1
|
Alsaiari AA, Hakami MA, Alotaibi BS, Alkhalil SS, Alkhorayef N, Khan K, Jalal K. Delineating multi-epitopes vaccine designing from membrane protein CL5 against all monkeypox strains: a pangenome reverse vaccinology approach. J Biomol Struct Dyn 2024; 42:8385-8406. [PMID: 37599459 DOI: 10.1080/07391102.2023.2248301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 08/02/2023] [Indexed: 08/22/2023]
Abstract
The recently identified monkeypox virus (MPXV or mpox) is a zoonotic orthopox virus that infects humans and causes diseases with traits like smallpox. The world health organization (WHO) estimates that 3-6% of MPXV cases result in death. As it might impact everyone globally, like COVID, and become the next pandemic, the cure for this disease is important for global public health. The high incidence and disease ratio of MPXV necessitates immediate efforts to design a unique vaccine candidate capable of addressing MPXV diseases. Here, we used a computational pan-genome-based vaccine design strategy for all currently reported 19 MPXV strains acquired from different regions of the world. Thus, this study's objective was to develop a new and safe vaccine candidate against MPXV by targeting the membrane CL5 protein; identified after the pangenome analysis. Proteomics and reverse vaccinology have covered up all of the MPXV epitopes that would usually stimulate robust host immune responses. Following this, only two mapped (MHC-I, MHC-II, and B-cell) epitopes were observed to be extremely effective that can be used in the construction of CL5 protein vaccine candidates. The suggested vaccine (V5) candidate from eight vaccine models was shown to be antigenic, non-allergenic, and stable (with 213 amino acids). The vaccine's candidate efficacy was evaluated by using many in silico methods to predict, improve, and validate its 3D structure. Molecular docking and molecular dynamics simulations further reveal that the proposed vaccine candidate ensemble has a high interaction energy with the HLAs and TRL2/4 immunological receptors under study. Later, the vaccine sequence was used to generate an expression vector for the E. coli K12 strain. Further study uncovers that V5 was highly immunogenic because it produced robust primary, secondary, and tertiary immune responses. Eventually, the use of computer-aided vaccine designing may significantly reduce costs and speed up the process of developing vaccines. Although, the results of this research are promising, however, more research (experimental; in vivo, and in vitro studies) is needed to verify the biological efficacy of the proposed vaccine against MPXV.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Ahad Amer Alsaiari
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
| | - Mohammed Ageeli Hakami
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Al- Quwayiyah, Shaqra University, Riyadh, Saudi Arabia
| | - Bader S Alotaibi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Al- Quwayiyah, Shaqra University, Riyadh, Saudi Arabia
| | - Samia S Alkhalil
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Al- Quwayiyah, Shaqra University, Riyadh, Saudi Arabia
| | - Nada Alkhorayef
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Al- Quwayiyah, Shaqra University, Riyadh, Saudi Arabia
| | - Kanwal Khan
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Khurshid Jalal
- HEJ Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| |
Collapse
|
2
|
Nagy GÁ, Tombácz D, Prazsák I, Csabai Z, Dörmő Á, Gulyás G, Kemenesi G, Tóth GE, Holoubek J, Růžek D, Kakuk B, Boldogkői Z. Exploring the transcriptomic profile of human monkeypox virus via CAGE and native RNA sequencing approaches. mSphere 2024; 9:e0035624. [PMID: 39191390 PMCID: PMC11423596 DOI: 10.1128/msphere.00356-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 07/31/2024] [Indexed: 08/29/2024] Open
Abstract
In this study, we employed short- and long-read sequencing technologies to delineate the transcriptional architecture of the human monkeypox virus and to identify key regulatory elements that govern its gene expression. Specifically, we conducted a transcriptomic analysis to annotate the transcription start sites (TSSs) and transcription end sites (TESs) of the virus by utilizing Cap Analysis of gene expression sequencing on the Illumina platform and direct RNA sequencing on the Oxford Nanopore technology device. Our investigations uncovered significant complexity in the use of alternative TSSs and TESs in viral genes. In this research, we also detected the promoter elements and poly(A) signals associated with the viral genes. Additionally, we identified novel genes in both the left and right variable regions of the viral genome.IMPORTANCEGenerally, gaining insight into how the transcription of a virus is regulated offers insights into the key mechanisms that control its life cycle. The recent outbreak of the human monkeypox virus has underscored the necessity of understanding the basic biology of its causative agent. Our results are pivotal for constructing a comprehensive transcriptomic atlas of the human monkeypox virus, providing valuable resources for future studies.
Collapse
Affiliation(s)
- Gergely Ármin Nagy
- Department of Medical Biology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Dóra Tombácz
- Department of Medical Biology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - István Prazsák
- Department of Medical Biology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Zsolt Csabai
- Department of Medical Biology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Ákos Dörmő
- Department of Medical Biology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Gábor Gulyás
- Department of Medical Biology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Gábor Kemenesi
- National Laboratory of Virology, Szentágothai Research Centre, University of Pécs, Pécs, Hungary
- Institute of Biology, Faculty of Sciences, University of Pécs, Pécs, Hungary
| | - Gábor E Tóth
- National Laboratory of Virology, Szentágothai Research Centre, University of Pécs, Pécs, Hungary
- Institute of Biology, Faculty of Sciences, University of Pécs, Pécs, Hungary
- Bernhard Nocht Institute for Tropical Medicine, WHO Collaborating Centre for Arbovirus and Hemorrhagic Fever Reference and Research, Hamburg, Germany
| | - Jiří Holoubek
- Veterinary Research Institute, Brno, Czechia
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Ceske Budejovice, Czechia
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czechia
| | - Daniel Růžek
- Veterinary Research Institute, Brno, Czechia
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Ceske Budejovice, Czechia
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czechia
| | - Balázs Kakuk
- Department of Medical Biology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Zsolt Boldogkői
- Department of Medical Biology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| |
Collapse
|
3
|
Chen S, Huang G, Liu J. Monkeypox virus protein H3L induces injuries in human and mouse. Cell Death Dis 2024; 15:607. [PMID: 39168969 PMCID: PMC11339448 DOI: 10.1038/s41419-024-06990-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 08/06/2024] [Accepted: 08/08/2024] [Indexed: 08/23/2024]
Abstract
Monkeypox virus (MPV) is known to inflict injuries and, in some cases, lead to fatalities in humans. However, the underlying mechanisms responsible for its pathogenicity remain poorly understood. We investigated functions of MPV core proteins, H3L, A35R, A29L, and I1L, and discovered that H3L induced transcriptional perturbations and injuries. We substantiated that H3L upregulated IL1A expression. IL1A, in consequence, caused cellular injuries, and this detrimental effect was mitigated when countered with IL1A blockage. We also observed that H3L significantly perturbed the transcriptions of genes in cardiac system. Mechanistically, H3L occupied the promoters of genes governing cellular injury, leading to alterations in the binding patterns of H3K27me3 and H3K4me3 histone marks, ultimately resulting in expression perturbations. In vivo and in vitro models confirmed that H3L induced transcriptional disturbances and cardiac dysfunction, which were ameliorated when IL1A was blocked or repressed. Our study provides valuable insights into comprehensive understanding of MPV pathogenicity, highlights the significant roles of H3L in inducing injuries, and potentially paves the way for the development of therapeutic strategies targeting IL1A.
Collapse
Affiliation(s)
- Shaoxian Chen
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of South China Structural Heart Disease, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Guiping Huang
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Juli Liu
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China.
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Guangzhou, Guangdong, China.
| |
Collapse
|
4
|
Wang Y, Li Y, Li M, Wang K, Xiong J, Wang T, Wang Y, Guo Y, Kong L, Li M. A Combined Transcriptomic and Proteomic Analysis of Monkeypox Virus A23 Protein on HEK293T Cells. Int J Mol Sci 2024; 25:8678. [PMID: 39201364 PMCID: PMC11354578 DOI: 10.3390/ijms25168678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/30/2024] [Accepted: 08/03/2024] [Indexed: 09/02/2024] Open
Abstract
Monkeypox virus (MPXV) is a cross-kingdom pathogen infecting both humans and wildlife, which poses a significant health risk to the public. Although MPXV attracts broad attention, there is a lack of adequate studies to elucidate pathogenic mechanisms associated with viral infections. In this study, a high-throughput RNA sequencing (RNA-seq) and liquid chromatography-tandem mass spectrometry (LC-MS/MS) approach was used to explore the transcriptional and metabolic responses of MPXV A23 protein to HEK293T cells. The protein-protein interactions and signaling pathways were conducted by GO and KEGG analyses. The localization of A23 protein in HEK293T cells was detected by immunofluorescence. A total of 648 differentially expressed genes (DEGs) were identified in cells by RNA-Seq, including 314 upregulated genes and 334 downregulated genes. Additionally, liquid chromatography-tandem mass spectrometry (LC-MS/MS) detected 115 cellular proteins that interact with the A23 proteins. Transcriptomic sequencing analysis revealed that transfection of MPXV A23 protein modulated genes primarily associated with cellular apoptosis and DNA damage repair. Proteomic analysis indicated that this protein primarily interacted with host ribosomal proteins and histones. Following the identification of the nuclear localization sequence RKKR within the A23 protein, a truncated mutant A23ΔRKKR was constructed to investigate the subcellular localization of A23 protein. The wild-type A23 protein exhibits a significantly higher nuclear-to-cytoplasmic ratio, exceeding 1.5, in contrast to the mutant A23ΔRKKR, which has a ratio of approximately 1. Immunofluorescence assays showed that the A23 protein was mainly localized in the nucleus. The integration of transcriptomics and proteomics analysis provides a comprehensive understanding of the interaction between MPXV A23 protein and the host. Our findings highlight the potential role of this enzyme in suppressing host antiviral immune responses and modulating host gene expression.
Collapse
Affiliation(s)
- Yihao Wang
- Institute of Pathogenic Microorganism, Jiangxi Agricultural University, Nanchang 330000, China; (Y.W.); (Y.L.); (M.L.); (K.W.); (J.X.); (T.W.); (Y.W.); (Y.G.)
- Nanchang City Key Laboratory of Animal Virus and Genetic Engineering, Nanchang 330000, China
- College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang 330000, China
| | - Yihan Li
- Institute of Pathogenic Microorganism, Jiangxi Agricultural University, Nanchang 330000, China; (Y.W.); (Y.L.); (M.L.); (K.W.); (J.X.); (T.W.); (Y.W.); (Y.G.)
- Nanchang City Key Laboratory of Animal Virus and Genetic Engineering, Nanchang 330000, China
- College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang 330000, China
| | - Mingzhi Li
- Institute of Pathogenic Microorganism, Jiangxi Agricultural University, Nanchang 330000, China; (Y.W.); (Y.L.); (M.L.); (K.W.); (J.X.); (T.W.); (Y.W.); (Y.G.)
- Nanchang City Key Laboratory of Animal Virus and Genetic Engineering, Nanchang 330000, China
- College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang 330000, China
| | - Keyi Wang
- Institute of Pathogenic Microorganism, Jiangxi Agricultural University, Nanchang 330000, China; (Y.W.); (Y.L.); (M.L.); (K.W.); (J.X.); (T.W.); (Y.W.); (Y.G.)
- Nanchang City Key Laboratory of Animal Virus and Genetic Engineering, Nanchang 330000, China
- College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang 330000, China
| | - Jiaqi Xiong
- Institute of Pathogenic Microorganism, Jiangxi Agricultural University, Nanchang 330000, China; (Y.W.); (Y.L.); (M.L.); (K.W.); (J.X.); (T.W.); (Y.W.); (Y.G.)
- Nanchang City Key Laboratory of Animal Virus and Genetic Engineering, Nanchang 330000, China
- College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang 330000, China
| | - Ting Wang
- Institute of Pathogenic Microorganism, Jiangxi Agricultural University, Nanchang 330000, China; (Y.W.); (Y.L.); (M.L.); (K.W.); (J.X.); (T.W.); (Y.W.); (Y.G.)
- Nanchang City Key Laboratory of Animal Virus and Genetic Engineering, Nanchang 330000, China
- College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang 330000, China
| | - Yu Wang
- Institute of Pathogenic Microorganism, Jiangxi Agricultural University, Nanchang 330000, China; (Y.W.); (Y.L.); (M.L.); (K.W.); (J.X.); (T.W.); (Y.W.); (Y.G.)
- Nanchang City Key Laboratory of Animal Virus and Genetic Engineering, Nanchang 330000, China
- College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang 330000, China
| | - Yunli Guo
- Institute of Pathogenic Microorganism, Jiangxi Agricultural University, Nanchang 330000, China; (Y.W.); (Y.L.); (M.L.); (K.W.); (J.X.); (T.W.); (Y.W.); (Y.G.)
- Nanchang City Key Laboratory of Animal Virus and Genetic Engineering, Nanchang 330000, China
| | - Lingbao Kong
- Institute of Pathogenic Microorganism, Jiangxi Agricultural University, Nanchang 330000, China; (Y.W.); (Y.L.); (M.L.); (K.W.); (J.X.); (T.W.); (Y.W.); (Y.G.)
- Nanchang City Key Laboratory of Animal Virus and Genetic Engineering, Nanchang 330000, China
- College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang 330000, China
| | - Meifeng Li
- Institute of Pathogenic Microorganism, Jiangxi Agricultural University, Nanchang 330000, China; (Y.W.); (Y.L.); (M.L.); (K.W.); (J.X.); (T.W.); (Y.W.); (Y.G.)
- Nanchang City Key Laboratory of Animal Virus and Genetic Engineering, Nanchang 330000, China
- College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang 330000, China
| |
Collapse
|
5
|
Hashim HO, Al-Shuhaib JMB, Mohammed MK, Al-Shuhaib MBS. Targeting Monkeypox Virus Methyltransferase: Virtual Screening of Natural Compounds from Middle-Eastern Medicinal Plants. Mol Biotechnol 2024:10.1007/s12033-024-01246-y. [PMID: 39097539 DOI: 10.1007/s12033-024-01246-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 07/01/2024] [Indexed: 08/05/2024]
Abstract
Monkeypox is an infectious disease resulting from the monkeypox virus, and its fatality rate varies depending on the virus clade and the location of the outbreak. In monkeypox virus, methyltransferase (MTase) plays a crucial role in modifying the cap structure of viral mRNA. This alteration assists the virus in evading the host's immune system, enhances viral protein synthesis, and ultimately enables successful infection and replication within host cells. Given the significance of MTase in viral infection and spread within the host, our study aimed to identify a natural inhibitor for this enzyme using docking and molecular dynamic (MD) simulations. We collected a total of 12,971 natural compounds from 200 medicinal plants in the Middle East. After eliminating duplicate compounds, we had 5,749 unique ligand conformers, which we then subjected to high-throughput virtual screening against MTase. The most promising hits were further evaluated using the extra-precision (XP) tool. The affinity of these hits was also assessed by Prime-Molecular Mechanics/Generalized Born Surface Area (MMGBSA) tool. The analysis revealed that two standard controls (sinefungin and TO1119) and two Middle-Eastern compounds (folic acid and 1,2,4,6-tetragalloylglucose) exhibited the best XP docking scores. According to Prime MMGBSA calculations, the Middle-Eastern compounds showed higher affinities, with values of - 60.61 kcal/mol for 1,2,4,6-tetragalloylglucose and - 51.87 kcal/mol for folic acid, surpassing the controls (TO1119 at - 35.71 kcal/mol and sinefungin at - 31.51 kcal/mol). In the majority of Molecular dynamic (MD) simulations, folic acid exhibited demonstrated greater stability than sinefungin. Further investigation revealed that folic acid occupied a critical position in the active site of MTase, which reduced its interaction with the mRNA substrate. Based on these findings, it can be concluded that folic acid is a highly promising natural compound for potential use in the cost-effective treatment of monkeypox virus. The identification of folic acid as a potential antiviral agent highlights the importance of nature in providing new therapeutic uses that have significant implications for global health, particularly in regions where monkeypox viral outbreaks are prevalent. However, it is essential to note that further wet-lab validations are necessary to confirm its efficacy for treatment in a medical context.
Collapse
Affiliation(s)
- Hayder O Hashim
- Department of Clinical Laboratory Sciences, College of Pharmacy, University of Babylon, Babil, 51001, Iraq
| | | | - Mudher K Mohammed
- Department of Pharmacy, Al-Manara College of Medical Science, Amarah, Iraq
| | - Mohammed Baqur S Al-Shuhaib
- Department of Animal Production, College of Agriculture, Al-Qasim Green University, Al-Qasim, 51013, Babil, Iraq.
| |
Collapse
|
6
|
Loganathan T, Fletcher J, Abraham P, Kannangai R, Chakraborty C, El Allali A, Alsamman AM, Zayed H, C GPD. Expression analysis and mapping of Viral-Host Protein interactions of Poxviridae suggests a lead candidate molecule targeting Mpox. BMC Infect Dis 2024; 24:483. [PMID: 38730352 PMCID: PMC11088078 DOI: 10.1186/s12879-024-09332-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 04/18/2024] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND Monkeypox (Mpox) is an important human pathogen without etiological treatment. A viral-host interactome study may advance our understanding of molecular pathogenesis and lead to the discovery of suitable therapeutic targets. METHODS GEO Expression datasets characterizing mRNA profile changes in different host responses to poxviruses were analyzed for shared pathway identification, and then, the Protein-protein interaction (PPI) maps were built. The viral gene expression datasets of Monkeypox virus (MPXV) and Vaccinia virus (VACV) were used to identify the significant viral genes and further investigated for their binding to the library of targeting molecules. RESULTS Infection with MPXV interferes with various cellular pathways, including interleukin and MAPK signaling. While most host differentially expressed genes (DEGs) are predominantly downregulated upon infection, marked enrichments in histone modifiers and immune-related genes were observed. PPI analysis revealed a set of novel virus-specific protein interactions for the genes in the above functional clusters. The viral DEGs exhibited variable expression patterns in three studied cell types: primary human monocytes, primary human fibroblast, and HeLa, resulting in 118 commonly deregulated proteins. Poxvirus proteins C6R derived protein K7 and K7R of MPXV and VACV were prioritized as targets for potential therapeutic interventions based on their histone-regulating and immunosuppressive properties. In the computational docking and Molecular Dynamics (MD) experiments, these proteins were shown to bind the candidate small molecule S3I-201, which was further prioritized for lead development. RESULTS MPXV circumvents cellular antiviral defenses by engaging histone modification and immune evasion strategies. C6R-derived protein K7 binding candidate molecule S3I-201 is a priority promising candidate for treating Mpox.
Collapse
Affiliation(s)
- Tamizhini Loganathan
- Laboratory of Integrative Genomics, Department of Integrative Biology, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore-632014, Tamil Nadu, India
| | - John Fletcher
- Department of Clinical Virology, Christian Medical College, Tamil Nadu, Vellore, 632004, India
| | - Priya Abraham
- Department of Clinical Virology, Christian Medical College, Tamil Nadu, Vellore, 632004, India
| | - Rajesh Kannangai
- Department of Clinical Virology, Christian Medical College, Tamil Nadu, Vellore, 632004, India
| | | | - Achraf El Allali
- Bioinformatics Laboratory, College of Computing, Mohammed VI Polytechnic University, Ben Guerir, Mohammed, Morocco.
| | - Alsamman M Alsamman
- Department of Genome Mapping, Molecular Genetics, and Genome Mapping Laboratory, Agricultural Genetic Engineering Research Institute, Giza, Egypt
| | - Hatem Zayed
- Department of Biomedical Sciences College of Health Sciences, QU. Health, Qatar University, Doha, Qatar
| | - George Priya Doss C
- Laboratory of Integrative Genomics, Department of Integrative Biology, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore-632014, Tamil Nadu, India.
| |
Collapse
|
7
|
Wahl V, Olson VA, Kondas AV, Jahrling PB, Damon IK, Kindrachuk J. Variola Virus and Clade I Mpox Virus Differentially Modulate Cellular Responses Longitudinally in Monocytes During Infection. J Infect Dis 2024; 229:S265-S274. [PMID: 37995376 DOI: 10.1093/infdis/jiad516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 11/11/2023] [Accepted: 11/18/2023] [Indexed: 11/25/2023] Open
Abstract
Variola virus (VARV), the etiological agent of smallpox, had enormous impacts on global health prior to its eradication. In the absence of global vaccination programs, mpox virus (MPXV) has become a growing public health threat that includes endemic and nonendemic regions across the globe. While human mpox resembles smallpox in clinical presentation, there are considerable knowledge gaps regarding conserved molecular pathogenesis between these 2 orthopoxviruses. Thus, we sought to compare MPXV and VARV infections in human monocytes through kinome analysis. We performed a longitudinal analysis of host cellular responses to VARV infection in human monocytes as well as a comparative analysis to clade I MPXV-mediated responses. While both viruses elicited strong activation of cell responses early during infection as compared to later time points, several key differences in cell signaling events were identified and validated. These observations will help in the design and development of panorthopoxvirus therapeutics.
Collapse
Affiliation(s)
- Victoria Wahl
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, Maryland, USA
| | - Victoria A Olson
- Poxvirus and Rabies Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Ashley V Kondas
- Poxvirus and Rabies Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Peter B Jahrling
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, Maryland, USA
| | - Inger K Damon
- Poxvirus and Rabies Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Jason Kindrachuk
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, Maryland, USA
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
8
|
Alakunle E, Kolawole D, Diaz-Cánova D, Alele F, Adegboye O, Moens U, Okeke MI. A comprehensive review of monkeypox virus and mpox characteristics. Front Cell Infect Microbiol 2024; 14:1360586. [PMID: 38510963 PMCID: PMC10952103 DOI: 10.3389/fcimb.2024.1360586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 02/20/2024] [Indexed: 03/22/2024] Open
Abstract
Monkeypox virus (MPXV) is the etiological agent of monkeypox (mpox), a zoonotic disease. MPXV is endemic in the forested regions of West and Central Africa, but the virus has recently spread globally, causing outbreaks in multiple non-endemic countries. In this paper, we review the characteristics of the virus, including its ecology, genomics, infection biology, and evolution. We estimate by phylogenomic molecular clock that the B.1 lineage responsible for the 2022 mpox outbreaks has been in circulation since 2016. We interrogate the host-virus interactions that modulate the virus infection biology, signal transduction, pathogenesis, and host immune responses. We highlight the changing pathophysiology and epidemiology of MPXV and summarize recent advances in the prevention and treatment of mpox. In addition, this review identifies knowledge gaps with respect to the virus and the disease, suggests future research directions to address the knowledge gaps, and proposes a One Health approach as an effective strategy to prevent current and future epidemics of mpox.
Collapse
Affiliation(s)
- Emmanuel Alakunle
- Department of Natural and Environmental Sciences, American University of Nigeria, Yola, Nigeria
| | - Daniel Kolawole
- Department of Natural and Environmental Sciences, American University of Nigeria, Yola, Nigeria
| | - Diana Diaz-Cánova
- Department of Medical Biology, UIT – The Arctic University of Norway, Tromsø, Norway
| | - Faith Alele
- School of Health, University of the Sunshine Coast, Sippy Downs, QLD, Australia
| | - Oyelola Adegboye
- Menzies School of Health Research, Charles Darwin University, Darwin, NT, Australia
| | - Ugo Moens
- Department of Medical Biology, UIT – The Arctic University of Norway, Tromsø, Norway
| | - Malachy Ifeanyi Okeke
- Department of Natural and Environmental Sciences, American University of Nigeria, Yola, Nigeria
| |
Collapse
|
9
|
Kaur N, Dabar J, Bassi P. Monkeypox: A re-emerging disease. Indian J Pharmacol 2024; 56:129-135. [PMID: 38687317 PMCID: PMC11161004 DOI: 10.4103/ijp.ijp_156_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 07/31/2023] [Accepted: 03/18/2024] [Indexed: 05/02/2024] Open
Abstract
ABSTRACT The virus known as monkeypox is the source of the zoonotic disease monkeypox, which was historically widespread in Central Africa and West Africa. The cases of monkeypox in humans are uncommon outside of West and Central Africa, but copious nonendemic nations outside of Africa have recently confirmed cases. People when interact with diseased animals, then, they may inadvertently contact monkeypox. There are two drugs in the market: brincidofovir and tecovirimat and both of these drugs are permitted for the cure of monkeypox by the US Food and Drug Administration. The present review summarizes the various parameters of monkeypox in context with transmission, signs and symptoms, histopathological and etiological changes, and possible treatment. Monkeypox is clinically similar to that of smallpox infection but epidemiologically, these two are different, the present study also signifies the main differences and similarities of monkeypox to that of other infectious diseases. As it is an emerging disease, it is important to know about the various factors related to monkeypox so as to control it on a very early stage of transmission.
Collapse
Affiliation(s)
- Narinderpal Kaur
- Pharmaceutical Chemistry, School of Pharmacy, Chitkara University, Solan, Himachal Pradesh, India
| | - Jatin Dabar
- School of Pharmacy and Emerging Sciences, Baddi University, Baddi, Himachal Pradesh, India
| | - Pallavi Bassi
- Pharmaceutics, Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| |
Collapse
|
10
|
Lahimchi MR, Madanchi H, Ahmadi K, Shahbazi B, Yousefi B. In silico designing a novel TLR4-mediating multiepitope vaccine against monkeypox via advanced immunoinformatics and bioinformatics approaches. J Biomol Struct Dyn 2024; 42:2094-2110. [PMID: 37129119 DOI: 10.1080/07391102.2023.2203253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 04/10/2023] [Indexed: 05/03/2023]
Abstract
Monkeypox virus is a member of the Poxviridae family, which causes monkeypox zoonotic disease. Since July 2022, the prevention of monkeypox have become more considerable due to the new outbreak, making it a global concern. Therefore, we used an in silico-based method, including immunoinformatics, bioinformatics, molecular docking, and gene cloning approaches to design a novel multiepitope vaccine against monkeypox. Three immunogenic envelope proteins of monkeypox virus, including G10R, E8L, and A30L, were selected to predict appropriate immune system stimulator epitopes. The A30L is common between smallpox and monkeypox virus, so the proposed vaccine may be effective against smallpox too. There is no evidence of allergenicity and toxicity of the vaccine epitopes. To boost the immunogenicity of the designed vaccine, we used the helper epitope of PADRE and RS01as adjuvants. Furthermore, some linkers are used to link epitopes and adjuvants together. The physicochemical futures of the designed vaccine were assessed. The tertiary structure of the vaccine was modeled and then refined to improve its structure and physicochemical properties. To analyze the vaccine construct and TLR4 complex affinity, they were docked to gather. Besides, the vaccine was cloned into E.coli. pET-21b(+) plasmid to reveal that it can be expressed and stimulate the immune system. Immune stimulation evaluation showed that the candidate vaccine could induce the production of IgM, IgG1, and IgG2 antibodies. Overall, we suggested an effective vaccine candidate against monkeypox. However, Future studies and clinical trials should be done to ensure the efficacy and safety of this vaccine.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Mohammad Reza Lahimchi
- Department of Medical Immunology, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Hamid Madanchi
- Department of Medical Biotechnology, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
- Drug Design and Bioinformatics Unit, Department of Medical Biotechnology, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Khadijeh Ahmadi
- Infectious and Tropical Diseases Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Behzad Shahbazi
- Department of Molecular Medicine, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Bahman Yousefi
- Department of Medical Immunology, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
- Cancer Research Center, Semnan University of Medical Sciences, Semnan, Iran
| |
Collapse
|
11
|
Ramakrishnan R, Shenoy A, Madhavan R, Meyer D. Mpox gastrointestinal manifestations: a systematic review. BMJ Open Gastroenterol 2024; 11:e001266. [PMID: 38184298 PMCID: PMC10773419 DOI: 10.1136/bmjgast-2023-001266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 12/10/2023] [Indexed: 01/08/2024] Open
Abstract
INTRODUCTION Mpox is a viral infection caused by the monkeypox virus, a member of the Poxviridae family and Orthopoxvirus genus. Other well-known viruses of the Orthopoxvirus genus include the variola virus (smallpox), cowpox virus and vaccinia virus. Although there is a plethora of research regarding the dermatological and influenza-like symptoms of mpox, particularly following the 2022 mpox outbreak, more research is needed on the gastrointestinal (GI) effects. OBJECTIVES This systematic review is to outline the GI manifestations of the monkeypox virus. METHODS The authors conducted this systematic review using guidelines outlined in the Preferred Reporting Items for Systematic Reviews and Meta-Analyses. A search was conducted through the PubMed, EMBASE and MEDLINE databases from January 1958 to June 2023. The authors selected English language papers that discussed the GI symptoms in mpox patients. A manual search was also conducted in the reference sections of these publications for other relevant papers. RESULTS 33 papers involving 830 patients were selected for this review. The GI manifestations in mpox patients are proctitis, vomiting, diarrhoea, rectal pain, nausea, tenesmus, rectal bleeding and abdominal pain. Although various papers explored transmission routes, one paper established a direct connection between anal-receptive sex transmission route and the development of a GI complication (proctitis). Another study reported that the mode of transmission could potentially impact the occurrence of GI symptoms and severity of the disease. The reviewed papers did not discover a relation between the severity of dermatological and influenza-like symptoms and the GI manifestations mentioned. CONCLUSION This systematic review confirms that GI manifestations are observed in mpox patients. GI symptoms of mpox are crucial for gastroenterologists and other healthcare professionals to recognise in order to address patient discomfort and further understand the pathophysiology of the virus.
Collapse
Affiliation(s)
- Rahul Ramakrishnan
- Nova Southeastern University Dr. Kiran C. Patel College of Allopathic Medicine, Fort Lauderdale, Florida, USA
| | - Atira Shenoy
- Nova Southeastern University Dr. Kiran C. Patel College of Osteopathic Medicine, Fort Lauderdale, Florida, USA
| | | | - Damon Meyer
- College of Health Sciences, California Northstate University, Rancho Cordova, California, USA
| |
Collapse
|
12
|
Rohaim MA, Naggar RFE, Atasoy MO, Munir M. Molecular Virology of Orthopoxviruses with Special Reference to Monkeypox Virus. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1451:111-124. [PMID: 38801574 DOI: 10.1007/978-3-031-57165-7_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Poxviruses are large (200-450 nm) and enveloped viruses carrying double-stranded DNA genome with an epidermal cell-specific adaptation. The genus Orthopoxvirus within Poxviridae family constitutes several medically and veterinary important viruses including variola (smallpox), vaccinia, monkeypox virus (MPXV), and cowpox. The monkeypox disease (mpox) has recently emerged as a public health emergency caused by MPXV. An increasing number of human cases of MPXV have been documented in non-endemic nations without any known history of contact with animals brought in from endemic and enzootic regions, nor have they involved travel to an area where the virus was typically prevalent. Here, we review the MPXV replication, virus pathobiology, mechanism of viral infection transmission, virus evasion the host innate immunity and antiviral therapies against Mpox. Moreover, preventive measures including vaccination were discussed and concluded that cross-protection against MPXV may be possible using antibodies that are directed against an Orthopoxvirus. Despite the lack of a specialised antiviral medication, several compounds such as Cidofovir and Ribavirin warrant consideration against mpox.
Collapse
Affiliation(s)
- Mohammed A Rohaim
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster, LA1 4YG, UK
| | - Rania F El Naggar
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster, LA1 4YG, UK
| | - Mustafa O Atasoy
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster, LA1 4YG, UK
| | - Muhammad Munir
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster, LA1 4YG, UK.
| |
Collapse
|
13
|
Kumari R, Arya P, Yadav SP, Mishra RC, Yadav JP. Monkeypox Virus (MPXV) Infection: A Review. Infect Disord Drug Targets 2024; 24:76-82. [PMID: 38243966 DOI: 10.2174/0118715265258451231214063506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 10/20/2023] [Accepted: 11/02/2023] [Indexed: 01/22/2024]
Abstract
Monkeypox is a viral disease; its outbreak was recently declared a global emergency by the World Health Organization. For the first time, a monkeypox virus (MPXV)-infected patient was found in India. Various researchers back-to-back tried to find the solution to this health emergency just after COVID-19. In this review, we discuss the current outbreak status of India, its transmission, virulence factors, symptoms, treatment, and the preventive guidelines generated by the Indian Health Ministry. We found that monkeypox virus (MPXV) disease is different from smallpox, and the age group between 30-40 years old is more prone to MPXV disease. We also found that, besides homosexuals, gays, bisexuals, and non-vegetarians, it also affects normal straight men and women who have no history of travel. Close contact should be avoided from rats, monkeys and sick people who are affected by monkeypox. To date, there are no monkeypox drugs, but Tecovirimat is more effective than other drugs that are used for other viral diseases like smallpox. Therefore, we need to develop an effective antiviral agent against the virulence factor of MXPV.
Collapse
Affiliation(s)
- Rosy Kumari
- Department of Genetics, Maharshi Dayanand University, Rohtak, Haryana, 124001, India
| | - Pooja Arya
- Department of Psychology, University of Patanjali, Haridwar, Uttarakhand, 249405, India
| | - Surya Prakash Yadav
- Department of Yoga, University of Patanjali, Haridwar, Uttarakhand, 249405, India
| | - Ratish Chandra Mishra
- Department of Genetics, Maharshi Dayanand University, Rohtak, Haryana, 124001, India
- Department of Zoology, Om Sterling Global University, Hisar, Haryana, 125001, India
| | - Jaya Parkash Yadav
- Department of Genetics, Maharshi Dayanand University, Rohtak, Haryana, 124001, India
- Indira Gandhi University, Meerpur, Rewari, Haryana, 122502, India
| |
Collapse
|
14
|
Al-Eitan L, Haddad M, Mihyar A. Poxviruses from the Concept of One Health. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1451:21-33. [PMID: 38801569 DOI: 10.1007/978-3-031-57165-7_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
In the last 4 years, the world has experienced two pandemics of bat-borne viruses. Firstly, in 2019 the SARS-CoV-2 pandemic started and has been causing millions of deaths around the world. In 2022, a Monkeypox pandemic rose in various countries of the world. Those pandemics have witnessed movements and initiatives from healthcare and research institutions to establish a worldwide understanding to battle any future pandemics and biological threats. One Health concept is a modern, comprehensive, unifying ways to improve humans, animals, and ecosystems' health. This concept shows how much they are intertwined and related to one another, whether it is an environmental, or a pathological relation. This review aims to describe Poxviridae and its impact on the One Health concept, by studying the underlying causes of how poxviruses can affect the health of animals, humans, and environments. Reviewing the effect of disease transmission between animal to human, human to human, and animal to animal with pox viruses as a third party to achieve a total understanding of infection and viral transmission. Thus, contributing to enhance detection, diagnosis, research, and treatments regarding the application of One Health.
Collapse
Affiliation(s)
- Laith Al-Eitan
- Department of Biotechnology and Genetic Engineering, Jordan University of Science and Technology, Irbid, 22110, Jordan.
| | - Mountaser Haddad
- Department of Medical Laboratory Sciences, Jordan University of Science and Technology, Irbid, 22110, Jordan
| | - Ahmad Mihyar
- Department of Biotechnology and Genetic Engineering, Jordan University of Science and Technology, Irbid, 22110, Jordan
| |
Collapse
|
15
|
Okwor T, Mbala PK, Evans DH, Kindrachuk J. A contemporary review of clade-specific virological differences in monkeypox viruses. Clin Microbiol Infect 2023; 29:1502-1507. [PMID: 37507009 DOI: 10.1016/j.cmi.2023.07.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 07/08/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023]
Abstract
BACKGROUND Monkeypox virus (MPXV) is an emerging zoonotic virus that has had on-going public health impacts in endemic regions of Central and West Africa for over a half-century. Historically, the MPXV clade endemic in regions of Central Africa is associated with higher morbidity and mortality as compared with the clade endemic in West Africa. OBJECTIVES Here, we review the virological characteristics of MPXV and discuss potential relationships between virulence factors and clade- (and subclade-) specific differences in virulence and transmission patterns. SOURCES Targeted search was conducted in PubMed using ((monkeypox virus) OR (Orthopoxvirus)) AND (zoonosis)) OR ((monkeypox) OR (human mpox). CONTENT Forty-seven references were considered that included three publicly available data reports and/or press releases, one book chapter, and 44 published manuscripts. IMPLICATIONS Although zoonosis has been historically linked to emergence events in humans, epidemiological analyses of more recent outbreaks have identified increasing frequencies of human-to-human transmission. Furthermore, viral transmission during the 2022 global human mpox outbreak, caused by a recently identified MPXV subclade, has relied exclusively on human-to-human contact with no known zoonotic link.
Collapse
Affiliation(s)
- Tochi Okwor
- Department of Planning, Research & Statistics, Nigeria Centre for Disease Control and Prevention, Abuja, Nigeria
| | - Placide K Mbala
- Département de Virologie, Institut National de Recherche Biomédicale, Kinshasa, Democratic Republic of the Congo; Département de Biologie Médicale, Université de Kinshasa, Kinshasa, Democratic Republic of the Congo
| | - David H Evans
- Department of Medical Microbiology & Immunology and Li Ka Shing Institute of Virology, The University of Alberta, Edmonton, Alberta, Canada
| | - Jason Kindrachuk
- Department of Medical Microbiology & Infectious Diseases, University of Manitoba, Winnipeg, Manitoba, Canada.
| |
Collapse
|
16
|
Semenov DV, Vasileva NS, Dymova MA, Mishinov SV, Savinovskaya YI, Ageenko AB, Dome AS, Zinchenko ND, Stepanov GA, Kochneva GV, Richter VA, Kuligina EV. Transcriptome Changes in Glioma Cells upon Infection with the Oncolytic Virus VV-GMCSF-Lact. Cells 2023; 12:2616. [PMID: 37998351 PMCID: PMC10670333 DOI: 10.3390/cells12222616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/25/2023] [Accepted: 11/09/2023] [Indexed: 11/25/2023] Open
Abstract
Oncolytic virotherapy is a rapidly evolving approach that aims to selectively kill cancer cells. We designed a promising recombinant vaccinia virus, VV-GMCSF-Lact, for the treatment of solid tumors, including glioma. We assessed how VV-GMCSF-Lact affects human cells using immortalized and patient-derived glioma cultures and a non-malignant brain cell culture. Studying transcriptome changes in cells 12 h or 24 h after VV-GMCSF-Lact infection, we detected the common activation of histone genes. Additionally, genes associated with the interferon-gamma response, NF-kappa B signaling pathway, and inflammation mediated by chemokine and cytokine signaling pathways showed increased expression. By contrast, genes involved in cell cycle progression, including spindle organization, sister chromatid segregation, and the G2/M checkpoint, were downregulated following virus infection. The upregulation of genes responsible for Golgi vesicles, protein transport, and secretion correlated with reduced sensitivity to the cytotoxic effect of VV-GMCSF-Lact. Higher expression of genes encoding proteins, which participate in the maturation of pol II nuclear transcripts and mRNA splicing, was associated with an increased sensitivity to viral cytotoxicity. Genes whose expression correlates with the sensitivity of cells to the virus are important for increasing the effectiveness of cancer virotherapy. Overall, the results highlight molecular markers, biological pathways, and gene networks influencing the response of glioma cells to VV-GMCSF-Lact.
Collapse
Affiliation(s)
- Dmitriy V. Semenov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences, Lavrentyev Avenue, 8, 630090 Novosibirsk, Russia; (N.S.V.); (M.A.D.); (Y.I.S.); (A.B.A.); (A.S.D.); (N.D.Z.); (G.A.S.); (V.A.R.); (E.V.K.)
| | - Natalia S. Vasileva
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences, Lavrentyev Avenue, 8, 630090 Novosibirsk, Russia; (N.S.V.); (M.A.D.); (Y.I.S.); (A.B.A.); (A.S.D.); (N.D.Z.); (G.A.S.); (V.A.R.); (E.V.K.)
| | - Maya A. Dymova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences, Lavrentyev Avenue, 8, 630090 Novosibirsk, Russia; (N.S.V.); (M.A.D.); (Y.I.S.); (A.B.A.); (A.S.D.); (N.D.Z.); (G.A.S.); (V.A.R.); (E.V.K.)
| | - Sergey V. Mishinov
- Novosibirsk Research Institute of Traumatology and Orthopedics n.a. Ya.L. Tsivyan, Department of Neurosurgery, Frunze Street, 17, 630091 Novosibirsk, Russia;
| | - Yulya I. Savinovskaya
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences, Lavrentyev Avenue, 8, 630090 Novosibirsk, Russia; (N.S.V.); (M.A.D.); (Y.I.S.); (A.B.A.); (A.S.D.); (N.D.Z.); (G.A.S.); (V.A.R.); (E.V.K.)
| | - Alisa B. Ageenko
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences, Lavrentyev Avenue, 8, 630090 Novosibirsk, Russia; (N.S.V.); (M.A.D.); (Y.I.S.); (A.B.A.); (A.S.D.); (N.D.Z.); (G.A.S.); (V.A.R.); (E.V.K.)
| | - Anton S. Dome
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences, Lavrentyev Avenue, 8, 630090 Novosibirsk, Russia; (N.S.V.); (M.A.D.); (Y.I.S.); (A.B.A.); (A.S.D.); (N.D.Z.); (G.A.S.); (V.A.R.); (E.V.K.)
| | - Nikita D. Zinchenko
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences, Lavrentyev Avenue, 8, 630090 Novosibirsk, Russia; (N.S.V.); (M.A.D.); (Y.I.S.); (A.B.A.); (A.S.D.); (N.D.Z.); (G.A.S.); (V.A.R.); (E.V.K.)
| | - Grigory A. Stepanov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences, Lavrentyev Avenue, 8, 630090 Novosibirsk, Russia; (N.S.V.); (M.A.D.); (Y.I.S.); (A.B.A.); (A.S.D.); (N.D.Z.); (G.A.S.); (V.A.R.); (E.V.K.)
| | - Galina V. Kochneva
- State Research Center of Virology and Biotechnology “Vector”, Rospotrebnadzor, 630559 Koltsovo, Russia;
| | - Vladimir A. Richter
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences, Lavrentyev Avenue, 8, 630090 Novosibirsk, Russia; (N.S.V.); (M.A.D.); (Y.I.S.); (A.B.A.); (A.S.D.); (N.D.Z.); (G.A.S.); (V.A.R.); (E.V.K.)
| | - Elena V. Kuligina
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences, Lavrentyev Avenue, 8, 630090 Novosibirsk, Russia; (N.S.V.); (M.A.D.); (Y.I.S.); (A.B.A.); (A.S.D.); (N.D.Z.); (G.A.S.); (V.A.R.); (E.V.K.)
| |
Collapse
|
17
|
Sharma E, Malhotra S, Kaul S, Jain N, Nagaich U. Unveiling the Mpox menace: exploring the intricacies of a zoonotic virus and clinical implications. Diagn Microbiol Infect Dis 2023; 107:116024. [PMID: 37481798 DOI: 10.1016/j.diagmicrobio.2023.116024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 05/28/2023] [Accepted: 07/09/2023] [Indexed: 07/25/2023]
Abstract
Mpox (formerly known as monkeypox) is an orthopoxvirus based zoonotic infection that induces a smallpox-like human illness. Since the Democratic Republic of the Congo reported the first human case of mpox in 1970, the disease has proliferated to other areas of Africa, predominantly the West, and Central, with instances recently confirmed outside of Africa. Reports of cases of mpox in 2022 have brought into light its re-emergence. Even though the smallpox vaccine protects against the mpox virus, new nonimmune generations contribute to the rising prevalence of the cases. People are coming into contact with potential hosts as a result of environmental factors, raising the probability of animal-to-human transmission. Mpox poses a more serious threat to previously unaffected nations as it is showing up in data provided by governmental bodies due to increased transmission risk brought on by globalization, armed conflict, and environmental factors. In this article, we have extensively covered the virology, etiology, and epidemiology of the disease. Various gene studies, recent drugs studied, and clinical trials pertaining to mpox have been incorporated in this review. Additionally, we have compiled a comprehensive analysis of various systematic reviews and meta-analyses concerning pregnancies complicated by mpox, retrospective studies examining mpox and HIV-coinfection, mpox in conjuction with SARS-CoV-2, and HIV coinfection, as well as case studies exploring the implications of mpox manifestations in conjunction with syphilis, gonorrhoea, myocarditis, and neuroinflammatory implications.
Collapse
Affiliation(s)
- Eshita Sharma
- Department of Pharmaceutics, Amity Institute of Pharmacy, Amity University, Noida, Uttar Pradesh, India
| | - Sakshi Malhotra
- Department of Pharmaceutics, Amity Institute of Pharmacy, Amity University, Noida, Uttar Pradesh, India
| | - Shreya Kaul
- Department of Pharmaceutics, Amity Institute of Pharmacy, Amity University, Noida, Uttar Pradesh, India.
| | - Neha Jain
- Department of Pharmaceutics, Amity Institute of Pharmacy, Amity University, Noida, Uttar Pradesh, India
| | - Upendra Nagaich
- Department of Pharmaceutics, Amity Institute of Pharmacy, Amity University, Noida, Uttar Pradesh, India
| |
Collapse
|
18
|
Guo X, Zou J, Yang K, Chang S, Zhang Y, Li Y, Wang Y. Non-adaptive evolution in codon usage of human-origin monkeypox virus. Comp Immunol Microbiol Infect Dis 2023; 100:102024. [PMID: 37487313 DOI: 10.1016/j.cimid.2023.102024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 06/29/2023] [Accepted: 07/13/2023] [Indexed: 07/26/2023]
Abstract
Monkeypox virus (Mpox) is a zoonotic infectious disease that threatens human and animal health, with a global outbreak of the low-pathogenic Mpox beginning from 2022. In this study, we analyzed the codon usage of Mpox between two clades, Clade-I and Clade-IIb-B, to understand changes in host adaptation. Clade-IIb-B of the Mpox genome underwent non-adaptive evolution making it less adapted to its host than Clade-I. The analysis of individual genes revealed that 48 genes exhibited non-adaptive mutation, while 38 genes underwent adaptive mutations. Genes involved in replication, transcription, and host-modulation exhibited a mix of adaptive and non-adaptive evolutionary patterns. This study also found that the mutations of Mpox led to changes in non-adaptative genes in different organs. Additionally, we found that codon usage of Mpox was less similar to that of up-regulated host genes and more similar to that of down-regulated host genes post-infection, indicating that codon usage affects host gene expression. Overall, the study highlights the non-adaptive changes in codon usage as a potential cause of differences in Mpox virulence and provides insights into the evolutionary and adaptive mechanisms of Mpox and its potential impact on pathogenicity and host adaptation.
Collapse
Affiliation(s)
- Xu Guo
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, PR China
| | - Junwei Zou
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, PR China
| | - Kankan Yang
- Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen, Guangdong 518000, PR China
| | - Shengbo Chang
- Department of Industrial Engineering, Northwestern Polytechnical University, Xi'an 710071, PR China
| | - Yingying Zhang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, PR China
| | - Yongdong Li
- Municipal Key Laboratory of Virology, Ningbo Municipal Center for Disease Control and Prevention, Ningbo 315010, PR China
| | - Yong Wang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, PR China.
| |
Collapse
|
19
|
Zahmatyar M, Fazlollahi A, Motamedi A, Zolfi M, Seyedi F, Nejadghaderi SA, Sullman MJM, Mohammadinasab R, Kolahi AA, Arshi S, Safiri S. Human monkeypox: history, presentations, transmission, epidemiology, diagnosis, treatment, and prevention. Front Med (Lausanne) 2023; 10:1157670. [PMID: 37547598 PMCID: PMC10397518 DOI: 10.3389/fmed.2023.1157670] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 07/03/2023] [Indexed: 08/08/2023] Open
Abstract
Human monkeypox is a zoonotic infection that is similar to the diseases caused by other poxviruses. It is endemic among wild rodents in the rainforests of Central and Western Africa, and can be transmitted via direct skin contact or mucosal exposure to infected animals. The initial symptoms include fever, headache, myalgia, fatigue, and lymphadenopathy, the last of which is the main symptom that distinguishes it from smallpox. In order to prevent and manage the disease, those who are infected must be rapidly diagnosed and isolated. Several vaccines have already been developed (e.g., JYNNEOS, ACAM2000 and ACAM3000) and antiviral drugs (e.g., cidofovir and tecovirimat) can also be used to treat the disease. In the present study, we reviewed the history, morphology, clinical presentations, transmission routes, diagnosis, prevention, and potential treatment strategies for monkeypox, in order to enable health authorities and physicians to better deal with this emerging crisis.
Collapse
Affiliation(s)
- Mahdi Zahmatyar
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Neurosciences Research Center, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Asra Fazlollahi
- Neurosciences Research Center, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
- Tuberculosis and Lung Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Alireza Motamedi
- Neurosciences Research Center, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maedeh Zolfi
- Neurosciences Research Center, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fatemeh Seyedi
- Neurosciences Research Center, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Seyed Aria Nejadghaderi
- Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
- Systematic Review and Meta-analysis Expert Group (SRMEG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Mark J. M. Sullman
- Department of Life and Health Sciences, University of Nicosia, Nicosia, Cyprus
- Department of Social Sciences, University of Nicosia, Nicosia, Cyprus
| | - Reza Mohammadinasab
- Department of History of Medicine, School of Traditional Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali-Asghar Kolahi
- Social Determinants of Health Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shahnam Arshi
- Social Determinants of Health Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Saeid Safiri
- Clinical Research Development Unit of Tabriz Valiasr Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
- Social Determinants of Health Research Center, Department of Community Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
20
|
Ahmad A, Orassay A, Majaz S, Saeed A, Sadvokassova D, Berdigaliyev A, Ahmad S, Wang LX, Xie Y. Computational analysis of target genes in monkeypox virus infection and potential therapeutic precursors. Expert Rev Anti Infect Ther 2023; 21:1153-1161. [PMID: 37711024 DOI: 10.1080/14787210.2023.2259614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 07/23/2023] [Accepted: 09/05/2023] [Indexed: 09/16/2023]
Abstract
BACKGROUND Monkeypox is an orthopoxvirus that is responsible for zoonotic infections in humans. The virus has recently spread rapidly and the WHO has listed it as an international public health emergency of concern. RESEARCH DESIGN AND METHODS Here, we used network analysis and gene enrichment protocols and analyzed datasets of MPXV infection that induced host cell gene expression list and subsequently mapped them against two herbal target gene lists which highlighted considerable coherence in pharmacological attributes with COVID-19. Molecular docking and simulation were performed for the screened compounds. RESULTS Our results identified β-carotene and kaempferol possessing tremendous ability against the MPXV PLD protein. Both compounds were subjected to each of 100 ns molecular dynamics simulation and were found native to the PLD pocket. MM-PB (GB) SA analyses indicated -25.4, -40.1 kcal/mol and -17.2, -26.4kcal/mol of ΔGbind to the active pocket of PLD. Our data suggest the adaptive nature of the MPXV PLD active pocket toward hydrophobic inhibitors. CONCLUSION These results will be of high importance for the viral researchers to be tested in wet lab settings in designing potential inhibitors.
Collapse
Affiliation(s)
- Ashfaq Ahmad
- Department of Bioinformatics, Hazara University, Mansehra, Pakistan
| | - Aliya Orassay
- Department of Biology, School of Sciences and Humanities, Nazarbayev University, Astana, Kazakhstan
| | - Sidra Majaz
- Department of Bioinformatics, Hazara University, Mansehra, Pakistan
| | - Aamir Saeed
- Department of Bioinformatics, Hazara University, Mansehra, Pakistan
| | - Darya Sadvokassova
- Department of Biology, School of Sciences and Humanities, Nazarbayev University, Astana, Kazakhstan
| | - Alan Berdigaliyev
- Department of Biology, School of Sciences and Humanities, Nazarbayev University, Astana, Kazakhstan
| | - Salar Ahmad
- Department of Surgery, Tehsil Head Quarter (THQ) Hospital, Dargai Malakand, Pakistan
| | - Lian-Xiang Wang
- Department of Crops Research, Heze Research Institute, Heze, China
| | - Yingqiu Xie
- Department of Biology, School of Sciences and Humanities, Nazarbayev University, Astana, Kazakhstan
| |
Collapse
|
21
|
Boora S, Yadav S, Soniya K, Kaushik S, Yadav JP, Seth M, Kaushik S. Monkeypox virus is nature's wake-up call: a bird's-eye view. Virusdisease 2023:1-13. [PMID: 37363364 PMCID: PMC10214339 DOI: 10.1007/s13337-023-00826-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 05/08/2023] [Indexed: 06/28/2023] Open
Abstract
Several infections have emerged in humans, domestic animals, wildlife, and plant populations, causing a severe problem for humanity. Since the discovery of the Monkeypox virus (Mpox) in 1958 in Copenhagen, Denmark, it has resurfaced several times, producing severe infections in humans and resulting in a significant fatality rate. Mpox is an Orthopoxvirus of the Poxviridae family. This family contains various medically important viruses. The natural reservoir of Mpox is unknown yet. Mpox might be carried by African rodents and nonhuman primates (such as monkeys). The role of monkeys has been confirmed by its various outbreaks. The infection may be transferred from unidentified wild animals to monkeys, who can then spread it to humans by crossing species barriers. In close contact, human-to-human transmission is also possible. Mpox outbreaks have been documented regularly in Central and Western Africa, but recently in 2022, it has spread to over one hundred-six countries. There is no specific treatment for it, although the smallpox vaccine, antivirals, and vaccinia immune globulin help in the effective management of Mpox. In conclusion: Monkeypox poses a severe threat to public health due to the lack of specific vaccinations and effective antivirals. Surveillance studies in affected regions can assist in the early diagnosis of disease and help to control significant outbreaks. The present review provides information on epidemiology, clinical symptoms, risk factors, diagnosis, and preventive measures of Mpox.
Collapse
Affiliation(s)
- Sanjit Boora
- Centre for Biotechnology, Maharshi Dayanand University, Rohtak, Haryana 124001 India
| | - Suman Yadav
- Centre for Biotechnology, Maharshi Dayanand University, Rohtak, Haryana 124001 India
| | - Kumari Soniya
- Centre for Biotechnology, Maharshi Dayanand University, Rohtak, Haryana 124001 India
| | - Sulochana Kaushik
- Department of Genetics, Maharshi Dayanand University, Rohtak, Hr India
| | | | - Mihir Seth
- Pandit Bhagwat Dayal Sharma Post Graduate Institute of Medical Sciences, Rohtak, Hr India
| | - Samander Kaushik
- Centre for Biotechnology, Maharshi Dayanand University, Rohtak, Haryana 124001 India
| |
Collapse
|
22
|
Sanami S, Nazarian S, Ahmad S, Raeisi E, Tahir Ul Qamar M, Tahmasebian S, Pazoki-Toroudi H, Fazeli M, Ghatreh Samani M. In silico design and immunoinformatics analysis of a universal multi-epitope vaccine against monkeypox virus. PLoS One 2023; 18:e0286224. [PMID: 37220125 DOI: 10.1371/journal.pone.0286224] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 05/11/2023] [Indexed: 05/25/2023] Open
Abstract
Monkeypox virus (MPXV) outbreaks have been reported in various countries worldwide; however, there is no specific vaccine against MPXV. In this study, therefore, we employed computational approaches to design a multi-epitope vaccine against MPXV. Initially, cytotoxic T lymphocyte (CTL), helper T lymphocyte (HTL), linear B lymphocytes (LBL) epitopes were predicted from the cell surface-binding protein and envelope protein A28 homolog, both of which play essential roles in MPXV pathogenesis. All of the predicted epitopes were evaluated using key parameters. A total of 7 CTL, 4 HTL, and 5 LBL epitopes were chosen and combined with appropriate linkers and adjuvant to construct a multi-epitope vaccine. The CTL and HTL epitopes of the vaccine construct cover 95.57% of the worldwide population. The designed vaccine construct was found to be highly antigenic, non-allergenic, soluble, and to have acceptable physicochemical properties. The 3D structure of the vaccine and its potential interaction with Toll-Like receptor-4 (TLR4) were predicted. Molecular dynamics (MD) simulation confirmed the vaccine's high stability in complex with TLR4. Finally, codon adaptation and in silico cloning confirmed the high expression rate of the vaccine constructs in strain K12 of Escherichia coli (E. coli). These findings are very encouraging; however, in vitro and animal studies are needed to ensure the potency and safety of this vaccine candidate.
Collapse
Affiliation(s)
- Samira Sanami
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Shahin Nazarian
- Ming Hsieh Department of Electrical and Computer Engineering, University of Southern California, Los Angeles, CA, United States of America
| | - Sajjad Ahmad
- Department of Health and Biological Sciences, Abasyn University, Peshawar, Pakistan
| | - Elham Raeisi
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Muhammad Tahir Ul Qamar
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Shahram Tahmasebian
- Department of Medical Biotechnology, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Hamidreza Pazoki-Toroudi
- Physiology Research Center, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Department of Physiology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Maryam Fazeli
- WHO Collaborating Center for Reference and Research on Rabies, Pasteur Institute of Iran, Tehran, Iran
| | - Mahdi Ghatreh Samani
- Clinical Biochemistry Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| |
Collapse
|
23
|
Kakuk B, Dörmő Á, Csabai Z, Kemenesi G, Holoubek J, Růžek D, Prazsák I, Dani VÉ, Dénes B, Torma G, Jakab F, Tóth GE, Földes FV, Zana B, Lanszki Z, Harangozó Á, Fülöp Á, Gulyás G, Mizik M, Kiss AA, Tombácz D, Boldogkői Z. In-depth Temporal Transcriptome Profiling of Monkeypox and Host Cells using Nanopore Sequencing. Sci Data 2023; 10:262. [PMID: 37160911 PMCID: PMC10170163 DOI: 10.1038/s41597-023-02149-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 04/12/2023] [Indexed: 05/11/2023] Open
Abstract
The recent human Monkeypox outbreak underlined the importance of studying basic biology of orthopoxviruses. However, the transcriptome of its causative agent has not been investigated before neither with short-, nor with long-read sequencing approaches. This Oxford Nanopore long-read RNA-Sequencing dataset fills this gap. It will enable the in-depth characterization of the transcriptomic architecture of the monkeypox virus, and may even make possible to annotate novel host transcripts. Moreover, our direct cDNA and native RNA sequencing reads will allow the estimation of gene expression changes of both the virus and the host cells during the infection. Overall, our study will lead to a deeper understanding of the alterations caused by the viral infection on a transcriptome level.
Collapse
Affiliation(s)
- Balázs Kakuk
- Department of Medical Biology, Albert Szent-Györgyi Medical School, University of Szeged, Somogyi u. 4., 6720, Szeged, Hungary
| | - Ákos Dörmő
- Department of Medical Biology, Albert Szent-Györgyi Medical School, University of Szeged, Somogyi u. 4., 6720, Szeged, Hungary
| | - Zsolt Csabai
- Department of Medical Biology, Albert Szent-Györgyi Medical School, University of Szeged, Somogyi u. 4., 6720, Szeged, Hungary
| | - Gábor Kemenesi
- National Laboratory of Virology, Szentágothai Research Centre, University of Pécs, Pécs, Hungary
- Institute of Biology, Faculty of Sciences, University of Pécs, Pécs, Hungary
| | - Jiří Holoubek
- Veterinary Research Institute, Hudcova 70, CZ-62100, Brno, Czech Republic
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Branisovska 31, CZ-37005, Ceske Budejovice, Czech Republic
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice, 753/5, Brno, CZ-62500, Czech Republic
| | - Daniel Růžek
- Veterinary Research Institute, Hudcova 70, CZ-62100, Brno, Czech Republic
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Branisovska 31, CZ-37005, Ceske Budejovice, Czech Republic
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice, 753/5, Brno, CZ-62500, Czech Republic
| | - István Prazsák
- Department of Medical Biology, Albert Szent-Györgyi Medical School, University of Szeged, Somogyi u. 4., 6720, Szeged, Hungary
| | - Virág Éva Dani
- Department of Medical Biology, Albert Szent-Györgyi Medical School, University of Szeged, Somogyi u. 4., 6720, Szeged, Hungary
| | - Béla Dénes
- Department of Microbiology and Infectious Diseases, University of Veterinary Medicine Budapest, 1143, Budapest, Hungária krt. 23-25, Hungary
| | - Gábor Torma
- Department of Medical Biology, Albert Szent-Györgyi Medical School, University of Szeged, Somogyi u. 4., 6720, Szeged, Hungary
| | - Ferenc Jakab
- National Laboratory of Virology, Szentágothai Research Centre, University of Pécs, Pécs, Hungary
- Institute of Biology, Faculty of Sciences, University of Pécs, Pécs, Hungary
| | - Gábor E Tóth
- National Laboratory of Virology, Szentágothai Research Centre, University of Pécs, Pécs, Hungary
- Institute of Biology, Faculty of Sciences, University of Pécs, Pécs, Hungary
| | - Fanni V Földes
- National Laboratory of Virology, Szentágothai Research Centre, University of Pécs, Pécs, Hungary
- Institute of Biology, Faculty of Sciences, University of Pécs, Pécs, Hungary
| | - Brigitta Zana
- National Laboratory of Virology, Szentágothai Research Centre, University of Pécs, Pécs, Hungary
- Institute of Biology, Faculty of Sciences, University of Pécs, Pécs, Hungary
| | - Zsófia Lanszki
- National Laboratory of Virology, Szentágothai Research Centre, University of Pécs, Pécs, Hungary
- Institute of Biology, Faculty of Sciences, University of Pécs, Pécs, Hungary
| | - Ákos Harangozó
- Department of Medical Biology, Albert Szent-Györgyi Medical School, University of Szeged, Somogyi u. 4., 6720, Szeged, Hungary
| | - Ádám Fülöp
- Department of Medical Biology, Albert Szent-Györgyi Medical School, University of Szeged, Somogyi u. 4., 6720, Szeged, Hungary
| | - Gábor Gulyás
- Department of Medical Biology, Albert Szent-Györgyi Medical School, University of Szeged, Somogyi u. 4., 6720, Szeged, Hungary
| | - Máté Mizik
- Department of Medical Biology, Albert Szent-Györgyi Medical School, University of Szeged, Somogyi u. 4., 6720, Szeged, Hungary
| | - András Attila Kiss
- Department of Medical Biology, Albert Szent-Györgyi Medical School, University of Szeged, Somogyi u. 4., 6720, Szeged, Hungary
| | - Dóra Tombácz
- Department of Medical Biology, Albert Szent-Györgyi Medical School, University of Szeged, Somogyi u. 4., 6720, Szeged, Hungary
| | - Zsolt Boldogkői
- Department of Medical Biology, Albert Szent-Györgyi Medical School, University of Szeged, Somogyi u. 4., 6720, Szeged, Hungary.
| |
Collapse
|
24
|
Sharma R, Chen KT, Sharma R. Emerging evidence on Monkeypox: resurgence, global burden, molecular insights, genomics and possible management. Front Cell Infect Microbiol 2023; 13:1134712. [PMID: 37153147 PMCID: PMC10154632 DOI: 10.3389/fcimb.2023.1134712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 02/20/2023] [Indexed: 05/09/2023] Open
Abstract
An outbreak of monkeypox (encoded enveloped double stranded DNA), resurgence and expansion has emerged in early 2022, posing a new threat to global health. Even though, many reports are available on monkeypox, still a comprehensive updated review is needed. Present updated review is focused to fill the research gaps pertaining to the monkeypox, and an extensive search was conducted in a number of databases, including Google Scholar, Scopus, Web of Science, and Science Direct. Although the disease usually progresses self-limiting, some patients require admission for kidney injury, pharyngitis, myocarditis, and soft tissue super infections. There is no well-known treatment available yet; still there has been a push for the use of antiviral therapy and tecovirimat as a promising option when dealing with co-morbidities. In this study, we mapped and discussed the updates and scientific developments surrounding monkeypox, including its potential molecular mechanisms, genomics, transmission, risk factors, diagnosis, prevention, vaccines, treatment, possible plant-based treatment along with their proposed mechanisms. Each day, a growing number of monkeypox cases are reported, and more cases are expected in the near future. As of now, monkeypox does not have a well-established and proven treatment, and several investigations are underway to find the best possible treatment from natural or synthetic drug sources. Multiple molecular mechanisms on pathophysiological cascades of monkeypox virus infection are discussed here along with updates on genomics, and possible preventive and therapeutic strategies.
Collapse
Affiliation(s)
- Ruchi Sharma
- Department of Rasa Shastra and Bhaishajya Kalpana, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University (BHU), Varanasi, Uttar Pradesh, India
| | - Kow-Tong Chen
- Department of Occupational Medicine, Tainan Municipal Hospital (managed by Show Chwan Medical Care Corporation), Tainan, Taiwan
- Department of Public Health, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Rohit Sharma
- Department of Rasa Shastra and Bhaishajya Kalpana, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University (BHU), Varanasi, Uttar Pradesh, India
| |
Collapse
|
25
|
Majie A, Saha R, Sarkar B. The outbreak of the monkeypox virus in the shadow of the pandemic. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:48686-48702. [PMID: 36854947 PMCID: PMC9974386 DOI: 10.1007/s11356-023-26098-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 02/20/2023] [Indexed: 04/16/2023]
Abstract
The human monkeypox virus (MPXV) was first identified in 1959. Since then, the incidence of the disease has been sporadic. The endemic regions were identified in Africa's central and western areas. However, the infection started to spread in 2017 to non-endemic regions such as North and South America, Europe, and Asia. Since May 2022, the non-endemic areas reported 62,635 till 20th September 2022. Although the monkeypox virus has a mortality of ≥ 10%, it showed only 82 mortalities worldwide in 2022. The common symptoms include chills, fever, fatigue, and skin lesions, and the complications include secondary respiratory tract infections, encephalitis, blindness, and severe diarrhea. The factors responsible for spreading the virus include improper handling and consumption of infected bushmeat, unprotected sexual intercourse, contact with an infected person, no smallpox vaccination, improper hygiene, lower diagnostic capacity, and strong travel history from the endemic regions. The therapeutic strategy is symptom-based treatment and supportive care. Antivirals and vaccines such as Tecovirimat, Brincidofovir, Cidofovir, Imvamune, and ACAM2000 have shown promising results. The primary purpose of the review is to perform an epidemiological study and investigate the pathobiology, diagnosis, prevention, treatment, and some associated complications of the monkeypox virus in 2022.
Collapse
Affiliation(s)
- Ankit Majie
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, 835215 India
| | - Rajdeep Saha
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, 835215 India
| | - Biswatrish Sarkar
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, 835215 India
| |
Collapse
|
26
|
Chakraborty C, Bhattacharya M, Dhama K, Lee SS. Evaluation of differentially expressed genes during replication using gene expression landscape of monkeypox-infected MK2 cells: A bioinformatics and systems biology approach to understanding the genomic pattern of viral replication. J Infect Public Health 2023; 16:399-409. [PMID: 36724696 PMCID: PMC9874307 DOI: 10.1016/j.jiph.2023.01.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 01/12/2023] [Accepted: 01/18/2023] [Indexed: 01/26/2023] Open
Abstract
PURPOSE The current outbreak of monkeypox (MPX) has created colossal concerns. However, immense research gaps have been noted in our understanding of the replication process, machinery, and genomic landscape during host cell infection. To fill this gap, differentially expressed genes (DEGs) were comprehensively analyzed during viral replication in host (MK2) cells. METHODS We used a microarray GEO dataset which was divided into three groups: control, MPXV-infected MK2 cells at 3 h, and MPXV-infected MK2 cells at 7 h. Using the dataset, DEG analysis, PPI network analysis, co-expression, and pathway analysis were conducted using bioinformatics, systems biology, and statistical approaches. RESULTS We identified 250 DEGs and 24 top-ranked genes. During the DEG analysis, we identified eight up-regulated genes (LOC695323, TMEM107, LOC695427, HIST1H2AD, LOC705469, PMAIP1, HIST1H2BJ, and HIST1H3D) and 16 down-regulated genes (HOXA9, BAMBI, LMO4, PAX6, AJUBA, CREBRF, CD24, JADE1, SLC7A11, EID2, SOX4, B4GALT5, PPARGC1A, BUB3, SOS2, and CDK19). We also developed PPI networks and performed co-expression analyses using the top-ranked genes. Furthermore, five genes were listed for co-expression pattern analysis. CONCLUSIONS This study will help in better understanding the replication process, machinery, and genomic landscape of the virus. This will further aid the discovery and development of therapeutics against viruses.
Collapse
Affiliation(s)
- Chiranjib Chakraborty
- Department of Biotechnology, School of Life Science and Biotechnology, Adamas University, Kolkata, West Bengal 700126, India.
| | - Manojit Bhattacharya
- Department of Zoology, Fakir Mohan University, Vyasa Vihar, Balasore 756020, Odisha, India
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, Uttar Pradesh, India
| | - Sang-Soo Lee
- Institute for Skeletal Aging & Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon 24252, Gangwon-Do, Republic of Korea.
| |
Collapse
|
27
|
Rampogu S, Kim Y, Kim SW, Lee KW. An overview on monkeypox virus: Pathogenesis, transmission, host interaction and therapeutics. Front Cell Infect Microbiol 2023; 13:1076251. [PMID: 36844409 PMCID: PMC9950268 DOI: 10.3389/fcimb.2023.1076251] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 01/10/2023] [Indexed: 02/12/2023] Open
Abstract
Orthopoxvirus is one of the most notorious genus amongst the Poxviridae family. Monkeypox (MP) is a zoonotic disease that has been spreading throughout Africa. The spread is global, and incidence rates are increasing daily. The spread of the virus is rapid due to human-to-human and animals-to-human transmission. World Health Organization (WHO) has declared monkeypox virus (MPV) as a global health emergency. Since treatment options are limited, it is essential to know the modes of transmission and symptoms to stop disease spread. The information from host-virus interactions revealed significantly expressed genes that are important for the progression of the MP infection. In this review, we highlighted the MP virus structure, transmission modes, and available therapeutic options. Furthermore, this review provides insights for the scientific community to extend their research work in this field.
Collapse
Affiliation(s)
- Shailima Rampogu
- Department of Bio & Medical Big Data (BK4 Program), Division of Life Sciences, Research Institute of Natural Science (RINS), Gyeongsang National University (GNU), Jinju, Republic of Korea
| | - Yongseong Kim
- Department of Pharmaceutical Engineering, Kyungnam University, Changwon, Republic of Korea
| | - Seon-Won Kim
- Division of Applied Life Science (BK21 Four), ABC-RLRC, PMBBRC, Gyeongsang National University, Jinju, Republic of Korea
| | - Keun Woo Lee
- Department of Bio & Medical Big Data (BK4 Program), Division of Life Sciences, Research Institute of Natural Science (RINS), Gyeongsang National University (GNU), Jinju, Republic of Korea
| |
Collapse
|
28
|
Al-Kuraishy HM, Al-Gareeb AI, Hetta HF, Alexiou A, Papadakis M, Batiha GES. Heparanase is the possible link between monkeypox and Covid-19: robust candidature in the mystic and present perspective. AMB Express 2023; 13:13. [PMID: 36705773 PMCID: PMC9880376 DOI: 10.1186/s13568-023-01517-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 01/18/2023] [Indexed: 01/28/2023] Open
Abstract
Heparanase (HPSE) is an endoglycosidase cleaves heparan sulfate (HS) and this contributes to the degradation and remodeling of the extracellular matrix. HS cleaved by HPSE induces activation of autophagy and formation of autophagosommes which facilitate binding of HPSE to the HS and subsequent release of growth factors. The interaction between HPSE and HS triggers releases of chemokines and cytokines which affect inflammatory response and cell signaling pathways with development of hyperinflammation, cytokine storm (CS) and coagulopathy. HPSE expression is induced by both SARS-CoV-2 and monkeypox virus (MPXV) leading to induction release of pro-inflammatory cytokines, endothelial dysfunction and thrombotic events. Co-infection of MPX with SARS-CoV-2 may occur as we facing many outbreaks of MPX cases during Covid-19 pandemic. Therefore, targeting of HPSE by specific inhibitors may reduce the risk of complications in both SARS-CoV-2 and MPXV infections. Taken together, HPSE could be a potential link between MPX with SARS-CoV-2 in Covid-19 era.
Collapse
Affiliation(s)
- Hayder M. Al-Kuraishy
- Department of Clinical Pharmacology and Therapeutic Medicine, College of Medicine, ALmustansiriyiah University, Baghdad, Iraq
| | - Ali I. Al-Gareeb
- Department of Clinical Pharmacology and Therapeutic Medicine, College of Medicine, ALmustansiriyiah University, Baghdad, Iraq
| | - Helal F. Hetta
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Assiut University, Assiut, 71515 Egypt
| | - Athanasios Alexiou
- Department of Science and Engineering, Novel Global Community Educational Foundation, Hebersham, NSW 2770 Australia
- AFNP Med, 1030 Vienna, Austria
| | - Marios Papadakis
- Department of Surgery II, University Hospital Witten-Herdecke, University of Witten-Herdecke, Heusnerstrasse 40, 42283 Wuppertal, Germany
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, AlBeheira, Damanhour, 22511 Egypt
| |
Collapse
|
29
|
Al-Kuraishy HM, Al-Gareeb AI, Hetta HF, Alexiou A, Papadakis M, Batiha GES. Monkeypox epidemic at the door: should we remain idly by or prepare strongly? AMB Express 2023; 13:5. [PMID: 36637577 PMCID: PMC9837758 DOI: 10.1186/s13568-023-01507-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 01/01/2023] [Indexed: 01/14/2023] Open
Abstract
Monkeypox (MPX) is a common zoonotic disease caused by a double-strand DNA MPX virus (MPXV). MPX was considered a sporadic rare disease causing a mild disease with a low capacity to spread among humans. The clinical picture of human MPX highly resembles smallpox, though early lymphadenopathy in human MPX is the distinguishing sign not present in smallpox. The incubation period is 1-3 weeks, and fever, headache, joint pain, myalgia, and nausea for about 3 days. Skin lesions that appear 1-3 days following fever and lymphadenopathy usually appear simultaneously on the face and periphery. By cross-reactivity and protection, the smallpox vaccine produced 85% protection against infection with Orthopoxviruses, including MPX. Antiviral drugs like tecovirimate and brincidofovir could be effective agents against the development of MPX. MPX epidemics are less reported and described as other life-threatening epidemics, leading to an unclear picture of this disease's pathogenesis, epidemiology, and management. With the recent wide range of MPX outbreaks, immense research is mandatory to revise the importance of MPX pathogenesis and risk for epidemic development worldwide. Therefore, this critical study aimed to review MPX's pathogenesis, epidemiology, and management with possible repurposed drugs.
Collapse
Affiliation(s)
- Hayder M. Al-Kuraishy
- Department of Clinical Pharmacology and Therapeutic Medicine, College of Medicine, Al-Mustansiriyiah University, Baghdad, Iraq
| | - Ali I. Al-Gareeb
- Department of Clinical Pharmacology and Therapeutic Medicine, College of Medicine, Al-Mustansiriyiah University, Baghdad, Iraq
| | - Helal F. Hetta
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Assiut University, Assiut, 71515 Egypt
| | - Athanasios Alexiou
- Department of Science and Engineering, Novel Global Community Educational Foundation, Hebersham, NSW 2770 Australia
- AFNP Med, 1030 Vienna, Austria
| | - Marios Papadakis
- Department of Surgery II, University Hospital Witten-Herdecke, University of Witten-Herdecke, Heusnerstrasse 40, 42283 Wuppertal, Germany
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, AlBeheira, Damanhûr, 22511 Egypt
| |
Collapse
|
30
|
Identification of B and T Cell Epitopes to Design an Epitope-Based Peptide Vaccine against the Cell Surface Binding Protein of Monkeypox Virus: An Immunoinformatics Study. J Immunol Res 2023; 2023:2274415. [PMID: 36874624 PMCID: PMC9977553 DOI: 10.1155/2023/2274415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 01/07/2023] [Accepted: 02/07/2023] [Indexed: 02/24/2023] Open
Abstract
Background Although the monkeypox virus-associated illness was previously confined to Africa, recently, it has started to spread across the globe and become a significant threat to human lives. Hence, this study was designed to identify the B and T cell epitopes and develop an epitope-based peptide vaccine against this virus's cell surface binding protein through an in silico approach to combat monkeypox-associated diseases. Results The analysis revealed that the cell surface binding protein of the monkeypox virus contains 30 B cell and 19 T cell epitopes within the given parameter. Among the T cell epitopes, epitope "ILFLMSQRY" was found to be one of the most potential peptide vaccine candidates. The docking analysis revealed an excellent binding affinity of this epitope with the human receptor HLA-B∗15:01 with a very low binding energy (-7.5 kcal/mol). Conclusion The outcome of this research will aid the development of a T cell epitope-based peptide vaccine, and the discovered B and T cell epitopes will facilitate the creation of other epitope and multi-epitope-based vaccines in the future. This research will also serve as a basis for further in vitro and in vivo analysis to develop a vaccine that is effective against the monkeypox virus.
Collapse
|
31
|
Sohn EJ. Functional Analysis of Monkeypox and Interrelationship between Monkeypox and COVID-19 by Bioinformatic Analysis. Genet Res (Camb) 2023; 2023:8511036. [PMID: 37006463 PMCID: PMC10063359 DOI: 10.1155/2023/8511036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 03/03/2023] [Accepted: 03/15/2023] [Indexed: 04/04/2023] Open
Abstract
The outbreak of monkeypox may be considered a novel and urgent threat after the coronavirus disease (COVID-19). No wide-ranging studies have been conducted on this disease since it was first reported. We systematically assessed the functional role of gene expression in cells infected with the monkeypox virus using transcriptome profiling and compared the functional relation with that of COVID-19. Based on the Gene Expression Omnibus database, we obtained 212 differentially expressed genes (DEGs) of GSE36854 and GSE21001 of monkeypox datasets. Enrichment analyses, including KEGG and gene ontology (GO) analyses, were performed to identify the common function of 212 DEGs of GSE36854 and GSE21001. CytoHubba and Molecular Complex Detection were performed to determine the core genes after a protein-protein interaction (PPI). Metascape/COVID-19 was used to compare DEGs of monkeypox and COVID-19. GO analysis of 212 DEGs of GSE36854 and GSE21001 for monkeypox infection showed cellular response to cytokine stimulus, cell activation, and cell differentiation regulation. KEGG analysis of 212 DEGs of GSE36854 and GSE21001 for monkeypox infection showed involvement of monkeypox in COVID-19, cytokine-cytokine receptor interaction, inflammatory bowel disease, atherosclerosis, TNF signaling, and T cell receptor signaling. By comparing our data with published transcriptome of severe acute respiratory syndrome coronavirus 2 infections in other cell lines, the common function of monkeypox and COVID-19 includes cytokine signaling in the immune system, TNF signaling, and MAPK cascade regulation. Thus, our data suggest that the molecular connections identified between COVID-19 and monkeypox elucidate the causes of monkeypox.
Collapse
Affiliation(s)
- Eun Jung Sohn
- College of Medicine, Pusan National University, Yangsan 50612, Republic of Korea
| |
Collapse
|
32
|
Recent advances on human mpox. New Microbes New Infect 2022; 51:101066. [PMID: 36573212 PMCID: PMC9754762 DOI: 10.1016/j.nmni.2022.101066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 12/05/2022] [Accepted: 12/09/2022] [Indexed: 12/23/2022] Open
Abstract
Mpox has been a concern of public health and travel caution. Using databases of WHO, CDC, google scholar, and PubMed, we searched recent literatures and reviewed the history, genomic mutation/evolution, host cell response pathways, regulation policy, vaccine and therapy development. Recent studies showed that current mpox has many genomic mutations related to regulation by APOBEC3. Current mpox has also been suggested to be associated with sexual transmission. Vaccination should be applied and anti-mpox drug should be urgently developed. More investigations are needed to ensure outbreak prevention.
Collapse
|
33
|
Exploring the Characteristics of Monkeypox-Related Genes in Pan-Cancer. Cells 2022; 11:cells11233909. [PMID: 36497164 PMCID: PMC9740123 DOI: 10.3390/cells11233909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 11/22/2022] [Accepted: 11/26/2022] [Indexed: 12/12/2022] Open
Abstract
Monkeypox, an infectious virus that is a member of the Poxviridae family, has raised great threats to humans. Compared to the known oncoviruses, the relationship between monkeypox and cancer still remains obscure. Hence, in this study, we analyzed the multi-omics data from the Cancer Genome Atlas (TCGA) database by using genomic and transcriptomic approaches to comprehensively assess the monkeypox-related genes (MRGs) in tumor samples from 33 types of cancers. Based on the results, the expression of MRGs was highly correlated with the immune infiltration and could be further utilized to predict survival in cancer patients. Furthermore, it was shown that tumorigenesis and patient survival were frequently associated with the genomic alterations of MRGs. Moreover, pathway analysis showed that MRGs participated in the regulation of apoptosis, cell cycle, Epithelial to Mesenchymal Transition (EMT), DNA damage, and hormone androgen receptor (AR), as well as RAS/MAPK and RTK signaling pathways. Besides, we also developed the prognostic features and consensus clustering clusters of MRGs in cancers. Lastly, by mining the cancer drug sensitivity genomics database, we further identified a series of candidate drugs that may target MRGs. Collectively, this study revealed genomic alterations and clinical features of MRGs, which may provide new hints to explore the potential molecular mechanisms between viruses and cancers as well as to provide new clinical guidance of cancer patients who also face the threats during the monkeypox epidemic.
Collapse
|
34
|
Lansiaux E, Jain N, Laivacuma S, Reinis A. The virology of human monkeypox virus (hMPXV): A brief overview. Virus Res 2022; 322:198932. [PMID: 36165924 PMCID: PMC9534104 DOI: 10.1016/j.virusres.2022.198932] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 09/17/2022] [Accepted: 09/18/2022] [Indexed: 12/24/2022]
Abstract
First described in 1958, the human monkeypox virus (hMPXV) is a neglected zoonotic pathogen closely associated with the smallpox virus. The virus usually spreads via close contact with the infected animal or human and has been endemic mostly in parts of the African continent. However, with the recent increase in trade, tourism, and travel, the virus has caused outbreaks in countries outside Africa. The recent outbreak in 2022 has been puzzling given the lack of epidemiological connection and the possible sexual transmission of the virus. Furthermore, there is limited understanding of the structural and pathogenetic mechanisms that are employed by the virus to invade the host cells. Henceforth, it is critical to understand the working apparatus governing the viral-immune interactions to develop effective therapeutical and prophylactic modalities. Hence, in the present short communication, we summarize the previously reported research findings regarding the virology of the human monkeypox virus.
Collapse
Affiliation(s)
- Edouard Lansiaux
- Lille University School of Medicine, 2 Avenue Eugène Avinée, 59120, Loos, Lille, France,Corresponding author
| | - Nityanand Jain
- Faculty of Medicine, Riga Stradiņš University, Dzirciema Street 16, Riga LV-1007, Latvia,Corresponding author
| | - Sniedze Laivacuma
- Department of Infectiology, Riga Stradiņš University, Dzirciema Street 16, Riga LV-1007, Latvia
| | - Aigars Reinis
- Department of Biology and Microbiology, Riga Stradiņš University, Dzirciema Street 16, Riga LV-1007, Latvia
| |
Collapse
|
35
|
Domán M, Fehér E, Varga-Kugler R, Jakab F, Bányai K. Animal Models Used in Monkeypox Research. Microorganisms 2022; 10:2192. [PMID: 36363786 PMCID: PMC9694439 DOI: 10.3390/microorganisms10112192] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/21/2022] [Accepted: 10/28/2022] [Indexed: 07/26/2023] Open
Abstract
Monkeypox is an emerging zoonotic disease with a growing prevalence outside of its endemic area, posing a significant threat to public health. Despite the epidemiological and field investigations of monkeypox, little is known about its maintenance in natural reservoirs, biological implications or disease management. African rodents are considered possible reservoirs, although many mammalian species have been naturally infected with the monkeypox virus (MPXV). The involvement of domestic livestock and pets in spillover events cannot be ruled out, which may facilitate secondary virus transmission to humans. Investigation of MPXV infection in putative reservoir species and non-human primates experimentally uncovered novel findings relevant to the course of pathogenesis, virulence factors and transmission of MPXV that provided valuable information for designing appropriate prevention measures and effective vaccines.
Collapse
Affiliation(s)
- Marianna Domán
- Veterinary Medical Research Institute, H-1143 Budapest, Hungary
| | - Enikő Fehér
- Veterinary Medical Research Institute, H-1143 Budapest, Hungary
| | | | - Ferenc Jakab
- National Laboratory of Virology, Virological Research Group, Szentágothai Research Centre, University of Pécs, H-7624 Pécs, Hungary
| | - Krisztián Bányai
- Veterinary Medical Research Institute, H-1143 Budapest, Hungary
- Department of Pharmacology and Toxicology, University of Veterinary Medicine, H-1078 Budapest, Hungary
| |
Collapse
|
36
|
Hasan S, Saeed S. Monkeypox Disease: An Emerging Public Health Concern in the Shadow of COVID-19 Pandemic: An Update. Trop Med Infect Dis 2022; 7:tropicalmed7100283. [PMID: 36288024 PMCID: PMC9607171 DOI: 10.3390/tropicalmed7100283] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/23/2022] [Accepted: 09/26/2022] [Indexed: 11/06/2022] Open
Abstract
The last few decades have witnessed an appalling rise in several emerging and re-emerging viral and zoonotic outbreaks. Such outbreaks are a lesson to learn from and seek insight into better disease monitoring and surveillance, thus preventing future outbreaks. Monkeypox, a viral zoonotic illness caused by the monkeypox virus, may no longer be endemic to the tropical rainforests of Central and West Africa. However, the current monkeypox outbreak in nonendemic countries is most likely due to failure to curb the disease dissemination in endemic African regions despite decades of constant outbreaks. The clinical manifestations are typified by a prodromal phase (fever, myalgia, malaise, and lymphadenopathy) followed by maculopapular or vesicular, or pustular cutaneous eruptions that eventually form encrustations and peel off. Children and the elderly, pregnant females, and individuals living with comorbidities (diabetes, HIV/AIDS, and lymphoproliferative ailments) are at a high risk of severe disease. Monkeypox is a self-limiting disorder, but its complications and pandemic potential signify its immense public health relevance. The recent ongoing monkeypox outbreak in nonendemic nations areas was identified with increased propensity in men who have sex with men (MSMs) with no travel history to endemic regions, emphasizing the changing trends in disease transmission. This review article provides an updated overview of the monkeypox disease taxonomy, pathogenesis, transmission, epidemiology, clinical and oral features, diagnostic aids, differential diagnosis, preventive aspects, and treatment protocol.
Collapse
Affiliation(s)
- Shamimul Hasan
- Department of Oral Medicine and Radiology, Faculty of Dentistry, Jamia Millia Islamia, New Delhi 110025, India
| | - Shazina Saeed
- Amity Institute of Public Health, Amity University, Noida 201313, India
- Correspondence:
| |
Collapse
|
37
|
Novel multi epitope-based vaccine against monkeypox virus: vaccinomic approach. Sci Rep 2022; 12:15983. [PMID: 36156077 PMCID: PMC9510130 DOI: 10.1038/s41598-022-20397-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 09/13/2022] [Indexed: 11/30/2022] Open
Abstract
While mankind is still dealing with the COVID-19 pandemic, a case of monkeypox virus (MPXV) has been reported to the WHO on May 7, 2022. Monkeypox is a viral zoonotic disease that has been a public health threat, particularly in Africa. However, it has recently expanded to other parts of the world, so it may soon become a global issue. Thus, the current work was planned and then designed a multi-epitope vaccine against MPXV utilizing the cell surface-binding protein as a target in order to develop a novel and safe vaccine that can evoke the desirable immunological response. The proposed MHC-I, MHC-II, and B-cell epitopes were selected to design multi-epitope vaccine constructs linked with suitable linkers in combination with different adjuvants to enhance the immune responses for the vaccine constructs. The proposed vaccine was composed of 275 amino acids and was shown to be antigenic in Vaxijen server (0.5311) and non-allergenic in AllerTop server. The 3D structure of the designed vaccine was predicted, refined and validated by various in silico tools to assess the stability of the vaccine. Moreover, the solubility of the vaccine construct was found greater than the average solubility provided by protein-Sol server which indicating the solubility of the vaccine construct. Additionally, the most promising epitopes bound to MHC I and MHC II alleles were found having good binding affinities with low energies ranging between − 7.0 and − 8.6 kcal/mol. According to the immunological simulation research, the vaccine was found to elicit a particular immune reaction against the monkeypox virus. Finally, the molecular dynamic study shows that the designed vaccine is stable with minimum RMSF against MHC I allele. We conclude from our research that the cell surface-binding protein is one of the primary proteins involved in MPXV pathogenesis. As a result, our study will aid in the development of appropriate therapeutics and prompt the development of future vaccines against MPXV.
Collapse
|
38
|
Farahat RA, Sah R, El-Sakka AA, Benmelouka AY, Kundu M, Labieb F, Shaheen RS, Abdelaal A, Abdelazeem B, Bonilla-Aldana DK, Franco-Paredes C, Henao-Martinez AF, Garout MA, León-Figueroa DA, Pachar M, Suárez JA, Ramirez JD, Paniz-Mondolfi A, Rabaan AA, Al-Tawfiq JA, Nishiura H, Ortiz-Martínez Y, Garcia-Robledo JE, Cimerman S, Barbosa AN, Pagliano P, Zambrano-Sanchez G, Cardona-Ospina JA, Bížová B, Rodriguez-Morales AJ. Human monkeypox disease (MPX). LE INFEZIONI IN MEDICINA 2022; 30:372-391. [PMID: 36148174 PMCID: PMC9448318 DOI: 10.53854/liim-3003-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 07/24/2022] [Indexed: 05/24/2023]
Abstract
Monkeypox is a rare viral infection, endemic in many central and western African countries. The last international outbreak of monkeypox reported outside Africa occurred back in 2003. However, monkeypox has reemerged at a global scale with numerous confirmed cases across the globe in 2022. The rapid spread of cases through different countries has raised serious concerns among public health officials worldwide prompting accelerated investigations aimed to identify the origins and cause of the rapid expansion of cases. The current situation is reminiscent of the very early stages of the still ongoing COVID-19 pandemic. Overlapping features between these, two seemingly alike viral entities include the possibility for airborne transmission and the currently unexplained and rapid spread across borders. Early recognition of cases and timely intervention of potential transmission chains are necessary to contain further outbreaks. Measures should include rapid and accurate diagnosis of cases meeting case definitions, active surveillance efforts, and appropriate containment of confirmed cases. Governments and health policymakers must apply lessons learned from previous outbreaks and start taking active steps toward limiting the recent global spread of monkeypox. Herein, we discuss the status of the current monkeypox outbreaks worldwide, the epidemiological and public health situation at a global scale and what can be done to keep at bay its further expansion and future global implications.
Collapse
Affiliation(s)
| | - Ranjit Sah
- Department of Microbiology, Institute of Medicine, Tribhuvan University Teaching Hospital, Kathmandu, Nepal
| | - Amro A. El-Sakka
- Faculty of Medicine, Suez Canal University, Ismailia 41511, Egypt
| | | | - Mrinmoy Kundu
- Institute of Medical Sciences and SUM Hospital, Siksha ‘O’ Anusandhan, Bhubaneswar 751003, India
| | - Fatma Labieb
- Faculty of Medicine, Beni-Suef Univesity, Beni-Suef 62511, Egypt
| | | | - Abdelaziz Abdelaal
- Harvard Medical School, Boston, MA 02115, USA
- Boston University, MA 02215, USA
- Tanta University Hospitals, 31516 Egypt
| | - Basel Abdelazeem
- Department of Internal Medicine, McLaren Health Care, Flint, Michigan 48532, USA
- Department of Internal Medicine, Michigan State University, East Lansing, Michigan 48823, USA
| | - D. Katterine Bonilla-Aldana
- Grupo de Investigación Biomedicina, Faculty of Medicine, Institución Universitaria Visión de las Américas, Pereira, Risaralda, Colombia
- Latin American Network on MOnkeypox VIrus research (LAMOVI), Pereira, Risaralda, Colombia
| | | | | | - Mohammed A. Garout
- Community Medicine and Pilgrims Health Department, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Darwin A. León-Figueroa
- Grupo de Investigación Biomedicina, Faculty of Medicine, Institución Universitaria Visión de las Américas, Pereira, Risaralda, Colombia
- Facultad de Medicina Humana, Universidad de San Martín de Porres, Chiclayo, Peru
- Emerge, Unidad de Investigación en Enfermedades Emergentes y Cambio Climático, Facultad de Salud Pública y Administración, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Monica Pachar
- Medicine Department-Infectious Diseases Service, Hospital Santo Tomas, Panama City, Panama
| | - José Antonio Suárez
- Investigador SNI Senacyt Panamá, Clinical Research Deparment, Instituto Conmemorativo Gorgas de Estudios de la Salud, Panama City, Panama
| | - Juan David Ramirez
- Department of Pathology, Molecular, and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Alberto Paniz-Mondolfi
- Department of Pathology, Molecular, and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ali A. Rabaan
- Molecular Diagnostic Laboratory, Johns Hopkins Aramco Healthcare, Dhahran, 31311, Saudi Arabia
- College of Medicine, Alfaisal University, Riyadh, 11533, Saudi Arabia
- Department of Public Health and Nutrition, The University of Haripur, Haripur, 22610, Pakistan
| | - Jaffar A. Al-Tawfiq
- Specialty Internal Medicine and Quality Department, Johns Hopkins Aramco Healthcare, Dhahran, Saudi Arabia
- Infectious Diseases Division, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
- Infectious Diseases Division, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Hiroshi Nishiura
- Kyoto University School of Public Health, Yoshidakonoecho, Sakyoku, Kyoto City 6068501, Japan
| | - Yeimer Ortiz-Martínez
- Grupo de Investigación Biomedicina, Faculty of Medicine, Institución Universitaria Visión de las Américas, Pereira, Risaralda, Colombia
- Department of Internal Medicine, Universidad Industrial de Santander, Bucaramanga, Santander, Colombia
| | | | - Sergio Cimerman
- Instituto de Infectologia Emílio Ribas, São Paulo, SP, Brazil Brazilian Society for Infectious Diseases, São Paulo, SP, Brazil
| | - Alexandre Naime Barbosa
- Infectious Diseases Department, Botucatu Medical School, UNESP Brazilian Society for Infectious Diseases, São Paulo, SP, Brazil
| | - Pasquale Pagliano
- Department of Infectious Diseases, University of Salerno, Salerno, Italy
| | | | - Jaime A. Cardona-Ospina
- Institución Universitaria Visión de las Américas, Pereira, Risaralda, Colombia
- Grupo de Investigación Biomedicina, Faculty of Medicine, Fundación Universitaria Autónoma de las Américas, 660003, Pereira, Risaralda, Colombia
| | - Beatrice Bížová
- Department of Dermatovenerology, Second Faculty of Medicine, Charles University, University Hospital Bulovka, Prague, Czech Republic
| | - Alfonso J. Rodriguez-Morales
- Grupo de Investigación Biomedicina, Faculty of Medicine, Institución Universitaria Visión de las Américas, Pereira, Risaralda, Colombia
- Latin American Network on MOnkeypox VIrus research (LAMOVI), Pereira, Risaralda, Colombia
- Institución Universitaria Visión de las Américas, Pereira, Risaralda, Colombia
- Grupo de Investigación Biomedicina, Faculty of Medicine, Fundación Universitaria Autónoma de las Américas, 660003, Pereira, Risaralda, Colombia
- Master of Clinical Epidemiology and Biostatistics, Universidad Científica del Sur, Lima, 4861, Peru
| |
Collapse
|
39
|
Abed Alah M, Abdeen S, Tayar E, Bougmiza I. The story behind the first few cases of monkeypox infection in non-endemic countries, 2022. J Infect Public Health 2022; 15:970-974. [PMID: 35952458 PMCID: PMC9534129 DOI: 10.1016/j.jiph.2022.07.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 07/22/2022] [Accepted: 07/30/2022] [Indexed: 11/18/2022] Open
Abstract
Starting May 6, 2022, a rising number of monkeypox cases started to be detected in different countries where the disease is not endemic. About 24 countries reported cases by May 28 mostly in Europe. Most of the reported cases so far were among young men particularly men who have sex with men or had a travel history to countries where cases are being registered. In this rapid review we summarized the story behind the first few cases of monkeypox virus infection in non-endemic countries and the prevention measures implemented so far by countries to contain the spread of the disease.
Collapse
Affiliation(s)
- Muna Abed Alah
- Community Medicine Department, Hamad Medical Corporation (HMC), Doha, Qatar.
| | - Sami Abdeen
- Community Medicine Department, Hamad Medical Corporation (HMC), Doha, Qatar.
| | - Elias Tayar
- Community Medicine Department, Hamad Medical Corporation (HMC), Doha, Qatar.
| | - Iheb Bougmiza
- Consultant, Community Medicine Department, Primary Health Care Corporation (PHCC), Doha, Qatar; Associate Professor, Community Medicine Department, College of Medicine, Sousse University, Tunisia.
| |
Collapse
|
40
|
Comparison of Transcriptomic Signatures between Monkeypox-Infected Monkey and Human Cell Lines. J Immunol Res 2022; 2022:3883822. [PMID: 36093436 PMCID: PMC9458371 DOI: 10.1155/2022/3883822] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 07/21/2022] [Indexed: 12/11/2022] Open
Abstract
Monkeypox virus (MPV) is a smallpox-like virus belonging to the genus Orthopoxvirus of the family Poxviridae. Unlike smallpox with no animal reservoir identified and patients suffering from milder symptoms with less mortality, several animals were confirmed to serve as natural hosts of MPV. The reemergence of a recently reported monkeypox epidemic outbreak in nonendemic countries has raised concerns about a global outburst. Since the underlying mechanism of animal-to-human transmission remains largely unknown, comprehensive analyses to discover principal differences in gene signatures during disease progression have become ever more critical. In this study, two MPV-infected in vitro models, including human immortal epithelial cancer (HeLa) cells and rhesus monkey (Macaca mulatta) kidney epithelial (MK2) cells, were chosen as the two subjects to identify alterations in gene expression profiles, together with co-regulated genes and pathways that are affected during monkeypox disease progression. Using Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and MetaCore analyses, we discovered that elevated expression of genes associated with interleukins (ILs), G protein-coupled receptors (GPCRs), heat shock proteins (HSPs), Toll-like receptors (TLRs), and metabolic-related pathways play major roles in disease progression of both monkeypox-infected monkey MK2 and human HeLa cell lines. Interestingly, our analytical results also revealed that a cluster of differentiation 40 (CD40), plasmin, and histamine served as major regulators in the monkeypox-infected monkey MK2 cell line model, while interferons (IFNs), macrophages, and neutrophil-related signaling pathways dominated the monkeypox-infected human HeLa cell line model. Among immune pathways of interest, apart from traditional monkeypox-regulated signaling pathways such as nuclear factor- (NF-κB), mitogen-activated protein kinases (MAPKs), and tumor necrosis factors (TNFs), we also identified highly significantly expressed genes in both monkey and human models that played pivotal roles during the progression of monkeypox infection, including CXCL1, TNFAIP3, BIRC3, IL6, CCL2, ZC3H12A, IL11, CSF2, LIF, PTX3, IER3, EGR1, ADORA2A, and DUOX1, together with several epigenetic regulators, such as histone cluster family gene members, HIST1H3D, HIST1H2BJ, etc. These findings might contribute to specific underlying mechanisms related to the pathophysiology and provide suggestions regarding modes of transmission, post-infectious sequelae, and vaccine development for monkeypox in the future.
Collapse
|
41
|
Cheema AY, Ogedegbe OJ, Munir M, Alugba G, Ojo TK. Monkeypox: A Review of Clinical Features, Diagnosis, and Treatment. Cureus 2022; 14:e26756. [PMID: 35967174 PMCID: PMC9365327 DOI: 10.7759/cureus.26756] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/11/2022] [Indexed: 11/22/2022] Open
Abstract
Monkeypox virus (MPXV) is an enveloped double-stranded DNA virus that results in a smallpox-like human disease. This causative organism belongs to the Orthopoxvirus genus. It is known to affect the neurological, respiratory, and gastrointestinal systems. The past few decades have seen endemic outbreaks of this viral infection due to the eradication of smallpox and subsequent laxity in vaccination efforts. Since it was initially diagnosed in 1970 in the Democratic Republic of Congo, it has spread to many countries worldwide, including the United States of America, becoming a disease of significant epidemiological importance. The most recent outbreak occurred in 2022. Although this viral disease is considered self-limiting, it poses serious public health concerns due to its complications and pandemic potential. This review will introduce a general overview of MPXV and describe the epidemiology, clinical features, evaluation, and treatment of monkeypox patients. It will also provide a means to raise awareness among primary and secondary healthcare providers. Furthermore, our review focuses on the most up-to-date clinical information for the effective management, prevention, and counselling of monkeypox patients worldwide.
Collapse
Affiliation(s)
- Asfand Yar Cheema
- Medicine, Services Hospital Lahore, Lahore, PAK.,Internal Medicine, Lahore Medical & Dental College, Lahore, PAK
| | | | - Mishaal Munir
- Medicine, Ghurki Trust and Teaching Hospital, Lahore, PAK.,Internal Medicine, Lahore Medical & Dental College, Lahore, PAK
| | | | | |
Collapse
|
42
|
Genome-Wide Characterization and Analysis of Expression of the Histone Gene Family in Razor Clam, Sinonovacula constricta. FISHES 2021. [DOI: 10.3390/fishes7010005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The Chinese razor clam (Sinonovacula constricta), a bivalve species widely distributed in estuaries and mudflats, is often exposed to extreme environmental and microbial stresses. Histones are fundamental components of chromatin and play an important role in innate immunity, as demonstrated by its antimicrobial activities in clams. However, little attention has been paid to histones in bivalves. To fill this gap, we investigated the genomic distribution, structural characteristics, conserved motifs, and phylogenetic relationships of histones in S. constricta. A total of 114 histone genes were detected in the S. constricta genome, which were divided into 25 types in phylogenetic analysis. Among them, partial histones exhibited a tissue-dependent expression pattern, indicating that they may be involved in sustaining the homeostasis of organs/tissues in adult S. constricta. Furthermore, mRNA expression of certain histones changed significantly in S. constricta when infected with Vibrio parahaemolyticus, suggesting that histones play a role in the immune defense of S. constricta. All together, this study on histone genes in S. constricta not only greatly expands our knowledge of histone function in the clam, but also histone evolution in molluscs.
Collapse
|
43
|
Alakunle E, Moens U, Nchinda G, Okeke MI. Monkeypox Virus in Nigeria: Infection Biology, Epidemiology, and Evolution. Viruses 2020; 12:E1257. [PMID: 33167496 PMCID: PMC7694534 DOI: 10.3390/v12111257] [Citation(s) in RCA: 370] [Impact Index Per Article: 92.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/22/2020] [Accepted: 10/30/2020] [Indexed: 12/16/2022] Open
Abstract
Monkeypox is a zoonotic disease caused by monkeypox virus (MPXV), which is a member of orthopoxvirus genus. The reemergence of MPXV in 2017 (at Bayelsa state) after 39 years of no reported case in Nigeria, and the export of travelers' monkeypox (MPX) from Nigeria to other parts of the world, in 2018 and 2019, respectively, have raised concern that MPXV may have emerged to occupy the ecological and immunological niche vacated by smallpox virus. This review X-rays the current state of knowledge pertaining the infection biology, epidemiology, and evolution of MPXV in Nigeria and worldwide, especially with regard to the human, cellular, and viral factors that modulate the virus transmission dynamics, infection, and its maintenance in nature. This paper also elucidates the role of recombination, gene loss and gene gain in MPXV evolution, chronicles the role of signaling in MPXV infection, and reviews the current therapeutic options available for the treatment and prevention of MPX. Additionally, genome-wide phylogenetic analysis was undertaken, and we show that MPXV isolates from recent 2017 outbreak in Nigeria were monophyletic with the isolate exported to Israel from Nigeria but do not share the most recent common ancestor with isolates obtained from earlier outbreaks, in 1971 and 1978, respectively. Finally, the review highlighted gaps in knowledge particularly the non-identification of a definitive reservoir host animal for MPXV and proposed future research endeavors to address the unresolved questions.
Collapse
Affiliation(s)
- Emmanuel Alakunle
- Department of Natural and Environmental Sciences, Biomedical Science Concentration, School of Arts and Sciences, American University of Nigeria, 98 Lamido Zubairu Way, PMB 2250 Yola, Nigeria;
| | - Ugo Moens
- Molecular Inflammation Research Group, Institute of Medical Biology, University i Tromsø (UIT)—The Arctic University of Norway, N-9037 Tromsø, Norway;
| | - Godwin Nchinda
- Laboratory of Vaccinology and Immunology, The Chantal Biya International Reference Center for Research on the Prevention and Management HIV/AIDS (CIRCB), P.O Box 3077 Yaoundé-Messa, Cameroon;
- Department of Pharmaceutical Microbiology & Biotechnology, Faculty of Pharmaceutical Sciences, Nnamdi Azikiwe University, P.O Box 420110 Awka, Nigeria
| | - Malachy Ifeanyi Okeke
- Department of Natural and Environmental Sciences, Biomedical Science Concentration, School of Arts and Sciences, American University of Nigeria, 98 Lamido Zubairu Way, PMB 2250 Yola, Nigeria;
| |
Collapse
|
44
|
Hover S, Foster B, Barr JN, Mankouri J. Viral dependence on cellular ion channels - an emerging anti-viral target? J Gen Virol 2017; 98:345-351. [PMID: 28113044 DOI: 10.1099/jgv.0.000712] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The broad range of cellular functions governed by ion channels represents an attractive target for viral manipulation. Indeed, modulation of host cell ion channel activity by viral proteins is being increasingly identified as an important virus-host interaction. Recent examples have demonstrated that virion entry, virus egress and the maintenance of a cellular environment conducive to virus persistence are, in part, dependent on virus manipulation of ion channel activity. Most excitingly, evidence has emerged that targeting ion channels pharmacologically can impede virus life cycles. Here, we discuss current examples of virus-ion channel interactions and the potential of targeting ion channel function as a new, pharmacologically safe and broad-ranging anti-viral therapeutic strategy.
Collapse
Affiliation(s)
- Samantha Hover
- School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Becky Foster
- School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - John N Barr
- School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Jamel Mankouri
- School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, UK
| |
Collapse
|
45
|
Falcinelli SD, Chertow DS, Kindrachuk J. Integration of Global Analyses of Host Molecular Responses with Clinical Data To Evaluate Pathogenesis and Advance Therapies for Emerging and Re-emerging Viral Infections. ACS Infect Dis 2016; 2:787-799. [PMID: 27933782 PMCID: PMC6131701 DOI: 10.1021/acsinfecdis.6b00104] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
![]()
Outbreaks
associated with emerging and re-emerging viral pathogens continue
to increase in frequency and are associated with an increasing burden
to global health. In light of this, there is a need to integrate basic
and clinical research for investigating the connections between molecular
and clinical pathogenesis and for therapeutic development strategies.
Here, we will discuss this approach with a focus on the emerging viral
pathogens Middle East respiratory syndrome coronavirus (MERS-CoV),
Ebola virus (EBOV), and monkeypox virus (MPXV) from the context of
clinical presentation, immunological and molecular features of the
diseases, and OMICS-based analyses of pathogenesis. Furthermore, we
will highlight the role of global investigations of host kinases,
the kinome, for investigating emerging and re-emerging viral pathogens
from the context of characterizing cellular responses and identifying
novel therapeutic targets. Lastly, we will address how increased integration
of clinical and basic research will assist treatment and prevention
efforts for emerging pathogens.
Collapse
Affiliation(s)
- Shane D. Falcinelli
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland 20814, United States
| | - Daniel S. Chertow
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland 20814, United States
| | - Jason Kindrachuk
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland 20814, United States
| |
Collapse
|
46
|
Abou-El-Hassan H, Zaraket H. Viral-derived complement inhibitors: current status and potential role in immunomodulation. Exp Biol Med (Maywood) 2016; 242:397-410. [PMID: 27798122 DOI: 10.1177/1535370216675772] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The complement system is one of the body's major innate immune defense mechanisms in vertebrates. Its function is to detect foreign bodies and promote their elimination through opsonisation or lysis. Complement proteins play an important role in the immunopathogenesis of several disorders. However, excessive complement activation does not confer more protection but instead leads to several autoimmune and inflammatory diseases. With inappropriate activation of the complement system, activated complement proteins and glycoproteins may damage both healthy and diseased tissues. Development of complement inhibitors represents an effective approach in controlling dysregulated complement activity and reducing disease severity, yet few studies have investigated the nature and role of novel complement inhibitory proteins of viral origin. Viral complement inhibitors have important implications in understanding the importance of complement inhibition and their role as a promising novel therapeutic approach in diseases caused by dysregulated complement function. In this review, we discuss the role and importance of complement inhibitors derived from several viruses in the scope of human inflammatory and autoimmune diseases.
Collapse
Affiliation(s)
- Hadi Abou-El-Hassan
- 1 Faculty of Medicine, American University of Beirut Medical Center, Beirut, Lebanon.,2 Center for Infectious Diseases Research, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Hassan Zaraket
- 2 Center for Infectious Diseases Research, Faculty of Medicine, American University of Beirut, Beirut, Lebanon.,3 Department of Experimental Pathology, Immunology, and Microbiology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| |
Collapse
|
47
|
Leão TL, da Fonseca FG. Subversion of cellular stress responses by poxviruses. World J Clin Infect Dis 2014; 4:27-40. [DOI: 10.5495/wjcid.v4.i4.27] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2014] [Revised: 07/26/2014] [Accepted: 09/10/2014] [Indexed: 02/06/2023] Open
Abstract
Cellular stress responses are powerful mechanisms that prevent and cope with the accumulation of macromolecular damage in the cells and also boost host defenses against pathogens. Cells can initiate either protective or destructive stress responses depending, to a large extent, on the nature and duration of the stressing stimulus as well as the cell type. The productive replication of a virus within a given cell places inordinate stress on the metabolism machinery of the host and, to assure the continuity of its replication, many viruses have developed ways to modulate the cell stress responses. Poxviruses are among the viruses that have evolved a large number of strategies to manipulate host stress responses in order to control cell fate and enhance their replicative success. Remarkably, nearly every step of the stress responses that is mounted during infection can be targeted by virally encoded functions. The fine-tuned interactions between poxviruses and the host stress responses has aided virologists to understand specific aspects of viral replication; has helped cell biologists to evaluate the role of stress signaling in the uninfected cell; and has tipped immunologists on how these signals contribute to alert the cells against pathogen invasion and boost subsequent immune responses. This review discusses the diverse strategies that poxviruses use to subvert host cell stress responses.
Collapse
|
48
|
The impact of "omic" and imaging technologies on assessing the host immune response to biodefence agents. J Immunol Res 2014; 2014:237043. [PMID: 25333059 PMCID: PMC4182007 DOI: 10.1155/2014/237043] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Revised: 07/23/2014] [Accepted: 08/05/2014] [Indexed: 01/08/2023] Open
Abstract
Understanding the interactions between host and pathogen is important for the development and assessment of medical countermeasures to infectious agents, including potential biodefence pathogens such as Bacillus anthracis, Ebola virus, and Francisella tularensis. This review focuses on technological advances which allow this interaction to be studied in much greater detail. Namely, the use of “omic” technologies (next generation sequencing, DNA, and protein microarrays) for dissecting the underlying host response to infection at the molecular level; optical imaging techniques (flow cytometry and fluorescence microscopy) for assessing cellular responses to infection; and biophotonic imaging for visualising the infectious disease process. All of these technologies hold great promise for important breakthroughs in the rational development of vaccines and therapeutics for biodefence agents.
Collapse
|
49
|
Kindrachuk J, Falcinelli S, Wada J, Kuhn JH, Hensley LE, Jahrling PB. Systems kinomics for characterizing host responses to high-consequence pathogens at the NIH/NIAID Integrated Research Facility-Frederick. Pathog Dis 2014; 71:190-98. [PMID: 24585711 PMCID: PMC6136422 DOI: 10.1111/2049-632x.12163] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Revised: 02/04/2014] [Accepted: 02/13/2014] [Indexed: 11/30/2022] Open
Abstract
Currently, there is a paucity of information regarding the molecular pathogenesis for many high-consequence pathogens (HCPs) that pose threats to both national and international public health. In spite of this, investigations of the molecular pathogenesis for many HCPs have been limited to gross pathological changes in animal models or global analysis of gene expression. Further, questions remain regarding the ability of animal models of disease to recapitulate human molecular pathogenesis or act as predictors of therapeutic efficacy. Thus, it is likely that medical countermeasure development for HCPs will rely on identifying therapeutic targets that are uniquely modulated during HCP infection. It is also appreciated that many cellular processes can be regulated independently of changes in transcription or translation through phosphorylation events. Cellular kinases, individually or collectively (the kinome), play critical roles in regulating complex biology, underlie various malignancies, and represent high-priority drug targets. The growing interest in kinases in both basic and translational research has driven efforts to develop technologies that enable characterization of phosphorylation-mediated signal transduction. To this end, enhanced technical capabilities at the IRF-Frederick provide the unique capability for characterizing host responses to HCP insult during the course of infection and identify novel targets for therapeutic intervention.
Collapse
Affiliation(s)
- Jason Kindrachuk
- Integrated Research Facility at Fort DetrickDivision of Clinical ResearchNational Institute of Allergy and Infectious DiseasesNational Institutes of HealthFrederickMDUSA
| | - Shane Falcinelli
- Emerging Viral Pathogens SectionNational Institute of Allergy and Infectious DiseasesNational Institutes of HealthBethesdaMDUSA
| | - Jiro Wada
- Integrated Research Facility at Fort DetrickDivision of Clinical ResearchNational Institute of Allergy and Infectious DiseasesNational Institutes of HealthFrederickMDUSA
| | - Jens H. Kuhn
- Integrated Research Facility at Fort DetrickDivision of Clinical ResearchNational Institute of Allergy and Infectious DiseasesNational Institutes of HealthFrederickMDUSA
| | - Lisa E. Hensley
- Integrated Research Facility at Fort DetrickDivision of Clinical ResearchNational Institute of Allergy and Infectious DiseasesNational Institutes of HealthFrederickMDUSA
| | - Peter B. Jahrling
- Integrated Research Facility at Fort DetrickDivision of Clinical ResearchNational Institute of Allergy and Infectious DiseasesNational Institutes of HealthFrederickMDUSA
- Emerging Viral Pathogens SectionNational Institute of Allergy and Infectious DiseasesNational Institutes of HealthBethesdaMDUSA
| |
Collapse
|
50
|
Hammamieh R, Chakraborty N, Gautam A, Miller SA, Muhie S, Meyerhoff J, Jett M. Transcriptomic analysis of the effects of a fish oil enriched diet on murine brains. PLoS One 2014; 9:e90425. [PMID: 24632812 PMCID: PMC3954562 DOI: 10.1371/journal.pone.0090425] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Accepted: 01/29/2014] [Indexed: 12/15/2022] Open
Abstract
The health benefits of fish oil enriched with high omega-3 polyunsaturated fatty acids (n-3 PUFA) are widely documented. Fish oil as dietary supplements, however, show moderate clinical efficacy, highlighting an immediate scope of systematic in vitro feedback. Our transcriptomic study was designed to investigate the genomic shift of murine brains fed on fish oil enriched diets. A customized fish oil enriched diet (FD) and standard lab diet (SD) were separately administered to two randomly chosen populations of C57BL/6J mice from their weaning age until late adolescence. Statistical analysis mined 1,142 genes of interest (GOI) differentially altered in the hemibrains collected from the FD- and SD-fed mice at the age of five months. The majority of identified GOI (∼40%) encodes proteins located in the plasma membrane, suggesting that fish oil primarily facilitated the membrane-oriented biofunctions. FD potentially augmented the nervous system's development and functions by selectively stimulating the Src-mediated calcium-induced growth cascade and the downstream PI3K-AKT-PKC pathways. FD reduced the amyloidal burden, attenuated oxidative stress, and assisted in somatostatin activation—the signatures of attenuation of Alzheimer's disease, Parkinson's disease, and affective disorder. FD induced elevation of FKBP5 and suppression of BDNF, which are often linked with the improvement of anxiety disorder, depression, and post-traumatic stress disorder. Hence we anticipate efficacy of FD in treating illnesses such as depression that are typically triggered by the hypoactivities of dopaminergic, adrenergic, cholinergic, and GABAergic networks. Contrastingly, FD's efficacy could be compromised in treating illnesses such as bipolar disorder and schizophrenia, which are triggered by hyperactivities of the same set of neuromodulators. A more comprehensive investigation is recommended to elucidate the implications of fish oil on disease pathomechanisms, and the result-driven repositioning of fish oil utilization may revitalize its therapeutic efficacy.
Collapse
Affiliation(s)
- Rasha Hammamieh
- United States Army Center for Environmental Health Research, Fort Detrick, Maryland, United States of America
- * E-mail:
| | - Nabarun Chakraborty
- United States Army Center for Environmental Health Research, Fort Detrick, Maryland, United States of America
| | - Aarti Gautam
- United States Army Center for Environmental Health Research, Fort Detrick, Maryland, United States of America
| | - Stacy-Ann Miller
- United States Army Center for Environmental Health Research, Fort Detrick, Maryland, United States of America
| | - Seid Muhie
- United States Army Center for Environmental Health Research, Fort Detrick, Maryland, United States of America
| | - James Meyerhoff
- United States Army Center for Environmental Health Research, Fort Detrick, Maryland, United States of America
| | - Marti Jett
- United States Army Center for Environmental Health Research, Fort Detrick, Maryland, United States of America
| |
Collapse
|