1
|
Watanuki S, Bao A, Saitou E, Shoji K, Izawa M, Okami M, Matsumoto Y, Aida Y. BLV-CoCoMo Dual qPCR Assay Targeting LTR Region for Quantifying Bovine Leukemia Virus: Comparison with Multiplex Real-Time qPCR Assay Targeting pol Region. Pathogens 2024; 13:1111. [PMID: 39770370 PMCID: PMC11677995 DOI: 10.3390/pathogens13121111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/29/2024] [Accepted: 12/14/2024] [Indexed: 01/11/2025] Open
Abstract
The proviral load (PVL) of the bovine leukemia virus (BLV) is a useful index for estimating disease progression and transmission risk. Real-time quantitative PCR techniques are widely used for PVL quantification. We previously developed a dual-target detection method, the "Liquid Dual-CoCoMo assay", that uses the coordination of common motif (CoCoMo) degenerate primers. This method can detect two genes simultaneously using a FAM-labeled minor groove binder (MGB) probe for the BLV long terminal repeat (LTR) region and a VIC-labeled MGB probe for the BoLA-DRA gene. In this study, we evaluated the diagnostic and analytical performance of the Dual-CoCoMo assay targeting the LTR region by comparing its performance against the commercially available Takara multiplex assay targeting the pol region. The diagnostic sensitivity and specificity of the Liquid Dual-CoCoMo assay based on the diagnostic results of the ELISA or original Single-CoCoMo qPCR were higher than those of the Takara multiplex assay. Furthermore, using a BLV molecular clone, the analytical sensitivity of our assay was higher than that of the Takara multiplex assay. Our results provide the first evidence that the diagnostic and analytical performances of the Liquid Dual-CoCoMo assay are better than those of commercially available multiplex assays that target the pol region.
Collapse
Affiliation(s)
- Sonoko Watanuki
- Laboratory of Global Infectious Diseases Control Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan; (S.W.)
| | - Aronggaowa Bao
- Laboratory of Global Infectious Diseases Control Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan; (S.W.)
| | - Etsuko Saitou
- Hyogo Prefectural Awaji Meat Inspection Center, 49-18 Shitoorinagata, Minamiawaji 656-0152, Japan
| | - Kazuyuki Shoji
- Molecular Diagnosis Division, Nippon Gene Co., Ltd., 2-8-16 Toiya-machi, Toyama 930-0834, Japan
| | - Masaki Izawa
- Molecular Diagnosis Division, Nippon Gene Co., Ltd., 2-8-16 Toiya-machi, Toyama 930-0834, Japan
| | - Mitsuaki Okami
- Molecular Diagnosis Division, Nippon Gene Co., Ltd., 2-8-16 Toiya-machi, Toyama 930-0834, Japan
| | - Yasunobu Matsumoto
- Laboratory of Global Infectious Diseases Control Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan; (S.W.)
- Laboratory of Global Animal Resource Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Yoko Aida
- Laboratory of Global Infectious Diseases Control Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan; (S.W.)
| |
Collapse
|
2
|
Nishimori A, Andoh K, Matsuura Y, Okagawa T, Konnai S. Effect of C-to-T transition at CpG sites on tumor suppressor genes in tumor development in cattle evaluated by somatic mutation analysis in enzootic bovine leukosis. mSphere 2024; 9:e0021624. [PMID: 39404261 PMCID: PMC11580432 DOI: 10.1128/msphere.00216-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 08/19/2024] [Indexed: 11/22/2024] Open
Abstract
Oncogenic transformation of normal cells is caused by mutations and chromosomal abnormalities in cancer-related genes. Enzootic bovine leukosis (EBL) is a malignant B-cell lymphoma caused by bovine leukemia virus (BLV) infection in cattle. Although a small fraction of BLV-infected cattle develops EBL after a long latent period, the mechanisms for oncogenesis in EBL cattle remain largely unknown. In this study, we analyzed the types and patterns of somatic mutations in cancer cells from 36 EBL cases, targeting 21 cancer-related genes. Various somatic mutations were identified in eight genes, TP53, KMT2D, CREBBP, KRAS, PTEN, NOTCH1, MYD88, and CARD11. In addition, TP53 gene was found to be mutated in 69.4% of EBL cases, with most being biallelic mutations. In some cases, associations were observed between the ages at which cattle had developed EBL and somatic mutation patterns; young onset of EBL possibly occurs due to high impact mutations affecting protein translation and biallelic mutations. Furthermore, nucleotide substitution patterns indicated that cytosine at CpG sites tended to be converted to thymine in many EBL cases, which was considered to be the result of spontaneous deamination of 5-methylcytosine. These results demonstrate how somatic mutations have occurred in cancer cells leading to EBL development, thereby explaining its pathogenic mechanism. These findings will contribute to a better understanding and future elucidation of disease progression in BLV infection.IMPORTANCEEnzootic bovine leukosis (EBL) is a malignant and lethal disease in cattle. Currently, there are no effective vaccines or therapeutic methods against bovine leukemia virus (BLV) infection, resulting in severe economic losses in livestock industry. This study provides a renewed hypothesis to explain the general mechanisms of EBL onset by combining the previous finding that several integration sites of BLV provirus can affect the increase in survival and proliferation of infected cells. We demonstrate that two additional random events are necessary for oncogenic transformation in infected cell clones, elucidating the reason why only few infected cattle develop EBL. Further exploration of somatic mutation and BLV integration sites could support this hypothesis more firmly, potentially contributing to the development of novel control methods for EBL onset.
Collapse
Affiliation(s)
- Asami Nishimori
- National Institute of Animal Health, National Agriculture and Food Research Organization, Tsukuba, Japan
| | - Kiyohiko Andoh
- National Institute of Animal Health, National Agriculture and Food Research Organization, Tsukuba, Japan
| | - Yuichi Matsuura
- National Institute of Animal Health, National Agriculture and Food Research Organization, Tsukuba, Japan
| | - Tomohiro Okagawa
- Department of Advanced Pharmaceutics, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Satoru Konnai
- Department of Advanced Pharmaceutics, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
- Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| |
Collapse
|
3
|
Tobolski D, Zwierzchowski G, Wójcik R, Haxhiaj K, Wishart DS, Ametaj BN. Metabolic Fingerprinting of Blood and Urine of Dairy Cows Affected by Bovine Leukemia Virus: A Mass Spectrometry Approach. Metabolites 2024; 14:624. [PMID: 39590860 PMCID: PMC11596772 DOI: 10.3390/metabo14110624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/07/2024] [Accepted: 11/12/2024] [Indexed: 11/28/2024] Open
Abstract
OBJECTIVES This study investigated metabolic changes associated with bovine leukemia virus (BLV) infection in dairy cows, focusing on pre-parturition alterations. METHODS Metabolite identification in serum and urine samples was performed using a targeted metabolomics method, employing the TMIC Prime kit in combination with flow injection analysis and liquid chromatography-tandem mass spectrometry. RESULTS Of 145 cows examined, 42 (28.9%) were BLV-seropositive. Around 38% of infected cows showed high somatic cell counts indicative of subclinical mastitis, with 15 experiencing additional health issues such as ketosis, milk fever, and lameness. Despite these conditions, no significant differences in milk yield or composition were observed between the infected and control groups. Metabolomic analysis conducted at -8 and -4 weeks prepartum revealed significant metabolic differences between BLV-infected and healthy cows. At -8 weeks, 30 serum metabolites were altered, including sphingomyelins, lysophosphatidylcholines, amino acids, and acylcarnitines, suggesting disruptions in membrane integrity, energy metabolism, and immune function indicative of early neoplastic transformations. By -4 weeks, the number of altered metabolites decreased to 17, continuing to reflect metabolic disruptions in cows with leukemia. Multivariate analysis highlighted distinct metabolic profiles between infected and control cows, identifying key discriminating metabolites such as choline, aspartic acid, phenylalanine, and arginine. Urine metabolomics revealed significant prepartum shifts in metabolites related to glucose, asymmetric dimethylarginine, and pyruvic acid, among others. CONCLUSIONS The research confirmed metabolomics' efficacy in defining a BLV infection metabolic profile, elucidating leukosis-associated metabolic disruptions. This approach facilitates the identification of BLV-infected cows and enhances understanding of infection pathophysiology, providing a foundation for advanced management and intervention strategies in dairy herds. The study underscores the profound impact of leukosis on metabolic processes and highlights urine metabolomics' utility in non-invasively detecting BLV infection, offering the potential for improved herd health management.
Collapse
Affiliation(s)
- Dawid Tobolski
- Department of Large Animal Diseases and Clinic, Institute of Veterinary Medicine, Warsaw University of Life Sciences, 02-787 Warsaw, Poland;
| | - Grzegorz Zwierzchowski
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada; (G.Z.); (K.H.)
- Faculty of Biology and Biotechnology, University of Warmia and Mazury, 1a Oczapowskiego Str., 10-719 Olsztyn, Poland
| | - Roman Wójcik
- Faculty of Veterinary Medicine, University of Warmia and Mazury, 1a Oczapowskiego Str., 10-719 Olsztyn, Poland;
| | - Klevis Haxhiaj
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada; (G.Z.); (K.H.)
| | - David S. Wishart
- Departments of Biological and Computer Sciences, University of Alberta, Edmonton, AB T6G 2P5, Canada;
| | - Burim N. Ametaj
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada; (G.Z.); (K.H.)
| |
Collapse
|
4
|
Lopes CEB, Xavier FG, Nicolino RR, Cordeiro LFM, Rezende LC, Lopes MC, Silva DHL, Fonseca Júnior AA, Ferreira LR, Camargos MF, Soares Filho PM, Souza ICC, Ecco R. Pathological findings and differential diagnoses of lymph node diseases in slaughtered cattle in Brazil: A study of 2000 samples. Vet Pathol 2024; 61:952-964. [PMID: 38859800 DOI: 10.1177/03009858241257908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
Slaughterhouse inspections play a crucial role in the sanitary control of zoonoses and foodborne diseases. This study aimed to identify and analyze the frequencies of lymph node diseases in cattle slaughtered for human consumption, using the samples sent to the anatomic pathology service of the Federal Laboratory for Agricultural Defense (Laboratório Federal de Defesa Agropecuária), Minas Gerais, Brazil, from January 2015 to September 2022. In total, 2000 lymph node samples were analyzed, and additional information was individually retrieved. Lesions were most frequently identified in thoracic lymph nodes. Bacterial isolation and quantitative polymerase chain reaction (qPCR) were performed using samples suspected of tuberculosis. Tuberculosis cases accounted for 89.3% of the samples. Histopathology was more sensitive than other ancillary tests for diagnosing tuberculosis. Paraffin-embedded tissues from lymphoma cases were subjected to immunophenotyping using anti-CD3 and anti-CD79a immunohistochemistry. Frozen and/or paraffin-embedded tissues from lymphoma cases were used to identify the enzootic bovine leukosis (EBL) retrovirus through qPCR. Other diagnoses included primary (T- and B-cell lymphoma) and metastatic neoplasms (squamous cell carcinoma, pulmonary adenocarcinoma, undifferentiated carcinoma, undifferentiated adenocarcinoma, undifferentiated sarcoma, undifferentiated round cell tumor, mesothelioma, hepatic carcinoid, meningioma, and seminoma), actinogranulomas (pyogranulomatous lymphadenitis [actinobacillosis and actinomycosis]), idiopathic lymphadenitis (neutrophilic and/or histiocytic, granulomatous, and suppurative), and miscellaneous nonspecific lymphadenopathies (depletion/lymphoid atrophy, lymphangiectasia, erythrocyte drainage, parasitic eosinophilic lymphadenitis, follicular hyperplasia, and toxic granulomatous lymphadenitis). The combination of histopathology with complementary techniques is important for successful diagnosis, especially in complex cases of high epidemiological, economic, and zoosanitary importance, such as tuberculosis and EBL.
Collapse
Affiliation(s)
- Carlos E B Lopes
- Pathology Sector and MULTILAB, Department of Clinic and Surgery, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Fabiana G Xavier
- Laboratório Federal de Defesa Agropecuária (LFDA), Pedro Leopoldo, Minas Gerais, Brazil
| | - Rafael R Nicolino
- Pathology Sector and MULTILAB, Department of Clinic and Surgery, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Luana F M Cordeiro
- Pathology Sector and MULTILAB, Department of Clinic and Surgery, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Leandro C Rezende
- Laboratório Federal de Defesa Agropecuária (LFDA), Pedro Leopoldo, Minas Gerais, Brazil
| | - Marcelo C Lopes
- Pathology Sector and MULTILAB, Department of Clinic and Surgery, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Dayse H L Silva
- Pathology Sector and MULTILAB, Department of Clinic and Surgery, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | | | - Luciana R Ferreira
- Laboratório Federal de Defesa Agropecuária (LFDA), Pedro Leopoldo, Minas Gerais, Brazil
| | - Marcelo F Camargos
- Laboratório Federal de Defesa Agropecuária (LFDA), Pedro Leopoldo, Minas Gerais, Brazil
| | - Paulo M Soares Filho
- Laboratório Federal de Defesa Agropecuária (LFDA), Pedro Leopoldo, Minas Gerais, Brazil
| | - Ivy C C Souza
- Laboratório Federal de Defesa Agropecuária (LFDA), Pedro Leopoldo, Minas Gerais, Brazil
| | - Roselene Ecco
- Pathology Sector and MULTILAB, Department of Clinic and Surgery, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
5
|
Zhao Y, Zhu X, Zhang Z, Chen J, Chen Y, Hu C, Chen X, Robertson ID, Guo A. The Prevalence and Molecular Characterization of Bovine Leukemia Virus among Dairy Cattle in Henan Province, China. Viruses 2024; 16:1399. [PMID: 39339874 PMCID: PMC11437460 DOI: 10.3390/v16091399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 08/26/2024] [Accepted: 08/27/2024] [Indexed: 09/30/2024] Open
Abstract
Enzootic bovine leukosis, a neoplastic disease caused by the bovine leukemia virus (BLV), was the primary cancer affecting cattle in China before 1985. Although its prevalence decreased significantly between 1986 and 2000, enzootic bovine leukosis has been re-emerging since 2000. This re-emergence has been largely overlooked, possibly due to the latent nature of BLV infection or the perceived lack of sufficient evidence. This study investigated the molecular epidemiology of BLV infections in dairy cattle in Henan province, Central China. Blood samples from 668 dairy cattle across nine farms were tested using nested polymerase chain reaction assays targeting the partial envelope (env) gene (gp51 fragment). Twenty-three samples tested positive (animal-level prevalence of 3.4%; 95% confidence interval: 2.2, 5.1). The full-length env gene sequences from these positive samples were obtained and phylogenetically analyzed, along with previously reported sequences from the GenBank database. The sequences from positive samples were clustered into four genotypes (1, 4, 6, and 7). The geographical annotation of the maximum clade credibility trees suggested that the two genotype 1 strains in Henan might have originated from Japan, while the genotype 7 strain is likely to have originated from Moldova. Subsequent Bayesian stochastic search variable selection analysis further indicated a strong geographical association between the Henan strains and Japan, as well as Moldova. The estimated substitution rate for the env gene ranged from 4.39 × 10-4 to 2.38 × 10-3 substitutions per site per year. Additionally, codons 291, 326, 385, and 480 were identified as positively selected sites, potentially associated with membrane fusion, epitope peptide vaccine design, and transmembrane signal transduction. These findings contribute to the broader understanding of BLV epidemiology in Chinese dairy cattle and highlight the need for measures to mitigate further BLV transmission within and between cattle herds in China.
Collapse
Affiliation(s)
- Yuxi Zhao
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Y.Z.); (X.Z.); (J.C.); (Y.C.); (C.H.); (X.C.)
- Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, The Cooperative Innovation Centre for Sustainable Pig Production, Wuhan 430070, China;
| | - Xiaojie Zhu
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Y.Z.); (X.Z.); (J.C.); (Y.C.); (C.H.); (X.C.)
- Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, The Cooperative Innovation Centre for Sustainable Pig Production, Wuhan 430070, China;
- School of Veterinary Medicine, Murdoch University, Perth, WA 6150, Australia
| | - Zhen Zhang
- Henan Province Seed Industry Development Center, Department of Agriculture and Rural Affairs of Henan Province, Zhengzhou 450045, China
| | - Jianguo Chen
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Y.Z.); (X.Z.); (J.C.); (Y.C.); (C.H.); (X.C.)
- Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, The Cooperative Innovation Centre for Sustainable Pig Production, Wuhan 430070, China;
| | - Yingyu Chen
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Y.Z.); (X.Z.); (J.C.); (Y.C.); (C.H.); (X.C.)
- Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, The Cooperative Innovation Centre for Sustainable Pig Production, Wuhan 430070, China;
| | - Changmin Hu
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Y.Z.); (X.Z.); (J.C.); (Y.C.); (C.H.); (X.C.)
- Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, The Cooperative Innovation Centre for Sustainable Pig Production, Wuhan 430070, China;
| | - Xi Chen
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Y.Z.); (X.Z.); (J.C.); (Y.C.); (C.H.); (X.C.)
- Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, The Cooperative Innovation Centre for Sustainable Pig Production, Wuhan 430070, China;
| | - Ian D. Robertson
- Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, The Cooperative Innovation Centre for Sustainable Pig Production, Wuhan 430070, China;
- School of Veterinary Medicine, Murdoch University, Perth, WA 6150, Australia
| | - Aizhen Guo
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Y.Z.); (X.Z.); (J.C.); (Y.C.); (C.H.); (X.C.)
- Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, The Cooperative Innovation Centre for Sustainable Pig Production, Wuhan 430070, China;
| |
Collapse
|
6
|
Mendoza W, Isaza JP, López L, López-Herrera A, Gutiérrez LA. Bovine Leukemia Virus molecular detection and associated factors among dairy herd workers in Antioquia, Colombia. Acta Trop 2024; 256:107253. [PMID: 38782108 DOI: 10.1016/j.actatropica.2024.107253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/18/2024] [Accepted: 05/15/2024] [Indexed: 05/25/2024]
Abstract
The Bovine Leukemia Virus (BLV) affects mainly cattle, is transmitted by exposure to contaminated biological fluids, and generates lymphomas in 5 % of infected animals. The zoonotic potential of BLV has been studied, and it is currently unknown if it circulates in human workers on dairy herds in Antioquia. Objective: To determine the frequency of BLV detection, the genotypes of the virus, and the factors associated with its detection in workers for dairy herds in Antioquia, Colombia. Through a cross-sectional study in 51 dairy herds, 164 adults were recruited. A peripheral blood sample was collected from each participant for molecular detection of the BLV env and tax genes, and associated factors were explored through bivariate and multivariate mixed Poisson model analyses. The analysis showed that 82 % (134/164) of the participants were men, with an average age of 40. Using qPCR, the constitutive gene GAPDH was amplified to evaluate the presence of amplification inhibitors in the DNA samples. Using nested PCR, the amplification of the env viral gene was obtained in 13 % (22/164) of the total samples analyzed, while all the samples tested negative for tax. The amplicons of the env gene were sequenced, and the identity compatible with BLV was verified by BLAST analysis (NCBI). Using molecular phylogeny analysis, based on maximum likelihood and haplotype network analysis, it was identified that BLV genotype 1 is present in the evaluated population. 16 % (26/164) of the participants reported having ever had an accident with surgical material during work with cattle; this variable was associated with BLV positivity even after adjusting for other variables (PRa =2.70, 95 % CI= 1.01- 7.21). Considering that other studies have reported the circulation of BLV genotype 1 in cattle from this same region and the present report in humans from dairy herds, the results suggest a possible zoonotic transmission of BLV genotype 1 in Antioquia, reinforcing the need to continue investigating to determine the potential role of this virus as an etiological agent of disease in livestock farmers in the department.
Collapse
Affiliation(s)
- Willington Mendoza
- Grupo Biología de Sistemas, Escuela de Ciencias de la Salud, Facultad de Medicina, Universidad Pontificia Bolivariana. Medellín, Colombia
| | - Juan Pablo Isaza
- Grupo Biología de Sistemas, Escuela de Ciencias de la Salud, Facultad de Medicina, Universidad Pontificia Bolivariana. Medellín, Colombia
| | - Lucelly López
- Grupo de Investigación en Salud Pública, Escuela de Ciencias de la Salud, Facultad de Medicina, Universidad Pontificia Bolivariana. Medellín, Colombia
| | - Albeiro López-Herrera
- Grupo de Investigación Biodiversidad y Genética Molecular (BIOGEM), Universidad Nacional de Colombia Sede Medellín, Colombia
| | - Lina A Gutiérrez
- Grupo Biología de Sistemas, Escuela de Ciencias de la Salud, Facultad de Medicina, Universidad Pontificia Bolivariana. Medellín, Colombia.
| |
Collapse
|
7
|
Watanuki S, Shoji K, Izawa M, Okami M, Ye Y, Bao A, Liu Y, Saitou E, Sugiyama K, Endo M, Matsumoto Y, Aida Y. Development of Dry and Liquid Duplex Reagent Mix-Based Polymerase Chain Reaction Assays as Novel Tools for the Rapid and Easy Quantification of Bovine Leukemia Virus (BLV) Proviral Loads. Viruses 2024; 16:1016. [PMID: 39066179 PMCID: PMC11281531 DOI: 10.3390/v16071016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/10/2024] [Accepted: 06/14/2024] [Indexed: 07/28/2024] Open
Abstract
Bovine leukemia virus (BLV) is prevalent worldwide, causing serious problems in the cattle industry. The BLV proviral load (PVL) is a useful index for estimating disease progression and transmission risk. We previously developed a quantitative real-time PCR (qPCR) assay to measure the PVL using the coordination of common motif (CoCoMo) degenerate primers. Here, we constructed a novel duplex BLV-CoCoMo qPCR assay that can amplify two genes simultaneously using a FAM-labeled MGB probe for the BLV LTR gene and a VIC-labeled MGB probe for the BoLA-DRA gene. This liquid duplex assay maintained its original sensitivity and reproducibility in field samples. Furthermore, we developed a dry duplex assay composed of PCR reagents necessary for the optimized liquid duplex assay. We observed a strong positive correlation between the PVLs measured using the dry and liquid duplex assays. Validation analyses showed that the sensitivity of the dry duplex assay was slightly lower than that of the other methods for the detection of a BLV molecular clone, but it showed similar sensitivity to the singleplex assay and slightly higher sensitivity than the liquid duplex assay for the PVL quantification of 82 field samples. Thus, our liquid and dry duplex assays are useful for measuring the BLV PVL in field samples, similar to the original singleplex assay.
Collapse
Affiliation(s)
- Sonoko Watanuki
- Laboratory of Global Infectious Diseases Control Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan; (S.W.)
| | - Kazuyuki Shoji
- Molecular Diagnosis Division, Nippon Gene Co., Ltd., 2-8-16 Toiya-machi, Toyama 930-0834, Japan
| | - Masaki Izawa
- Molecular Diagnosis Division, Nippon Gene Co., Ltd., 2-8-16 Toiya-machi, Toyama 930-0834, Japan
| | - Mitsuaki Okami
- Molecular Diagnosis Division, Nippon Gene Co., Ltd., 2-8-16 Toiya-machi, Toyama 930-0834, Japan
| | - Yingbao Ye
- Laboratory of Global Infectious Diseases Control Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan; (S.W.)
| | - Aronggaowa Bao
- Laboratory of Global Infectious Diseases Control Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan; (S.W.)
| | - Yulin Liu
- Laboratory of Global Infectious Diseases Control Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan; (S.W.)
| | - Etsuko Saitou
- Hyogo Prefectural Awaji Meat Inspection Center, 49-18 Shitoorinagata, Minamiawaji 656-0152, Japan
| | | | - Michiru Endo
- Kumagaya Livestock Hygiene Service Center, Kumagaya 360-0813, Japan
| | - Yasunobu Matsumoto
- Laboratory of Global Infectious Diseases Control Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan; (S.W.)
- Laboratory of Global Animal Resource Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Yoko Aida
- Laboratory of Global Infectious Diseases Control Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan; (S.W.)
| |
Collapse
|
8
|
Szczotka M, Wasiak M, Kuźmak J. Extracellular vesicles in cattle infected with bovine leukaemia virus: isolation and molecular analysis. J Vet Res 2024; 68:189-198. [PMID: 38947160 PMCID: PMC11210360 DOI: 10.2478/jvetres-2024-0031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 05/21/2024] [Indexed: 07/02/2024] Open
Abstract
Introduction Exosomes are nanosized lipid bilayer membranous microvesicles, extracellularly released from a variety of mammalian cells. They mediate intercellular signalling by transporting several types of RNA, lipids and proteins and participate in the intercellular exchange of DNA, RNA, micro RNA, proteins and other components. These microvesicles are present in all body fluids in physiological and pathological conditions and reflect the state of the host organism. The aim of the study was the isolation and molecular determination of exosomes in blood and supernatant fluids of bovine dendritic cell cultures infected with bovine leukaemia virus (BLV). Material and Methods Exosomes were isolated by ultracentrifugation from the blood sera, plasma and supernatant of bovine BLV-infected and uninfected control dendritic cell cultures and their presence was confirmed with scanning electron and transmission electron microscopy. Western blot analysis of the structural BLV glycoprotein 51 (Env) and protein 24 (Gag) and of the tetraspanin exosomal markers CD9, CD63 and flotillin-1 was undertaken in BLV+ and control BLV- cattle. Results In exosomes of leukaemic cattle both BLV proteins and exosomal markers were detected. In healthy control animals only exosomal markers were determined. Conclusion Proteins of BLV were released with exosomes and could be transferred into recipient cells as an alternative propagation route not requiring virus infection.
Collapse
Affiliation(s)
| | - Magdalena Wasiak
- Department of Pathology National Veterinary Research Institute, 24-100Puławy, Poland
| | - Jacek Kuźmak
- Department of Biochemistry, 24-100Puławy, Poland
| |
Collapse
|
9
|
Pluta A, Rola-Łuszczak M, Hoffmann FG, Donnik I, Petropavlovskiy M, Kuźmak J. Genetic Variability of Bovine Leukemia Virus: Evidence of Dual Infection, Recombination and Quasi-Species. Pathogens 2024; 13:178. [PMID: 38392916 PMCID: PMC10893129 DOI: 10.3390/pathogens13020178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/23/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024] Open
Abstract
We have characterized the intrahost genetic variation in the bovine leukemia virus (BLV) by examining 16 BLV isolates originating from the Western Siberia-Tyumen and South Ural-Chelyabinsk regions of Russia. Our research focused on determining the genetic composition of an 804 bp fragment of the BLV env gene, encoding for the entire gp51 protein. The results provide the first indication of the quasi-species genetic nature of BLV infection and its relevance for genome-level variation. Furthermore, this is the first phylogenetic evidence for the existence of a dual infection with BLV strains belonging to different genotypes within the same host: G4 and G7. We identified eight cases of recombination between these two BLV genotypes. The detection of quasi-species with cases of dual infection and recombination indicated a higher potential of BLV for genetic variability at the intra-host level than was previously considered.
Collapse
Affiliation(s)
- Aneta Pluta
- Department of Biochemistry, National Veterinary Research Institute, 24-100 Puławy, Poland; (M.R.-Ł.); (J.K.)
| | - Marzena Rola-Łuszczak
- Department of Biochemistry, National Veterinary Research Institute, 24-100 Puławy, Poland; (M.R.-Ł.); (J.K.)
| | - Federico G. Hoffmann
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Starkville, MS 39762, USA;
- Institute for Genomics, Biocomputing and Biotechnology, Mississippi State University, Starkville, MS 39762, USA
| | - Irina Donnik
- Ural State Agrarian University, Ekaterinburg 620075, Russia;
| | - Maxim Petropavlovskiy
- Ural Federal Agrarian Scientific Research Centre of the Ural Branch of the Russian Academy of Sciences, Ekaterinburg 620049, Russia;
| | - Jacek Kuźmak
- Department of Biochemistry, National Veterinary Research Institute, 24-100 Puławy, Poland; (M.R.-Ł.); (J.K.)
| |
Collapse
|
10
|
Duran-Yelken S, Alkan F. Molecular analysis of the env, LTR, and pX regions of bovine leukemia virus in dairy cattle of Türkiye. Virus Genes 2024:10.1007/s11262-024-02058-7. [PMID: 38355991 DOI: 10.1007/s11262-024-02058-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 01/28/2024] [Indexed: 02/16/2024]
Abstract
Bovine leukemia virus is a retrovirus that causes enzootic bovine leukosis and is associated with global economic losses in the livestock industry. The aim of this study was to investigate the genotype determination of BLVs from cattle housed in 6 different farms in Türkiye and the characterization of their LTR and pX (tax, rex, R3, and G4 gene) regions. For this purpose, blood samples from 48 cattle infected with BLV were used. The phylogenetic analysis based on the env gene sequences revealed that all BLVs were clustered in genotype 1 (G1), and the sequences of the LTR (n = 48) and the pX region (n = 33) of BLVs were obtained. Also, analysis of these nucleic acid and amino acid sequences allowed assessments similar to those reported in earlier studies to be relevant to transactivation and pathogenesis. This study reports the molecular analysis of the LTR and pX region of BLVs in Türkiye for the first time.
Collapse
Affiliation(s)
- Selda Duran-Yelken
- Department of Virology, Faculty of Veterinary Medicine, Kastamonu University, Kastamonu, Turkey.
| | - Feray Alkan
- Department of Virology, Faculty of Veterinary Medicine, Ankara University, Ankara, Turkey
| |
Collapse
|
11
|
Hamada R, Fereig RM, Metwally S. The influence of risk factors on bovine leukemia virus infection and proviral load in egyptian cattle. Vet Res Commun 2024; 48:191-202. [PMID: 37610507 DOI: 10.1007/s11259-023-10198-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 08/08/2023] [Indexed: 08/24/2023]
Abstract
Bovine leukemia virus (BLV) is the etiological agent of enzootic bovine leucosis (EBL), which affects cattle globally. In Egypt, BLV control strategies have been ignored because of the shortage of BLV research studies and the silent infection in most animals. This study aimed to identify the risk factors associated with the prevalence of BLV among dairy and beef cattle from six different geographic and climatic provinces in Egypt. Additionally, risk factors affecting the BLV proviral load (PVL) among the positive cattle were targeted. The total BLV prevalence in cattle from six investigated Egyptian provinces was 24.2% (105/433), while the mean PVL (8651.6 copies /105 white blood cells) was absolutely high as estimated by the BLV-CoCoMo-quantitative polymerase chain reaction (qPCR)-2 assay. Analysis of the influence of risk factors (age, sex, breed, production type, farm size, and location) on BLV prevalence indicated that the Holstein breed (OR = 1.582, p = 0.007), beef cattle (OR = 1.088, p = 0.0001), large-size farms (OR = 1.26, p = 0.0001), and cattle from Damietta (OR = 1.43, p = 0.0001) and Cairo (OR = 1.16, p = 0.0001) were ultimately proven the most important risks for BLV infection. The risk factors were analyzed considering the BLV PVL levels in the BLV-positive cases. Significantly high PVL (HPVL) levels were observed in cattle > 5 years old (p < 0.0001), females (p = 0.0008), Holstein (p < 0.0001), dairy cows (p = 0.0053), large-size farms (p < 0.0001), and cattle from Damietta (p < 0.0001) compared to other categories. Contrary, no significant differences in PVL levels were reported between the Native and Mixed cattle breeds (p = 0.13). Ultimately, the logistic regression model indicated that the probability of carrying HPVL in cattle > 5 years is 1.27 (95% CI: 1.03-2.09, p < 0.001) times more likely compared to cattle < 2 years old. In conclusion, the findings were valuably correlating the BLV prevalence with PVL as an indicator of the risk of BLV infection.
Collapse
Affiliation(s)
- Rania Hamada
- Division of Clinical Pathology, Department of Pathology, Faculty of Veterinary Medicine, Damanhour University, 22511, Damanhour, Egypt.
| | - Ragab M Fereig
- Division of Internal Medicine, Department of Animal Medicine, Faculty of Veterinary Medicine, South Valley University, 83523, Qena City, Qena, Egypt
| | - Samy Metwally
- Division of Infectious Diseases, Department of Animal Medicine, Faculty of Veterinary Medicine, Damanhour University, 22511, Damanhour, Egypt.
- Laboratory of Global Infectious Diseases Control Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, 113-8657, Tokyo, Japan.
| |
Collapse
|
12
|
Ladera Gómez ME, Nieto Farias MV, Rodríguez M, Váter A, Ceriani MC, Dolcini GL. Altered apoptosis and proliferation in milk cells and PBMc from BLV-infected bovines with different proviral loads: Possible role of the BCL-2 family proteins, TNF-alpha, and receptors. Vet Immunol Immunopathol 2024; 268:110703. [PMID: 38154260 DOI: 10.1016/j.vetimm.2023.110703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 11/08/2023] [Accepted: 12/09/2023] [Indexed: 12/30/2023]
Abstract
Bovines infected by bovine leukemia virus (BLV) are characterized by presenting low proviral load (LPL) or high proviral load (HPL). It is reported that animals with HPL in peripheral blood mononuclear cells (PBMCs) present a decrease in apoptosis, an increase in viability and the proliferation rate, while animals that maintain an LPL have an intrinsic ability to control the infection, presenting an increased apoptosis rate of their PBMCs. However, there is little information on the effect of BLV on these mechanisms when the virus infects somatic milk cells (SC). This study investigates the mechanisms underlying apoptosis in milk and blood from BLV-infected animals with HPL and LPL. Relative levels of mRNA of tumor necrosis factor-α (TNF-α), TNF receptor 1 (TNF-RI), TNF receptor 2 (TNF-RII), anti-apoptotic B-cell lymphoma 2 protein (Bcl-2), and pro-apoptotic Bcl-2-like protein 4 (Bax) were measured in SC and PBMCs using quantitative reverse transcription-polymerase chain reaction (RT-qPCR) assay. A significant decrease in the expression of TNF-α in SC from HPL animals vs non-infected bovines was observed, but the infection in SC with BLV did not show a modulation on the expression of TNF receptors. A significant increase in TNF-RI expression in PBMCs from HPL bovines compared to LPL bovines was observed. No significant differences in PBMCs between HPL and LPL compared to non-infected animals concerning TNF-α, TNF-RI, and TNF-RII expression were found. There was a significant increase of both Bcl-2 and Bax in SC from LPL compared to non-infected bovines, but the Bcl-2/Bax ratio showed an anti-apoptotic profile in LPL and HPL bovines compared to non-infected ones. Reduced mRNA expression levels of Bax were determined in the PBMCs from HPL compared to LPL subjects. In contrast, BLV-infected bovines did not differ significantly in the mRNA expression of Bax compared to non-infected bovines. Our data suggest that the increased mRNA expression of Bax corresponds to the late lactation state of bovine evaluated and the exacerbated increase of mRNA expression of Bcl-2 may be one of the mechanisms for the negative apoptosis regulation in the mammary gland induced by BLV infection. These results provide new insights into the mechanism of mammary cell death in HPL and LPL BLV-infected bovine mammary gland cells during lactation.
Collapse
Affiliation(s)
- M E Ladera Gómez
- Laboratorio de Virología, Centro de Investigación Veterinaria de Tandil (CIVETAN, CONICET/UNCPBA/CICPBA), Facultad de Ciencias Veterinarias, UNCPBA, Paraje Arroyo Seco s/n, 7000 Tandil, Argentina
| | - M V Nieto Farias
- Laboratorio de Virología, Centro de Investigación Veterinaria de Tandil (CIVETAN, CONICET/UNCPBA/CICPBA), Facultad de Ciencias Veterinarias, UNCPBA, Paraje Arroyo Seco s/n, 7000 Tandil, Argentina
| | - M Rodríguez
- Área de Bioestadística, Facultad de Ciencias Veterinarias, UNCPBA, Paraje Arroyo Seco s/n, 7000 Tandil, Argentina
| | - A Váter
- Escuela de Educación Secundaria Agraria Nº1 "Dr. Ramón Santamarina", Tandil, Argentina
| | - M C Ceriani
- Laboratorio de Virología, Centro de Investigación Veterinaria de Tandil (CIVETAN, CONICET/UNCPBA/CICPBA), Facultad de Ciencias Veterinarias, UNCPBA, Paraje Arroyo Seco s/n, 7000 Tandil, Argentina
| | - G L Dolcini
- Laboratorio de Virología, Centro de Investigación Veterinaria de Tandil (CIVETAN, CONICET/UNCPBA/CICPBA), Facultad de Ciencias Veterinarias, UNCPBA, Paraje Arroyo Seco s/n, 7000 Tandil, Argentina.
| |
Collapse
|
13
|
Lv G, Wang J, Lian S, Wang H, Wu R. The Global Epidemiology of Bovine Leukemia Virus: Current Trends and Future Implications. Animals (Basel) 2024; 14:297. [PMID: 38254466 PMCID: PMC10812804 DOI: 10.3390/ani14020297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/02/2024] [Accepted: 01/11/2024] [Indexed: 01/24/2024] Open
Abstract
Bovine leukemia virus (BLV) is a retrovirus that causes enzootic bovine leucosis (EBL), which is the most significant neoplastic disease in cattle. Although EBL has been successfully eradicated in most European countries, infections continue to rise in Argentina, Brazil, Canada, Japan, and the United States. BLV imposes a substantial economic burden on the cattle industry, particularly in dairy farming, as it leads to a decline in animal production performance and increases the risk of disease. Moreover, trade restrictions on diseased animals and products between countries and regions further exacerbate the problem. Recent studies have also identified fragments of BLV nucleic acid in human breast cancer tissues, raising concerns for public health. Due to the absence of an effective vaccine, controlling the disease is challenging. Therefore, it is crucial to accurately detect and diagnose BLV at an early stage to control its spread and minimize economic losses. This review provides a comprehensive examination of BLV, encompassing its genomic structure, epidemiology, modes of transmission, clinical symptoms, detection methods, hazards, and control strategies. The aim is to provide strategic information for future BLV research.
Collapse
Affiliation(s)
- Guanxin Lv
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (G.L.); (J.W.); (S.L.)
- Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, Daqing 163319, China
- China Key Laboratory of Bovine Disease Control in Northeast China, Ministry of Agriculture and Rural Affairs, Daqing 163319, China
| | - Jianfa Wang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (G.L.); (J.W.); (S.L.)
- Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, Daqing 163319, China
- China Key Laboratory of Bovine Disease Control in Northeast China, Ministry of Agriculture and Rural Affairs, Daqing 163319, China
| | - Shuai Lian
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (G.L.); (J.W.); (S.L.)
- Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, Daqing 163319, China
- China Key Laboratory of Bovine Disease Control in Northeast China, Ministry of Agriculture and Rural Affairs, Daqing 163319, China
| | - Hai Wang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (G.L.); (J.W.); (S.L.)
- Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, Daqing 163319, China
- China Key Laboratory of Bovine Disease Control in Northeast China, Ministry of Agriculture and Rural Affairs, Daqing 163319, China
| | - Rui Wu
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (G.L.); (J.W.); (S.L.)
- Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, Daqing 163319, China
- China Key Laboratory of Bovine Disease Control in Northeast China, Ministry of Agriculture and Rural Affairs, Daqing 163319, China
- College of Biology and Agriculture, Jiamusi University, Jiamusi 154007, China
| |
Collapse
|
14
|
Pluta A, Taxis TM, van der Meer F, Shrestha S, Qualley D, Coussens P, Rola-Łuszczak M, Ryło A, Sakhawat A, Mamanova S, Kuźmak J. An immunoinformatics study reveals a new BoLA-DR-restricted CD4+ T cell epitopes on the Gag protein of bovine leukemia virus. Sci Rep 2023; 13:22356. [PMID: 38102157 PMCID: PMC10724172 DOI: 10.1038/s41598-023-48899-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 11/30/2023] [Indexed: 12/17/2023] Open
Abstract
Bovine leukemia virus (BLV) is the causative agent of enzootic bovine leucosis (EBL), which has been reported worldwide. The expression of viral structural proteins: surface glycoprotein (gp51) and three core proteins - p15 (matrix), p24 (capsid), and p12 (nucleocapsid) induce a strong humoral and cellular immune response at first step of infection. CD4+ T-cell activation is generally induced by bovine leukocyte antigen (BoLA) region- positive antigen-presenting cells (APC) after processing of an exogenous viral antigen. Limited data are available on the BLV epitopes from the core proteins recognized by CD4+ T-cells. Thus, immunoinformatic analysis of Gag sequences obtained from 125 BLV isolates from Poland, Canada, Pakistan, Kazakhstan, Moldova and United States was performed to identify the presence of BoLA-DRB3 restricted CD4+ T-cell epitopes. The 379 15-mer overlapping peptides spanning the entire Gag sequence were run in BoLA-DRB3 allele-binding regions using a BoLA-DRB- peptide binding affinity prediction algorithm. The analysis identified 22 CD4+ T-cell peptide epitopes of variable length ranging from 17 to 22 amino acids. The predicted epitopes interacted with 73 different BoLA-DRB3 alleles found in BLV-infected cattle. Importantly, two epitopes were found to be linked with high proviral load in PBMC. A majority of dominant and subdominant epitopes showed high conservation across different viral strains, and therefore could be attractive targets for vaccine development.
Collapse
Affiliation(s)
- Aneta Pluta
- Department of Biochemistry, National Veterinary Research Institute, 24-100, Puławy, Poland.
| | - Tasia Marie Taxis
- Department of Animal Science, College of Agriculture and Natural Resources, Michigan State University, East Lansing, MI, 48824, USA
| | - Frank van der Meer
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Sulav Shrestha
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Dominic Qualley
- Department of Chemistry and Biochemistry, and Center for One Health Studies, Berry College, Mt. Berry, GA, 30149, USA
| | - Paul Coussens
- Department of Animal Science, College of Agriculture and Natural Resources, Michigan State University, East Lansing, MI, 48824, USA
| | - Marzena Rola-Łuszczak
- Department of Biochemistry, National Veterinary Research Institute, 24-100, Puławy, Poland
| | - Anna Ryło
- Department of Biochemistry, National Veterinary Research Institute, 24-100, Puławy, Poland
| | - Ali Sakhawat
- Animal Quarantine Department, Ministry of National Food Security and Research, Peshawar, 25000, Pakistan
| | - Saltanat Mamanova
- Laboratory of Virology, Kazakh Scientific Research Veterinary Institute, LLP, 223 Raiymbek Avenue, 050000, Almaty, Republic of Kazakhstan
| | - Jacek Kuźmak
- Department of Biochemistry, National Veterinary Research Institute, 24-100, Puławy, Poland
| |
Collapse
|
15
|
Hamada R, Metwally S, Matsuura R, Borjigin L, Lo CW, Ali AO, Mohamed AEA, Wada S, Aida Y. BoLA-DRB3 Polymorphism Associated with Bovine Leukemia Virus Infection and Proviral Load in Holstein Cattle in Egypt. Pathogens 2023; 12:1451. [PMID: 38133334 PMCID: PMC10746042 DOI: 10.3390/pathogens12121451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 12/12/2023] [Accepted: 12/12/2023] [Indexed: 12/23/2023] Open
Abstract
Bovine leukemia virus (BLV) is the etiological agent of enzootic bovine leukosis, the most prevalent neoplastic disease of cattle worldwide. The immune response to BLV and disease susceptibility and resistance in cattle are strongly correlated with the bovine leukocyte antigen (BoLA)-DRB3 allelic polymorphism. BLV infection continues to spread in Egypt, in part because the relationships between BLV infection, proviral load in Egypt, and BoLA-DRB3 polymorphism are unknown. Here, we identified 18 previously reported alleles in 121 Holstein cows using a polymerase chain reaction sequence-based typing method. Furthermore, BoLA-DRB3 gene polymorphisms in these animals were investigated for their influence on viral infection. BoLA-DRB3*015:01 and BoLA-DRB3*010:01 were identified as susceptible and resistant alleles, respectively, for BLV infection in the tested Holsteins. In addition, BoLA-DRB3*012:01 was associated with low PVL in previous reports but high PVL in Holstein cattle in Egypt. This study is the first to demonstrate that the BoLA-DRB3 polymorphism confers resistance and susceptibility to PVL and infections of BLV in Holstein cattle in Egypt. Our results can be useful for the disease control and eradication of BLV through genetic selection.
Collapse
Affiliation(s)
- Rania Hamada
- Viral Infectious Diseases Unit, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan; (R.H.); (S.M.); (R.M.); (L.B.); (C.-W.L.)
- Department of Pathology and Clinical Pathology, Faculty of Veterinary Medicine, Damanhour University, Damanhour City 22511, Egypt
| | - Samy Metwally
- Viral Infectious Diseases Unit, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan; (R.H.); (S.M.); (R.M.); (L.B.); (C.-W.L.)
- Division of Infectious Diseases, Department of Animal Medicine, Faculty of Veterinary Medicine, Damanhour University, Damanhour City 22511, Egypt
| | - Ryosuke Matsuura
- Viral Infectious Diseases Unit, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan; (R.H.); (S.M.); (R.M.); (L.B.); (C.-W.L.)
- Laboratory of Global Infectious Diseases Control Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Liushiqi Borjigin
- Viral Infectious Diseases Unit, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan; (R.H.); (S.M.); (R.M.); (L.B.); (C.-W.L.)
| | - Chieh-Wen Lo
- Viral Infectious Diseases Unit, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan; (R.H.); (S.M.); (R.M.); (L.B.); (C.-W.L.)
- Laboratory of Global Infectious Diseases Control Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Alsagher O. Ali
- Department of Animal Medicine, Faculty of Veterinary Medicine, South Valley University, Qena City 83523, Egypt; (A.O.A.); (A.E.A.M.)
| | - Adel E. A. Mohamed
- Department of Animal Medicine, Faculty of Veterinary Medicine, South Valley University, Qena City 83523, Egypt; (A.O.A.); (A.E.A.M.)
| | - Satoshi Wada
- Photonics Control Technology Team, RIKEN Center for Advanced Photonics, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan;
| | - Yoko Aida
- Viral Infectious Diseases Unit, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan; (R.H.); (S.M.); (R.M.); (L.B.); (C.-W.L.)
- Laboratory of Global Infectious Diseases Control Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| |
Collapse
|
16
|
Borjigin L, Watanuki S, Hamada R, Bai L, Hirose T, Sato H, Yoneyama S, Yasui A, Yasuda S, Yamanaka R, Mimura M, Baba M, Inokuma M, Fujita K, Shinozaki Y, Tanaka N, Takeshima SN, Aida Y. Effectiveness of integrated bovine leukemia virus eradication strategies utilizing cattle carrying resistant and susceptible major histocompatibility complex class II DRB3 alleles. J Dairy Sci 2023; 106:9393-9409. [PMID: 37641252 DOI: 10.3168/jds.2023-23524] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 06/26/2023] [Indexed: 08/31/2023]
Abstract
Bovine leukemia virus (BLV) has spread worldwide and causes serious problems in the cattle industry owing to the lack of effective treatments and vaccines. Bovine leukemia virus is transmitted via horizontal and vertical infection, and cattle with high BLV proviral load (PVL), which is a useful index for estimating disease progression and transmission risk, are considered major infectious sources within herds. The PVL strongly correlates with highly polymorphic bovine lymphocyte antigen (BoLA)-DRB3 alleles. The BoLA-DRB3*015:01 and *012:01 alleles are known susceptibility-associated markers related to high PVL, and cattle with susceptible alleles may be at a high risk of BLV transmission via direct contact with healthy cows. In contrast, the BoLA-DRB3*009:02 and *014:01:01 alleles comprise resistant markers associated with the development of low PVL, and cattle with resistant alleles may be low-risk spreaders for BLV transmission and disrupt the BLV transmission chain. However, whether polymorphisms in BoLA-DRB3 are useful for BLV eradication in farms remains unknown. Here, we conducted a validation trial of the integrated BLV eradication strategy to prevent new infection by resistant cattle and actively eliminate susceptible cattle in addition to conventional BLV eradication strategies to maximally reduce the BLV prevalence and PVL using a total of 342 cattle at 4 stall-barn farms in Japan from 2017 to 2019. First, we placed the resistant milking cattle between the BLV-positive and BLV-negative milking cattle in a stall barn for 3 yr. Interestingly, the resistant cattle proved to be an effective biological barrier to successfully block the new BLV infections in the stall-barn system among all 4 farms. Concomitantly, we actively eliminated cattle with high PVL, especially susceptible cattle. Indeed, 39 of the 60 susceptible cattle (65%), 76 of the 140 neutral cattle (54%), and 20 of the 41 resistant cattle (48.8%) were culled on 4 farms for 3 years. Consequently, BLV prevalence and mean PVL decreased in all 4 farms. In particular, one farm achieved BLV-free status in May 2020. By decreasing the number of BLV-positive animals, the revenue-enhancing effect was estimated to be ¥5,839,262 ($39,292.39) for the 4 farms over 3 yr. Our results suggest that an integrated BLV eradication program utilization of resistant cattle as a biological barrier and the preferential elimination of susceptible cattle are useful for BLV infection control.
Collapse
Affiliation(s)
- Liushiqi Borjigin
- Viral Infectious Diseases Unit, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan; Faculty of Veterinary Medicine, Okayama University of Science, Imabari, Ehime 794-8555, Japan
| | - Sonoko Watanuki
- Viral Infectious Diseases Unit, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan; Laboratory of Global Infectious Diseases Control Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Rania Hamada
- Viral Infectious Diseases Unit, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Lanlan Bai
- Viral Infectious Diseases Unit, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Tomoya Hirose
- Viral Infectious Diseases Unit, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Hirotaka Sato
- Viral Infectious Diseases Unit, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Shuji Yoneyama
- Kenou Livestock Hygiene Service Center, Utsunomiya, Tochigi 321-0905, Japan
| | - Anna Yasui
- Kumagaya Livestock Hygiene Service Center, Kumagaya, Saitama 360-0813, Japan
| | - Sohei Yasuda
- Kumagaya Livestock Hygiene Service Center, Kumagaya, Saitama 360-0813, Japan
| | - Risa Yamanaka
- Kumagaya Livestock Hygiene Service Center, Kumagaya, Saitama 360-0813, Japan
| | - Munehito Mimura
- Kumagaya Livestock Hygiene Service Center, Kumagaya, Saitama 360-0813, Japan
| | - Miho Baba
- Kumagaya Livestock Hygiene Service Center, Kumagaya, Saitama 360-0813, Japan
| | | | - Keisuke Fujita
- Chuo Livestock Hygiene Service Center, Chiba 262-0011, Japan
| | - Yasuo Shinozaki
- Nanbu Livestock Hygiene Service Center, Kamogawa, Chiba 296-0033, Japan
| | - Naoko Tanaka
- Nanbu Livestock Hygiene Service Center, Kamogawa, Chiba 296-0033, Japan
| | - Shin-Nosuke Takeshima
- Viral Infectious Diseases Unit, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan; Department of Food and Nutrition, Jumonji University, Niiza, Saitama 352-8510, Japan
| | - Yoko Aida
- Viral Infectious Diseases Unit, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan; Laboratory of Global Infectious Diseases Control Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan..
| |
Collapse
|
17
|
Úsuga-Monroy C, Díaz FJ, González-Herrera LG, Echeverry-Zuluaga JJ, López-Herrera A. Phylogenetic analysis of the partial sequences of the env and tax BLV genes reveals the presence of genotypes 1 and 3 in dairy herds of Antioquia, Colombia. Virusdisease 2023; 34:483-497. [PMID: 38046065 PMCID: PMC10686916 DOI: 10.1007/s13337-023-00836-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 08/07/2023] [Indexed: 12/05/2023] Open
Abstract
Bovine leukemia virus (BLV) is a retrovirus that primarily infects dairy cows. Although few studies have also used the tax gene, phylogenetic studies of BLV use mostly the env gene. The aim of this work was to establish the circulating genotypes of BLV in specialized dairy cattle from Antioquia, Colombia. Twenty blood samples from Holstein Friesian cows were collected, and their DNA was isolated. A PCR was performed for a partial region of the env and tax genes. A phylogenetic analysis was carried out using the maximum likelihood and Bayesian methods for both genes. Nineteen sequences were identified as genotype 1 by env and tax genes. Only one sequence was clustered with genotype 3 and had the highest proportion of different nucleotide sites compared to other strains. Four amino acid substitutions in the 134 amino acid residue fragment of the Env protein were identified in the Colombian sequences, and three new amino acid substitutions were reported in the 296 amino acid residue fragment of the Tax protein. R43K (Z finger), A185T (Activation domain), and L105F changes were identified in the genotype 3 sample. This genotype has been reported in the United States, Japan, Korea, and Mexico, but so far, not in Colombia. The country has a high rate of imported live animals, semen, and embryos, especially from the United States. Although it is necessary to evaluate samples from other regions of the country, the current results indicate the presence of two BLV genotypes in specialized dairy herds.
Collapse
Affiliation(s)
- Cristina Úsuga-Monroy
- Grupo BIOGEM, Facultad de Ciencias Agrarias, Universidad Nacional de Colombia Sede Medellín, Calle 65 No 59A-110, Medellín, Colombia
| | - F. J. Díaz
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia, Calle 70 No. 52-21, Medellín, Colombia
| | - Luis Gabriel González-Herrera
- Grupo BIOGEM, Facultad de Ciencias Agrarias, Universidad Nacional de Colombia Sede Medellín, Calle 65 No 59A-110, Medellín, Colombia
| | - José Julián Echeverry-Zuluaga
- Grupo BIOGEM, Facultad de Ciencias Agrarias, Universidad Nacional de Colombia Sede Medellín, Calle 65 No 59A-110, Medellín, Colombia
| | - Albeiro López-Herrera
- Grupo BIOGEM, Facultad de Ciencias Agrarias, Universidad Nacional de Colombia Sede Medellín, Calle 65 No 59A-110, Medellín, Colombia
| |
Collapse
|
18
|
Amato S, Ramsey J, Ahern TP, Rovnak J, Barlow J, Weaver D, Eyasu L, Singh R, Cintolo-Gonzalez J. Exploring the presence of bovine leukemia virus among breast cancer tumors in a rural state. Breast Cancer Res Treat 2023; 202:325-334. [PMID: 37517027 DOI: 10.1007/s10549-023-07061-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 05/31/2023] [Indexed: 08/01/2023]
Abstract
PURPOSE The bovine leukemia virus (BLV) is a deltaretrovirus that causes malignant lymphoma and lymphosarcomas in cattle globally and has high prevalence among large scale U.S. dairy herds. Associations between presence of BLV DNA in human mammary tissue and human breast cancer incidence have been reported. We sought to estimate the prevalence of BLV DNA in breast cancer tissue samples in a rural state with an active dairy industry. METHODS We purified genomic DNA from 56 fresh-frozen breast cancer tissue samples (51 tumor samples, 5 samples representing adjacent normal breast tissue) banked between 2016 and 2019. Using nested PCR assays, multiple BLV tax sequence primers and primers for the long terminal repeat (LTR) were used to detect BLV DNA in tissue samples and known positive control samples, including the permanently infected fetal lamb kidney cell line (FLK-BLV) and blood from BLV positive cattle. RESULTS The median age of patients from which samples were obtained at the time of treatment was 60 (40-93) and all were female. Ninety percent of patients had invasive ductal carcinoma. The majority were poorly differentiated (60%). On PCR assay, none of the tumor samples tested positive for BLV DNA, despite having consistent signals in positive controls. CONCLUSION We did not find BLV DNA in fresh-frozen breast cancer tumors from patients presenting to a hospital in Vermont. Our findings suggest a low prevalence of BLV in our patient population and a need to reevaluate the association between BLV and human breast cancer.
Collapse
Affiliation(s)
- Stas Amato
- Department of General Surgery, University of Vermont Medical Center, Burlington, VT, USA
- Department of Surgery, Larner College of Medicine, University of Vermont, 89 Beaumont Ave., B227, Burlington, VT, 05405, USA
| | - Jon Ramsey
- Department of Biochemistry, University of Vermont, Burlington, VT, USA
| | - Thomas P Ahern
- Department of Surgery, Larner College of Medicine, University of Vermont, 89 Beaumont Ave., B227, Burlington, VT, 05405, USA
| | - Joel Rovnak
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| | - John Barlow
- Department of Animal and Veterinary Sciences, University of Vermont, Burlington, VT, USA
| | - Donald Weaver
- Department of Pathology, University of Vermont Medical Center, Burlington, VT, USA
| | - Lud Eyasu
- Department of Surgery, Larner College of Medicine, University of Vermont, 89 Beaumont Ave., B227, Burlington, VT, 05405, USA
| | - Rohit Singh
- Division of Hematology/Oncology, Department of Medicine, University of Vermont Medical Center, Burlington, VT, USA
| | - Jessica Cintolo-Gonzalez
- Department of General Surgery, University of Vermont Medical Center, Burlington, VT, USA.
- Department of Surgery, Larner College of Medicine, University of Vermont, 89 Beaumont Ave., B227, Burlington, VT, 05405, USA.
| |
Collapse
|
19
|
Rahman MM, Ishikawa H, Yamauchi M, Takashima S, Kamatari YO, Shimizu K, Okada A, Inoshima Y. Characterization of mRNA Signature in Milk Small Extracellular Vesicles from Cattle Infected with Bovine Leukemia Virus. Pathogens 2023; 12:1239. [PMID: 37887755 PMCID: PMC10610248 DOI: 10.3390/pathogens12101239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/06/2023] [Accepted: 10/11/2023] [Indexed: 10/28/2023] Open
Abstract
This study aimed to characterize the mRNA signature of milk small extracellular vesicles (sEVs) from BLV-infected cattle. A total of 23 mRNAs, which showed greater abundance in milk sEVs from BLV-infected cattle compared to those from BLV-uninfected (control) cattle, were identified through microarray analyses conducted in our previous study. To assess the significance of these differences in mRNA abundance, milk was collected from six control cattle and twenty-six cattle infected with BLV. The infected cattle were categorized into two distinct groups based on their proviral loads: a group of eight cattle with low proviral loads (LPVL), characterized by <10,000 copies per 105 white blood cells (WBC), and a group of eighteen cattle with high proviral loads (HPVL), marked by ≥10,000 copies per 105 WBC. The qPCR analysis quantified 7 out of 23 mRNAs, including BoLA, CALB1, IL33, ITGB2, MYOF, TGFBR1, and TMEM156, in the milk sEVs from control cattle, LPVL cattle, and HPVL cattle. Significantly, the average relative expression of CALB1 mRNA in milk sEVs was higher in LPVL cattle compared to HPVL cattle and control cattle (p < 0.05), while it was relatively lower in HPVL cattle compared to LPVL cattle and control cattle (p > 0.05). Likewise, the average relative expression of TMEM156 mRNA in milk sEVs was significantly higher in LPVL cattle compared to HPVL cattle (p < 0.05), and relatively lower in HPVL cattle compared to LPVL cattle and control cattle (p > 0.05). The results indicate distinct patterns of CALB1 and TMEM156 mRNA levels in milk sEVs, with higher levels observed in LPVL cattle and lower levels in HPVL cattle. The current study could provide essential information to comprehend the complexities during the progression of BLV infection and direct the exploration of mRNA biomarkers for monitoring the clinical stage of BLV infection.
Collapse
Affiliation(s)
- Md. Matiur Rahman
- Laboratory of Food and Environmental Hygiene, Cooperative Department of Veterinary Medicine, Gifu University, Gifu 501-1112, Japan
- Department of Medicine, Faculty of Veterinary, Animal and Biomedical Sciences, Sylhet Agricultural University, Sylhet 3100, Bangladesh
| | - Hinata Ishikawa
- Laboratory of Food and Environmental Hygiene, Cooperative Department of Veterinary Medicine, Gifu University, Gifu 501-1112, Japan
| | - Marika Yamauchi
- Laboratory of Food and Environmental Hygiene, Cooperative Department of Veterinary Medicine, Gifu University, Gifu 501-1112, Japan
| | - Shigeo Takashima
- Division of Genomics Research, Life Science Research Center, Gifu University, Gifu 501-1112, Japan
- Institute for Glyco-Core Research (iGCORE), Gifu University, Gifu 501-1112, Japan
- The United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Gifu 501-1112, Japan
| | - Yuji O. Kamatari
- Institute for Glyco-Core Research (iGCORE), Gifu University, Gifu 501-1112, Japan
- The United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Gifu 501-1112, Japan
- Division of Instrumental Analysis, Life Science Research Center, Gifu University, Gifu 501-1112, Japan
| | - Kaori Shimizu
- Laboratory of Food and Environmental Hygiene, Cooperative Department of Veterinary Medicine, Gifu University, Gifu 501-1112, Japan
| | - Ayaka Okada
- Laboratory of Food and Environmental Hygiene, Cooperative Department of Veterinary Medicine, Gifu University, Gifu 501-1112, Japan
- Education and Research Center for Food Animal Health, Gifu University (GeFAH), Gifu 501-1112, Japan
| | - Yasuo Inoshima
- Laboratory of Food and Environmental Hygiene, Cooperative Department of Veterinary Medicine, Gifu University, Gifu 501-1112, Japan
- Education and Research Center for Food Animal Health, Gifu University (GeFAH), Gifu 501-1112, Japan
- Joint Graduate School of Veterinary Sciences, Gifu University, Gifu 501-1112, Japan
| |
Collapse
|
20
|
Inenaga T, Fukuoka K, Sumida M, Aiba S, Nishikaku K, Matsuno Y, Kobayashi T, Imakawa K. Low proviral load in the Kumamoto strain of Japanese Brown cattle infected with the bovine leukemia virus. BMC Vet Res 2023; 19:185. [PMID: 37784057 PMCID: PMC10544446 DOI: 10.1186/s12917-023-03738-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 09/14/2023] [Indexed: 10/04/2023] Open
Abstract
BACKGROUND The Kumamoto strain of Japanese Brown (JBRK) cattle is a sub-breed of Wagyu and has a different genetic background than that of Japanese Black (JB) cattle. Bovine leukemia virus (BLV) is the pathogen causing enzootic bovine leukosis (EBL), the predominant type of bovine leukosis (BL). EBL is one of the most common bovine infectious diseases in dairy countries, including Japan. Some host genetic factors, including the bovine leukocyte antigen (BoLA)-DRB3 gene, have been associated with the proviral load (PVL) of BLV and/or onset of EBL. Here, we determined the number of BL cases by analyzing prefectural case records in detail. We measured the PVL of BLV-infected JBRK cattle and compared it with that obtained for other major breeds, JB and Holstein-Friesian (HF) cattle. Finally, the relationship between PVL levels and BoLA-DRB3 haplotypes was investigated in BLV-infected JBRK cattle. RESULTS We determined the number of BL cases recorded over the past ten years in Kumamoto Prefecture by cattle breed. A limited number of BL cases was observed in JBRK cattle. The proportion of BL cases in the JBRK was lower than that in JB and HF. The PVL was significantly lower in BLV-infected JBRK cattle than that in the JB and HF breeds. Finally, in BLV-infected JBRK cattle, the PVL was not significantly affected by BoLA-DRB3 alleles and haplotypes. BoLA-DRB3 allelic frequency did not differ between BLV-infected JBRK cattle with low PVL and high PVL. CONCLUSIONS To our knowledge, this is the first report showing that BL occurred less in the JBRK population of Kumamoto Prefecture. After BLV-infection, the PVL was significantly lower in JBRK cattle than that in JB and HF breeds. The genetic factors implicated in maintaining a low PVL have yet to be elucidated, but the BoLA-DRB3 haplotypes are likely not involved.
Collapse
Affiliation(s)
- Toshiaki Inenaga
- Laboratory of Animal Management Science, Department of Animal Science, School of Agriculture, Tokai University, Sugido 871-12, Mashiki, Kumamoto, 861-2205, Japan.
- Research Institute of Agriculture, Tokai University, Toroku 9-1-1, Higashi-ku, Kumamoto, 862-8652, Japan.
| | - Koh Fukuoka
- Kumamoto Prefectural Central Kumamoto Livestock Sanitation Center, Shizume 1666-1, Jonan-machi, Minami-kuKumamoto, 861-4215, Japan
| | - Mikiya Sumida
- Laboratory of Animal Management Science, Department of Animal Science, School of Agriculture, Tokai University, Sugido 871-12, Mashiki, Kumamoto, 861-2205, Japan
| | - Sakiko Aiba
- Laboratory of Animal Management Science, Department of Animal Science, School of Agriculture, Tokai University, Sugido 871-12, Mashiki, Kumamoto, 861-2205, Japan
| | - Kohei Nishikaku
- Laboratory of Animal Health, Department of Animal Science, Faculty of Agriculture, Tokyo University of Agriculture, Funako 1737, Atsugi, Kanagawa, 243-0034, Japan
- National Institute of Health Sciences, Tonomachi 3-25-26, Kawasaki, Kanagawa, 210-9501, Japan
| | - Yuta Matsuno
- Research Institute of Agriculture, Tokai University, Toroku 9-1-1, Higashi-ku, Kumamoto, 862-8652, Japan
- Department of Genetics, Albert Einstein College of Medicine, Bronx, N.Y., United States
| | - Tomoko Kobayashi
- Laboratory of Animal Health, Department of Animal Science, Faculty of Agriculture, Tokyo University of Agriculture, Funako 1737, Atsugi, Kanagawa, 243-0034, Japan
| | - Kazuhiko Imakawa
- Research Institute of Agriculture, Tokai University, Toroku 9-1-1, Higashi-ku, Kumamoto, 862-8652, Japan
| |
Collapse
|
21
|
Mendoza W, Isaza JP, López L, López-Herrera A, Gutiérrez LA. Bovine leukemia virus detection in humans: A systematic review and meta-analysis. Virus Res 2023; 335:199186. [PMID: 37532141 PMCID: PMC10425403 DOI: 10.1016/j.virusres.2023.199186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/26/2023] [Accepted: 07/30/2023] [Indexed: 08/04/2023]
Abstract
To review the available studies on the frequency of detection of the bovine leukemia virus in human samples, a systematic review with meta-analysis of the scientific literature was carried out, including papers published in English, Spanish, and Portuguese in 5 multidisciplinary databases. We collected information from different populations following a detailed and reproducible search protocol in which two researchers verified the inclusion and exclusion criteria. We identified 759 articles, of which only 33 met the inclusion criteria. Analyzed studies reported that the presence of the virus was measured in human samples, such as paraffin-embedded breast tissue and peripheral blood from 10,398 individuals, through serological and molecular techniques. An overall virus frequency of 27% (Ranging between 17 and 37%) was observed, with a high-frequency data heterogeneity between studies. The presence of this virus in different human biological samples suggests the need to investigate further its transmission route to humans and its potential role in developing and progressing diseases.
Collapse
Affiliation(s)
- Willington Mendoza
- Grupo Biología de Sistemas, Escuela de Ciencias de la Salud, Facultad de Medicina, Universidad Pontificia Bolivariana, Circular 1a Nº 70-01, Bloque 11C - Oficina 417, Medellín, Colombia
| | - Juan Pablo Isaza
- Grupo Biología de Sistemas, Escuela de Ciencias de la Salud, Facultad de Medicina, Universidad Pontificia Bolivariana, Circular 1a Nº 70-01, Bloque 11C - Oficina 417, Medellín, Colombia
| | - Lucelly López
- Grupo de Investigación en Salud Pública, Escuela de Ciencias de la Salud, Facultad de Medicina, Universidad Pontificia Bolivariana, Medellín, Colombia
| | - Albeiro López-Herrera
- Grupo de Investigación Biodiversidad y Genética Molecular (BIOGEM), Universidad Nacional de Colombia Sede Medellín, Colombia
| | - Lina A Gutiérrez
- Grupo Biología de Sistemas, Escuela de Ciencias de la Salud, Facultad de Medicina, Universidad Pontificia Bolivariana, Circular 1a Nº 70-01, Bloque 11C - Oficina 417, Medellín, Colombia.
| |
Collapse
|
22
|
Rahman A, Kashif M, Nasir A, Ehtisham-Ul-Haque S, Ullah H, Sikandar A, Ahmed I, Rehman AU, Saeed MA, Nazar MW, Rizwan M, Saher S, Abbas A. Seroprevalence and haemato-biochemical effects of bovine leucosis in buffalo, Punjab, Pakistan. VET MED-CZECH 2023; 68:385-391. [PMID: 38028205 PMCID: PMC10666657 DOI: 10.17221/57/2023-vetmed] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 09/25/2023] [Indexed: 12/01/2023] Open
Abstract
Enzootic bovine leucosis is caused by bovine leukaemia virus (BLV), a Deltaretrovirus belonging to the family Retroviridae. BLV causes huge economic losses to the dairy industry in the form of decreased milk production, premature culling, and poor reproductive performance of the animals. The aim of the present study was to determine the seroprevalence of BLV infection in buffalo in two districts of Punjab, Pakistan. A total of 384 samples were collected and analysed using a commercial indirect enzyme-linked immunosorbent assay (ELISA) to investigate the seroprevalence of BLV through the detection of the anti-BLV gp51 antibody. A predesigned data questionnaire proforma was employed to find out the association of risk factors with disease. Overall, 18.2% of buffaloes were seropositive for BLV in the study population. The results revealed a significant association (P < 0.05) of age with BLV infection. Furthermore, milk yield and pregnancy had a significant association with the seroprevalence of BLV infection in buffalo whereas no significant association was found with sex, breeding, and health status. Biochemical and oxidative stress markers revealed a significant decrease in liver enzymes alanine transaminase (ALT) and aspartate transaminase (AST), glutathione peroxidase (GPX), and superoxide dismutase (SOD) in seropositive animals as compared to healthy animals. It is concluded that BLV has a considerable prevalence in buffalo in Punjab, Pakistan and there is a dire need to investigate the disease epidemiology at both national and international levels and strategies should be developed to implement an effective control program.
Collapse
Affiliation(s)
- Abdul Rahman
- Department of Clinical Sciences, University of Veterinary and Animal Sciences, Lahore, Sub-campus, Jhang, Punjab, Pakistan
| | - Muhammad Kashif
- Department of Clinical Sciences, University of Veterinary and Animal Sciences, Lahore, Sub-campus, Jhang, Punjab, Pakistan
| | - Amar Nasir
- Department of Clinical Sciences, University of Veterinary and Animal Sciences, Lahore, Sub-campus, Jhang, Punjab, Pakistan
| | - Syed Ehtisham-Ul-Haque
- Department of Pathobiology, University of Veterinary and Animal Sciences, Lahore, Sub-campus, Jhang, Punjab, Pakistan
| | - Habib Ullah
- Faculty of Veterinary and Animal Sciences, Gomal University, D.I. Khan, Khyber Pakhtunkhwa, Pakistan
| | - Arbab Sikandar
- Department of Basic Sciences, University of Veterinary and Animal Sciences Lahore, Sub-campus, Jhang, Punjab, Pakistan
| | - Ishtiaq Ahmed
- Department of Pathobiology, University of Veterinary and Animal Sciences, Lahore, Sub-campus, Jhang, Punjab, Pakistan
| | - Aziz Ur Rehman
- Department of Pathobiology, University of Veterinary and Animal Sciences, Lahore, Sub-campus, Jhang, Punjab, Pakistan
| | - Muhammad Adnan Saeed
- Department of Pathobiology, University of Veterinary and Animal Sciences, Lahore, Sub-campus, Jhang, Punjab, Pakistan
| | - Muhammad Waseem Nazar
- Department of Clinical Sciences, University of Veterinary and Animal Sciences, Lahore, Sub-campus, Jhang, Punjab, Pakistan
| | - Muhammad Rizwan
- Department of Clinical Sciences, Bahauddin Zakariya University, Multan, Punjab, Pakistan
| | - Sidra Saher
- Department of Clinical Sciences, Bahauddin Zakariya University, Multan, Punjab, Pakistan
| | - Arshad Abbas
- Department of Clinical Sciences, University of Veterinary and Animal Sciences, Lahore, Sub-campus, Jhang, Punjab, Pakistan
| |
Collapse
|
23
|
de Quadros DL, Ribeiro VA, Rezende MA, Maté YA, Gomes MA, Secchi K, Strottmann DM, Frandoloso R, Kreutz LC. Oncogenic viral DNA related to human breast cancer found on cattle milk and meat. Comp Immunol Microbiol Infect Dis 2023; 101:102053. [PMID: 37672958 DOI: 10.1016/j.cimid.2023.102053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 08/18/2023] [Accepted: 08/26/2023] [Indexed: 09/08/2023]
Abstract
Bovine leukemia virus (BLV) is a major cause of lymphoma in cattle and has been recently correlated to breast cancer in humans. How and whether BLV might reach humans remains unknown but it could be through cattle-derived milk and meat. Here our aim was to investigate whether BLV DNA could be found in fresh milk and raw meat destined to human consumption and whether anti-BLV antibodies could be detected in human blood at the same geographical region. Milk (n = 36) and meat (n = 54) samples were collected from cows knowingly seropositive or negative to BLV and evaluated by nested PCR targeting BLV tax gene. Human serum samples (n = 900) were tested by ELISA to detect anti-BLV antibodies. BLV DNA was detected in 39 % of the milk samples and in 32 % of meat samples from BLV positive cows. Anti-BLV antibodies were found in 4.1 % of the human serum samples. Our data further supports the hypothesis that BLV might cause a zoonotic infection and indicate that milk and meat from BLV-infected cattle might be considered a potential source of infection to humans.
Collapse
Affiliation(s)
- Daniel Lazzari de Quadros
- Universidade de Passo Fundo, Escola de Ciências Agrárias, Inovação e Negócios, Programa de Pós-Graduação em Bioexperimentação, Prédio G3, Campus I, Rodovia BR 285, Km 292, Bairro São José, 99052-900 Passo Fundo, RS, Brazil
| | - Vitoria Agnoletto Ribeiro
- Universidade de Passo Fundo, Escola de Ciências Agrárias, Inovação e Negócios, Programa de Pós-Graduação em Bioexperimentação, Prédio G3, Campus I, Rodovia BR 285, Km 292, Bairro São José, 99052-900 Passo Fundo, RS, Brazil
| | - Mariana Antunes Rezende
- Universidade de Passo Fundo, Escola de Ciências Agrárias, Inovação e Negócios, Programa de Pós-Graduação em Bioexperimentação, Prédio G3, Campus I, Rodovia BR 285, Km 292, Bairro São José, 99052-900 Passo Fundo, RS, Brazil
| | - Yasmin Ampese Maté
- Universidade de Passo Fundo, Escola de Ciências Agrárias, Inovação e Negócios, Programa de Pós-Graduação em Bioexperimentação, Prédio G3, Campus I, Rodovia BR 285, Km 292, Bairro São José, 99052-900 Passo Fundo, RS, Brazil
| | - Márcio Alexandro Gomes
- Universidade de Passo Fundo, Escola de Ciências Agrárias, Inovação e Negócios, Programa de Pós-Graduação em Bioexperimentação, Prédio G3, Campus I, Rodovia BR 285, Km 292, Bairro São José, 99052-900 Passo Fundo, RS, Brazil
| | - Katia Secchi
- Universidade de Passo Fundo, Escola de Ciências Agrárias, Inovação e Negócios, Programa de Pós-Graduação em Bioexperimentação, Prédio G3, Campus I, Rodovia BR 285, Km 292, Bairro São José, 99052-900 Passo Fundo, RS, Brazil
| | - Daisy Maria Strottmann
- Laboratório de Virologia Molecular, Instituto Carlos Chagas (ICC/Fiocruz), Rua Prof. Algacyr Munhoz Mader, 3773, CEP 81350-010 Curitiba, PR, Brazil
| | - Rafael Frandoloso
- Universidade de Passo Fundo, Escola de Ciências Agrárias, Inovação e Negócios, Programa de Pós-Graduação em Bioexperimentação, Prédio G3, Campus I, Rodovia BR 285, Km 292, Bairro São José, 99052-900 Passo Fundo, RS, Brazil
| | - Luiz Carlos Kreutz
- Universidade de Passo Fundo, Escola de Ciências Agrárias, Inovação e Negócios, Programa de Pós-Graduação em Bioexperimentação, Prédio G3, Campus I, Rodovia BR 285, Km 292, Bairro São José, 99052-900 Passo Fundo, RS, Brazil.
| |
Collapse
|
24
|
Andoh K, Nishimori A, Matsuura Y. The bovine leukemia virus-derived long non-coding RNA AS1-S binds to bovine hnRNPM and alters the interaction between hnRNPM and host mRNAs. Microbiol Spectr 2023; 11:e0085523. [PMID: 37671887 PMCID: PMC10581181 DOI: 10.1128/spectrum.00855-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 07/02/2023] [Indexed: 09/07/2023] Open
Abstract
Viruses utilize several strategies to cause latent infection and evade host immune responses. Long non-coding RNA (lncRNA), a class of non-protein-encoding RNA that regulates various cellular functions by interacting with RNA-binding proteins, plays important roles for viral latency in several viruses, such as herpesviruses and retroviruses, due to its lack of antigenicity. Bovine leukemia virus (BLV), which belongs to the family Retroviridae, encodes the BLV-derived lncRNA AS1-S, which is a major transcript expressed in latently infected cells. We herein identified bovine heterogeneous nuclear ribonucleoprotein M (hnRNPM), an RNA-binding protein located in the nucleus, as the binding partner of AS1-S using an RNA-protein pull-down assay. The pull-down assay using recombinant hnRNPM mutants showed that RNA recognition motifs (RRMs) 1 and 2, located in the N-terminal region of bovine hnRNPM, were responsible for the binding to AS1-S. Furthermore, RNA immunoprecipitation (RIP) assay results showed that the expression of AS1-S increased the number of mRNAs that co-immunoprecipitated with bovine hnRNPM in MDBK cells. These results suggested that AS1-S could alter the interaction between hnRNPM and host mRNAs, potentially interfering with cellular functions during the initial phase of mRNA maturation in the nucleus. Since most of the identified mRNAs that exhibited increased binding to hnRNPM were correlated with the KEGG term "Pathways in cancer," AS1-S might affect the proliferation and expansion of BLV-infected cells and contribute to tumor progression. IMPORTANCE BLV infects bovine B cells and causes malignant lymphoma, a disease that greatly affects the livestock industry. Due to its low incidence and long latent period, the molecular mechanisms underlying the progression of lymphoma remain enigmatic. Several non-coding RNAs (ncRNAs), such as miRNA and lncRNA, have recently been discovered in the BLV genome, and the relationship between BLV pathogenesis and these ncRNAs is attracting attention. However, most of the molecular functions of these transcripts remain unidentified. To the best of our knowledge, this is the first report describing a molecular function for the BLV-derived lncRNA AS1-S. The findings reported herein reveal a novel mechanism underlying BLV pathogenesis that could provide important insights for not only BLV research but also comparative studies of retroviruses.
Collapse
Affiliation(s)
- Kiyohiko Andoh
- National Institute of Animal Health, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, Japan
| | - Asami Nishimori
- National Institute of Animal Health, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, Japan
| | - Yuichi Matsuura
- National Institute of Animal Health, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, Japan
| |
Collapse
|
25
|
Takada A, Kamatari YO, Shimizu K, Okada A, Inoshima Y. Exploration of microRNA Biomarkers in Blood Small Extracellular Vesicles for Enzootic Bovine Leukosis. Microorganisms 2023; 11:2173. [PMID: 37764017 PMCID: PMC10535767 DOI: 10.3390/microorganisms11092173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/21/2023] [Accepted: 08/24/2023] [Indexed: 09/29/2023] Open
Abstract
Enzootic bovine leukosis (EBL) is a B-cell lymphosarcoma caused by the bovine leukemia virus (BLV). While most infected cattle show no clinical signs, approximately 30% of infected cattle develop persistent lymphocytosis (PL), and a small percentage may develop EBL. Currently, there is no method for predicting the possibility of EBL onset. In this study, we analyzed the microRNAs (miRNAs) encapsulated in small extracellular vesicles (sEVs) in the blood to explore the biomarkers of EBL. To identify candidate biomarkers, blood samples were collected from three BLV-uninfected and three EBL cattle. Total RNA was extracted from filtered serum and used for microarray analysis. Due to their association with cancer in human orthologs, we selected three miRNAs as candidate biomarkers, bta-miR-17-5p, bta-miR-24-3p, and bta-miR-210, which were more than twice as abundant in EBL cattle than in BLV-uninfected cattle. Quantitative real-time polymerase chain reaction (qPCR) using serum RNAs from six cattle used for the microarray analysis was carried out for the detection of the three selected miRNAs. Additionally, bta-miR-92a, whose ortholog has been associated with cancer in humans, was also examined by qPCR. bta-miR-17-5p, bta-miR-24-3p, and bta-miR-92a, were successfully detected, but bta-miR-210 was not. To further evaluate the utility of these three miRNAs as biomarkers, new blood samples were collected from 31 BLV-uninfected and 30 EBL cattle. The levels of bta-miR-17-5p, bta-miR-24-3p, and bta-miR-92a, were significantly higher in EBL cattle than in BLV-uninfected cattle. These results suggest that increased levels of bta-miR-17-5p, bta-miR-24-3p, and bta-miR-92a in the blood could be used as biomarkers for EBL. This study may contribute to the control of BLV infections and develop a prediction method of EBL onset.
Collapse
Affiliation(s)
- Akane Takada
- Laboratory of Food and Environmental Hygiene, Cooperative Department of Veterinary Medicine, Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Yuji O. Kamatari
- Institute of Glyco-Core Research (iGCORE), Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
- The United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
- Division of Instrumental Analysis, Life Science Research Center, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Kaori Shimizu
- Laboratory of Food and Environmental Hygiene, Cooperative Department of Veterinary Medicine, Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Ayaka Okada
- Laboratory of Food and Environmental Hygiene, Cooperative Department of Veterinary Medicine, Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
- Education and Research Center for Food Animal Health, Gifu University (GeFAH), 1-1 Yanagido, Gifu 501-1193, Japan
| | - Yasuo Inoshima
- Laboratory of Food and Environmental Hygiene, Cooperative Department of Veterinary Medicine, Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
- Education and Research Center for Food Animal Health, Gifu University (GeFAH), 1-1 Yanagido, Gifu 501-1193, Japan
- Joint Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| |
Collapse
|
26
|
Kemeter LM, Birzer A, Heym S, Thoma-Kress AK. Milk Transmission of Mammalian Retroviruses. Microorganisms 2023; 11:1777. [PMID: 37512949 PMCID: PMC10386362 DOI: 10.3390/microorganisms11071777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/02/2023] [Accepted: 07/05/2023] [Indexed: 07/30/2023] Open
Abstract
The transmission of viruses from one host to another typically occurs through horizontal or vertical pathways. The horizontal pathways include transmission amongst individuals, usually through bodily fluids or excretions, while vertical transmission transpires from mother to their offspring, either during pregnancy, childbirth, or breastfeeding. While there are more than 200 human pathogenic viruses to date, only a small number of them are known to be transmitted via breast milk, including cytomegalovirus (CMV), human immunodeficiency virus type 1 (HIV-1), and human T cell lymphotropic virus type 1 (HTLV-1), the latter two belonging to the family Retroviridae. Breast milk transmission is a common characteristic among mammalian retroviruses, but there is a lack of reports summarizing our knowledge regarding this route of transmission of mammalian retroviruses. Here, we provide an overview of the transmission of mammalian exogenous retroviruses with a focus on Orthoretrovirinae, and we highlight whether they have been described or suspected to be transmitted through breast milk, covering various species. We also elaborate on the production and composition of breast milk and discuss potential entry sites of exogenous mammalian retroviruses during oral transmission.
Collapse
Affiliation(s)
| | | | | | - Andrea K. Thoma-Kress
- Institute of Clinical and Molecular Virology, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (L.M.K.); (A.B.); (S.H.)
| |
Collapse
|
27
|
Plant E, Bellefroid M, Van Lint C. A complex network of transcription factors and epigenetic regulators involved in bovine leukemia virus transcriptional regulation. Retrovirology 2023; 20:11. [PMID: 37268923 PMCID: PMC10236774 DOI: 10.1186/s12977-023-00623-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 05/09/2023] [Indexed: 06/04/2023] Open
Abstract
Bovine Leukemia Virus (BLV) is the etiological agent of enzootic bovine leukosis, a disease characterized by the neoplastic proliferation of B cells in cattle. While most European countries have introduced efficient eradication programs, BLV is still present worldwide and no treatment is available. A major feature of BLV infection is the viral latency, which enables the escape from the host immune system, the maintenance of a persistent infection and ultimately the tumoral development. BLV latency is a multifactorial phenomenon resulting in the silencing of viral genes due to genetic and epigenetic repressions of the viral promoter located in the 5' Long Terminal Repeat (5'LTR). However, viral miRNAs and antisense transcripts are expressed from two different proviral regions, respectively the miRNA cluster and the 3'LTR. These latter transcripts are expressed despite the viral latency affecting the 5'LTR and are increasingly considered to take part in tumoral development. In the present review, we provide a summary of the experimental evidence that has enabled to characterize the molecular mechanisms regulating each of the three BLV transcriptional units, either through cis-regulatory elements or through epigenetic modifications. Additionally, we describe the recently identified BLV miRNAs and antisense transcripts and their implications in BLV-induced tumorigenesis. Finally, we discuss the relevance of BLV as an experimental model for the closely related human T-lymphotropic virus HTLV-1.
Collapse
Affiliation(s)
- Estelle Plant
- Service of Molecular Virology, Department of Molecular Biology (DBM), Université Libre de Bruxelles (ULB), 6041, Gosselies, Belgium
| | - Maxime Bellefroid
- Service of Molecular Virology, Department of Molecular Biology (DBM), Université Libre de Bruxelles (ULB), 6041, Gosselies, Belgium
| | - Carine Van Lint
- Service of Molecular Virology, Department of Molecular Biology (DBM), Université Libre de Bruxelles (ULB), 6041, Gosselies, Belgium.
| |
Collapse
|
28
|
Jeda AS, Zarei A, Ghabeshi S, Tabibzadeh A, Lotfi M, Etemadifar M, Niya MHK, Ghorbanlou M, Esghaei M. Evaluation of the prevalence of bovine leukemia virus DNA in peripheral blood mononuclear cells of multiple sclerosis patients. IJID REGIONS 2023; 7:233-236. [PMID: 37351152 PMCID: PMC10282537 DOI: 10.1016/j.ijregi.2023.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/28/2023] [Accepted: 04/03/2023] [Indexed: 06/24/2023]
Abstract
Multiple sclerosis (MS) is an immune system-mediated neurodegenerative disease. Recent studies suggest that viral agents, especially the Epstein Barr virus (EBV), are etiological agents for MS. The roles of other viruses in MS have been investigated. Studies have shown an increase in the level of antibodies against bovine leukemia virus (BLV) in patients with MS. In this regard, our study aimed to examine the presence of BLV DNA in peripheral blood mononuclear cells (PBMCs) of MS patients in Iran. In this cross-sectional study, the presence of BLV in 109 Iranian MS patients and 60 healthy controls was evaluated. The isolated PBMCs were used for DNA extraction and PCR, using specific primers for two distinct genes. The mean age of the participants was 39 ± 9.5 years, and 27 (24.77%) of them were male. Clinical evaluation of these patients showed the most frequent MS type to be relapsing-remitting MS (RRMS) (71; 65.14%). BLV evaluation did not show any BLV DNA presence in the PBMCs of individuals in either the MS or healthy control groups. Therefore, our study showed no evidence of BLV infection in Iranian MS patients.
Collapse
Affiliation(s)
- Ali Salimi Jeda
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Anna Zarei
- Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Soad Ghabeshi
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Alireza Tabibzadeh
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohsen Lotfi
- Quality Control Department, Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Masoud Etemadifar
- Department of Neurosurgery, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | - Mehrdad Ghorbanlou
- Anatomical Sciences, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Maryam Esghaei
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
29
|
González-Méndez AS, Tórtora Pérez JL, Rojas-Anaya E, Ramírez Álvarez H. Study of the Genetic Expression of Antiretroviral Restriction Factors and Acute Phase Proteins in Cattle Infected with Bovine Leukemia Virus. Pathogens 2023; 12:pathogens12040529. [PMID: 37111415 PMCID: PMC10146972 DOI: 10.3390/pathogens12040529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 03/24/2023] [Accepted: 03/24/2023] [Indexed: 03/31/2023] Open
Abstract
The goal of this study was to analyze the genetic expression of antiretroviral restriction factors (ARF) and acute phase proteins (APP), as well as their correlation with proviral and viral loads in cattle with aleukemic (AL) and persistent lymphocytosis (PL). Complete blood samples were collected from a herd of dairy cows, and we extracted genetic material from peripheral blood leukocytes. Absolute quantification of the expression of ARF (APOBEC-Z1, Z2, and Z3; HEXIM-1, HEXIM-2, and BST2) and APP (haptoglobin (HP), and serum amyloid A (SAA)) was performed by qPCR. Statistical significance was observed in the expression of APOBEC-Z3 in BLV-infected animals. We only found positive correlations with a strong expression of the ARF genes in the AL group. The participation of APOBEC (Z1 and Z3), HEXIM-1, and HEXIM-2 was more frequently identified in BLV-infected animals. HEXIM-2 showed active gene expression in the AL group. Although the expression of ARF in early stages of infection (AL) maintains an important participation, in late stages (PL) it seems to have little relevance.
Collapse
|
30
|
Upregulation of host genes during disease progression in bovine leukemia virus infection is independent of overexpression of viral transcriptional regulators in vitro. Arch Virol 2023; 168:98. [PMID: 36871085 DOI: 10.1007/s00705-023-05713-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 01/04/2023] [Indexed: 03/06/2023]
Abstract
Bovine leukemia virus (BLV) is a member of the genus Deltaretrovirus within the family Retroviridae that infects bovine B cells, causing persistent lymphocytosis and enzootic bovine leukosis (EBL) in a small fraction of infected cattle. As changes in the transcriptome of infected cells are important for BLV disease progression, comprehensive analysis of gene expression in different disease states is required. In this study, we performed an RNA-seq analysis using samples from non-EBL cattle with and without BLV infection. Subsequently, a transcriptome analysis was conducted in combination with previously obtained RNA-seq data from EBL cattle. We found several differentially expressed genes (DEGs) between the three groups. After screening and confirmation of target DEGs using real-time reverse transcription polymerase chain reaction, we found that 12 target genes were significantly upregulated in EBL cattle compared to BLV-infected cattle without lymphoma. In addition, the expression levels of B4GALT6, ZBTB32, EPB4L1, RUNX1T1, HLTF, MKI67, and TOP2A were significantly and positively correlated with the proviral load in BLV-infected cattle. Overexpression experiments revealed that these changes were independent of BLV tax or BLV AS1-S expression in vitro. Our study provides additional information on host gene expression during BLV infection and EBL development, which may be helpful for understanding the complexity of transcriptome profiles during disease progression.
Collapse
|
31
|
Combined Immune Checkpoint Blockade Enhances Antiviral Immunity against Bovine Leukemia Virus. J Virol 2023; 97:e0143022. [PMID: 36598199 PMCID: PMC9888214 DOI: 10.1128/jvi.01430-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Bovine leukemia virus (BLV) is a retrovirus that causes enzootic bovine leukosis (EBL) in cattle and is widespread in many countries, including Japan. Recent studies have revealed that the expression of immunoinhibitory molecules, such as programmed death-1 (PD-1) and PD-ligand 1, plays a critical role in immunosuppression and disease progression during BLV infection. In addition, a preliminary study has suggested that another immunoinhibitory molecule, T-cell immunoglobulin domain and mucin domain-3 (TIM-3), is involved in immunosuppression during BLV infection. Therefore, this study was designed to further elucidate the immunoinhibitory role of immune checkpoint molecules in BLV infection. TIM-3 expression was upregulated on peripheral CD4+ and CD8+ T cells in BLV-infected cattle. Interestingly, in EBL cattle, CD4+ and CD8+ T cells infiltrating lymphomas expressed TIM-3. TIM-3 and PD-1 were upregulated and coexpressed in peripheral CD4+ and CD8+ T cells from BLV-infected cattle. Blockade by anti-bovine TIM-3 monoclonal antibody increased CD69 expression on T cells and gamma interferon (IFN-γ) production from peripheral blood mononuclear cells from BLV-infected cattle. A syncytium formation assay also demonstrated the antiviral effects of TIM-3 blockade against BLV infection. The combined inhibition of TIM-3 and PD-1 pathways significantly enhanced IFN-γ production and antiviral efficacy compared to inhibition alone. In conclusion, the combined blockade of TIM-3 and PD-1 pathways shows strong immune activation and antiviral effects and has potential as a novel therapeutic method for BLV infection. IMPORTANCE Enzootic bovine leukosis caused by bovine leukemia virus (BLV) is an important viral disease in cattle, causing severe economic losses to the cattle industry worldwide. The molecular mechanisms of BLV-host interactions are complex. Previously, it was found that immune checkpoint molecules, such as PD-1, suppress BLV-specific Th1 responses as the disease progresses. To date, most studies have focused only on how PD-1 facilitates escape from host immunity in BLV-infected cattle and the antiviral effects of the PD-1 blockade. In contrast, how T-cell immunoglobulin domain and mucin domain-3 (TIM-3), another immune checkpoint molecule, regulates anti-BLV immune responses is rarely reported. It is also unclear why PD-1 inhibition alone was insufficient to exert anti-BLV effects in previous clinical studies. In this study, the expression profile of TIM-3 in T cells derived from BLV-infected cattle suggested that TIM-3 upregulation is a cause of immunosuppression in infected cattle. Based on these results, anti-TIM-3 antibody was used to experimentally evaluate its function in influencing immunity against BLV. Results indicated that TIM-3 upregulation induced by BLV infection suppressed T-cell activation and antiviral cytokine production. Some T cells coexpressed PD-1 and TIM-3, indicating that simultaneous inhibition of PD-1 and TIM-3 with their respective antibodies synergistically restored antiviral immunity. This study could open new avenues for treating bovine chronic infections.
Collapse
|
32
|
Kohara J, Bai L, Takeshima SN, Matsumoto Y, Hirai T, Aida Y. Correlation between the Biodistribution of Bovine Leukemia Virus in the Organs and the Proviral Load in the Peripheral Blood during Early Stages of Experimentally Infected Cattle. Pathogens 2023; 12:130. [PMID: 36678478 PMCID: PMC9867250 DOI: 10.3390/pathogens12010130] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 12/27/2022] [Accepted: 01/11/2023] [Indexed: 01/15/2023] Open
Abstract
Bovine leukemia virus (BLV) is the etiological agent of enzootic bovine leukosis. However, the propagation and distribution of BLV after primary infection still need to be fully elucidated. Here, we experimentally infected seven cattle with BLV and analyzed the BLV proviral load (PVL) in the blood and various organs. BLV was first detected in the blood of the cattle after one week, and the blood PVL increased for three weeks after infection. The PVL was maintained at a high level in five cattle, while it decreased to a low or medium level in two cattle. BLV was distributed in various organs, such as the heart, lung, liver, kidney, abomasum, and thymus, and, notably, in the spleen and lymph nodes. In cattle with a high blood PVL, BLV was detected in organs other than the spleen and lymph nodes, whereas in those with a low blood PVL, BLV was only detected in the spleen and lymph nodes. The amount of BLV in the organs was comparable to that in the blood. Our findings point to the possibility of estimating the distribution of BLV provirus in organs, lymph nodes, and body fluids by measuring the blood PVL, as it was positively correlated with the biodistribution of BLV provirus in the body of BLV infection during early stages.
Collapse
Affiliation(s)
- Junko Kohara
- Animal Health Group, Animal Research Center, Hokkaido Research Organization, Shintoku 081-0038, Japan
| | - Lanlan Bai
- Virus Infectious Diseases Unit, RIKEN, 2-1 Hirosawa, Wako 351-0198, Japan
- Graduate School of Science and Engineering, Iwate University, Morioka 020-8551, Japan
| | - Shin-nosuke Takeshima
- Virus Infectious Diseases Unit, RIKEN, 2-1 Hirosawa, Wako 351-0198, Japan
- Department of Food and Nutrition, Jumonji University, 2-1-28 Sugasawa, Niiza 352-8510, Japan
| | - Yuki Matsumoto
- Virus Infectious Diseases Unit, RIKEN, 2-1 Hirosawa, Wako 351-0198, Japan
| | - Tsunao Hirai
- Animal Health Group, Animal Research Center, Hokkaido Research Organization, Shintoku 081-0038, Japan
| | - Yoko Aida
- Virus Infectious Diseases Unit, RIKEN, 2-1 Hirosawa, Wako 351-0198, Japan
- Laboratory of Global Infectious Diseases Control Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| |
Collapse
|
33
|
Nikbakht Brujeni G, Houshmand P, Soufizadeh P. Bovine leukemia virus: a perspective insight into the infection and immunity. IRANIAN JOURNAL OF VETERINARY RESEARCH 2023; 24:290-300. [PMID: 38799292 PMCID: PMC11127729 DOI: 10.22099/ijvr.2023.48236.7023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/30/2023] [Accepted: 10/21/2023] [Indexed: 05/29/2024]
Abstract
Bovine leukemia virus (BLV) is a member of the Retroviridae family and belongs to the Deltaretrovirus genus. It has a close relationship with human T-cell leukemia virus type I. BLV is responsible for causing enzootic bovine leukosis (EBL), a contagious disease that affects the bovine lymphatic system. This virus poses challenges for the global cattle industry, as it impacts cattle populations all over the world. Despite being widespread and impactful, BLV often goes unnoticed, with many researchers unaware of its presence and the potential consequences it carries. BLV demonstrates varying levels of pathogenicity. The majority of cattle (around 70%) become seropositive asymptomatic carriers, displaying no noticeable clinical symptoms. However, a smaller proportion of infected animals experience persistent lymphocytosis, characterized by an elevated number of lymphocytes in the bloodstream. If not monitored and managed, a subset of these persistently infected cattle may advance to lymphosarcoma. This condition typically presents as tumors in different lymphoid tissues, impacting various organs and overall health and productivity. Furthermore, recent research has highlighted the potential association between the occurrence of breast and lung cancer in humans and the presence of BLV. This review will delve into the recent discoveries concerning BLV, specifically exploring its epidemiology, the economic impact it has on the global cattle industry, its implications for human medicine, and the association between different alleles of the major histocompatibility complex (MHC) and susceptibility or resistance to BLV. Bovine leukemia virus, Enzootic bovine leukosis, Major histocompatibility complex, Retroviridae.
Collapse
Affiliation(s)
- Gh. Nikbakht Brujeni
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - P. Houshmand
- Ph.D. Student in Immunology, Department of Microbiology and Immunology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - P. Soufizadeh
- Graduated from Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| |
Collapse
|
34
|
Diagnosis and Early Prediction of Lymphoma Using High-Throughput Clonality Analysis of Bovine Leukemia Virus-Infected Cells. Microbiol Spectr 2022; 10:e0259522. [PMID: 36227090 PMCID: PMC9769566 DOI: 10.1128/spectrum.02595-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Bovine leukemia virus (BLV), a retrovirus, infects B cells of ruminants and is integrated into the host genome as a provirus for lifelong infection. After a long latent period, 1% to 5% of BLV-infected cattle develop aggressive lymphoma, enzootic bovine leukosis (EBL). Since the clonal expansion of BLV-infected cells is essential for the development of EBL, the clonality of proviral integration sites could be a molecular marker for diagnosis and early prediction of EBL. Recently, we developed Rapid Amplification of the Integration Site without Interference by Genomic DNA Contamination (RAISING) and an analysis software of clonality value (CLOVA) to analyze the clonality of transgene-integrated cells. RAISING-CLOVA is capable of assessing the risk of adult T-cell leukemia/lymphoma development in human T-cell leukemia virus-I-infected individuals through the clonality analysis of proviral integration sites. Thus, we herein examined the performance of RAISING-CLOVA for the clonality analysis of BLV-infected cells and conducted a comprehensive clonality analysis by RAISING-CLOVA in EBL and non-EBL cattle. RAISING-CLOVA targeting BLV was a highly accurate and reproducible method for measuring the clonality value. The comprehensive clonality analysis successfully distinguished EBL from non-EBL specimens with high sensitivity and specificity. A longitudinal clonality analysis in BLV-infected sheep, an experimental model of lymphoma, also confirmed the effectiveness of RAISING-CLOVA for early detection of EBL development. Therefore, our study emphasizes the usefulness of RAISING-CLOVA as a routine clinical test for monitoring virus-related cancers. IMPORTANCE Bovine leukemia virus (BLV) infection causes aggressive B-cell lymphoma in cattle and sheep. The virus has spread to farms around the world, causing significant economic damage to the livestock industry. Thus, the identification of high-risk asymptomatic cattle before they develop lymphoma can be effective in reducing the economic damage. Clonal expansion of BLV-infected cells is a promising marker for the development of lymphoma. Recently, we have developed a high-throughput method to amplify random integration sites of transgenes in host genomes and analyze their clonality, named as RAISING-CLOVA. As a new application of our technology, in this study, we demonstrate the value of the RAISING-CLOVA method for the diagnosis and early prediction of lymphoma development by BLV infection in cattle. RAISING-CLOVA is a reliable technology for monitoring the clonality of BLV-infected cells and would contribute to reduce the economic losses by EBL development.
Collapse
|
35
|
Nakatsuchi A, Bao A, Watanuki S, Matsuura R, Borjigin L, Bai L, Kuroda M, Matsumoto Y, Kohara J, Aida Y. Anti-BLV antibodies in whey correlate with bovine leukemia virus disease progression and BoLA-DRB3 polymorphism. Front Vet Sci 2022; 9:1038101. [PMID: 36504869 PMCID: PMC9732667 DOI: 10.3389/fvets.2022.1038101] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 11/10/2022] [Indexed: 11/26/2022] Open
Abstract
Introduction Bovine leukemia virus (BLV) belongs to the family Retroviridae and is a causative agent for enzootic bovine leucosis, the most common neoplastic disease affecting cattle worldwide. BLV proviral load (PVL) is associated with disease progression and transmission risk but requires blood collection and quantitative PCR testing. Anti-BLV antibodies in whey have been used as a diagnostic tool for BLV infection; however, quantitative utilization has not been fully investigated. Furthermore, bovine leukocyte antigen (BoLA)-DRB3 is a polymorphic gene associated with BLV infectivity and PVL, but its effect on anti-BLV antibody levels in whey from BLV infected dams is unknown. Therefore, we aimed to investigate whether it is possible to correctly predict PVL in the blood and milk based on the amount of anti-BLV antibodies in milk, and whether the BoLA-DRB3 alleles associate with the amount of anti-BLV antibodies in milk. Methods We examined whey from 442 dams from 11 different dairy farms located in 6 prefectures in Japan, including susceptible dams carrying at least one BoLA-DRB3* 012:01 or * 015:01 allele related with high PVL, resistant dams carrying at least one BoLA-DRB3 * 002:01, * 009:02, or * 014:01:01 allele related with low PVL, and neutral dams carrying other alleles. Results First, our results provided compelling evidence that anti-BLV antibody levels in whey were positively correlated with the anti-BLV antibody levels in serum and with BLV PVL in blood and milk, indicating the possibility of estimating BLV PVL in blood and milk by measuring anti-BLV antibody levels in whey. Thus, our results showed that antibody titers in milk might be effective for estimating BLV transmission risk and disease progression in the field. Second, we demonstrated that anti-BLV antibody levels in whey from BLV resistant dams were significantly lower than those from susceptible and neutral dams. Discussion This is the first report suggesting that the BoLA-DRB3 polymorphism affects anti-BLV antibody levels in whey from BLV-infected dams. Taken together, our results suggested that anti-BLV antibody levels in whey, measured by enzyme-linked immunosorbent assay, may be a useful marker to diagnose the risk of BLV infection and estimate PVL in blood and milk.
Collapse
Affiliation(s)
- Ayumi Nakatsuchi
- Institute of Animal Health, JA Zen-Noh (National Federation of Agricultural Cooperative Associations), Sakura, Japan,Laboratory of Global Infectious Diseases Control Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan,Laboratory of Global Animal Resource Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Aronggaowa Bao
- Laboratory of Global Infectious Diseases Control Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Sonoko Watanuki
- Laboratory of Global Infectious Diseases Control Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Ryosuke Matsuura
- Laboratory of Global Infectious Diseases Control Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | | | - Lanlan Bai
- Viral Infectious Diseases Unit, RIKEN, Wako, Japan
| | - Maho Kuroda
- Institute of Animal Health, JA Zen-Noh (National Federation of Agricultural Cooperative Associations), Sakura, Japan
| | - Yasunobu Matsumoto
- Laboratory of Global Infectious Diseases Control Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan,Laboratory of Global Animal Resource Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Junko Kohara
- Agriculture Research Department, Animal Research Center, Hokkaido Research Organization, Shintoku, Japan,Junko Kohara
| | - Yoko Aida
- Laboratory of Global Infectious Diseases Control Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan,Laboratory of Global Animal Resource Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan,Viral Infectious Diseases Unit, RIKEN, Wako, Japan,*Correspondence: Yoko Aida
| |
Collapse
|
36
|
Marin-Flamand E, Araiza-Hernandez DM, Vargas-Ruiz A, Rangel-Rodríguez IC, González-Tapia LA, Ramírez-Álvarez H, Hernández-Balderas RJ, García-Camacho LA. Relationship of persistent lymphocytosis, antibody titers, and proviral load with expression of interleukin-12, interferon-γ, interleukin-2, interleukin-4, interleukin-10, and transforming growth factor-β in cows infected with bovine leukemia virus from a high-prevalence dairy complex. CANADIAN JOURNAL OF VETERINARY RESEARCH = REVUE CANADIENNE DE RECHERCHE VETERINAIRE 2022; 86:269-285. [PMID: 36211217 PMCID: PMC9536356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 06/18/2022] [Indexed: 04/03/2023]
Abstract
Bovine leukemia virus (BLV) subclinical infection promotes persistent lymphocytosis (PL), which is related to susceptibility and progression to lymphoma. Moreover, lymphocyte counts directly correlate with BLV antibody titers and proviral load, and cell immune responses are considered atypical due to immune suppression. In order to determine the relationship of PL, antibody titers, and proviral load with interleukin (IL)-12, interferon (IFN)-γ, IL-2, IL-4, IL-10, and transforming growth factor (TGF)-β expression in a 3-month interval, 58 cows were selected (30 BLV+ and 28 BLV-) from a high-prevalence dairy herd to complete 3 monthly blood samplings for the assessment of PL, BLV antibody titers, BLV proviral load, and IL-12, IFN-γ, IL-2, IL-4, IL-10, and TGF-β expression. At sampling conclusion, the BLV-infected cows were grouped according to PL, BLV proviral load, and BLV antibody titers as follows: BLV+PL+ (n = 16) and BLV+PL- (n = 14); high proviral load (HPL) (n = 18) and low proviral load (LPL) (n = 13); high antibody titers (HAT) (n = 17) and low antibody titers (LAT) (n = 14). The BLV+PL+ cows showed significantly higher proviral load and antibody titers than the BLV+PL- group; however, the former suggested spread presumably unrelated to lymphoma outcome, because HPL was observed in PL- cows in the last sampling. Consistent with the data, a higher antibody response strongly indicated BLV susceptibility since it was linked to PL+ occurrence and a cytokine profile compatible with immune suppression. Furthermore, a reversion to lower antibody titers was observed in cows with HPL far ahead of time, most likely due to long-term immune suppression. In addition, high expression of IL-10 and TGF-β was associated with reduced IL-12, IFN-γ, IL-2, and IL-4 expression alongside PL, HAT, and HPL in BLV-infected cows, suggesting an IL-10- and TGF-β-induced immune suppression. The IL-10 expression was increasing throughout, implying disease progression, as described. In conclusion, the proliferative expansion of lymphocytes known as PL might enhance a regulatory-rich cell population (Bregs and/or Tregs) that secretes IL-10 and TGF-β, leading to immune suppression. Further studies must be conducted regarding the types of regulatory cells involved in BLV-induced immune suppression.
Collapse
Affiliation(s)
- Ernesto Marin-Flamand
- Department of Biological Sciences, College of Superior Studies, National University of Mexico, Cuautitlán-Teoloyucan km 2.5, 54714 Cuautitlán Izcalli, Mexico City, Mexico
| | - Diana Michele Araiza-Hernandez
- Department of Biological Sciences, College of Superior Studies, National University of Mexico, Cuautitlán-Teoloyucan km 2.5, 54714 Cuautitlán Izcalli, Mexico City, Mexico
| | - Alejandro Vargas-Ruiz
- Department of Biological Sciences, College of Superior Studies, National University of Mexico, Cuautitlán-Teoloyucan km 2.5, 54714 Cuautitlán Izcalli, Mexico City, Mexico
| | - Ignacio Carlos Rangel-Rodríguez
- Department of Biological Sciences, College of Superior Studies, National University of Mexico, Cuautitlán-Teoloyucan km 2.5, 54714 Cuautitlán Izcalli, Mexico City, Mexico
| | - Lilia A González-Tapia
- Department of Biological Sciences, College of Superior Studies, National University of Mexico, Cuautitlán-Teoloyucan km 2.5, 54714 Cuautitlán Izcalli, Mexico City, Mexico
| | - Hugo Ramírez-Álvarez
- Department of Biological Sciences, College of Superior Studies, National University of Mexico, Cuautitlán-Teoloyucan km 2.5, 54714 Cuautitlán Izcalli, Mexico City, Mexico
| | - Ruperto Javier Hernández-Balderas
- Department of Biological Sciences, College of Superior Studies, National University of Mexico, Cuautitlán-Teoloyucan km 2.5, 54714 Cuautitlán Izcalli, Mexico City, Mexico
| | - Lucía Angélica García-Camacho
- Department of Biological Sciences, College of Superior Studies, National University of Mexico, Cuautitlán-Teoloyucan km 2.5, 54714 Cuautitlán Izcalli, Mexico City, Mexico
| |
Collapse
|
37
|
Samad A, Meghla NS, Nain Z, Karpiński TM, Rahman MS. Immune epitopes identification and designing of a multi-epitope vaccine against bovine leukemia virus: a molecular dynamics and immune simulation approaches. Cancer Immunol Immunother 2022; 71:2535-2548. [PMID: 35294591 PMCID: PMC8924353 DOI: 10.1007/s00262-022-03181-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 02/20/2022] [Indexed: 11/30/2022]
Abstract
Background Bovine leukemia virus (BLV) is an oncogenic delta-retrovirus causing bovine leucosis. Studies on BLV have shown the association with human breast cancer. However, the exact molecular mechanism is neither known nor their appropriate preventative measure to halt the disease initiation and progression. In this study, we designed a multi-epitope vaccine against BLV using a computational analyses.
Methods Following a rigorous assessment, the vaccine was constructed using the T-cell epitopes from each BLV-derived protein with suitable adjuvant and linkers. Both physicochemistry and immunogenic potency as well as the safeness of the vaccine candidate were assessed. Population coverage was done to evaluate the vaccine probable efficiency in eliciting the immune response worldwide. After homology modeling, the three-dimensional structure was refined and validated to determine the quality of the designed vaccine. The vaccine protein was then subjected to molecular docking with Toll-like receptor 3 (TLR3) to evaluate the binding efficiency followed by dynamic simulation for stable interaction. Results Our vaccine construct has the potential immune response and good physicochemical properties. The vaccine is antigenic and immunogenic, and has no allergenic or toxic effect on the human body. This novel vaccine contains a significant interactions and binding affinity with the TLR3 receptor. Conclusions The proposed vaccine candidate would be structurally stable and capable of generating an effective immune response to combat BLV infections. However, experimental evaluations are essential to validate the exact safety and immunogenic profiling of this vaccine. Supplementary Information The online version contains supplementary material available at 10.1007/s00262-022-03181-w.
Collapse
Affiliation(s)
- Abdus Samad
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Science and Technology, Jashore University of Science and Technology, Jashore, 7408 Bangladesh
- Bioinformatics and Microbial Biotechnology Laboratory, Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore, 7408 Bangladesh
| | - Nigar Sultana Meghla
- Department of Microbiology, Faculty of Biological Science and Technology, Jashore University of Science and Technology, Jashore, 7408 Bangladesh
| | - Zulkar Nain
- Department of Biochemistry, School of Medicine, University of Utah, Salt Lake City, Utah, USA
| | - Tomasz M. Karpiński
- Chair and Department of Medical Microbiology, Poznań University of Medical Sciences, Wieniawskiego 3, 61-712 Poznań, Poland
| | - Md. Shahedur Rahman
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Science and Technology, Jashore University of Science and Technology, Jashore, 7408 Bangladesh
- Bioinformatics and Microbial Biotechnology Laboratory, Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore, 7408 Bangladesh
| |
Collapse
|
38
|
Tsukada F, Takashima S, Wakihara Y, Kamatari YO, Shimizu K, Okada A, Inoshima Y. Characterization of miRNAs in Milk Small Extracellular Vesicles from Enzootic Bovine Leukosis Cattle. Int J Mol Sci 2022; 23:ijms231810782. [PMID: 36142686 PMCID: PMC9503721 DOI: 10.3390/ijms231810782] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/09/2022] [Accepted: 09/12/2022] [Indexed: 11/17/2022] Open
Abstract
Enzootic bovine leukosis (EBL) is a B-cell lymphosarcoma caused by the bovine leukemia virus (BLV). Most BLV-infected cattle show no clinical signs and only some develop EBL. The pathogenesis of EBL remains unclear and there are no methods for predicting EBL before its onset. Previously, it was reported that miRNA profiles in milk small extracellular vesicles (sEVs) were affected in cattle in the late stage of BLV infection. It raised a possibility that miRNA profile in milk sEVs from EBL cattle could be also affected. To characterize the difference in milk of EBL cattle and healthy cattle, we examined the miRNA profiles in milk sEVs from four EBL and BLV-uninfected cattle each using microarray analysis. Among the detected miRNAs, three miRNAs—bta-miR-1246, hsa-miR-1290, and hsa-miR-424-5p—which were detectable using quantitative real-time PCR (qPCR) and are associated with cancers in humans—were selected as biomarker candidates for EBL. To evaluate the utility of these miRNAs as biomarkers for EBL, their levels were measured using milk that was freshly collected from 13 EBL and seven BLV-uninfected cattle. bta-miR-1246 and hsa-miR-424-5p, but not hsa-miR-1290, were detected using qPCR and their levels in milk sEVs from EBL cattle were significantly higher than those in BLV-uninfected cattle. bta-miR-1246 and hsa-miR-424-5p in sEVs may promote metastasis by targeting tumor suppressor genes, resulting in increased amounts in milk sEVs in EBL cattle. These results suggest that bta-miR-1246 and hsa-miR-424-5p levels in milk sEVs could serve as biomarkers for EBL.
Collapse
Affiliation(s)
- Fumi Tsukada
- Laboratory of Food and Environmental Hygiene, Cooperative Department of Veterinary Medicine, Faculty of Applied Biological Sciences, Gifu University, Gifu 501-1193, Japan
| | - Shigeo Takashima
- Division of Genomics Research, Life Science Research Center, Gifu University, Gifu 501-1193, Japan
- Institute of Glyco-Core Research (iGCORE), Gifu University, Gifu 501-1193, Japan
- The United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Gifu 501-1193, Japan
| | - Yoshiko Wakihara
- Division of Genomics Research, Life Science Research Center, Gifu University, Gifu 501-1193, Japan
| | - Yuji O. Kamatari
- Institute of Glyco-Core Research (iGCORE), Gifu University, Gifu 501-1193, Japan
- The United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Gifu 501-1193, Japan
- Division of Instrumental Analysis, Life Science Research Center, Gifu University, Gifu 501-1193, Japan
| | - Kaori Shimizu
- Laboratory of Food and Environmental Hygiene, Cooperative Department of Veterinary Medicine, Faculty of Applied Biological Sciences, Gifu University, Gifu 501-1193, Japan
| | - Ayaka Okada
- Laboratory of Food and Environmental Hygiene, Cooperative Department of Veterinary Medicine, Faculty of Applied Biological Sciences, Gifu University, Gifu 501-1193, Japan
- Education and Research Center for Food Animal Health, Gifu University (GeFAH), Gifu 501-1193, Japan
| | - Yasuo Inoshima
- Laboratory of Food and Environmental Hygiene, Cooperative Department of Veterinary Medicine, Faculty of Applied Biological Sciences, Gifu University, Gifu 501-1193, Japan
- Education and Research Center for Food Animal Health, Gifu University (GeFAH), Gifu 501-1193, Japan
- The United Graduate School of Veterinary Sciences, Gifu University, Gifu 501-1193, Japan
- Joint Graduate School of Veterinary Sciences, Gifu University, Gifu 501-1193, Japan
- Correspondence:
| |
Collapse
|
39
|
Expression of bovine leukaemia virus (BLV) gp51 protein in blood and milk cells of cows with leukosis. J Vet Res 2022; 66:305-315. [PMID: 36349123 PMCID: PMC9597945 DOI: 10.2478/jvetres-2022-0035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 06/24/2022] [Indexed: 11/20/2022] Open
Abstract
Abstract
Introduction
Bovine leukaemia virus (BLV) is the retroviral causative agent of enzootic bovine leukosis, the most common neoplastic disease of cattle and a serious problem worldwide. Its diagnosis is commonly by tests for antibodies recognising the p24 capsid protein and structural glycoprotein (gp) 51. With flow cytometry recently having come to veterinary immunology, applications for it may now include BLV. The study determined BLV gp51 expression in blood and milk lymphocytes of naturally infected cows by flow cytometry.
Material and Methods
Nineteen Polish Black and White Lowland breed cows aged 4–9 years and naturally infected with BLV and ten uninfected counterparts had blood and milk sampled and cultured. The immunological status of the animals was confirmed with ELISA and PCR. Dual-colour flow cytometry analysis was performed with specific monoclonal antibodies for lymphocyte cluster of differentiation (CD) markers and gp51 viral envelope protein and conjugates labelled with fluorescein isothiocyanate or phycoerythrin. Bovine leukaemia virus gp51 was confirmed in lymphocytes by immunofluorescence with anti-gp51 monoclonal antibodies.
Results
The gp51 antigen was detected in blood and milk lymphocytes of infected cows, but the percentage of cells expressing it in milk was much lower than in blood. A depleted number of CD4+ lymphocytes, an augmented number of CD8+ lymphocytes, a lower ratio of CD4+ to CD8+ and a proliferation of CD19+ immunoglobulin M+ cells were also found.
Conclusion
These proliferated cells were immature, gave no sign of a tendency to differentiation and were characterised by prolonged vitality.
Collapse
|
40
|
Ma H, Lippolis JD, Casas E. Expression Profiles and Interaction of MicroRNA and Transcripts in Response to Bovine Leukemia Virus Exposure. Front Vet Sci 2022; 9:887560. [PMID: 35928115 PMCID: PMC9343836 DOI: 10.3389/fvets.2022.887560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 06/08/2022] [Indexed: 12/03/2022] Open
Abstract
Bovine leukemia virus (BLV) infection in cattle is omnipresent, which causes significantly economical losses worldwide. The objective of this study was to determine microRNA (miRNA) and transcript profiles and to establish their relationship in response to exposure to the virus. Small noncoding and messenger RNA were extracted and sequenced from serum and white blood cells (WBCs) derived from seven BLV seropositive and seven seronegative cows. Transcriptomic profiles were generated by sequencing RNA libraries from WBC. Bta-miR-206 and bta-miR-133a-3p were differentially expressed in serum (P < 0.05). In WBC, bta-miR-335-3p, bta-miR-375, and bta-novel-miR76-3p were differentially expressed (P < 0.03). There were 64 differentially expressed transcripts (DETs). Gene ontology (GO) analysis of the DETs overexpressed in the seropositive group with GOs of response to stimulus and immune system process predicted that the DETs could potentially negatively regulate viral life cycle and viral entry or release from host cells. In addition, the DETs depleted in the seropositive group could play a role in the downregulation of antigen processing and presentation of endogenous peptide antigen via MHC class I. The differentially expressed miRNAs targeted 17 DETs, among which the expressions of bta-miR-133a-3p and bta-miR-335-3p were significantly negatively correlated with the expressions of ENSBTAT00000079143 and ENSBTAT00000066733, respectively. Under high prediction criteria, 90 targets of the differentially expressed miRNAs were all non-DETs. The most enriched biological process GO term of the targets was the RNA-dependent DNA biosynthetic process, which could be associated with virus replication. These results suggested that the differentially expressed miRNAs fine-tune most of the target genes in responding to BLV exposure. In addition, Bta-miR-206 interacted with BLV regulatory genes rex and tax by targeting their coding regions. A further study of the miRNAs and the genes may reveal the molecular mechanisms of BLV infection and uncover possible ways to prevent the infection.
Collapse
|
41
|
Yamanaka MP, Saito S, Hara Y, Matsuura R, Takeshima SN, Hosomichi K, Matsumoto Y, Furuta RA, Takei M, Aida Y. No evidence of bovine leukemia virus proviral DNA and antibodies in human specimens from Japan. Retrovirology 2022; 19:7. [PMID: 35585539 PMCID: PMC9116711 DOI: 10.1186/s12977-022-00592-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 04/13/2022] [Indexed: 11/30/2022] Open
Abstract
Background The potential risk and association of bovine leukemia virus (BLV) with human remains controversial as it has been reported to be both positive and negative in human breast cancer and blood samples. Therefore, establishing the presence of BLV in comprehensive human clinical samples in different geographical locations is essential. Result In this study, we examined the presence of BLV proviral DNA in human blood and breast cancer tissue specimens from Japan. PCR analysis of BLV provirus in 97 Japanese human blood samples and 23 breast cancer tissues showed negative result for all samples tested using long-fragment PCR and highly-sensitive short-fragment PCR amplification. No IgG and IgM antibodies were detected in any of the 97 human serum samples using BLV gp51 and p24 indirect ELISA test. Western blot analysis also showed negative result for IgG and IgM antibodies in all tested human serum samples. Conclusion Our results indicate that Japanese human specimens including 97 human blood, 23 breast cancer tissues, and 97 serum samples were negative for BLV. Supplementary Information The online version contains supplementary material available at 10.1186/s12977-022-00592-6.
Collapse
Affiliation(s)
- Meripet Polat Yamanaka
- Laboratory of Global Infectious Diseases Control Science, Department of Global Agricultural Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan.,Viral Infectious Diseases Unit, RIKEN, Saitama, 351-0198, Japan.,Division of Hematology and Rheumatology, Department of Medicine, Nihon University School of Medicine, Tokyo, 173-8610, Japan
| | - Susumu Saito
- Viral Infectious Diseases Unit, RIKEN, Saitama, 351-0198, Japan.,Division of Hematology and Rheumatology, Department of Medicine, Nihon University School of Medicine, Tokyo, 173-8610, Japan
| | - Yukiko Hara
- Division of Department of Breast and Endocrine Surgery, Department of Surgery, Nihon University School of Medicine, Tokyo, 173-8610, Japan
| | - Ryosuke Matsuura
- Laboratory of Global Infectious Diseases Control Science, Department of Global Agricultural Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan.,Viral Infectious Diseases Unit, RIKEN, Saitama, 351-0198, Japan.,Division of Hematology and Rheumatology, Department of Medicine, Nihon University School of Medicine, Tokyo, 173-8610, Japan
| | - Shin-Nosuke Takeshima
- Viral Infectious Diseases Unit, RIKEN, Saitama, 351-0198, Japan.,Department of Food and Nutrition, Jumonji University, Saitama, 352-8510, Japan
| | - Kazuyoshi Hosomichi
- Department of Bioinformatics and Genomics, Graduate School of Medical Sciences, Kanazawa University, Ishikawa, 920-8640, Japan
| | - Yasunobu Matsumoto
- Laboratory of Global Infectious Diseases Control Science, Department of Global Agricultural Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan.,Laboratory of Global Animal Resource Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, 113-8657, Japan
| | - Rika A Furuta
- Central Blood Institute, Blood Service Headquarters, Japanese Red Cross Society, Tokyo, 135-8521, Japan
| | - Masami Takei
- Division of Hematology and Rheumatology, Department of Medicine, Nihon University School of Medicine, Tokyo, 173-8610, Japan
| | - Yoko Aida
- Laboratory of Global Infectious Diseases Control Science, Department of Global Agricultural Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan. .,Viral Infectious Diseases Unit, RIKEN, Saitama, 351-0198, Japan. .,Division of Hematology and Rheumatology, Department of Medicine, Nihon University School of Medicine, Tokyo, 173-8610, Japan.
| |
Collapse
|
42
|
Toyoda K, Matsuoka M. Functional and Pathogenic Roles of Retroviral Antisense Transcripts. Front Immunol 2022; 13:875211. [PMID: 35572593 PMCID: PMC9100821 DOI: 10.3389/fimmu.2022.875211] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 04/06/2022] [Indexed: 11/13/2022] Open
Abstract
Exogenous retroviruses such as human immunodeficiency virus type 1 (HIV-1), human T-cell leukemia virus type 1 (HTLV-1) and bovine leukemia virus (BLV) can cause various diseases including immunodeficiency, inflammatory diseases and hematologic malignancies. These retroviruses persistently infect their hosts. Therefore, they need to evade host immune surveillance. One way in which these viruses might avoid immune detection is to utilize functional RNAs, rather than proteins, for certain activities, because RNAs are not recognized by the host immune system. HTLV-1 encodes the HTLV-1 bZIP factor (HBZ) gene in the antisense strand of the provirus. The HBZ protein is constantly expressed in HTLV-1 carriers and patients with adult T-cell leukemia-lymphoma, and it plays critical roles in pathogenesis. However, HBZ not only encodes this protein, but also functions as mRNA. Thus, HBZ gene mRNA is bifunctional. HIV-1 and BLV also encode long non-coding RNAs as antisense transcripts. In this review, we reshape our current understanding of how these antisense transcripts function and how they influence disease pathogenesis.
Collapse
|
43
|
Olaya-Galán NN, Blume S, Tong K, Shen H, Gutierrez MF, Buehring GC. In vitro Susceptibility of Human Cell Lines Infection by Bovine Leukemia Virus. Front Microbiol 2022; 13:793348. [PMID: 35359744 PMCID: PMC8964291 DOI: 10.3389/fmicb.2022.793348] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 01/28/2022] [Indexed: 12/17/2022] Open
Abstract
Evidence of the presence of bovine leukemia virus (BLV) in human beings and its association with breast cancer has been published in the literature, proposing it as a zoonotic infection. However, not enough evidence exists about transmission pathways nor biological mechanisms in human beings. This study was aimed at gathering experimental evidence about susceptibility of human cell lines to BLV infection. Malignant and non-malignant human cell lines were co-cultured with BLV-infected FLK cells using a cell-to-cell model of infection. Infected human cell lines were harvested and cultured for 3 to 6 months to determine stability of infection. BLV detection was performed through liquid-phase PCR and visualized through in situ PCR. Seven out of nine cell lines were susceptible to BLV infection as determined by at least one positive liquid-phase PCR result in the 3-month culture period. iSLK and MCF7 cell lines were able to produce a stable infection throughout the 3-month period, with both cytoplasmic and/or nuclear BLV-DNA visualized by IS-PCR. Our results support experimental evidence of BLV infection in humans by demonstrating the susceptibility of human cells to BLV infection, supporting the hypothesis of a natural transmission from cattle to humans.
Collapse
Affiliation(s)
- Nury N Olaya-Galán
- Ph.D. Program in Biomedical and Biological Sciences, School of Medicine and Human Health, Universidad del Rosario, Bogotá, Colombia.,Grupo de Enfermedades Infecciosas, Laboratorio de Virología, Departamento de Microbiología, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Skyler Blume
- School of Public Health, University of California, Berkeley, Berkeley, CA, United States
| | - Kan Tong
- School of Public Health, University of California, Berkeley, Berkeley, CA, United States
| | - HuaMin Shen
- School of Public Health, University of California, Berkeley, Berkeley, CA, United States
| | - Maria F Gutierrez
- Grupo de Enfermedades Infecciosas, Laboratorio de Virología, Departamento de Microbiología, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Gertrude C Buehring
- School of Public Health, University of California, Berkeley, Berkeley, CA, United States
| |
Collapse
|
44
|
De Brun ML, Cosme B, Petersen M, Alvarez I, Folgueras-Flatschart A, Flatschart R, Panei CJ, Puentes R. Development of a droplet digital PCR assay for quantification of the proviral load of bovine leukemia virus. J Vet Diagn Invest 2022; 34:439-447. [PMID: 35369822 PMCID: PMC9254064 DOI: 10.1177/10406387221085581] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Droplet digital PCR (ddPCR) is a highly sensitive tool developed for the detection and quantification of short-sequence variants—a tool that offers unparalleled precision enabling measurement of smaller-fold changes. We describe here the use of ddPCR for the detection of Bovine leukemia virus (BLV) DNA provirus. Serum samples and whole blood from experimentally infected sheep and naturally infected cattle were analyzed through ddPCR to detect the BLV gp51 gene, and then compared with serologic and molecular tests. The ddPCR assay was significantly more accurate and sensitive than AGID, ELISA, nested PCR, and quantitative PCR. The limit of detection of ddPCR was 3.3 copies/µL, detecting positive experimentally infected sheep beginning at 6 d post-infection. The ddPCR methodology offers a promising tool for evaluating the BLV proviral load, particularly for the detection of low viral loads.
Collapse
Affiliation(s)
- María L. De Brun
- Instituto de Patobiología, Unidad de Microbiología, Facultad de Veterinaria–Universidad de la República, Montevideo, Uruguay
| | - Bruno Cosme
- Instituto Nacional de Metrología, Calidad y Tecnología (Inmetro), Rio de Janeiro, Brazil
| | - Marcos Petersen
- Instituto Nacional de Tecnología Agropecuaria (INTA), Instituto de Virología e Innovaciones Tecnológicas (IVIT), Buenos Aires, Argentina
| | - Irene Alvarez
- Instituto Nacional de Tecnología Agropecuaria (INTA), Instituto de Virología e Innovaciones Tecnológicas (IVIT), Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | | | - Roberto Flatschart
- Instituto Nacional de Metrología, Calidad y Tecnología (Inmetro), Rio de Janeiro, Brazil
| | - Carlos Javier Panei
- Laboratorio de Virología, Facultad de Ciencias Veterinarias, Universidad Nacional de la Plata (FCV-UNLP), La Plata, Argentina
| | - Rodrigo Puentes
- Instituto de Patobiología, Unidad de Microbiología, Facultad de Veterinaria–Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
45
|
Nakanishi R, Takashima S, Wakihara Y, Kamatari YO, Kitamura Y, Shimizu K, Okada A, Inoshima Y. Comparing microRNA in milk small extracellular vesicles among healthy cattle and cattle at high risk for bovine leukemia virus transmission. J Dairy Sci 2022; 105:5370-5380. [DOI: 10.3168/jds.2021-20989] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 02/24/2022] [Indexed: 12/19/2022]
|
46
|
Khan Z, Abubakar M, Arshed MJ, Aslam R, Sattar S, Shah NA, Javed S, Tariq A, Bostan N, Manzoor S. Molecular investigation of possible relationships concerning bovine leukemia virus and breast cancer. Sci Rep 2022; 12:4161. [PMID: 35264739 PMCID: PMC8907172 DOI: 10.1038/s41598-022-08181-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 02/25/2022] [Indexed: 11/17/2022] Open
Abstract
Worldwide, breast cancer has an eminent morbidity and mortality rate, as it is a neoplastic disease among females. The query of the prospective danger of bovine leukemia virus (BLV) to humans is an old but exceedingly topical focus of scientific debate. The objective of the current study was to determine the possible relationship between BLV and breast cancer. A total of 2710 formalin-fixed paraffin-embedded (FFPE) breast cancer samples were selected regardless of the age, ethnicity, or municipality origin of the subjects. The presence of BLV in human breast cancer was determined through nested PCR by amplifying tax and gag genes followed by partial sequencing. Homology was confirmed by using the online BLAST Tool. BLV genes were found to be positive in 26.8% (728/2710) of the samples from breast cancer patients and 10% (10/80) of the samples without cancer (negative control). The results indicated a correlation between the presence of the BLV gene and breast cancer (odds ratio = 0.3889; confidence interval = 1,18; p = 0.0029). The current findings suggest a possible link between BLV and human breast carcinoma. Therefore, screening cattle herds and milk products is suggested to reduce the viral transmission risk to humans.
Collapse
Affiliation(s)
- Zanib Khan
- Biosciences Department, COMSATS University, Islamabad, Pakistan
| | | | | | - Roohi Aslam
- NUTECH School of Applied Sciences and Humanities, National University of Technology, Islamabad, Pakistan
| | - Sadia Sattar
- Biosciences Department, COMSATS University, Islamabad, Pakistan
| | - Naseer Ali Shah
- Biosciences Department, COMSATS University, Islamabad, Pakistan
| | - Sundus Javed
- Biosciences Department, COMSATS University, Islamabad, Pakistan
| | - Aamira Tariq
- Biosciences Department, COMSATS University, Islamabad, Pakistan
| | - Nazish Bostan
- Biosciences Department, COMSATS University, Islamabad, Pakistan.
| | | |
Collapse
|
47
|
Bellefroid M, Rodari A, Galais M, Krijger PHL, Tjalsma SJD, Nestola L, Plant E, Vos ESM, Cristinelli S, Van Driessche B, Vanhulle C, Ait-Ammar A, Burny A, Ciuffi A, de Laat W, Van Lint C. Role of the cellular factor CTCF in the regulation of bovine leukemia virus latency and three-dimensional chromatin organization. Nucleic Acids Res 2022; 50:3190-3202. [PMID: 35234910 PMCID: PMC8989512 DOI: 10.1093/nar/gkac107] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 01/31/2022] [Accepted: 02/05/2022] [Indexed: 01/12/2023] Open
Abstract
Bovine leukemia virus (BLV)-induced tumoral development is a multifactorial phenomenon that remains incompletely understood. Here, we highlight the critical role of the cellular CCCTC-binding factor (CTCF) both in the regulation of BLV transcriptional activities and in the deregulation of the three-dimensional (3D) chromatin architecture surrounding the BLV integration site. We demonstrated the in vivo recruitment of CTCF to three conserved CTCF binding motifs along the provirus. Next, we showed that CTCF localized to regions of transitions in the histone modifications profile along the BLV genome and that it is implicated in the repression of the 5′Long Terminal Repeat (LTR) promoter activity, thereby contributing to viral latency, while favoring the 3′LTR promoter activity. Finally, we demonstrated that BLV integration deregulated the host cellular 3D chromatin organization through the formation of viral/host chromatin loops. Altogether, our results highlight CTCF as a new critical effector of BLV transcriptional regulation and BLV-induced physiopathology.
Collapse
Affiliation(s)
- Maxime Bellefroid
- Service of Molecular Virology, Department of Molecular Biology (DBM), Université Libre de Bruxelles (ULB), Gosselies 6041, Belgium
| | - Anthony Rodari
- Service of Molecular Virology, Department of Molecular Biology (DBM), Université Libre de Bruxelles (ULB), Gosselies 6041, Belgium
| | - Mathilde Galais
- Service of Molecular Virology, Department of Molecular Biology (DBM), Université Libre de Bruxelles (ULB), Gosselies 6041, Belgium
| | - Peter H L Krijger
- Oncode Institute, Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht 3584, CT, The Netherlands
| | - Sjoerd J D Tjalsma
- Oncode Institute, Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht 3584, CT, The Netherlands
| | - Lorena Nestola
- Service of Molecular Virology, Department of Molecular Biology (DBM), Université Libre de Bruxelles (ULB), Gosselies 6041, Belgium
| | - Estelle Plant
- Service of Molecular Virology, Department of Molecular Biology (DBM), Université Libre de Bruxelles (ULB), Gosselies 6041, Belgium
| | - Erica S M Vos
- Oncode Institute, Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht 3584, CT, The Netherlands
| | - Sara Cristinelli
- Institute of Microbiology, Lausanne University Hospital, University of Lausanne, Lausanne 1011, Switzerland
| | - Benoit Van Driessche
- Service of Molecular Virology, Department of Molecular Biology (DBM), Université Libre de Bruxelles (ULB), Gosselies 6041, Belgium
| | - Caroline Vanhulle
- Service of Molecular Virology, Department of Molecular Biology (DBM), Université Libre de Bruxelles (ULB), Gosselies 6041, Belgium
| | - Amina Ait-Ammar
- Service of Molecular Virology, Department of Molecular Biology (DBM), Université Libre de Bruxelles (ULB), Gosselies 6041, Belgium
| | - Arsène Burny
- Service of Molecular Virology, Department of Molecular Biology (DBM), Université Libre de Bruxelles (ULB), Gosselies 6041, Belgium
| | - Angela Ciuffi
- Institute of Microbiology, Lausanne University Hospital, University of Lausanne, Lausanne 1011, Switzerland
| | - Wouter de Laat
- Oncode Institute, Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht 3584, CT, The Netherlands
| | - Carine Van Lint
- Service of Molecular Virology, Department of Molecular Biology (DBM), Université Libre de Bruxelles (ULB), Gosselies 6041, Belgium
| |
Collapse
|
48
|
Molecular Characterization of Bovine Leukemia Virus with the Evidence of a New Genotype Circulating in Cattle from Kazakhstan. Pathogens 2022; 11:pathogens11020180. [PMID: 35215125 PMCID: PMC8875264 DOI: 10.3390/pathogens11020180] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/15/2022] [Accepted: 01/19/2022] [Indexed: 01/27/2023] Open
Abstract
Bovine leukemia virus (BLV) is a retrovirus that causes enzootic bovine leukosis (EBL) and has worldwide distribution. Infections with BLV have been reported in cattle from Kazakhstan but the virus has not yet been thoroughly characterized. In this study, we detect and estimate the level of BLV proviral DNA by qPCR in DNA samples from 119 cattle naturally infected with BLV, from 18 farms located in four different geographical regions of Kazakhstan. Furthermore, we conducted the phylogenetic and molecular analysis of 41 BLV env-gp51 gene sequences from BLV infected cattle. Phylogenetic analysis showed the affiliation of sequences to two already known genotypes G4 and G7 and also to a new genotype, classified as genotype G12. In addition, a multivariate method was employed for analysis of the association between proviral load and different variables such as the geographical location of the herd, cattle breeds, age of animals, and the presence of particular BLV genotypes. In summary, the results of this study provide the first evidence on molecular characterization of BLV circulating in cattle from Kazakhstan.
Collapse
|
49
|
Montero Machuca N, Tórtora Pérez JL, González Méndez AS, García-Camacho AL, Marín Flamand E, Ramírez Álvarez H. Genetic analysis of the pX region of bovine leukemia virus genotype 1 in Holstein Friesian cattle with different stages of infection. Arch Virol 2022; 167:45-56. [PMID: 34651240 DOI: 10.1007/s00705-021-05252-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 08/01/2021] [Indexed: 02/05/2023]
Abstract
The pX genetic region of bovine leukemia virus (BLV) includes four genes with overlapping reading frames that code for the Tax, Rex, R3, and G4 proteins. These proteins are involved in the regulation of transcriptional and post-transcriptional viral expression, as well as having oncogenic potential. Our goal was to investigate the pathogenicity of the pX region of BLV genotype 1 in terms of lymphocytosis, lymphomas, and proviral DNA load. We screened 724 serological samples from mixed-age Holstein Friesian cattle from six states in Mexico. Peripheral blood leukocytes (PBLs) were isolated from whole blood with anticoagulant, and genomic DNA was extracted from the PBLs using a commercial kit. Then, a set of primers that hybridize in conserved regions of the BLV pX region were used, which allowed for PCR standardization to detect proviral DNA in infected cells. Positive amplicons were sequenced using the Sanger method, resulting in 1156-nucleotide-long final sequences that included the four pX region genes. The experimental group consisted of 30 animals. Twelve of these had lymphocytosis, six had lymphoma, and 12 were apparently healthy cattle without any signs of lymphocytosis or lymphoma. The presence of lymphoma was detected in six bovine tumor tissues using histopathology, and the presence of BLV was detected by in situ hybridization. Phylogenetic analysis demonstrated that the 30 sequences were associated with genotype 1, and the genetic distance between the sequences ranged from 0.2% to 2.09%. We identified two sequences in the G4 gene: one with a three-nucleotide deletion resulting in the loss of a leucine (AGU_7488L, in a cow with lymphocytosis), and one with a nine-nucleotide deletion resulting in the loss of leucine, proline, and leucine (AGU_18A, in a cow without lymphocytosis). Analysis of the PX region indicated that positive selection had occurred in the G4, rex, and R3 genes, and we found no difference in proviral DNA load between the studied groups. We were unable to establish an association between variations in the pX region and the development of lymphocytosis, lymphoma, asymptomatic status, or proviral DNA load in BLV-infected cattle.
Collapse
Affiliation(s)
- Neli Montero Machuca
- Virology, Genetics and Molecular Biology Laboratory, Faculty of Higher Education, Cuautitlan, Veterinary Medicine, Campus 4, FES-Cuautitlán, National Autonomous University of Mexico, Km. 2.5 Carretera Cuautitlán-Teoloyucan San Sebastián Xhala, 54714, Cuautitlan Izcalli, Estado de México, México
| | - Jorge Luis Tórtora Pérez
- Department of Biological Sciences, Faculty of Higher Education, Cuautitlan, National Autonomous University of Mexico, Cuautitlán Izcalli, México
| | - Ana Silvia González Méndez
- Virology, Genetics and Molecular Biology Laboratory, Faculty of Higher Education, Cuautitlan, Veterinary Medicine, Campus 4, FES-Cuautitlán, National Autonomous University of Mexico, Km. 2.5 Carretera Cuautitlán-Teoloyucan San Sebastián Xhala, 54714, Cuautitlan Izcalli, Estado de México, México
| | - Angélica Lucia García-Camacho
- Department of Biological Sciences, Faculty of Higher Education, Cuautitlan, National Autonomous University of Mexico, Cuautitlán Izcalli, México
| | - Ernesto Marín Flamand
- Department of Biological Sciences, Faculty of Higher Education, Cuautitlan, National Autonomous University of Mexico, Cuautitlán Izcalli, México
| | - Hugo Ramírez Álvarez
- Virology, Genetics and Molecular Biology Laboratory, Faculty of Higher Education, Cuautitlan, Veterinary Medicine, Campus 4, FES-Cuautitlán, National Autonomous University of Mexico, Km. 2.5 Carretera Cuautitlán-Teoloyucan San Sebastián Xhala, 54714, Cuautitlan Izcalli, Estado de México, México.
| |
Collapse
|
50
|
Khudhair YI, Al-Shammari AM, Hasso SA, Yaseen N. Isolation of Bovine leukemia virus from cows with persistent lymphocytosis in Iraq. Vet Anim Sci 2021; 14:100201. [PMID: 34522823 PMCID: PMC8426556 DOI: 10.1016/j.vas.2021.100201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 08/27/2021] [Accepted: 08/29/2021] [Indexed: 10/29/2022] Open
Abstract
This is the first study to report on the isolation of bovine leukemia virus (BLV) from peripheral blood mononuclear cells of two cross bred cows in Iraq. The cattle were seropositive by ELISA when selected while being surveyed for the detection of BLV. Among six cows, two were cases of persistent lymphocytosis (PL). Cytopathology was characterized by the formation of multinucleated giant cells (syncytia) and cytoplasmic vacuoles. Moreover, the viruses produced clear plaques on the monolayer of the primary fetal calf kidney (FCK) cells. Inhibition of plaque formation by BLV-antisera suggested a diagnosis of BLV, which was further confirmed by PCR. Cells infected with the isolates were positive to a monoclonal antibody against the viral gp51 trans-membrane glycoprotein by immunocytochemistry. Both isolates replicated and induced cytopathic effects in bovine and human cell line cultures. Phylogenetic analysis based on partial gp51 env gene sequences revealed that Iraqi strain highly homogenous with Turkey strain (100%) and had 1% distance value with other world strains. In conclusion, this present study found that BLV-infected cattle with PL can be a source for viral isolation, and the cytopathological features of the virus infection are arranged and differ depending on the cell type. This is the first study to report on the isolation of the EBL virus in Iraq, and it provides the basis for further studies about a BLV Iraqi strain that can help control this disease.
Collapse
Affiliation(s)
- Yahia Ismail Khudhair
- Department of internal and preventive Medicine, College of Veterinary Medicine, University of Al-Qadisiyah, Iraq
| | - Ahmed Majeed Al-Shammari
- Experimental Therapy Department, Iraqi Center for Cancer and Medical Genetic Research, Mustansiriyah University, Baghdad, Iraq
| | - Saleem Amin Hasso
- Department of internal and preventive Medicine, College of Veterinary Medicine, University of Baghdad, Iraq
| | - Nahi Yaseen
- Experimental Therapy Department, Iraqi Center for Cancer and Medical Genetic Research, Mustansiriyah University, Baghdad, Iraq
| |
Collapse
|