1
|
Corne A, Adolphe F, Estaquier J, Gaumer S, Corsi JM. ATF4 Signaling in HIV-1 Infection: Viral Subversion of a Stress Response Transcription Factor. BIOLOGY 2024; 13:146. [PMID: 38534416 PMCID: PMC10968437 DOI: 10.3390/biology13030146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 02/13/2024] [Accepted: 02/20/2024] [Indexed: 03/28/2024]
Abstract
Cellular integrated stress response (ISR), the mitochondrial unfolded protein response (UPRmt), and IFN signaling are associated with viral infections. Activating transcription factor 4 (ATF4) plays a pivotal role in these pathways and controls the expression of many genes involved in redox processes, amino acid metabolism, protein misfolding, autophagy, and apoptosis. The precise role of ATF4 during viral infection is unclear and depends on cell hosts, viral agents, and models. Furthermore, ATF4 signaling can be hijacked by pathogens to favor viral infection and replication. In this review, we summarize the ATF4-mediated signaling pathways in response to viral infections, focusing on human immunodeficiency virus 1 (HIV-1). We examine the consequences of ATF4 activation for HIV-1 replication and reactivation. The role of ATF4 in autophagy and apoptosis is explored as in the context of HIV-1 infection programmed cell deaths contribute to the depletion of CD4 T cells. Furthermore, ATF4 can also participate in the establishment of innate and adaptive immunity that is essential for the host to control viral infections. We finally discuss the putative role of the ATF4 paralogue, named ATF5, in HIV-1 infection. This review underlines the role of ATF4 at the crossroads of multiple processes reflecting host-pathogen interactions.
Collapse
Affiliation(s)
- Adrien Corne
- Laboratoire de Génétique et Biologie Cellulaire, Université Versailles-Saint-Quentin-en-Yvelines, Université Paris-Saclay, 78000 Versailles, France; (A.C.); (F.A.); (S.G.)
- CHU de Québec Research Center, Laval University, Quebec City, QC G1V 4G2, Canada
| | - Florine Adolphe
- Laboratoire de Génétique et Biologie Cellulaire, Université Versailles-Saint-Quentin-en-Yvelines, Université Paris-Saclay, 78000 Versailles, France; (A.C.); (F.A.); (S.G.)
| | - Jérôme Estaquier
- CHU de Québec Research Center, Laval University, Quebec City, QC G1V 4G2, Canada
- INSERM U1124, Université Paris Cité, 75006 Paris, France
| | - Sébastien Gaumer
- Laboratoire de Génétique et Biologie Cellulaire, Université Versailles-Saint-Quentin-en-Yvelines, Université Paris-Saclay, 78000 Versailles, France; (A.C.); (F.A.); (S.G.)
| | - Jean-Marc Corsi
- Laboratoire de Génétique et Biologie Cellulaire, Université Versailles-Saint-Quentin-en-Yvelines, Université Paris-Saclay, 78000 Versailles, France; (A.C.); (F.A.); (S.G.)
| |
Collapse
|
2
|
Riaz B, Sohn S. Neutrophils in Inflammatory Diseases: Unraveling the Impact of Their Derived Molecules and Heterogeneity. Cells 2023; 12:2621. [PMID: 37998356 PMCID: PMC10670008 DOI: 10.3390/cells12222621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/08/2023] [Accepted: 11/10/2023] [Indexed: 11/25/2023] Open
Abstract
Inflammatory diseases involve numerous disorders and medical conditions defined by an insufficient level of self-tolerance. These diseases evolve over the course of a multi-step process through which environmental variables play a crucial role in the emergence of aberrant innate and adaptive immunological responses. According to experimental data accumulated over the past decade, neutrophils play a significant role as effector cells in innate immunity. However, neutrophils are also involved in the progression of numerous diseases through participation in the onset and maintenance of immune-mediated dysregulation by releasing neutrophil-derived molecules and forming neutrophil extracellular traps, ultimately causing destruction of tissues. Additionally, neutrophils have a wide variety of functional heterogeneity with adverse effects on inflammatory diseases. However, the complicated role of neutrophil biology and its heterogeneity in inflammatory diseases remains unclear. Moreover, neutrophils are considered an intriguing target of interventional therapies due to their multifaceted role in a number of diseases. Several approaches have been developed to therapeutically target neutrophils, involving strategies to improve neutrophil function, with various compounds and inhibitors currently undergoing clinical trials, although challenges and contradictions in the field persist. This review outlines the current literature on roles of neutrophils, neutrophil-derived molecules, and neutrophil heterogeneity in the pathogenesis of autoimmune and inflammatory diseases with potential future therapeutic strategies.
Collapse
Affiliation(s)
- Bushra Riaz
- Department of Biomedical Science, Ajou University School of Medicine, Suwon 16499, Republic of Korea;
| | - Seonghyang Sohn
- Department of Biomedical Science, Ajou University School of Medicine, Suwon 16499, Republic of Korea;
- Department of Microbiology, Ajou University School of Medicine, Suwon 16499, Republic of Korea
| |
Collapse
|
3
|
Jones R, Manickam C, Ram DR, Kroll K, Hueber B, Woolley G, Shah SV, Smith S, Varner V, Reeves RK. Systemic and mucosal mobilization of granulocyte subsets during lentiviral infection. Immunology 2021; 164:348-357. [PMID: 34037988 PMCID: PMC8442246 DOI: 10.1111/imm.13376] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/28/2021] [Accepted: 04/28/2021] [Indexed: 11/30/2022] Open
Abstract
Granulocytes mediate broad immunoprotection through phagocytosis, extracellular traps, release of cytotoxic granules, antibody effector functions and recruitment of other immune cells against pathogens. However, descriptions of granulocytes in HIV infection and mucosal tissues are limited. Our goal was to characterize granulocyte subsets in systemic, mucosal and lymphoid tissues during lentiviral infection using the rhesus macaque (RM) model. Mononuclear cells from jejunum, colon, cervix, vagina, lymph nodes, spleen, liver and whole blood from experimentally naïve and chronically SHIVsf162p3-infected RM were analysed by microscopy and polychromatic flow cytometry. Granulocytes were identified using phenotypes designed specifically for RM: eosinophils-CD45+ CD66+ CD49d+ ; neutrophils-CD45+ CD66+ CD14+ ; and basophils-CD45+ CD123+ FcRε+ . Nuclear visualization with DAPI staining and surface marker images by ImageStream (cytometry/microscopy) further confirmed granulocytic phenotypes. Flow cytometric data showed that all RM granulocytes expressed CD32 (FcRγII) but did not express CD16 (FcRγIII). Additionally, constitutive expression of CD64 (FcRγI) on neutrophils and FcRε on basophils indicates the differential expression of Fc receptors on granulocyte subsets. Granulocytic subsets in naïve whole blood ranged from 25·4% to 81·5% neutrophils, 0·59% to 13·3% eosinophils and 0·059% to 1·8% basophils. Interestingly, elevated frequencies of circulating neutrophils, colorectal neutrophils and colorectal eosinophils were all observed in chronic lentiviral disease. Conversely, circulating basophils, jejunal eosinophils, vaginal neutrophils and vaginal eosinophils of SHIVsf162p3-infected RM declined in frequency. Overall, our data suggest modulation of granulocytes in chronic lentiviral infection, most notably in the gastrointestinal mucosae where a significant inflammation and disruption occurs in lentivirus-induced disease. Furthermore, granulocytes may migrate to inflamed tissues during infection and could serve as targets of immunotherapeutic intervention.
Collapse
Affiliation(s)
- Rhianna Jones
- Center for Virology and Vaccine ResearchBeth Israel Deaconess Medical CenterHarvard Medical SchoolBostonMAUSA
| | - Cordelia Manickam
- Center for Virology and Vaccine ResearchBeth Israel Deaconess Medical CenterHarvard Medical SchoolBostonMAUSA
| | - Daniel R. Ram
- Center for Virology and Vaccine ResearchBeth Israel Deaconess Medical CenterHarvard Medical SchoolBostonMAUSA
| | - Kyle Kroll
- Center for Virology and Vaccine ResearchBeth Israel Deaconess Medical CenterHarvard Medical SchoolBostonMAUSA
| | - Brady Hueber
- Center for Virology and Vaccine ResearchBeth Israel Deaconess Medical CenterHarvard Medical SchoolBostonMAUSA
| | - Griffin Woolley
- Center for Virology and Vaccine ResearchBeth Israel Deaconess Medical CenterHarvard Medical SchoolBostonMAUSA
| | - Spandan V. Shah
- Center for Virology and Vaccine ResearchBeth Israel Deaconess Medical CenterHarvard Medical SchoolBostonMAUSA
| | - Scott Smith
- Center for Virology and Vaccine ResearchBeth Israel Deaconess Medical CenterHarvard Medical SchoolBostonMAUSA
| | - Valerie Varner
- Center for Virology and Vaccine ResearchBeth Israel Deaconess Medical CenterHarvard Medical SchoolBostonMAUSA
| | - R. Keith Reeves
- Center for Virology and Vaccine ResearchBeth Israel Deaconess Medical CenterHarvard Medical SchoolBostonMAUSA
- Ragon Institute of Massachusetts General Hospital, MIT, and HarvardCambridgeMAUSA
- Division of Innate and Comparative Immunology, Center for Human Systems ImmunologyDuke University School of MedicineDurhamNCUSA
| |
Collapse
|
4
|
Ma Y, Zhang Y, Zhu L. Role of neutrophils in acute viral infection. IMMUNITY INFLAMMATION AND DISEASE 2021; 9:1186-1196. [PMID: 34472718 PMCID: PMC8589350 DOI: 10.1002/iid3.500] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 06/23/2021] [Accepted: 07/22/2021] [Indexed: 12/13/2022]
Abstract
Neutrophils play multiple roles in acute viral infections. They restrict viral replication and diffusion through phagocytosis, degranulation, respiratory burst, secretion of cytokines, and the release of neutrophil extracellular traps, as well as, activate the adaptive immune response. However, the overactivation of neutrophils may cause tissue damage and lead to poor outcomes. Additionally, some characteristics and functions of neutrophils, such as cell number, lifespan, and antiviral capability, can be influenced while eliminating viruses. This review provides a general description of the protective and pathological roles of neutrophils in acute viral infection.
Collapse
Affiliation(s)
- Yuan Ma
- Institute of Infectious Diseases, Peking University Ditan Teaching Hospital, Beijing, China
| | - Yue Zhang
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Liuluan Zhu
- Institute of Infectious Diseases, Peking University Ditan Teaching Hospital, Beijing, China.,Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
5
|
Lemaitre J, Cosma A, Desjardins D, Lambotte O, Le Grand R. Mass Cytometry Reveals the Immaturity of Circulating Neutrophils during SIV Infection. J Innate Immun 2019; 12:170-181. [PMID: 31230057 DOI: 10.1159/000499841] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 03/21/2019] [Indexed: 12/13/2022] Open
Abstract
The infected host fails to eradicate HIV-1, despite significant control of viral replication by combinational antiretroviral therapy. Here, we assessed the impact of HIV infection on immune-cell compartments in a SIVmac251 nonhuman primate infection model, which allowed the choice of contamination route, time of infection, and treatment follow-up. We performed high-throughput multiparameter single-cell phenotyping by mass cytometry to obtain a global vision of the immune system in blood and bone marrow. Circulating polymorphonuclear neutrophils (PMNs) with impaired phagocytosis had altered surface expression of CD62L and CD11b during early chronic infection. The initiation of combinational antiretroviral treatment during primary infection did not restore PMN function. The maturation state of PMNs was highly altered during late chronic SIV infection, showing a primarily immature phenotype. Our results provide new insights into PMN involvement in the pathogenesis of HIV infection and may play a role in the establishment and maintenance of chronic immune activation.
Collapse
Affiliation(s)
- Julien Lemaitre
- INSERM U1184, Immunology of Viral Infections and Autoimmune Diseases, IDMIT Department, IBFJ, CEA - Université Paris-Sud 11, Fontenay-aux-Roses/Le Kremlin-Bicêtre, France
| | - Antonio Cosma
- INSERM U1184, Immunology of Viral Infections and Autoimmune Diseases, IDMIT Department, IBFJ, CEA - Université Paris-Sud 11, Fontenay-aux-Roses/Le Kremlin-Bicêtre, France
| | - Delphine Desjardins
- INSERM U1184, Immunology of Viral Infections and Autoimmune Diseases, IDMIT Department, IBFJ, CEA - Université Paris-Sud 11, Fontenay-aux-Roses/Le Kremlin-Bicêtre, France
| | - Olivier Lambotte
- INSERM U1184, Immunology of Viral Infections and Autoimmune Diseases, IDMIT Department, IBFJ, CEA - Université Paris-Sud 11, Fontenay-aux-Roses/Le Kremlin-Bicêtre, France.,Service de Médecine Interne et Immunologie Clinique, Hôpital Bicêtre, Assistance Publique - Hôpitaux de Paris, Le Kremlin-Bicêtre, France
| | - Roger Le Grand
- INSERM U1184, Immunology of Viral Infections and Autoimmune Diseases, IDMIT Department, IBFJ, CEA - Université Paris-Sud 11, Fontenay-aux-Roses/Le Kremlin-Bicêtre, France,
| |
Collapse
|
6
|
Abstract
PURPOSE OF REVIEW We summarize what is known about neutrophils in HIV infection, focusing on their potential roles in HIV protection, acquisition, and pathogenesis. RECENT FINDINGS Recent studies have demonstrated that neutrophil-associated proteins and cytokines in genital tissue pre-infection associate with HIV acquisition. However, recent in vivo assessment of highly exposed seronegative individuals and in vitro studies of anti-HIV functions of neutrophils add to older literature evidence that neutrophils may be important in a protective response to HIV infection. Neutrophils are important for containment of pathogens but can also contribute to tissue damage due to their release of reactive oxygen species, proteases, and other potentially harmful effector molecules. Overall, there is a clear evidence for both helpful and harmful roles of neutrophils in HIV acquisition and pathogenesis. Further study, particularly of tissue neutrophils, is needed to elucidate the kinetics, phenotype, and functionality of neutrophils in HIV infection to better understand this dichotomy.
Collapse
|
7
|
Hensley-McBain T, Berard AR, Manuzak JA, Miller CJ, Zevin AS, Polacino P, Gile J, Agricola B, Cameron M, Hu SL, Estes JD, Reeves RK, Smedley J, Keele BF, Burgener AD, Klatt NR. Intestinal damage precedes mucosal immune dysfunction in SIV infection. Mucosal Immunol 2018; 11:1429-1440. [PMID: 29907866 PMCID: PMC6162106 DOI: 10.1038/s41385-018-0032-5] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 03/23/2018] [Accepted: 04/02/2018] [Indexed: 02/04/2023]
Abstract
HIV and pathogenic SIV infection are characterized by mucosal dysfunction including epithelial barrier damage, loss of Th17 cells, neutrophil infiltration, and microbial translocation with accompanying inflammation. However, it is unclear how and when these contributing factors occur relative to one another. In order to determine whether any of these features initiates the cycle of damage, we longitudinally evaluated the kinetics of mucosal and systemic T-cell activation, microbial translocation, and Th17 cell and neutrophil frequencies following intrarectal SIV infection of rhesus macaques. We additionally assessed the colon proteome to elucidate molecular pathways altered early after infection. We demonstrate increased T-cell activation (HLA-DR+) beginning 3-14 days post-SIV challenge, reduced peripheral zonulin 3-14 days post-SIV, and evidence of microbial translocation 14 days post-SIV. The onset of mucosal dysfunction preceded peripheral and mucosal Th17 depletion, which occurred 14-28 days post-SIV, and gut neutrophil accumulation was not observed. Proteins involved in epithelial structure were downregulated 3 days post-SIV followed by an upregulation of immune proteins 14 days post-SIV. These data demonstrate that immune perturbations such as Th17 loss and neutrophil infiltration occur after alterations to epithelial structural protein pathways, suggesting that epithelial damage occurs prior to widespread immune dysfunction.
Collapse
Affiliation(s)
- Tiffany Hensley-McBain
- Department of Pharmaceutics, University of Washington, Seattle, WA, USA
- Washington National Primate Research Center, Seattle, WA, USA
| | - Alicia R Berard
- National HIV and Retrovirology Labs, Public Health Agency of Canada, Winnipeg, MB, Canada
- Department of Medical Microbiology, University of Manitoba, Winnipeg, MB, Canada
| | - Jennifer A Manuzak
- Department of Pharmaceutics, University of Washington, Seattle, WA, USA
- Washington National Primate Research Center, Seattle, WA, USA
| | - Charlene J Miller
- Department of Pharmaceutics, University of Washington, Seattle, WA, USA
- Washington National Primate Research Center, Seattle, WA, USA
| | - Alexander S Zevin
- Department of Pharmaceutics, University of Washington, Seattle, WA, USA
- Washington National Primate Research Center, Seattle, WA, USA
| | | | - Jillian Gile
- Department of Pharmaceutics, University of Washington, Seattle, WA, USA
- Washington National Primate Research Center, Seattle, WA, USA
| | - Brian Agricola
- Washington National Primate Research Center, Seattle, WA, USA
| | - Mark Cameron
- Department of Epidemiology and Biostatistics, Case Western Reserve University, Cleveland, OH, USA
| | - Shiu-Lok Hu
- Department of Pharmaceutics, University of Washington, Seattle, WA, USA
- Washington National Primate Research Center, Seattle, WA, USA
| | - Jacob D Estes
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, USA
| | - R Keith Reeves
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA, USA
| | - Jeremy Smedley
- Washington National Primate Research Center, Seattle, WA, USA
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, USA
| | - Brandon F Keele
- AIDS and Cancer Virus Program, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Adam D Burgener
- National HIV and Retrovirology Labs, Public Health Agency of Canada, Winnipeg, MB, Canada
- Department of Medical Microbiology, University of Manitoba, Winnipeg, MB, Canada
- Unit of Infectious Diseases, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Nichole R Klatt
- Department of Pharmaceutics, University of Washington, Seattle, WA, USA.
- Washington National Primate Research Center, Seattle, WA, USA.
| |
Collapse
|
8
|
Yaseen MM, Abuharfeil NM, Yaseen MM, Shabsoug BM. The role of polymorphonuclear neutrophils during HIV-1 infection. Arch Virol 2017; 163:1-21. [PMID: 28980078 DOI: 10.1007/s00705-017-3569-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 08/14/2017] [Indexed: 12/23/2022]
Abstract
It is well-recognized that human immunodeficiency virus type-1 (HIV-1) mainly targets CD4+ T cells and macrophages. Nonetheless, during the past three decades, a huge number of studies have reported that HIV-1 can directly or indirectly target other cellular components of the immune system including CD8+ T cells, B cells, dendritic cells, natural killer cells, and polymorphonuclear neutrophils (PMNs), among others. PMNs are the most abundant leukocytes in the human circulation, and are known to play principal roles in the elimination of invading pathogens, regulating different immune responses, healing of injured tissues, and maintaining mucosal homeostasis. Until recently, little was known about the impact of HIV-1 infection on PMNs as well as the impact of PMNs on HIV-1 disease progression. This is because early studies focused on neutropenia and recurrent microbial infections, particularly, during advanced disease. However, recent studies have extended the investigation area to cover new aspects of the interactions between HIV-1 and PMNs. This review aims to summarize these advances and address the impact of HIV-1 infection on PMNs as well as the impact of PMNs on HIV-1 disease progression to better understand the pathophysiology of HIV-1 infection.
Collapse
Affiliation(s)
- Mahmoud Mohammad Yaseen
- Medical Laboratory Sciences, College of Applied Medical Sciences, Jordan University of Science and Technology, Irbid, 22110, Jordan.
| | - Nizar Mohammad Abuharfeil
- Applied Biological Sciences, College of Science and Arts, Jordan University of Science and Technology, Irbid, 22110, Jordan
| | - Mohammad Mahmoud Yaseen
- Public Health, College of Medicine, Jordan University of Science and Technology, Irbid, 22110, Jordan
| | - Barakat Mohammad Shabsoug
- Chemical Sciences, College of Science and Arts, Jordan University of Science and Technology, Irbid, 22110, Jordan
| |
Collapse
|
9
|
Huot N, Rascle P, Garcia-Tellez T, Jacquelin B, Müller-Trutwin M. Innate immune cell responses in non pathogenic versus pathogenic SIV infections. Curr Opin Virol 2016; 19:37-44. [PMID: 27447445 DOI: 10.1016/j.coviro.2016.06.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 06/16/2016] [Accepted: 06/24/2016] [Indexed: 02/06/2023]
Abstract
HIV-1/SIVmac infections deeply disturb innate host responses. Most studies have focused on the impact on dendritic cells and NK cells. A few but insufficient data are available on other innate immune cell types, such as neutrophils. It has been shown that innate lymphoid cells are depleted early and irreversibly during SIVmac/HIV-1 infections. Studies in natural hosts of SIV have contributed to pinpoint that early control of inflammation is crucial. In natural hosts, plasmacytoid dendritic cells, myeloid dendritic cells and NK cells are depleted during acute infection but return to normal levels by the end of acute infection. We summarize here the similarities and differences of various types of innate immune responses in natural hosts compared to pathogenic HIV/SIV mac infections.
Collapse
Affiliation(s)
- Nicolas Huot
- Institut Pasteur, Unité HIV, Inflammation and Persistence, Paris, France; CEA, Division of Immuno-Virology, iMETI, DSV, Fontenay-aux-Roses, France; Vaccine Research Institute, Créteil, France
| | - Philippe Rascle
- Institut Pasteur, Unité HIV, Inflammation and Persistence, Paris, France; Vaccine Research Institute, Créteil, France
| | | | - Beatrice Jacquelin
- Institut Pasteur, Unité HIV, Inflammation and Persistence, Paris, France
| | - Michaela Müller-Trutwin
- Institut Pasteur, Unité HIV, Inflammation and Persistence, Paris, France; Vaccine Research Institute, Créteil, France.
| |
Collapse
|
10
|
Bishop CV, Xu F, Molskness TA, Stouffer RL, Hennebold JD. Dynamics of Immune Cell Types Within the Macaque Corpus Luteum During the Menstrual Cycle: Role of Progesterone. Biol Reprod 2015; 93:112. [PMID: 26400401 DOI: 10.1095/biolreprod.115.132753] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 09/18/2015] [Indexed: 12/20/2022] Open
Abstract
The goal of the current study was to characterize the immune cell types within the primate corpus luteum (CL). Luteal tissue was collected from rhesus females at discrete intervals during the luteal phase of the natural menstrual cycle. Dispersed cells were incubated with fluorescently labeled antibodies specific for the immune cell surface proteins CD11b (neutrophils and monocytes/macrophages), CD14 (monocytes/macrophages), CD16 (natural killer [NK] cells), CD20 (B-lymphocytes), and CD3epsilon (T-lymphocytes) for analysis by flow cytometry. Numbers of CD11b-positive (CD11b(+)) and CD14(+) cells increased significantly 3 to 4 days after serum progesterone (P4) concentrations declined below 0.3 ng/ml. CD16(+) cells were the most abundant immune cell type in CL during the mid and mid-late luteal phases and were 3-fold increased 3 to 4 days after serum P4 decreased to baseline levels. CD3epsilon(+) cells tended to increase 3 to 4 days after P4 decline. To determine whether immune cells were upregulated by the loss of luteotropic (LH) support or through loss of LH-dependent steroid milieu, monkeys were assigned to 4 groups: control (no treatment), the GnRH antagonist Antide, Antide plus synthetic progestin (R5020), or Antide plus the estrogen receptor agonists diarylpropionitrile (DPN)/propyl-pyrazole-triol (PPT) during the mid-late luteal phase. Antide treatment increased the numbers of CD11b(+) and CD14(+) cells, whereas progestin, but not estrogen, replacement suppressed the numbers of CD11b(+), CD14(+), and CD16(+) cells. Neither Antide nor steroid replacement altered numbers of CD3epsilon(+) cells. These data suggest that increased numbers of innate immune cells in primate CL after P4 synthesis declines play a role in onset of structural regression of primate CL.
Collapse
Affiliation(s)
- Cecily V Bishop
- Division of Reproductive and Developmental Sciences, Oregon Health & Science University, Portland, Oregon
| | - Fuhua Xu
- Division of Reproductive and Developmental Sciences, Oregon Health & Science University, Portland, Oregon
| | - Theodore A Molskness
- Division of Reproductive and Developmental Sciences, Oregon Health & Science University, Portland, Oregon
| | - Richard L Stouffer
- Division of Reproductive and Developmental Sciences, Oregon Health & Science University, Portland, Oregon Division of Obstetrics and Gynecology, Oregon Health & Science University, Portland, Oregon
| | - Jon D Hennebold
- Division of Reproductive and Developmental Sciences, Oregon Health & Science University, Portland, Oregon Division of Obstetrics and Gynecology, Oregon Health & Science University, Portland, Oregon
| |
Collapse
|
11
|
Ling B, Rogers L, Johnson AM, Piatak M, Lifson J, Veazey RS. Effect of combination antiretroviral therapy on Chinese rhesus macaques of simian immunodeficiency virus infection. AIDS Res Hum Retroviruses 2013; 29:1465-74. [PMID: 23387294 DOI: 10.1089/aid.2012.0378] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Definitive treatment of HIV infection remains a critical but elusive goal, with persistence of residual virus even in the face of prolonged administration of suppressive combination antiretroviral treatment (cART) providing a source for recrudescent infection if treatment is stopped. Characterization of the residual virus and devising strategies to target it for eradication are key goals in HIV treatment research. Indian rhesus macaques (In-RM) infected with SIVmac have been widely used in such research. However, it has proven challenging to achieve and sustain clinically relevant levels of suppression (<30 vRNA copies/ml plasma) with cART in such models. As ease of viral suppression by cART is related to pretreatment levels of viral replication, and levels of replication of SIVmac239/251 are lower in Chinese rhesus macaques (Ch-RM) than in In-RM, we evaluated cART administration to SIVmac-infected Ch-RM as a potential model for studies of residual virus and eradication strategies. Four SIVmac239-infected Ch-RM received cART including reverse transcriptase inhibitors PMPA/FTC and integrase inhibitor L-870812 daily for 8 weeks. Plasma viral loads were promptly reduced to <30 copies/ml upon initiation of cART. Cell-associated SIV DNA levels in lymphocytes from the gut were also significantly reduced. Jejunal and colonic CCR5(+)CD4(+) mucosal memory T cells increased significantly; restoration of these cells was associated with reductions in immune activation. In conclusion, cART effectively suppressed viral replication to <30 vRNA copies/ml in SIVmac239-infected Ch-RM, reducing immune activation and restoring mucosal immune cell populations. SIVmac239-infected Ch-RM may be a useful model for studying responses to cART and persistent tissue reservoirs and evaluating candidate eradication strategies to cure HIV infection.
Collapse
Affiliation(s)
- Binhua Ling
- Tulane National Primate Research Center, Covington, Louisiana
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, Louisiana
| | - Linda Rogers
- Tulane National Primate Research Center, Covington, Louisiana
| | | | - Michael Piatak
- AIDS and Cancer Virus Program, SAIC-Frederick, Inc., NCI-Frederick, Frederick, Maryland
| | - Jeffrey Lifson
- AIDS and Cancer Virus Program, SAIC-Frederick, Inc., NCI-Frederick, Frederick, Maryland
| | - Ronald S. Veazey
- Tulane National Primate Research Center, Covington, Louisiana
- Department of Pathology, Tulane University School of Medicine, New Orleans, Louisiana
| |
Collapse
|
12
|
Zhou Y, Bao R, Haigwood NL, Persidsky Y, Ho WZ. SIV infection of rhesus macaques of Chinese origin: a suitable model for HIV infection in humans. Retrovirology 2013; 10:89. [PMID: 23947613 PMCID: PMC3765527 DOI: 10.1186/1742-4690-10-89] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Accepted: 08/06/2013] [Indexed: 12/15/2022] Open
Abstract
Simian immunodeficiency virus (SIV) infection of Indian-origin rhesus macaques (RM) has been widely used as a well-established nonhuman primate (NHP) model for HIV/AIDS research. However, there have been a growing number of studies using Chinese RM to evaluate immunopathogenesis of SIV infection. In this paper, we have for the first time reviewed and discussed the major publications related to SIV or SHIV infection of Chinese RM in the past decades. We have compared the differences in the pathogenesis of SIV infection between Chinese RM and Indian RM with regard to viral infection, immunological response, and host genetic background. Given AIDS is a disease that affects humans of diverse origins, it is of importance to study animals with different geographical background. Therefore, to examine and compare results obtained from RM models of Indian and Chinese origins should lead to further validation and improvement of these animal models for HIV/AIDS research.
Collapse
Affiliation(s)
- Yu Zhou
- The Center for Animal Experiment/ ABSL-III Laboratory, State Key Laboratory of Virology, Wuhan University School of Medicine, Wuhan, Hubei 430071, P,R, China
| | | | | | | | | |
Collapse
|
13
|
Casulli S, Elbim C. Interactions between human immunodeficiency virus type 1 and polymorphonuclear neutrophils. J Innate Immun 2013; 6:13-20. [PMID: 23867213 DOI: 10.1159/000353588] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Accepted: 06/04/2013] [Indexed: 12/11/2022] Open
Abstract
Polymorphonuclear neutrophils (PMN) are the most abundant circulating leukocytes. They represent a first line of innate immunity against a large panel of microbial pathogens, pending development of specific immune responses. The role of PMN in human immunodeficiency virus type 1 (HIV-1) disease has mainly been investigated from the point of view of the increased susceptibility of HIV-1-infected patients to bacterial and fungal infections. However, it is now clear that the relationship between PMN and HIV-1 is far more complex. This review examines both the beneficial and the detrimental effects of PMN during HIV infection.
Collapse
Affiliation(s)
- Sarah Casulli
- Université Pierre et Marie Curie-Paris 6, INSERM UMR-S 945, Immunité et Infection, Hôpital Pitié Salpêtrière, Paris, France
| | | |
Collapse
|
14
|
Madhavi V, Navis M, Chung AW, Isitman G, Wren LH, De Rose R, Kent SJ, Stratov I. Activation of NK cells by HIV-specific ADCC antibodies: role for granulocytes in expressing HIV-1 peptide epitopes. Hum Vaccin Immunother 2013; 9:1011-8. [PMID: 23324623 DOI: 10.4161/hv.23446] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
HIV-specific ADCC antibodies could play a role in providing protective immunity. We have developed a whole blood ADCC assay that measures NK cell activation in response to HIV peptide epitopes. These HIV peptide-specific ADCC responses are associated with escape from immune recognition and slower progression of HIV infection and represent interesting HIV vaccine antigens. However, the mechanism by which these epitopes are expressed and whether or not they induce NK-mediated killing of cells expressing such peptide-antigens is not understood. Herein, we show that fluorescent-tagged ADCC peptide epitopes associate with blood granulocytes. The peptide-associated granulocytes become a specific target for antibody-mediated killing, as shown by enhanced expression of apoptosis marker Annexin and reduction in cell numbers. When HIV Envelope gp140 protein is utilized in the ADCC assay, we detected binding to its ligand, CD4. During the incubation, cells co-expressing gp140 and CD4 reduce in number. We also detected increasing Annexin expression in these cells. These data indicate that blood cells expressing HIV-specific ADCC epitopes are targeted for killing by NK cells in the presence of ADCC antibodies in HIV+ plasma and provide a clearer framework to evaluate these antigens as vaccine candidates.
Collapse
Affiliation(s)
- Vijaya Madhavi
- Department of Microbiology and Immunology; University of Melbourne; Melbourne, VIC Australia
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Laforge M, Campillo-Gimenez L, Monceaux V, Cumont MC, Hurtrel B, Corbeil J, Zaunders J, Elbim C, Estaquier J. HIV/SIV infection primes monocytes and dendritic cells for apoptosis. PLoS Pathog 2011; 7:e1002087. [PMID: 21731488 PMCID: PMC3121878 DOI: 10.1371/journal.ppat.1002087] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2010] [Accepted: 04/13/2011] [Indexed: 12/13/2022] Open
Abstract
Subversion or exacerbation of antigen-presenting cells (APC) death modulates host/pathogen equilibrium. We demonstrated during in vitro differentiation of monocyte-derived macrophages and monocyte-derived dendritic cells (DCs) that HIV sensitizes the cells to undergo apoptosis in response to TRAIL and FasL, respectively. In addition, we found that HIV-1 increased the levels of pro-apoptotic Bax and Bak molecules and decreased the levels of anti-apoptotic Mcl-1 and FLIP proteins. To assess the relevance of these observations in the context of an experimental model of HIV infection, we investigated the death of APC during pathogenic SIV-infection in rhesus macaques (RMs). We demonstrated increased apoptosis, during the acute phase, of both peripheral blood DCs and monocytes (CD14+) from SIV+RMs, associated with a dysregulation in the balance of pro- and anti-apoptotic molecules. Caspase-inhibitor and death receptors antagonists prevented apoptosis of APCs from SIV+RMs. Furthermore, increased levels of FasL in the sera of pathogenic SIV+RMs were detected, compared to non-pathogenic SIV infection of African green monkey. We suggest that inappropriate apoptosis of antigen-presenting cells may contribute to dysregulation of cellular immunity early in the process of HIV/SIV infection. Antigen-presenting cells (APCs) are critical for both innate and adaptive immunity. They have a profound impact on the hosts' ability to combat microbes. Dysfunction and premature death by apoptosis of APCs may contribute to an abnormal immune response unable to clear pathogens. Circulating blood monocytes exhibit developmental plasticity, with the capability of differentiating into either macrophages or dendritic cells (DCs), and they represent important cellular targets for HIV-1. We report that HIV infection renders monocytes/macrophages and DCs in vitro more prone to undergo apoptosis and this heightened susceptibility is associated with changes in the expression of anti- and pro-apoptotic molecules. Our results show that during the acute phase of SIV-infection of rhesus macaques, monocytes and DCs are more prone to die by apoptosis. They express lower levels of Mcl-1 and FLIP proteins, two anti-apoptotic molecules, but higher expression of the active form of Bax and Bak, the gatekeepers of the mitochondria, major sensor of the apoptotic machinery. Because the early events are important in the pathogenesis of this disease, early death of APCs should play a major role leading to the defective immune response. Strategies aimed at preventing death of APCs could be beneficial in helping the immune response to fight HIV-1.
Collapse
Affiliation(s)
| | | | - Valérie Monceaux
- Unité de Physiopathologie des Infections Lentivirales, Institut Pasteur, Paris, France
| | | | - Bruno Hurtrel
- Unité de Physiopathologie des Infections Lentivirales, Institut Pasteur, Paris, France
| | - Jacques Corbeil
- Université Laval, Centre de Recherche en Infectiologie, Québec, Canada
| | - John Zaunders
- St Vincent's Centre for Applied Medical Research, St Vincent's Hospital, Darlinghurst, Australia
| | - Carole Elbim
- INSERM U955, Faculté Créteil Henri Mondor, Créteil, France
- Université Paris Descartes, UMR S 872, Paris, France
| | - Jérôme Estaquier
- INSERM U955, Faculté Créteil Henri Mondor, Créteil, France
- Unité de Physiopathologie des Infections Lentivirales, Institut Pasteur, Paris, France
- Université Laval, Centre de Recherche en Infectiologie, Québec, Canada
- Assistance Publique-Hôpitaux de Paris, Hôpital Henri Mondor, Créteil, France
- * E-mail:
| |
Collapse
|
16
|
Mir KD, Gasper MA, Sundaravaradan V, Sodora DL. SIV infection in natural hosts: resolution of immune activation during the acute-to-chronic transition phase. Microbes Infect 2010; 13:14-24. [PMID: 20951225 DOI: 10.1016/j.micinf.2010.09.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2010] [Accepted: 09/09/2010] [Indexed: 10/18/2022]
Abstract
SIV-infected natural hosts do not progress to clinical AIDS yet display high viral replication and an acute immunologic response similar to pathogenic SIV/HIV infections. During chronic SIV infection, natural hosts suppress their immune activation, whereas pathogenic hosts display a highly activated immune state. Here, we review natural host SIV infections with an emphasis on specific immune cells and their contribution to the transition from the acute-to-chronic phases of infection.
Collapse
Affiliation(s)
- Kiran D Mir
- Seattle Biomedical Research Institute, Seattle, WA, USA
| | | | | | | |
Collapse
|
17
|
Elbim C, Katsikis PD, Estaquier J. Neutrophil apoptosis during viral infections. Open Virol J 2009; 3:52-9. [PMID: 19572056 PMCID: PMC2703832 DOI: 10.2174/1874357900903010052] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2009] [Revised: 05/21/2009] [Accepted: 05/29/2009] [Indexed: 01/08/2023] Open
Abstract
Apoptosis, or programmed cell death, is a highly conserved cellular suicide mechanism. Apoptosis is critical to the effective resolution of inflammation, particularly in regulating the lifespan of neutrophils. Neutrophils are key components of the first line of defense against microorganisms. Thus, subversion of this critical host defense mechanism by pathogens can contribute to susceptibility to severe and recurrent infections. In this review, we describe the molecular mechanisms involved in PMN death in relationship with viral infections.
Collapse
Affiliation(s)
- Carole Elbim
- Centre de Recherche des Cordeliers, Université Pierre et Marie Curie - Paris 6, UMR S 872, Paris, F-75006 France ; Université Paris Descartes, UMR S 872, Paris, F-75006 France ; INSERM, U872, Paris, F-75006, France
| | | | | |
Collapse
|