1
|
Aynalem T, Meng L, Getachew A, Wu J, Yu H, Tan J, Li N, Xu S. A New Isolated Fungus and Its Pathogenicity for Apis mellifera Brood in China. Microorganisms 2024; 12:313. [PMID: 38399717 PMCID: PMC10892447 DOI: 10.3390/microorganisms12020313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/13/2023] [Accepted: 12/14/2023] [Indexed: 02/25/2024] Open
Abstract
In this article, we report the pathogenicity of a new strain of fungus, Rhizopus oryzae to honeybee larvae, isolated from the chalkbrood-diseased mummies of honeybee larvae and pupae collected from apiaries in China. Based on morphological observation and internal transcribed spacer (ITS) region analyses, the isolated pathogenic fungus was identified as R. oryzae. Koch's postulates were performed to determine the cause-and-effect pathogenicity of this isolate fungus. The in vitro pathogenicity of this virulent fungus in honeybees was tested by artificially inoculating worker larvae in the lab. The pathogenicity of this new fungus for honeybee larvae was both conidial-concentration and exposure-time dependent; its highly infectious and virulent effect against the larvae was observed at 1 × 105 conidia/larva in vitro after 96 h of challenge. Using probit regression analysis, the LT50 value against the larvae was 26.8 h at a conidial concentration of 1 × 105 conidia/larva, and the LC50 was 6.2 × 103 conidia/larva. These results indicate that the new isolate of R. oryzae has considerable pathogenicity in honeybee larvae. Additionally, this report suggests that pathogenic phytofungi may harm their associated pollinators. We recommend further research to quantify the levels, mechanisms, and pathways of the pathogenicity of this novel isolated pathogen for honeybee larvae at the colony level.
Collapse
Affiliation(s)
- Tessema Aynalem
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China; (T.A.); (L.M.); (A.G.); (J.W.); (H.Y.); (J.T.); (N.L.)
- College of Agriculture and Environmental Science, Bahir Dar University, Bahir Dar P.O. Box 26, Ethiopia
| | - Lifeng Meng
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China; (T.A.); (L.M.); (A.G.); (J.W.); (H.Y.); (J.T.); (N.L.)
| | - Awraris Getachew
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China; (T.A.); (L.M.); (A.G.); (J.W.); (H.Y.); (J.T.); (N.L.)
- College of Agriculture and Environmental Science, Bahir Dar University, Bahir Dar P.O. Box 26, Ethiopia
| | - Jiangli Wu
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China; (T.A.); (L.M.); (A.G.); (J.W.); (H.Y.); (J.T.); (N.L.)
| | - Huimin Yu
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China; (T.A.); (L.M.); (A.G.); (J.W.); (H.Y.); (J.T.); (N.L.)
| | - Jing Tan
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China; (T.A.); (L.M.); (A.G.); (J.W.); (H.Y.); (J.T.); (N.L.)
| | - Nannan Li
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China; (T.A.); (L.M.); (A.G.); (J.W.); (H.Y.); (J.T.); (N.L.)
| | - Shufa Xu
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China; (T.A.); (L.M.); (A.G.); (J.W.); (H.Y.); (J.T.); (N.L.)
| |
Collapse
|
2
|
Chow LJ, Nesbit ML, Hill T, Tranter C, Evison SE, Hughes WO, Graystock P. Identification of fungi isolated from commercial bumblebee colonies. PeerJ 2024; 12:e16713. [PMID: 38313023 PMCID: PMC10836204 DOI: 10.7717/peerj.16713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 12/04/2023] [Indexed: 02/06/2024] Open
Abstract
Fungi can have important beneficial and detrimental effects on animals, yet our understanding of the diversity and function of most bee-associated fungi is poor. Over 2 million bumblebee colonies are traded globally every year, but the presence and transport of viable fungi within them is unknown. Here, we explored whether any culturable fungi could be isolated from commercial bumblebee nests. We collected samples of various substrates from within 14 bumblebee colonies, including the honey, honey cup wall, egg cup wall, and frass then placed them on agar and recorded any growth. Fungal morphotypes were then subcultured and their ITS region sequenced for identification. Overall, we cultured 11 fungal species from the various nest substrates. These included both pathogenic and non-pathogenic fungi, such as Aspergillus sp., Penicillium sp., and Candida sp. Our results provide the first insights into the diversity of viable fungal communities in commercial bumblebee nests. Further research is needed to determine if these fungi are unique to commercial colonies or prevalent in wild bumblebee nests, and crucially to determine the ecological and evolutionary implications of these fungi in host colonies.
Collapse
Affiliation(s)
- Lui Julie Chow
- Georgina Mace Centre for the Living Planet, Department of Life Sciences, Silwood Park Campus, Imperial College London, Ascot, Berkshire, United Kingdom
| | - Miles L. Nesbit
- Georgina Mace Centre for the Living Planet, Department of Life Sciences, Silwood Park Campus, Imperial College London, Ascot, Berkshire, United Kingdom
| | - Tom Hill
- School of Biology, University of Leeds, Leeds, United Kingdom
| | - Christopher Tranter
- School of Biology, University of Leeds, Leeds, United Kingdom
- School of Veterinary Science, University of Liverpool, Liverpool, United Kingdom
| | - Sophie E.F. Evison
- School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | | | - Peter Graystock
- Georgina Mace Centre for the Living Planet, Department of Life Sciences, Silwood Park Campus, Imperial College London, Ascot, Berkshire, United Kingdom
| |
Collapse
|
3
|
O'Keeffe FE, Pendleton RC, Holland CV, Luijckx P. Increased virulence due to multiple infection in Daphnia leads to limited growth in 1 of 2 co-infecting microsporidian parasites. Parasitology 2024; 151:58-67. [PMID: 37981808 PMCID: PMC10941049 DOI: 10.1017/s0031182023001130] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 11/14/2023] [Accepted: 11/15/2023] [Indexed: 11/21/2023]
Abstract
Recent outbreaks of various infectious diseases have highlighted the ever-present need to understand the drivers of the outbreak and spread of disease. Although much of the research investigating diseases focuses on single infections, natural systems are dominated by multiple infections. These infections may occur simultaneously, but are often acquired sequentially, which may alter the outcome of infection. Using waterfleas (Daphnia magna) as a model organism, we examined the outcome of sequential and simultaneous multiple infections with 2 microsporidian parasites (Ordospora colligata and Hamiltosporidium tvaerminnensis) in a fully factorial design with 9 treatments and 30 replicates. We found no differences between simultaneous and sequential infections. However, H. tvaerminnensis fitness was impeded by multiple infection due to increased host mortality, which gave H. tvaerminnensis less time to grow. Host fecundity was also reduced across all treatments, but animals infected with O. colligata at a younger age produced the fewest offspring. As H. tvaerminnensis is both horizontally and vertically transmitted, this reduction in offspring may have further reduced H. tvaerminnensis fitness in co-infected treatments. Our findings suggest that in natural populations where both species co-occur, H. tvaerminnensis may evolve to higher levels of virulence following frequent co-infection by O. colligata.
Collapse
Affiliation(s)
- Floriane E. O'Keeffe
- Department of Zoology, School of Natural Sciences, Trinity College Dublin, Dublin, Ireland
| | - Rebecca C. Pendleton
- Department of Zoology, School of Natural Sciences, Trinity College Dublin, Dublin, Ireland
| | - Celia V. Holland
- Department of Zoology, School of Natural Sciences, Trinity College Dublin, Dublin, Ireland
| | - Pepijn Luijckx
- Department of Zoology, School of Natural Sciences, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
4
|
Rodríguez MA, Fernández LA, Daisley BA, Reynaldi FJ, Allen-Vercoe E, Thompson GJ. Probiotics and in-hive fermentation as a source of beneficial microbes to support the gut microbial health of honey bees. JOURNAL OF INSECT SCIENCE (ONLINE) 2023; 23:19. [PMID: 38055943 PMCID: PMC10699873 DOI: 10.1093/jisesa/iead093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 09/25/2023] [Accepted: 10/17/2023] [Indexed: 12/08/2023]
Abstract
Managed populations of honey bees (Apis mellifera Linnaeus; Hymenoptera: Apidae) are regularly exposed to infectious diseases. Good hive management including the occasional application of antibiotics can help mitigate infectious outbreaks, but new beekeeping tools and techniques that bolster immunity and help control disease transmission are welcome. In this review, we focus on the applications of beneficial microbes for disease management as well as to support hive health and sustainability within the apicultural industry. We draw attention to the latest advances in probiotic approaches as well as the integration of fermented foods (such as water kefir) with disease-fighting properties that might ultimately be delivered to hives as an alternative or partial antidote to antibiotics. There is substantial evidence from in vitro laboratory studies that suggest beneficial microbes could be an effective method for improving disease resistance in honey bees. However, colony level evidence is lacking and there is urgent need for further validation via controlled field trials experimentally designed to test defined microbial compositions against specific diseases of interest.
Collapse
Affiliation(s)
- María A Rodríguez
- Laboratorio de Estudios Apícolas (LabEA-CIC), Departamento de Agronomía, Universidad Nacional del Sur (UNS), Bahía Blanca, Buenos Aires, Argentina
- Comisión de Investigaciones Científicas de la Provincia de Buenos Aires (CIC), Buenos Aires, Argentina
- Department of Biology, The University of Western Ontario, London, ON, Canada
| | - Leticia A Fernández
- Laboratorio de Estudios Apícolas (LabEA-CIC), Departamento de Agronomía, Universidad Nacional del Sur (UNS), Bahía Blanca, Buenos Aires, Argentina
- Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS), Bahía Blanca, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Brendan A Daisley
- Department of Biology, The University of Western Ontario, London, ON, Canada
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| | - Francisco J Reynaldi
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
- Centro de Microbiología Básica y Aplicada (CEMIBA), Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata (UNLP), La Plata, Buenos Aires, Argentina
| | - Emma Allen-Vercoe
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| | - Graham J Thompson
- Department of Biology, The University of Western Ontario, London, ON, Canada
| |
Collapse
|
5
|
Stauch KLN, Chicas-Mosier AM, Abramson CI. Preliminary Evidence That Fiji Water Has Protective Effects against Aluminum Toxicity in Honey Bees ( Apis mellifera). INSECTS 2023; 14:211. [PMID: 36835780 PMCID: PMC9958646 DOI: 10.3390/insects14020211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/30/2023] [Accepted: 02/14/2023] [Indexed: 06/18/2023]
Abstract
Researchers have determined that bioavailable aluminum chloride (AlCl3) may affect honey bee behavior (e.g., foraging patterns and locomotion) and physiology (e.g., abdominal spasms). The purpose of these experiments was to determine if Fiji water reduces the impacts of AlCl3 toxicity in bees by measuring circadian rhythmicity (number of times bees crossed the centerline during the day and night), average daily activity (average number of times bees crossed the centerline per day), and mortality rates (average number of days survived) using an automated monitor apparatus. Overall, the AlCl3 before and after Fiji groups had significantly higher average daily activity and rhythmicity rates compared to their respective AlCl3 before and after deionized water (DI) groups. One of the AlCl3 before DI groups exhibited no difference in rhythmicity rates compared to its respective AlCl3 after Fiji group. Overall, these results suggest that Fiji water might exert protective effects against AlCl3. The AlCl3 groups paired with Fiji water had higher activity and rhythmicity levels compared to the AlCl3 groups paired with DI. It is important for researchers to continue to study aluminum and possible preventatives for aluminum uptake.
Collapse
Affiliation(s)
- Kiri Li N. Stauch
- Laboratory of Behavioral Biology and Comparative Psychology, Department of Psychology, Oklahoma State University, Stillwater, OK 66047, USA
| | - Ana M. Chicas-Mosier
- Center for Environmentally Beneficial Catalysis, University of Kansas, Lawrence, KS 66045, USA
| | - Charles I. Abramson
- Laboratory of Behavioral Biology and Comparative Psychology, Department of Psychology, Oklahoma State University, Stillwater, OK 66047, USA
| |
Collapse
|
6
|
Lunn K, Frøslev T, Rhodes M, Taylor L, Oliveira HFM, Gresty CEA, Clare EL. Non-target effects of agri-environmental schemes on solitary bees and fungi in the United Kingdom. BULLETIN OF ENTOMOLOGICAL RESEARCH 2022; 112:734-744. [PMID: 36082699 DOI: 10.1017/s0007485322000414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Agri-environmental schemes (AES) are used to enhance pollinator diversity on agricultural farms within the UK. Though the impacts of these schemes on archetypal pollinator species such as the bumblebee (Bombus) and honeybee (Apis) are well-studied, the effects on non-target bee species like solitary bees, in the same environment, are generally lacking. One goal of AES is to alter floral provision and taxonomic composition of plant communities to provide better forage for pollinators, however, this may potentially impact other ecological communities such as fungal diversity associated with plant-bee communities. Fungi are integral in these bee communities as they can impact bee species both beneficially and detrimentally. We test the hypothesis that alteration of the environment through provision of novel plant communities has non-target effects on the fungi associated with solitary bee communities. We analyse fungal diversity and ecological networks formed between fungi and solitary bees present on 15 agricultural farms in the UK using samples from brood cells. The farms were allocated to two categories, low and high management, which differ in the number of agri-environmental measures implemented. Using internal transcribed spacer metabarcoding, we identified 456 fungal taxa that interact with solitary bees. Of these, 202 (approximately 44%) could be assigned to functional groups, the majority being pathotrophic and saprotrophic species. A large proportion was Ascosphaeraceae, a family of bee-specialist fungi. We considered the connectance, nestedness, modularity, nestedness overlap and decreasing fill, linkage density and fungal generality of the farms' bee-fungi ecological networks. We found no difference in the structure of bee-fungi ecological networks between low and high management farms, suggesting floral provision by AES has no significant impact on interactions between these two taxonomic groups. However, bee emergence was lower on the low management farms compared to high management, suggesting some limited non-target effects of AES. This study characterizes the fungal community associated with solitary bees and provides evidence that floral provision through AES does not impact fungal interactions.
Collapse
Affiliation(s)
- Katherine Lunn
- School of Biological and Chemical Sciences, Queen Mary University of London, London E1 4NS, UK
| | - Tobias Frøslev
- Globe Institute, University of Copenhagen, København, Denmark
| | - Madeleine Rhodes
- School of Biological and Chemical Sciences, Queen Mary University of London, London E1 4NS, UK
| | - Leah Taylor
- School of Biological and Chemical Sciences, Queen Mary University of London, London E1 4NS, UK
| | | | | | - Elizabeth L Clare
- School of Biological and Chemical Sciences, Queen Mary University of London, London E1 4NS, UK
- Department of Biology, York University, Toronto, Canada
| |
Collapse
|
7
|
StcU-2 Gene Mutation via CRISPR/Cas9 Leads to Misregulation of Spore-Cyst Formation in Ascosphaera apis. Microorganisms 2022; 10:microorganisms10102088. [PMID: 36296364 PMCID: PMC9607276 DOI: 10.3390/microorganisms10102088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/15/2022] [Accepted: 10/17/2022] [Indexed: 11/05/2022] Open
Abstract
Ascosphaera apis is the causative agent of honey bee chalkbrood disease, and spores are the only known source of infections. Interference with sporulation is therefore a promising way to manage A. apis. The versicolorin reductase gene (StcU-2) is a ketoreductase protein related to sporulation and melanin biosynthesis. To study the StcU-2 gene in ascospore production of A. apis, CRISPR/Cas9 was used, and eight hygromycin B antibiotic-resistant transformants incorporating enhanced green fluorescent protein (EGFP) were made and analyzed. PCR amplification, gel electrophoresis, and sequence analysis were used for target gene editing analysis and verification. The CRISPR/Cas9 editing successfully knocked out the StcU-2 gene in A. apis. StcU-2 mutants had shown albino and non-functional spore-cyst development and lost effective sporulation. In conclusion, editing of StcU-2 gene has shown direct relation with sporulation and melanin biosynthesis of A. apis; this effective sporulation reduction would reduce the spread and pathogenicity of A. apis to managed honey bee. To the best of our knowledge, this is the first time CRISPR/Cas9-mediated gene editing has been efficiently performed in A. apis, a fungal honey bee brood pathogen, which offers a comprehensive set of procedural references that contributes to A. apis gene function studies and consequent control of chalkbrood disease.
Collapse
|
8
|
Functional Properties and Antimicrobial Activity from Lactic Acid Bacteria as Resources to Improve the Health and Welfare of Honey Bees. INSECTS 2022; 13:insects13030308. [PMID: 35323606 PMCID: PMC8953987 DOI: 10.3390/insects13030308] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/17/2022] [Accepted: 03/19/2022] [Indexed: 02/04/2023]
Abstract
Simple Summary Honey bees play a pivotal role in the sustainability of ecosystems and biodiversity. Many factors including parasites, pathogens, pesticide residues, forage losses, and poor nutrition have been proposed to explain honey bee colony losses. Lactic acid bacteria (LAB) are normal inhabitants of the gastrointestinal tract of honey bees and their role has been consistently reported in the literature. In recent years, there have been numerous scientific evidence that the intestinal microbiota plays an essential role in honey bee health. Management strategies, based on supplementation of the gut microbiota with probiotics, may be important to increase stress tolerance and disease resistance. In this review, recent scientific advances on the use of LABs as microbial supplements in the diet of honey bees are summarized and discussed. Abstract Honey bees (Apis mellifera) are agriculturally important pollinators. Over the past decades, significant losses of wild and domestic bees have been reported in many parts of the world. Several biotic and abiotic factors, such as change in land use over time, intensive land management, use of pesticides, climate change, beekeeper’s management practices, lack of forage (nectar and pollen), and infection by parasites and pathogens, negatively affect the honey bee’s well-being and survival. The gut microbiota is important for honey bee growth and development, immune function, protection against pathogen invasion; moreover, a well-balanced microbiota is fundamental to support honey bee health and vigor. In fact, the structure of the bee’s intestinal bacterial community can become an indicator of the honey bee’s health status. Lactic acid bacteria are normal inhabitants of the gastrointestinal tract of many insects, and their presence in the honey bee intestinal tract has been consistently reported in the literature. In the first section of this review, recent scientific advances in the use of LABs as probiotic supplements in the diet of honey bees are summarized and discussed. The second section discusses some of the mechanisms by which LABs carry out their antimicrobial activity against pathogens. Afterward, individual paragraphs are dedicated to Chalkbrood, American foulbrood, European foulbrood, Nosemosis, and Varroosis as well as to the potentiality of LABs for their biological control.
Collapse
|
9
|
Gerdts JR, Roberts JMK, Simone-Finstrom M, Ogbourne SM, Tucci J. Genetic variation of Ascosphaera apis and colony attributes do not explain chalkbrood disease outbreaks in Australian honey bees. J Invertebr Pathol 2021; 180:107540. [PMID: 33516722 DOI: 10.1016/j.jip.2021.107540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 01/06/2021] [Accepted: 01/22/2021] [Indexed: 11/30/2022]
Abstract
Chalkbrood infection caused by the fungus Ascosphaera apis currently has a significant impact on Australia's apicultural industry. We investigated the genetic variation of A. apis and colony and apiary level conditions to determine if an emerging, more virulent strain or specific conditions were responsible for the prevalence of the disease. We identified six genetically distinct strains of A. apis, four have been reported elsewhere and two are unique to Australia. Colonies and individual larvae were found to be infected with multiple strains of A. apis, neither individual strains, combinations of strains, or obvious colony or apiary characteristics were found to be predictive of hive infection levels. These results suggest that host genotype plays an important role in colony level resistance to chalkbrood infection in Australia.
Collapse
Affiliation(s)
- Jody R Gerdts
- Department of Pharmacy and Biomedical Sciences, La Trobe Institute of Molecular Science, La Trobe University, PO Box 199, Bendigo, Victoria 3552, Australia.
| | - John M K Roberts
- Commonwealth Scientific and Industrial Research Organisation, Clunes Ross Street, Canberra, Australian Capital Territory 2601, Australia.
| | - Michael Simone-Finstrom
- Honey Bee Breeding, Genetics, and Physiology Laboratory, 1157 Ben Hur Road, Baton Rouge, LA 70820, United States.
| | - Steven M Ogbourne
- GeneCology Research Centre, University of the Sunshine Coast, 90 Sippy Downs Drive, Maroochydore 4556, Queensland, Australia; School of Science Engineering & Technology, University of the Sunshine Coast, 90 Sippy Downs Drive, Maroochydore 4556, Queensland, Australia.
| | - Joseph Tucci
- Department of Pharmacy and Biomedical Sciences, La Trobe Institute of Molecular Science, La Trobe University, PO Box 199, Bendigo, Victoria 3552, Australia.
| |
Collapse
|
10
|
Ye MH, Fan SH, Li XY, Tarequl IM, Yan CX, Wei WH, Yang SM, Zhou B. Microbiota dysbiosis in honeybee ( Apis mellifera L .) larvae infected with brood diseases and foraging bees exposed to agrochemicals. ROYAL SOCIETY OPEN SCIENCE 2021; 8:201805. [PMID: 33614099 PMCID: PMC7890499 DOI: 10.1098/rsos.201805] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 12/14/2020] [Indexed: 06/01/2023]
Abstract
American foulbrood (AFB) disease and chalkbrood disease (CBD) are important bacterial and fungal diseases, respectively, that affect honeybee broods. Exposure to agrochemicals is an abiotic stressor that potentially weakens honeybee colonies. Gut microflora alterations in adult honeybees associated with these biotic and abiotic factors have been investigated. However, microbial compositions in AFB- and CBD-infected larvae and the profile of whole-body microbiota in foraging bees exposed to agrochemicals have not been fully studied. In this study, bacterial and fungal communities in healthy and diseased (AFB/CBD) honeybee larvae were characterized by amplicon sequencing of bacterial 16S rRNA gene and fungal internal transcribed spacer1 region, respectively. The bacterial and fungal communities in disordered foraging bees poisoned by agrochemicals were analysed. Our results revealed that healthy larvae were significantly enriched in bacterial genera Lactobacillus and Stenotrophomonas and the fungal genera Alternaria and Aspergillus. The enrichment of these microorganisms, which had antagonistic activities against the etiologic agents for AFB and CBD, respectively, may protect larvae from potential infection. In disordered foraging bees, the relative abundance of bacterial genus Gilliamella and fungal species Cystofilobasidium macerans were significantly reduced, which may compromise hosts' capacities in nutrient absorption and immune defence against pathogens. Significantly higher frequency of environmentally derived fungi was observed in disordered foraging bees, which reflected the perturbed microbiota communities of hosts. Results from PICRUSt and FUNGuild analyses revealed significant differences in gene clusters of bacterial communities and fungal function profiles. Overall, results of this study provide references for the composition and function of microbial communities in AFB- and CBD-infected honeybee larvae and foraging bees exposed to agrochemicals.
Collapse
Affiliation(s)
- Man-Hong Ye
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, Jiangsu Province, People's Republic of China
| | - Shu-Hang Fan
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, Jiangsu Province, People's Republic of China
| | - Xiao-Yuan Li
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, Jiangsu Province, People's Republic of China
| | - Islam Mohd Tarequl
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, Jiangsu Province, People's Republic of China
| | - Chun-Xiang Yan
- Chunxiang Professional Beekeeping Cooperatives, Yangzhou 225009, Jiangsu Province, People's Republic of China
| | - Wan-Hong Wei
- Joint International Research Laboratory of Agricultural & Agri-Product Safety, Yangzhou University, Yangzhou 225009, Jiangsu Province, People's Republic of China
| | - Sheng-Mei Yang
- Joint International Research Laboratory of Agricultural & Agri-Product Safety, Yangzhou University, Yangzhou 225009, Jiangsu Province, People's Republic of China
| | - Bin Zhou
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, Jiangsu Province, People's Republic of China
| |
Collapse
|
11
|
Iorizzo M, Lombardi SJ, Ganassi S, Testa B, Ianiro M, Letizia F, Succi M, Tremonte P, Vergalito F, Cozzolino A, Sorrentino E, Coppola R, Petrarca S, Mancini M, De Cristofaro A. Antagonistic Activity against Ascosphaera apis and Functional Properties of Lactobacillus kunkeei Strains. Antibiotics (Basel) 2020; 9:E262. [PMID: 32443465 PMCID: PMC7277644 DOI: 10.3390/antibiotics9050262] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 05/15/2020] [Accepted: 05/17/2020] [Indexed: 02/07/2023] Open
Abstract
: Lactic acid bacteria (LAB) are an important group of honeybee gut microbiota. These bacteria are involved in food digestion, stimulate the immune system, and may antagonize undesirable microorganisms in the gastrointestinal tract. Lactobacillus kunkeei is a fructophilic lactic acid bacterium (FLAB) most frequently found in the gastrointestinal tracts of honeybees. Ascosphaera apis is an important pathogenic fungus of honeybee larvae; it can colonize the intestine, especially in conditions of nutritional or environmental stress that cause microbial dysbiosis. In this work, some functional properties of nine selected L. kunkeei strains were evaluated. The study focused on the antifungal activity of these strains against A. apis DSM 3116, using different matrices: cell lysate, broth culture, cell-free supernatant, and cell pellet. The cell lysate showed the highest antifungal activity. Moreover, the strains were shown to possess good cell-surface properties (hydrophobicity, auto-aggregation, and biofilm production) and a good resistance to high sugar concentrations. These L. kunkeei strains were demonstrated to be functional for use in "probiotic syrup", useful to restore the symbiotic communities of the intestine in case of dysbiosis and to exert a prophylactic action against A. apis.
Collapse
Affiliation(s)
- Massimo Iorizzo
- Department of Agriculture, Environmental and Food Sciences, University of Molise, 86100 Campobasso, Italy; (M.I.); (S.J.L.); (S.G.); (M.I.); (F.L.); (M.S.); (P.T.); (F.V.); (A.C.); (E.S.); (R.C.); (M.M.); (A.D.C.)
| | - Silvia Jane Lombardi
- Department of Agriculture, Environmental and Food Sciences, University of Molise, 86100 Campobasso, Italy; (M.I.); (S.J.L.); (S.G.); (M.I.); (F.L.); (M.S.); (P.T.); (F.V.); (A.C.); (E.S.); (R.C.); (M.M.); (A.D.C.)
| | - Sonia Ganassi
- Department of Agriculture, Environmental and Food Sciences, University of Molise, 86100 Campobasso, Italy; (M.I.); (S.J.L.); (S.G.); (M.I.); (F.L.); (M.S.); (P.T.); (F.V.); (A.C.); (E.S.); (R.C.); (M.M.); (A.D.C.)
| | - Bruno Testa
- Department of Agriculture, Environmental and Food Sciences, University of Molise, 86100 Campobasso, Italy; (M.I.); (S.J.L.); (S.G.); (M.I.); (F.L.); (M.S.); (P.T.); (F.V.); (A.C.); (E.S.); (R.C.); (M.M.); (A.D.C.)
| | - Mario Ianiro
- Department of Agriculture, Environmental and Food Sciences, University of Molise, 86100 Campobasso, Italy; (M.I.); (S.J.L.); (S.G.); (M.I.); (F.L.); (M.S.); (P.T.); (F.V.); (A.C.); (E.S.); (R.C.); (M.M.); (A.D.C.)
| | - Francesco Letizia
- Department of Agriculture, Environmental and Food Sciences, University of Molise, 86100 Campobasso, Italy; (M.I.); (S.J.L.); (S.G.); (M.I.); (F.L.); (M.S.); (P.T.); (F.V.); (A.C.); (E.S.); (R.C.); (M.M.); (A.D.C.)
| | - Mariantonietta Succi
- Department of Agriculture, Environmental and Food Sciences, University of Molise, 86100 Campobasso, Italy; (M.I.); (S.J.L.); (S.G.); (M.I.); (F.L.); (M.S.); (P.T.); (F.V.); (A.C.); (E.S.); (R.C.); (M.M.); (A.D.C.)
| | - Patrizio Tremonte
- Department of Agriculture, Environmental and Food Sciences, University of Molise, 86100 Campobasso, Italy; (M.I.); (S.J.L.); (S.G.); (M.I.); (F.L.); (M.S.); (P.T.); (F.V.); (A.C.); (E.S.); (R.C.); (M.M.); (A.D.C.)
| | - Franca Vergalito
- Department of Agriculture, Environmental and Food Sciences, University of Molise, 86100 Campobasso, Italy; (M.I.); (S.J.L.); (S.G.); (M.I.); (F.L.); (M.S.); (P.T.); (F.V.); (A.C.); (E.S.); (R.C.); (M.M.); (A.D.C.)
| | - Autilia Cozzolino
- Department of Agriculture, Environmental and Food Sciences, University of Molise, 86100 Campobasso, Italy; (M.I.); (S.J.L.); (S.G.); (M.I.); (F.L.); (M.S.); (P.T.); (F.V.); (A.C.); (E.S.); (R.C.); (M.M.); (A.D.C.)
| | - Elena Sorrentino
- Department of Agriculture, Environmental and Food Sciences, University of Molise, 86100 Campobasso, Italy; (M.I.); (S.J.L.); (S.G.); (M.I.); (F.L.); (M.S.); (P.T.); (F.V.); (A.C.); (E.S.); (R.C.); (M.M.); (A.D.C.)
| | - Raffaele Coppola
- Department of Agriculture, Environmental and Food Sciences, University of Molise, 86100 Campobasso, Italy; (M.I.); (S.J.L.); (S.G.); (M.I.); (F.L.); (M.S.); (P.T.); (F.V.); (A.C.); (E.S.); (R.C.); (M.M.); (A.D.C.)
| | - Sonia Petrarca
- CONAPROA, Consorzio Nazionale Produttori Apistici, 86100 Campobasso, Italy;
| | - Massimo Mancini
- Department of Agriculture, Environmental and Food Sciences, University of Molise, 86100 Campobasso, Italy; (M.I.); (S.J.L.); (S.G.); (M.I.); (F.L.); (M.S.); (P.T.); (F.V.); (A.C.); (E.S.); (R.C.); (M.M.); (A.D.C.)
| | - Antonio De Cristofaro
- Department of Agriculture, Environmental and Food Sciences, University of Molise, 86100 Campobasso, Italy; (M.I.); (S.J.L.); (S.G.); (M.I.); (F.L.); (M.S.); (P.T.); (F.V.); (A.C.); (E.S.); (R.C.); (M.M.); (A.D.C.)
| |
Collapse
|
12
|
Vuong HQ, McFrederick QS. Comparative Genomics of Wild Bee and Flower Isolated Lactobacillus Reveals Potential Adaptation to the Bee Host. Genome Biol Evol 2020; 11:2151-2161. [PMID: 31243442 PMCID: PMC6685495 DOI: 10.1093/gbe/evz136] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/24/2019] [Indexed: 01/18/2023] Open
Abstract
Symbiosis with bacteria is common across insects, resulting in adaptive host phenotypes. The recently described bacterial symbionts Lactobacillus micheneri, Lactobacillus timberlakei, and Lactobacillus quenuiae are found in wild bee pollen provisions, bee guts, and flowers but have small genomes in comparison to other lactobacilli. We sequenced, assembled, and analyzed 27 new L. micheneri clade genomes to identify their possible ecological functions in flower and bee hosts. We determined possible key functions for the L. micheneri clade by identifying genes under positive selection, balancing selection, genes gained or lost, and population structure. A host adherence factor shows signatures of positive selection, whereas other orthologous copies are variable within the L. micheneri clade. The host adherence factors serve as strong evidence that these lactobacilli are adapted to animal hosts as their targets are found in the digestive tract of insects. Next, the L. micheneri clade is adapted toward a nutrient-rich environment, corroborating observations of where L. micheneri is most abundant. Additionally, genes involved in osmotolerance, pH tolerance, temperature resistance, detoxification, and oxidative stress response show signatures of selection that allow these bacteria to thrive in pollen and nectar masses in bee nests and in the bee gut. Altogether, these findings not only suggest that the L. micheneri clade is primarily adapted to the wild bee gut but also exhibit genomic features that would be beneficial to survival in flowers.
Collapse
Affiliation(s)
- Hoang Q Vuong
- Department of Entomology, University California Riverside.,Department of Plant Pathology and Microbiology, University California Riverside
| | | |
Collapse
|
13
|
Karvonen A, Fenton A, Sundberg L. Sequential infection can decrease virulence in a fish-bacterium-fluke interaction: Implications for aquaculture disease management. Evol Appl 2019; 12:1900-1911. [PMID: 31700534 PMCID: PMC6824072 DOI: 10.1111/eva.12850] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 07/10/2019] [Accepted: 07/12/2019] [Indexed: 12/13/2022] Open
Abstract
Hosts are typically infected with multiple strains or genotypes of one or several parasite species. These infections can take place simultaneously, but also at different times, i.e. sequentially, when one of the parasites establishes first. Sequential parasite dynamics are common in nature, but also in intensive farming units such as aquaculture. However, knowledge of effects of previous exposures on virulence of current infections in intensive farming is very limited. This is critical as consecutive epidemics and infection history of a host could underlie failures in management practices and medical intervention of diseases. Here, we explored effects of timing of multiple infections on virulence in two common aquaculture parasites, the bacterium Flavobacterium columnare and the fluke Diplostomum pseudospathaceum. We exposed fish hosts first to flukes and then to bacteria in two separate experiments, altering timing between the infections from few hours to several weeks. We found that both short-term and long-term differences in timing of the two infections resulted in significant, genotype-specific decrease in bacterial virulence. Second, we developed a mathematical model, parameterized from our experimental results, to predict the implications of sequential infections for epidemiological progression of the disease, and levels of fish population suppression, in an aquaculture setting. Predictions of the model showed that sequential exposure of hosts can decrease the population-level impact of the bacterial epidemic, primarily through the increased recovery rate of sequentially infected hosts, thereby substantially protecting the population from the detrimental impact of infection. However, these effects depended on bacterial strain-fluke genotype combinations, suggesting the genetic composition of the parasite populations can greatly influence the degree of host suppression. Overall, these results suggest that host infection history can have significant consequences for the impact of infection at host population level, potentially shaping parasite epidemiology, disease dynamics and evolution of virulence in farming environments.
Collapse
Affiliation(s)
- Anssi Karvonen
- Department of Biological and Environmental ScienceUniversity of JyvaskylaJyvaskylaFinland
| | - Andy Fenton
- Institute of Integrative BiologyUniversity of LiverpoolLiverpoolUK
| | - Lotta‐Riina Sundberg
- Department of Biological and Environmental ScienceUniversity of JyvaskylaJyvaskylaFinland
- Nanoscience CenterUniversity of JyvaskylaJyvaskylaFinland
| |
Collapse
|
14
|
Eidelman A, Cohen C, Navarro-Castilla Á, Filler S, Gutiérrez R, Bar-Shira E, Shahar N, Garrido M, Halle S, Romach Y, Barja I, Tasker S, Harrus S, Friedman A, Hawlena H. The dynamics between limited-term and lifelong coinfecting bacterial parasites in wild rodent hosts. ACTA ACUST UNITED AC 2019; 222:jeb.203562. [PMID: 31285244 DOI: 10.1242/jeb.203562] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 07/03/2019] [Indexed: 12/13/2022]
Abstract
Interactions between coinfecting parasites may take various forms, either direct or indirect, facilitative or competitive, and may be mediated by either bottom-up or top-down mechanisms. Although each form of interaction leads to different evolutionary and ecological outcomes, it is challenging to tease them apart throughout the infection period. To establish the first step towards a mechanistic understanding of the interactions between coinfecting limited-term bacterial parasites and lifelong bacterial parasites, we studied the coinfection of Bartonella sp. (limited-term) and Mycoplasma sp. (lifelong), which commonly co-occur in wild rodents. We infected Bartonella- and Mycoplasma-free rodents with each species, and simultaneously with both, and quantified the infection dynamics and host responses. Bartonella benefited from the interaction; its infection load decreased more slowly in coinfected rodents than in rodents infected with Bartonella alone. There were no indications for bottom-up effects, but coinfected rodents experienced various changes, depending on the infection stage, in their body mass, stress levels and activity pattern, which may further affect bacterial replication and transmission. Interestingly, the infection dynamics and changes in the average coinfected rodent traits were more similar to the chronic effects of Mycoplasma infection, whereas coinfection uniquely impaired the host's physiological and behavioral stability. These results suggest that parasites with distinct life history strategies may interact, and their interaction may be asymmetric, non-additive, multifaceted and dynamic through time. Because multiple, sometimes contrasting, forms of interactions are simultaneously at play and their relative importance alternates throughout the course of infection, the overall outcome may change under different ecological conditions.
Collapse
Affiliation(s)
- Anat Eidelman
- Mitrani Department of Desert Ecology, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion 8499000, Israel
| | - Carmit Cohen
- Mitrani Department of Desert Ecology, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion 8499000, Israel.,Infection Prevention & Control Unit, Sheba Medical Center, Tel Hashomer, Ramat Gan 52621, Israel
| | - Álvaro Navarro-Castilla
- Department of Biology, Faculty of Sciences, University Autonomous of Madrid, Madrid 28049, Spain
| | - Serina Filler
- School of Veterinary Sciences, University of Bristol, Langford BS40 5DU, UK
| | - Ricardo Gutiérrez
- Koret School of Veterinary Medicine, Faculty of Agricultural, Nutritional and Environmental Sciences, The Hebrew University of Jerusalem, Rehovot 7610001, Israel
| | - Enav Bar-Shira
- Section of Immunology, Department of Animal Sciences, Faculty of Agricultural, Nutritional and Environmental Sciences, The Hebrew University of Jerusalem, Rehovot 7610001, Israel
| | - Naama Shahar
- Mitrani Department of Desert Ecology, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion 8499000, Israel
| | - Mario Garrido
- Mitrani Department of Desert Ecology, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion 8499000, Israel
| | - Snir Halle
- Mitrani Department of Desert Ecology, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion 8499000, Israel
| | - Yoav Romach
- The Racah Institute of Physics, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Isabel Barja
- Department of Biology, Faculty of Sciences, University Autonomous of Madrid, Madrid 28049, Spain.,Center for Research on Biodiversity and Global Change (CIBC-UAM), University Autonomous of Madrid, Madrid 28049, Spain
| | - Séverine Tasker
- School of Veterinary Sciences, University of Bristol, Langford BS40 5DU, UK
| | - Shimon Harrus
- Koret School of Veterinary Medicine, Faculty of Agricultural, Nutritional and Environmental Sciences, The Hebrew University of Jerusalem, Rehovot 7610001, Israel
| | - Aharon Friedman
- Section of Immunology, Department of Animal Sciences, Faculty of Agricultural, Nutritional and Environmental Sciences, The Hebrew University of Jerusalem, Rehovot 7610001, Israel
| | - Hadas Hawlena
- Mitrani Department of Desert Ecology, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion 8499000, Israel
| |
Collapse
|
15
|
Abstract
Abstract
Colony losses, including those induced by the colony collapse disorder, are an urgent problem of contemporary apiculture which has been capturing the attention of both apiculturists and the research community. CCD is characterized by the absence of adult dead bees in the hive in which few workers and a queen remain, the ratio between the brood quantity and the number of workers is heavily disturbed in favor of the former, and more than enough food is present. Robbing behavior and pests usually attacking the weakened colony do not occur. In the present paper, the causes of the emergence of this problem are discussed, as well as the measures of its prevention.
The following factors, which lead to colony losses, are analyzed: shortage of high-quality food (pollen and honey); infestation with parasites, primarily with Varroa destructor, and mixed virus infections; bacterial infections (American and European foulbrood), fungal infections (nosemosis and ascosphaerosis) and trypanosomal infections (lotmariosis); and, finally, general management of the apiary.
Certain preventive measures are proposed: (1) providing ample high-quality forage and clean water, (2) avoiding sugarisation, i.e. superfluous use of sugar syrup, (3) meeting the nutritional needs of the colony, (4) when feeding bees, taking care of the timing and the composition of diet, avoiding pure sugar syrup which in excessive quantities may induce energetic and oxidative stress, (5) when there is a shortage of natural feed – honey in the brood chamber – use sugar syrup with natural/artificial supplements to avoid protein starvation, (6) organized control of V. destructor in the colonies is obligatory due to its vector role, and (7) compliance with hygienic and sanitary measures and principles of good apiculture practice and management in apiaries. To conclude, all preventive measures are feasible in compliance with rules and regulations concerning regular spring and autumn bee health monitoring by licensed veterinarians, who can propose adequate treatments if necessary.
Collapse
|
16
|
Valverde-Garcia P, Santiago-Álvarez C, Thomas MB, Maranhao EAA, Garrido-Jurado I, Quesada-Moraga E. Sublethal effects of mixed fungal infections on the Moroccan locust, Dociostaurus maroccanus. J Invertebr Pathol 2018; 161:61-69. [PMID: 30594516 DOI: 10.1016/j.jip.2018.12.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 12/20/2018] [Accepted: 12/21/2018] [Indexed: 11/30/2022]
Abstract
The effects of single and mixed infections with Beauveria bassiana (EABb 90/2-Dm) and Metarhizium acridum (IMI 330189) strains on survival, feeding and reproduction of thermoregulating Dociostaurus maroccanus were evaluated. Adult locusts (2-3 days post fledging) were treated with low dosages of both fungal pathogens alone and in mixture (total dosage for single treatments and combinations = 1 × 102 and 1 × 103 spores per insect). M. acridum IMI 330189 was more virulent than B. bassiana EABb 90/2-Dm at both dosages. In the mixed infections, in which half of the infective units of the more virulent pathogen were replaced by the less virulent pathogen, the analysis of the cumulative insect mortality after 30 days suggested additive interaction in the lethal effects between the two strains. All fungal treatments, except EABb 90/2-Dm at 1 × 102 spores per insect showed reduction in per capita feeding, as indicated by fecal production per insect per day when insects were maintained at 27 ± 2 °C (32-51% of reduction compared with the control); but only IMI 330189 caused significant reduction in per capita feeding (50%) when those insects were allowed to thermoregulate. Both strains and their mixtures caused a significant reduction of locust fecundity, with a 21-53% reduction in the number of egg-pods per female, and 30-65% reduction in the number of fertile eggs per female. In both sublethal effects (feeding and fecundity) a potential antagonistic interaction between the fungal strains was detected. Locust fecundity (egg-pods per female) and per capita feeding were positively correlated (r = 0.783). Implications of these findings on the potential use of both strains to control D. maroccanus populations are discussed.
Collapse
Affiliation(s)
- Pablo Valverde-Garcia
- Department of Agricultural and Forestry Sciences, ETSIAM, University of Cordoba, Building C4, Campus of Rabanales, 14071 Cordoba, Spain.
| | - Cándido Santiago-Álvarez
- Department of Agricultural and Forestry Sciences, ETSIAM, University of Cordoba, Building C4, Campus of Rabanales, 14071 Cordoba, Spain.
| | - Matthew B Thomas
- Center for Infectious Disease Dynamics and Department of Entomology, 001 Chemical Ecology Lab, Penn State, University Park, PA 16802, USA.
| | - Elizabeth A A Maranhao
- Instituto Agronômico de Pernambuco-IPA, Cx Postal 03, CEP 55602-420 Vitória de Santo Antão, PE, Brazil.
| | - Inmaculada Garrido-Jurado
- Department of Agricultural and Forestry Sciences, ETSIAM, University of Cordoba, Building C4, Campus of Rabanales, 14071 Cordoba, Spain.
| | - Enrique Quesada-Moraga
- Department of Agricultural and Forestry Sciences, ETSIAM, University of Cordoba, Building C4, Campus of Rabanales, 14071 Cordoba, Spain.
| |
Collapse
|
17
|
Karvonen A, Jokela J, Laine AL. Importance of Sequence and Timing in Parasite Coinfections. Trends Parasitol 2018; 35:109-118. [PMID: 30578150 DOI: 10.1016/j.pt.2018.11.007] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 11/21/2018] [Accepted: 11/25/2018] [Indexed: 12/17/2022]
Abstract
Coinfections by multiple parasites predominate in the wild. Interactions between parasites can be antagonistic, neutral, or facilitative, and they can have significant implications for epidemiology, disease dynamics, and evolution of virulence. Coinfections commonly result from sequential exposure of hosts to different parasites. We argue that the sequential nature of coinfections is important for the consequences of infection in both natural and man-made environments. Coinfections accumulate during host lifespan, determining the structure of the parasite infracommunity. Interactions within the parasite community and their joint effect on the host individual potentially shape evolution of parasite life-history traits and transmission biology. Overall, sequential coinfections have the potential to change evolutionary and epidemiological outcomes of host-parasite interactions widely across plant and animal systems.
Collapse
Affiliation(s)
- Anssi Karvonen
- University of Jyvaskyla, Department of Biological and Environmental Science, P.O. Box 35, FI-40014 University of Jyvaskyla, Finland.
| | - Jukka Jokela
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland; ETH Zürich, Institute of Integrative Biology (IBZ), 8092 Zürich, Switzerland
| | - Anna-Liisa Laine
- Department of Evolutionary Biology and Environmental Studies, University of Zürich, 8057 Zürich, Switzerland; Research Centre for Ecological Change, Organismal & Evolutionary Biology, P.O. Box 65 (Viikinkaari 1), FI-00014 University of Helsinki, Finland
| |
Collapse
|
18
|
Sinotte VM, Freedman SN, Ugelvig LV, Seid MA. Camponotusfloridanus Ants Incur a Trade-Off between Phenotypic Development and Pathogen Susceptibility from Their Mutualistic Endosymbiont Blochmannia. INSECTS 2018; 9:E58. [PMID: 29857577 PMCID: PMC6023366 DOI: 10.3390/insects9020058] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 05/23/2018] [Accepted: 05/30/2018] [Indexed: 11/21/2022]
Abstract
Various insects engage in microbial mutualisms in which the reciprocal benefits exceed the costs. Ants of the genus Camponotus benefit from nutrient supplementation by their mutualistic endosymbiotic bacteria, Blochmannia, but suffer a cost in tolerating and regulating the symbiont. This cost suggests that the ants face secondary consequences such as susceptibility to pathogenic infection and transmission. In order to elucidate the symbiont's effects on development and disease defence, Blochmannia floridanus was reduced in colonies of Camponotus floridanus using antibiotics. Colonies with reduced symbiont levels exhibited workers of smaller body size, smaller colony size, and a lower major-to-minor worker caste ratio, indicating the symbiont's crucial role in development. Moreover, these ants had decreased cuticular melanisation, yet higher resistance to the entomopathogen Metarhizium brunneum, suggesting that the symbiont reduces the ants' ability to fight infection, despite the availability of melanin to aid in mounting an immune response. While the benefits of improved growth and development likely drive the mutualism, the symbiont imposes a critical trade-off. The ants' increased susceptibility to infection exacerbates the danger of pathogen transmission, a significant risk given ants' social lifestyle. Thus, the results warrant research into potential adaptations of the ants and pathogens that remedy and exploit the described disease vulnerability.
Collapse
Affiliation(s)
- Veronica M Sinotte
- Department of Biology, Program of Neuroscience, University of Scranton, Loyola Science Center, Scranton, PA 1851-4699, USA.
- Centre for Social Evolution, Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Universitetsparken 15, DK-2100 Copenhagen, Denmark.
| | - Samantha N Freedman
- Department of Biology, Program of Neuroscience, University of Scranton, Loyola Science Center, Scranton, PA 1851-4699, USA.
- Department of Pathology, University of Iowa, 1080 Medical Laboratories, 500 Newton Road, Iowa City, IA 52242-8205, USA.
| | - Line V Ugelvig
- Centre for Social Evolution, Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Universitetsparken 15, DK-2100 Copenhagen, Denmark.
| | - Marc A Seid
- Department of Biology, Program of Neuroscience, University of Scranton, Loyola Science Center, Scranton, PA 1851-4699, USA.
| |
Collapse
|
19
|
Evison SE, Jensen AB. The biology and prevalence of fungal diseases in managed and wild bees. CURRENT OPINION IN INSECT SCIENCE 2018; 26:105-113. [PMID: 29764649 DOI: 10.1016/j.cois.2018.02.010] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 12/15/2017] [Accepted: 02/02/2018] [Indexed: 06/08/2023]
Abstract
Managed and wild bees, whether solitary or social have a plethora of microbial associations that vary in their influence on the health of the bees. In this review, we summarise our current knowledge of aspects of the biology and ecology of bee associated fungi. The biology of bees that fungi are associated with are described, and the likely influences on fungal transmission are discussed. There is a clear disparity in research on fungi associated with managed compared to wild bees, leaving gaps in our understanding of fungal pathogen epidemiology. Translocation of bees to meet global pollination needs will increase exposure of bees to exotic pathogens. Thus, filling these gaps is an important step towards mitigating the impact of fungal diseases in bees.
Collapse
Affiliation(s)
- Sophie Ef Evison
- Animal and Plant Sciences, University of Sheffield, Alfred Denny Building, Western Bank, Sheffield S10 2TN, UK.
| | - Annette B Jensen
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C., Denmark
| |
Collapse
|
20
|
Liu Y, Yan L, Li Z, Huang WF, Pokhrel S, Liu X, Su S. Larva-mediated chalkbrood resistance-associated single nucleotide polymorphism markers in the honey bee Apis mellifera. INSECT MOLECULAR BIOLOGY 2016; 25:239-250. [PMID: 26991518 DOI: 10.1111/imb.12216] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Chalkbrood is a disease affecting honey bees that seriously impairs brood growth and productivity of diseased colonies. Although honey bees can develop chalkbrood resistance naturally, the details underlying the mechanisms of resistance are not fully understood, and no easy method is currently available for selecting and breeding resistant bees. Finding the genes involved in the development of resistance and identifying single nucleotide polymorphisms (SNPs) that can be used as molecular markers of resistance is therefore a high priority. We conducted genome resequencing to compare resistant (Res) and susceptible (Sus) larvae that were selected following in vitro chalkbrood inoculation. Twelve genomic libraries, including 14.4 Gb of sequence data, were analysed using SNP-finding algorithms. Unique SNPs derived from chromosomes 2 and 11 were analysed in this study. SNPs from resistant individuals were confirmed by PCR and Sanger sequencing using in vitro reared larvae and resistant colonies. We found strong support for an association between the C allele at SNP C2587245T and chalkbrood resistance. SNP C2587245T may be useful as a genetic marker for the selection of chalkbrood resistance and high royal jelly production honey bee lines, thereby helping to minimize the negative effects of chalkbrood on managed honey bees.
Collapse
Affiliation(s)
- Y Liu
- College of Bee Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - L Yan
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Z Li
- College of Bee Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - W-F Huang
- College of Bee Science, Fujian Agriculture and Forestry University, Fuzhou, China
- Illinois Natural History Survey, Prairie Research Institute, University of Illinois at Urbana-Champaign, Illinois, USA
| | - S Pokhrel
- College of Bee Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - X Liu
- College of Bee Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - S Su
- College of Bee Science, Fujian Agriculture and Forestry University, Fuzhou, China
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
21
|
Araújo J, Hughes D. Diversity of Entomopathogenic Fungi. GENETICS AND MOLECULAR BIOLOGY OF ENTOMOPATHOGENIC FUNGI 2016; 94:1-39. [DOI: 10.1016/bs.adgen.2016.01.001] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
22
|
Louhi KR, Sundberg LR, Jokela J, Karvonen A. Interactions among bacterial strains and fluke genotypes shape virulence of co-infection. Proc Biol Sci 2015; 282:20152097. [PMID: 26674949 PMCID: PMC4707758 DOI: 10.1098/rspb.2015.2097] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 11/11/2015] [Indexed: 12/15/2022] Open
Abstract
Most studies of virulence of infection focus on pairwise host-parasite interactions. However, hosts are almost universally co-infected by several parasite strains and/or genotypes of the same or different species. While theory predicts that co-infection favours more virulent parasite genotypes through intensified competition for host resources, knowledge of the effects of genotype by genotype (G × G) interactions between unrelated parasite species on virulence of co-infection is limited. Here, we tested such a relationship by challenging rainbow trout with replicated bacterial strains and fluke genotypes both singly and in all possible pairwise combinations. We found that virulence (host mortality) was higher in co-infections compared with single infections. Importantly, we also found that the overall virulence was dependent on the genetic identity of the co-infecting partners so that the outcome of co-infection could not be predicted from the respective virulence of single infections. Our results imply that G × G interactions among co-infecting parasites may significantly affect host health, add to variance in parasite fitness and thus influence evolutionary dynamics and ecology of disease in unexpected ways.
Collapse
Affiliation(s)
- Katja-Riikka Louhi
- Department of Biological and Environmental Science, University of Jyväskylä, PO Box 35, 40014, Jyväskylä, Finland
| | - Lotta-Riina Sundberg
- Department of Biological and Environmental Science, University of Jyväskylä, PO Box 35, 40014, Jyväskylä, Finland Centre of Excellence in Biological Interactions, University of Jyväskylä, PO Box 35, 40014, Jyväskylä, Finland
| | - Jukka Jokela
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland ETH Zürich, Institute of Integrative Biology, 8092 Zürich, Switzerland
| | - Anssi Karvonen
- Department of Biological and Environmental Science, University of Jyväskylä, PO Box 35, 40014, Jyväskylä, Finland
| |
Collapse
|
23
|
Klinger EG, Vojvodic S, DeGrandi-Hoffman G, Welker DL, James RR. Mixed infections reveal virulence differences between host-specific bee pathogens. J Invertebr Pathol 2015; 129:28-35. [PMID: 25982695 DOI: 10.1016/j.jip.2015.05.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Revised: 04/27/2015] [Accepted: 05/05/2015] [Indexed: 02/04/2023]
Abstract
Dynamics of host-pathogen interactions are complex, often influencing the ecology, evolution and behavior of both the host and pathogen. In the natural world, infections with multiple pathogens are common, yet due to their complexity, interactions can be difficult to predict and study. Mathematical models help facilitate our understanding of these evolutionary processes, but empirical data are needed to test model assumptions and predictions. We used two common theoretical models regarding mixed infections (superinfection and co-infection) to determine which model assumptions best described a group of fungal pathogens closely associated with bees. We tested three fungal species, Ascosphaera apis, Ascosphaera aggregata and Ascosphaera larvis, in two bee hosts (Apis mellifera and Megachile rotundata). Bee survival was not significantly different in mixed infections vs. solo infections with the most virulent pathogen for either host, but fungal growth within the host was significantly altered by mixed infections. In the host A. mellifera, only the most virulent pathogen was present in the host post-infection (indicating superinfective properties). In M. rotundata, the most virulent pathogen co-existed with the lesser-virulent one (indicating co-infective properties). We demonstrated that the competitive outcomes of mixed infections were host-specific, indicating strong host specificity among these fungal bee pathogens.
Collapse
Affiliation(s)
- Ellen G Klinger
- USDA-ARS Pollinating Insect Research Unit, 1410 North 800 East, Logan, UT 84341, United States; Utah State University, 5305 Old Main Hill, Logan, UT 84322, United States.
| | - Svjetlana Vojvodic
- University of Arizona, Center for Insect Science, 1041 E. Lowell St., Tucson, AZ 85721, United States
| | - Gloria DeGrandi-Hoffman
- USDA-ARS Carl Hayden Bee Research Center, 2000 East Allen Road, Tucson, AZ 85721, United States
| | - Dennis L Welker
- Utah State University, 5305 Old Main Hill, Logan, UT 84322, United States
| | - Rosalind R James
- USDA-ARS Pollinating Insect Research Unit, 1410 North 800 East, Logan, UT 84341, United States
| |
Collapse
|
24
|
Abstract
Parasite virulence, or the damage a parasite does to its host, is measured in terms of both host costs (reductions in host growth, reproduction and survival) and parasite benefits (increased transmission and parasite numbers) in the literature. Much work has shown that ecological and genetic factors can be strong selective forces in virulence evolution. This review uses kin selection theory to explore how variations in host ecological parameters impact the genetic relatedness of parasite populations and thus virulence. We provide a broad overview of virulence and population genetics studies and then draw connections to existing knowledge about natural parasite populations. The impact of host movement (transporting parasites) and host resistance (filtering parasites) on the genetic structure and virulence of parasite populations is explored, and empirical studies of these factors using Plasmodium and trematode systems are proposed.
Collapse
|
25
|
The occurrence of two species of Entomophthorales (Entomophthoromycota), pathogens of Sitobion avenae and Myzus persicae (Hemiptera: Aphididae), in Tunisia. BIOMED RESEARCH INTERNATIONAL 2013; 2013:838145. [PMID: 23862158 PMCID: PMC3697232 DOI: 10.1155/2013/838145] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Revised: 04/22/2013] [Accepted: 05/28/2013] [Indexed: 11/29/2022]
Abstract
The natural occurrence of entomophthoralean fungi pathogenic towards aphids on cereal and potato crops was investigated in the years 2009, 2010, and 2011. Infected aphids were sampled in three bioclimatic zones in Tunisia (Beja, Cap bon, and Kairouan) and fungal species were determined based on morphological characters such as shape, size, and number of nuclei in the primary conidia. Polymerase Chain Reaction (PCR) on the internal transcribed spacer 1 region (ITS1) was used to verify morphological determination. Both methods gave consistent results and we documented for the first time the natural occurrence of two fungal species from the order Entomophthorales (phylum Entomophthoromycota), Pandora neoaphidis and Entomophthora planchoniana. Both fungi were recorded on the aphid species Sitobion avenae and Myzus persicae on barley ears and potato leaves, respectively. Moreover, natural mixed infections by both species (P. neoaphidis and E. planchoniana) were documented on the target aphids. This investigation provides basic information of entomopathogenic fungi infecting economically important aphids in Tunisia.
Collapse
|
26
|
Farooqui T. A potential link among biogenic amines-based pesticides, learning and memory, and colony collapse disorder: A unique hypothesis. Neurochem Int 2013; 62:122-36. [DOI: 10.1016/j.neuint.2012.09.020] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2012] [Revised: 09/27/2012] [Accepted: 09/30/2012] [Indexed: 12/13/2022]
|
27
|
Jensen AB, Aronstein K, Flores JM, Vojvodic S, Palacio MA, Spivak M. Standard methods for fungal brood disease research. JOURNAL OF APICULTURAL RESEARCH 2013; 52:10.3896/IBRA.1.52.1.13. [PMID: 24198438 PMCID: PMC3816652 DOI: 10.3896/ibra.1.52.1.13] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Chalkbrood and stonebrood are two fungal diseases associated with honey bee brood. Chalkbrood, caused by Ascosphaera apis, is a common and widespread disease that can result in severe reduction of emerging worker bees and thus overall colony productivity. Stonebrood is caused by Aspergillus spp. that are rarely observed, so the impact on colony health is not very well understood. A major concern with the presence of Aspergillus in honey bees is the production of airborne conidia, which can lead to allergic bronchopulmonary aspergillosis, pulmonary aspergilloma, or even invasive aspergillosis in lung tissues upon inhalation by humans. In the current chapter we describe the honey bee disease symptoms of these fungal pathogens. In addition, we provide research methodologies and protocols for isolating and culturing, in vivo and in vitro assays that are commonly used to study these host pathogen interactions. We give guidelines on the preferred methods used in current research and the application of molecular techniques. We have added photographs, drawings and illustrations to assist bee-extension personnel and bee scientists in the control of these two diseases.
Collapse
Affiliation(s)
- Annette Bruun Jensen
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1817 Frederiksberg C, Denmark
- Corresponding author:
| | - Kathrine Aronstein
- Honey Bee Research Unit, USDA-ARS, 2413 E. Hwy. 83, Weslaco, TX 78596, USA
| | - José Manuel Flores
- Department of Zoology, University of Córdoba, Campus Universitario de Rabanales (Ed. C-1), 14071, Córdoba, Spain
| | - Svjetlana Vojvodic
- Center for Insect Science, University of Arizona, 1041 E. Lowell Street, PO Box 210106, Tucson, AZ 85721-0106, USA
| | - María Alejandra Palacio
- Unidad Integrada INTA – Facultad de Ciencias Ags, Universidad Nacional de Mar del Plata, CC 276,7600 Balcarce, Argentina
| | - Marla Spivak
- Department of Entomology, University of Minnesota, St. Paul, Minnesota 55108, USA
| |
Collapse
|