocampal NSCs in vitro.
Collapse
Affiliation(s)
- Linqing Zou
- Department of Human Anatomy and Histoembryology, Medical College of Soochow University, Suzhou, 215123, China
| | | | | | | | | | | |
Collapse
|