1
|
Guo B, Jiang X. Association between atmospheric particulate matter pollution during pregnancy and premature birth in China: a meta-analysis. Front Public Health 2025; 13:1474134. [PMID: 39916718 PMCID: PMC11798961 DOI: 10.3389/fpubh.2025.1474134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 01/06/2025] [Indexed: 02/09/2025] Open
Abstract
Objective The impact of maternal exposure to outdoor particulate matter during pregnancy on preterm birth is still inconsistent, particularly under the unique atmospheric particulate matter pollution conditions in China, where the effects on preterm birth remain poorly understood. The study intends to evaluate the correlation between atmospheric particulate matter pollution (PM2.5 and PM10) during pregnancy and premature birth in China through a Meta-analysis. Methods The Chinese databases (CNKI and Wanfangdata), and the English databases (PubMed, Web of Science, and Embase) were searched to collect literature related to exposure to atmospheric particulate matter during pregnancy in China and premature birth. A Meta-analysis was conducted using Stata12.0 software. Results A total of 29 studies were included in this study (15 cross-sectional studies, 11 cohort studies, and 3 case-control studies), covering more than 30 provinces (municipalities directly under the Central Government) in China, with a total sample size of 9,283,110 people. The Meta-analysis results showed that the risk of premature birth with the OR value was 1.03 (95%CI:1.011.06) for exposure to PM2.5 in mid-pregnancy, 1.03 (95%CI:1.011.04) for exposure to PM2.5 in late pregnancy, 1.07 (95%CI:1.051.10) for exposure to PM2.5 throughout pregnancy, and 1.04 (95%CI:1.001.07) for exposure to PM10 throughout pregnancy. No correlation was found between exposure to atmospheric particulate matter at other times and the occurrence of premature birth. Conclusion Although our results indicate that exposure to atmospheric particulate matter during the second and third trimesters of pregnancy increases the risk of preterm birth among pregnant women in China, the association is relatively weak. Additionally, the results may be influenced by potential confounding factors. Therefore, further detailed research is needed to explore the relationship between particulate matter exposure and preterm birth or other adverse pregnancy outcomes.
Collapse
Affiliation(s)
| | - Xinye Jiang
- Wuxi Maternity and Child Health Care Hospital, Women's Hospital of Jiangnan University, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
2
|
Acharyya S, Kumar SH, Chouksey A, Soni N, Nazeer N, Mishra PK. The enigma of mitochondrial epigenetic alterations in air pollution-induced neurodegenerative diseases. Neurotoxicology 2024; 105:158-183. [PMID: 39374796 DOI: 10.1016/j.neuro.2024.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/13/2024] [Accepted: 10/02/2024] [Indexed: 10/09/2024]
Abstract
The incidence of neurodegenerative diseases is a growing concern worldwide, affecting individuals from diverse backgrounds. Although these pathologies are primarily associated with aging and genetic susceptibility, their severity varies among the affected population. Numerous studies have indicated air pollution as a significant contributor to the increasing prevalence of neurodegeneration. Cohort studies have provided compelling evidence of the association between prolonged exposure to different air toxicants and cognitive decline, behavioural deficits, memory impairment, and overall neuronal health deterioration. Furthermore, molecular research has revealed that air pollutants can disrupt the body's protective mechanisms, participate in neuroinflammatory pathways, and cause neuronal epigenetic modifications. The mitochondrial epigenome is particularly interesting to the scientific community due to its potential to significantly impact our understanding of neurodegenerative diseases' pathogenesis and their release in the peripheral circulation. While protein hallmarks have been extensively studied, the possibility of using circulating epigenetic signatures, such as methylated DNA fragments, miRNAs, and genome-associated factors, as diagnostic tools and therapeutic targets requires further groundwork. The utilization of circulating epigenetic signatures holds promise for developing novel prognostic strategies, creating paramount point-of-care devices for disease diagnosis, identifying therapeutic targets, and developing clinical data-based disease models utilizing multi-omics technologies and artificial intelligence, ultimately mitigating the threat and prevalence of neurodegeneration.
Collapse
Affiliation(s)
- Sayanti Acharyya
- Division of Environmental Biotechnology, Genetics & Molecular Biology (EBGMB), ICMR-National Institute for Research in Environmental Health (NIREH), Bhopal, India
| | - Sruthy Hari Kumar
- Division of Environmental Biotechnology, Genetics & Molecular Biology (EBGMB), ICMR-National Institute for Research in Environmental Health (NIREH), Bhopal, India
| | - Apoorva Chouksey
- Division of Environmental Biotechnology, Genetics & Molecular Biology (EBGMB), ICMR-National Institute for Research in Environmental Health (NIREH), Bhopal, India
| | - Nikita Soni
- Division of Environmental Biotechnology, Genetics & Molecular Biology (EBGMB), ICMR-National Institute for Research in Environmental Health (NIREH), Bhopal, India
| | - Nazim Nazeer
- Division of Environmental Biotechnology, Genetics & Molecular Biology (EBGMB), ICMR-National Institute for Research in Environmental Health (NIREH), Bhopal, India
| | - Pradyumna Kumar Mishra
- Division of Environmental Biotechnology, Genetics & Molecular Biology (EBGMB), ICMR-National Institute for Research in Environmental Health (NIREH), Bhopal, India; Faculty of Medical Research, Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India.
| |
Collapse
|
3
|
Stoccoro A, Coppedè F. Exposure to Metals, Pesticides, and Air Pollutants: Focus on Resulting DNA Methylation Changes in Neurodegenerative Diseases. Biomolecules 2024; 14:1366. [PMID: 39595543 PMCID: PMC11591912 DOI: 10.3390/biom14111366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 10/15/2024] [Accepted: 10/25/2024] [Indexed: 11/28/2024] Open
Abstract
Individuals affected by neurodegenerative diseases, including Alzheimer's disease (AD), Parkinson's disease (PD), and amyotrophic lateral sclerosis (ALS), are dramatically increasing worldwide. Thus, several efforts are being made to develop strategies for stopping or slowing the spread of these illnesses. Although causative genetic variants linked to the onset of these diseases are known, they can explain only a small portion of cases. The etiopathology underlying the neurodegenerative process in most of the patients is likely due to the interplay between predisposing genetic variants and environmental factors. Epigenetic mechanisms, including DNA methylation, are central candidates in translating the effects of environmental factors in genome modulation, and they play a critical role in the etiology of AD, PD, and ALS. Among the main environmental exposures that have been linked to an increased risk for these diseases, accumulating evidence points to the role of heavy metals, pesticides, and air pollutants. These compounds could trigger neurodegeneration through different mechanisms, mainly neuroinflammation and the induction of oxidative stress. However, increasing evidence suggests that they are also capable of inducing epigenetic alterations in neurons. In this article, we review the available literature linking exposure to metals, pesticides, and air pollutants to DNA methylation changes relevant to neurodegeneration.
Collapse
Affiliation(s)
- Andrea Stoccoro
- Laboratory of Medical Genetics, Department of Translational Research and of New Surgical and Medical Technologies, Medical School, University of Pisa, Via Roma 55, 56126 Pisa, Italy;
| | - Fabio Coppedè
- Laboratory of Medical Genetics, Department of Translational Research and of New Surgical and Medical Technologies, Medical School, University of Pisa, Via Roma 55, 56126 Pisa, Italy;
- Interdepartmental Research Center of Biology and Pathology of Aging, University of Pisa, 56126 Pisa, Italy
| |
Collapse
|
4
|
Geng Q, Gao R, Sun Y, Chen S, Sun L, Li W, Li Z, Zhao Y, Zhao F, Zhang Y, Li A, Liu H. Mitochondrial DNA content and methylation in sperm of patients with asthenozoospermia. J Assist Reprod Genet 2024; 41:2795-2805. [PMID: 39190228 PMCID: PMC11535106 DOI: 10.1007/s10815-024-03236-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 08/20/2024] [Indexed: 08/28/2024] Open
Abstract
PURPOSE The aim of the current study was to investigate the mtDNA methylation levels and mtDNA copy numbers in the sperm of patients with asthenozoospermia and compare them to those observed in controls with normozoospermia. METHODS Pyrosequencing analysis of the methylation levels of the mitochondrial D-loop and MT-CO1/chr1:631,907-632083/chrX:26,471,887-126,472,063 (hereinafter referred to as "MT-CO1-AVG") region and quantitative PCR analysis of the mtDNA copy number were performed on sperm from 30 patients with asthenozoospermia and 30 controls with normozoospermia. RESULTS Compared with those of controls with normozoospermia, the methylation levels of D-loop and MT-CO1-AVG regions and mtDNA copy number were significantly higher in patients with asthenozoospermia. The methylation level of the D-loop region in patients with asthenozoospermia and controls with normozoospermia and that of MT-CO1-AVG region in patients with asthenozoospermia showed a decreasing tendency with increasing total sperm motility. A significant inverse correlation between the mtDNA copy number and total sperm motility was observed in patients with asthenozoospermia but not in controls with normozoospermia. In patients with asthenozoospermia, but not in controls with normozoospermia, we observed a significant inverse correlation between D-loop methylation levels and mtDNA copy number, while no significant correlation was observed between MT-CO1-AVG methylation levels and mtDNA copy number. CONCLUSION These results reveal the occurrence of mtDNA methylation in human sperm and altered D-loop and MT-CO1-AVG methylation levels in patients with asthenozoospermia. Additional research is needed to determine the function of these features in the etiology and course of asthenozoospermia.
Collapse
Affiliation(s)
- Qiang Geng
- Department of Andrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Ruifang Gao
- Department of Reproductive Medicine, Tianjin Institute of Medical and Pharmaceutical Sciences, Tianjin Medicine and Health Research Center, Tianjin, China.
| | - Yuan Sun
- Department of Andrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Shaofeng Chen
- Department of Andrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Lili Sun
- Department of Reproductive Medicine, Tianjin Institute of Medical and Pharmaceutical Sciences, Tianjin Medicine and Health Research Center, Tianjin, China
| | - Wei Li
- Department of Reproductive Medicine, Tianjin Institute of Medical and Pharmaceutical Sciences, Tianjin Medicine and Health Research Center, Tianjin, China
| | - Zhong Li
- Department of Andrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Yu Zhao
- Department of Andrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Feng Zhao
- Department of Andrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Ying Zhang
- Department of Reproductive Medicine, Tianjin Institute of Medical and Pharmaceutical Sciences, Tianjin Medicine and Health Research Center, Tianjin, China
| | - Anwen Li
- Department of Andrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Hongbin Liu
- Department of Reproductive Medicine, Tianjin Institute of Medical and Pharmaceutical Sciences, Tianjin Medicine and Health Research Center, Tianjin, China.
- Health Commission of Heping District, Tianjin, China.
| |
Collapse
|
5
|
Golubenko MV, Puzyrev VP. Liberties of the genome: insertions of mitochondrial DNA fragments into nuclear genome. Vavilovskii Zhurnal Genet Selektsii 2024; 28:467-475. [PMID: 39280847 PMCID: PMC11393654 DOI: 10.18699/vjgb-24-53] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/28/2024] [Accepted: 03/28/2024] [Indexed: 09/18/2024] Open
Abstract
The transition of detached fragments of mitochondrial DNA into the nucleus and their integration into chromosomal DNA is a special kind of genetic variability that highlights the relation between the two genomes and their interaction in a eukaryotic cell. The human genome contains several hundreds of insertions of mtDNA fragments (NUMTS). This paper presents an overview of the current state of research in this area. To date, evidence has been obtained that the occurrence of new mtDNA insertions in the nuclear genome is a seldom but not exceptionally rare event. The integration of new mtDNA fragments into the nuclear genome occurs during double-strand DNA break repair through the non-homologous end joining mechanism. Along with evolutionarily stable "genetic fossils" that were integrated into the nuclear genome millions of years ago and are shared by many species, there are NUMTS that could be species-specific, polymorphic in a species, or "private". Partial copies of mitochondrial DNA in the human nuclear genome can interfere with mtDNA during experimental studies of the mitochondrial genome, such as genotyping, heteroplasmy assessment, mtDNA methylation analysis, and mtDNA copy number estimation. In some cases, the insertion of multiple copies of the complete mitochondrial genome sequence may mimic paternal inheritance of mtDNA. The functional significance of NUMTS is poorly understood. For instance, they may be a source of variability for expression and splicing modulation. The role of NUMTS as a cause of hereditary diseases is negligible, since only a few cases of diseases caused by NUMTS have been described so far. In addition, NUMTS can serve as markers for evolutionary genetic studies. Of particular interest is the meaning of NUMTS in eukaryotic genome evolution. The constant flow of functionally inactive DNA sequences from mitochondria into the nucleus and its significance could be studied in view of the modern concepts of evolutionary theory suggesting non-adaptive complexity and the key role of stochastic processes in the formation of genomic structure.
Collapse
Affiliation(s)
- M V Golubenko
- Research Institute of Medical Genetics, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russia
| | - V P Puzyrev
- Research Institute of Medical Genetics, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russia
| |
Collapse
|
6
|
Donato L, Mordà D, Scimone C, Alibrandi S, D'Angelo R, Sidoti A. From powerhouse to regulator: The role of mitoepigenetics in mitochondrion-related cellular functions and human diseases. Free Radic Biol Med 2024; 218:105-119. [PMID: 38565400 DOI: 10.1016/j.freeradbiomed.2024.03.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/26/2024] [Accepted: 03/30/2024] [Indexed: 04/04/2024]
Abstract
Beyond their crucial role in energy production, mitochondria harbor a distinct genome subject to epigenetic regulation akin to that of nuclear DNA. This paper delves into the nascent but rapidly evolving fields of mitoepigenetics and mitoepigenomics, exploring the sophisticated regulatory mechanisms governing mitochondrial DNA (mtDNA). These mechanisms encompass mtDNA methylation, the influence of non-coding RNAs (ncRNAs), and post-translational modifications of mitochondrial proteins. Together, these epigenetic modifications meticulously coordinate mitochondrial gene transcription, replication, and metabolism, thereby calibrating mitochondrial function in response to the dynamic interplay of intracellular needs and environmental stimuli. Notably, the dysregulation of mitoepigenetic pathways is increasingly implicated in mitochondrial dysfunction and a spectrum of human pathologies, including neurodegenerative diseases, cancer, metabolic disorders, and cardiovascular conditions. This comprehensive review synthesizes the current state of knowledge, emphasizing recent breakthroughs and innovations in the field. It discusses the potential of high-resolution mitochondrial epigenome mapping, the diagnostic and prognostic utility of blood or tissue mtDNA epigenetic markers, and the promising horizon of mitochondrial epigenetic drugs. Furthermore, it explores the transformative potential of mitoepigenetics and mitoepigenomics in precision medicine. Exploiting a theragnostic approach to maintaining mitochondrial allostasis, this paper underscores the pivotal role of mitochondrial epigenetics in charting new frontiers in medical science.
Collapse
Affiliation(s)
- Luigi Donato
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Division of Medical Biotechnologies and Preventive Medicine, University of Messina, 98122, Messina, Italy; Department of Biomolecular Strategies, Genetics, Cutting-Edge Therapies, Euro-Mediterranean Institute of Science and Technology (I.E.ME.S.T.) 90139 Palermo, Italy.
| | - Domenico Mordà
- Department of Biomolecular Strategies, Genetics, Cutting-Edge Therapies, Euro-Mediterranean Institute of Science and Technology (I.E.ME.S.T.) 90139 Palermo, Italy; Department of Veterinary Sciences, University of Messina, 98122, Messina, Italy.
| | - Concetta Scimone
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Division of Medical Biotechnologies and Preventive Medicine, University of Messina, 98122, Messina, Italy; Department of Biomolecular Strategies, Genetics, Cutting-Edge Therapies, Euro-Mediterranean Institute of Science and Technology (I.E.ME.S.T.) 90139 Palermo, Italy.
| | - Simona Alibrandi
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Division of Medical Biotechnologies and Preventive Medicine, University of Messina, 98122, Messina, Italy; Department of Biomolecular Strategies, Genetics, Cutting-Edge Therapies, Euro-Mediterranean Institute of Science and Technology (I.E.ME.S.T.) 90139 Palermo, Italy.
| | - Rosalia D'Angelo
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Division of Medical Biotechnologies and Preventive Medicine, University of Messina, 98122, Messina, Italy.
| | - Antonina Sidoti
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Division of Medical Biotechnologies and Preventive Medicine, University of Messina, 98122, Messina, Italy.
| |
Collapse
|
7
|
Xu J, Chen Y, Lu F, Chen L, Dong Z. The Association between Short-Term Exposure to PM 1 and Daily Hospital Admission and Related Expenditures in Beijing. TOXICS 2024; 12:393. [PMID: 38922073 PMCID: PMC11209456 DOI: 10.3390/toxics12060393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/16/2024] [Accepted: 05/18/2024] [Indexed: 06/27/2024]
Abstract
Ambient particulate matter (PM) pollution is a leading environmental health threat worldwide. PM with an aerodynamic diameter ≤ 1.0 μm, also known as PM1, has been implicated in the morbidity and mortality of several cardiorespiratory and cerebrovascular diseases. However, previous studies have mostly focused on analyzing fine PM (PM2.5) associated with disease metrics, such as emergency department visits and mortality, rather than ultrafine PM, including PM1. This study aimed to evaluate the association between short-term PM1 exposure and hospital admissions (HAs) for all-cause diseases, chronic obstructive pulmonary disease (COPD), and respiratory infections (RIs), as well as the associated expenditures, using Beijing as a case study. Here, based on air pollution and hospital admission data in Beijing from 2015 to 2017, we performed a time-series analysis and meta-analysis. It was found that a 10 μg/m3 increase in the PM1 concentration significantly increased all-cause disease HAs by 0.07% (95% Confidence Interval (CI): [0, 0.14%]) in Beijing between 2015 and 2017, while the COPD and RI-related HAs were not significantly associated with short-term PM1 exposure. Meanwhile, we estimated the attributable number of HAs and hospital expenditures related to all-cause diseases. This study revealed that an average of 6644 (95% CI: [351, 12,917]) cases of HAs were attributable to ambient PM1, which was estimated to be associated with a 106 million CNY increase in hospital expenditure annually (95% CI: [5.6, 207]), accounting for 0.32% (95% CI: [0.02, 0.62%]) of the annual total expenses. The findings reported here highlight the underlying impact of ambient PM pollution on health risks and economic burden to society and indicate the need for further policy actions on public health.
Collapse
Affiliation(s)
- Jingwen Xu
- School of Cancer and Pharmaceutical Sciences, Faculty of Life Sciences and Medicine, King’s College London, London SE1 1UL, UK
| | - Yan Chen
- Ganzhou People’s Hospital, Ganzhou 341000, China
| | - Feng Lu
- Beijing Municipal Health Big Data and Policy Research Center, Beijing 100034, China
| | - Lili Chen
- School of Public Health, Southeast University, Nanjing 210009, China
| | - Zhaomin Dong
- School of Materials Science and Engineering, Beihang University, Beijing 100191, China
| |
Collapse
|
8
|
Li C, Ni S, Zhao L, Lin H, Yang X, Zhang Q, Zhang L, Guo L, Jiang S, Tang N. Effects of PM 2.5 and high-fat diet on glucose and lipid metabolisms and role of MT-COX3 methylation in male rats. ENVIRONMENT INTERNATIONAL 2024; 188:108780. [PMID: 38821017 DOI: 10.1016/j.envint.2024.108780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 04/24/2024] [Accepted: 05/26/2024] [Indexed: 06/02/2024]
Abstract
Both fine particulate matter (PM2.5) and high-fat diet (HFD) can cause changes in glucose and lipid metabolisms; however, the mechanism of their combined effects on glucose and lipid metabolisms is still unclear. This study aimed to investigate the effects of PM2.5 and HFD co-exposure on glucose and lipid metabolisms and mitochondrial DNA methylation in Wistar rats. PM2.5 and HFD co-treatment led to an increase in fasting blood glucose levels, an alteration in glucose tolerance, and a decrease in high density lipoprotein cholesterol (HDL-C) levels in Wistar rats. In the homeostasis model assessment (HOMA), HOMA-insulin resistance (HOMA-IR) increased and HOMA-insulin sensitivity (HOMA-IS) and HOMA-β cell function (HOMA-β) decreased in rats co-exposed to PM2.5 and HFD. Additionally, superoxide dismutase (SOD) and malondialdehyde (MDA) levels were increased, and interleukin-6 (IL-6) and interleukin-10 (IL-10) mRNA expressions were upregulated in the brown adipose tissue following PM2.5 and HFD co-exposure. Bisulfite pyrosequencing was used to detect the methylation levels of mitochondrially-encoded genes (MT-COX1, MT-COX2 and MT-COX3), and MT-COX3 was hypermethylated in the PM2.5 and HFD co-exposure group. Moreover, MT-COX3-Pos.2 mediated 36.41 % (95 % CI: -27.42, -0.75) of the total effect of PM2.5 and HFD exposure on HOMA-β. Our study suggests that PM2.5 and HFD co-exposure led to changes in glucose and lipid metabolisms in rats, which may be related to oxidative stress and inflammatory responses, followed by mitochondrial stress leading to MT-COX3 hypermethylation. Moreover, MT-COX3-Pos.2 was found for the first time as a mediator in the impact of co-exposure to PM2.5 and HFD on β-cell function. It could serve as a potential biomarker, offering fresh insights into the prevention and treatment of metabolic diseases.
Collapse
Affiliation(s)
- Chen Li
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin 300070, China; Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin 300070, China; Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin 300070, China
| | - Shu Ni
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin 300070, China; Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin 300070, China; Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin 300070, China
| | - Lei Zhao
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin 300072, China; Wenzhou Safety (Emergency) Institute, Tianjin University, Wenzhou 32500, China
| | - Huishu Lin
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin 300072, China; Wenzhou Safety (Emergency) Institute, Tianjin University, Wenzhou 32500, China
| | - Xueli Yang
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin 300070, China; Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin 300070, China; Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin 300070, China
| | - Qiang Zhang
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin 300070, China; Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin 300070, China; Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin 300070, China
| | - Liwen Zhang
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin 300070, China; Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin 300070, China; Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin 300070, China
| | - Liqiong Guo
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin 300072, China; Wenzhou Safety (Emergency) Institute, Tianjin University, Wenzhou 32500, China.
| | - Shoufang Jiang
- Department of Occupational and Environmental Health, Hebei Province Key Laboratory of Occupational Health and Safety for Coal Industry, School of Public Health, North China University of Science and Technology, Tangshan, Hebei 063210, China.
| | - Naijun Tang
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin 300070, China; Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin 300070, China; Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin 300070, China.
| |
Collapse
|
9
|
Jiang Y, Chen J, Guo L, Lan Y, Li G, Liu Q, Li H, Deng F, Guo X, Wu S. Short-term effects of ambient gaseous air pollution on blood platelet mitochondrial DNA methylation and myocardial ischemia. ENVIRONMENT INTERNATIONAL 2024; 185:108533. [PMID: 38430585 DOI: 10.1016/j.envint.2024.108533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 02/14/2024] [Accepted: 02/23/2024] [Indexed: 03/04/2024]
Abstract
BACKGROUND The potential effects of short-term exposure to major ambient gaseous pollutants (ozone: O3, carbon monoxide: CO, and sulfur dioxide: SO2) on platelet mitochondrial DNA (mtDNA) methylation have been uncertain and no studies have examined whether platelet mtDNA methylation levels could modify the associations between ambient gaseous pollutants and the risks of ST-segment depression (STDE) and T-wave inversion events (TIE), two indicators of myocardial ischemia. METHODS This study used data from a randomized, double-blind, placebo-controlled intervention study with a standardized 24-hour exposure protocol among 110 participants in Beijing. Absolute changes in platelet mtDNA methylation (ACmtDNAm) levels were determined by two repeated measurements on platelet mtDNA methylation levels in blood samples collected before and after the 24-hour exposure period. A multivariable linear regression model and a generalized linear model with a Poisson link function were used to investigate the associations of ambient gaseous pollutants with platelet mtDNA methylation levels, STDE, and TIE, respectively. RESULTS Short-term O3 exposure was significantly associated with decreased ACmtDNAm at ATP6_P1 but increased ACmtDNAm at mt12sRNA, MT-COX1, and MT-COX1_P2; short-term CO and SO2 exposures were significantly associated with decreased ACmtDNAm at D-loop, MT-COX3- and ATP-related genes. Moreover, short-term O3 exposure was significantly associated with increased risks of STDE and TIE, and ACmtDNAm at MT-COX1 and MT-COX1_P2 modified the association between short-term O3 exposure and STDE events. L-Arg supplementation attenuated the effects of ambient gaseous pollutants, particularly O3, on ACmtDNAm and STDE. CONCLUSIONS Platelet mtDNA methylation levels are promising biomarkers of short-term exposure to ambient gaseous air pollution, and are likely implicated in the mechanism behind the association of ambient O3 pollution with adverse cardiovascular effects. L-Arg supplementation showed the potential to mitigate the adverse effects of ambient O3 pollution.
Collapse
Affiliation(s)
- Yunxing Jiang
- Department of Occupational and Environmental Health, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China; Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi, China; Key Laboratory of Trace Elements and Endemic Diseases in Ministry of Health, Xi'an, Shaanxi, China; Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi'an, Shaanxi, China
| | - Juan Chen
- Department of Occupational and Environmental Health, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China; Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi, China; Key Laboratory of Trace Elements and Endemic Diseases in Ministry of Health, Xi'an, Shaanxi, China; Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi'an, Shaanxi, China
| | - Liqiong Guo
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China; Wenzhou Safety (Emergency) Institute, Tianjin University, Wenzhou, China; Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin, China
| | - Yang Lan
- Department of Occupational and Environmental Health, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China; Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi, China; Key Laboratory of Trace Elements and Endemic Diseases in Ministry of Health, Xi'an, Shaanxi, China; Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi'an, Shaanxi, China
| | - Ge Li
- Department of Occupational and Environmental Health, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China; Shaanxi Provincial Institute for Endemic Disease Control, Xi'an, Shaanxi, China
| | - Qisijing Liu
- Research Institute of Public Health, School of Medicine, Nankai University, Tianjin, China
| | - Hongyu Li
- Department of Scientific Research, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Furong Deng
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, China
| | - Xinbiao Guo
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, China
| | - Shaowei Wu
- Department of Occupational and Environmental Health, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China; Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi, China; Key Laboratory of Trace Elements and Endemic Diseases in Ministry of Health, Xi'an, Shaanxi, China; Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi'an, Shaanxi, China.
| |
Collapse
|
10
|
Miller RL, Rivera J, Lichtiger L, Govindarajulu US, Jung KH, Lovinsky-Desir S, Perera F, Balcer Whaley S, Newman M, Grant TL, McCormack M, Perzanowski M, Matsui EC. Associations between mitochondrial biomarkers, urban residential exposures and childhood asthma outcomes over 6 months. ENVIRONMENTAL RESEARCH 2023; 239:117342. [PMID: 37813137 PMCID: PMC10843300 DOI: 10.1016/j.envres.2023.117342] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/26/2023] [Accepted: 10/07/2023] [Indexed: 10/11/2023]
Abstract
Determining biomarkers of responses to environmental exposures and evaluating whether they predict respiratory outcomes may help optimize environmental and medical approaches to childhood asthma. Relative mitochondrial (mt) DNA abundance and other potential mitochondrial indicators of oxidative stress may provide a sensitive metric of the child's shifting molecular responses to its changing environment. We leveraged two urban childhood cohorts (Environmental Control as Add-on Therapy in Childhood Asthma (ECATCh); Columbia Center for Children's Environmental Health (CCCEH)) to ascertain whether biomarkers in buccal mtDNA associate with airway inflammation and altered lung function over 6 months of time and capture biologic responses to multiple external stressors such as indoor allergens and fine particulate matter (PM2.5). Relative mtDNA content was amplified by qPCR and methylation of transfer RNA phenylalanine/rRNA 12S (TF/RNR1), cytochrome c oxidase (CO1), and carboxypeptidase O (CPO) was measured by pyrosequencing. Data on residential exposures and respiratory outcomes were harmonized between the two cohorts. Repeated measures and multiple regression models were utilized to assess relationships between mitochondrial biomarkers, respiratory outcomes, and residential exposures (PM2.5, allergens), adjusted for potential confounders and time-varying asthma. We found across the 6 month visits, a 0.64 fold higher level of TF/RNR1 methylation was detected among those with asthma in comparison to those without asthma ((parameter estimate (PE) 0.64, standard error 0.28, p = 0.03). In prospective analyses, CPO methylation was associated with subsequent reduced forced vital capacity (FVC; PE -0.03, standard error 0.01, p = 0.02). Bedroom dust mouse allergen, but not indoor PM2.5, was associated with higher methylation of TF/RNR1 (PE 0.015, standard error 0.006, p = 0.01). Select mtDNA measures in buccal cells may indicate children's responses to toxic environmental exposures and associate selectively with asthma and lung function.
Collapse
Affiliation(s)
- Rachel L Miller
- Division of Clinical Immunology, Department of Medicine, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA; Columbia Center for Childrens Environmental Health, Columbia University Mailman School of Public Health, 722 West 168th Street, New York, NY, 10032, USA.
| | - Janelle Rivera
- Division of Clinical Immunology, Department of Medicine, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA
| | - Lydia Lichtiger
- Division of Clinical Immunology, Department of Medicine, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA
| | - Usha S Govindarajulu
- Center for Biostatistics, Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA
| | - Kyung Hwa Jung
- Division of Pediatric Pulmonary, Columbia University Irving Medical Center, 630 W. 168th St, New York, NY, 10032, USA
| | - Stephanie Lovinsky-Desir
- Division of Pediatric Pulmonary, Columbia University Irving Medical Center, 630 W. 168th St, New York, NY, 10032, USA
| | - Frederica Perera
- Columbia Center for Childrens Environmental Health, Columbia University Mailman School of Public Health, 722 West 168th Street, New York, NY, 10032, USA
| | - Susan Balcer Whaley
- Department of Population Health, Dell Medical School University of Texas at Austin, 1601 Trinity St., Bldg. B, Stop Z0500, Austin, TX, 78712, USA
| | - Michelle Newman
- Department of Epidemiology and Public Health, University of Maryland, 10 S. Pine St, MSTF 3-34, Baltimore, MD, 21201, USA
| | - Torie L Grant
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Meredith McCormack
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Matthew Perzanowski
- Columbia Center for Childrens Environmental Health, Columbia University Mailman School of Public Health, 722 West 168th Street, New York, NY, 10032, USA
| | - Elizabeth C Matsui
- Department of Population Health, Dell Medical School University of Texas at Austin, 1601 Trinity St., Bldg. B, Stop Z0500, Austin, TX, 78712, USA
| |
Collapse
|
11
|
Ceylan D, Karacicek B, Tufekci KU, Aksahin IC, Senol SH, Genc S. Mitochondrial DNA oxidation, methylation, and copy number alterations in major and bipolar depression. Front Psychiatry 2023; 14:1304660. [PMID: 38161720 PMCID: PMC10755902 DOI: 10.3389/fpsyt.2023.1304660] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 11/20/2023] [Indexed: 01/03/2024] Open
Abstract
Background Mood disorders are common disabling psychiatric disorders caused by both genetic and environmental factors. Mitochondrial DNA (mtDNA) modifications and epigenetics are promising areas of research in depression since mitochondrial dysfunction has been associated with depression. In this study we aimed to investigate the mtDNA changes in depressive disorder (MDD) and bipolar disorder (BD). Methods Displacement loop methylation (D-loop-met), relative mtDNA copy number (mtDNA-cn) and mtDNA oxidation (mtDNA-oxi) were investigated in DNA samples of individuals with MDD (n = 34), BD (n = 23), and healthy controls (HC; n = 40) using the Real-Time Polymerase Chain Reaction (RT-PCR). Blood samples were obtained from a subset of individuals with MDD (n = 15) during a depressive episode (baseline) and after remission (8th week). Results The study groups exhibited significant differences in D-loop-met (p = 0.020), while relative mtDNA-cn and mtDNA-oxi showed comparable results. During the remission phase (8th week), there were lower levels of relative mtDNA-cn (Z = -2.783, p = 0.005) and D-loop-met (Z = -3.180, p = 0.001) compared to the acute MDD baseline, with no significant change in mtDNA-oxi levels (Z = -1.193, p = 0.233). Conclusion Our findings indicate significantly increased D-loop methylation in MDD compared to BD and HCs, suggesting distinct mtDNA modifications in these conditions. Moreover, the observed alterations in relative mtDNA-cn and D-loop-met during remission suggest a potential role of mtDNA alterations in the pathophysiology of MDD. Future studies may provide valuable insights into the dynamics of mtDNA modifications in both disorders and their response to treatment.
Collapse
Affiliation(s)
- Deniz Ceylan
- Affective Laboratory, Koç University Research Center for Translational Medicine, Istanbul, Türkiye
- Department of Psychiatry, Koç University Hospital, Istanbul, Türkiye
| | - Bilge Karacicek
- Izmir Biomedicine and Genome Center, Genç Lab, Izmir, Türkiye
| | - Kemal Ugur Tufekci
- Brain and Neuroscience Research and Application Center, Izmir Demokrasi University, Izmir, Türkiye
- Vocational School of Health Services, Izmir Democracy University, Izmir, Türkiye
| | - Izel Cemre Aksahin
- Affective Laboratory, Koç University Research Center for Translational Medicine, Istanbul, Türkiye
- Graduate School of Health Sciences, Koç University, Istanbul, Türkiye
| | - Sevin Hun Senol
- Department of Psychiatry, Koç University Hospital, Istanbul, Türkiye
| | - Sermin Genc
- Izmir Biomedicine and Genome Center, Genç Lab, Izmir, Türkiye
| |
Collapse
|
12
|
Li ZH, Mao YC, Li Y, Zhang S, Hu HY, Liu ZY, Liu XJ, Zhao JW, Huang K, Chen ML, Gao GP, Hu CY, Zhang XJ. Joint effects of prenatal exposure to air pollution and pregnancy-related anxiety on birth weight: A prospective birth cohort study in Ma'anshan, China. ENVIRONMENTAL RESEARCH 2023; 238:117161. [PMID: 37717800 DOI: 10.1016/j.envres.2023.117161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 09/03/2023] [Accepted: 09/15/2023] [Indexed: 09/19/2023]
Abstract
BACKGROUND A growing number of studies have shown that prenatal exposure to chemical and non-chemical stressors has effects on fetal growth. The co-exposure of both better reflects real-life exposure patterns. However, no studies have included air pollutants and pregnancy-related anxiety (PrA) as mixtures in the analysis. METHOD Using the birth cohort study method, 576 mother-child pairs were included in the Ma'anshan Maternal and Child Health Hospital. Evaluate the exposure levels of six air pollutants during pregnancy using inverse distance weighting (IDW) based on the pregnant woman's residential address and air pollution data from monitoring stations. Prenatal anxiety levels were assessed using the PrA Questionnaire. Generalized linear regression (GLR), quantile g-computation (QgC) and bayesian kernel machine regression (BKMR) were used to assess the independent or combined effects of air pollutants and PrA on birth weight for gestational age z-score (BWz). RESULT The results of GLR indicate that the correlation between the six air pollutants and PrA with BWz varies depending on the different stages of pregnancy and pollutants. The QgC shows that during trimester 1, when air pollutants and PrA are considered as a whole exposure, an increase of one quartile is significantly negatively correlated with BWz. The BKMR similarly indicates that during trimester 1, the combined exposure of air pollutants and PrA is moderately correlated with a decrease in BWz. CONCLUSION Using the method of analyzing mixed exposures, we found that during pregnancy, the combined exposure of air pollutants and PrA, particularly during trimester 1, is associated with BWz decrease. This supports the view that prenatal exposure to chemical and non-chemical stressors has an impact on fetal growth.
Collapse
Affiliation(s)
- Zhen-Hua Li
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, China
| | - Yi-Cheng Mao
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, China
| | - Yang Li
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, China
| | - Sun Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, China
| | - Hui-Yu Hu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, China
| | - Zhe-Ye Liu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, China
| | - Xue-Jie Liu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, China
| | - Jia-Wen Zhao
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, China
| | - Kai Huang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, China; Department of Hospital Infection Prevention and Control, The Second Affiliated Hospital of Anhui Medical University, 678 Furong Road, Hefei, 230601, China
| | - Mao-Lin Chen
- Department of Gynecology and Obstetrics, Ma'anshan Maternal and Child Health Hospital, Ma'anshan, 243000, China
| | - Guo-Peng Gao
- Department of Child Health Care, Ma'anshan Maternal and Child Health Hospital, Ma'anshan, 243000, China
| | - Cheng-Yang Hu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, China; Department of Humanistic Medicine, School of Humanistic Medicine, Anhui Medical University, 81 Meishan Road, Hefei, 230032, China.
| | - Xiu-Jun Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, 81 Meishan Road, Hefei, 230032, China.
| |
Collapse
|
13
|
Krittanawong C, Qadeer YK, Hayes RB, Wang Z, Thurston GD, Virani S, Lavie CJ. PM 2.5 and cardiovascular diseases: State-of-the-Art review. INTERNATIONAL JOURNAL OF CARDIOLOGY. CARDIOVASCULAR RISK AND PREVENTION 2023; 19:200217. [PMID: 37869561 PMCID: PMC10585625 DOI: 10.1016/j.ijcrp.2023.200217] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 09/09/2023] [Accepted: 09/20/2023] [Indexed: 10/24/2023]
Abstract
Air pollution, especially exposure to particulate matter 2.5 (PM2.5), has been associated with an increase in morbidity and mortality around the world. Specifically, it seems that PM2.5 promotes the development of cardiovascular risk factors such as hypertension and atherosclerosis, while being associated with an increased risk of cardiovascular diseases, including myocardial infarction (MI), stroke, heart failure, and arrhythmias. In this review, we seek to elucidate the pathophysiological mechanisms by which exposure to PM2.5 can result in adverse cardiovascular outcomes, in addition to understanding the link between exposure to PM2.5 and cardiovascular events. It is hypothesized that PM2.5 functions via 3 mechanisms: increased oxidative stress, activation of the inflammatory pathway of the immune system, and stimulation of the autonomic nervous system which ultimately promote endothelial dysfunction, atherosclerosis, and systemic inflammation that can thus lead to cardiovascular events. It is important to note that the various cardiovascular associations of PM2.5 differ regarding the duration of exposure (short vs long) to PM2.5, the source of PM2.5, and regulations regarding air pollution in the area where PM2.5 is prominent. Current strategies to reduce PM2.5 exposure include personal strategies such as avoiding high PM2.5 areas such as highways or wearing masks outdoors, to governmental policies restricting the amount of PM2.5 produced by organizations. This review, by highlighting the significant impact between PM2.5 exposure and cardiovascular health will hopefully bring awareness and produce significant change regarding dealing with PM2.5 levels worldwide.
Collapse
Affiliation(s)
| | | | - Richard B. Hayes
- Division of Epidemiology, Department of Population Health, NYU Grossman School of Medicine, New York, NY, USA
| | - Zhen Wang
- Robert D. and Patricia E. Kern Center for the Science of Health Care Delivery, Mayo Clinic, Rochester, MN, USA
- Division of Health Care Policy and Research, Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - George D. Thurston
- Department of Environmental Medicine, New York University School of Medicine, Tuxedo, New York, USA
| | - Salim Virani
- Section of Cardiology, Baylor College of Medicine, Houston, TX, USA
- The Aga Khan University, Karachi, Pakistan
| | - Carl J. Lavie
- John Ochsner Heart and Vascular Institute, Ochsner Clinical School, The University of Queensland School of Medicine, New Orleans, LA, USA
| |
Collapse
|
14
|
Shi W, Zhang T, Yu Y, Luo L. Association of indoor solid fuel use and long-term exposure to ambient PM 2.5 with sarcopenia in China: A nationwide cohort study. CHEMOSPHERE 2023; 344:140356. [PMID: 37802484 DOI: 10.1016/j.chemosphere.2023.140356] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 09/11/2023] [Accepted: 10/02/2023] [Indexed: 10/09/2023]
Abstract
BACKGROUND Little is known about the association between air pollution exposure and sarcopenia in Asia. We aimed to investigate the associations of indoor solid fuel use and long-term exposure to ambient fine particulate matter (PM2.5) with sarcopenia in China. METHODS Using a nationally population-representative study, 12,723 participants aged at least 45 years across 125 cities from the China Health and Retirement Longitudinal Study were enrolled in 2011, and further 3110 participants were followed up until 2013. Sarcopenia status was classified according to the Asian Working Group for Sarcopenia 2019 criteria. Household fuel types used for heating and cooking were assessed using a standard questionnaire. Ambient annual PM2.5 was estimated using satellite-based spatiotemporal models. Multinomial logistic regression as well as the multiplicative interaction and additive interaction analysis were used to explore the associations of indoor solid fuel and ambient PM2.5 with different status of sarcopenia. RESULTS Of the 12,723 participants, 6071 (47.7%) were men. In the cross-sectional analyses, compared with clean fuel, using solid fuel for heating and cooking, separately or simultaneously, was significantly associated with a higher risk of both possible sarcopenia and sarcopenia. Each 10 μg/m3 increment of PM2.5 was positively related to possible sarcopenia (adjusted odds ratio, [aOR] 1.04, 1.02-1.07) and sarcopenia (1.06, 1.01-1.12). We found a significant interaction between solid fuel use for heating and ambient PM2.5 exposure with possible sarcopenia. During a two-year follow-up, solid fuel use was associated with incident possible sarcopenia (aOR 1.59, 1.17-2.15). These associations did not differ by sex and age, while participants living in a house with poor cleanliness might have a higher risk of sarcopenia. CONCLUSIONS Indoor solid fuel use and long-term exposure to ambient PM2.5 were associated with a higher risk of sarcopenia among Chinese adults. These findings provide implications for promoting healthy aging by reducing air pollution.
Collapse
Affiliation(s)
- Wenming Shi
- School of Public Health, Fudan University, Shanghai, 200032, China; School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 999077, Hong Kong, China.
| | - Tiantian Zhang
- School of Social Development and Public Policy, Fudan University, Shanghai, 200433, China; Fudan University Center for Population and Development Policy Studies, Fudan University, Shanghai, 200433, China; Fudan Institute on Ageing, Fudan University, Shanghai, 200433, China
| | - Yongsheng Yu
- Chongqing Institute of Green and Intelligent Technology, Chongqing School, University of Chinese Academy of Sciences, Chongqing, 400714, China
| | - Li Luo
- School of Public Health, Fudan University, Shanghai, 200032, China; Key Lab of Public Health Safety of the Ministry of Education, NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
15
|
Mietus-Snyder M, Perak AM, Cheng S, Hayman LL, Haynes N, Meikle PJ, Shah SH, Suglia SF. Next Generation, Modifiable Cardiometabolic Biomarkers: Mitochondrial Adaptation and Metabolic Resilience: A Scientific Statement From the American Heart Association. Circulation 2023; 148:1827-1845. [PMID: 37902008 DOI: 10.1161/cir.0000000000001185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/31/2023]
Abstract
Cardiometabolic risk is increasing in prevalence across the life span with disproportionate ramifications for youth at socioeconomic disadvantage. Established risk factors and associated disease progression are harder to reverse as they become entrenched over time; if current trends are unchecked, the consequences for individual and societal wellness will become untenable. Interrelated root causes of ectopic adiposity and insulin resistance are understood but identified late in the trajectory of systemic metabolic dysregulation when traditional cardiometabolic risk factors cross current diagnostic thresholds of disease. Thus, children at cardiometabolic risk are often exposed to suboptimal metabolism over years before they present with clinical symptoms, at which point life-long reliance on pharmacotherapy may only mitigate but not reverse the risk. Leading-edge indicators are needed to detect the earliest departure from healthy metabolism, so that targeted, primordial, and primary prevention of cardiometabolic risk is possible. Better understanding of biomarkers that reflect the earliest transitions to dysmetabolism, beginning in utero, ideally biomarkers that are also mechanistic/causal and modifiable, is critically needed. This scientific statement explores emerging biomarkers of cardiometabolic risk across rapidly evolving and interrelated "omic" fields of research (the epigenome, microbiome, metabolome, lipidome, and inflammasome). Connections in each domain to mitochondrial function are identified that may mediate the favorable responses of each of the omic biomarkers featured to a heart-healthy lifestyle, notably to nutritional interventions. Fuller implementation of evidence-based nutrition must address environmental and socioeconomic disparities that can either facilitate or impede response to therapy.
Collapse
|
16
|
Rahimpoor R, Jalilian H, Mohammadi H, Rahmani A. Biological exposure indices of occupational exposure to benzene: A systematic review. Heliyon 2023; 9:e21576. [PMID: 38027568 PMCID: PMC10660043 DOI: 10.1016/j.heliyon.2023.e21576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 10/19/2023] [Accepted: 10/24/2023] [Indexed: 12/01/2023] Open
Abstract
The current study aimed to systematically review the studies concerning the biological monitoring of benzene exposure in occupational settings. A systematic literature review was conducted in Scopus, EMBASE, Web of Science, and Medline from 1985 through July 2021. We included peer-reviewed original articles that investigated the association between occupational exposure to benzene and biological monitoring. We identified 4786 unique citations, of which 64 cross-sectional, one case-control, and one cohort study met our inclusion criteria. The most studied biomarkers were urinary trans-trans muconic acid, S- phenyl mercapturic acid, and urinary benzene, respectively. We found the airborne concentration of benzene as a key indicator for choosing a suitable biomarker. We suggest considering urinary benzene at low (0.5-5.0 TLV), urinary SPMA and TTMA at medium (5.0-25 and 25-50 TLV, respectively), and urinary phenol and hydroquinone and catechol at very high concentrations (500 and 1000 TLV ≤, respectively). Genetic polymorphism of glutathione S-transferase and oral intake of sorbic acid have confounding effects on the level of U-SPMA and U-TTMA, respectively. The airborne concentration, smoking habit, oral consumption of sorbic acid, and genetic polymorphism of workers should be considered in order to choose the appropriate indicator for biological monitoring of benzene exposure.
Collapse
Affiliation(s)
- Razzagh Rahimpoor
- Department of Occupational Health and Safety, Research Center for Health Sciences, School of Health, Larestan University of Medical Sciences, Larestan, Iran
| | - Hamed Jalilian
- School of Architecture, Planning and Environmental Policy, University College Dublin, Dublin, Ireland
| | - Heidar Mohammadi
- Department of Occupational Health and Safety, Research Center for Health Sciences, School of Health, Larestan University of Medical Sciences, Larestan, Iran
| | - Abdulrasoul Rahmani
- Department of Occupational Health and Safety, Research Center for Health Sciences, School of Health, Larestan University of Medical Sciences, Larestan, Iran
| |
Collapse
|
17
|
Scieszka D, Bolt AM, McCormick MA, Brigman JL, Campen MJ. Aging, longevity, and the role of environmental stressors: a focus on wildfire smoke and air quality. FRONTIERS IN TOXICOLOGY 2023; 5:1267667. [PMID: 37900096 PMCID: PMC10600394 DOI: 10.3389/ftox.2023.1267667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 09/25/2023] [Indexed: 10/31/2023] Open
Abstract
Aging is a complex biological process involving multiple interacting mechanisms and is being increasingly linked to environmental exposures such as wildfire smoke. In this review, we detail the hallmarks of aging, emphasizing the role of telomere attrition, cellular senescence, epigenetic alterations, proteostasis, genomic instability, and mitochondrial dysfunction, while also exploring integrative hallmarks - altered intercellular communication and stem cell exhaustion. Within each hallmark of aging, our review explores how environmental disasters like wildfires, and their resultant inhaled toxicants, interact with these aging mechanisms. The intersection between aging and environmental exposures, especially high-concentration insults from wildfires, remains under-studied. Preliminary evidence, from our group and others, suggests that inhaled wildfire smoke can accelerate markers of neurological aging and reduce learning capabilities. This is likely mediated by the augmentation of circulatory factors that compromise vascular and blood-brain barrier integrity, induce chronic neuroinflammation, and promote age-associated proteinopathy-related outcomes. Moreover, wildfire smoke may induce a reduced metabolic, senescent cellular phenotype. Future interventions could potentially leverage combined anti-inflammatory and NAD + boosting compounds to counter these effects. This review underscores the critical need to study the intricate interplay between environmental factors and the biological mechanisms of aging to pave the way for effective interventions.
Collapse
Affiliation(s)
- David Scieszka
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, NM, United States
| | - Alicia M. Bolt
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, NM, United States
| | - Mark A. McCormick
- Department of Biochemistry and Molecular Biology, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM, United States
| | - Jonathan L. Brigman
- Department of Neurosciences, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM, United States
| | - Matthew J. Campen
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, NM, United States
| |
Collapse
|
18
|
Shao Z, Han Y, Zhou D. Optimized bisulfite sequencing analysis reveals the lack of 5-methylcytosine in mammalian mitochondrial DNA. BMC Genomics 2023; 24:439. [PMID: 37542258 PMCID: PMC10403921 DOI: 10.1186/s12864-023-09541-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 07/27/2023] [Indexed: 08/06/2023] Open
Abstract
BACKGROUND DNA methylation is one of the best characterized epigenetic modifications in the mammalian nuclear genome and is known to play a significant role in various biological processes. Nonetheless, the presence of 5-methylcytosine (5mC) in mitochondrial DNA remains controversial, as data ranging from the lack of 5mC to very extensive 5mC have been reported. RESULTS By conducting comprehensive bioinformatic analyses of both published and our own data, we reveal that previous observations of extensive and strand-biased mtDNA-5mC are likely artifacts due to a combination of factors including inefficient bisulfite conversion, extremely low sequencing reads in the L strand, and interference from nuclear mitochondrial DNA sequences (NUMTs). To reduce false positive mtDNA-5mC signals, we establish an optimized procedure for library preparation and data analysis of bisulfite sequencing. Leveraging our modified workflow, we demonstrate an even distribution of 5mC signals across the mtDNA and an average methylation level ranging from 0.19% to 0.67% in both cell lines and primary cells, which is indistinguishable from the background noise. CONCLUSIONS We have developed a framework for analyzing mtDNA-5mC through bisulfite sequencing, which enables us to present multiple lines of evidence for the lack of extensive 5mC in mammalian mtDNA. We assert that the data available to date do not support the reported presence of mtDNA-5mC.
Collapse
Affiliation(s)
- Zhenyu Shao
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China.
| | - Yang Han
- Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University & Chinese Academy of Medical Sciences (RU069), Shanghai, 200032, China
| | - Dan Zhou
- Center for Medical Research and Innovation, Shanghai Pudong Hospital, Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University & Chinese Academy of Medical Sciences (RU069), Shanghai, 201399, China.
| |
Collapse
|
19
|
Ding B, Zhang X, Wan Z, Tian F, Ling J, Tan J, Peng X. Characterization of Mitochondrial DNA Methylation of Alzheimer's Disease in Plasma Cell-Free DNA. Diagnostics (Basel) 2023; 13:2351. [PMID: 37510095 PMCID: PMC10378411 DOI: 10.3390/diagnostics13142351] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/29/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
Noninvasive diagnosis of Alzheimer's disease (AD) is important for patients. Significant differences in the methylation of mitochondrial DNA (mtDNA) were found in AD brain tissue. Cell-free DNA (cfDNA) is a noninvasive and economical diagnostic tool. We aimed to characterize mtDNA methylation alterations in the plasma cfDNA of 31 AD patients and 26 age- and sex-matched cognitively normal control subjects. We found that the mtDNA methylation patterns differed between AD patients and control subjects. The mtDNA was predominantly hypomethylated in the plasma cfDNA of AD patients. The hypomethylation sites or regions were mainly located in mt-rRNA, mt-tRNA, and D-Loop regions. The hypomethylation of the D-Loop region in plasma cfDNA of AD patients was consistent with that in previous studies. This study presents evidence that hypomethylation in the non-protein coding region of mtDNA may contribute to the pathogenesis of AD and potential application for the diagnosis of AD.
Collapse
Affiliation(s)
- Binrong Ding
- Department of Geriatrics, The Third Xiangya Hospital, Central South University, Changsha 410000, China
| | - Xuewei Zhang
- Health Management Center, Xiangya Hospital, Central South University, Changsha 410000, China
| | - Zhengqing Wan
- Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Feng Tian
- The 8 Ward, The Ninth Hospital of Changsha, Changsha 410000, China
| | - Jie Ling
- Medical Functional Experiment Center, School of Basic Medicine, Central South University, Changsha 410000, China
| | - Jieqiong Tan
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha 410000, China
- Institute of Molecular Precision Medicine, Xiangya Hospital, Central South University, Changsha 410000, China
- Hunan Key Laboratory of Molecular Precision Medicine, Changsha 410000, China
- Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Changsha 410000, China
| | - Xiaoqing Peng
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha 410000, China
- Institute of Molecular Precision Medicine, Xiangya Hospital, Central South University, Changsha 410000, China
- Hunan Key Laboratory of Molecular Precision Medicine, Changsha 410000, China
- Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Changsha 410000, China
| |
Collapse
|
20
|
Mposhi A, Turner JD. How can early life adversity still exert an effect decades later? A question of timing, tissues and mechanisms. Front Immunol 2023; 14:1215544. [PMID: 37457711 PMCID: PMC10348484 DOI: 10.3389/fimmu.2023.1215544] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 06/14/2023] [Indexed: 07/18/2023] Open
Abstract
Exposure to any number of stressors during the first 1000 days from conception to age 2 years is important in shaping an individual's life trajectory of health and disease. Despite the expanding range of stressors as well as later-life phenotypes and outcomes, the underlying molecular mechanisms remain unclear. Our previous data strongly suggests that early-life exposure to a stressor reduces the capacity of the immune system to generate subsequent generations of naïve cells, while others have shown that, early life stress impairs the capacity of neuronal stem cells to proliferate as they age. This leads us to the "stem cell hypothesis" whereby exposure to adversity during a sensitive period acts through a common mechanism in all the cell types by programming the tissue resident progenitor cells. Furthermore, we review the mechanistic differences observed in fully differentiated cells and suggest that early life adversity (ELA) may alter mitochondria in stem cells. This may consequently alter the destiny of these cells, producing the lifelong "supply" of functionally altered fully differentiated cells.
Collapse
|
21
|
Jia Y, Li W, Li Y, Zhao L, Li C, Wang L, Fang J, Song S, Ji Y, Fang T, Zhang J, Guo L, Li P. The Levels of Polycyclic Aromatic Hydrocarbons and Their Derivatives in Plasma and Their Effect on Mitochondrial DNA Methylation in the Oilfield Workers. TOXICS 2023; 11:toxics11050466. [PMID: 37235280 DOI: 10.3390/toxics11050466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/14/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023]
Abstract
This study focuses on the components and levels of polycyclic aromatic hydrocarbons (PAHs) and their derivatives (MPAHs and OPAHs) in plasma samples from 19 oil workers, pre- and post-workshift, and their exposure-response relationship with mitochondrial DNA (mtDNA) methylation. PAH, MPAH, OPAH, and platelet mtDNA methylation levels were determined using a gas chromatograph mass spectrometer (GC-MS) and a pyrosequencing protocol, respectively. The total plasma concentrations of PAHs in mean value were, respectively, 31.4 ng/mL and 48.6 ng/mL in pre- and post-workshift, and Phe was the most abundant (13.3 ng/mL in pre-workshift and 22.1 ng/mL in post-workshift, mean value). The mean values of total concentrations of MPAHs and OPAHs in the pre-workshift were 2.7 ng/mL and 7.2 ng/mL, while in the post-workshift, they were 4.5 ng/mL and 8.7 ng/mL, respectively. The differences in the mean MT-COX1, MT-COX2, and MT-COX3 methylation levels between pre- and post-workshift were 2.36%, 5.34%, and 0.56%. Significant (p < 0.05) exposure-response relationships were found between PAHs and mtDNA methylation in the plasma of workers; exposure to Anthracene (Ant) could induce the up-regulation of the methylation of MT-COX1 (β = 0.831, SD = 0.105, p < 0.05), and exposure to Fluorene (Flo) and Phenanthrene (Phe) could induce the up-regulation of methylation of MT-COX3 (β = 0.115, SD = 0.042, p < 0.05 and β = 0.036, SD = 0.015, p < 0.05, respectively). The results indicated that exposure to PAHs was an independent factor influencing mtDNA methylation.
Collapse
Affiliation(s)
- Yaning Jia
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin 300072, China
- Tianjin Fourth Central Hospital, Tianjin 300140, China
- Wenzhou Safety (Emergency) Institute, Tianjin University, Wenzhou 325000, China
| | - Weixia Li
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin 300072, China
- Tianjin Fourth Central Hospital, Tianjin 300140, China
- Wenzhou Safety (Emergency) Institute, Tianjin University, Wenzhou 325000, China
| | - Yanlin Li
- Tianjin Boshengyuan Environmental Technology Center, Tianjin 300381, China
| | - Lei Zhao
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin 300072, China
- Tianjin Fourth Central Hospital, Tianjin 300140, China
- Wenzhou Safety (Emergency) Institute, Tianjin University, Wenzhou 325000, China
| | - Chenguang Li
- School of Environmental Science and Safety Engineering, Tianjin University of Technology, Tianjin 300384, China
- Tianjin Key Laboratory of Hazardous Waste Safety Disposal and Recycling Technology, Tianjin 300384, China
| | - Lei Wang
- Hebei Research Center for Geoanalysis, Baoding 071000, China
| | - Junkai Fang
- Tianjin Institute of Medical & Pharmaceutical Sciences, Tianjin 300070, China
| | - Shanjun Song
- National Institute of Metrology, Beijing 100029, China
| | - Yaqin Ji
- College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Tao Fang
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin 300072, China
- Tianjin Fourth Central Hospital, Tianjin 300140, China
- Wenzhou Safety (Emergency) Institute, Tianjin University, Wenzhou 325000, China
| | - Jing Zhang
- School of Environmental Science and Safety Engineering, Tianjin University of Technology, Tianjin 300384, China
- Tianjin Key Laboratory of Hazardous Waste Safety Disposal and Recycling Technology, Tianjin 300384, China
| | - Liqiong Guo
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin 300072, China
- Tianjin Fourth Central Hospital, Tianjin 300140, China
- Wenzhou Safety (Emergency) Institute, Tianjin University, Wenzhou 325000, China
| | - Penghui Li
- School of Environmental Science and Safety Engineering, Tianjin University of Technology, Tianjin 300384, China
- Tianjin Key Laboratory of Hazardous Waste Safety Disposal and Recycling Technology, Tianjin 300384, China
| |
Collapse
|
22
|
The potential role of environmental factors in modulating mitochondrial DNA epigenetic marks. VITAMINS AND HORMONES 2023; 122:107-145. [PMID: 36863791 DOI: 10.1016/bs.vh.2023.01.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Many studies implicate mitochondrial dysfunction in the development and progression of numerous chronic diseases. Mitochondria are responsible for most cellular energy production, and unlike other cytoplasmic organelles, mitochondria contain their own genome. Most research to date, through investigating mitochondrial DNA copy number, has focused on larger structural changes or alterations to the entire mitochondrial genome and their role in human disease. Using these methods, mitochondrial dysfunction has been linked to cancers, cardiovascular disease, and metabolic health. However, like the nuclear genome, the mitochondrial genome may experience epigenetic alterations, including DNA methylation that may partially explain some of the health effects of various exposures. Recently, there has been a movement to understand human health and disease within the context of the exposome, which aims to describe and quantify the entirety of all exposures people encounter throughout their lives. These include, among others, environmental pollutants, occupational exposures, heavy metals, and lifestyle and behavioral factors. In this chapter, we summarize the current research on mitochondria and human health, provide an overview of the current knowledge on mitochondrial epigenetics, and describe the experimental and epidemiologic studies that have investigated particular exposures and their relationships with mitochondrial epigenetic modifications. We conclude the chapter with suggestions for future directions in epidemiologic and experimental research that is needed to advance the growing field of mitochondrial epigenetics.
Collapse
|
23
|
Rehman A, Kumari R, Kamthan A, Tiwari R, Srivastava RK, van der Westhuizen FH, Mishra PK. Cell-free circulating mitochondrial DNA: An emerging biomarker for airborne particulate matter associated with cardiovascular diseases. Free Radic Biol Med 2023; 195:103-120. [PMID: 36584454 DOI: 10.1016/j.freeradbiomed.2022.12.083] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/16/2022] [Accepted: 12/20/2022] [Indexed: 12/29/2022]
Abstract
The association of airborne particulate matter exposure with the deteriorating function of the cardiovascular system is fundamentally driven by the impairment of mitochondrial-nuclear crosstalk orchestrated by aberrant redox signaling. The loss of delicate balance in retrograde communication from mitochondria to the nucleus often culminates in the methylation of the newly synthesized strand of mitochondrial DNA (mtDNA) through DNA methyl transferases. In highly metabolic active tissues such as the heart, mtDNA's methylation state alteration impacts mitochondrial bioenergetics. It affects transcriptional regulatory processes involved in biogenesis, fission, and fusion, often accompanied by the integrated stress response. Previous studies have demonstrated a paradoxical role of mtDNA methylation in cardiovascular pathologies linked to air pollution. A pronounced alteration in mtDNA methylation contributes to systemic inflammation, an etiological determinant for several co-morbidities, including vascular endothelial dysfunction and myocardial injury. In the current article, we evaluate the state of evidence and examine the considerable promise of using cell-free circulating methylated mtDNA as a predictive biomarker to reduce the more significant burden of ambient air pollution on cardiovascular diseases.
Collapse
Affiliation(s)
- Afreen Rehman
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India.
| | - Roshani Kumari
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India.
| | - Arunika Kamthan
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India.
| | - Rajnarayan Tiwari
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India.
| | | | | | - Pradyumna Kumar Mishra
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India.
| |
Collapse
|
24
|
Jiménez-Garza O, Ghosh M, Barrow TM, Godderis L. Toxicomethylomics revisited: A state-of-the-science review about DNA methylation modifications in blood cells from workers exposed to toxic agents. Front Public Health 2023; 11:1073658. [PMID: 36891347 PMCID: PMC9986591 DOI: 10.3389/fpubh.2023.1073658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 01/25/2023] [Indexed: 02/22/2023] Open
Abstract
Introduction Epigenetic marks have been proposed as early changes, at the subcellular level, in disease development. To find more specific biomarkers of effect in occupational exposures to toxicants, DNA methylation studies in peripheral blood cells have been performed. The goal of this review is to summarize and contrast findings about DNA methylation in blood cells from workers exposed to toxicants. Methods A literature search was performed using PubMed and Web of Science. After first screening, we discarded all studies performed in vitro and in experimental animals, as well as those performed in other cell types other than peripheral blood cells. Results: 116 original research papers met the established criteria, published from 2007 to 2022. The most frequent investigated exposures/labor group were for benzene (18.9%) polycyclic aromatic hydrocarbons (15.5%), particulate matter (10.3%), lead (8.6%), pesticides (7.7%), radiation (4.3%), volatile organic compound mixtures (4.3%), welding fumes (3.4%) chromium (2.5%), toluene (2.5%), firefighters (2.5%), coal (1.7%), hairdressers (1.7%), nanoparticles (1.7%), vinyl chloride (1.7%), and others. Few longitudinal studies have been performed, as well as few of them have explored mitochondrial DNA methylation. Methylation platforms have evolved from analysis in repetitive elements (global methylation), gene-specific promoter methylation, to epigenome-wide studies. The most reported observations were global hypomethylation as well as promoter hypermethylation in exposed groups compared to controls, while methylation at DNA repair/oncogenes genes were the most studied; studies from genome-wide studies detect differentially methylated regions, which could be either hypo or hypermethylated. Discussion Some evidence from longitudinal studies suggest that modifications observed in cross-sectional designs may be transitory; then, we cannot say that DNA methylation changes are predictive of disease development due to those exposures. Conclusion Due to the heterogeneity in the genes studied, and scarcity of longitudinal studies, we are far away from considering DNA methylation changes as biomarkers of effect in occupational exposures, and nor can we establish a clear functional or pathological correlate for those epigenetic modifications associated with the studied exposures.
Collapse
Affiliation(s)
- Octavio Jiménez-Garza
- Health Sciences Institute, Autonomous University of Hidalgo State, Pachuca Hidalgo, Mexico
| | - Manosij Ghosh
- Environment and Health Department, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Timothy M Barrow
- Faculty of Health Sciences and Wellbeing, University of Sunderland, Sunderland, United Kingdom
| | - Lode Godderis
- Environment and Health Department, Katholieke Universiteit Leuven, Leuven, Belgium
| |
Collapse
|
25
|
Dragoni F, Garau J, Orcesi S, Varesio C, Bordoni M, Scarian E, Di Gerlando R, Fazzi E, Battini R, Gjurgjaj A, Rizzo B, Pansarasa O, Gagliardi S. Comparison between D-loop methylation and mtDNA copy number in patients with Aicardi-Goutières Syndrome. Front Endocrinol (Lausanne) 2023; 14:1152237. [PMID: 36998476 PMCID: PMC10043473 DOI: 10.3389/fendo.2023.1152237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 02/28/2023] [Indexed: 03/16/2023] Open
Abstract
INTRODUCTION Aicardi-Goutières Syndrome (AGS) is a rare encephalopathy with early onset that can be transmitted in both dominant and recessive forms. Its phenotypic covers a wide range of neurological and extraneurological symptoms. Nine genes that are all involved in nucleic acids (NAs) metabolism or signaling have so far been linked to the AGS phenotype. Recently, a link between autoimmune or neurodegenerative conditions and mitochondrial dysfunctions has been found. As part of the intricate system of epigenetic control, the mtDNA goes through various alterations. The displacement (D-loop) region represents one of the most methylated sites in the mtDNA. The term "mitoepigenetics" has been introduced as a result of increasing data suggesting that epigenetic processes may play a critical role in the control of mtDNA transcription and replication. Since we showed that RNASEH2B and RNASEH2A-mutated Lymphoblastoid Cell Lines (LCLs) derived from AGS patients had mitochondrial alterations, highlighting changes in the mtDNA content, the main objective of this study was to examine any potential methylation changes in the D-loop regulatory region of mitochondria and their relationship to the mtDNA copy number in peripheral blood cells of AGS patients with mutations in various AGS genes and healthy controls. MATERIALS AND METHODS We collected blood samples from 25 AGS patients and we performed RT-qPCR to assess the mtDNA copy number and pyrosequencing to measure DNA methylation levels in the D-loop region. RESULTS Comparing AGS patients to healthy controls, D-loop methylation levels and mtDNA copy number increased significantly. We also observed that in AGS patients, the mtDNA copy number increased with age at sampling, but not the D-loop methylation levels, and there was no relationship between sex and mtDNA copy number. In addition, the D-loop methylation levels and mtDNA copy number in the AGS group showed a non-statistically significant positive relation. CONCLUSION These findings, which contradict the evidence for an inverse relationship between D-loop methylation levels and mtDNA copy number, show that AGS patients have higher D-loop methylation levels than healthy control subjects. Additional research is needed to identify the function of these features in the etiology and course of AGS.
Collapse
Affiliation(s)
- Francesca Dragoni
- Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, Pavia, Italy
- Molecular Biology and Transcriptomics Unit, IRCCS Mondino Foundation, Pavia, Italy
| | - Jessica Garau
- Neurogenetics Research Centre, IRCCS Mondino Foundation, Pavia, Italy
| | - Simona Orcesi
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
- Department of Child Neurology and Psychiatry, IRCCS Mondino Foundation, Pavia, Italy
| | - Costanza Varesio
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
- Department of Child Neurology and Psychiatry, IRCCS Mondino Foundation, Pavia, Italy
| | - Matteo Bordoni
- Cellular Model and Neuroepigenetics Unit, IRCCS Mondino Foundation, Pavia, Italy
| | - Eveljn Scarian
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
- Cellular Model and Neuroepigenetics Unit, IRCCS Mondino Foundation, Pavia, Italy
| | - Rosalinda Di Gerlando
- Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, Pavia, Italy
- Molecular Biology and Transcriptomics Unit, IRCCS Mondino Foundation, Pavia, Italy
| | - Elisa Fazzi
- Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
- Unit of Child Neurology and Psychiatry, ASST Spedali Civili, Brescia, Italy
| | - Roberta Battini
- Department of Developmental Neuroscience, IRCCS Stella Maris Foundation, Pisa, Italy
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Altea Gjurgjaj
- Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, Pavia, Italy
| | - Bartolo Rizzo
- Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, Pavia, Italy
| | - Orietta Pansarasa
- Cellular Model and Neuroepigenetics Unit, IRCCS Mondino Foundation, Pavia, Italy
- *Correspondence: Orietta Pansarasa,
| | - Stella Gagliardi
- Molecular Biology and Transcriptomics Unit, IRCCS Mondino Foundation, Pavia, Italy
| |
Collapse
|
26
|
Environmental Chemical Exposures and Mitochondrial Dysfunction: a Review of Recent Literature. Curr Environ Health Rep 2022; 9:631-649. [PMID: 35902457 PMCID: PMC9729331 DOI: 10.1007/s40572-022-00371-7] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/20/2022] [Indexed: 01/31/2023]
Abstract
PURPOSE OF REVIEW Mitochondria play various roles that are important for cell function and survival; therefore, significant mitochondrial dysfunction may have chronic consequences that extend beyond the cell. Mitochondria are already susceptible to damage, which may be exacerbated by environmental exposures. Therefore, the aim of this review is to summarize the recent literature (2012-2022) looking at the effects of six ubiquitous classes of compounds on mitochondrial dysfunction in human populations. RECENT FINDINGS The literature suggests that there are a number of biomarkers that are commonly used to identify mitochondrial dysfunction, each with certain advantages and limitations. Classes of environmental toxicants such as polycyclic aromatic hydrocarbons, air pollutants, heavy metals, endocrine-disrupting compounds, pesticides, and nanomaterials can damage the mitochondria in varied ways, with changes in mtDNA copy number and measures of oxidative damage the most commonly measured in human populations. Other significant biomarkers include changes in mitochondrial membrane potential, calcium levels, and ATP levels. This review identifies the biomarkers that are commonly used to characterize mitochondrial dysfunction but suggests that emerging mitochondrial biomarkers, such as cell-free mitochondria and blood cardiolipin levels, may provide greater insight into the impacts of exposures on mitochondrial function. This review identifies that the mtDNA copy number and measures of oxidative damage are commonly used to characterize mitochondrial dysfunction, but suggests using novel approaches in addition to well-characterized ones to create standardized protocols. We identified a dearth of studies on mitochondrial dysfunction in human populations exposed to metals, endocrine-disrupting chemicals, pesticides, and nanoparticles as a gap in knowledge that needs attention.
Collapse
|
27
|
Guo L, Wang Y, Yang X, Wang T, Yin J, Zhao L, Lin Y, Dai Y, Hou S, Duan H. Aberrant mitochondrial DNA methylation and declined pulmonary function in a population with polycyclic aromatic hydrocarbon composition in particulate matter. ENVIRONMENTAL RESEARCH 2022; 214:113797. [PMID: 35779619 DOI: 10.1016/j.envres.2022.113797] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 06/12/2022] [Accepted: 06/27/2022] [Indexed: 06/15/2023]
Abstract
Air pollution exposure has been found to be associated with epigenetic modification of the mitochondrial genome, which could subsequently induce adverse health outcomes. However, very limited studies exist regarding the association between fine particulate matter (PM2.5) exposure and pulmonary function at the molecular level of mitochondrial epigenetic changes. This study aimed to investigate the association of platelet mitochondrial DNA (mtDNA) methylation with occupational PM2.5 exposure and pulmonary function. First, 768 participants were occupationally exposed to polycyclic aromatic hydrocarbon (PAH)-enriched PM2.5 in a coke-oven plant in East China. The levels of PM2.5, PAH components bound to PM2.5, and urinary PAH metabolites in the workplace environment were measured as an internal dose, respectively. mtDNA methylation was measured by bisulfite pyrosequencing of two genes of ATP synthase (MT-ATP6 and MT-ATP8). Mediation analysis was conducted to evaluate the role of mtDNA methylation in pulmonary alteration induced by PAH. A decreasing trend of platelet mtDNA methylation was observed with increase in PM2.5 exposure across all participants. As an important PAH metabolite in urine, 1-hydroxypyrene (1-OHP) was significantly negatively associated with FEV1/FVC (Forced Expiratory Volume in 1s/Forced Vital Capacity) ratio. The participants with high serum folate levels (≥10 nmol/L) showed positive association between MT-ATP6 methylation and FEV1/FVC ratio. Mediation analysis suggested that MT-ATP6 methylation mediated the significant association of urinary 1-OHP with FEV1/FVC. Our findings suggested the methylation of platelet mitochondrial gene MT-ATP6 and FEV1/FVC to be negatively associated with PM exposure. Platelet mtDNA methylation acted as an intermediary between PAH exposure and lung function decline. The mitochondrial epigenetic regulation in platelets, in response to PM exposure, might be involved in subsequent progress of abnormal pulmonary function.
Collapse
Affiliation(s)
- Liqiong Guo
- Wenzhou Safety (Emergency) Institute, Tianjin University, Wenzhou, China; Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China; Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin, China
| | - Yanhua Wang
- Key Laboratory of Chemical Safety and Health, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xueli Yang
- Department of Occupational & Environmental Health, School of Public Health, Tianjin Medical University, Tianjin, China
| | - Ting Wang
- Key Laboratory of Chemical Safety and Health, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Jingjing Yin
- Key Laboratory of Chemical Safety and Health, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Lei Zhao
- Wenzhou Safety (Emergency) Institute, Tianjin University, Wenzhou, China; Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China; Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin, China
| | - Yang Lin
- Key Laboratory of Chemical Safety and Health, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yufei Dai
- Key Laboratory of Chemical Safety and Health, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Shike Hou
- Wenzhou Safety (Emergency) Institute, Tianjin University, Wenzhou, China; Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China; Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin, China.
| | - Huawei Duan
- Key Laboratory of Chemical Safety and Health, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China.
| |
Collapse
|
28
|
Targeted Mitochondrial Epigenetics: A New Direction in Alzheimer’s Disease Treatment. Int J Mol Sci 2022; 23:ijms23179703. [PMID: 36077101 PMCID: PMC9456144 DOI: 10.3390/ijms23179703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/19/2022] [Accepted: 08/25/2022] [Indexed: 11/23/2022] Open
Abstract
Mitochondrial epigenetic alterations are closely related to Alzheimer’s disease (AD), which is described in this review. Reports of the alteration of mitochondrial DNA (mtDNA) methylation in AD demonstrate that the disruption of the dynamic balance of mtDNA methylation and demethylation leads to damage to the mitochondrial electron transport chain and the obstruction of mitochondrial biogenesis, which is the most studied mitochondrial epigenetic change. Mitochondrial noncoding RNA modifications and the post-translational modification of mitochondrial nucleoproteins have been observed in neurodegenerative diseases and related diseases that increase the risk of AD. Although there are still relatively few mitochondrial noncoding RNA modifications and mitochondrial nuclear protein post-translational modifications reported in AD, we have reason to believe that these mitochondrial epigenetic modifications also play an important role in the AD process. This review provides a new research direction for the AD mechanism, starting from mitochondrial epigenetics. Further, this review summarizes therapeutic approaches to targeted mitochondrial epigenetics, which is the first systematic summary of therapeutic approaches in the field, including folic acid supplementation, mitochondrial-targeting antioxidants, and targeted ubiquitin-specific proteases, providing a reference for therapeutic targets for AD.
Collapse
|
29
|
Sanyal T, Das A, Bhowmick P, Bhattacharjee P. Interplay between environmental exposure and mitochondrial DNA methylation in disease susceptibility and cancer: a comprehensive review. THE NUCLEUS 2022. [DOI: 10.1007/s13237-022-00392-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022] Open
|
30
|
Basith S, Manavalan B, Shin TH, Park CB, Lee WS, Kim J, Lee G. The Impact of Fine Particulate Matter 2.5 on the Cardiovascular System: A Review of the Invisible Killer. NANOMATERIALS 2022; 12:nano12152656. [PMID: 35957086 PMCID: PMC9370264 DOI: 10.3390/nano12152656] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 07/29/2022] [Accepted: 07/30/2022] [Indexed: 12/26/2022]
Abstract
Air pollution exerts several deleterious effects on the cardiovascular system, with cardiovascular disease (CVD) accounting for 80% of all premature deaths caused by air pollution. Short-term exposure to particulate matter 2.5 (PM2.5) leads to acute CVD-associated deaths and nonfatal events, whereas long-term exposure increases CVD-associated risk of death and reduces longevity. Here, we summarize published data illustrating how PM2.5 may impact the cardiovascular system to provide information on the mechanisms by which it may contribute to CVDs. We provide an overview of PM2.5, its associated health risks, global statistics, mechanistic underpinnings related to mitochondria, and hazardous biological effects. We elaborate on the association between PM2.5 exposure and CVD development and examine preventive PM2.5 exposure measures and future strategies for combating PM2.5-related adverse health effects. The insights gained can provide critical guidelines for preventing pollution-related CVDs through governmental, societal, and personal measures, thereby benefitting humanity and slowing climate change.
Collapse
Affiliation(s)
- Shaherin Basith
- Department of Physiology, Ajou University School of Medicine, Suwon 16499, Korea; (S.B.); (T.H.S.); (C.B.P.)
| | - Balachandran Manavalan
- Computational Biology and Bioinformatics Laboratory, Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon 16419, Korea;
| | - Tae Hwan Shin
- Department of Physiology, Ajou University School of Medicine, Suwon 16499, Korea; (S.B.); (T.H.S.); (C.B.P.)
| | - Chan Bae Park
- Department of Physiology, Ajou University School of Medicine, Suwon 16499, Korea; (S.B.); (T.H.S.); (C.B.P.)
| | - Wang-Soo Lee
- Department of Internal Medicine, Division of Cardiology, College of Medicine, Chung-Ang University, Seoul 06973, Korea;
| | - Jaetaek Kim
- Department of Internal Medicine, Division of Endocrinology and Metabolism, College of Medicine, Chung-Ang University, Seoul 06973, Korea
- Correspondence: (J.K.); (G.L.)
| | - Gwang Lee
- Department of Physiology, Ajou University School of Medicine, Suwon 16499, Korea; (S.B.); (T.H.S.); (C.B.P.)
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Korea
- Correspondence: (J.K.); (G.L.)
| |
Collapse
|
31
|
Fan X, Yan T, Hou T, Xiong X, Feng L, Li S, Wang Z. Mitochondrial changes in fish cells in vitro in response to serum deprivation. FISH PHYSIOLOGY AND BIOCHEMISTRY 2022; 48:869-881. [PMID: 35652993 DOI: 10.1007/s10695-022-01088-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 05/23/2022] [Indexed: 06/15/2023]
Abstract
Mitochondria are critical to cellular activity that implicated in expansive networks to maintain organismal homeostasis under external stimuli of nutrient variability, a common and severe stress to fish performance during the intensive culture conditions. In the present study, zebrafish embryonic fibroblast cells were used to investigate the fish mitochondrial changes upon serum deprivation. Results showed that mitochondrial content and membrane potential were significantly reduced with increased intracellular ROS level in the serum deprivation treated fish cells. And the impaired mitochondria were characterized by rough and fracted outer membrane, and more fused mitochondria were frequently observed with the upregulated mRNA expressions of mitochondrial fusion genes (mfn1b, mfn2, and opa1). Besides, the mitochondrial DNA (mtDNA) copy numbers of mtatp6, mtcox1, mtcytb, mtnd4, and mtnd6 were overall showing the highly significant reduction, together with the mRNA expressions of these genes significantly increased, exhibiting the compensatory effects in mitochondria. Furthermore, the methyl-cytosine of whole mtDNA was compared and the methyl-reads numbers were distinctly increased in the treatment group, reflecting the instability of fish mtDNA with mitochondrial dysfunction under nutrient fluctuations. Collectively, current findings could facilitate the integrated research between fish mitochondrial response and external variables that indicates the potentially profound and durative deficits in fish health during the aquaculture processes.
Collapse
Affiliation(s)
- Xiaoteng Fan
- College of Animal Science and Technology, Northwest A&F University, 22 Xinong Road, Yangling, 712100, Shaanxi, China
| | - Tao Yan
- College of Animal Science and Technology, Northwest A&F University, 22 Xinong Road, Yangling, 712100, Shaanxi, China
| | - Tingting Hou
- College of Animal Science and Technology, Northwest A&F University, 22 Xinong Road, Yangling, 712100, Shaanxi, China
| | - Xiaofan Xiong
- College of Animal Science and Technology, Northwest A&F University, 22 Xinong Road, Yangling, 712100, Shaanxi, China
| | - Leilei Feng
- College of Animal Science and Technology, Northwest A&F University, 22 Xinong Road, Yangling, 712100, Shaanxi, China
| | - Shiyi Li
- College of Animal Science and Technology, Northwest A&F University, 22 Xinong Road, Yangling, 712100, Shaanxi, China
| | - Zaizhao Wang
- College of Animal Science and Technology, Northwest A&F University, 22 Xinong Road, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
32
|
Avila-Rojas SH, Aparicio-Trejo OE, Sanchez-Guerra MA, Barbier OC. Effects of fluoride exposure on mitochondrial function: Energy metabolism, dynamics, biogenesis and mitophagy. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2022; 94:103916. [PMID: 35738460 DOI: 10.1016/j.etap.2022.103916] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 06/09/2022] [Accepted: 06/17/2022] [Indexed: 06/15/2023]
Abstract
Fluoride is ubiquitous in the environment. Furthermore, drinking water represents the main source of exposure to fluoride for humans. Interestingly, low fluoride concentrations have beneficial effects on bone and teeth development; however, chronic fluoride exposure has harmful effects on human health. Besides, preclinical studies associate fluoride toxicity with oxidative stress, inflammation, and apoptosis. On the other hand, it is well-known that mitochondria play a key role in reactive oxygen species production. By contrast, fluoride's effect on processes such as mitochondrial dynamics, biogenesis and mitophagy are little known. These processes modulate the size, content, and distribution of mitochondria and their depuration help to counter the reactive oxygen species production and cytochrome c release, thereby allowing cell survival. However, a maladaptive response could enhance fluoride-induced toxicity. The present review gives a brief account of fluoride-induced mitochondrial alterations on soft and hard tissues, including liver, reproductive organs, heart, brain, lung, kidney, bone, and tooth.
Collapse
Affiliation(s)
- Sabino Hazael Avila-Rojas
- Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional. Departamento de Toxicología (CINVESTAV-IPN), Av. IPN No. 2508 Col., San Pedro Zacatenco, México CP 07360, Mexico.
| | | | - Marco Antonio Sanchez-Guerra
- Department of Developmental Neurobiology, National Institute of Perinatology, Montes Urales 800, Lomas Virreyes, Mexico 1100, Mexico.
| | - Olivier Christophe Barbier
- Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional. Departamento de Toxicología (CINVESTAV-IPN), Av. IPN No. 2508 Col., San Pedro Zacatenco, México CP 07360, Mexico.
| |
Collapse
|
33
|
Guo L, Liu Z, Li P, Ji Y, Song S, Zheng N, Zhao L, Jia Y, Fang J, Wang H, Byun HM. Association between mitochondrial DNA methylation and internal exposure to polycyclic aromatic hydrocarbons (PAHs), nitrated-PAHs (NPAHs) and oxygenated-PAHs (OPAHs) in young adults from Tianjin, China. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 241:113799. [PMID: 35772359 DOI: 10.1016/j.ecoenv.2022.113799] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 06/18/2022] [Accepted: 06/19/2022] [Indexed: 06/15/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs), nitrated-PAHs (NPAHs) and oxygenated-PAHs (OPAHs) are environmental pollutants with adverse effects on human health. The correlation between the concentrations of PAHs, NPAHs and OPAHs in human plasma and the methylation level of mitochondrial DNA (mtDNA) was investigated using data from 110 plasma samples collected in Tianjin, China. The median concentrations of PAHs, NPAHs and OPAHs were 16.0 (IQR: 14.4-20.7) ng/mL, 82.2 (IQR: 63.1-97.6) ng/mL and 49.6 (IQR: 28.6-53.8) ng/mL, and the mean proportions were 13.4%, 56.5% and 30.1%, respectively. Bisulfite-PCR pyrosequencing was used to measure the methylation level of MT-CO1 and tRNA-Leu. The methylation levels of two mitochondrial genes (MT-CO1, tRNA-Leu) including four CpG sites (MT-CO1-P1, MT-CO1-P2, tRNA-Leu-P1 and tRNA-Leu-P2) were 0.67% ± 1.38%, 13.54% ± 2.59%, 7.23% ± 5.35% and 1.64% ± 2.94%, respectively. To the best of our knowledge, this is the first time that significant correlations were found between PAHs and their derivatives exposure and mtDNA methylation levels.
Collapse
Affiliation(s)
- Liqiong Guo
- Wenzhou Safety (Emergency) Institute, Tianjin University, 325000, Wenzhou, China; Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin 300072, China; Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin 300072, China
| | - Ziquan Liu
- Wenzhou Safety (Emergency) Institute, Tianjin University, 325000, Wenzhou, China; Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin 300072, China; Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin 300072, China
| | - Penghui Li
- School of Environmental Science and Safety Engineering, Tianjin University of Technology, Tianjin 300384, China; Tianjin Key Laboratory of Hazardous Waste Safety Disposal and Recycling Technology, Tianjin 300384, China.
| | - Yaqin Ji
- College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China.
| | - Shanjun Song
- School of Environmental Science and Safety Engineering, Tianjin University of Technology, Tianjin 300384, China; Tianjin Key Laboratory of Hazardous Waste Safety Disposal and Recycling Technology, Tianjin 300384, China; National Institute of Metrology, Beijing 100029, China
| | - Na Zheng
- School of Environmental Science and Safety Engineering, Tianjin University of Technology, Tianjin 300384, China; Tianjin Key Laboratory of Hazardous Waste Safety Disposal and Recycling Technology, Tianjin 300384, China
| | - Lei Zhao
- Wenzhou Safety (Emergency) Institute, Tianjin University, 325000, Wenzhou, China; Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin 300072, China; Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin 300072, China
| | - Yaning Jia
- Wenzhou Safety (Emergency) Institute, Tianjin University, 325000, Wenzhou, China; Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin 300072, China; Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin 300072, China
| | - Junkai Fang
- Tianjin Healthcare Affairs Center, Tianjin 300070, China
| | - Huiyu Wang
- School of Environmental Science and Safety Engineering, Tianjin University of Technology, Tianjin 300384, China; College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Hyang-Min Byun
- Population Health Science Institute, Newcastle University, Campus for Ageing and Vitality, Newcastle Upon Tyne NE4 5PL, UK
| |
Collapse
|
34
|
Huang CH, Chang MC, Lai YC, Lin CY, Hsu CH, Tseng BY, Hsiao CK, Lu TP, Yu SL, Hsieh ST, Chen WJ. Mitochondrial DNA methylation profiling of the human prefrontal cortex and nucleus accumbens: correlations with aging and drug use. Clin Epigenetics 2022; 14:79. [PMID: 35752846 PMCID: PMC9233363 DOI: 10.1186/s13148-022-01300-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 06/20/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Despite the brain's high demand for energy, research on its epigenetics focuses on nuclear methylation, and much of the mitochondrial DNA methylation remains seldom investigated. With a focus on the nucleus accumbens (NAcc) and the prefrontal cortex (PFC), we aimed to identify the mitochondrial methylation signatures for (1) distinguishing the two brain areas, (2) correlating with aging, and (3) reflecting the influence of illicit drugs on the brain. RESULT We collected the brain tissue in the NAcc and the PFC from the deceased individuals without (n = 39) and with (n = 14) drug use and used whole-genome bisulfite sequencing to cover cytosine sites in the mitochondrial genome. We first detected differential methylations between the NAcc and the PFC in the nonusers group (P = 3.89 × 10-9). These function-related methylation differences diminished in the drug use group due to the selective alteration in the NAcc. Then, we found the correlation between the methylation levels and the chronological ages in the nonusers group (R2 = 0.34 in the NAcc and 0.37 in the PFC). The epigenetic clocks in illicit drug users, especially in the ketamine users, were accelerated in both brain regions by comparison with the nonusers. Finally, we summarized the effect of the illicit drugs on the methylation, which could significantly differentiate the drug users from the nonusers (AUC = 0.88 in the NAcc, AUC = 0.94 in the PFC). CONCLUSION The mitochondrial methylations were different between different brain areas, generally accumulated with aging, and sensitive to the effects of illicit drugs. We believed this is the first report to elucidate comprehensively the importance of mitochondrial DNA methylation in human brain.
Collapse
Affiliation(s)
- Chia-Hung Huang
- Forensic Biology Division, Institute of Forensic Medicine, Ministry of Justice, New Taipei City, Taiwan.,Forensic Pathology Division, Institute of Forensic Medicine, Ministry of Justice, New Taipei City, Taiwan.,Institute of Epidemiology and Preventive Medicine, National Taiwan University, Taipei, Taiwan
| | - Man-Chen Chang
- Forensic Biology Division, Institute of Forensic Medicine, Ministry of Justice, New Taipei City, Taiwan
| | - Yung-Chun Lai
- Forensic Biology Division, Institute of Forensic Medicine, Ministry of Justice, New Taipei City, Taiwan
| | - Chun-Yen Lin
- Forensic Biology Division, Institute of Forensic Medicine, Ministry of Justice, New Taipei City, Taiwan
| | - Cho-Hsien Hsu
- Forensic Pathology Division, Institute of Forensic Medicine, Ministry of Justice, New Taipei City, Taiwan
| | - Bo-Yuan Tseng
- Forensic Pathology Division, Institute of Forensic Medicine, Ministry of Justice, New Taipei City, Taiwan
| | - Chuhsing Kate Hsiao
- Institute of Epidemiology and Preventive Medicine, National Taiwan University, Taipei, Taiwan
| | - Tzu-Pin Lu
- Institute of Epidemiology and Preventive Medicine, National Taiwan University, Taipei, Taiwan
| | - Sung-Liang Yu
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Sung-Tsang Hsieh
- Department of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei, Taiwan.,Department of Neurology, College of Medicine and National Taiwan University Hospital, National Taiwan University, Taipei, Taiwan
| | - Wei J Chen
- Institute of Epidemiology and Preventive Medicine, National Taiwan University, Taipei, Taiwan. .,Department of Psychiatry, College of Medicine and National Taiwan University Hospital, National Taiwan University, Taipei, Taiwan. .,Center for Neuropsychiatric Research, National Health Research Institutes, Zhunan, Miaoli County, Taiwan.
| |
Collapse
|
35
|
Guitton R, Dölle C, Alves G, Ole-Bjørn T, Nido GS, Tzoulis C. Ultra-deep whole genome bisulfite sequencing reveals a single methylation hotspot in human brain mitochondrial DNA. Epigenetics 2022; 17:906-921. [PMID: 35253628 PMCID: PMC9423827 DOI: 10.1080/15592294.2022.2045754] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
While DNA methylation is established as a major regulator of gene expression in the nucleus, the existence of mitochondrial DNA (mtDNA) methylation remains controversial. Here, we characterized the mtDNA methylation landscape in the prefrontal cortex of neurological healthy individuals (n=26) and patients with Parkinson’s disease (n=27), using a combination of whole-genome bisulphite sequencing (WGBS) and bisulphite-independent methods. Accurate mtDNA mapping from WGBS data required alignment to an mtDNA reference only, to avoid misalignment to nuclear mitochondrial pseudogenes. Once correctly aligned, WGBS data provided ultra-deep mtDNA coverage (16,723 ± 7,711) and revealed overall very low levels of cytosine methylation. The highest methylation levels (5.49 ± 0.97%) were found on CpG position m.545, located in the heavy-strand promoter 1 region. The m.545 methylation was validated using a combination of methylation-sensitive DNA digestion and quantitative PCR analysis. We detected no association between mtDNA methylation profile and Parkinson’s disease. Interestingly, m.545 methylation correlated with the levels of mtDNA transcripts, suggesting a putative role in regulating mtDNA gene expression. In addition, we propose a robust framework for methylation analysis of mtDNA from WGBS data, which is less prone to false-positive findings due to misalignment of nuclear mitochondrial pseudogene sequences.
Collapse
Affiliation(s)
- Romain Guitton
- Neuro-SysMed, Department of Neurology, Haukeland University Hospital, Bergen, Norway.,Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Christian Dölle
- Neuro-SysMed, Department of Neurology, Haukeland University Hospital, Bergen, Norway.,Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Guido Alves
- The Norwegian Centre for Movement Disorders and Department of Neurology, Stavanger University Hospital, Stavanger, Norway.,Department of Mathematics and Natural Sciences, University of Stavanger, University of Bergen, Stavanger, Norway
| | - Tysnes Ole-Bjørn
- Neuro-SysMed, Department of Neurology, Haukeland University Hospital, Bergen, Norway.,Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Gonzalo S Nido
- Neuro-SysMed, Department of Neurology, Haukeland University Hospital, Bergen, Norway.,Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Charalampos Tzoulis
- Neuro-SysMed, Department of Neurology, Haukeland University Hospital, Bergen, Norway.,Department of Clinical Medicine, University of Bergen, Bergen, Norway
| |
Collapse
|
36
|
The pathogenic effects of particulate matter on neurodegeneration: a review. J Biomed Sci 2022; 29:15. [PMID: 35189880 PMCID: PMC8862284 DOI: 10.1186/s12929-022-00799-x] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 02/16/2022] [Indexed: 12/15/2022] Open
Abstract
The increasing amount of particulate matter (PM) in the ambient air is a pressing public health issue globally. Epidemiological studies involving data from millions of patients or volunteers have associated PM with increased risk of dementia and Alzheimer’s disease in the elderly and cognitive dysfunction and neurodegenerative pathology across all age groups, suggesting that PM may be a risk factor for neurodegenerative diseases. Neurodegenerative diseases affect an increasing population in this aging society, putting a heavy burden on economics and family. Therefore, understanding the mechanism by which PM contributes to neurodegeneration is essential to develop effective interventions. Evidence in human and animal studies suggested that PM induced neurodenegerative-like pathology including neurotoxicity, neuroinflammation, oxidative stress, and damage in blood–brain barrier and neurovascular units, which may contribute to the increased risk of neurodegeneration. Interestingly, antagonizing oxidative stress alleviated the neurotoxicity of PM, which may underlie the essential role of oxidative stress in PM’s potential effect in neurodegeneration. This review summarized up-to-date epidemiological and experimental studies on the pathogenic role of PM in neurodegenerative diseases and discussed the possible underlying mechanisms.
Collapse
|
37
|
Liu Y, Song F, Yang Y, Yang S, Jiang M, Zhang W, Ma Z, Gu X. Mitochondrial DNA methylation drift and postoperative delirium in mice. Eur J Anaesthesiol 2022; 39:133-144. [PMID: 34726198 DOI: 10.1097/eja.0000000000001620] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Mitochondrial dysfunction is linked to the etiopathogenesis of postoperative delirium (POD), which severely affects the prognosis of elderly patients undergoing surgery. The methylation of mitochondrial DNA (mtDNA), a new and incompletely described phenomenon that regulates the structure and function of mitochondria, is associated with ageing. However, the relationship between mtDNA methylation and POD has not been established. OBJECTIVE To explore the potential roles of mitochondrial epigenetic regulation in POD. DESIGN A randomised animal study. PARTICIPANTS Eighty-eight 6-month-old and one hundred seventy-six 18-month-old male C57BL/6N mice. INTERVENTIONS POD was induced by abdominal surgery under 1.4% isoflurane for 2 h. Behavioural tests were performed at 24 h before surgery and at 6, 9 and 24 h after surgery. MAIN OUTCOME MEASURES 5-methylcytosine (5-mC) at five CpG sites of the displacement loop (D-loop) and at 60 CpG sites of coding gene loci in the mitochondrial genome after surgery of the hippocampus, prefrontal cortex, amygdala and anterior cingulate cortex in 6 and 18-month-old mice were detected using bisulfite pyrosequencing. Mitochondrial structure, mitochondrial gene expression and mtDNA copy number were also examined using Electron microscopy and real time PCR to find the association with mtDNA methylation. RESULTS The mtDNA methylation drift manifested as a decrease in the methylation levels at the D-loop and an increase or decrease in the methylation levels at several coding gene loci, ultimately resulting in reduced mtDNA copy numbers, altered mitochondrial gene expression and damaged mitochondrial structures in the hippocampus and prefrontal cortex after surgery. The activation of Silent information regulator-1 (SIRT1) ameliorated anaesthesia-induced and surgery-induced mitochondrial dysfunction and delirium-like behaviours by regulating mtDNA methyltransferase-mediated mtDNA methylation. CONCLUSION These data support the existence of epigenetic mtDNA regulation in POD; however, further studies are required to explore the specific mechanisms. TRIAL REGISTRATION No 20181204 Drum tower hospital.
Collapse
Affiliation(s)
- Yue Liu
- From the Department of Anesthesiology, Affiliated Drum Tower Hospital of Medical School of Nanjing University, Nanjing, Jiangsu Province, China
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Okada T, Sun X, McIlfatrick S, St. John JC. Low guanine content and biased nucleotide distribution in vertebrate mtDNA can cause overestimation of non-CpG methylation. NAR Genom Bioinform 2022; 4:lqab119. [PMID: 35047811 PMCID: PMC8759572 DOI: 10.1093/nargab/lqab119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 11/24/2021] [Accepted: 01/09/2022] [Indexed: 11/12/2022] Open
Abstract
Mitochondrial DNA (mtDNA) methylation in vertebrates has been hotly debated for over 40 years. Most contrasting results have been reported following bisulfite sequencing (BS-seq) analyses. We addressed whether BS-seq experimental and analysis conditions influenced the estimation of the levels of methylation in specific mtDNA sequences. We found false positive non-CpG methylation in the CHH context (fpCHH) using unmethylated Sus scrofa mtDNA BS-seq data. fpCHH methylation was detected on the top/plus strand of mtDNA within low guanine content regions. These top/plus strand sequences of fpCHH regions would become extremely AT-rich sequences after BS-conversion, whilst bottom/minus strand sequences remained almost unchanged. These unique sequences caused BS-seq aligners to falsely assign the origin of each strand in fpCHH regions, resulting in false methylation calls. fpCHH methylation detection was enhanced by short sequence reads, short library inserts, skewed top/bottom read ratios and non-directional read mapping modes. We confirmed no detectable CHH methylation in fpCHH regions by BS-amplicon sequencing. The fpCHH peaks were located in the D-loop, ATP6, ND2, ND4L, ND5 and ND6 regions and identified in our S. scrofa ovary and oocyte data and human BS-seq data sets. We conclude that non-CpG methylation could potentially be overestimated in specific sequence regions by BS-seq analysis.
Collapse
|
39
|
Sun H, Li Y, Zhang J, Shi T, Li X, Cao X, Wang T, Kong N, Pang Y, Bold T, Zheng Y, Zhang R, Tang J. Platelet Mitochondrial DNA Methylation as Epigenetic Biomarker of Short-Term Air Pollution Exposure in Healthy Subjects. Front Mol Biosci 2022; 8:803488. [PMID: 35127821 PMCID: PMC8809460 DOI: 10.3389/fmolb.2021.803488] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 11/17/2021] [Indexed: 11/21/2022] Open
Abstract
Air pollution exposure is now considered a growing concern for global public health. RNA or DNA methylation changes caused by air pollution may be related to the development of cardiovascular disease. To investigate the early biomarkers of air pollution exposure, a panel study of eight college students recorded after a business trip from Qingdao to Shijiazhuang and back to Qingdao was performed in this work. The concentration of PM2.5, PM10, SO2, NO2, and CO in Shijiazhuang was higher than that in Qingdao during the study period. The platelet count was positively correlated with air pollutants of 0–6 day moving averages (βPM2.5 = 88.90; βPM10 = 61.83; βSO2 = 41.13; βNO2 = 57.70; βCO = 62.99, respectively, for an IQR increased). Additionally, internal dose biomarkers 2-OHNa, 1-OHNa, 2-OHFlu, 2,3-OHPhe, and ∑PAHs were also significantly associated with platelet count in participants. Furthermore, PM2.5 and PM10 are positively linked with methylation of one CpG site at platelet mitochondrial gene CO2 (PM2.5 = 0.47; PM10 = 0.25, respectively, for an IQR increase). Both platelet counts and methylation levels returned to their pre-exposure levels after leaving the highly contaminated area. In short, this study investigated the relationship between platelet properties and air pollution exposure, revealing that short-term exposure to air pollution might increase the risk of thrombosis. Our research suggests that platelet count and mitochondrial DNA methylation of mtCO2 site 2 in platelets from healthy adults may be the novel biomarker for acute exposure to air pollution.
Collapse
Affiliation(s)
- Huimin Sun
- Department of Occupational and Environmental Health, School of Public Health, Qingdao University, Qingdao, China
| | - Yanting Li
- Department of Occupational and Environmental Health, School of Public Health, Qingdao University, Qingdao, China
| | - Jianzhong Zhang
- Department of Occupational and Environmental Health, School of Public Health, Qingdao University, Qingdao, China
| | - Teng Shi
- Department of Occupational and Environmental Health, School of Public Health, Qingdao University, Qingdao, China
| | - Xin Li
- Department of Occupational and Environmental Health, School of Public Health, Qingdao University, Qingdao, China
| | - Xue Cao
- Department of Occupational and Environmental Health, School of Public Health, Qingdao University, Qingdao, China
| | - Tao Wang
- Department of Occupational and Environmental Health, School of Public Health, Qingdao University, Qingdao, China
| | - Nan Kong
- Department of Occupational and Environmental Health, School of Public Health, Qingdao University, Qingdao, China
| | - Yaxian Pang
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang, China
| | - Tsendmaa Bold
- Department of Occupational and Environmental Health, School of Public Health, Qingdao University, Qingdao, China
| | - Yuxin Zheng
- Department of Occupational and Environmental Health, School of Public Health, Qingdao University, Qingdao, China
| | - Rong Zhang
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang, China
- *Correspondence: Rong Zhang, ; Jinglong Tang,
| | - Jinglong Tang
- Department of Occupational and Environmental Health, School of Public Health, Qingdao University, Qingdao, China
- *Correspondence: Rong Zhang, ; Jinglong Tang,
| |
Collapse
|
40
|
Duarte-Hospital C, Tête A, Brial F, Benoit L, Koual M, Tomkiewicz C, Kim MJ, Blanc EB, Coumoul X, Bortoli S. Mitochondrial Dysfunction as a Hallmark of Environmental Injury. Cells 2021; 11:cells11010110. [PMID: 35011671 PMCID: PMC8750015 DOI: 10.3390/cells11010110] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/24/2021] [Accepted: 12/27/2021] [Indexed: 02/07/2023] Open
Abstract
Environmental factors including diet, sedentary lifestyle and exposure to pollutants largely influence human health throughout life. Cellular and molecular events triggered by an exposure to environmental pollutants are extremely variable and depend on the age, the chronicity and the doses of exposure. Only a fraction of all relevant mechanisms involved in the onset and progression of pathologies in response to toxicants has probably been identified. Mitochondria are central hubs of metabolic and cell signaling responsible for a large variety of biochemical processes, including oxidative stress, metabolite production, energy transduction, hormone synthesis, and apoptosis. Growing evidence highlights mitochondrial dysfunction as a major hallmark of environmental insults. Here, we present mitochondria as crucial organelles for healthy metabolic homeostasis and whose dysfunction induces critical adverse effects. Then, we review the multiple mechanisms of action of pollutants causing mitochondrial toxicity in link with chronic diseases. We propose the Aryl hydrocarbon Receptor (AhR) as a model of “exposome receptor”, whose activation by environmental pollutants leads to various toxic events through mitochondrial dysfunction. Finally, we provide some remarks related to mitotoxicity and risk assessment.
Collapse
Affiliation(s)
- Carolina Duarte-Hospital
- Environmental Toxicity, Therapeutic Targets, Cellular Signaling and Biomarkers, T3S, INSERM UMR-S 1124, F-75006 Paris, France; (C.D.-H.); (A.T.); (F.B.); (L.B.); (M.K.); (C.T.); (M.J.K.); (E.B.B.)
- Faculty of Sciences, Université de Paris, F-75006 Paris, France
| | - Arnaud Tête
- Environmental Toxicity, Therapeutic Targets, Cellular Signaling and Biomarkers, T3S, INSERM UMR-S 1124, F-75006 Paris, France; (C.D.-H.); (A.T.); (F.B.); (L.B.); (M.K.); (C.T.); (M.J.K.); (E.B.B.)
- Faculty of Sciences, Université de Paris, F-75006 Paris, France
| | - François Brial
- Environmental Toxicity, Therapeutic Targets, Cellular Signaling and Biomarkers, T3S, INSERM UMR-S 1124, F-75006 Paris, France; (C.D.-H.); (A.T.); (F.B.); (L.B.); (M.K.); (C.T.); (M.J.K.); (E.B.B.)
| | - Louise Benoit
- Environmental Toxicity, Therapeutic Targets, Cellular Signaling and Biomarkers, T3S, INSERM UMR-S 1124, F-75006 Paris, France; (C.D.-H.); (A.T.); (F.B.); (L.B.); (M.K.); (C.T.); (M.J.K.); (E.B.B.)
- Faculty of Sciences, Université de Paris, F-75006 Paris, France
| | - Meriem Koual
- Environmental Toxicity, Therapeutic Targets, Cellular Signaling and Biomarkers, T3S, INSERM UMR-S 1124, F-75006 Paris, France; (C.D.-H.); (A.T.); (F.B.); (L.B.); (M.K.); (C.T.); (M.J.K.); (E.B.B.)
- Faculty of Sciences, Université de Paris, F-75006 Paris, France
| | - Céline Tomkiewicz
- Environmental Toxicity, Therapeutic Targets, Cellular Signaling and Biomarkers, T3S, INSERM UMR-S 1124, F-75006 Paris, France; (C.D.-H.); (A.T.); (F.B.); (L.B.); (M.K.); (C.T.); (M.J.K.); (E.B.B.)
- Faculty of Sciences, Université de Paris, F-75006 Paris, France
| | - Min Ji Kim
- Environmental Toxicity, Therapeutic Targets, Cellular Signaling and Biomarkers, T3S, INSERM UMR-S 1124, F-75006 Paris, France; (C.D.-H.); (A.T.); (F.B.); (L.B.); (M.K.); (C.T.); (M.J.K.); (E.B.B.)
- Université Sorbonne Paris Nord, F-93000 Bobigny, France
| | - Etienne B. Blanc
- Environmental Toxicity, Therapeutic Targets, Cellular Signaling and Biomarkers, T3S, INSERM UMR-S 1124, F-75006 Paris, France; (C.D.-H.); (A.T.); (F.B.); (L.B.); (M.K.); (C.T.); (M.J.K.); (E.B.B.)
- Faculty of Sciences, Université de Paris, F-75006 Paris, France
| | - Xavier Coumoul
- Environmental Toxicity, Therapeutic Targets, Cellular Signaling and Biomarkers, T3S, INSERM UMR-S 1124, F-75006 Paris, France; (C.D.-H.); (A.T.); (F.B.); (L.B.); (M.K.); (C.T.); (M.J.K.); (E.B.B.)
- Faculty of Sciences, Université de Paris, F-75006 Paris, France
- Correspondence: (X.C.); (S.B.); Tel.: +33-1-76-53-43-70 (S.B.)
| | - Sylvie Bortoli
- Environmental Toxicity, Therapeutic Targets, Cellular Signaling and Biomarkers, T3S, INSERM UMR-S 1124, F-75006 Paris, France; (C.D.-H.); (A.T.); (F.B.); (L.B.); (M.K.); (C.T.); (M.J.K.); (E.B.B.)
- Faculty of Sciences, Université de Paris, F-75006 Paris, France
- Correspondence: (X.C.); (S.B.); Tel.: +33-1-76-53-43-70 (S.B.)
| |
Collapse
|
41
|
Schnegelberger RD, Lang AL, Arteel GE, Beier JI. Environmental toxicant-induced maladaptive mitochondrial changes: A potential unifying mechanism in fatty liver disease? Acta Pharm Sin B 2021; 11:3756-3767. [PMID: 35024304 PMCID: PMC8727895 DOI: 10.1016/j.apsb.2021.09.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 06/29/2021] [Accepted: 08/19/2021] [Indexed: 12/14/2022] Open
Abstract
Occupational and environmental exposures to industrial chemicals are well known to cause hepatotoxicity and liver injury. However, despite extensive evidence showing that exposure can lead to disease, current research approaches and regulatory policies fail to address the possibility that subtle changes caused by low level exposure to chemicals may also enhance preexisting conditions. In recent years, the conceptual understanding of the contribution of environmental chemicals to liver disease has progressed significantly. Mitochondria are often target of toxicity of environmental toxicants resulting in multisystem disorders involving different cells, tissues, and organs. Here, we review persistent maladaptive changes to mitochondria in response to environmental toxicant exposure as a mechanism of hepatotoxicity. With better understanding of the mechanism(s) and risk factors that mediate the initiation and progression of toxicant-induced liver disease, rational targeted therapy can be developed to better predict risk, as well as to treat or prevent this disease.
Collapse
Affiliation(s)
- Regina D. Schnegelberger
- Department of Pharmacology & Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Anna L. Lang
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Gavin E. Arteel
- Department of Medicine, Division of Gastroenterology, Hepatology & Nutrition, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Juliane I. Beier
- Department of Medicine, Division of Gastroenterology, Hepatology & Nutrition, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Department of Environmental & Occupational Health, University of Pittsburgh, Pittsburgh, PA 15213, USA
| |
Collapse
|
42
|
Sun Q, Ren X, Sun Z, Duan J. The critical role of epigenetic mechanism in PM 2.5-induced cardiovascular diseases. Genes Environ 2021; 43:47. [PMID: 34654488 PMCID: PMC8518296 DOI: 10.1186/s41021-021-00219-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Accepted: 09/27/2021] [Indexed: 12/18/2022] Open
Abstract
Cardiovascular disease (CVD) has become the leading cause of death worldwide, which seriously threatens human life and health. Epidemiological studies have confirmed the occurrence and development of CVD are closely related to air pollution. In particular, fine particulate matter (PM2.5) is recognized as an important environmental factor contributing to increased morbidity, mortality and hospitalization rates among adults and children. However, the underlying mechanism by which PM2.5 promotes CVD development remains unclear. With the development of epigenetics, recent studies have shown that PM2.5 exposure may induce or aggravate CVD through epigenetic changes. In order to better understand the potential mechanisms, this paper reviews the epigenetic changes of CVD caused by PM2.5. We summarized the epigenetic mechanisms of PM2.5 causing cardiovascular pathological damage and functional changes, mainly involving DNA methylation, non-coding RNA, histone modification and chromosome remodeling. It will provide important clues for exploring the biological mechanisms affecting cardiovascular health.
Collapse
Affiliation(s)
- Qinglin Sun
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, 100069, Beijing, P.R. China.,Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, 100069, Beijing, P.R. China
| | - Xiaoke Ren
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, 100069, Beijing, P.R. China.,Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, 100069, Beijing, P.R. China
| | - Zhiwei Sun
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, 100069, Beijing, P.R. China.,Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, 100069, Beijing, P.R. China
| | - Junchao Duan
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, 100069, Beijing, P.R. China. .,Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, 100069, Beijing, P.R. China. .,School of Public Health, Capital Medical University, 100069, Beijing, P.R. China.
| |
Collapse
|
43
|
Mukherjee S, Dasgupta S, Mishra PK, Chaudhury K. Air pollution-induced epigenetic changes: disease development and a possible link with hypersensitivity pneumonitis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:55981-56002. [PMID: 34498177 PMCID: PMC8425320 DOI: 10.1007/s11356-021-16056-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 08/16/2021] [Indexed: 05/16/2023]
Abstract
Air pollution is a serious threat to our health and has become one of the major causes of many diseases including cardiovascular disease, respiratory disease, and cancer. The association between air pollution and various diseases has long been a topic of research interest. However, it remains unclear how air pollution actually impacts health by modulating several important cellular functions. Recently, some evidence has emerged about air pollution-induced epigenetic changes, which are linked with the etiology of various human diseases. Among several epigenetic modifications, DNA methylation represents the most prominent epigenetic alteration underlying the air pollution-induced pathogenic mechanism. Several other types of epigenetic changes, such as histone modifications, miRNA, and non-coding RNA expression, have also been found to have been linked with air pollution. Hypersensitivity pneumonitis (HP), one of the most prevalent forms of interstitial lung diseases (ILDs), is triggered by the inhalation of certain organic and inorganic substances. HP is characterized by inflammation in the tissues around the lungs' airways and may lead to irreversible lung scarring over time. This review, in addition to other diseases, attempts to understand whether certain pollutants influence HP development through such epigenetic modifications.
Collapse
Affiliation(s)
- Suranjana Mukherjee
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302, India.
| | - Sanjukta Dasgupta
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302, India
| | - Pradyumna K Mishra
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, Madhya Pradesh, 462030, India
| | - Koel Chaudhury
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302, India
| |
Collapse
|
44
|
Liu Q, Li H, Guo L, Chen Q, Gao X, Li PH, Tang N, Guo X, Deng F, Wu S. Effects of short-term personal exposure to air pollution on platelet mitochondrial DNA methylation levels and the potential mitigation by L-arginine supplementation. JOURNAL OF HAZARDOUS MATERIALS 2021; 417:125963. [PMID: 33984786 DOI: 10.1016/j.jhazmat.2021.125963] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 04/04/2021] [Accepted: 04/21/2021] [Indexed: 06/12/2023]
Abstract
The potential effect of short-term exposure to air pollution on mitochondrial DNA (mtDNA) methylation remains to be explored. This study adopted an experimental exposure protocol nested with an intervention study on L-arginine (L-Arg) supplementation among 118 participants. Participants walked along a traffic road for 2 hours in the last day of a 14-day intervention to investigate the effects of short-term personal exposure to air pollution on platelet mtDNA methylation and the possible modifying effects of L-Arg supplementation. Results showed that short-term personal exposure to air pollutants was associated with hypomethylation in platelet mtDNA in 110 participants who completed the study protocol. Specifically, 2-h fine particulate matter (PM2.5) exposure during the outdoor walk was significantly associated with hypomethylation in mt12sRNA; 24-h PM2.5 and black carbon (BC) exposures from the start of the walk till next morning were both significantly associated with hypomethylation in the D-loop region; 24-h BC exposure was also significantly associated with hypomethylation in ATP8_P1. Supplementation with L-Arg could mitigate the air pollution effects on platelet mtDNA methylation, especially the D-loop region. These findings suggest that platelet mtDNA methylation may be sensitive effect biomarker for short-term exposure to air pollution and may help deepen the understanding of the epigenetic mechanisms of adverse cardiovascular effects of air pollution.
Collapse
Affiliation(s)
- Qisijing Liu
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, China
| | - Hongyu Li
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, China
| | - Liqiong Guo
- Institute of Disaster Medicine, Tianjin University, Tianjin, China; Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin, China
| | - Qiao Chen
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, China
| | - Xu Gao
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, China
| | - Peng-Hui Li
- School of Environmental Science and Safety Engineering, Tianjin University of Technology, Tianjin, China
| | - Naijun Tang
- Department of Occupational and Environmental Health, Tianjin Key Laboratory of Environment, Nutrition and Public Health, School of Public Health, Tianjin Medical University, Tianjin, China
| | - Xinbiao Guo
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, China
| | - Furong Deng
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, China.
| | - Shaowei Wu
- Department of Occupational and Environmental Health, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, China.
| |
Collapse
|
45
|
Ji B, Xiao LY, Ren JC, Zhang GH, Wang Y, Dong T, Li J, Zhang F, Xia ZL. Gene-Environment Interactions Between Environmental Response Genes Polymorphisms and Mitochondrial DNA Copy Numbers Among Benzene Workers. J Occup Environ Med 2021; 63:e408-e415. [PMID: 34184658 DOI: 10.1097/jom.0000000000002225] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
OBJECTIVE To determine the effect of mitochondrial DNA copy number (mtDNAcn) as a biomarker of benzene exposure. METHODS A total of 294 benzene-exposed workers and 102 controls were recruited. Biomarkers of mtDNAcn, cytokinesis-block micronucleus (MN) frequency, and peripheral blood white blood cells (WBC) were detected. Eighteen polymorphism sites in DNA damage repair and metabolic genes were analyzed. RESULTS Benzene exposure increased mtDNAcn and indicated a dose-response relationship (P < 0.001). mtDNAcn was negatively correlated with WBC count and DNA methylation and positively correlated with MN frequency. The AG type in rs1695 interacted with benzene exposure to aggravate mtDNAcn (β = 0.006, 95% CI: 0, 0.012, P = 0.050). rs13181, rs1695, rs1800975, and GSTM1 null were associated with benzene-induced mtDNAcn. Rs1695 interacted with benzene to increase mitochondrial damage. CONCLUSIONS Benzene exposure increases mtDNAcn levels in benzene-exposed workers.
Collapse
Affiliation(s)
- Buqiang Ji
- Department of Hematology, Linyi People's Hospital, 27 Jifang Road, Linyi, China (Ji, Xiao), School of Public Health, Xinxiang Medical University, 601 Jinsui Road, Xinxiang, China (Ren, Zhang, Wang, Dong, Li, Zhang), Department of Occupational Health and Toxicology, School of Public Health, Fudan University, 138 Yixueyuan Road, Shanghai, China (Xia)
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Park SH, Lee SY, Kim SA. Mitochondrial DNA Methylation Is Higher in Acute Coronary Syndrome Than in Stable Coronary Artery Disease. In Vivo 2021; 35:181-189. [PMID: 33402465 DOI: 10.21873/invivo.12247] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 10/08/2020] [Accepted: 10/13/2020] [Indexed: 01/03/2023]
Abstract
BACKGROUND/AIM Decreased mitochondrial DNA copy number (mtDNA-CN) has been associated with coronary artery disease (CAD). We aimed to clarify the difference between stable CAD (SCAD) and acute coronary syndrome (ACS) regarding mtDNA-CN and the DNA methylation ratio in regions influencing the regulation of mitochondrial biogenesis. MATERIALS AND METHODS Using quantitative real-time polymerase chain reaction, mtDNA-CN was measured in peripheral blood leukocytes sampled from 50 patients with SCAD and 50 with ACS. We then conducted bisulfite modification of DNA followed by methylation-specific polymerase chain reaction to quantify mtDNA methylation in the mitochondrial D-loop region (mtDLR) and nuclear DNA methylation in the promoter region of nuclear peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PPARGC1A) gene. RESULTS Compared to patients with SCAD, those with ACS had significantly lower relative mtDNA-CN (0.89±0.24 vs. 1.00±0.28, p=0.013) and higher DNA methylation ratio of the mtDLR (1.11±0.24 vs. 1.00±0.25, p=0.027) Conclusion: Our findings suggest that increased DNA methylation in the mtDLR, which translates into reduced mtDNA content, may affect the clinical phenotype of CAD.
Collapse
Affiliation(s)
- Sang Hyun Park
- Department of Internal Medicine, School of Medicine, Eulji University, Daejeon, Republic of Korea
| | - Soo Young Lee
- Department of Pharmacology, School of Medicine, Eulji University, Daejeon, Republic of Korea
| | - Soon Ae Kim
- Department of Pharmacology, School of Medicine, Eulji University, Daejeon, Republic of Korea
| |
Collapse
|
47
|
Mitochondrial DNA Methylation and Human Diseases. Int J Mol Sci 2021; 22:ijms22094594. [PMID: 33925624 PMCID: PMC8123858 DOI: 10.3390/ijms22094594] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/23/2021] [Accepted: 04/25/2021] [Indexed: 12/12/2022] Open
Abstract
Epigenetic modifications of the nuclear genome, including DNA methylation, histone modifications and non-coding RNA post-transcriptional regulation, are increasingly being involved in the pathogenesis of several human diseases. Recent evidence suggests that also epigenetic modifications of the mitochondrial genome could contribute to the etiology of human diseases. In particular, altered methylation and hydroxymethylation levels of mitochondrial DNA (mtDNA) have been found in animal models and in human tissues from patients affected by cancer, obesity, diabetes and cardiovascular and neurodegenerative diseases. Moreover, environmental factors, as well as nuclear DNA genetic variants, have been found to impair mtDNA methylation patterns. Some authors failed to find DNA methylation marks in the mitochondrial genome, suggesting that it is unlikely that this epigenetic modification plays any role in the control of the mitochondrial function. On the other hand, several other studies successfully identified the presence of mtDNA methylation, particularly in the mitochondrial displacement loop (D-loop) region, relating it to changes in both mtDNA gene transcription and mitochondrial replication. Overall, investigations performed until now suggest that methylation and hydroxymethylation marks are present in the mtDNA genome, albeit at lower levels compared to those detectable in nuclear DNA, potentially contributing to the mitochondria impairment underlying several human diseases.
Collapse
|
48
|
Pérez-Muñoz AA, de Lourdes Muñoz M, García-Hernández N, Santander-Lucio H. A New Approach to Identify the Methylation Sites in the Control Region of Mitochondrial DNA. Curr Mol Med 2021; 21:151-164. [PMID: 32484108 DOI: 10.2174/1566524020666200528154005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 04/13/2020] [Accepted: 04/15/2020] [Indexed: 11/22/2022]
Abstract
Mitochondrial DNA (mtDNA) methylation has the potential to be used as a biomarker of human development or disease. However, mtDNA methylation procedures are costly and time-consuming. Therefore, we developed a new approach based on an RT-PCR assay for the base site identification of methylated cytosine in the control region of mtDNA through a simple, fast, specific, and low-cost strategy. Total DNA was purified, and methylation was determined by RT-PCR bisulfite sequencing. This procedure included the DNA purification, bisulfite treatment and RT-PCR amplification of the control region divided into three subregions with specific primers. Sequences obtained with and without the bisulfite treatment were compared to identify the methylated cytosine dinucleotides. Furthermore, the efficiency of C to U conversion of cytosines was assessed by including a negative control. Interestingly, mtDNA methylation was observed mainly within non-Cphosphate- G (non-CpG) dinucleotides and mostly in the regions containing regulatory elements, such as OH or CSBI, CSBII, and CSBIII. This new approach will promote the generation of new information regarding mtDNA methylation patterns in samples from patients with different pathologies or that are exposed to a toxic environment in diverse human populations.
Collapse
Affiliation(s)
- Ashael Alfredo Pérez-Muñoz
- Department of Genetics and Molecular Biology, Research and Advanced Studies Center of National Polytechnic Institute (CINVESTAV of IPN), Mexico City, Mexico
| | - María de Lourdes Muñoz
- Department of Genetics and Molecular Biology, Research and Advanced Studies Center of National Polytechnic Institute (CINVESTAV of IPN), Mexico City, Mexico
| | - Normand García-Hernández
- Unidad de Investigacion Medica en Genetica Humana, Unidad Medica de Alta Especialidad Hospital de Pediatria "Dr. Silvestre Frenk Freund", Centro Medico Nacional "Siglo XXI", Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico
| | - Heriberto Santander-Lucio
- Department of Genetics and Molecular Biology, Research and Advanced Studies Center of National Polytechnic Institute (CINVESTAV of IPN), Mexico City, Mexico
| |
Collapse
|
49
|
Hallmarks of environmental insults. Cell 2021; 184:1455-1468. [PMID: 33657411 DOI: 10.1016/j.cell.2021.01.043] [Citation(s) in RCA: 191] [Impact Index Per Article: 47.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/15/2021] [Accepted: 01/25/2021] [Indexed: 02/07/2023]
Abstract
Environmental insults impair human health around the world. Contaminated air, water, soil, food, and occupational and household settings expose humans of all ages to a plethora of chemicals and environmental stressors. We propose eight hallmarks of environmental insults that jointly underpin the damaging impact of environmental exposures during the lifespan. Specifically, they include oxidative stress and inflammation, genomic alterations and mutations, epigenetic alterations, mitochondrial dysfunction, endocrine disruption, altered intercellular communication, altered microbiome communities, and impaired nervous system function. They provide a framework to understand why complex mixtures of environmental exposures induce severe health effects even at relatively modest concentrations.
Collapse
|
50
|
Daiber A, Kuntic M, Hahad O, Delogu LG, Rohrbach S, Di Lisa F, Schulz R, Münzel T. Effects of air pollution particles (ultrafine and fine particulate matter) on mitochondrial function and oxidative stress - Implications for cardiovascular and neurodegenerative diseases. Arch Biochem Biophys 2020; 696:108662. [PMID: 33159890 DOI: 10.1016/j.abb.2020.108662] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 10/28/2020] [Accepted: 10/29/2020] [Indexed: 02/06/2023]
Abstract
Environmental pollution is a major cause of global mortality and burden of disease. All chemical pollution forms together may be responsible for up to 12 million annual excess deaths as estimated by the Lancet Commission on pollution and health as well as the World Health Organization. Ambient air pollution by particulate matter (PM) and ozone was found to be associated with an all-cause mortality rate of up to 9 million in the year 2015, with the majority being of cerebro- and cardiovascular nature (e.g. stroke and ischemic heart disease). Recent evidence suggests that exposure to airborne particles and gases contributes to and accelerates neurodegenerative diseases. Especially, airborne toxic particles contribute to these adverse health effects. Whereas it is well established that air pollution in the form of PM may lead to dysregulation of neurohormonal stress pathways and may trigger inflammation as well as oxidative stress, leading to secondary damage of cardiovascular structures, the mechanistic impact of PM-induced mitochondrial damage and dysfunction is not well established. With the present review we will discuss similarities between mitochondrial damage and dysfunction observed in the development and progression of cardiovascular disease and neurodegeneration as well as those adverse mitochondrial pathomechanisms induced by airborne PM.
Collapse
Affiliation(s)
- Andreas Daiber
- Department of Cardiology, University Medical Center Mainz, Johannes Gutenberg University, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany.
| | - Marin Kuntic
- Department of Cardiology, University Medical Center Mainz, Johannes Gutenberg University, Germany
| | - Omar Hahad
- Department of Cardiology, University Medical Center Mainz, Johannes Gutenberg University, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany
| | - Lucia G Delogu
- Department of Biomedical Sciences, University of Padova, 35131, Padova, Italy
| | - Susanne Rohrbach
- Institute of Physiology, Justus-Liebig University, Giessen, Germany
| | - Fabio Di Lisa
- Department of Biomedical Sciences, University of Padova, 35131, Padova, Italy
| | - Rainer Schulz
- Institute of Physiology, Justus-Liebig University, Giessen, Germany
| | - Thomas Münzel
- Department of Cardiology, University Medical Center Mainz, Johannes Gutenberg University, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany.
| |
Collapse
|