1
|
Esmaeilnejad M, Rasaei N, Goudarzi K, Behrouz Dehkordi Z, Dolatshahi S, Salehi Omran H, Amirani N, Ashtary-Larky D, Shimi G, Asbaghi O. The effects of conjugated linoleic acid supplementation on cardiovascular risk factors in patients at risk of cardiovascular disease: A GRADE-assessed systematic review and dose-response meta-analysis. Br J Nutr 2024:1-16. [PMID: 39439191 DOI: 10.1017/s0007114524001065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
The present systematic review and meta-analysis sought to evaluate the effects of conjugated linoleic acid (CLA) supplementation on cardiovascular risk factors in patients at risk of CVD. Relevant studies were obtained by searching the PubMed, SCOPUS and Web of Science databases (from inception to January 2023). Weighted mean differences (WMD) and 95% CI were pooled using a random-effects model. Heterogeneity, sensitivity analysis and publication bias were reported using standard methods. A pooled analysis of 14 randomised controlled trials (RCT) with 17 effect sizes revealed that CLA supplementation led to significant reductions in body weight (WMD: -0·72 kg, 95% CI: -1·11, -0·33, P < 0·001), BMI (WMD: -0·22 kg/m2, 95% CI: -0·44, -0·00, P = 0·037) and body fat percentage (BFP) (WMD: -1·32 %, 95% CI: -2·24, -0·40, P = 0·005). However, there was no effect on lipid profile and blood pressure in comparison with the control group. In conclusion, CLA supplementation may yield a small but significant beneficial effect on anthropometric indices in patients at risk of CVD. Moreover, CLA seems not to have adverse effects on lipid profiles and blood pressure in patients at risk of CVD. It should be noted that the favourable effects of CLA supplementation on anthropometric variables were small and may not reach clinical importance.
Collapse
Affiliation(s)
- Maryam Esmaeilnejad
- Faculty of Nutritional Sciences, Justus Liebig University, 35392Giessen, Germany
| | - Niloufar Rasaei
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Kian Goudarzi
- Faculty of medicine, Shahid Beheshti University of Medical sciences, Tehran, Iran
| | - Zahra Behrouz Dehkordi
- Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Sina Dolatshahi
- Faculty of medicine, Shahid Beheshti University of Medical sciences, Tehran, Iran
| | - Hossein Salehi Omran
- Faculty of medicine, Shahid Beheshti University of Medical sciences, Tehran, Iran
| | - Niusha Amirani
- Faculty of Medicine, Alborz University of Medical Sciences, Tehran, Iran
| | - Damoon Ashtary-Larky
- Nutrition and Metabolic Diseases Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ghazaleh Shimi
- Department of Cellular and Molecular Nutrition, Faculty of Nutrition Science and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, 1981619573Tehran, Iran
| | - Omid Asbaghi
- Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Student Research Committee, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Omachi DO, Aryee ANA, Onuh JO. Functional Lipids and Cardiovascular Disease Reduction: A Concise Review. Nutrients 2024; 16:2453. [PMID: 39125334 PMCID: PMC11314407 DOI: 10.3390/nu16152453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/25/2024] [Accepted: 07/26/2024] [Indexed: 08/12/2024] Open
Abstract
Functional lipids are dietary substances that may have an impact on human health by lowering the risk of chronic illnesses and enhancing the quality of life. Numerous functional lipids have been reported to have potential health benefits in the prevention, management, and treatment of cardiovascular disease, the leading cause of death in the United States. However, there is still insufficient and contradictory information in the literature about their effectiveness and associated mechanisms of action. The objective of this review, therefore, is to evaluate available literature regarding these functional lipids and their health benefits. Various studies have been conducted to understand the links between functional lipids and the prevention and treatment of chronic diseases. Recent studies on phytosterols have reported that CLA, medium-chain triglycerides, and omega-3 and 6 fatty acids have positive effects on human health. Also, eicosanoids, which are the metabolites of these fatty acids, are produced in relation to the ratio of omega-3 to omega-6 polyunsaturated fatty acids and may modulate disease conditions. These functional lipids are available either in dietary or supplement forms and have been proven to be efficient, accessible, and inexpensive to be included in the diet. However, further research is required to properly elucidate the dosages, dietary intake, effectiveness, and their mechanisms of action in addition to the development of valid disease biomarkers and long-term effects in humans.
Collapse
Affiliation(s)
- Deborah O. Omachi
- Department of Food and Nutritional Sciences, Tuskegee University, 1200 W. Montgomery Rd, Tuskegee, AL 36088, USA;
| | - Alberta N. A. Aryee
- Food Science and Biotechnology Program, Department of Human Ecology, Delaware State University, 1200 Dupont Highway, Dover, DE 19901, USA;
| | - John O. Onuh
- Department of Food and Nutritional Sciences, Tuskegee University, 1200 W. Montgomery Rd, Tuskegee, AL 36088, USA;
| |
Collapse
|
3
|
Iorizzo M, Di Martino C, Letizia F, Crawford TW, Paventi G. Production of Conjugated Linoleic Acid (CLA) by Lactiplantibacillus plantarum: A Review with Emphasis on Fermented Foods. Foods 2024; 13:975. [PMID: 38611281 PMCID: PMC11012127 DOI: 10.3390/foods13070975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/13/2024] [Accepted: 03/20/2024] [Indexed: 04/14/2024] Open
Abstract
The term Conjugated Linoleic Acid (CLA) refers generically to a class of positional and geometric conjugated dienoic isomers of linoleic acid. Among the isomers of linoleic acid cis9, trans11-CLA (c9, t11-CLA) and trans10, cis12-CLA (t10, c12-CLA) are found to be biologically active isomers, and they occur naturally in milk, dairy products and meat from ruminants. In addition, some vegetables and some seafoods have also been reported to contain CLA. Although the CLA levels in these natural sources are insufficient to confer the essential health benefits, anti-carcinogenic or anti-cancer effects are of current interest. In the rumen, CLA is an intermediate of isomerization and the biohydrogenation process of linoleic acid to stearic acid conducted by ruminal microorganisms. In addition to rumen bacteria, some other bacteria, such as Propionibacterium, Bifidobacterium and some lactic acid bacteria (LAB) are also capable of producing CLA. In this regard, Lactiplantibacillus plantarum (formerly Lactobacillus plantarum) has demonstrated the ability to produce CLA isomers from linoleic acid by multiple enzymatic activities, including hydration, dehydration, and isomerization. L. plantarum is one of the most versatile species of LAB and the bacterium is widely used in the food industry as a microbial food culture. Thus, in this review we critically analyzed the literature produced in the last ten years with the aim to highlight the potentiality as well as the optimal conditions for CLA production by L. plantarum. Evidence was provided suggesting that the use of appropriate strains of L. plantarum, as a starter or additional culture in the production of some fermented foods, can be considered a critical factor in the design of new CLA-enriched functional foods.
Collapse
Affiliation(s)
- Massimo Iorizzo
- Department of Agricultural, Environmental and Food Sciences, University of Molise, Via De Sanctis, 86100 Campobasso, Italy; (M.I.); (F.L.); (G.P.)
| | - Catello Di Martino
- Department of Agricultural, Environmental and Food Sciences, University of Molise, Via De Sanctis, 86100 Campobasso, Italy; (M.I.); (F.L.); (G.P.)
| | - Francesco Letizia
- Department of Agricultural, Environmental and Food Sciences, University of Molise, Via De Sanctis, 86100 Campobasso, Italy; (M.I.); (F.L.); (G.P.)
| | | | - Gianluca Paventi
- Department of Agricultural, Environmental and Food Sciences, University of Molise, Via De Sanctis, 86100 Campobasso, Italy; (M.I.); (F.L.); (G.P.)
| |
Collapse
|
4
|
Du M, Gong M, Wu G, Jin J, Wang X, Jin Q. Conjugated Linolenic Acid (CLnA) vs Conjugated Linoleic Acid (CLA): A Comprehensive Review of Potential Advantages in Molecular Characteristics, Health Benefits, and Production Techniques. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:5503-5525. [PMID: 38442367 DOI: 10.1021/acs.jafc.3c08771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
Conjugated linoleic acid (CLA) has been extensively characterized due to its many biological activities and health benefits, but conjugated linolenic acid (CLnA) is still not well understood. However, CLnA has shown to be more effective than CLA as a potential functional food ingredient. Current research has not thoroughly investigated the differences and advantages between CLnA and CLA. This article compares CLnA and CLA based on molecular characteristics, including structural, chemical, and metabolic characteristics. Then, the in vivo research evidence of CLnA on various health benefits is comprehensively reviewed and compared with CLA in terms of effectiveness and mechanism. Furthermore, the potential of CLnA in production technology and product protection is analyzed. In general, CLnA and CLA have similar physicochemical properties of conjugated molecules and share many similarities in regulation effects and pathways of various health benefits as well as in the production methods. However, their specific properties, regulatory capabilities, and unique mechanisms are different. The superior potential of CLnA must be specified according to the practical application patterns of isomers. Future research should focus more on the advantageous characteristics of different isomers, especially the effectiveness and safety in clinical applications in order to truly exert the potential value of CLnA.
Collapse
Affiliation(s)
- Meijun Du
- State Key Laboratory of Food Science and Resources, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, International Joint Research Laboratory for Lipid Nutrition and Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, P. R. China
| | - Mengyue Gong
- State Key Laboratory of Food Science and Resources, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, International Joint Research Laboratory for Lipid Nutrition and Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, P. R. China
| | - Gangcheng Wu
- State Key Laboratory of Food Science and Resources, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, International Joint Research Laboratory for Lipid Nutrition and Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, P. R. China
| | - Jun Jin
- State Key Laboratory of Food Science and Resources, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, International Joint Research Laboratory for Lipid Nutrition and Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, P. R. China
| | - Xingguo Wang
- State Key Laboratory of Food Science and Resources, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, International Joint Research Laboratory for Lipid Nutrition and Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, P. R. China
| | - Qingzhe Jin
- State Key Laboratory of Food Science and Resources, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, International Joint Research Laboratory for Lipid Nutrition and Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, P. R. China
| |
Collapse
|
5
|
Akhgarjand C, Tavakoli A, Samavat S, Bagheri A, Anoushirvani A, Mirzababaei A, Amini MR, Ghorbi MD, Valisoltani N, Mansour A, Sajjadi-Jazi SM, Ansar H, Rezvani H. The effect of conjugated linoleic acid supplementation in comparison with omega-6 and omega-9 on lipid profile: a graded, dose-response systematic review and meta-analysis of randomized controlled trials. Front Nutr 2024; 11:1336889. [PMID: 38567248 PMCID: PMC10985181 DOI: 10.3389/fnut.2024.1336889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 02/05/2024] [Indexed: 04/04/2024] Open
Abstract
Conjugated linoleic acid (CLA) is a geometrical isomer of linoleic acid, which has anti-inflammatory, anti-diabetic, anti-cancer, and anti-obesity properties. However, the studies reported inconstant results about the CLA-related effects on lipid profiles. As a result, meta-analysis and systematic review were performed to survey the CLA supplementation-related effect on lipid profile including high-density lipoprotein (HDL), low-density lipoprotein (LDL), total cholesterol (TC), and triglycerides (TG). To identify the relevant research, a systematic comprehensive search was initiated on the medical databases such as Scopus and PubMed/Medline until December 2022. The overall effect size was estimated by weighted mean difference (WMD) and 95% confidence interval (CI) in a random effect meta-analysis. In the final quantitative analysis, the meta-analysis considered 35 randomized controlled trials (RCTs) with 1,476 participants (707 controls and 769 cases). The pooled results demonstrated that CLA supplementation, compared with olive oil, significantly increased serum TG levels (WMD: 0.05 mmol/L; 95% CI: 0.01 to 0.1; p = 0.04; I2 = 0.0%, p = 0.91). With regard to TC level, CLA supplementation compared with placebo significantly reduced TC concentrations (WMD: -0.08 mmol/L; 95% CI: -0.14 to -0.02; p < 0.001; I2 = 82.4%). Moreover, the non-linear dose-response analysis indicated a decreasing trend of TC serum level from the 15th week of CLA supplementation compared with olive oil (Pnon-linearity = 0.01). The present meta-analysis and systematic review of 35 RCTs showed that the CLA intervention was able to raise the level of TG in comparison to olive oil; however, it can decrease TC level compared with placebo and olive oil.
Collapse
Affiliation(s)
- Camellia Akhgarjand
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Aryan Tavakoli
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Simin Samavat
- Department of Cellular and Molecular Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Bagheri
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Aliarash Anoushirvani
- Hemato-Oncology Ward, Firoozgar Hospital, Iran University of Medical Science, Tehran, Iran
| | - Atieh Mirzababaei
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Amini
- Student Research Committee, Department of Clinical Nutrition and Dietetics, Faculty of Nutrition Sciences and Food Technology, National Nutrition & Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahmoud Dehghani Ghorbi
- Hemato-Oncology Ward, Imam Hossein Hospital, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Neda Valisoltani
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Asieh Mansour
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Sayed Mahmoud Sajjadi-Jazi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Hastimansooreh Ansar
- Department of Cellular and Molecular Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamid Rezvani
- Hemato-Oncology Ward, Taleghani Hospital, Shahid Beheshti University of Medical Science, Tehran, Iran
| |
Collapse
|
6
|
Cuciniello R, Luongo D, Maurano F, Crispi S, Bergamo P. Dietary conjugated linoleic acid downregulates the AlCl 3-induced hyperactivation of compensatory and maladaptive signalling in the mouse brain cortex. Free Radic Biol Med 2024; 213:102-112. [PMID: 38218550 DOI: 10.1016/j.freeradbiomed.2024.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/23/2023] [Accepted: 01/04/2024] [Indexed: 01/15/2024]
Abstract
Oxidative stress, hyperactivation of compensatory mechanisms (unfolded protein response, UPR; nuclear factor erythroid 2-related factor 2, Nrf2) and the stimulation of maladaptive response (inflammation/apoptosis) are interconnected pathogenic processes occurring during Alzheimer's disease (AD) progression. The neuroprotective ability of dietary Conjugated linoleic acid (CLAmix) in a mouse model of AlCl3-induced AD was recently described but, the effects of AlCl3 or CLAmix intake on these pathogenic processes are still unknown. The effects of dietary AlCl3 or CLAmix - alone and in combination - were examined in the brain cortex of twenty-eight BalbC mice divided into 4 groups (n = 7 each). The neurotoxic effects of AlCl3 were investigated in animals treated for 5 weeks with 100 mg/kg/day (AL). CLAmix supplementation (600 mg/kg bw/day) for 7 weeks (CLA) was aimed at evaluating its modulatory effects on the Nrf2 pathway while its co-treatment with AlCl3 during the last 5 weeks of CLAmix intake (CLA + AL) was used to investigate its neuroprotective ability. Untreated mice were used as controls. In the CLA group, the NADPH oxidase (NOX) activation in the brain cortex was accompanied by the modulation of the Nrf2 pathway. By contrast, in the AL mice, the significant upregulation of oxidative stress markers, compensatory pathways (UPR/Nrf2), proinflammatory cytokines (IL-6, TNFα) and the proapoptotic protein Bax levels were found as compared with control. Notably, in CLA + AL mice, the marked decrease of oxidative stress, UPR/Nrf2 markers and proinflammatory cytokines levels were associated with the significant increase of the antiapoptotic protein Bcl2. The involvement of NOX in the adaptive response elicited by CLAmix along with its protective effects against the onset of several pathogenic processes triggered by AlCl3, broadens the knowledge of the mechanism underlying the pleiotropic activity of Nrf2 activators and sheds new light on their potential therapeutic use against neurodegenerative disorders.
Collapse
Affiliation(s)
- R Cuciniello
- Institute of Biosciences and Bio-Resources, National Research Council (CNR-IBBR), Naples, 80100, Italy; IRCCS Neuromed, Pozzilli, 86077, Isernia, Italy
| | - D Luongo
- Institute of Food Sciences, National Research Council (CNR-ISA), Avellino, 83100, Italy
| | - F Maurano
- Institute of Food Sciences, National Research Council (CNR-ISA), Avellino, 83100, Italy
| | - S Crispi
- Institute of Biosciences and Bio-Resources, National Research Council (CNR-IBBR), Naples, 80100, Italy
| | - P Bergamo
- Institute of Biosciences and Bio-Resources, National Research Council (CNR-IBBR), Naples, 80100, Italy.
| |
Collapse
|
7
|
Asbaghi O, Shimi G, Hosseini Oskouie F, Naseri K, Bagheri R, Ashtary-Larky D, Nordvall M, Rastgoo S, Zamani M, Wong A. The effects of conjugated linoleic acid supplementation on anthropometrics and body composition indices in adults: a systematic review and dose-response meta-analysis. Br J Nutr 2024; 131:406-428. [PMID: 37671495 DOI: 10.1017/s0007114523001861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2023]
Abstract
Prior meta-analytic investigations over a decade ago rather inconclusively indicated that conjugated linoleic acid (CLA) supplementation could improve anthropometric and body composition indices in the general adult population. More recent investigations have emerged, and an up-to-date systematic review and meta-analysis on this topic must be improved. Therefore, this investigation provides a comprehensive systematic review and meta-analysis of randomised controlled trials (RCT) on the impact of CLA supplementation on anthropometric and body composition (body mass (BM), BMI, waist circumference (WC), fat mass (FM), body fat percentage (BFP) and fat-free mass (FFM)) markers in adults. Online databases search, including PubMed, Scopus, the Cochrane Library and Web of Science up to March 2022, were utilised to retrieve RCT examining the effect of CLA supplementation on anthropometric and body composition markers in adults. Meta-analysis was carried out using a random-effects model. The I2 index was used as an index of statistical heterogeneity of RCT. Among the initial 8351 studies identified from electronic databases search, seventy RCT with ninety-six effect sizes involving 4159 participants were included for data analyses. The results of random-effects modelling demonstrated that CLA supplementation significantly reduced BM (weighted mean difference (WMD): -0·35, 95 % CI (-0·54, -0·15), P < 0·001), BMI (WMD: -0·15, 95 % CI (-0·24, -0·06), P = 0·001), WC (WMD: -0·62, 95% CI (-1·04, -0·20), P = 0·004), FM (WMD: -0·44, 95 % CI (-0·66, -0·23), P < 0·001), BFP (WMD: -0·77 %, 95 % CI (-1·09, -0·45), P < 0·001) and increased FFM (WMD: 0·27, 95 % CI (0·09, 0·45), P = 0·003). The high-quality subgroup showed that CLA supplementation fails to change FM and BFP. However, according to high-quality studies, CLA intake resulted in small but significant increases in FFM and decreases in BM and BMI. This meta-analysis study suggests that CLA supplementation may result in a small but significant improvement in anthropometric and body composition markers in an adult population. However, data from high-quality studies failed to show CLA's body fat-lowering properties. Moreover, it should be noted that the weight-loss properties of CLA were small and may not reach clinical importance.
Collapse
Affiliation(s)
- Omid Asbaghi
- Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Student Research Committee, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ghazaleh Shimi
- Department of Cellular and Molecular Nutrition, Faculty of Nutrition Science and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Hosseini Oskouie
- Department of Clinical Nutrition and Dietetics, Faculty of Nutrition and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kaveh Naseri
- School of Health and Biomedical Sciences, RMIT University, Melbourne, VIC, Australia
| | - Reza Bagheri
- Department of Exercise Physiology, University of Isfahan, Isfahan, Iran
| | - Damoon Ashtary-Larky
- Nutrition and Metabolic Diseases Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Michael Nordvall
- Department of Health and Human Performance, Marymount University, Arlington, VA, USA
| | - Samira Rastgoo
- Student Research Committee, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Cellular and Molecular Nutrition, Faculty of Nutrition Science and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Zamani
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Alexei Wong
- Department of Health and Human Performance, Marymount University, Arlington, VA, USA
| |
Collapse
|
8
|
Abdulrahman SJ, Abdulhadi MA, Turki Jalil A, Falah D, Merza MS, Almulla AF, Ali A, Ali RT. Conjugated linoleic acid and glucosamine supplements may prevent bone loss in aging by regulating the RANKL/RANK/OPG pathway. Mol Biol Rep 2023; 50:10579-10588. [PMID: 37932498 DOI: 10.1007/s11033-023-08839-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 09/25/2023] [Indexed: 11/08/2023]
Abstract
The skeleton is a living organ that undergoes constant changes, including bone formation and resorption. It is affected by various diseases, such as osteoporosis, osteopenia, and osteomalacia. Nowadays, several methods are applied to protect bone health, including the use of hormonal and non-hormonal medications and supplements. However, certain drugs like glucocorticoids, thiazolidinediones, heparin, anticonvulsants, chemotherapy, and proton pump inhibitors can endanger bone health and cause bone loss. New studies are exploring the use of supplements, such as conjugated linoleic acid (CLA) and glucosamine, with fewer side effects during treatment. Various mechanisms have been proposed for the effects of CLA and glucosamine on bone structure, both direct and indirect. One mechanism that deserves special attention is the regulatory effect of RANKL/RANK/OPG on bone turnover. The RANKL/RANK/OPG pathway is considered a motive for osteoclast maturation and bone resorption. The cytokine system, consisting of the receptor activator of the nuclear factor (NF)-kB ligand (RANKL), its receptor RANK, and its decoy receptor, osteoprotegerin (OPG), plays a vital role in bone turnover. Over the past few years, researchers have observed the impact of CLA and glucosamine on the RANKL/RANK/OPG mechanism of bone turnover. However, no comprehensive study has been published on these supplements and their mechanism. To address this gap in knowledge, we have critically reviewed their potential effects. This review aims to assist in developing efficient treatment strategies and focusing future studies on these supplements.
Collapse
Affiliation(s)
| | - Mohanad Ali Abdulhadi
- Department of Medical Laboratory Techniques, Al-Maarif University College, Al-Anbar, Iraq
| | | | - Dumooa Falah
- National University of Science and Technology, Dhi Qar, Iraq
| | - Muna S Merza
- Prosthetic dental Techniques Department, Al-Mustaqbal University College, Babylon, 51001, Iraq
| | - Abbas F Almulla
- Medical Laboratory Technology Department, College of Medical Technology, The Islamic University, Najaf, Iraq
| | - Ahmed Ali
- Medical Technical College, Al-Farahidi University, Baghdad, Iraq
| | - Ronak Taher Ali
- College of Medical Technology, Al-Kitab University, Kirkuk, Iraq
| |
Collapse
|
9
|
Putera HD, Doewes RI, Shalaby MN, Ramírez-Coronel AA, Clayton ZS, Abdelbasset WK, Murtazaev SS, Jalil AT, Rahimi P, Nattagh-Eshtivani E, Malekahmadi M, Pahlavani N. The effect of conjugated linoleic acids on inflammation, oxidative stress, body composition and physical performance: a comprehensive review of putative molecular mechanisms. Nutr Metab (Lond) 2023; 20:35. [PMID: 37644566 PMCID: PMC10466845 DOI: 10.1186/s12986-023-00758-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 08/25/2023] [Indexed: 08/31/2023] Open
Abstract
Conjugated linoleic acids (CLAs) are polyunsaturated fatty acids primarily found in dairy products and ruminant animal products such as beef, lamb, and butter. Supplementation of CLAs has recently become popular among athletes due to the variety of health-promoting effects, including improvements in physical performance. Preclinical and some clinical studies have shown that CLAs can reduce inflammation and oxidative stress and favorably modulate body composition and physical performance; however, the results of previously published clinical trials are mixed. Here, we performed a comprehensive review of previously published clinical trials that assessed the role of CLAs in modulating inflammation, oxidative stress, body composition, and select indices of physical performance, emphasizing the molecular mechanisms governing these changes. The findings of our review demonstrate that the effect of supplementation with CLAs on inflammation and oxidative stress is controversial, but this supplement can decrease body fat mass and increase physical performance. Future well-designed randomized clinical trials are warranted to determine the effectiveness of (1) specific doses of CLAs; (2) different dosing durations of CLAs; (3) various CLA isomers, and the exact molecular mechanisms by which CLAs positively influence oxidative stress, inflammation, body composition, and physical performance.
Collapse
Affiliation(s)
- Husna Dharma Putera
- Department of Surgery, Faculty of Medicine, Lambung Mangkurat University, Banjarmasin, South Kalimantan, Indonesia
| | - Rumi Iqbal Doewes
- Faculty of Sport, Universitas Sebelas Maret, Jl. Ir. Sutami, 36A, Kentingan, Surakarta, Indonesia
| | - Mohammed Nader Shalaby
- Biological Sciences and Sports Health Department, Faculty of Physical Education, Suez Canal University, Ismailia, Egypt
| | - Andrés Alexis Ramírez-Coronel
- Azogues Campus Nursing Career, Health and Behavior Research Group (HBR), Psychometry and Ethology Laboratory, Catholic University of Cuenca, Azogues, Ecuador
| | - Zachary S Clayton
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA
| | - Walid Kamal Abdelbasset
- Department of Health and Rehabilitation Sciences, College of Applied Medical Sciences, Prince Sattam Bin Abdulaziz University, Al Kharj, Saudi Arabia
- Department of Physical Therapy, Kasr Al-Aini Hospital, Cairo University, Giza, Egypt
| | - Saidmurodkhon S Murtazaev
- Department of Therapeutic Pediatric Dentistry, Dean of the Faculty of International Education, Tashkent State Dental Institute, Tashkent, Uzbekistan
- Department of Scientific Affairs, Samarkand State Medical University, Amir Temur Street 18, Samarkand, Uzbekistan
| | - Abduladheem Turki Jalil
- Medical Laboratories Techniques Department, Al-Mustaqbal University College, Hilla, Babylon, 51001, Iraq
| | - Pegah Rahimi
- Department of Clinical Pharmacy, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| | - Elyas Nattagh-Eshtivani
- Social Development and Health Promotion Research Center, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Mahsa Malekahmadi
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Naseh Pahlavani
- Health Sciences Research Center, Torbat Heydariyeh University of Medical Sciences, Torbat-e Heydariyeh, Iran.
| |
Collapse
|
10
|
Veshkini A, Ceciliani F, Bonnet M, Hammon HM. Review: Effect of essential fatty acids and conjugated linoleic acid on the adaptive physiology of dairy cows during the transition period. Animal 2023; 17 Suppl 2:100757. [PMID: 36966026 DOI: 10.1016/j.animal.2023.100757] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 02/14/2023] [Accepted: 02/21/2023] [Indexed: 03/08/2023] Open
Abstract
Cows fed total mixed rations (silage-based) may not receive as much essential fatty acids (EFAs) and conjugated linoleic acids (CLAs) as cows fed pasture-based rations (fresh grass) containing rich sources of polyunsaturated fatty acids. CLA-induced milk fat depression allows dairy cows to conserve more metabolisable energy, thereby shortening the state of negative energy balance and reducing excessive fat mobilisation at early lactation. EFAs, particularly α-linolenic acid, exert anti-inflammatory and antioxidative properties, thereby modulating immune functions. Thus, combined EFA and CLA supplementation seems to be an effective nutritional strategy to relieve energy metabolism and to improve immune response, which are often compromised during the transition from late pregnancy to lactation in high-yielding dairy cows. There has been extensive research on this idea over the last two decades, and despite promising results, several interfering factors have led to varying findings, making it difficult to conclude whether and under what conditions EFA and CLA supplementations are beneficial for dairy cows during the transition period. This article reviews the latest studies on the effects of EFA and CLA supplementation, alone or in combination, on dairy cow metabolism and health during various stages around parturition. Our review article summarises and provides novel insights into the mechanisms by which EFA and/or CLA influence markers of metabolism, energy homeostasis and partitioning, immunity, and inflammation revealed by a deep molecular phenotyping.
Collapse
Affiliation(s)
- Arash Veshkini
- Institute of Nutritional Physiology Research, Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany; Institute of Animal Science, Physiology Unit, University of Bonn, 53115 Bonn, Germany; Department of Veterinary Medicine, Università degli Studi di Milano, 26900 Lodi, Italy.
| | - Fabrizio Ceciliani
- Department of Veterinary Medicine, Università degli Studi di Milano, 26900 Lodi, Italy
| | - Muriel Bonnet
- INRAE, Université Clermont Auvergne, VetAgro Sup, UMR Herbivores, F-63122 Saint-Genès-Champanelle, France
| | - Harald Michael Hammon
- Institute of Nutritional Physiology Research, Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany
| |
Collapse
|
11
|
Du M, Jin J, Wu G, Jin Q, Wang X. Metabolic, structure-activity characteristics of conjugated linolenic acids and their mediated health benefits. Crit Rev Food Sci Nutr 2023; 64:8203-8217. [PMID: 37021469 DOI: 10.1080/10408398.2023.2198006] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
Abstract
Conjugated linolenic acid (CLnA) is a mixture of octadecenoic acid with multiple positional and geometric isomers (including four 9, 11, 13-C18:3 isomers and three 8, 10, 12-C18:3 isomers) that is mainly present in plant seeds. In recent years, CLnA has shown many promising health benefits with the deepening of research, but the metabolic characteristics, physiological function differences and mechanisms of different isomers are relatively complex. In this article, the metabolic characteristics of CLnA were firstly reviewed, with focus on its conversion, catabolism and anabolism. Then the possible mechanisms of CLnA exerting biological effects were summarized and analyzed from its own chemical and physical characteristics, as well as biological receptor targeting characteristics. In addition, the differences and mechanisms of different isomers of CLnA in anticancer, lipid-lowering, anti-diabetic and anti-inflammatory physiological functions were compared and summarized. The current results show that the position and cis-trans conformation of conjugated structure endow CLnA with unique physical and chemical properties, which also makes different isomers have commonalities and particularities in the regulation of metabolism and physiological functions. Corresponding the metabolic characteristics of different isomers with precise nutrition strategy will help them to play a better role in disease prevention and treatment. CLnA has the potential to be developed into food functional components and dietary nutritional supplements. The advantages and mechanisms of different CLnA isomers in the clinical management of specific diseases need further study.
Collapse
Affiliation(s)
- Meijun Du
- State Key Lab of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, International Joint Research Laboratory for Lipid Nutrition and Safety, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Jun Jin
- State Key Lab of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, International Joint Research Laboratory for Lipid Nutrition and Safety, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Gangcheng Wu
- State Key Lab of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, International Joint Research Laboratory for Lipid Nutrition and Safety, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Qingzhe Jin
- State Key Lab of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, International Joint Research Laboratory for Lipid Nutrition and Safety, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Xingguo Wang
- State Key Lab of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, International Joint Research Laboratory for Lipid Nutrition and Safety, School of Food Science and Technology, Jiangnan University, Wuxi, China
| |
Collapse
|
12
|
Moni SS, Mohan S, Makeen HA, Alhazmi HA, Basode VK, Rehman Z, Alam MS, Alam MF, Anwer T, Elmobark ME, Abdulhaq A, Alamoudi MUA, Hadi IMH, Amri SAA, Alrithi AMA, Jathmi ZAJ, Kaabi MAA. Spectral characterization and biological evaluation of biomolecules from the peels of three orange fruits: a comparative study. BRAZ J BIOL 2023; 82:e267856. [PMID: 36700593 DOI: 10.1590/1519-6984.267856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 12/19/2022] [Indexed: 01/27/2023] Open
Abstract
The present work was designed to investigate the presence of bioactive chemicals in the reaction mixtures (RMs) of peels of Valencia, Mandarin, and African navel oranges, through GC-MS and FT-IR studies. Limonene, a unique compound, is present in the RMs of the three orange peels. Moreover, hexadecanoic acid 2-hydroxy-1-(hydroxymethyl) ethyl ester was identified in the RMs of all the three-orange peels. The RM of Mandarin orange exhibited potent cytotoxic effect against MCF-7 ATCC human breast cancer cells (HBC). All the three RMs exhibited moderate antibacterial activity against the human pathogenic bacteria Staphylococcus aureus (ATCC 25923), Staphylococcus epidermidis (ATCC 12228), Enterococcus faecalis (ATCC 29212), Escherichia coli (ATCC 25922), Klebsiella pneumoniae (ATCC 700603), Salmonella choleraesis (ATCC 10708), Pseudomonas aeruginosa (ATCC 27853), and Proteus mirabilis (ATCC 299).
Collapse
Affiliation(s)
- S S Moni
- Jazan University, College of Pharmacy, Department of Pharmaceutics, Jazan, Saudi Arabia
| | - S Mohan
- Jazan University, Substance Abuse and Toxicology Research Centre, Jazan, Saudi Arabia.,Saveetha University, Saveetha Institute of Medical and Technical Science, Saveetha Dental College, Department of Pharmacology, Center for Transdisciplinary Research, Chennai, India.,University of Petroleum and Energy Studies, School of Health Sciences, Dehradun, Utta-rakhand, India
| | - H A Makeen
- Jazan University, College of Pharmacy, Pharmacy Practice Research Unit, Jazan, Saudi Arabia
| | - H A Alhazmi
- Jazan University, Substance Abuse and Toxicology Research Centre, Jazan, Saudi Arabia.,Jazan University, College of Pharmacy, Department of Pharmaceutical Chemistry and Pharmacognosy, Jazan, Saudi Arabia
| | - V K Basode
- Jazan University, College of Applied Medical Sciences, Unit of Medical Microbiology, Jazan, Saudi Arabia
| | - Z Rehman
- Jazan University, College of Pharmacy, Department of Pharmaceutical Chemistry and Pharmacognosy, Jazan, Saudi Arabia
| | - M S Alam
- Jazan University, College of Pharmacy, Department of Pharmaceutical Chemistry and Pharmacognosy, Jazan, Saudi Arabia
| | - M F Alam
- Jazan University, College of Pharmacy, Department of Pharmacology and Toxicology, Jazan, Saudi Arabia
| | - T Anwer
- Jazan University, College of Pharmacy, Department of Pharmacology and Toxicology, Jazan, Saudi Arabia
| | - M E Elmobark
- Jazan University, College of Pharmacy, Department of Pharmaceutics, Jazan, Saudi Arabia
| | - A Abdulhaq
- Jazan University, College of Applied Medical Sciences, Unit of Medical Microbiology, Jazan, Saudi Arabia
| | - M U A Alamoudi
- Jazan University, College of Pharmacy, Department of Pharmacology and Toxicology, Jazan, Saudi Arabia
| | - I M H Hadi
- Jazan University, College of Pharmacy, Jazan, Saudi Arabia
| | - S A A Amri
- Jazan University, College of Pharmacy, Jazan, Saudi Arabia
| | - A M A Alrithi
- Jazan University, College of Pharmacy, Jazan, Saudi Arabia
| | - Z A J Jathmi
- Jazan University, College of Pharmacy, Jazan, Saudi Arabia
| | - M A A Kaabi
- Jazan University, College of Pharmacy, Jazan, Saudi Arabia
| |
Collapse
|
13
|
Omega-6: Its Pharmacology, Effect on the Broiler Production, and Health. Vet Med Int 2023; 2023:3220344. [PMID: 36910895 PMCID: PMC9995196 DOI: 10.1155/2023/3220344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 02/09/2023] [Accepted: 02/10/2023] [Indexed: 03/05/2023] Open
Abstract
Lipids and oils are the primary sources of monounsaturated and polyunsaturated fatty acids (MUFA and PUFA), which are necessary for human and animal health. Omega-3 and omega-6 are essential nutrients for broilers. Omega-6 members, such as linolenic acid, are essential for broilers and must be obtained through feed. Vegetable oils are the primary source of omega-6 added to broiler feeds. Unsaturated fatty acids are better digested and absorbed than saturated fatty acids and generate more energy at a lower cost, boosting productivity. Feeding supplements with omega-6 can increase the fatty acid content in meat and increase weight, carcass, viscera, and FCR. The quality of meat taste and antioxidant content was also improved after giving omega-6 and influencing mineral metabolism. Broiler reproductive performance is also enhanced by reducing late embryonic mortality, hence enhancing fertility, hatchability, sperm quality, and sperm quantity. Meanwhile, for broiler health, omega-6 can lower cholesterol levels, triglycerides, very low-density lipoprotein, and low-density lipoprotein. It also supports support for T-helper cell (TH)-2-like IgG titers, increasing prostaglandins, eicosanoids, and antioxidants. In addition, it also supports anti-inflammation. Other researchers have extensively researched and reviewed studies on the effects of omega-6 on poultry. Meanwhile, in this review, we provide new findings to complement previous studies. However, further studies regarding the effects of omega-6 on other poultry are needed to determine the performance of omega-6 more broadly.
Collapse
|
14
|
Yakan A, Özkan H, Kaya U, Keçeli HH, Dalkiran S, Karaaslan I, Ünal N, Akçay A, Arslan K, Akyüz B, Güngör G, Çamdeviren B, Küçükoflaz M, Sariözkan S, Özbeyaz C. Effects of propylene glycol used at different doses in Akkaraman lambs rations on metabolism-related parameters and liver gene and protein expression during different feeding periods. Anim Sci J 2023; 94:e13886. [PMID: 37963598 DOI: 10.1111/asj.13886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 09/11/2023] [Accepted: 10/06/2023] [Indexed: 11/16/2023]
Abstract
This study aimed to investigate the metabolic effects of propylene glycol (PG) over 60, 90, and 120 days in lambs. Seventy-two weaned male lambs were allocated into three groups: control (Con), PG1.5 (1.5 mL/kg live weight0.75 ), and PG3 (3 mL/kg live weight0.75 ). Blood samples were collected at the beginning and slaughter days. Biochemical parameters (glucose, triglycerides, ALT, AST, LDH, BUN, and insulin) and gene and protein levels of peroxisome proliferator activated receptor gamma (PPARγ), diacylglycerol o-acyltransferase 1 (DGAT1), carbohydrate responsive element binding protein (ChREBP), and sterol regulatory element binding transcription factor 1c (SREBP-1c) in the liver were determined. Glucose in PG1.5 was increased on Day 60, while significant differences were observed in biochemical parameters except for insulin on the 60, 90, and 120 days. Biochemical parameters such as ALT, AST, LDH, and BUN increased over time, while triglycerides decreased. DGAT1 gene and protein levels were lower, while SREBP-1c and PPARγ were higher in PG groups on Day 60. While SREBP-1c was lower in PG1.5, ChREBP was higher in PG3 on Day 90. PPARγ, DGAT1, and ChREBP were upregulated in PG3 on Day 120. Positive correlations were found between proteins. The long-term use of PG in lambs did not have detrimental effects on metabolism. The study provides valuable insights into the molecular mechanisms underlying the metabolic effects of PG in lambs, shedding light on its potential applications in lamb production.
Collapse
Affiliation(s)
- Akın Yakan
- Faculty of Veterinary Medicine, Department of Genetics, Hatay Mustafa Kemal University, Antakya, Hatay, Turkiye
| | - Hüseyin Özkan
- Faculty of Veterinary Medicine, Department of Genetics, Hatay Mustafa Kemal University, Antakya, Hatay, Turkiye
| | - Ufuk Kaya
- Faculty of Veterinary Medicine, Department of Biostatistics, Hatay Mustafa Kemal University, Antakya, Hatay, Turkiye
| | - Hasan Hüseyin Keçeli
- Faculty of Veterinary Medicine, Department of Genetics, Hatay Mustafa Kemal University, Antakya, Hatay, Turkiye
| | - Sevda Dalkiran
- Institute of Health Sciences, Department of Molecular Biochemistry and Genetics, Hatay Mustafa Kemal University, Antakya, Hatay, Turkiye
| | - Irem Karaaslan
- Technology and Research & Development Center (MARGEM), Hatay Mustafa Kemal University, Antakya, Hatay, Turkiye
| | - Necmettin Ünal
- Faculty of Veterinary Medicine, Department of Animal Science, Ankara University, Ankara, Turkiye
| | - Aytaç Akçay
- Faculty of Veterinary Medicine, Department of Biostatistics, Ankara University, Ankara, Turkiye
| | - Korhan Arslan
- Faculty of Veterinary Medicine, Department of Genetics, Erciyes University, Kayseri, Turkiye
| | - Bilal Akyüz
- Faculty of Veterinary Medicine, Department of Genetics, Erciyes University, Kayseri, Turkiye
| | - Güven Güngör
- Faculty of Veterinary Medicine, Department of Biostatistics, Erciyes University, Kayseri, Turkiye
| | - Baran Çamdeviren
- Institute of Health Sciences, Department of Molecular Biochemistry and Genetics, Hatay Mustafa Kemal University, Antakya, Hatay, Turkiye
| | - Mehmet Küçükoflaz
- Faculty of Veterinary Medicine, Department of Animal Health Economics and Management, Kafkas University, Kars, Turkiye
| | - Savaş Sariözkan
- Faculty of Veterinary Medicine, Department of Animal Health Economics and Management, Erciyes University, Kayseri, Turkiye
| | - Ceyhan Özbeyaz
- Faculty of Veterinary Medicine, Department of Animal Science, Ankara University, Ankara, Turkiye
| |
Collapse
|
15
|
Sergin S, Jambunathan V, Garg E, Rowntree JE, Fenton JI. Fatty Acid and Antioxidant Profile of Eggs from Pasture-Raised Hens Fed a Corn- and Soy-Free Diet and Supplemented with Grass-Fed Beef Suet and Liver. Foods 2022; 11:foods11213404. [PMID: 36360017 PMCID: PMC9658713 DOI: 10.3390/foods11213404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/22/2022] [Accepted: 10/25/2022] [Indexed: 11/16/2022] Open
Abstract
There is increasing interest in using grass-fed beef (GFB) by-products to augment the nutrient profile of eggs among local pasture-raising systems in the US. The objective of this study was to characterize egg yolk fatty acid and antioxidant profiles using eggs from pasture-raised hens fed a corn- and soy-free diet and supplemented with GFB suet and liver compared to eggs from pasture-raised hens fed a corn and soy layer hen feed and commercially obtained cage-free eggs. The egg yolk vitamin and mineral profile was also assessed by a commercial laboratory. Both pasture-raised groups had twice as much carotenoid content, three times as much omega-3 fatty acid content, and a 5−10 times lower omega-6:omega-3 fatty acid ratio compared to the cage-free eggs (p < 0.001). Eggs from hens fed a corn- and soy-free feed and GFB by-products had half as much omega-6 fatty acid content and five times more conjugated linoleic acid, three times more odd-chain fatty acid, and 6−70 times more branched-chain fatty acid content (p < 0.001). Feeding pasture-raised hens GFB suet and liver reduces agricultural waste while producing improved egg products for consumers, but further research is needed to quantify optimal supplementation levels and the efficacy of corn- and soy-free diets.
Collapse
Affiliation(s)
- Selin Sergin
- Department of Food Science and Human Nutrition, Michigan State University, 469 Wilson Rd, East Lansing, MI 48824, USA
| | - Vijayashree Jambunathan
- Department of Food Science and Human Nutrition, Michigan State University, 469 Wilson Rd, East Lansing, MI 48824, USA
| | - Esha Garg
- Department of Food Science and Human Nutrition, Michigan State University, 469 Wilson Rd, East Lansing, MI 48824, USA
| | - Jason E. Rowntree
- Department of Animal Science, Michigan State University, 474 S Shaw Ln, East Lansing, MI 48824, USA
| | - Jenifer I. Fenton
- Department of Food Science and Human Nutrition, Michigan State University, 469 Wilson Rd, East Lansing, MI 48824, USA
- Correspondence: ; Tel.: +1-517-353-3342
| |
Collapse
|
16
|
Skaperda Z, Kyriazis ID, Tekos F, Alvanou MV, Nechalioti PM, Makri S, Argyriadou A, Vouraki S, Kallitsis T, Kourti M, Irene V, Arsenos G, Kouretas D. Determination of Redox Status in Different Tissues of Lambs and Kids and Their in-between Relationship. Antioxidants (Basel) 2022; 11:antiox11102065. [PMID: 36290788 PMCID: PMC9598356 DOI: 10.3390/antiox11102065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/13/2022] [Accepted: 10/17/2022] [Indexed: 11/16/2022] Open
Abstract
The objective of this study was to assess the resting values of the physiological oxidative stress exhibited by lambs and kids reared in Greece, and the potential correlations between redox biomarker levels in blood and other tissues (liver, diaphragm, quadriceps, psoas major muscle). For this purpose, lambs and kids at different developmental stages (d.s.) were used. The latter corresponded to four live weight categories (LWC), each representing 25%, 35%, 70% and 100% of mature body weight. In each of the above tissues, the levels of five common redox biomarkers were determined: glutathione (GSH), catalase (CAT), total antioxidant capacity (TAC), thiobarbituric reactive substances (TBARS), and protein carbonyls (CARBS). The results revealed that lambs and kids belonging to the 35% LWC had weaker endogenous antioxidant pools, while animals in the 70% and 100% LWC had elevated intrinsic antioxidant defense systems. Blood redox biomarkers were associated with the respective ones measured in the diaphragm, liver, quadriceps, and psoas major of both species. Importantly, TBARS levels in blood of animals in the 25% and 100% LWC are correlated with the TBARS levels in all other tissues tested. Blood antioxidant parameters might be used as potential biomarkers to predict the antioxidant status of tissues that affect meat quality. The latter would facilitate quality assessment prior to slaughter, allowing for timely nutritional interventions that can improve meat products.
Collapse
Affiliation(s)
- Zoi Skaperda
- Department of Biochemistry and Biotechnology, University of Thessaly, Viopolis, Mezourlo, 41500 Larissa, Greece
| | - Ioannis D. Kyriazis
- Department of Biochemistry and Biotechnology, University of Thessaly, Viopolis, Mezourlo, 41500 Larissa, Greece
| | - Fotios Tekos
- Department of Biochemistry and Biotechnology, University of Thessaly, Viopolis, Mezourlo, 41500 Larissa, Greece
| | - Maria V. Alvanou
- Department of Biochemistry and Biotechnology, University of Thessaly, Viopolis, Mezourlo, 41500 Larissa, Greece
| | - Paraskevi-Maria Nechalioti
- Department of Biochemistry and Biotechnology, University of Thessaly, Viopolis, Mezourlo, 41500 Larissa, Greece
| | - Sotiria Makri
- Department of Biochemistry and Biotechnology, University of Thessaly, Viopolis, Mezourlo, 41500 Larissa, Greece
| | - Angeliki Argyriadou
- Laboratory of Animal Husbandry, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Sotiria Vouraki
- Laboratory of Animal Husbandry, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Theodoros Kallitsis
- Laboratory of Animal Husbandry, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Maria Kourti
- Department of Biochemistry and Biotechnology, University of Thessaly, Viopolis, Mezourlo, 41500 Larissa, Greece
| | - Valasi Irene
- Faculty of Veterinary Science, University of Thessaly, 43131 Karditsa, Greece
| | - Georgios Arsenos
- Laboratory of Animal Husbandry, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Demetrios Kouretas
- Department of Biochemistry and Biotechnology, University of Thessaly, Viopolis, Mezourlo, 41500 Larissa, Greece
- Correspondence: ; Tel.: +30-2410-565277
| |
Collapse
|
17
|
Cuciniello R, Luongo D, Ferramosca A, Lunetti P, Rotondi-Aufiero V, Crispi S, Zara V, Maurano F, Filosa S, Bergamo P. Conjugated linoleic acid downregulates Alzheimer's hallmarks in aluminum mouse model through an Nrf2-mediated adaptive response and increases brain glucose transporter levels. Free Radic Biol Med 2022; 191:48-58. [PMID: 36028179 DOI: 10.1016/j.freeradbiomed.2022.08.027] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 08/15/2022] [Indexed: 10/15/2022]
Abstract
Mitochondrial dysfunction, oxidative stress, inflammation and glucose dysmetabolism are pathological signs of Alzheimer's disease (AD). Dietary aluminum (Al) overload is often used to induce AD in rodents and trigger the onset of oxidative-stress hallmarks resembling those of the human disease. The Nuclear factor erythroid 2-related factor 2 (Nrf2), owing to its key role in redox homeostasis, mitochondrial function and inflammation, is a promising drug target for neurological disorders, but only a few data are available on its modulatory effects on glucose transporter expression levels. While it has been found that the protective effect of Conjugated linoleic acid (CLA) occurs through the activation of an Nrf2-mediated adaptive response, its beneficial effect on the considered pathological signs in the Al-induced model has not been established yet. Thirty-five male BalbC mice were divided into 5 groups: two Al-intoxicated groups were treated for 5 weeks with low or high Al doses (8 or 100 mg/kg/day in drinking water, respectively; L or H). Two groups of animals, orally supplemented with CLA (600 mg/kg bw/day) for 7 weeks (2 preliminary weeks plus the 5-week treatment with Al; CLA + L, CLA + H) were used to investigate its protective effect, while untreated mice were used as control (Cntr). We provide evidence that mitochondrial dysfunction, Nrf2 alteration, inflammation and Acetylcholinesterase (AChE) hyperactivation can occur even from L exposure. Interestingly, animal pre-treatment with an allometric CLA dose led to significant downregulation of the toxic effects elicited by L or H, likely through the activation of an adaptive response. In conclusion, CLA ability to increase the level of glucose transporters - along with its antioxidant and anti-inflammatory effect - expands the therapeutic targets of these molecules and comes out as an intriguing suitable candidate for the treatment of multifactorial disease.
Collapse
Affiliation(s)
- R Cuciniello
- Institute of Biosciences and Bio-Resources, National Research Council (CNR-IBBR), 80100, Naples, Italy; IRCCS Neuromed, 86077, Pozzilli, IS, Italy
| | - D Luongo
- Institute of Food Sciences, National Research Council (CNR-ISA), 83100, Avellino, Italy
| | - A Ferramosca
- Department of Environmental and Biological Sciences and Technologies, University of Salento, 73100, Lecce, Italy
| | - P Lunetti
- Department of Environmental and Biological Sciences and Technologies, University of Salento, 73100, Lecce, Italy
| | - V Rotondi-Aufiero
- Institute of Food Sciences, National Research Council (CNR-ISA), 83100, Avellino, Italy
| | - S Crispi
- Institute of Biosciences and Bio-Resources, National Research Council (CNR-IBBR), 80100, Naples, Italy
| | - V Zara
- Department of Environmental and Biological Sciences and Technologies, University of Salento, 73100, Lecce, Italy
| | - F Maurano
- Institute of Food Sciences, National Research Council (CNR-ISA), 83100, Avellino, Italy
| | - S Filosa
- Institute of Biosciences and Bio-Resources, National Research Council (CNR-IBBR), 80100, Naples, Italy; IRCCS Neuromed, 86077, Pozzilli, IS, Italy
| | - P Bergamo
- Institute of Biosciences and Bio-Resources, National Research Council (CNR-IBBR), 80100, Naples, Italy.
| |
Collapse
|
18
|
Tondt J, Bays HE. Concomitant medications, functional foods, and supplements: An Obesity Medicine Association (OMA) Clinical Practice Statement (CPS) 2022. OBESITY PILLARS 2022; 2:100017. [PMID: 37990714 PMCID: PMC10661915 DOI: 10.1016/j.obpill.2022.100017] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 04/03/2022] [Indexed: 11/23/2023]
Abstract
Background This Obesity Medicine Association (OMA) Clinical Practice Statement (CPS) is intended to provide clinicians an overview of the body weight effects of concomitant medications (i.e., pharmacotherapies not specifically for the treatment of obesity) and functional foods, as well as adverse side effects of supplements sometimes used by patients with pre-obesity/obesity. Methods The scientific information for this CPS is based upon published scientific citations, clinical perspectives of OMA authors, and peer review by the Obesity Medicine Association leadership. Results This CPS outlines clinically relevant aspects of concomitant medications, functional foods, and many of the more common supplements as they relate to pre-obesity and obesity. Topics include a discussion of medications that may be associated with weight gain or loss, functional foods as they relate to obesity, and side effects of supplements (i.e., with a focus on supplements taken for weight loss). Special attention is given to the warnings and lack of regulation surrounding weight loss supplements. Conclusions This Obesity Medicine Association (OMA) Clinical Practice Statement (CPS) on concomitant medications, functional foods, and supplements is one of a series of OMA CPSs designed to assist clinicians in the care of patients with the disease of pre-obesity/obesity. Implementation of appropriate practices in these areas may improve the health of patients, especially those with adverse fat mass and adiposopathic metabolic consequences.
Collapse
Affiliation(s)
- Justin Tondt
- Department of Family and Community Medicine, Eastern Virginia Medical School, P.O. Box 1980, Norfolk, VA, 23501, USA
| | - Harold Edward Bays
- Louisville Metabolic and Atherosclerosis Research Center, 3288 Illinois Avenue, University of Louisville School of Medicine, Louisville, KY, 40213, USA
| |
Collapse
|
19
|
Chai BK, Murugan DD, Rais MM, Al-Shagga M, Mohankumar SK. Conjugated linoleic acid isomers induced dyslipidemia and lipoatrophy are exacerbated by rosiglitazone in ApoE null mice fed a Western diet. MEDITERRANEAN JOURNAL OF NUTRITION AND METABOLISM 2022. [DOI: 10.3233/mnm-211562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND: Insulin sensitizers have been used to treat Type 2 diabetes. However, their non-negligible side effects have led to cardiovascular concerns and the withdrawal of a member, rosiglitazone. OBJECTIVE: We combined conjugated linoleic acid (CLA) with rosiglitazone to test for amelioration of side effects posed by rosiglitazone in vivo. METHODS: We utilized ApoE null mice fed with Western diet (WD) to test our hypothesis. Mice were fed WD, with or without CLA administration, for 12 weeks. CLA utilized in our study consisted of a 1:1 ratio of 95% pure c9,t11, and t10,c12 isomers at a concentration of 0.1% w/v in fat-free milk. Starting from Week 12, select mice received rosiglitazone. RESULTS: It was found that mice receiving CLA from Week 0 and rosiglitazone from Week 12 had the lowest body weight and exacerbated hepatomegaly. Although these mice had attenuated insulin resistance compared to mice receiving only Western diet, they display a marked increase in total plasma cholesterol and low-density lipoprotein (LDL) cholesterol. Mice receiving early CLA administration developed hyperleptinemia, which was not restored by rosiglitazone. CONCLUSION: Taken together, against the background of ApoE null genotype and WD feeding, simultaneous administration of 1:1 CLA and rosiglitazone led to dyslipidemic lipoatrophy.
Collapse
Affiliation(s)
- Boon Kheng Chai
- Division of Biomedical Sciences, Faculty ofScience, University of Nottingham Malaysia Campus, Jalan Broga, Semenyih, Selangor Darul Ehsan, Malaysia
- Present address: Biomedical Translation Research Centre, National Biotechnology Research Park, No 99, Lane 130, Academia Road Section 1, Nangang District, Taipei City 11571, Taiwan
| | - Dharmani Devi Murugan
- Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Mustafa Mohd Rais
- Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Mustafa Al-Shagga
- Division of Biomedical Sciences, Faculty ofScience, University of Nottingham Malaysia Campus, Jalan Broga, Semenyih, Selangor Darul Ehsan, Malaysia
| | - Suresh K. Mohankumar
- Division of Biomedical Sciences, Faculty ofScience, University of Nottingham Malaysia Campus, Jalan Broga, Semenyih, Selangor Darul Ehsan, Malaysia
- Present address: Swansea University Medical School, Singleton Park, Swansea SA2 8PP, Wales, United Kingdom
| |
Collapse
|
20
|
Pipoyan D, Stepanyan S, Stepanyan S, Beglaryan M, Costantini L, Molinari R, Merendino N. The Effect of Trans Fatty Acids on Human Health: Regulation and Consumption Patterns. Foods 2021; 10:2452. [PMID: 34681504 PMCID: PMC8535577 DOI: 10.3390/foods10102452] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/11/2021] [Accepted: 10/12/2021] [Indexed: 12/12/2022] Open
Abstract
Health effects of trans fatty acids (TFAs) on human organisms can vary according to their type, structure, composition, and origin. Even though the adverse health effects of industrial TFAs (iTFAs) have been widely discussed, the health effects of natural TFAs (nTFAs) are still questionable. Hence, it is important to review the literature and provide an overall picture on the health effects of different TFAs coming from industrial and ruminant sources, underlining those types that have adverse health effects as well as suggesting methods for reducing their harmful effects. Multiple databases (PubMed, Medline, Cochrane Library, etc.) were searched with the key words "trans fatty acid sources", "ruminant", "industrial", "conjugated trans linoleic acid", "human", "coronary heart disease", "cancer", etc. Reference lists of the studies were scanned discussing the health effects of iTFAs and nTFAs. The review of the literature showed that iTFAs are found to be more harmful than ruminant-produced nTFAs. Although several beneficial effects (such as reduced risk of diabetes) for nTFAs have been observed, they should be used with caution. Since during labeling it is usually not mentioned whether the TFAs contained in food are of industrial or natural origin, the general suggestion is to reduce their consumption.
Collapse
Affiliation(s)
- Davit Pipoyan
- Center for Ecological-Noosphere Studies of NAS RA, Abovyan 68, Yerevan 0025, Armenia; (D.P.); (S.S.); (S.S.); (M.B.)
| | - Stella Stepanyan
- Center for Ecological-Noosphere Studies of NAS RA, Abovyan 68, Yerevan 0025, Armenia; (D.P.); (S.S.); (S.S.); (M.B.)
| | - Seda Stepanyan
- Center for Ecological-Noosphere Studies of NAS RA, Abovyan 68, Yerevan 0025, Armenia; (D.P.); (S.S.); (S.S.); (M.B.)
| | - Meline Beglaryan
- Center for Ecological-Noosphere Studies of NAS RA, Abovyan 68, Yerevan 0025, Armenia; (D.P.); (S.S.); (S.S.); (M.B.)
| | - Lara Costantini
- Department of Ecological and Biological Sciences (DEB), Tuscia University, Largo dell’Università snc, 01100 Viterbo, Italy; (L.C.); (R.M.)
| | - Romina Molinari
- Department of Ecological and Biological Sciences (DEB), Tuscia University, Largo dell’Università snc, 01100 Viterbo, Italy; (L.C.); (R.M.)
| | - Nicolò Merendino
- Department of Ecological and Biological Sciences (DEB), Tuscia University, Largo dell’Università snc, 01100 Viterbo, Italy; (L.C.); (R.M.)
| |
Collapse
|
21
|
Kilar J, Kasprzyk A. Fatty Acids and Nutraceutical Properties of Lipids in Fallow Deer ( Dama dama) Meat Produced in Organic and Conventional Farming Systems. Foods 2021; 10:2290. [PMID: 34681339 PMCID: PMC8534888 DOI: 10.3390/foods10102290] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/17/2021] [Accepted: 09/23/2021] [Indexed: 01/25/2023] Open
Abstract
The aim of the study was to assess the fatty acid profile and nutraceutical properties of lipids contained in fallow deer (Dama dama) meat produced in organic and conventional farming systems. Longissimus lumborum (LL) and semimembranosus (SM) muscles from 24 fallow deer carcasses were selected for the study. The fallow deer meat from the organic farming system was characterized by significantly lower intramuscular fat content. The fatty acid profile in the organic meat was characterized by a particularly high proportion (p < 0.0001) of conjugated linoleic acid-CLA (LL-2.29%, SM-2.14%), alpha-linolenic acid-ALA (LL-4.32%, SM-3.87%), and docosahexaenoic acid-DHA (LL-2.83%, SM-2.60%). The organic system had a beneficial effect (p < 0.0001) on the amount of polyunsaturated fatty acids (PUFAs), including n-3 PUFAs, which resulted in a more favorable n-6 PUFA (polyunsaturated fatty acid)/n-3 PUFA ratio. The significantly higher nutritional quality of organic meat lipids was confirmed by such nutraceutical indicators as the thrombogenic index (TI), ∆9-desaturase C16, elongase, and docosahexaenoic acid+eicosapentaenoic acid (DHA+EPA) in the LL and SM and cholesterol index (CI), and the cholesterol-saturated fat index (CSI) indices in the SM. LL was characterized by higher overall quality.
Collapse
Affiliation(s)
- Janusz Kilar
- Jan Grodek State University in Sanok, Institute of Agricultural and Forest Economy, 21 Mickiewicza, 38-500 Sanok, Poland;
| | - Anna Kasprzyk
- Institute of Animal Breeding and Biodiversity Conservation, University of Life Sciences in Lublin, 13 Akademicka, 20-950 Lublin, Poland
| |
Collapse
|
22
|
Berryhill GE, Gloviczki JM, Trott JF, Kraft J, Lock AL, Hovey RC. In Utero Exposure to trans-10, cis-12 Conjugated Linoleic Acid Modifies Postnatal Development of the Mammary Gland and its Hormone Responsiveness. J Mammary Gland Biol Neoplasia 2021; 26:263-276. [PMID: 34617201 PMCID: PMC8566432 DOI: 10.1007/s10911-021-09499-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 08/30/2021] [Indexed: 01/03/2023] Open
Abstract
We previously showed that dietary trans-10, cis-12 conjugated linoleic acid (10,12 CLA) stimulates estrogen-independent mammary growth in young ovariectomized mice. Here we investigated the effects of in utero or postnatal exposure to cis-9, trans-11 (9,11 CLA) and 10,12 CLA on postnatal development of the mammary gland and its responsiveness to ovarian steroids. In the first experiment we fed dams different CLA prior to and during gestation, then cross fostered female pups onto control fed dams prior to assessing the histomorphology of their mammary glands. Pregnant dams in the second experiment were similarly exposed to CLA, after which their female pups were ovariectomized then treated with 17β-estradiol (E), progesterone (P) or E + P for 5 days. In a third experiment, mature female mice were fed different CLA for 28 days prior to ovariectomy, then treated with E, P or E + P. Our data indicate that 10,12 CLA modifies the responsiveness of the mammary glands to E or E + P when exposure occurs either in utero, or postnatally. These findings underline the sensitivity of the mammary glands to dietary fatty acids and reinforce the potential for maternal nutrition to impact postnatal development of the mammary glands and their risk for developing cancer.
Collapse
Affiliation(s)
- Grace E Berryhill
- Department of Animal Science, University of California, Davis , 2145 Meyer Hall, Davis, CA, 95616-8521, USA
| | - Julia M Gloviczki
- Department of Animal Science, University of California, Davis , 2145 Meyer Hall, Davis, CA, 95616-8521, USA
| | - Josephine F Trott
- Department of Animal Science, University of California, Davis , 2145 Meyer Hall, Davis, CA, 95616-8521, USA
| | - Jana Kraft
- Department of Animal and Veterinary Sciences, University of Vermont, Burlington, VT, 05405-0148, USA
| | - Adam L Lock
- Department of Animal Science, Michigan State University, East Lansing, MI, 48824-1225, USA
| | - Russell C Hovey
- Department of Animal Science, University of California, Davis , 2145 Meyer Hall, Davis, CA, 95616-8521, USA.
| |
Collapse
|
23
|
Gonzales-Barron U, Popova T, Bermúdez Piedra R, Tolsdorf A, Geß A, Pires J, Domínguez R, Chiesa F, Brugiapaglia A, Viola I, Battaglini LM, Baratta M, Lorenzo JM, Cadavez VA. Fatty acid composition of lamb meat from Italian and German local breeds. Small Rumin Res 2021. [DOI: 10.1016/j.smallrumres.2021.106384] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
24
|
Butler G, Ali AM, Oladokun S, Wang J, Davis H. Forage-fed cattle point the way forward for beef? FUTURE FOODS 2021. [DOI: 10.1016/j.fufo.2021.100012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
25
|
Brüggemann H, Salar-Vidal L, Gollnick HPM, Lood R. A Janus-Faced Bacterium: Host-Beneficial and -Detrimental Roles of Cutibacterium acnes. Front Microbiol 2021; 12:673845. [PMID: 34135880 PMCID: PMC8200545 DOI: 10.3389/fmicb.2021.673845] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 04/29/2021] [Indexed: 12/18/2022] Open
Abstract
The bacterial species Cutibacterium acnes (formerly known as Propionibacterium acnes) is tightly associated with humans. It is the dominant bacterium in sebaceous regions of the human skin, where it preferentially colonizes the pilosebaceous unit. Multiple strains of C. acnes that belong to phylogenetically distinct types can co-exist. In this review we summarize and discuss the current knowledge of C. acnes regarding bacterial properties and traits that allow host colonization and play major roles in host-bacterium interactions and also regarding the host responses that C. acnes can trigger. These responses can have beneficial or detrimental consequences for the host. In the first part of the review, we highlight and critically review disease associations of C. acnes, in particular acne vulgaris, implant-associated infections and native infections. Here, we also analyse the current evidence for a direct or indirect role of a C. acnes-related dysbiosis in disease development or progression, i.e., reduced C. acnes strain diversity and/or the predominance of a certain phylotype. In the second part of the review, we highlight historical and recent findings demonstrating beneficial aspects of colonization by C. acnes such as colonization resistance, immune system interactions, and oxidant protection, and discuss the molecular mechanisms behind these effects. This new insight led to efforts in skin microbiota manipulation, such as the use of C. acnes strains as probiotic options to treat skin disorders.
Collapse
Affiliation(s)
| | - Llanos Salar-Vidal
- Department of Clinical Microbiology, Fundacion Jimenez Diaz University Hospital, Madrid, Spain
| | - Harald P. M. Gollnick
- Department of Dermatology and Venerology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Rolf Lood
- Division of Infection Medicine, Department of Clinical Sciences, Lund University, Lund, Sweden
| |
Collapse
|
26
|
Waehler R. Fatty acids: facts vs. fiction. INT J VITAM NUTR RES 2021:1-21. [PMID: 34041926 DOI: 10.1024/0300-9831/a000713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
During the last 100 years official dietary guidelines have recommended an increased consumption of fats derived from seeds while decreasing the consumption of traditional fats, especially saturated fats. These recommendations are being challenged by recent studies. Furthermore, the increased use of refining processes in fat production had deleterious health effects. Today, the number of high-quality studies on fatty acids is large enough to make useful recommendations on clinical application and everyday practice. Saturated fats have many beneficial functions and palmitic acid appears to be problematic only when it is synthesized due to excess fructose consumption. Trans fatty acids were shown to be harmful when they are manmade but beneficial when of natural origin. Conjugated linoleic acid has many benefits but the isomer mix that is available in supplement form differs from its natural origin and may better be avoided. The ω3 fatty acid linolenic acid has rather limited use as an anti-inflammatory agent - a fact that is frequently overlooked. On the other hand, the targeted use of long chain ω3 fatty acids based on blood analysis has great potential to supplement or even be an alternative to various pharmacological therapies. At the same time ω6 fatty acids like linoleic acid and arachidonic acid have important physiological functions and should not be avoided but their consumption needs to be balanced with long chain ω3 fatty acids. The quality and quantity of these fats together with appropriate antioxidative protection are critical for their positive health effects.
Collapse
|
27
|
Fleck AK, Hucke S, Teipel F, Eschborn M, Janoschka C, Liebmann M, Wami H, Korn L, Pickert G, Hartwig M, Wirth T, Herold M, Koch K, Falk-Paulsen M, Dobrindt U, Kovac S, Gross CC, Rosenstiel P, Trautmann M, Wiendl H, Schuppan D, Kuhlmann T, Klotz L. Dietary conjugated linoleic acid links reduced intestinal inflammation to amelioration of CNS autoimmunity. Brain 2021; 144:1152-1166. [PMID: 33899089 PMCID: PMC8105041 DOI: 10.1093/brain/awab040] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 10/23/2020] [Accepted: 11/16/2020] [Indexed: 12/17/2022] Open
Abstract
A close interaction between gut immune responses and distant organ-specific autoimmunity including the CNS in multiple sclerosis has been established in recent years. This so-called gut–CNS axis can be shaped by dietary factors, either directly or via indirect modulation of the gut microbiome and its metabolites. Here, we report that dietary supplementation with conjugated linoleic acid, a mixture of linoleic acid isomers, ameliorates CNS autoimmunity in a spontaneous mouse model of multiple sclerosis, accompanied by an attenuation of intestinal barrier dysfunction and inflammation as well as an increase in intestinal myeloid-derived suppressor-like cells. Protective effects of dietary supplementation with conjugated linoleic acid were not abrogated upon microbiota eradication, indicating that the microbiome is dispensable for these conjugated linoleic acid-mediated effects. Instead, we observed a range of direct anti-inflammatory effects of conjugated linoleic acid on murine myeloid cells including an enhanced IL10 production and the capacity to suppress T-cell proliferation. Finally, in a human pilot study in patients with multiple sclerosis (n = 15, under first-line disease-modifying treatment), dietary conjugated linoleic acid-supplementation for 6 months significantly enhanced the anti-inflammatory profiles as well as functional signatures of circulating myeloid cells. Together, our results identify conjugated linoleic acid as a potent modulator of the gut–CNS axis by targeting myeloid cells in the intestine, which in turn control encephalitogenic T-cell responses.
Collapse
Affiliation(s)
- Ann-Katrin Fleck
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster, Germany
| | - Stephanie Hucke
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster, Germany
| | - Flavio Teipel
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster, Germany
| | - Melanie Eschborn
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster, Germany
| | - Claudia Janoschka
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster, Germany
| | - Marie Liebmann
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster, Germany
| | - Haleluya Wami
- Institute for Hygiene, University Hospital Münster, Münster, Germany
| | - Lisanne Korn
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster, Germany
| | - Geethanjali Pickert
- Institute of Translational Immunology, University Medical Center Mainz, Mainz, Germany
| | - Marvin Hartwig
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster, Germany
| | - Timo Wirth
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster, Germany
| | - Martin Herold
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster, Germany
| | - Kathrin Koch
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster, Germany
| | - Maren Falk-Paulsen
- Institute of Clinical Molecular Biology, University of Kiel, Kiel, Germany
| | - Ulrich Dobrindt
- Institute for Hygiene, University Hospital Münster, Münster, Germany
| | - Stjepana Kovac
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster, Germany
| | - Catharina C Gross
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster, Germany
| | - Philip Rosenstiel
- Institute of Clinical Molecular Biology, University of Kiel, Kiel, Germany
| | - Marcel Trautmann
- Division of Translational Pathology, Gerhard-Domagk-Institute of Pathology, University Hospital Münster, Münster, Germany
| | - Heinz Wiendl
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster, Germany
| | - Detlef Schuppan
- Institute of Translational Immunology, University Medical Center Mainz, Mainz, Germany.,Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Tanja Kuhlmann
- Department of Neuropathology, University of Münster, Münster, Germany
| | - Luisa Klotz
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster, Germany
| |
Collapse
|
28
|
Cristofano M D, A F, Giacomo M D, C F, F B, D L, Rotondi Aufiero V, F M, E C, G M, V Z, M R, P B. Mechanisms underlying the hormetic effect of conjugated linoleic acid: Focus on Nrf2, mitochondria and NADPH oxidases. Free Radic Biol Med 2021; 167:276-286. [PMID: 33753237 DOI: 10.1016/j.freeradbiomed.2021.03.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/14/2021] [Accepted: 03/15/2021] [Indexed: 12/17/2022]
Abstract
Nuclear factor erythroid 2-related factor2 (Nrf2) is a redox-sensitive transcription factor. Its activation by low dietary intake of ligands leads to antioxidant effects (eustress), while pro-oxidant effects (oxidative distress) may be associated with high doses. NADPH oxidases (NOXs) and the mitochondrial electron transport chain are the main sources of intracellular ROS, but their involvement in the biphasic/hormetic activity elicited by Nrf2 ligands is not fully understood. In this study, we investigated the involvement of NOX expression and mitochondrial function in the hormetic properties of omega-3 typically present in fish oil (FO) and conjugated linoleic acid (CLA) in the mouse liver. Four-week administration of FO, at both low and high doses (L-FO and H-FO) improves Nrf2-activated cyto-protection (by phase 2 enzymes), while a significant increase in respiration efficiency occurs in the liver mitochondria of H-FO BALB/c mice. Eustress conditions elicited by low dose CLA (L-CLA) are associated with increased activity of phase 2 enzymes, and with higher NOX1-2, mitochondrial defences, mitochondrial uncoupling protein 2 (UCP2), and peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α) expression, compared with controls. Steatogenic effects (lipid accumulation and alteration of lipid metabolism) elicited by high CLA (H-CLA) elicited that are associated with oxidative distress, increased mitochondrial complex I/III activity and reduced levels of phase 2 enzymes, in comparison with L-CLA-treated mice. Our results confirm the steatogenic activity of H-CLA and first demonstrate the role of NOX1 and NOX2 in the eustress conditions elicited by L-CLA. Notably, the negative association of the Nrf2/PGC-1α axis with the different CLA doses provides new insight into the mechanisms underlying the hormetic effect triggered by this Nrf2 ligand.
Collapse
Affiliation(s)
- Di Cristofano M
- Institute of Food Sciences, National Research Council (CNR-ISA), 83100, Avellino, Italy
| | - Ferramosca A
- Department of Environmental and Biological Sciences and Technologies, University of Salento, 73100, Lecce, Italy
| | - Di Giacomo M
- Department of Environmental and Biological Sciences and Technologies, University of Salento, 73100, Lecce, Italy
| | - Fusco C
- Institute of Biosciences and Bio-Resources, National Research Council (CNR-IBBR), 80100, Naples, Italy
| | - Boscaino F
- Institute of Food Sciences, National Research Council (CNR-ISA), 83100, Avellino, Italy
| | - Luongo D
- Institute of Food Sciences, National Research Council (CNR-ISA), 83100, Avellino, Italy
| | - Vera Rotondi Aufiero
- Institute of Food Sciences, National Research Council (CNR-ISA), 83100, Avellino, Italy
| | - Maurano F
- Institute of Food Sciences, National Research Council (CNR-ISA), 83100, Avellino, Italy
| | - Cocca E
- Institute of Biosciences and Bio-Resources, National Research Council (CNR-IBBR), 80100, Naples, Italy
| | - Mazzarella G
- Institute of Food Sciences, National Research Council (CNR-ISA), 83100, Avellino, Italy
| | - Zara V
- Department of Environmental and Biological Sciences and Technologies, University of Salento, 73100, Lecce, Italy
| | - Rossi M
- Institute of Food Sciences, National Research Council (CNR-ISA), 83100, Avellino, Italy
| | - Bergamo P
- Institute of Food Sciences, National Research Council (CNR-ISA), 83100, Avellino, Italy.
| |
Collapse
|
29
|
Measuring Conjugated Linoleic Acid (CLA) Production by Bifidobacteria. Methods Mol Biol 2021; 2278:87-100. [PMID: 33649950 DOI: 10.1007/978-1-0716-1274-3_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
The biological significance of conjugated fatty acids (CFAs) has been linked to positive health effects based on biomedical, in vitro, and clinical studies. Of note, conjugated linoleic acids (CLAs) are the most widely characterized fatty acids as geometric isomers cis-9,trans-11 and trans-10,cis-12 CLA occur naturally in ruminant fats, dairy products, and hydrogenated oils. Concerning CLAs, it is known that bacterial biohydrogenation, a process whereby ruminal bacteria or starter cultures of lactic acid bacteria have the ability to synthesize CLA by altering the chemical structure of essential fatty acids via enzymatic mechanisms, produces a multitude of isomers with desirable properties. Bifidobacterium species are classed as food grade microorganisms and some of these strains harness molecular determinants that are responsible for the bioconversion of free fatty acids to CLAs. However, molecular mechanisms have yet to be fully elucidated. Reports pertaining to CLAs have been attributed to suppressing tumor growth, delaying the onset of diabetes mellitus and reducing body fat in obese individuals. Given the increased attention for their bioactive properties, we describe in this chapter the qualitative and quantitative methods used to identify and quantify CLA isomers produced by bifidobacterial strains in supplemented broth media. These approaches enable rapid detection of potential CLA producing strains and accurate measurement of fatty acids in biological matrices.
Collapse
|
30
|
El-Gawad AMA, El-Hassan DGA, Aboul-Enein AM, Abdelgayed SS, Aly SA, Esmat G, Mostafa AA, Bakr MH, Ali RA, Ayoub MA. Anticancer activity of milk fat rich in conjugated linoleic acid against Ehrlich ascites carcinoma cells in female Swiss albino mice. Vet World 2021; 14:696-708. [PMID: 33935416 PMCID: PMC8076465 DOI: 10.14202/vetworld.2021.696-708] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 02/02/2021] [Indexed: 12/15/2022] Open
Abstract
Background and Aim: The major conjugated linoleic acid (CLA) isomers have anticancer effect, especially breast cancer cells, inhibits cell growth and induces cell death. Also, CLA has several health benefits in vivo, including antiatherogenesis, antiobesity, and modulation of immune function. The present study aimed to assess the safety and anticancer effects of milk fat CLA against in vivo Ehrlich ascites carcinoma (EAC) in female Swiss albino mice. This was based on acute toxicity study, detection of the tumor growth, life span of EAC bearing hosts, and simultaneous alterations in the hematological, biochemical, and histopathological profiles. Materials and Methods: One hundred and fifty adult female mice were equally divided into five groups. Groups (1-2) were normal controls, and Groups (3-5) were tumor transplanted mice (TTM) inoculated intraperitoneally with EAC cells (2×106/0.2 mL). Group (3) was (TTM positive control). Group (4) TTM fed orally on balanced diet supplemented with milk fat CLA (40 mg CLA/kg body weight). Group (5) TTM fed orally on balanced diet supplemented with the same level of CLA 28 days before tumor cells inoculation. Blood samples and specimens from liver and kidney were collected from each group. The effect of milk fat CLA on the growth of tumor, life span of TTM, and simultaneous alterations in the hematological, biochemical, and histopathological profiles were examined. Results: For CLA treated TTM, significant decrease in tumor weight, ascetic volume, viable Ehrlich cells accompanied with increase in life span were observed. Hematological and biochemical profiles reverted to more or less normal levels and histopathology showed minimal effects. Conclusion: The present study proved the safety and anticancer efficiency of milk fat CLA and provides a scientific basis for its medicinal use as anticancer attributable to the additive or synergistic effects of its isomers.
Collapse
Affiliation(s)
| | - Diea G Abo El-Hassan
- Department of Medicine and Infectious Diseases, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Ahmed M Aboul-Enein
- Department of Biochemistry, Faculty of Agriculture, Cairo University, Giza, Egypt
| | - Sherein S Abdelgayed
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Salwa A Aly
- Department of Food Hygiene, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Gamal Esmat
- Department of Hepatogastroenterology and Infectious Diseases, Faculty of Medicine, Cairo University, Giza, Egypt
| | - Amr A Mostafa
- Department of Biochemistry, Faculty of Agriculture, Cairo University, Giza, Egypt
| | - Mohamed H Bakr
- Department of Animal Production, Faculty of Agriculture, Cairo University, Giza, Egypt
| | - Rida A Ali
- Department of Animal Production, Faculty of Agriculture, Cairo University, Giza, Egypt
| | - Mahmoud A Ayoub
- Department of Clinical and Chemical Pathology, National Cancer Institute, Cairo University, Giza, Egypt
| |
Collapse
|
31
|
Uken KL, Vogel L, Gnott M, Görs S, Schäff CT, Tuchscherer A, Hoeflich A, Weitzel JM, Kanitz E, Tröscher A, Sauerwein H, Zitnan R, Bruckmaier RM, Gross JJ, Liermann W, Hammon HM. Effect of maternal supplementation with essential fatty acids and conjugated linoleic acid on metabolic and endocrine development in neonatal calves. J Dairy Sci 2021; 104:7295-7314. [PMID: 33715856 DOI: 10.3168/jds.2020-20039] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 01/22/2021] [Indexed: 12/20/2022]
Abstract
We tested the hypothesis that the maternal supply of essential fatty acids (EFA), especially α-linolenic acid, and conjugated linoleic acid (CLA), affects glucose metabolism, the endocrine regulation of energy metabolism and growth, and the intestinal development of neonatal calves. We studied calves from dams that received an abomasal infusion of 76 g/d coconut oil (CTRL; n = 9), 78 g/d linseed oil and 4 g/d safflower oil (EFA; n = 9), 38 g/d Lutalin (BASF SE) containing 27% cis-9,trans-11 and trans-10,cis-12 CLA (CLA; n = 9), or a combination of EFA and CLA (EFA+CLA; n = 11) during the last 63 d of gestation and early lactation. Calves received colostrum and transition milk from their own dam for the first 5 d of life. Insulin-like growth factor (IGF)-I, leptin, and adiponectin concentrations were measured in milk. Blood samples were taken before first colostrum intake, 24 h after birth, and from d 3 to 5 of life before morning feeding to measure metabolic and endocrine traits in plasma. On d 3 of life, energy expenditure was evaluated by a bolus injection of NaH13CO3 and determination of CO2 appearance rate. On d 4, additional blood samples were taken to evaluate glucose first-pass uptake and 13CO2 enrichment after [13C6]-glucose feeding and intravenous [6,6-2H2]-glucose bolus injection, as well as postprandial changes in glucose, nonesterified fatty acids (NEFA), insulin, and glucagon. On d 5, calves were killed 2 h after feeding and samples of small intestinal mucosa were taken for histomorphometric measurements. The concentrations of IGF-I, adiponectin, and leptin in milk decreased during early lactation in all groups, and the concentrations of leptin in first colostrum was higher in EFA than in CTRL cows. Plasma glucose concentration before first colostrum intake was higher in EFA calves than in non-EFA calves and was lower in CLA calves than in non-CLA calves. Plasma IGF-I concentration was higher on d 1 before colostrum intake in EFA calves than in EFA+CLA calves and indicated an overall CLA effect, with lower plasma IGF-I in CLA than in non-CLA calves. Postprandial NEFA concentration was lowest in EFA and CLA calves. The postprandial rise in plasma insulin was higher in EFA than in non-EFA calves. Plasma adiponectin concentration increased from d 1 to d 2 in all groups and was higher on d 3 in CLA than in non-CLA calves. Plasma leptin concentration was higher on d 4 and 5 in EFA than in non-EFA calves. Maternal fatty acid treatment did not affect energy expenditure and first-pass glucose uptake, but glucose uptake on d 4 was faster in EFA than in non-EFA calves. Crypt depth was lower, and the ratio of villus height to crypt depth was higher in the ilea of CLA than non-CLA calves. Elevated plasma glucose and IGF-I in EFA calves immediately after birth may indicate an improved energetic status in calves when dams are supplemented with EFA. Maternal EFA and CLA supplementation influenced postprandial metabolic changes and affected factors related to the neonatal insulin response.
Collapse
Affiliation(s)
- K L Uken
- Leibniz Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany
| | - L Vogel
- Leibniz Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany
| | - M Gnott
- Leibniz Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany
| | - S Görs
- Leibniz Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany
| | - C T Schäff
- Leibniz Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany
| | - A Tuchscherer
- Leibniz Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany
| | - A Hoeflich
- Leibniz Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany
| | - J M Weitzel
- Leibniz Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany
| | - E Kanitz
- Leibniz Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany
| | | | - H Sauerwein
- Institute of Animal Science, Physiology Unit, University of Bonn, 53115 Bonn, Germany
| | - R Zitnan
- Institute of Nutrition, Research Institute for Animal Production Nitra, National Agricultural and Food Center, 95141 Luzianky, Slovakia
| | - R M Bruckmaier
- Veterinary Physiology, Vetsuisse Faculty, University of Bern, 3001 Bern, Switzerland
| | - J J Gross
- Veterinary Physiology, Vetsuisse Faculty, University of Bern, 3001 Bern, Switzerland
| | - W Liermann
- Leibniz Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany
| | - H M Hammon
- Leibniz Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany.
| |
Collapse
|
32
|
Martín-González MZ, Palacios-Jordan H, Mas-Capdevila A, Rodríguez MA, Bravo FI, Muguerza B, Aragonès G. A multifunctional ingredient for the management of metabolic syndrome in cafeteria diet-fed rats. Food Funct 2021; 12:815-824. [PMID: 33399141 DOI: 10.1039/d0fo02810j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The body weight-lowering properties of a multifunctional ingredient (MIX) based on conjugated linoleic acid at low doses, the flavonoids proanthocyanidins and anthocyanidins and the chicken feet hydrolysate Hpp11 have been previously reported. The aim of this study was to evaluate the effect of long-term administration of MIX on other cardiometabolic risk factors associated with metabolic syndrome (MetS) in rats fed a cafeteria diet (CAF). Male Wistar rats were fed CAF for 11 weeks, and during the last 3 weeks, animals were orally administered MIX or vehicle. Lipid tolerance tests were performed before and after MIX administration. At the end of the experimental period, serum and inguinal white adipose tissue (iWAT) metabolism were analyzed by metabolomics and biochemical approaches. The metabolite signature of serum and iWAT significantly changed after 3 weeks of MIX administration, suggesting an improvement in lipid and glucose homeostasis in these animals. In addition, MIX also exhibited significant antihypertensive properties. These results suggest that MIX could be a good candidate to ameliorate the cardiometabolic risk factors related to MetS.
Collapse
Affiliation(s)
- Miguel Z Martín-González
- Universitat Rovira i Virgili, Department of Biochemistry and Biotechnology, Nutrigenomics Research Group, Tarragona, Spain.
| | | | | | | | | | | | | |
Collapse
|
33
|
Murru E, Carta G, Manca C, Sogos V, Pistis M, Melis M, Banni S. Conjugated Linoleic Acid and Brain Metabolism: A Possible Anti-Neuroinflammatory Role Mediated by PPARα Activation. Front Pharmacol 2021; 11:587140. [PMID: 33505308 PMCID: PMC7832089 DOI: 10.3389/fphar.2020.587140] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 11/17/2020] [Indexed: 12/24/2022] Open
Abstract
Fatty acids play a crucial role in the brain as specific receptor ligands and as precursors of bioactive metabolites. Conjugated linoleic acid (CLA), a group of positional and geometric isomers of linoleic acid (LA, 18:2 n-6) present in meat and dairy products of ruminants and synthesized endogenously in non-ruminants and humans, has been shown to possess different nutritional properties associated with health benefits. Its ability to bind to peroxisome proliferator-activated receptor (PPAR) α, a nuclear receptor key regulator of fatty acid metabolism and inflammatory responses, partly mediates these beneficial effects. CLA is incorporated and metabolized into brain tissue where induces the biosynthesis of endogenous PPARα ligands palmitoylethanolamide (PEA) and oleoylethanolamide (OEA), likely through a positive feedback mechanism where PPARα activation sustains its own cellular effects through ligand biosynthesis. In addition to PPARα, PEA and OEA may as well bind to other receptors such as TRPV1, further extending CLA own anti-neuroinflammatory actions. Future studies are needed to investigate whether dietary CLA may exert anti-inflammatory activity, particularly in the setting of neurodegenerative diseases and neuropsychiatric disorders with a neuroinflammatory basis.
Collapse
Affiliation(s)
- Elisabetta Murru
- Department of Biomedical Sciences, University of Cagliari, Monserrato, Italy
| | - Gianfranca Carta
- Department of Biomedical Sciences, University of Cagliari, Monserrato, Italy
| | - Claudia Manca
- Department of Biomedical Sciences, University of Cagliari, Monserrato, Italy
| | - Valeria Sogos
- Department of Biomedical Sciences, University of Cagliari, Monserrato, Italy
| | - Marco Pistis
- Department of Biomedical Sciences, University of Cagliari, Monserrato, Italy.,Neuroscience Institute, National Research Council of Italy (CNR), Cagliari, Italy
| | - Miriam Melis
- Department of Biomedical Sciences, University of Cagliari, Monserrato, Italy
| | - Sebastiano Banni
- Department of Biomedical Sciences, University of Cagliari, Monserrato, Italy
| |
Collapse
|
34
|
Colín-Navarro V, López-González F, Morales-Almaráz E, González-Alcántara FDJ, Estrada-Flores JG, Arriaga-Jordán CM. Fatty acid profile in milk of cows fed triticale silage in small-scale dairy systems in the highlands of central Mexico. JOURNAL OF APPLIED ANIMAL RESEARCH 2021. [DOI: 10.1080/09712119.2021.1884082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Vianey Colín-Navarro
- Insituto de Ciencias Agropecuarias y Rurales (ICAR), Universidad Autónoma del Estado de México, Toluca, México
| | - Felipe López-González
- Insituto de Ciencias Agropecuarias y Rurales (ICAR), Universidad Autónoma del Estado de México, Toluca, México
| | - Ernesto Morales-Almaráz
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma del Estado de México, Toluca, México
| | | | | | | |
Collapse
|
35
|
Ngo Njembe MT, Dormal E, Gardin C, Mignolet E, Debier C, Larondelle Y. Effect of the dietary combination of flaxseed and Ricinodendron heudelotii or Punica granatum seed oil on the fatty acid profile of eggs. Food Chem 2020; 344:128668. [PMID: 33267981 DOI: 10.1016/j.foodchem.2020.128668] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 10/08/2020] [Accepted: 11/14/2020] [Indexed: 01/07/2023]
Abstract
The health promoting omega-3, -7, and -5 fatty acids, α-linolenic acid (ALA), docosahexaenoic acid (DHA), rumenic acid (RmA), and α-eleostearic acid (α-ESA)/punicic acid (PunA), are not currently combined in frequently consumed food items. We have evaluated the impact of supplementing laying hens' feeds with flaxseeds combined with oil derived from seeds of either Ricinodendron heudelotii, an α-ESA source, or Punica granatum, a PunA source, on the egg fatty acid profile. The supplemented diets increased the egg content in ALA, DHA, RmA, as well as α-ESA or PunA. The combination of dietary lipids did not affect the conversion rate of ALA into DHA. Hens fed on R. heudelotii or P. granatum seed oil both accumulated RmA in egg yolk, indicating an efficient conversion from the α-ESA or PunA precursors through a Δ-13 reductase activity. The accumulation of PunA in eggs was largely higher than that of α-ESA.
Collapse
Affiliation(s)
- M T Ngo Njembe
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, 1348 Louvain-la-Neuve, Belgium.
| | - E Dormal
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, 1348 Louvain-la-Neuve, Belgium.
| | - C Gardin
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, 1348 Louvain-la-Neuve, Belgium.
| | - E Mignolet
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, 1348 Louvain-la-Neuve, Belgium.
| | - C Debier
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, 1348 Louvain-la-Neuve, Belgium.
| | - Y Larondelle
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, 1348 Louvain-la-Neuve, Belgium.
| |
Collapse
|
36
|
Seasonal changes in fatty acid and conjugated linoleic acid contents of ovine milk and kefalotyri cheese during ripening. Int Dairy J 2020. [DOI: 10.1016/j.idairyj.2020.104775] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
37
|
Sivakanthan S, Madhujith T. Current trends in applications of enzymatic interesterification of fats and oils: A review. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109880] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
38
|
Islam MA, Khandker SS, Kotyla PJ, Hassan R. Immunomodulatory Effects of Diet and Nutrients in Systemic Lupus Erythematosus (SLE): A Systematic Review. Front Immunol 2020; 11:1477. [PMID: 32793202 PMCID: PMC7387408 DOI: 10.3389/fimmu.2020.01477] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 06/05/2020] [Indexed: 12/16/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disease characterized by multiple organ involvement, including the skin, joints, kidneys, lungs, central nervous system and the haematopoietic system, with a large number of complications. Despite years of study, the etiology of SLE remains unclear; thus, safe and specifically targeted therapies are lacking. In the last 20 years, researchers have explored the potential of nutritional factors on SLE and have suggested complementary treatment options through diet. This study systematically reviews and evaluates the clinical and preclinical scientific evidence of diet and dietary supplementation that either alleviate or exacerbate the symptoms of SLE. For this review, a systematic literature search was conducted using PubMed, Scopus and Google Scholar databases only for articles written in the English language. Based on the currently published literature, it was observed that a low-calorie and low-protein diet with high contents of fiber, polyunsaturated fatty acids, vitamins, minerals and polyphenols contain sufficient potential macronutrients and micronutrients to regulate the activity of the overall disease by modulating the inflammation and immune functions of SLE.
Collapse
Affiliation(s)
- Md Asiful Islam
- Department of Haematology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia
| | - Shahad Saif Khandker
- Department of Biochemistry and Molecular Biology, Jahangirnagar University, Dhaka, Bangladesh
| | - Przemysław J Kotyla
- Department of Internal Medicine, Rheumatology and Clinical Immunology, Medical Faculty in Katowice, Medical University of Silesia, Katowice, Poland
| | - Rosline Hassan
- Department of Haematology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia
| |
Collapse
|
39
|
Mądry E, Malesza IJ, Subramaniapillai M, Czochralska-Duszyńska A, Walkowiak M, Miśkiewicz-Chotnicka A, Walkowiak J, Lisowska A. Body Fat Changes and Liver Safety in Obese and Overweight Women Supplemented with Conjugated Linoleic Acid: A 12-Week Randomised, Double-Blind, Placebo-Controlled Trial. Nutrients 2020; 12:nu12061811. [PMID: 32560516 PMCID: PMC7353155 DOI: 10.3390/nu12061811] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 06/03/2020] [Accepted: 06/16/2020] [Indexed: 12/25/2022] Open
Abstract
Preliminary evidence suggests that conjugated linoleic acid (CLA) may reduce body weight and affect body composition. The present study assessed the effect of CLA supplementation on body fat composition in overweight and obese women, while also evaluating the liver safety of CLA use. Seventy-four obese or overweight women were randomly assigned to receive 3 g/day CLA or placebo for 12 weeks. Body composition (dual-energy X-ray absorptiometry) and liver function (13C-methacetin breath test and serum liver enzymes) were assessed before and after the trial. Patients receiving CLA experienced a significant reduction of total body fat expressed as mass (p = 0.0007) and percentage (p = 0.0006), android adipose tissue (p = 0.0002), gynoid adipose tissue (p = 0.0028), and visceral adipose tissue (p = 4.2 × 10−9) as well as a significant increase in lean body mass to height (p = 6.1 × 10−11) when compared to those receiving a placebo. The maximum momentary 13C recovery changes and end-point values were significantly higher in the CLA group when compared to the placebo group (p = 0.0385 and p = 0.0076, respectively). There were no significant changes in alanine aminotransferase, asparagine aminotransferase, and gamma-glutamyl transpeptidase activities between the groups. In conclusion, CLA supplementation was well tolerated and safe for the liver, which shows beneficial effects on fat composition in overweight and obese women.
Collapse
Affiliation(s)
- Edyta Mądry
- Department of Physiology, Poznan University of Medical Sciences, 61701 Poznań, Poland; (M.S.); (A.C.-D.)
- Correspondence: ; Tel.: +48-501-728-956
| | - Ida Judyta Malesza
- Department of Pediatric Gastroenterology and Metabolic Diseases, Poznan University of Medical Sciences, 61701 Poznań, Poland; (I.J.M.); (A.M.-C.); (J.W.)
| | - Mehala Subramaniapillai
- Department of Physiology, Poznan University of Medical Sciences, 61701 Poznań, Poland; (M.S.); (A.C.-D.)
| | | | - Marek Walkowiak
- Division of Reproduction, Department of Gynecology and Obstetrics, Poznan University of Medical Sciences, 61701 Poznań, Poland;
| | - Anna Miśkiewicz-Chotnicka
- Department of Pediatric Gastroenterology and Metabolic Diseases, Poznan University of Medical Sciences, 61701 Poznań, Poland; (I.J.M.); (A.M.-C.); (J.W.)
| | - Jarosław Walkowiak
- Department of Pediatric Gastroenterology and Metabolic Diseases, Poznan University of Medical Sciences, 61701 Poznań, Poland; (I.J.M.); (A.M.-C.); (J.W.)
| | - Aleksandra Lisowska
- Department of Clinical Auxology and Pediatric Nursing, Poznan University of Medical Sciences, 61701 Poznań, Poland;
| |
Collapse
|
40
|
Pellow J, Nolte A, Temane A, Solomon EM. Health supplements for allergic rhinitis: A mixed-methods systematic review. Complement Ther Med 2020; 51:102425. [DOI: 10.1016/j.ctim.2020.102425] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 04/30/2020] [Accepted: 04/30/2020] [Indexed: 01/23/2023] Open
|
41
|
Beneficial Effects of a Low-dose of Conjugated Linoleic Acid on Body Weight Gain and other Cardiometabolic Risk Factors in Cafeteria Diet-fed Rats. Nutrients 2020; 12:nu12020408. [PMID: 32033223 PMCID: PMC7071287 DOI: 10.3390/nu12020408] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 01/28/2020] [Accepted: 02/02/2020] [Indexed: 01/18/2023] Open
Abstract
Conjugated linoleic acid (CLA) is a dietary supplement that has been shown to improve obesity. However, some authors have associated high doses of CLA supplementation with liver impairment and insulin resistance. The aim of this study was to assess whether the consumption of low doses of CLA maintained the beneficial effects on the main metabolic disturbances associated with metabolic syndrome (MetS) but prevented the occurrence of non-desirable outcomes associated with its consumption. Male Wistar rats, fed standard or cafeteria (CAF) diet for 12 weeks, were supplemented with three different low doses of CLA in the last three weeks. Both biochemical and H1 NMR-based metabolomics profiles were analysed in serum and liver. The consumption of 100 mg/kg CLA, but not doses of 200 and 300 mg/kg, ameliorated the increase in body weight gain as well as the serum concentrations of glucose, insulin, cholesterol, triglyceride, diglyceride, and total phospholipid induced by a CAF diet. In turn, CLA reverted the increase in lactate, alanine, and glucose concentrations in the liver of these animals, but enhanced hepatic cholesterol accumulation without any detrimental effect on liver function. In conclusion, a low dose of CLA corrected the adverse effects associated with MetS without compromising other metabolic parameters.
Collapse
|
42
|
Gong M, Hu Y, Wei W, Jin Q, Wang X. Production of conjugated fatty acids: A review of recent advances. Biotechnol Adv 2019; 37:107454. [PMID: 31639444 DOI: 10.1016/j.biotechadv.2019.107454] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 08/26/2019] [Accepted: 09/23/2019] [Indexed: 10/25/2022]
Abstract
Conjugated fatty acids (CFAs) have received a deal of attention due to the increasing understanding of their beneficial physiological effects, especially the anti-cancer effects and metabolism-regulation activities. However, the production of CFAs is generally difficult. Several challenges are the low CFAs content in natural sources, the difficulty to chemically synthesize target CFA isomers in high purity, and the sensitive characteristics of CFAs. In this article, the current technologies to produce CFAs, including physical, chemical, and biotechnical approaches were summarized, with a focus on the conjugated linoleic acids (CLAs) and conjugated linolenic acids (CLNAs) which are the most common investigated CFAs. CFAs usually demonstrate stronger physiological effects than other non-conjugated fatty acids; however, they are more sensitive to heat and oxidation. Consequently, the quality control throughout the entire production process of CFAs is significant. Special attention was given to the micro- or nano-encapsulation which presented as an emerging technique to improve the bioavailability and storage stability of CFAs. The current applications of CFAs and the potential research directions were also discussed.
Collapse
Affiliation(s)
- Mengyue Gong
- State Key Lab of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China; International Joint Research Laboratory for Lipid Nutrition and Safety, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China
| | - Yulin Hu
- Department of Chemical and Biochemical Engineering, Western University, London, ON N6A 3K7, Canada
| | - Wei Wei
- State Key Lab of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China; International Joint Research Laboratory for Lipid Nutrition and Safety, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China
| | - Qingzhe Jin
- State Key Lab of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China; International Joint Research Laboratory for Lipid Nutrition and Safety, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China
| | - Xingguo Wang
- State Key Lab of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China; International Joint Research Laboratory for Lipid Nutrition and Safety, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China.
| |
Collapse
|
43
|
Tyagi AK, Kumar S, Choudhury PK, Tyagi B, Tyagi N. Conjugated linoleic acid producing potential of lactobacilli isolated from goat (AXB) rumen fluid samples. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2019; 33:1233-1241. [PMID: 31480154 PMCID: PMC7322636 DOI: 10.5713/ajas.19.0080] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 07/26/2019] [Indexed: 11/27/2022]
Abstract
OBJECTIVE The present investigation was aimed to explore the potential of lactobacilli for conjugated linoleic acid (CLA) production, isolated from rumen fluid samples of lactating goats. METHODS A total of 64 isolates of lactobacilli were obtained using deMan-Rogosa-Sharpe (MRS) agar from rumen fluid of goats and further subjected to morphological and biochemical characterizations. Isolates found as gram-positive, catalase negative rods were presumptively identified as Lactobacillus species and further confirmed by genus specific polymerase chain reaction (PCR). The phylogenetic tree was constructed from the nucleotide sequences using MEGA6. RESULTS Out of the 64 isolates, 23 isolates were observed positive for CLA production by linoleate isomerase gene-based amplification and quantitatively by UV-spectrophotometric assay for the conversion of linoleic acid to CLA as well as gas chromatography-based assay. In all Lactobacillus species cis9, trans11 isomer was observed as the most predominant CLA isomer. These positive isolates were identified by 16S rRNA gene-based PCR sequencing and identified to be different species of L. ingluviei (2), L.salivarius (2), L. curvatus (15), and L. sakei (4). CONCLUSION The findings of the present study concluded that lactic acid bacteria isolated from ruminal fluid samples of goat have the potential to produce bioactive CLA and may be applied as a direct fed microbial to enhance the nutraceutical value of animal food products.
Collapse
Affiliation(s)
- Amrish Kumar Tyagi
- Rumen Biotechnology Lab, Animal Nutrition Division, ICAR-National Dairy Research Institute, Karnal, Haryana 132001, India
| | - Sachin Kumar
- Rumen Biotechnology Lab, Animal Nutrition Division, ICAR-National Dairy Research Institute, Karnal, Haryana 132001, India.,Gut Microbial Function, CSIRO Agriculture and Food, Queensland Bioscience Precinct, St Lucia, Brisbane 4067, Australia
| | - Prasanta Kumar Choudhury
- Rumen Biotechnology Lab, Animal Nutrition Division, ICAR-National Dairy Research Institute, Karnal, Haryana 132001, India.,Dairy Technology Department, Centurion University of Technology and Management, Paralakhemundi-761211, Odisha, India
| | - Bhawna Tyagi
- Rumen Biotechnology Lab, Animal Nutrition Division, ICAR-National Dairy Research Institute, Karnal, Haryana 132001, India
| | - Nitin Tyagi
- Rumen Biotechnology Lab, Animal Nutrition Division, ICAR-National Dairy Research Institute, Karnal, Haryana 132001, India
| |
Collapse
|
44
|
Cigliano L, Spagnuolo MS, Boscaino F, Ferrandino I, Monaco A, Capriello T, Cocca E, Iannotta L, Treppiccione L, Luongo D, Maurano F, Rossi M, Bergamo P. Dietary Supplementation with Fish Oil or Conjugated Linoleic Acid Relieves Depression Markers in Mice by Modulation of the Nrf2 Pathway. Mol Nutr Food Res 2019; 63:e1900243. [DOI: 10.1002/mnfr.201900243] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Revised: 06/25/2019] [Indexed: 01/09/2023]
Affiliation(s)
- Luisa Cigliano
- Department of BiologyUniversity “Federico II” of Naples Naples Italy
| | - Maria Stefania Spagnuolo
- Institute for Animal Production System in Mediterranean EnvironmentNational Research Council (ISPAAM, CNR) Naples Italy
| | - Floriana Boscaino
- Institute of Food SciencesNational Research Council (CNR‐ISA) Avellino Italy
| | - Ida Ferrandino
- Department of BiologyUniversity “Federico II” of Naples Naples Italy
| | - Antonio Monaco
- Department of BiologyUniversity “Federico II” of Naples Naples Italy
| | - Teresa Capriello
- Department of BiologyUniversity “Federico II” of Naples Naples Italy
| | - Ennio Cocca
- Institute of Biosciences and Bio‐ResourcesNational Research Council (CNR‐IBBR) Naples Italy
| | - Lucia Iannotta
- Department of BiologyUniversity “Federico II” of Naples Naples Italy
| | - Lucia Treppiccione
- Institute of Food SciencesNational Research Council (CNR‐ISA) Avellino Italy
| | - Diomira Luongo
- Institute of Food SciencesNational Research Council (CNR‐ISA) Avellino Italy
| | - Francesco Maurano
- Institute of Food SciencesNational Research Council (CNR‐ISA) Avellino Italy
| | - Mauro Rossi
- Institute of Food SciencesNational Research Council (CNR‐ISA) Avellino Italy
| | - Paolo Bergamo
- Institute of Food SciencesNational Research Council (CNR‐ISA) Avellino Italy
| |
Collapse
|
45
|
Characteristics of Selected Antioxidative and Bioactive Compounds in Meat and Animal Origin Products. Antioxidants (Basel) 2019; 8:antiox8090335. [PMID: 31443517 PMCID: PMC6769838 DOI: 10.3390/antiox8090335] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 08/11/2019] [Accepted: 08/19/2019] [Indexed: 01/15/2023] Open
Abstract
Meat and meat products have a high nutritional value. Besides major components, meat is rich in bioactive components, primarily taurine, l-carnitine, choline, alpha-lipoic acid, conjugated linoleic acid, glutathione, creatine, coenzyme Q10 and bioactive peptides. Many studies have reported their antioxidant and health-promoting properties connected with their lipid-lowering, antihypertensive, anti-inflammatory, immunomodulatory activity and protecting the organism against oxidative stress. The antioxidant activity of meat components results, among others, from the capability of scavenging reactive oxygen and nitrogen species, forming complexes with metal ions and protecting cells against damage. This review is focused to gather accurate information about meat components with antioxidant and biological activity.
Collapse
|
46
|
Cordoba-Chacon J, Sugasini D, Yalagala PCR, Tummala A, White ZC, Nagao T, Kineman RD, Subbaiah PV. Tissue-dependent effects of cis-9,trans-11- and trans-10,cis-12-CLA isomers on glucose and lipid metabolism in adult male mice. J Nutr Biochem 2019; 67:90-100. [PMID: 30856468 DOI: 10.1016/j.jnutbio.2019.01.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 12/22/2018] [Accepted: 01/29/2019] [Indexed: 12/22/2022]
Abstract
Mixtures of the two major conjugated linoleic acid (CLA) isomers trans-10,cis-12-CLA and cis-9,trans-11-CLA are used as over the counter supplements for weight loss. Because of the reported adverse effects of CLA on insulin sensitivity in some mouse studies, we sought to compare the impact of dietary t10c12-CLA and c9t11-CLA on liver, adipose tissue, and systemic metabolism of adult lean mice. We fed 8 week-old C57Bl/6J male mice with low fat diets (10.5% Kcal from fat) containing 0.8% t10c12-CLA or c9t11-CLA for 9 or 38 days. Diets containing c9t11-CLA had minimal impact on the endpoints studied. However, 7 days after starting the t10c12-CLA diet, we observed a dramatic reduction in fat mass measured by NMR spectroscopy, which interestingly rebounded by 38 days. This rebound was apparently due to a massive accumulation of lipids in the liver, because adipose tissue depots were visually undetectable. Hepatic steatosis and the disappearance of adipose tissue after t10c12-CLA feeding was associated with elevated plasma insulin levels and insulin resistance, compared to mice fed a control diet or c9t11-CLA diet. Unexpectedly, despite being insulin resistant, mice fed t10c12-CLA had normal levels of blood glucose, without signs of impaired glucose clearance. Hepatic gene expression and fatty acid composition suggested enhanced hepatic de novo lipogenesis without an increase in expression of gluconeogenic genes. These data indicate that dietary t10c12-CLA may alter hepatic glucose and lipid metabolism indirectly, in response to the loss of adipose tissue in mice fed a low fat diet.
Collapse
Affiliation(s)
- Jose Cordoba-Chacon
- Department of Medicine, Section of Endocrinology, Diabetes, and Metabolism, University of Illinois at Chicago, Chicago, IL.
| | - Dhavamani Sugasini
- Department of Medicine, Section of Endocrinology, Diabetes, and Metabolism, University of Illinois at Chicago, Chicago, IL
| | - Poorna C R Yalagala
- Department of Medicine, Section of Endocrinology, Diabetes, and Metabolism, University of Illinois at Chicago, Chicago, IL
| | - Apoorva Tummala
- Department of Medicine, Section of Endocrinology, Diabetes, and Metabolism, University of Illinois at Chicago, Chicago, IL
| | - Zachary C White
- Department of Medicine, Section of Endocrinology, Diabetes, and Metabolism, University of Illinois at Chicago, Chicago, IL
| | - Toshihiro Nagao
- Osaka Research Institute of Industrial Science and Technology, Osaka, Japan
| | - Rhonda D Kineman
- Department of Medicine, Section of Endocrinology, Diabetes, and Metabolism, University of Illinois at Chicago, Chicago, IL; Research and Development Division, Jesse Brown Veterans Affairs Medical Center, Chicago, IL
| | - Papasani V Subbaiah
- Department of Medicine, Section of Endocrinology, Diabetes, and Metabolism, University of Illinois at Chicago, Chicago, IL; Research and Development Division, Jesse Brown Veterans Affairs Medical Center, Chicago, IL.
| |
Collapse
|
47
|
Janse Van Rensburg WJ. Lifestyle Change Alone Sufficient to Lower Cholesterol in Male Patient With Moderately Elevated Cholesterol: A Case Report. Am J Lifestyle Med 2019; 13:148-155. [PMID: 30800020 DOI: 10.1177/1559827618806841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 09/18/2018] [Accepted: 09/24/2018] [Indexed: 11/16/2022] Open
Abstract
Background. Cardiovascular disease is a major cause of deaths. Elevated cholesterol levels to above the normal reference range is a major risk factor for developing cardiovascular disease. Current guidelines recommend the use of cholesterol-lowering drugs to lower cholesterol levels to within the normal reference range. However, the American Heart Association further recommends a change in lifestyle in managing cholesterol levels. Thus, cholesterol-lowering drugs may not be needed if a lifestyle-change alone is sufficient in lowering cholesterol levels to within normal ranges. Unfortunately, limited examples exist in academic literature to illustrate the effectiveness of lifestyle change alone in lowering of cholesterol levels. Case report. We report a case of a 33-year-old man, with moderately elevated cholesterol levels and a family history of cardiovascular disease. Method. The man followed an altered healthy fat diet accompanied with moderate exercise for 6 weeks, without the addition of cholesterol-lowering agents. Results. At the 6-week follow-up, he was able to decrease his total cholesterol by 40.25% and low-density lipid cholesterol by 52.8%, to within normal ranges. The cholesterol levels remained within normal ranges after 6 months. Conclusion. This case illustrates that in some individuals, lifestyle change alone is sufficient to lower moderately elevated cholesterol levels.
Collapse
Affiliation(s)
- Walter J Janse Van Rensburg
- Human Molecular Biology Unit, Department of Haematology and Cell Biology, School of Biomedical Sciences, Faculty of Health Sciences, University of the Free State, Bloemfontein, Free State, South Africa
| |
Collapse
|
48
|
Effects of Dietary Conjugated Linoleic Acid and Selected Vegetable Oils or Vitamin E on Fatty Acid Composition of Hen Egg Yolks. ANNALS OF ANIMAL SCIENCE 2019. [DOI: 10.2478/aoas-2018-0052] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Abstract
The objective of this study was to produce eggs enriched with conjugated linoleic acid (CLA) and ameliorate their fatty acid profile using the appropriate combination of dietary CLA with or without vegetable oils (olive oil or rapeseed oil) and vitamin E. In Experiment 1, 25-week-old laying hens were randomly distributed into eight groups of nine. Birds were fed with a standard diet with four different levels of CLA (0.0, 0.5, 0.75, 1.0%) and vegetable oils (olive oil or rapeseed oil, both in the amount of 1.46%). In Experiment 2, hens were randomly distributed into 12 groups of nine. The same four levels of CLA with three doses of vitamin E (0, 150, 300 mg/kg of diet) were applied. In both experiments, eggs were collected twice (at 4 and 8 weeks) for fatty acid profiling using GCMS. The differences between treatment means were considered significant at P<0.05. CLA treatments significantly increased the content of CLA, saturated fatty acids (SFA), and significantly decreased the content of monounsaturated fatty acids (MUFA) in the egg yolk, whereas levels of polyunsaturated fatty acids (PUFA) were unaffected. The vegetable oils used did not prevent the negative effects of CLA effectively. Only after eight weeks of experiment 1 SFA levels were significantly lower, but MUFA levels were significantly higher in groups fed with rapeseed oil compared to groups fed with olive oil. In experiment 2, the addition of vitamin E to the hen diet did not have an essential influence on the lipid profile of egg yolks.
Collapse
|
49
|
|
50
|
Murru E, Carta G, Cordeddu L, Melis MP, Desogus E, Ansar H, Chilliard Y, Ferlay A, Stanton C, Coakley M, Ross RP, Piredda G, Addis M, Mele MC, Cannelli G, Banni S, Manca C. Dietary Conjugated Linoleic Acid-Enriched Cheeses Influence the Levels of Circulating n-3 Highly Unsaturated Fatty Acids in Humans. Int J Mol Sci 2018; 19:ijms19061730. [PMID: 29891784 PMCID: PMC6032244 DOI: 10.3390/ijms19061730] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 05/25/2018] [Accepted: 06/05/2018] [Indexed: 12/13/2022] Open
Abstract
n-3 highly unsaturated fatty acids (n-3 HUFA) directly and indirectly regulate lipid metabolism, energy balance and the inflammatory response. We investigated changes to the n-3 HUFA score of healthy adults, induced by different types and amounts of conjugated linoleic acid (CLA)-enriched (ENCH) cheeses consumed for different periods of time, compared to dietary fish oil (FO) pills (500 mg, each containing 100 mg of eicosapentaenoic and docosahexaenoic acids—EPA+DHA) or α-linolenic acid (ALA)-rich linseed oil (4 g, containing 2 g of ALA). A significant increase in the n-3 HUFA score was observed, in a dose-dependent manner, after administration of the FO supplement. In terms of the impact on the n-3 HUFA score, the intake of ENCH cheese (90 g/day) for two or four weeks was equivalent to the administration of one or two FO pills, respectively. Conversely, the linseed oil intake did not significantly impact the n-3 HUFA score. Feeding ENCH cheeses from different sources (bovine, ovine and caprine) for two months improved the n-3 HUFA score by increasing plasma DHA, and the effect was proportional to the CLA content in the cheese. We suggest that the improved n-3 HUFA score resulting from ENCH cheese intake may be attributed to increased peroxisome proliferator-activated receptor alpha (PPAR-α) activity. This study demonstrates that natural ENCH cheese is an alternative nutritional source of n-3 HUFA in humans.
Collapse
Affiliation(s)
- Elisabetta Murru
- Dipartimento Scienze Biomediche, Università degli Studi di Cagliari, 09042 Monserrato, Italy.
| | - Gianfranca Carta
- Dipartimento Scienze Biomediche, Università degli Studi di Cagliari, 09042 Monserrato, Italy.
| | - Lina Cordeddu
- Dipartimento Scienze Biomediche, Università degli Studi di Cagliari, 09042 Monserrato, Italy.
| | - Maria Paola Melis
- Dipartimento Scienze Biomediche, Università degli Studi di Cagliari, 09042 Monserrato, Italy.
| | - Erika Desogus
- Dipartimento Scienze Biomediche, Università degli Studi di Cagliari, 09042 Monserrato, Italy.
| | - Hastimansooreh Ansar
- Dipartimento Scienze Biomediche, Università degli Studi di Cagliari, 09042 Monserrato, Italy.
| | - Yves Chilliard
- Université Clermont Auvergne, INRA, VetAgro Sup, UMR Herbivores, F-63122 Saint-Genès-Champanelle, France.
| | - Anne Ferlay
- Université Clermont Auvergne, INRA, VetAgro Sup, UMR Herbivores, F-63122 Saint-Genès-Champanelle, France.
| | - Catherine Stanton
- APC Microbiome Ireland, Teagasc Food Research Centre, Moorepark, Fermoy, P61 C996 Co. Cork, Ireland.
| | - Mairéad Coakley
- APC Microbiome Ireland, Teagasc Food Research Centre, Moorepark, Fermoy, P61 C996 Co. Cork, Ireland.
| | - R Paul Ross
- APC Microbiome Ireland, University College Cork, T12 YT20 Cork, Ireland.
| | - Giovanni Piredda
- Servizio per la Ricerca nei Prodotti di Origine Animale, AGRIS Sardegna, Loc. Bonassai, 07100 Sassari, Italy.
| | - Margherita Addis
- Servizio per la Ricerca nei Prodotti di Origine Animale, AGRIS Sardegna, Loc. Bonassai, 07100 Sassari, Italy.
| | | | - Giorgio Cannelli
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Roma, Italy.
| | - Sebastiano Banni
- Dipartimento Scienze Biomediche, Università degli Studi di Cagliari, 09042 Monserrato, Italy.
| | - Claudia Manca
- Dipartimento Scienze Biomediche, Università degli Studi di Cagliari, 09042 Monserrato, Italy.
| |
Collapse
|