1
|
Abdualkader AM, Karwi QG, Lopaschuk GD, Al Batran R. The role of branched-chain amino acids and their downstream metabolites in mediating insulin resistance. JOURNAL OF PHARMACY & PHARMACEUTICAL SCIENCES : A PUBLICATION OF THE CANADIAN SOCIETY FOR PHARMACEUTICAL SCIENCES, SOCIETE CANADIENNE DES SCIENCES PHARMACEUTIQUES 2024; 27:13040. [PMID: 39007094 PMCID: PMC11239365 DOI: 10.3389/jpps.2024.13040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 06/19/2024] [Indexed: 07/16/2024]
Abstract
Elevated levels of circulating branched-chain amino acids (BCAAs) and their associated metabolites have been strongly linked to insulin resistance and type 2 diabetes. Despite extensive research, the precise mechanisms linking increased BCAA levels with these conditions remain elusive. In this review, we highlight the key organs involved in maintaining BCAA homeostasis and discuss how obesity and insulin resistance disrupt the intricate interplay among these organs, thus affecting BCAA balance. Additionally, we outline recent research shedding light on the impact of tissue-specific or systemic modulation of BCAA metabolism on circulating BCAA levels, their metabolites, and insulin sensitivity, while also identifying specific knowledge gaps and areas requiring further investigation. Finally, we summarize the effects of BCAA supplementation or restriction on obesity and insulin sensitivity.
Collapse
Affiliation(s)
- Abdualrahman Mohammed Abdualkader
- Faculty of Pharmacy, Université de Montréal, Montréal, QC, Canada
- Montreal Diabetes Research Center, Montréal, QC, Canada
- Cardiometabolic Health, Diabetes and Obesity Research Network, Montréal, QC, Canada
| | - Qutuba G. Karwi
- Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John’s, NL, Canada
| | - Gary D. Lopaschuk
- Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, AB, Canada
| | - Rami Al Batran
- Faculty of Pharmacy, Université de Montréal, Montréal, QC, Canada
- Montreal Diabetes Research Center, Montréal, QC, Canada
- Cardiometabolic Health, Diabetes and Obesity Research Network, Montréal, QC, Canada
| |
Collapse
|
2
|
Aziz N, Dash B, Wal P, Kumari P, Joshi P, Wal A. New Horizons in Diabetic Neuropathies: An Updated Review on their Pathology, Diagnosis, Mechanism, Screening Techniques, Pharmacological, and Future Approaches. Curr Diabetes Rev 2024; 20:e201023222416. [PMID: 37867268 DOI: 10.2174/0115733998242299231011181615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 07/16/2023] [Accepted: 08/25/2023] [Indexed: 10/24/2023]
Abstract
BACKGROUND One of the largest problems for global public health is diabetes mellitus (DM) and its micro and macrovascular consequences. Although prevention, diagnosis, and treatment have generally improved, its incidence is predicted to keep rising over the coming years. Due to the intricacy of the molecular mechanisms, which include inflammation, oxidative stress, and angiogenesis, among others, discovering treatments to stop or slow the course of diabetic complications is still a current unmet need. METHODS The pathogenesis and development of diabetic neuropathies may be explained by a wide variety of molecular pathways, hexosamine pathways, such as MAPK pathway, PARP pathway, oxidative stress pathway polyol (sorbitol) pathway, cyclooxygenase pathway, and lipoxygenase pathway. Although diabetic neuropathies can be treated symptomatically, there are limited options for treating the underlying cause. RESULT Various pathways and screening models involved in diabetic neuropathies are discussed, along with their possible outcomes. Moreover, both medicinal and non-medical approaches to therapy are also explored. CONCLUSION This study highlights the probable involvement of several processes and pathways in the establishment of diabetic neuropathies and presents in-depth knowledge of new therapeutic approaches intended to stop, delay, or reverse different types of diabetic complications.
Collapse
Affiliation(s)
- Namra Aziz
- Pranveer Singh Institute of Technology (Pharmacy), Bhauti, Kanpur 209305, UP, India
| | - Biswajit Dash
- Department of Pharmaceutical Technology, School of Medical Sciences, ADAMAS University, Kolkata 700 126, West Bengal, India
| | - Pranay Wal
- Pranveer Singh Institute of Technology (Pharmacy), Bhauti, Kanpur 209305, UP, India
| | - Prachi Kumari
- Pranveer Singh Institute of Technology (Pharmacy), Bhauti, Kanpur 209305, UP, India
| | - Poonam Joshi
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun 248007, Uttarakhand, India
| | - Ankita Wal
- Pranveer Singh Institute of Technology (Pharmacy), Bhauti, Kanpur 209305, UP, India
| |
Collapse
|
3
|
Mangogna A, Di Girolamo FG, Fiotti N, Vinci P, Landolfo M, Mearelli F, Biolo G. High-protein diet with excess leucine prevents inactivity-induced insulin resistance in women. Clin Nutr 2023; 42:2578-2587. [PMID: 37972527 DOI: 10.1016/j.clnu.2023.10.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 09/18/2023] [Accepted: 10/29/2023] [Indexed: 11/19/2023]
Abstract
BACKGROUND AND AIMS Muscle inactivity leads to muscle atrophy and insulin resistance. The branched-chain amino acid (BCAA) leucine interacts with the insulin signaling pathway to modulate glucose metabolism. We have tested the ability of a high-protein BCAA-enriched diet to prevent insulin resistance during long-term bed rest (BR). METHODS Stable isotopes were infused to determine glucose and protein kinetics in the postabsorptive state and during a hyperinsulinemic-euglycemic clamp in combination with amino acid infusion (Clamp + AA) before and at the end of 60 days of BR in two groups of healthy, young women receiving eucaloric diets containing 1 g of protein/kg per day (n = 8) or 1.45 g of protein/kg per day enriched with 0.15 g/kg per day of BCAAs (leucine/valine/isoleucine = 2/1/1) (n = 8). Body composition was determined by Dual X-ray Absorptiometry. RESULTS BR decreased lean body mass by 7.6 ± 0.3 % and 7.2 ± 0.8 % in the groups receiving conventional or high protein-BCAA diets, respectively. Fat mass was unchanged in both groups. At the end of BR, percent changes of insulin-mediated glucose uptake significantly (p = 0.01) decreased in the conventional diet group from 155 ± 23 % to 84 ± 10 % while did not change significantly in the high protein-BCAA diet group from 126 ± 20 % to 141 ± 27 % (BR effect, p = 0.32; BR/diet interaction, p = 0.01; Repeated Measures ANCOVA). In contrast, there were no BR/diet interactions on proteolysis and protein synthesis Clamp + AA changes in the conventional diet and the high protein-BCAA diet groups. CONCLUSION A high protein-BCAA enriched diet prevented inactivity-induced insulin resistance in healthy women.
Collapse
Affiliation(s)
- Alessandro Mangogna
- Institute for Maternal and Child Health, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Burlo Garofolo, Trieste, Italy
| | - Filippo Giorgio Di Girolamo
- Department of Medical Surgical and Health Sciences, Medical Clinic, Cattinara Hospital, University of Trieste, Trieste, Italy; Hospital Pharmacy, Cattinara Hospital, Azienda Sanitaria Universitaria Giuliano Isontina, Trieste, Italy
| | - Nicola Fiotti
- Department of Medical Surgical and Health Sciences, Medical Clinic, Cattinara Hospital, University of Trieste, Trieste, Italy
| | - Pierandrea Vinci
- Department of Medical Surgical and Health Sciences, Medical Clinic, Cattinara Hospital, University of Trieste, Trieste, Italy
| | - Matteo Landolfo
- Department of Medical Surgical and Health Sciences, Medical Clinic, Cattinara Hospital, University of Trieste, Trieste, Italy
| | - Filippo Mearelli
- Department of Medical Surgical and Health Sciences, Medical Clinic, Cattinara Hospital, University of Trieste, Trieste, Italy
| | - Gianni Biolo
- Department of Medical Surgical and Health Sciences, Medical Clinic, Cattinara Hospital, University of Trieste, Trieste, Italy.
| |
Collapse
|
4
|
Shastry A, Dunham-Snary K. Metabolomics and mitochondrial dysfunction in cardiometabolic disease. Life Sci 2023; 333:122137. [PMID: 37788764 DOI: 10.1016/j.lfs.2023.122137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/21/2023] [Accepted: 09/29/2023] [Indexed: 10/05/2023]
Abstract
Circulating metabolites are indicators of systemic metabolic dysfunction and can be detected through contemporary techniques in metabolomics. These metabolites are involved in numerous mitochondrial metabolic processes including glycolysis, fatty acid β-oxidation, and amino acid catabolism, and changes in the abundance of these metabolites is implicated in the pathogenesis of cardiometabolic diseases (CMDs). Epigenetic regulation and direct metabolite-protein interactions modulate metabolism, both within cells and in the circulation. Dysfunction of multiple mitochondrial components stemming from mitochondrial DNA mutations are implicated in disease pathogenesis. This review will summarize the current state of knowledge regarding: i) the interactions between metabolites found within the mitochondrial environment during CMDs, ii) various metabolites' effects on cellular and systemic function, iii) how harnessing the power of metabolomic analyses represents the next frontier of precision medicine, and iv) how these concepts integrate to expand the clinical potential for translational cardiometabolic medicine.
Collapse
Affiliation(s)
- Abhishek Shastry
- Department of Medicine, Queen's University, Kingston, ON, Canada
| | - Kimberly Dunham-Snary
- Department of Medicine, Queen's University, Kingston, ON, Canada; Department of Biomedical & Molecular Sciences, Queen's University, Kingston, ON, Canada.
| |
Collapse
|
5
|
The Potential Role of R4 Regulators of G Protein Signaling (RGS) Proteins in Type 2 Diabetes Mellitus. Cells 2022; 11:cells11233897. [PMID: 36497154 PMCID: PMC9739376 DOI: 10.3390/cells11233897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/26/2022] [Accepted: 11/30/2022] [Indexed: 12/05/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a complex and heterogeneous disease that primarily results from impaired insulin secretion or insulin resistance (IR). G protein-coupled receptors (GPCRs) are proposed as therapeutic targets for T2DM. GPCRs transduce signals via the Gα protein, playing an integral role in insulin secretion and IR. The regulators of G protein signaling (RGS) family proteins can bind to Gα proteins and function as GTPase-activating proteins (GAP) to accelerate GTP hydrolysis, thereby terminating Gα protein signaling. Thus, RGS proteins determine the size and duration of cellular responses to GPCR stimulation. RGSs are becoming popular targeting sites for modulating the signaling of GPCRs and related diseases. The R4 subfamily is the largest RGS family. This review will summarize the research progress on the mechanisms of R4 RGS subfamily proteins in insulin secretion and insulin resistance and analyze their potential value in the treatment of T2DM.
Collapse
|
6
|
Hinkle JS, Rivera CN, Vaughan RA. Branched-Chain Amino Acids and Mitochondrial Biogenesis: An Overview and Mechanistic Summary. Mol Nutr Food Res 2022; 66:e2200109. [PMID: 36047448 PMCID: PMC9786258 DOI: 10.1002/mnfr.202200109] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 06/17/2022] [Indexed: 12/30/2022]
Abstract
Branched-chain amino acids (BCAA) are essential in the diet and promote several vital cell responses which may have benefits for health and athletic performance, as well as disease prevention. While BCAA are well-known for their ability to stimulate muscle protein synthesis, their effects on cell energetics are also becoming well-documented, but these receive less attention. In this review, much of the current evidence demonstrating BCAA ability (as individual amino acids or as part of dietary mixtures) to alter regulators of cellular energetics with an emphasis on mitochondrial biogenesis and related signaling is highlighted. Several studies have shown, both in vitro and in vivo, that BCAA (either individual or as a mixture) may promote signaling associated with increased mitochondrial biogenesis including the upregulation of master regulator of mitochondrial biogenesis peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α), as well as numerous downstream targets and related function. However, sparse data in humans and the difficulty of controlling variables associated with feeding studies leave the physiological relevance of these findings unclear. Future well-controlled diet studies will be needed to assess if BCAA consumption is associated with increased mitochondrial biogenesis and improved metabolic outcomes in healthy and/or diseased human populations.
Collapse
Affiliation(s)
- Jason S. Hinkle
- Department of Exercise ScienceHigh Point UniversityHigh PointNC27262‐3598USA
| | - Caroline N. Rivera
- Department of Exercise ScienceHigh Point UniversityHigh PointNC27262‐3598USA
| | - Roger A. Vaughan
- Department of Exercise ScienceHigh Point UniversityHigh PointNC27262‐3598USA
| |
Collapse
|
7
|
Gvazava IG, Karimova MV, Vasiliev AV, Vorotelyak EA. Type 2 Diabetes Mellitus: Pathogenic Features and Experimental Models in Rodents. Acta Naturae 2022; 14:57-68. [PMID: 36348712 PMCID: PMC9611859 DOI: 10.32607/actanaturae.11751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 07/19/2022] [Indexed: 11/20/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM) is the most common endocrine disorder (90%) in the world; it has numerous clinical, immunological, and genetic differences from type 1 diabetes mellitus. The pathogenesis of T2DM is complex and not fully clear. To date, animal models remain the main tool by which to study the pathophysiology and therapy of T2DM. Rodents are considered the best choice among animal models, because they are characterized by a small size, short induction period, easy diabetes induction, and economic efficiency. This review summarizes data on experimental models of T2DM that are currently used, evaluates their advantages and disadvantages vis-a-vis research, and describes in detail the factors that should be taken into account when using these models. Selection of a suitable model for tackling a particular issue is not always trivial; it affects study results and their interpretation.
Collapse
Affiliation(s)
- I. G. Gvazava
- Institute of Developmental Biology, Russian Academy of Sciences, Moscow, 119334 Russia
| | - M. V. Karimova
- Institute of Developmental Biology, Russian Academy of Sciences, Moscow, 119334 Russia
| | - A. V. Vasiliev
- Institute of Developmental Biology, Russian Academy of Sciences, Moscow, 119334 Russia
- Lomonosov Moscow State University, Faculty of Biology, Moscow, 119234 Russia
| | - E. A. Vorotelyak
- Institute of Developmental Biology, Russian Academy of Sciences, Moscow, 119334 Russia
- Lomonosov Moscow State University, Faculty of Biology, Moscow, 119234 Russia
| |
Collapse
|
8
|
Li N, Li J, Wang H, Liu J, Li W, Yang K, Huo X, Leng J, Yu Z, Hu G, Fang Z, Yang X. Branched-Chain Amino Acids and Their Interactions With Lipid Metabolites for Increased Risk of Gestational Diabetes. J Clin Endocrinol Metab 2022; 107:e3058-e3065. [PMID: 35271718 PMCID: PMC9891107 DOI: 10.1210/clinem/dgac141] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Indexed: 02/04/2023]
Abstract
OBJECTIVE We aimed to explore associations of branched-chain amino acids (BCAA) in early pregnancy with gestational diabetes mellitus (GDM), and whether high BCAAs and lipidomics markers had interactive effects on the risk of GDM. METHODS We conducted a 1:1 case-control study (n = 486) nested in a prospective cohort of pregnant women in Tianjin, China. Blood samples were collected at their first antenatal care visit (median 10 gestational weeks). Serum BCAAs, saturated fatty acids (SFA) and lysophosphatidylcholines (LPC) were measured by liquid chromatography-tandem mass spectrometry analysis. Conditional logistic regression was performed to examine associations of BCAAs with the risk of GDM. Interactions between high BCAAs and high SFA16:0 for GDM were examined using additive interaction measures. RESULTS High serum valine, leucine, isoleucine, and total BCAAs were associated with markedly increased risk of GDM (OR of top vs bottom tertiles: 1.91 [95% CI, 1.22-3.01]; 1.87 [1.20-2.91]; 2.23 [1.41-3.52]; 1.93 [1.23-3.02], respectively). The presence of high SFA16:0 defined as ≥ 17.1 nmol/mL (ie, median) markedly increased the ORs of high leucine alone and high isoleucine alone up to 4.56 (2.37-8.75) and 4.41 (2.30-8.43) for the risk of GDM, with significant additive interaction. After adjustment for LPCs, the ORs were greatly elevated (6.33, 2.25-17.80 and 6.53, 2.39-17.86) and the additive interactions became more significant. CONCLUSION BCAAs in early pregnancy were positively associated with the risk of GDM, and high levels of leucine and isoleucine enhanced the risk association of high SFA16:0 with GDM, independent of LPCs.
Collapse
Affiliation(s)
| | | | - Hui Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Tianjin Medical University, Tianjin, China
| | - Jinnan Liu
- Department of Epidemiology and Biostatistics, School of Public Health, Tianjin Medical University, Tianjin, China
| | - Weiqin Li
- Project Office, Tianjin Women and Children’s Health Center, Tianjin, China
| | - Kai Yang
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Tianjin Medical University, Tianjin, China
| | - Xiaoxu Huo
- Department of Epidemiology and Biostatistics, School of Public Health, Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin, China
- Tianjin Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin, China
| | - Junhong Leng
- Project Office, Tianjin Women and Children’s Health Center, Tianjin, China
| | - Zhijie Yu
- Population Cancer Research Program and Department of Pediatrics, Dalhousie University
Halifax, Canada
| | - Gang Hu
- Chronic Disease Epidemiology Laboratory, Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA
| | - Zhongze Fang
- Prof. Zhongze Fang, Department of Toxicology, School of Public Health, Tianjin Medical University, 22 Qixiangtai Road, Heping District, Tianjin 300070, China.
| | - Xilin Yang
- Correspondence: Prof. Xilin Yang, P.O. Box 154, School of Public Health, Tianjin Medical University, 22 Qixiangtai Road, Heping District, Tianjin 300070, China. ; or
| |
Collapse
|
9
|
Metabolomic Analysis of Serum and Tear Samples from Patients with Obesity and Type 2 Diabetes Mellitus. Int J Mol Sci 2022; 23:ijms23094534. [PMID: 35562924 PMCID: PMC9105607 DOI: 10.3390/ijms23094534] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/13/2022] [Accepted: 04/14/2022] [Indexed: 12/14/2022] Open
Abstract
Metabolomics strategies are widely used to examine obesity and type 2 diabetes (T2D). Patients with obesity (n = 31) or T2D (n = 26) and sex- and age-matched controls (n = 28) were recruited, and serum and tear samples were collected. The concentration of 23 amino acids and 10 biogenic amines in serum and tear samples was analyzed. Statistical analysis and Pearson correlation analysis along with network analysis were carried out. Compared to controls, changes in the level of 6 analytes in the obese group and of 10 analytes in the T2D group were statistically significant. For obesity, the energy generation, while for T2D, the involvement of NO synthesis and its relation to insulin signaling and inflammation, were characteristic. We found that BCAA and glutamine metabolism, urea cycle, and beta-oxidation make up crucial parts of the metabolic changes in T2D. According to our data, the retromer-mediated retrograde transport, the ethanolamine metabolism, and, consequently, the endocannabinoid signaling and phospholipid metabolism were characteristic of both conditions and can be relevant pathways to understanding and treating insulin resistance. By providing potential therapeutic targets and new starting points for mechanistic studies, our results emphasize the importance of complex data analysis procedures to better understand the pathomechanism of obesity and diabetes.
Collapse
|
10
|
Diet-Induced Metabolic Dysfunction of Hypothalamic Nutrient Sensing in Rodents. Int J Mol Sci 2022; 23:ijms23073958. [PMID: 35409318 PMCID: PMC8999257 DOI: 10.3390/ijms23073958] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/16/2022] [Accepted: 03/16/2022] [Indexed: 12/10/2022] Open
Abstract
A sedentary lifestyle and excessive nutrient intake resulting from the consumption of high-fat and calorie-rich diets are environmental factors contributing to the rapid growth of the current pandemic of type 2 diabetes mellitus (DM2). Fasting hyperglycemia, an established hallmark of DM2, is caused by excessive production of glucose by the liver, resulting in the inability of insulin to suppress endogenous glucose production. To prevent inappropriate elevations of circulating glucose resulting from changes in nutrient availability, mammals rely on complex mechanisms for continuously detecting these changes and to respond to them with metabolic adaptations designed to modulate glucose output. The mediobasal hypothalamus (MBH) is the key center where nutritional cues are detected and appropriate modulatory responses are integrated. However, certain environmental factors may have a negative impact on these adaptive responses. For example, consumption of a diet enriched in saturated fat in rodents resulted in the development of a metabolic defect that attenuated these nutrient sensing mechanisms, rendering the animals prone to developing hyperglycemia. Thus, high-fat feeding leads to a state of “metabolic disability” in which animals’ glucoregulatory responses fail. We postulate that the chronic faltering of the hypothalamic glucoregulatory mechanisms contributes to the development of metabolic disease.
Collapse
|
11
|
Abstract
The aim of the article is to examine side effects of increased dietary intake of amino acids, which are commonly used as a dietary supplement. In addition to toxicity, mutagenicity and carcinogenicity, attention is focused on renal and gastrointestinal tract functions, ammonia production, and consequences of a competition with other amino acids for a carrier at the cell membranes and enzymes responsible for their degradation. In alphabetic order are examined arginine, β-alanine, branched-chain amino acids, carnosine, citrulline, creatine, glutamine, histidine, β-hydroxy-β-methylbutyrate, leucine, and tryptophan. In the article is shown that enhanced intake of most amino acid supplements may not be risk-free and can cause a number of detrimental side effects. Further research is necessary to elucidate effects of high doses and long-term consumption of amino acid supplements on immune system, brain function, muscle protein balance, synthesis of toxic metabolites, and tumor growth and examine their suitability under certain circumstances. These include elderly, childhood, pregnancy, nursing a baby, and medical condition, such as diabetes and liver disease. Studies are also needed to examine adaptive response to a long-term intake of any substance and consequences of discontinuation of supplementation.
Collapse
Affiliation(s)
- M HOLEČEK
- Department of Physiology, Faculty of Medicine in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| |
Collapse
|
12
|
Abachi S, Pilon G, Marette A, Bazinet L, Beaulieu L. Beneficial effects of fish and fish peptides on main metabolic syndrome associated risk factors: Diabetes, obesity and lipemia. Crit Rev Food Sci Nutr 2022; 63:7896-7944. [PMID: 35297701 DOI: 10.1080/10408398.2022.2052261] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The definition of metabolic syndrome (MetS) fairly varies from one to another guideline and health organization. Per description of world health organization, occurrence of hyperinsulinemia or hyperglycemia in addition to two or more factors of dyslipidemia, hypoalphalipoproteinemia, hypertension and or large waist circumference factors would be defined as MetS. Conventional therapies and drugs, commonly with adverse effects, are used to treat these conditions and diseases. Nonetheless, in the recent decades scientific community has focused on the discovery of natural compounds to diminish the side effects of these medications. Among many available bioactives, biologically active peptides have notable beneficial effects on the management of diabetes, obesity, hypercholesterolemia, and hypertension. Marine inclusive of fish peptides have exerted significant bioactivities in different experimental in-vitro, in-vivo and clinical settings. This review exclusively focuses on studies from the recent decade investigating hypoglycemic, hypolipidemic, hypercholesterolemic and anti-obesogenic fish and fish peptides. Related extraction, isolation, and purification methodologies of anti-MetS fish biopeptides are reviewed herein for comparison purposes only. Moreover, performance of biopeptides in simulated gastrointestinal environment and structure-activity relationship along with absorption, distribution, metabolism, and excretion properties of selected oligopeptides have been discussed, in brief, to broaden the knowledge of readers on the design and discovery trends of anti-MetS compounds.Supplemental data for this article is available online at https://doi.org/10.1080/10408398.2022.2052261 .
Collapse
Affiliation(s)
- Soheila Abachi
- Institute of Nutrition and Functional Foods (INAF), Université Laval, Quebec, Quebec, Canada
- Department of Food Science, Faculty of Agricultural and Food Sciences, Université Laval, Quebec, Quebec, Canada
| | - Geneviève Pilon
- Institute of Nutrition and Functional Foods (INAF), Université Laval, Quebec, Quebec, Canada
- Department of Medicine, Faculty of Medicine, Cardiology Axis of the Quebec Heart and Lung Institute, Quebec, Quebec, Canada
| | - André Marette
- Institute of Nutrition and Functional Foods (INAF), Université Laval, Quebec, Quebec, Canada
- Department of Medicine, Faculty of Medicine, Cardiology Axis of the Quebec Heart and Lung Institute, Quebec, Quebec, Canada
| | - Laurent Bazinet
- Institute of Nutrition and Functional Foods (INAF), Université Laval, Quebec, Quebec, Canada
- Department of Food Science, Faculty of Agricultural and Food Sciences, Université Laval, Quebec, Quebec, Canada
- Laboratory of Food Processing and ElectroMembrane Processes (LTAPEM), Université Laval, Quebec, Quebec, Canada
| | - Lucie Beaulieu
- Institute of Nutrition and Functional Foods (INAF), Université Laval, Quebec, Quebec, Canada
- Department of Food Science, Faculty of Agricultural and Food Sciences, Université Laval, Quebec, Quebec, Canada
| |
Collapse
|
13
|
Gut Microbiota as the Link between Elevated BCAA Serum Levels and Insulin Resistance. Biomolecules 2021; 11:biom11101414. [PMID: 34680047 PMCID: PMC8533624 DOI: 10.3390/biom11101414] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 09/21/2021] [Accepted: 09/23/2021] [Indexed: 12/17/2022] Open
Abstract
The microbiota-harboring human gut is an exquisitely active ecosystem that has evolved in a constant symbiosis with the human host. It produces numerous compounds depending on its metabolic capacity and substrates availability. Diet is the major source of the substrates that are metabolized to end-products, further serving as signal molecules in the microbiota-host cross-talk. Among these signal molecules, branched-chain amino acids (BCAAs) has gained significant scientific attention. BCAAs are abundant in animal-based dietary sources; they are both produced and degraded by gut microbiota and the host circulating levels are associated with the risk of type 2 diabetes. This review aims to summarize the current knowledge on the complex relationship between gut microbiota and its functional capacity to handle BCAAs as well as the host BCAA metabolism in insulin resistance development. Targeting gut microbiota BCAA metabolism with a dietary modulation could represent a promising approach in the prevention and treatment of insulin resistance related states, such as obesity and diabetes.
Collapse
|
14
|
El-Tarabany MS, El-Tarabany AA, Ahmed-Farid OA. Effect of cage density on growth rate, carcass traits, muscle amino acid profile, and antioxidant biomarkers of commercial rabbits. Trop Anim Health Prod 2021; 53:393. [PMID: 34241702 DOI: 10.1007/s11250-021-02842-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 06/24/2021] [Indexed: 11/24/2022]
Abstract
The objective of this work was to elucidate the impact of cage density on growth efficiency, carcass yield, and muscle amino acid profile of fattening rabbits. In total, 96 weaned rabbits were assigned into three cage densities: low cage density (LCD) = 1425 cm2/rabbit; medium cage density (MCD) = 850 cm2/rabbit; high cage density (HCD) = 625 cm2/rabbit. Compared with the HCD, the body gain and feed conversion ratio were better in the LCD and MCD groups (P = 0.003 and 0.004, respectively). The MCD and HCD groups had lower hot carcass weight (P = 0.012) and dressing percentage (P = 0.022) than the LCD group. Compared with the HCD group, the LCD and MCD groups exhibited greater serum GSH (P = 0.029) and SOD (P = 0.032), but significantly lower levels of serum cortisol and cholesterol (P = 0.001 and 0.026, respectively). Regarding the amino acid profile of longissimus dorsi and leg muscles, the LCD group had significantly higher levels of muscle lysine and threonine than the HCD and MCD groups (P˂0.05). The current study indicates that the MCD (850 cm2/rabbit) could maintain an acceptable growth performance, carcass traits, and welfare-related parameters. Furthermore, only the low cage density (1425 cm2/rabbit) may preserve the levels of essential (lysine, isoleucine, and threonine) and nonessential (histidine, proline, and glysein) amino acids in the longissimus dorsi and leg muscles of growing rabbits.
Collapse
Affiliation(s)
- Mahmoud S El-Tarabany
- Department of Animal Wealth Development, Faculty of Veterinary Medicine, Zagazig University, El-Zeraa str. 114, Zagazig, 44511, Sharkia, Egypt.
| | - Akram A El-Tarabany
- Biological Applications Department, Radioisotopes Applications Division, NRC, Atomic Energy Authority, Inshas, Cairo, Egypt
| | - Omar A Ahmed-Farid
- Physiology Department, National Organization for Drug Control and Research (NODCAR), Giza, Egypt
| |
Collapse
|
15
|
Integrated metabolomics analysis of the effect of PPARδ agonist GW501516 on catabolism of BCAAs and carboxylic acids in diabetic mice. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2020.12.042] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
16
|
Erukainure OL, Salau VF, Atolani O, Ravichandran R, Banerjee P, Preissner R, Koorbanally NA, Islam MS. L-leucine stimulation of glucose uptake and utilization involves modulation of glucose - lipid metabolic switch and improved bioenergetic homeostasis in isolated rat psoas muscle ex vivo. Amino Acids 2021; 53:1135-1151. [PMID: 34152488 DOI: 10.1007/s00726-021-03021-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 06/16/2021] [Indexed: 12/21/2022]
Abstract
The antidiabetic effect of l-leucine has been attributed to its modulatory effect on glucose uptake and lipid metabolism in muscles. However, there is a dearth on its effect on glucose metabolism in muscles. Thus, the present study investigated the effect of l-leucine - stimulated glucose uptake on glucose metabolism, dysregulated lipid metabolic pathways, redox and bioenergetic homeostasis, and proteolysis in isolated psoas muscle from Sprague Dawley male rats. Isolated psoas muscles were incubated with l-leucine (30-240 μg/mL) in the presence of 11.1 mMol glucose at 37 ˚C for 2 h. Muscles incubated in only glucose served as the control, while muscles not incubated in l-leucine and/or glucose served as the normal control. Metformin (6.04 mM) was used as the standard antidiabetic drug. Incubation with l-leucine caused a significant increase in muscle glucose uptake, with an elevation of glutathione levels, superoxide dismutase, catalase, E-NTPDase and 5'nucleotidase activities. It also led to the depletion of malondialdehyde and nitric oxide levels, ATPase, chymotrypsin, acetylcholinesterase, glycogen phosphorylase, glucose-6-phosphatase, fructose-1,6-bisphosphatase and lipase activities. There was an alteration in lipid metabolites, with concomitant activation of glycerolipid metabolism, fatty acid metabolism, and fatty acid elongation in mitochondria in the glucose-incubated muscle (negative control). Incubation with l-leucine reversed these alterations, and concomitantly deactivated the pathways. These results indicate that l-leucine-enhanced muscle glucose uptake involves improved redox and bioenergetic homeostasis, with concomitant suppressed proteolytic, glycogenolytic and gluconeogenetic activities, while modulating glucose - lipid metabolic switch.
Collapse
Affiliation(s)
- Ochuko L Erukainure
- Department of Pharmacology, School of Clinical Medicine, Faculty of Health Sciences, University of the Free State, Bloemfontein, 9301, South Africa.
| | - Veronica F Salau
- Department of Biochemistry, School of Life Sciences, University of KwaZulu-Natal, Westville Campus, Durban, 4000, South Africa
| | | | - Rahul Ravichandran
- DiSTABiF, University of Campania "Luigi Vanvitelli", Via Vivaldi 43, 81100, Caserta, Italy
| | - Priyanka Banerjee
- Institute for Physiology, Charité - University Medicine Berlin, Berlin, Germany
| | - Robert Preissner
- Institute for Physiology, Charité - University Medicine Berlin, Berlin, Germany
| | - Neil A Koorbanally
- School of Chemistry and Physics, University of KwaZulu-Natal, Westville Campus, Durban, 4000, South Africa
| | - Md Shahidul Islam
- School of Chemistry and Physics, University of KwaZulu-Natal, Westville Campus, Durban, 4000, South Africa
| |
Collapse
|
17
|
Dadon-Freiberg M, Chapnik N, Froy O. REV-ERBα alters circadian rhythms by modulating mTOR signaling. Mol Cell Endocrinol 2021; 521:111108. [PMID: 33285244 DOI: 10.1016/j.mce.2020.111108] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 11/22/2020] [Accepted: 11/30/2020] [Indexed: 11/21/2022]
Abstract
REV-ERBα is a nuclear receptor that inhibits Bmal1 transcription as part of the circadian clock molecular mechanism. Mammalian target of rapamycin (mTOR) complex 1 (mTORC1) is a master regulator of cell and whole-body energy homeostasis, that serves as an important link between metabolism and circadian clock, in part, by regulating BMAL1 activity. While the connection of REV-ERBα to the circadian clock molecular mechanism is well characterized, the interaction between mTORC1, REV-ERBα and the circadian clock machinery is not very clear. We used leucine and rapamycin to modulate mTORC1 activation and evaluate this effect on circadian rhythms. In the liver, mTORC1 was inhibited by leucine. REV-ERBα overexpression activated the mTORC1 signaling pathway via transcription inhibition of mTORC1 inhibitor, Tsc1, antagonizing the effect of leucine, while its silencing downregulated mTORC1 signaling. Activation of mTORC1 led to increased BMAL1 phosphorylation. Activation as well as inhibition of mTORC1 led to altered circadian rhythms in mouse muscle. Inhibition of liver mTORC1 by leucine or rapamycin led to low-amplitude circadian rhythms. In summary, our study shows that leucine inhibits liver mTORC1 pathway leading to dampened circadian rhythms. REV-ERBα activates the mTORC1 pathway, leading to phosphorylation of the clock protein BMAL1.
Collapse
Affiliation(s)
- Maayan Dadon-Freiberg
- Institute of Biochemistry, Food Science and Nutrition, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, 76100, Israel
| | - Nava Chapnik
- Institute of Biochemistry, Food Science and Nutrition, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, 76100, Israel
| | - Oren Froy
- Institute of Biochemistry, Food Science and Nutrition, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, 76100, Israel.
| |
Collapse
|
18
|
Interorgan Metabolism of Amino Acids in Human Health and Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1332:129-149. [PMID: 34251642 DOI: 10.1007/978-3-030-74180-8_8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Amino acids are integral for human health, influencing an array of physiological processes from gene expression to vasodilation to the immune response. In accordance with this expansive range of unique functions, the tissues of the body engage in a complex interplay of amino acid exchange and metabolism to respond to the organism's dynamic needs for a range of nitrogenous products. Interorgan amino acid metabolism is required for numerous metabolic pathways, including the synthesis of functional amino acids like arginine, glutamate, glutamine, and glycine. This physiological process requires the cooperative handling of amino acids by organs (e.g., the small intestine, skeletal muscle, kidneys, and liver), as well as the complete catabolism of nutritionally essential amino acids such as the BCAAs, with their α-ketoacids shuttled from muscle to liver. These exchanges are made possible by several mechanisms, including organ location, as well as the functional zonation of enzymes and the cell-specific expression of amino acid transporters. The cooperative handling of amino acids between the various organs does not appear to be under the control of any centralized regulation, but is instead influenced by factors such as fluctuations in nutrient availability, hormones, changes associated with development, and altered environmental factors. While the normal function of these pathways is associated with health and homeostasis, affected by physical activity, diet and body composition, dysregulation is observed in numerous disease states, including cardiovascular disease and cancer cachexia, presenting potential avenues for the manipulation of amino acid consumption as part of the therapeutic approach to these conditions in individuals.
Collapse
|
19
|
Ma Q, Hu L, Zhu J, Chen J, Wang Z, Yue Z, Qiu M, Shan A. Valine Supplementation Does Not Reduce Lipid Accumulation and Improve Insulin Sensitivity in Mice Fed High-Fat Diet. ACS OMEGA 2020; 5:30937-30945. [PMID: 33324801 PMCID: PMC7726788 DOI: 10.1021/acsomega.0c03707] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 11/10/2020] [Indexed: 06/01/2023]
Abstract
Branched-chain amino acids (BCAAs), particularly leucine, were reported to decrease obesity and relevant metabolic syndrome. However, whether valine has a similar effect has rarely been investigated. In the present study, mice were assigned into four treatments (n = 10): chow diet supplemented with water (CW) or valine (CV) and high-fat diet supplemented with water (HW) or valine (HV). Valine (3%, w/v) was supplied in the drinking water. The results showed that valine treatment markedly increased serum triglyceride and insulin levels of chow diet-fed mice. The body weight, serum triglyceride level, white adipose tissue weight, and glucose and insulin intolerance were significantly elevated by valine supplementation in high-fat diet-fed mice. Metabolomics and transcriptomics showed that several genes related to fat oxidation were downregulated, and arachidonic acid and linoleic acid metabolism were altered in the HV group compared to the HW group. In conclusion, valine supplementation did not suppress lipid deposition and metabolic disorders in mice, which provides a new understanding for BCAAs in the modulation of lipid metabolism.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Anshan Shan
- . Tel.: +86 451 55190685. Fax: +86 451 55103336
| |
Collapse
|
20
|
Energy metabolism profile of the effects of amino acid treatment on skeletal muscle cells: Leucine inhibits glycolysis of myotubes. Nutrition 2020; 77:110794. [DOI: 10.1016/j.nut.2020.110794] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 01/20/2020] [Accepted: 01/25/2020] [Indexed: 02/06/2023]
|
21
|
Ancu O, Mickute M, Guess ND, Hurren NM, Burd NA, Mackenzie RW. Does high dietary protein intake contribute to the increased risk of developing prediabetes and type 2 diabetes? Appl Physiol Nutr Metab 2020; 46:1-9. [PMID: 32755490 DOI: 10.1139/apnm-2020-0396] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Insulin resistance is a complex metabolic disorder implicated in the development of many chronic diseases. While it is generally accepted that body mass loss should be the primary approach for the management of insulin resistance-related disorders in overweight and obese individuals, there is no consensus among researchers regarding optimal protein intake during dietary restriction. Recently, it has been suggested that increased plasma branched-chain amino acids concentrations are associated with the development of insulin resistance and type 2 diabetes. The exact mechanism by which excessive amino acid availability may contribute to insulin resistance has not been fully investigated. However, it has been hypothesised that mammalian target of rapamycin (mTOR) complex 1 hyperactivation in the presence of amino acid overload contributes to reduced insulin-stimulated glucose uptake because of insulin receptor substrate (IRS) degradation and reduced Akt-AS160 activity. In addition, the long-term effects of high-protein diets on insulin sensitivity during both weight-stable and weight-loss conditions require more research. This review focusses on the effects of high-protein diets on insulin sensitivity and discusses the potential mechanisms by which dietary amino acids can affect insulin signalling. Novelty: Excess amino acids may over-activate mTOR, resulting in desensitisation of IRS-1 and reduced insulin-mediated glucose uptake.
Collapse
Affiliation(s)
- Oana Ancu
- Department of Life Sciences, University of Roehampton, London SW15 4DJ, UK
| | - Monika Mickute
- Diabetes Research Centre, University of Leicester and the NIHR Leicester Biomedical Research Centre, Leicester, LE17RH, UK
| | - Nicola D Guess
- Department of Nutritional Sciences, King's College London, London, WC2R2LS, UK
| | - Nicholas M Hurren
- Department of Life Sciences, University of Roehampton, London SW15 4DJ, UK
| | - Nicholas A Burd
- Division of Nutritional Sciences, University of Illinois, Urbana, IL 61820, USA
| | | |
Collapse
|
22
|
Wu H, Dridi S, Huang Y, Baum JI. Leucine decreases intramyocellular lipid deposition in an mTORC1-independent manner in palmitate-treated C2C12 myotubes. Am J Physiol Endocrinol Metab 2020; 318:E152-E163. [PMID: 31770014 DOI: 10.1152/ajpendo.00241.2019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Higher intramyocellular lipid (IMCL) deposition in skeletal muscle is commonly observed in patients with obesity, resulting in mitochondrial damage. Palmitic acid, a saturated fatty acid, has been reported to induce obesogenic conditions in C2C12 myotubes. Leucine has been shown to improve obesity-related metabolic signatures; however, evidence for the effect of leucine on IMCL and the underlying mechanisms are still lacking. The objective of this study was to determine the effect of leucine on IMCL deposition and identify the potential mechanisms. Palmitate-treated C2C12 myotubes were used as an in vitro model of obesity. Two doses of leucine were used: 0.5 mM (postprandial physiological plasma concentration) and 1.5 mM (supraphysiological plasma concentration). Rapamycin was used to determine the role of mammalian target of rapamycin complex 1 (mTORC1) in leucine's regulation of lipid deposition in C2C12 myotubes. One-way ANOVA followed by Tukey's post hoc test was used to calculate differences between treatment groups. Our results demonstrate that leucine reduces IMCL deposition in an mTORC1-independent fashion. Furthermore, leucine acts independently of mTORC1 to upregulate gene expression related to fatty acid metabolism and works through both mTORC1-dependent and mTORC1-independent pathways to regulate mitochondrial biogenesis in palmitate-treated C2C12 myotubes. In agreement with increased mitochondrial biogenesis, increased mitochondrial content, circularity, and decreased autophagy are observed in the presence of 1.5 mM leucine. Taken together, the results indicate leucine reduces IMCL potentially through an mTORC1-independent pathway in palmitate-treated C2C12 myotubes.
Collapse
Affiliation(s)
- Hexirui Wu
- Center for Human Nutrition, Department of Food Science, University of Arkansas System Division of Agriculture, Fayetteville, Arkansas
| | - Sami Dridi
- Department of Poultry Science, University of Arkansas System Division of Agriculture, Fayetteville, Arkansas
| | - Yan Huang
- Department of Animal Science, University of Arkansas System Division of Agriculture, Fayetteville, Arkansas
| | - Jamie I Baum
- Center for Human Nutrition, Department of Food Science, University of Arkansas System Division of Agriculture, Fayetteville, Arkansas
| |
Collapse
|
23
|
Shakya A, Chaudary SK, Garabadu D, Bhat HR, Kakoti BB, Ghosh SK. A Comprehensive Review on Preclinical Diabetic Models. Curr Diabetes Rev 2020; 16:104-116. [PMID: 31074371 DOI: 10.2174/1573399815666190510112035] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 02/20/2019] [Accepted: 04/22/2019] [Indexed: 12/16/2022]
Abstract
BACKGROUND Preclinical experimental models historically play a critical role in the exploration and characterization of disease pathophysiology. Further, these in-vivo and in-vitro preclinical experiments help in target identification, evaluation of novel therapeutic agents and validation of treatments. INTRODUCTION Diabetes mellitus (DM) is a multifaceted metabolic disorder of multidimensional aetiologies with the cardinal feature of chronic hyperglycemia. To avoid or minimize late complications of diabetes and related costs, primary prevention and early treatment are therefore necessary. Due to its chronic manifestations, new treatment strategies need to be developed, because of the limited effectiveness of the current therapies. METHODS The study included electronic databases such as Pubmed, Web of Science and Scopus. The datasets were searched for entries of studies up to June, 2018. RESULTS A large number of in-vivo and in-vitro models have been presented for evaluating the mechanism of anti-hyperglycaemic effect of drugs in hormone-, chemically-, pathogen-induced animal models of diabetes mellitus. The advantages and limitations of each model have also been addressed in this review. CONCLUSION This review encompasses the wide pathophysiological and molecular mechanisms associated with diabetes, particularly focusing on the challenges associated with the evaluation and predictive validation of these models as ideal animal models for preclinical assessments and discovering new drugs and therapeutic agents for translational application in humans. This review may further contribute to discover a novel drug to treat diabetes more efficaciously with minimum or no side effects. Furthermore, it also highlights ongoing research and considers the future perspectives in the field of diabetes.
Collapse
Affiliation(s)
- Anshul Shakya
- Department of Pharmaceutical Sciences, School of Science and Engineering, Dibrugarh University, Dibrugarh - 786 004, Assam, India
| | - Sushil Kumar Chaudary
- Department of Pharmacology, University of the Free State, Bloemfontein 9300, South Africa
| | - Debapriya Garabadu
- Institute of Pharmaceutical Research, GLA University, Mathura - 281406, Uttar Pradesh, India
| | - Hans Raj Bhat
- Department of Pharmaceutical Sciences, School of Science and Engineering, Dibrugarh University, Dibrugarh - 786 004, Assam, India
| | - Bibhuti Bhusan Kakoti
- Department of Pharmaceutical Sciences, School of Science and Engineering, Dibrugarh University, Dibrugarh - 786 004, Assam, India
| | - Surajit Kumar Ghosh
- Department of Pharmaceutical Sciences, School of Science and Engineering, Dibrugarh University, Dibrugarh - 786 004, Assam, India
| |
Collapse
|
24
|
Ma Q, Zhou X, Hu L, Chen J, Zhu J, Shan A. Leucine and isoleucine have similar effects on reducing lipid accumulation, improving insulin sensitivity and increasing the browning of WAT in high-fat diet-induced obese mice. Food Funct 2020; 11:2279-2290. [DOI: 10.1039/c9fo03084k] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Leucine (Leu) and isoleucine (Ile) have similar effects in the management of obesity and related disorders.
Collapse
Affiliation(s)
- Qingquan Ma
- Institute of Animal Nutrition
- Northeast Agricultural University
- Harbin
- China
| | - Xinbo Zhou
- Institute of Animal Nutrition
- Northeast Agricultural University
- Harbin
- China
| | - Linlin Hu
- Institute of Animal Nutrition
- Northeast Agricultural University
- Harbin
- China
| | - Jiayi Chen
- Institute of Animal Nutrition
- Northeast Agricultural University
- Harbin
- China
| | - Jialiang Zhu
- Institute of Animal Nutrition
- Northeast Agricultural University
- Harbin
- China
| | - Anshan Shan
- Institute of Animal Nutrition
- Northeast Agricultural University
- Harbin
- China
| |
Collapse
|
25
|
Hu C, Li F, Duan Y, Yin Y, Kong X. Dietary Supplementation With Leucine or in Combination With Arginine Decreases Body Fat Weight and Alters Gut Microbiota Composition in Finishing Pigs. Front Microbiol 2019; 10:1767. [PMID: 31456756 PMCID: PMC6700229 DOI: 10.3389/fmicb.2019.01767] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Accepted: 07/17/2019] [Indexed: 12/14/2022] Open
Abstract
Obesity was associated with change in gut microbiota composition and their metabolites. We investigated the effects of dietary supplementation with leucine (Leu) in combination with arginine (Arg) or glutamic acid (Glu) on body fat weight, composition of gut microbiota, and short-chain fatty acids (SCFAs) concentration in the colon. Forty-eight Duroc × Large White × Landrace pigs with an initial body weight of 77.08 ± 1.29 kg were randomly assigned to one of the four groups (12 pigs per group). The pigs in the control group were fed a basal diet supplemented with 2.05% alanine (isonitrogenous control, BD group), and those in the three experimental groups were fed a basal diet supplemented with 1.00% Leu + 1.37% alanine (Leu group), 1.00% Leu + 1.00% Arg (Leu_Arg group), or 1.00% Leu + 1.00% Glu (Leu_Glu group). We found that dietary supplementation with Leu alone or in combination with Arg decreased (p < 0.05) body fat weight, and increased (p < 0.05) colonic propionate and butyrate concentrations compared to the BD group. The mRNA expression levels of genes related to lipolysis increased (p < 0.05) in the Leu or Leu_Arg group compared to the BD group. Negative relationships (p < 0.05) were observed between body fat weight, colonic propionate, and butyrate concentrations. Compared to the BD group, the abundance of Actinobacteria was higher (p < 0.05) in the Leu group, and that of Clostridium_sensu_stricto_1, Terrisporobacter, and Escherichia-Shigella were higher in the Leu_Arg group. The abundance of Deinococcus-Thermus was negatively correlated (p < 0.05) with body fat weight, and was positively correlated (p < 0.05) with butyrate, isovalerate, propionate, and isobutyrate concentrations, and that of Cyanobacteria was positively correlated (p < 0.05) with butyrate, propionate, and isobutyrate concentrations. In conclusion, these findings suggest that decreased body fat weight in pigs can be induced by Leu supplementation alone or in combination with Arg and is associated with increased colonic butyrate and propionate concentrations. This provides new insights for potential therapy for obesity.
Collapse
Affiliation(s)
- Chengjun Hu
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Fengna Li
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Yehui Duan
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Yulong Yin
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Xiangfeng Kong
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| |
Collapse
|
26
|
Duan Y, Zhong Y, Xiao H, Zheng C, Song B, Wang W, Guo Q, Li Y, Han H, Gao J, Xu K, Li T, Yin Y, Li F, Yin J, Kong X. Gut microbiota mediates the protective effects of dietary β‐hydroxy‐β‐methylbutyrate (HMB) against obesity induced by high‐fat diets. FASEB J 2019; 33:10019-10033. [DOI: 10.1096/fj.201900665rr] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Yehui Duan
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic ProcessKey Laboratory of Agro‐ecological Processes in Subtropical RegionInstitute of Subtropical AgricultureChinese Academy of SciencesHunan Provincial Engineering Research Center for Healthy Livestock and Poultry ProductionScientific Observing and Experimental Station of Animal Nutrition and Feed Science in South‐CentralMinistry of Agriculture Changsha China
| | - Yinzhao Zhong
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic ProcessKey Laboratory of Agro‐ecological Processes in Subtropical RegionInstitute of Subtropical AgricultureChinese Academy of SciencesHunan Provincial Engineering Research Center for Healthy Livestock and Poultry ProductionScientific Observing and Experimental Station of Animal Nutrition and Feed Science in South‐CentralMinistry of Agriculture Changsha China
- Guangdong Provincial Key Laboratory of Animal Nutrition RegulationSouth China Agricultural University Guangzhou China
| | - Hao Xiao
- Guangdong Academy of Agricultural SciencesKey Laboratory of Animal Nutrition and Feed Science in South ChinaInstitute of Animal ScienceMinistry of Agriculture Guangzhou China
| | - Changbing Zheng
- Guangdong Provincial Key Laboratory of Animal Nutrition RegulationSouth China Agricultural University Guangzhou China
| | - Bo Song
- Guangdong Provincial Key Laboratory of Animal Nutrition RegulationSouth China Agricultural University Guangzhou China
| | - Wenlong Wang
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic ProcessKey Laboratory of Agro‐ecological Processes in Subtropical RegionInstitute of Subtropical AgricultureChinese Academy of SciencesHunan Provincial Engineering Research Center for Healthy Livestock and Poultry ProductionScientific Observing and Experimental Station of Animal Nutrition and Feed Science in South‐CentralMinistry of Agriculture Changsha China
| | - Qiuping Guo
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic ProcessKey Laboratory of Agro‐ecological Processes in Subtropical RegionInstitute of Subtropical AgricultureChinese Academy of SciencesHunan Provincial Engineering Research Center for Healthy Livestock and Poultry ProductionScientific Observing and Experimental Station of Animal Nutrition and Feed Science in South‐CentralMinistry of Agriculture Changsha China
| | - Yuying Li
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic ProcessKey Laboratory of Agro‐ecological Processes in Subtropical RegionInstitute of Subtropical AgricultureChinese Academy of SciencesHunan Provincial Engineering Research Center for Healthy Livestock and Poultry ProductionScientific Observing and Experimental Station of Animal Nutrition and Feed Science in South‐CentralMinistry of Agriculture Changsha China
| | - Hui Han
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic ProcessKey Laboratory of Agro‐ecological Processes in Subtropical RegionInstitute of Subtropical AgricultureChinese Academy of SciencesHunan Provincial Engineering Research Center for Healthy Livestock and Poultry ProductionScientific Observing and Experimental Station of Animal Nutrition and Feed Science in South‐CentralMinistry of Agriculture Changsha China
| | - Jing Gao
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic ProcessKey Laboratory of Agro‐ecological Processes in Subtropical RegionInstitute of Subtropical AgricultureChinese Academy of SciencesHunan Provincial Engineering Research Center for Healthy Livestock and Poultry ProductionScientific Observing and Experimental Station of Animal Nutrition and Feed Science in South‐CentralMinistry of Agriculture Changsha China
| | - Kang Xu
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic ProcessKey Laboratory of Agro‐ecological Processes in Subtropical RegionInstitute of Subtropical AgricultureChinese Academy of SciencesHunan Provincial Engineering Research Center for Healthy Livestock and Poultry ProductionScientific Observing and Experimental Station of Animal Nutrition and Feed Science in South‐CentralMinistry of Agriculture Changsha China
| | - Tiejun Li
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic ProcessKey Laboratory of Agro‐ecological Processes in Subtropical RegionInstitute of Subtropical AgricultureChinese Academy of SciencesHunan Provincial Engineering Research Center for Healthy Livestock and Poultry ProductionScientific Observing and Experimental Station of Animal Nutrition and Feed Science in South‐CentralMinistry of Agriculture Changsha China
| | - Yulong Yin
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic ProcessKey Laboratory of Agro‐ecological Processes in Subtropical RegionInstitute of Subtropical AgricultureChinese Academy of SciencesHunan Provincial Engineering Research Center for Healthy Livestock and Poultry ProductionScientific Observing and Experimental Station of Animal Nutrition and Feed Science in South‐CentralMinistry of Agriculture Changsha China
- Guangdong Provincial Key Laboratory of Animal Nutrition RegulationSouth China Agricultural University Guangzhou China
| | - Fengna Li
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic ProcessKey Laboratory of Agro‐ecological Processes in Subtropical RegionInstitute of Subtropical AgricultureChinese Academy of SciencesHunan Provincial Engineering Research Center for Healthy Livestock and Poultry ProductionScientific Observing and Experimental Station of Animal Nutrition and Feed Science in South‐CentralMinistry of Agriculture Changsha China
- Hunan Collaborative Innovation Center for Utilization of Botanical Functional IngredientsHunan Co‐Innovation Center of Animal Production Safety (CICAPS) Changsha China
| | - Jie Yin
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic ProcessKey Laboratory of Agro‐ecological Processes in Subtropical RegionInstitute of Subtropical AgricultureChinese Academy of SciencesHunan Provincial Engineering Research Center for Healthy Livestock and Poultry ProductionScientific Observing and Experimental Station of Animal Nutrition and Feed Science in South‐CentralMinistry of Agriculture Changsha China
| | - Xiangfeng Kong
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic ProcessKey Laboratory of Agro‐ecological Processes in Subtropical RegionInstitute of Subtropical AgricultureChinese Academy of SciencesHunan Provincial Engineering Research Center for Healthy Livestock and Poultry ProductionScientific Observing and Experimental Station of Animal Nutrition and Feed Science in South‐CentralMinistry of Agriculture Changsha China
| |
Collapse
|
27
|
Takaoka M, Okumura S, Seki T, Ohtani M. Effect of amino-acid intake on physical conditions and skin state: a randomized, double-blind, placebo-controlled, crossover trial. J Clin Biochem Nutr 2019; 65:52-58. [PMID: 31379414 PMCID: PMC6667387 DOI: 10.3164/jcbn.18-108] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 01/20/2019] [Indexed: 12/15/2022] Open
Abstract
The objective of this study is to elucidate the effect of a supplement enriched with l-leucine, l-arginine, and l-glutamine on body compositions/skin conditions. Healthy young women (n = 29) were allocated to a group (n = 14) receiving an amino-acid supplement (600 mg l-leucine, 250 mg l-arginine, and 300 mg l-glutamine) and a placebo group (n = 15) receiving a supplement not-containing the amino acids. The amino-acid supplement and placebo were given twice/day for 6 weeks. After a wash-out (2 months) from the 1st test, the amino-acid group received the placebo and the placebo group the amino-acid supplement. The body compositions/skin conditions were measured 4 times (day 1 and weeks 2, 4, and 6) in each test. Percentage-change of muscle mass in the amino-acid group increased up to 4 weeks (p = 0.05) and was higher than that in the placebo group (p = 0.09). Skin texture estimated by the image processing of neck skin replica tended to increase in the amino-acid group at 6 weeks compared with that at 0 week, though there was no significant intergroup difference. In conclusion, the young adult women having no fitness habit showed the significant increase of the muscle amount and improvement tendency of the skin texture by the continuous intake of the amino-acid supplement.
Collapse
Affiliation(s)
- Motoko Takaoka
- Department of Biosphere Sciences, School of Human Sciences, Kobe College, 4-1 Okadayama, Nishinomiya-shi, Hyogo 662-8506, Japan
| | - Saki Okumura
- Groupwide Research and Development, Noevir Co., Ltd., C-333 R&D KSP, 3-2-1 Sakado, Takatsu-ku, Kawasaki, Kanagawa 213-0012, Japan
| | - Taizo Seki
- Groupwide Research and Development, Noevir Co., Ltd., C-333 R&D KSP, 3-2-1 Sakado, Takatsu-ku, Kawasaki, Kanagawa 213-0012, Japan
| | - Masaru Ohtani
- Meiji University International Institute for Bio-Resource Research (MUIIBR), Kawasaki, Kanagawa 214-8571, Japan.,DAC Co., Ltd., 6-12-12 Ebara, Shinagawa-ku, Tokyo 142-0063, Japan
| |
Collapse
|
28
|
Wei S, Zhao J, Wang S, Huang M, Wang Y, Chen Y. Intermittent administration of a leucine-deprived diet is able to intervene in type 2 diabetes in db/db mice. Heliyon 2018; 4:e00830. [PMID: 30294696 PMCID: PMC6169254 DOI: 10.1016/j.heliyon.2018.e00830] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 08/28/2018] [Accepted: 09/25/2018] [Indexed: 12/19/2022] Open
Abstract
Continuous deficiency of leucine, a member of branched chain amino acids, is able to reduce obesity and improve insulin sensitivity in mice. Intermittent fasting has been shown to be effective in intervention of metabolic disorders including diabetes. However, it is unknown whether intermittent leucine deprivation can intervene in type 2 diabetes progression. We administered leucine-deprived food every other day in db/db mice, a type 2 diabetes model, for a total of eight weeks to investigate the interventional effect of intermittent leucine deprivation. Intermittent leucine deprivation significantly reduces hyperglycemia in db/db mice independent of body weight change, together with improvement in glucose tolerance and insulin sensitivity. The total area of pancreatic islets and β cell number are increased by intermittent leucine deprivation, accompanied by elevated proliferation of β cells. The expression level of Ngn3, a β cell progenitor marker, is also increased by leucine-deleted diet. However, leucine deficiency engenders an increase in fat mass and a decrease in lean mass. Lipid accumulation in the liver is elevated and liver function is compromised by leucine deprivation. In addition, leucine deficiency alters the composition of gut microbiota. Leucine deprivation increases the genera of Bacteroides, Alloprevotella, Rikenellaceae while reduces Lachnospiraceae and these changes are correlated with fasting blood glucose levels of the mice. Collectively, our data demonstrated that intermittent leucine deprivation can intervene in the progression of type 2 diabetes in db/db mice. However, leucine deficiency reduces lean mass and aggravates hepatic steatosis in the mouse.
Collapse
Affiliation(s)
- Siying Wei
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Jingyu Zhao
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Shuo Wang
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Meiqin Huang
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yining Wang
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yan Chen
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| |
Collapse
|
29
|
Salinas-Rubio D, Tovar AR, Torre-Villalvazo I, Granados-Portillo O, Torres N, Pedraza-Chaverri J, Noriega LG. Interaction between leucine and palmitate catabolism in 3T3-L1 adipocytes and primary adipocytes from control and obese rats. J Nutr Biochem 2018; 59:29-36. [DOI: 10.1016/j.jnutbio.2018.05.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 05/14/2018] [Accepted: 05/31/2018] [Indexed: 12/19/2022]
|
30
|
Abstract
PURPOSE OF REVIEW Elevations in circulating branched chain amino acids (BCAAs) have gained attention as potential contributors to the development of insulin resistance and diabetes. RECENT FINDINGS Epidemiological evidence strongly supports this conclusion. Suppression of BCAA catabolism in adipose and hepatic tissues appears to be the primary drivers of plasma BCAA elevations. BCAA catabolism may be shunted to skeletal muscle, where it indirectly leads to FA accumulation and insulin resistance, via a number of proposed mechanisms. BCAAs have an important role in the development of IR, but our understanding of how plasma BCAA elevations occur, and how these elevations lead to insulin resistance, is still limited.
Collapse
Affiliation(s)
- Zoltan Arany
- Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, TRC 11-106 3400 Civic Blvd, Philadelphia, PA, 19104, USA.
| | - Michael Neinast
- Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, TRC 11-106 3400 Civic Blvd, Philadelphia, PA, 19104, USA
| |
Collapse
|
31
|
Dietary Leucine Supplement Ameliorates Hepatic Steatosis and Diabetic Nephropathy in db/db Mice. Int J Mol Sci 2018; 19:ijms19071921. [PMID: 29966331 PMCID: PMC6073714 DOI: 10.3390/ijms19071921] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 06/25/2018] [Accepted: 06/29/2018] [Indexed: 12/14/2022] Open
Abstract
Dietary leucine supplementation has been explored for the therapeutic intervention of obesity and obesity-induced metabolic dysfunctions. In this study, we aim to examine the effects of dietary leucine supplementation in db/db mice. Mice were treated with or without leucine (1.5% w/v) in drinking water for 12 weeks. The leucine supplement was found to reduce insulin resistance and hepatic steatosis in db/db mice. Using Nuclear Magnetic Resonance (NMR)-based lipidomics, we found that the reduction of hepatic triglyceride synthesis was correlated with attenuated development of fatty liver. In addition, diabetic nephropathy (DN) was also ameliorated by leucine. Using liquid chromatography–time-of-flight mass spectrometry (LC-TOF MS)-based urine metabolomics analysis, we found that the disturbance of the tricarboxylic acid (TCA) cycle was reversed by leucine. The beneficial effects of leucine were probably due to AMP-activated protein kinase (AMPK) activation in the liver and kidneys of db/db mice. Thus, dietary leucine supplementation may potentially be a nutritional intervention to attenuate hepatic steatosis and early DN in type II diabetes.
Collapse
|
32
|
Gannon NP, Schnuck JK, Vaughan RA. BCAA Metabolism and Insulin Sensitivity - Dysregulated by Metabolic Status? Mol Nutr Food Res 2018; 62:e1700756. [PMID: 29377510 DOI: 10.1002/mnfr.201700756] [Citation(s) in RCA: 114] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2017] [Revised: 12/29/2017] [Indexed: 12/18/2022]
Abstract
Branched-chain amino acids (BCAAs) appear to influence several synthetic and catabolic cellular signaling cascades leading to altered phenotypes in mammals. BCAAs are most notably known to increase protein synthesis through modulating protein translation, explaining their appeal to resistance and endurance athletes for muscle hypertrophy, expedited recovery, and preservation of lean body mass. In addition to anabolic effects, BCAAs may increase mitochondrial content in skeletal muscle and adipocytes, possibly enhancing oxidative capacity. However, elevated circulating BCAA levels have been correlated with severity of insulin resistance. It is hypothesized that elevated circulating BCAAs observed in insulin resistance may result from dysregulated BCAA degradation. This review summarizes original reports that investigated the ability of BCAAs to alter glucose uptake in consequential cell types and experimental models. The review also discusses the interplay of BCAAs with other metabolic factors, and the role of excess lipid (and possibly energy excess) in the dysregulation of BCAA catabolism. Lastly, this article provides a working hypothesis of the mechanism(s) by which lipids may contribute to altered BCAA catabolism, which often accompanies metabolic disease.
Collapse
Affiliation(s)
| | - Jamie K Schnuck
- School of Medicine, Medical College of Wisconsin, Milwaukee, WI
| | - Roger A Vaughan
- Department of Exercise Science, High Point University, High Point, NC
| |
Collapse
|
33
|
Delplancke TDJ, de Seymour JV, Tong C, Sulek K, Xia Y, Zhang H, Han TL, Baker PN. Analysis of sequential hair segments reflects changes in the metabolome across the trimesters of pregnancy. Sci Rep 2018; 8:36. [PMID: 29311683 PMCID: PMC5758601 DOI: 10.1038/s41598-017-18317-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 12/08/2017] [Indexed: 01/03/2023] Open
Abstract
The hair metabolome has been recognized as a valuable source of information in pregnancy research, as it provides stable metabolite information that could assist with studying biomarkers or metabolic mechanisms of pregnancy and its complications. We tested the hypothesis that hair segments could be used to reflect a metabolite profile containing information from both endogenous and exogenous compounds accumulated during the nine months of pregnancy. Segments of hair samples corresponding to the trimesters were collected from 175 pregnant women in New Zealand. The hair samples were analysed using gas chromatography-mass spectrometry and liquid chromatography-mass spectrometry. In healthy pregnancies, 56 hair metabolites were significantly different between the first and second trimesters, while 62 metabolites were different between the first and third trimesters (p < 0.05). Additionally, three metabolites in the second trimester hair samples were significantly different between healthy controls and women who delivered small-for-gestational-age infants (p < 0.05), and ten metabolites in third trimester hair were significantly different between healthy controls and women with gestational diabetes mellitus (p < 0.01). The findings from this pilot study provide improved insight into the changes of the hair metabolome during pregnancy, as well as highlight the potential of the maternal hair metabolome to differentiate pregnancy complications from healthy pregnancies.
Collapse
Affiliation(s)
- Thibaut D J Delplancke
- Department of Obstetrics and Gynaecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- International Joint Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, China
| | | | - Chao Tong
- Department of Obstetrics and Gynaecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- International Joint Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, China
| | - Karolina Sulek
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej, 3b, 6.6.24, Copenhagen, Denmark
| | - Yinyin Xia
- Department of Occupational and Environmental Hygiene, School of Public Health and Management, Chongqing Medical University, Chongqing, China
| | - Hua Zhang
- Department of Obstetrics and Gynaecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- International Joint Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, China
| | - Ting-Li Han
- Department of Obstetrics and Gynaecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
- International Joint Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, China.
- Liggins Institute, University of Auckland, Auckland, New Zealand.
| | - Philip N Baker
- Department of Obstetrics and Gynaecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- International Joint Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, China
- College of Medicine, Biological Sciences and Psychology, University of Leicester, Leicester, United Kingdom
| |
Collapse
|
34
|
Branched-chain amino acid ratios modulate lipid metabolism in adipose tissues of growing pigs. J Funct Foods 2018. [DOI: 10.1016/j.jff.2017.12.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
35
|
Sadri H, Larki NN, Kolahian S. Hypoglycemic and Hypolipidemic Effects of Leucine, Zinc, and Chromium, Alone and in Combination, in Rats with Type 2 Diabetes. Biol Trace Elem Res 2017; 180:246-254. [PMID: 28409409 DOI: 10.1007/s12011-017-1014-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 04/04/2017] [Indexed: 01/08/2023]
Abstract
For the increasing development of diabetes, dietary habits and using appropriate supplements can play important roles in the treatment or reduction of risk for this disease. The objective of this study was to investigate the effects of leucine (Leu), zinc (Zn), and chromium (Cr) supplementation, alone or in combination, in rats with type 2 diabetes (T2D). Seventy-seven adult male Wistar rats were randomly assigned in 11 groups, using nutritional supplements and insulin (INS) or glibenclamide (GLC). Supplementing Leu significantly reduced blood glucose, triglycerides (TG), nonesterified fatty acids (NEFA), low-density lipoprotein (LDL), and increased high-density lipoprotein (HDL) concentrations compared to vehicle-treated T2D animals, and those improvements were associated with reduced area under the 2-h blood glucose response curve (AUC). Supplementation of T2D animals with Zn improved serum lipid profile as well as blood glucose concentrations but was not comparable with the INS, GLC, and Leu groups. Supplementary Cr did not improve blood glucose and AUC in T2D rats, whereas it reduced serum TG and LDL and increased HDL concentrations. In conclusion, supplementation of diabetic rats with Leu was more effective in improving blood glucose and consequently decreasing glucose AUC than other nutritional supplements. Supplementary Zn and Cr only improved serum lipid profile. The combination of the nutritional supplements did not improve blood glucose level. Nevertheless, supplementation with Leu-Zn, Leu-Cr, Zn-Cr, and Leu-Zn-Cr led to an improved response in serum lipid profile over each supplement given alone.
Collapse
Affiliation(s)
- Hassan Sadri
- Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, 516616471, Iran.
| | - Negar Nowroozi Larki
- Department of Pharmacology and Experimental Therapy, Institute of Experimental and Clinical Pharmacology and Toxicology and ICePhA, University of Tuebingen, 72074, Tuebingen, Germany
- Department of Basic Sciences, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, 516616471, Iran
| | - Saeed Kolahian
- Department of Pharmacology and Experimental Therapy, Institute of Experimental and Clinical Pharmacology and Toxicology and ICePhA, University of Tuebingen, 72074, Tuebingen, Germany
- Department of Basic Sciences, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, 516616471, Iran
| |
Collapse
|
36
|
Abu Bakar Sajak A, Mediani A, Mohd Dom NS, Machap C, Hamid M, Ismail A, Khatib A, Abas F. Effect of Ipomoea aquatica ethanolic extract in streptozotocin (STZ) induced diabetic rats via 1H NMR-based metabolomics approach. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2017; 36:201-209. [PMID: 29157816 DOI: 10.1016/j.phymed.2017.10.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2016] [Revised: 08/24/2017] [Accepted: 10/10/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND Ipomoea aquatica (locally known as "kangkung") has previously been reported to have hypoglycemic activities on glucose level in diabetes patients. However, the effect of I. aquatica ethanolic extract on the metabolites in the body has remained unknown. PURPOSE This study provides new insights on the changes of endogenous metabolites caused by I. aquatica ethanolic extract and improves the understanding on the therapeutic efficacy and mechanism of I. aquatica ethanolic extract. METHODS By using a combination of 1H nuclear magnetic resonance (NMR) with multivariate analysis (MVDA), the changes of metabolites due to I. aquatica ethanolic extract administration in obese diabetic-induced Sprague Dawley rats (OB+STZ+IA) were identified. RESULTS The results suggested 19 potential biomarkers with variable importance projections (VIP) above 0.5, which include creatine/creatinine, glucose, creatinine, citrate, carnitine, 2-oxoglutarate, succinate, hippurate, leucine, 1-methylnicotinamice (MNA), taurine, 3-hydroxybutyrate (3-HB), tryptophan, lysine, trigonelline, allantoin, formiate, acetoacetate (AcAc) and dimethylamine. From the changes in the metabolites, the affected pathways and aspects of metabolism were identified. CONCLUSION I. aquatica ethanolic extract increases metabolite levels such as creatinine/creatine, carnitine, MNA, trigonelline, leucine, lysine, 3-HB and decreases metabolite levels, including glucose and tricarboxylic acid (TCA) intermediates. This implies capabilities of I. aquatica ethanolic extract promoting glycolysis, gut microbiota and nicotinate/nicotinamide metabolism, improving the glomerular filtration rate (GFR) and reducing the β-oxidation rate. However, the administration of I. aquatica ethanolic extract has several drawbacks, such as unimproved changes in amino acid metabolism, especially in reducing branched chain amino acid (BCAA) synthesis pathways and lipid metabolism.
Collapse
Affiliation(s)
- Azliana Abu Bakar Sajak
- Laboratory of Natural Products, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Ahmed Mediani
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Nur Sumirah Mohd Dom
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Chandradevan Machap
- Laboratory of Natural Products, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; Biotechnology and Nanotechnology Research Centre, Persiaran Mardi-UPM, 43400 Mardi Serdang, Selangor, Malaysia
| | - Muhajir Hamid
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Amin Ismail
- Department of Nutrition and Dietetics, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Alfi Khatib
- Department of Pharmacy, Faculty of Medicine and Health Sciences, International Islamic University, Bandar Indera Mahkota, Kuantan, Pahang 25200, Malaysia
| | - Faridah Abas
- Laboratory of Natural Products, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
| |
Collapse
|
37
|
Liu R, Li H, Fan W, Jin Q, Chao T, Wu Y, Huang J, Hao L, Yang X. Leucine Supplementation Differently Modulates Branched-Chain Amino Acid Catabolism, Mitochondrial Function and Metabolic Profiles at the Different Stage of Insulin Resistance in Rats on High-Fat Diet. Nutrients 2017; 9:nu9060565. [PMID: 28574481 PMCID: PMC5490544 DOI: 10.3390/nu9060565] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 05/25/2017] [Accepted: 05/26/2017] [Indexed: 01/09/2023] Open
Abstract
The available findings concerning the association between branched-chain amino acids (BCAAs)—particularly leucine—and insulin resistance are conflicting. BCAAs have been proposed to elicit different or even opposite effects, depending on the prevalence of catabolic and anabolic states. We tested the hypothesis that leucine supplementation may exert different effects at different stages of insulin resistance, to provide mechanistic insights into the role of leucine in the progression of insulin resistance. Male Sprague-Dawley rats were fed a normal chow diet, high-fat diet (HFD), HFD supplemented with 1.5% leucine, or HFD with a 20% calorie restriction for 24 or 32 weeks. Leucine supplementation led to abnormal catabolism of BCAA and the incompletely oxidized lipid species that contributed to mitochondrial dysfunction in skeletal muscle in HFD-fed rats in the early stage of insulin resistance (24 weeks). However, leucine supplementation induced no remarkable alternations in BCAA catabolism, but did enhance mitochondrial biogenesis with a concomitant improvement in lipid oxidation and mitochondrial function during the hyperglycaemia stage (32 weeks). These findings suggest that leucine trigger different effects on metabolic signatures at different stages of insulin resistance, and the overall metabolic status of the organisms should be carefully considered to potentiate the benefits of leucine.
Collapse
Affiliation(s)
- Rui Liu
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, MOE Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China.
| | - Hui Li
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, MOE Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China.
| | - Wenjuan Fan
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, MOE Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China.
| | - Qiu Jin
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, MOE Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China.
| | - Tingting Chao
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, MOE Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China.
| | - Yuanjue Wu
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, MOE Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China.
| | - Junmei Huang
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, MOE Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China.
| | - Liping Hao
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, MOE Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China.
| | - Xuefeng Yang
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, MOE Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China.
| |
Collapse
|
38
|
Whey protein hydrolysate and branched-chain amino acids downregulate inflammation-related genes in vascular endothelial cells. Nutr Res 2017; 38:43-51. [DOI: 10.1016/j.nutres.2017.01.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 01/18/2017] [Accepted: 01/19/2017] [Indexed: 12/11/2022]
|
39
|
Gołyński M, Szpetnar M, Tatara MR, Lutnicki K, Gołyńska M, Kurek Ł, Szczepanik M, Wilkołek P. Content of selected amino acids in the gastrocnemius muscle during experimental hypothyroidism in rats. J Vet Res 2016. [DOI: 10.1515/jvetres-2016-0072] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Abstract
Introduction: Thyroid hormones affect protein turnover, and in the case of hypothyroidism a decrease in protein synthesis and reduced release of certain amino acids from skeletal muscles are observed. Changes in the amino acid system of skeletal muscles may be responsible for the occurrence of muscle disorders. Material and Methods: The study measured the content of selected amino acids in the gastrocnemius muscle of Wistar rats during experimental hypothyroidism induced by oral administration of methimazole at a concentration of 0.05% in drinking water for 90 d. The rats were divided into four groups: E1 (n = 6) - experimental males, E2 (n = 6) - experimental females, C1 (n = 6) - control males, and C2 (n = 6) control females. Results: A statistically significant reduction occurred in leucine, isoleucine, and 1-methylhistidine levels in males, and 1-methylhistidine in females, in comparison to the control groups. Conclusion: The hypothyroidism-induced changes in amino acid content may be responsible for the occurrence of skeletal muscle function disorders.
Collapse
Affiliation(s)
- Marcin Gołyński
- Department and Clinic of Animal Internal Diseases, Faculty of Veterinary Medicine, University of Life Sciences, 20-612 Lublin, Poland
| | - Maria Szpetnar
- Chair and Department of Medical Chemistry, Medical University, 20-093 Lublin, Poland
| | - Marcin R. Tatara
- Department of Animal Physiology, Faculty of Veterinary Medicine, University of Life Sciences, 20-033 Lublin, Poland
| | - Krzysztof Lutnicki
- Department and Clinic of Animal Internal Diseases, Faculty of Veterinary Medicine, University of Life Sciences, 20-612 Lublin, Poland
| | - Magdalena Gołyńska
- Department and Clinic of Animal Surgery, Faculty of Veterinary Medicine, University of Life Sciences, 20-612 Lublin, Poland
| | - Łukasz Kurek
- Department and Clinic of Animal Internal Diseases, Faculty of Veterinary Medicine, University of Life Sciences, 20-612 Lublin, Poland
| | - Marcin Szczepanik
- Department and Clinic of Animal Internal Diseases, Faculty of Veterinary Medicine, University of Life Sciences, 20-612 Lublin, Poland
| | - Piotr Wilkołek
- Department and Clinic of Animal Internal Diseases, Faculty of Veterinary Medicine, University of Life Sciences, 20-612 Lublin, Poland
| |
Collapse
|
40
|
Schnuck JK, Johnson MA, Gould LM, Gannon NP, Vaughan RA. Acute β-Hydroxy-β-Methyl Butyrate Suppresses Regulators of Mitochondrial Biogenesis and Lipid Oxidation While Increasing Lipid Content in Myotubes. Lipids 2016; 51:1127-1136. [PMID: 27600148 DOI: 10.1007/s11745-016-4193-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 08/25/2016] [Indexed: 01/30/2023]
Abstract
Leucine modulates synthetic and degradative pathways in muscle, possibly providing metabolic benefits for both athletes and diseased populations. Leucine has become popular among athletes for improving performance and body composition, however little is known about the metabolic effects of the commonly consumed leucine-derived metabolite β-hydroxy-β-methyl butyrate (HMB). Our work measured the effects of HMB on metabolic protein expression, mitochondrial content and metabolism, as well as lipid content in skeletal muscle cells. Specifically, cultured C2C12 myotubes were treated with either a control or HMB ranging from 6.25 to 25 μM for 24 h and mRNA and/or protein expression, oxygen consumption, glucose uptake, and lipid content were measured. Contrary to leucine's stimulatory effect on metabolism, HMB-treated cells exhibited significantly reduced regulators of lipid oxidation including peroxisome proliferator-activated receptor alpha (PPARα) and PPARβ/δ, as well as downstream target carnitine palmitoyl transferase, without alterations in glucose or palmitate oxidation. Furthermore, HMB significantly inhibited activation of the master regulator of energetics, AMP-activated protein kinase. As a result, HMB-treated cells also displayed reduced total mitochondrial content compared with true control or cells equivocally treated with leucine. Additionally, HMB treatment amplified markers of lipid biosynthesis (PPARγ and fatty acid synthase) as well as consistently promoted elevated total lipid content versus control cells. Collectively, our results demonstrate that HMB did not improve mitochondrial metabolism or content, and may promote elevated cellular lipid content possibly through heightened PPARγ expression. These observations suggest that HMB may be most beneficial for populations interested in stimulating anabolic cellular processes.
Collapse
Affiliation(s)
- Jamie K Schnuck
- Department of Exercise Science, High Point University, One University Parkway, High Point, NC, 27268, USA
| | - Michele A Johnson
- Department of Exercise Science, High Point University, One University Parkway, High Point, NC, 27268, USA
| | - Lacey M Gould
- Department of Exercise Science, High Point University, One University Parkway, High Point, NC, 27268, USA
| | - Nicholas P Gannon
- School of Medicine, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Roger A Vaughan
- Department of Exercise Science, High Point University, One University Parkway, High Point, NC, 27268, USA.
| |
Collapse
|
41
|
Baum JI, Washington TA, Shouse SA, Bottje W, Dridi S, Davis G, Smith D. Leucine supplementation at the onset of high-fat feeding does not prevent weight gain or improve glycemic regulation in male Sprague-Dawley rats. J Physiol Biochem 2016; 72:781-789. [DOI: 10.1007/s13105-016-0516-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 08/11/2016] [Indexed: 12/15/2022]
|
42
|
Yao K, Duan Y, Li F, Tan B, Hou Y, Wu G, Yin Y. Leucine in Obesity: Therapeutic Prospects. Trends Pharmacol Sci 2016; 37:714-727. [PMID: 27256112 DOI: 10.1016/j.tips.2016.05.004] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 05/08/2016] [Accepted: 05/10/2016] [Indexed: 02/07/2023]
|
43
|
Leucine stimulates PPARβ/δ-dependent mitochondrial biogenesis and oxidative metabolism with enhanced GLUT4 content and glucose uptake in myotubes. Biochimie 2016; 128-129:1-7. [PMID: 27345255 DOI: 10.1016/j.biochi.2016.06.009] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 06/15/2016] [Indexed: 02/08/2023]
Abstract
Leucine stimulates anabolic and catabolic processes in skeletal muscle, however little is known about the effects of leucine on peroxisome proliferator-activated receptor (PPAR) activity. This work characterized the effects of 24-h leucine treatment on metabolic parameters and protein expression in cultured myotubes. Leucine significantly increased PPARβ/δ expression as well as markers of mitochondrial biogenesis, leading to significantly increased mitochondrial content and oxidative metabolism in a PPARβ/δ-dependent manner. However, leucine-treated cells did not display significant alterations in uncoupling protein expression or oxygen consumed per relative mitochondrial content suggesting leucine-mediated increases in oxidative metabolism are a function of increased mitochondrial content and not altered mitochondrial efficiency. Leucine treatment also increased GLUT4 content and glucose uptake as well as PPARγ and FAS expression leading to increased total lipid content. Leucine appears to activate PPAR activity leading to increased mitochondrial biogenesis and elevated substrate oxidation, while simultaneously promoting substrate/lipid storage and protein synthesis.
Collapse
|
44
|
Perry RA, Brown LA, Lee DE, Brown JL, Baum JI, Greene NP, Washington TA. Differential effects of leucine supplementation in young and aged mice at the onset of skeletal muscle regeneration. Mech Ageing Dev 2016; 157:7-16. [PMID: 27327351 DOI: 10.1016/j.mad.2016.05.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 05/24/2016] [Accepted: 05/27/2016] [Indexed: 11/29/2022]
Abstract
Aging decreases the ability of skeletal muscle to respond to injury. Leucine has been demonstrated to target protein synthetic pathways in skeletal muscle thereby enhancing this response. However, the effect of aging on leucine-induced alterations in protein synthesis at the onset of skeletal muscle regeneration has not been fully elucidated. The purpose of this study was to determine if aging alters skeletal muscle regeneration and leucine-induced alterations in markers of protein synthesis. The tibialis anterior of young (3 months) and aged (24 months) female C57BL/6J mice were injected with either bupivacaine or PBS, and the mice were given ad libitum access to leucine-supplemented or normal drinking water. Protein and gene expression of markers of protein synthesis and degradation, respectively, were analyzed at three days post-injection. Following injury in young mice, leucine supplementation was observed to elevate only p-p70S6K. In aged mice, leucine was shown to elicit higher p-mTOR content with and without injury, and p-4EBP-1 content post-injury. Additionally in aged mice, leucine was shown to elicit higher content of relative p70S6K post-injury. Our study shows that leucine supplementation affects markers of protein synthesis at the onset of skeletal muscle regeneration differentially in young and aged mice.
Collapse
Affiliation(s)
- Richard A Perry
- Exercise Muscle Biology Laboratory, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, AR 72701, United States
| | - Lemuel A Brown
- Exercise Muscle Biology Laboratory, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, AR 72701, United States
| | - David E Lee
- Integrative Muscle Metabolism Laboratory, Human Performance Laboratory, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, AR 72701, United States
| | - Jacob L Brown
- Integrative Muscle Metabolism Laboratory, Human Performance Laboratory, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, AR 72701, United States
| | - Jamie I Baum
- Department of Food Science, University of Arkansas, Fayetteville AR 72701, United States
| | - Nicholas P Greene
- Integrative Muscle Metabolism Laboratory, Human Performance Laboratory, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, AR 72701, United States
| | - Tyrone A Washington
- Exercise Muscle Biology Laboratory, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, AR 72701, United States.
| |
Collapse
|
45
|
White PJ, Lapworth AL, An J, Wang L, McGarrah RW, Stevens RD, Ilkayeva O, George T, Muehlbauer MJ, Bain JR, Trimmer JK, Brosnan MJ, Rolph TP, Newgard CB. Branched-chain amino acid restriction in Zucker-fatty rats improves muscle insulin sensitivity by enhancing efficiency of fatty acid oxidation and acyl-glycine export. Mol Metab 2016; 5:538-551. [PMID: 27408778 PMCID: PMC4921791 DOI: 10.1016/j.molmet.2016.04.006] [Citation(s) in RCA: 203] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 04/15/2016] [Accepted: 04/19/2016] [Indexed: 12/19/2022] Open
Abstract
Objective A branched-chain amino acid (BCAA)-related metabolic signature is strongly associated with insulin resistance and predictive of incident diabetes and intervention outcomes. To better understand the role that this metabolite cluster plays in obesity-related metabolic dysfunction, we studied the impact of BCAA restriction in a rodent model of obesity in which BCAA metabolism is perturbed in ways that mirror the human condition. Methods Zucker-lean rats (ZLR) and Zucker-fatty rats (ZFR) were fed either a custom control, low fat (LF) diet, or an isonitrogenous, isocaloric LF diet in which all three BCAA (Leu, Ile, Val) were reduced by 45% (LF-RES). We performed comprehensive metabolic and physiologic profiling to characterize the effects of BCAA restriction on energy balance, insulin sensitivity, and glucose, lipid and amino acid metabolism. Results LF-fed ZFR had higher levels of circulating BCAA and lower levels of glycine compared to LF-fed ZLR. Feeding ZFR with the LF-RES diet lowered circulating BCAA to levels found in LF-fed ZLR. Activity of the rate limiting enzyme in the BCAA catabolic pathway, branched chain keto acid dehydrogenase (BCKDH), was lower in liver but higher in skeletal muscle of ZFR compared to ZLR and was not responsive to diet in either tissue. BCAA restriction had very little impact on metabolites studied in liver of ZFR where BCAA content was low, and BCKDH activity was suppressed. However, in skeletal muscle of LF-fed ZFR compared to LF-fed ZLR, where BCAA content and BCKDH activity were increased, accumulation of fatty acyl CoAs was completely normalized by dietary BCAA restriction. BCAA restriction also normalized skeletal muscle glycine content and increased urinary acetyl glycine excretion in ZFR. These effects were accompanied by lower RER and improved skeletal muscle insulin sensitivity in LF-RES fed ZFR as measured by hyperinsulinemic-isoglycemic clamp. Conclusions Our data are consistent with a model wherein elevated circulating BCAA contribute to development of obesity-related insulin resistance by interfering with lipid oxidation in skeletal muscle. BCAA-dependent lowering of the skeletal muscle glycine pool appears to contribute to this effect by slowing acyl-glycine export to the urine. Feeding a BCAA restricted diet improves skeletal muscle insulin sensitivity in Zucker fatty rats. BCKDH activity is decreased in liver and increased in skeletal muscle in Zucker fatty versus lean rats. High BCAA levels drive the obesity-associated decline in circulating and muscle glycine levels. BCAA-driven glycine depletion restricts formation of acyl-glycine adducts for excretion in urine. High BCAA/low glycine reduces efficiency of fat oxidation in muscle leading to acyl CoA buildup.
Collapse
Affiliation(s)
- Phillip J White
- Sarah W. Stedman Nutrition and Metabolism Center, Duke Molecular Physiology Institute, Departments of Pharmacology & Cancer Biology and Medicine, Duke University Medical Center, Durham, NC, 27701, USA
| | | | - Jie An
- Sarah W. Stedman Nutrition and Metabolism Center, Duke Molecular Physiology Institute, Departments of Pharmacology & Cancer Biology and Medicine, Duke University Medical Center, Durham, NC, 27701, USA
| | - Liping Wang
- Sarah W. Stedman Nutrition and Metabolism Center, Duke Molecular Physiology Institute, Departments of Pharmacology & Cancer Biology and Medicine, Duke University Medical Center, Durham, NC, 27701, USA
| | - Robert W McGarrah
- Sarah W. Stedman Nutrition and Metabolism Center, Duke Molecular Physiology Institute, Departments of Pharmacology & Cancer Biology and Medicine, Duke University Medical Center, Durham, NC, 27701, USA
| | - Robert D Stevens
- Sarah W. Stedman Nutrition and Metabolism Center, Duke Molecular Physiology Institute, Departments of Pharmacology & Cancer Biology and Medicine, Duke University Medical Center, Durham, NC, 27701, USA
| | - Olga Ilkayeva
- Sarah W. Stedman Nutrition and Metabolism Center, Duke Molecular Physiology Institute, Departments of Pharmacology & Cancer Biology and Medicine, Duke University Medical Center, Durham, NC, 27701, USA
| | - Tabitha George
- Sarah W. Stedman Nutrition and Metabolism Center, Duke Molecular Physiology Institute, Departments of Pharmacology & Cancer Biology and Medicine, Duke University Medical Center, Durham, NC, 27701, USA
| | - Michael J Muehlbauer
- Sarah W. Stedman Nutrition and Metabolism Center, Duke Molecular Physiology Institute, Departments of Pharmacology & Cancer Biology and Medicine, Duke University Medical Center, Durham, NC, 27701, USA
| | - James R Bain
- Sarah W. Stedman Nutrition and Metabolism Center, Duke Molecular Physiology Institute, Departments of Pharmacology & Cancer Biology and Medicine, Duke University Medical Center, Durham, NC, 27701, USA
| | - Jeff K Trimmer
- CV and Metabolic Diseases Research Unit, Pfizer, Cambridge, MA, USA
| | - M Julia Brosnan
- CV and Metabolic Diseases Research Unit, Pfizer, Cambridge, MA, USA
| | - Timothy P Rolph
- CV and Metabolic Diseases Research Unit, Pfizer, Cambridge, MA, USA
| | - Christopher B Newgard
- Sarah W. Stedman Nutrition and Metabolism Center, Duke Molecular Physiology Institute, Departments of Pharmacology & Cancer Biology and Medicine, Duke University Medical Center, Durham, NC, 27701, USA.
| |
Collapse
|
46
|
Suppression of Endogenous Glucose Production by Isoleucine and Valine and Impact of Diet Composition. Nutrients 2016; 8:79. [PMID: 26891318 PMCID: PMC4772043 DOI: 10.3390/nu8020079] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2015] [Revised: 01/06/2016] [Accepted: 02/01/2016] [Indexed: 01/15/2023] Open
Abstract
Leucine has been shown to acutely inhibit hepatic glucose production in rodents by a mechanism requiring its metabolism to acetyl-CoA in the mediobasal hypothalamus (MBH). In the early stages, all branched-chain amino acids (BCAA) are metabolized by a shared set of enzymes to produce a ketoacid, which is later metabolized to acetyl-CoA. Consequently, isoleucine and valine may also modulate glucose metabolism. To examine this possibility we performed intrahypothalamic infusions of isoleucine or valine in rats and assessed whole body glucose kinetics under basal conditions and during euglycemic pancreatic clamps. Furthermore, because high fat diet (HFD) consumption is known to interfere with central glucoregulation, we also asked whether the action of BCAAs was affected by HFD. We fed rats a lard-rich diet for a short interval and examined their response to central leucine. The results showed that both isoleucine and valine individually lowered blood glucose by decreasing liver glucose production. Furthermore, the action of the BCAA leucine was markedly attenuated by HFD feeding. We conclude that all three BCAAs centrally modulate glucose metabolism in the liver and that their action is disrupted by HFD-induced insulin resistance.
Collapse
|
47
|
Zhao Y, Dai XY, Zhou Z, Zhao GX, Wang X, Xu MJ. Leucine supplementation via drinking water reduces atherosclerotic lesions in apoE null mice. Acta Pharmacol Sin 2016; 37:196-203. [PMID: 26687933 DOI: 10.1038/aps.2015.88] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2015] [Accepted: 09/01/2015] [Indexed: 01/28/2023] Open
Abstract
AIM Recent evidence suggests that the essential amino acid leucine may be involved in systemic cholesterol metabolism. In this study, we investigated the effects of leucine supplementation on the development of atherosclerosis in apoE null mice. METHODS ApoE null mice were fed with chow supplemented with leucine (1.5% w/v) in drinking water for 8 week. Aortic atherosclerotic lesions were examined using Oil Red O staining. Plasma lipoprotein-cholesterol levels were measured with fast protein liquid chromatography. Hepatic gene expression was detected using real-time PCR and Western blot analyses. RESULTS Leucine supplementation resulted in 57.6% reduction of aortic atherosclerotic lesion area in apoE null mice, accompanied by 41.2% decrease of serum LDL-C levels and 40.2% increase of serum HDL-C levels. The body weight, food intake and blood glucose level were not affected by leucine supplementation. Furthermore, leucine supplementation increased the expression of Abcg5 and Abcg8 (that were involved in hepatic cholesterol efflux) by 1.28- and 0.86-fold, respectively, and significantly increased their protein levels. Leucine supplementation also increased the expression of Srebf1, Scd1 and Pgc1b (that were involved in hepatic triglyceride metabolism) by 3.73-, 1.35- and 1.71-fold, respectively. Consequently, leucine supplementation resulted in 51.77% reduction of liver cholesterol content and 2.2-fold increase of liver triglyceride content. Additionally, leucine supplementation did not affect the serum levels of IL-6, IFN-γ, TNF-α, IL-10 and IL-12, but markedly decreased the serum level of MCP-1. CONCLUSION Leucine supplementation effectively attenuates atherosclerosis in apoE null mice by improving the plasma lipid profile and reducing systemic inflammation.
Collapse
|
48
|
Platt KM, Charnigo RJ, Shertzer HG, Pearson KJ. Branched-Chain Amino Acid Supplementation in Combination with Voluntary Running Improves Body Composition in Female C57BL/6 Mice. J Diet Suppl 2015; 13:473-86. [PMID: 26716948 DOI: 10.3109/19390211.2015.1112866] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Exercise is an inexpensive intervention that may be used to reduce obesity and its consequences. In addition, many individuals who regularly exercise utilize dietary supplements to enhance their exercise routine and to accelerate fat loss or increase lean mass. Branched-chain amino acids (BCAAs) are a popular supplement and have been shown to produce a number of beneficial effects in rodent models and humans. Therefore, we hypothesized that BCAA supplementation would protect against high fat diet (HFD)-induced glucose intolerance and obesity in mice with and without access to exercise. We subjected 80 female C57BL/6 mice to a paradigm of HFD feeding, exercise in the form of voluntary wheel running, and BCAA supplementation in the drinking water for 16 weeks (n = 10 per group). Body weight was monitored weekly, while food and water consumption were recorded twice weekly. During the 5th, 10th, and 15th weeks of treatment, glucose tolerance and body composition were analyzed. Exercise significantly improved glucose tolerance in both control-fed and HFD-fed mice. BCAA supplementation, however, did not significantly alter glucose tolerance in any treatment group. While BCAA supplements did not improve lean to fat mass ratio in sedentary mice, it significantly augmented the effects of exercise on this parameter.
Collapse
Affiliation(s)
- Kristen M Platt
- a Department of Pharmacology and Nutritional Sciences, College of Medicine , University of Kentucky , Lexington , KY , USA
| | - Richard J Charnigo
- b Department of Biostatistics, College of Public Health , University of Kentucky , Lexington , KY , USA
| | - Howard G Shertzer
- c Department of Environmental Health and Center for Environmental Genetics , University of Cincinnati Medical Center , Cincinnati , OH , USA
| | - Kevin J Pearson
- a Department of Pharmacology and Nutritional Sciences, College of Medicine , University of Kentucky , Lexington , KY , USA
| |
Collapse
|
49
|
Leucine-induced anabolic-catabolism: two sides of the same coin. Amino Acids 2015; 48:321-36. [DOI: 10.1007/s00726-015-2109-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 09/28/2015] [Indexed: 10/22/2022]
|
50
|
Yuan XW, Han SF, Zhang JW, Xu JY, Qin LQ. Leucine supplementation improves leptin sensitivity in high-fat diet fed rats. Food Nutr Res 2015; 59:27373. [PMID: 26115673 PMCID: PMC4482813 DOI: 10.3402/fnr.v59.27373] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 05/29/2015] [Accepted: 06/01/2015] [Indexed: 01/09/2023] Open
Abstract
Background Several studies have reported the favorable effect of leucine supplementation on insulin resistance or insulin sensitivity. However, whether or not leucine supplementation improves leptin sensitivity remains unclear. Design Forty-eight male Sprague-Dawley rats were fed with either a high-fat diet (HFD) or HFD supplemented with 1.5, 3.0, and 4.5% leucine for 16 weeks. At the end of the experiment, serum leptin level was measured by ELISA, and leptin receptor (ObR) in the hypothalamus was examined by immunohistochemistry. The protein expressions of ObR and leptin-signaling pathway in adipose tissues were detected by western blot. Results No significant differences in body weight and food/energy intake existed among the four groups. Serum leptin levels were significantly lower, and ObR expression in the hypothalamus and adipose tissues was significantly higher in the three leucine groups than in the control group. These phenomena suggested that leptin sensitivity was improved in the leucine groups. Furthermore, the expressions of JAK2 and STAT3 (activated by ObR) were significantly higher, and that of SOCS3 (inhibits leptin signaling) was significantly lower in the three leucine groups than in the control group. Conclusions Leucine supplementation improves leptin sensitivity in rats on HFD likely by promoting leptin signaling.
Collapse
Affiliation(s)
- Xue-Wei Yuan
- Department of Nutrition and Food Hygiene, School of Public Health, Soochow University, Suzhou, China.,Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Disease, Soochow University, Suzhou, China
| | - Shu-Fen Han
- Department of Nutrition and Food Hygiene, School of Public Health, Soochow University, Suzhou, China.,Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Disease, Soochow University, Suzhou, China
| | - Jian-Wei Zhang
- Department of Nutrition and Food Hygiene, School of Public Health, Soochow University, Suzhou, China.,Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Disease, Soochow University, Suzhou, China
| | - Jia-Ying Xu
- Key Laboratory of Radiation Biology, School of Radiation Medicine and Protection, Soochow University, Suzhou, China
| | - Li-Qiang Qin
- Department of Nutrition and Food Hygiene, School of Public Health, Soochow University, Suzhou, China.,Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Disease, Soochow University, Suzhou, China;
| |
Collapse
|