1
|
He S, Zambelli VO, Sinharoy P, Brabenec L, Bian Y, Rwere F, Hell RC, Stein Neto B, Hung B, Yu X, Zhao M, Luo Z, Wu C, Xu L, Svensson KJ, McAllister SL, Stary CM, Wagner NM, Zhang Y, Gross ER. A human TRPV1 genetic variant within the channel gating domain regulates pain sensitivity in rodents. J Clin Invest 2023; 133:163735. [PMID: 36472910 PMCID: PMC9888391 DOI: 10.1172/jci163735] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022] Open
Abstract
Pain signals are relayed to the brain via a nociceptive system, and in rare cases, this nociceptive system contains genetic variants that can limit the pain response. Here, we questioned whether a human transient receptor potential vanilloid 1 (TRPV1) missense variant causes a resistance to noxious stimuli and, further, whether we could target this region with a cell-permeable peptide as a pain therapeutic. Initially using a computational approach, we identified a human K710N TRPV1 missense variant in an otherwise highly conserved region of mammalian TRPV1. After generating a TRPV1K710N-knockin mouse using CRISPR/Cas9, we discovered that the K710N variant reduced capsaicin-induced calcium influx in dorsal root ganglion neurons. The TRPV1K710N rodents also had less acute behavioral responses to noxious chemical stimuli and less hypersensitivity to nerve injury, while their response to noxious heat remained intact. Furthermore, blocking this K710 region in WT rodents using a cell-penetrating peptide limited acute behavioral responses to noxious stimuli and returned pain hypersensitivity induced by nerve injury to baseline levels. These findings identify K710 TRPV1 as a discrete site that is crucial for the control of nociception and provide insights into how to leverage rare genetic variants in humans to uncover fresh strategies for developing pain therapeutics.
Collapse
Affiliation(s)
- Shufang He
- Department of Anesthesiology and Perioperative Medicine, the Second Hospital of Anhui Medical University, Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China.,Department of Anesthesiology, Perioperative and Pain Medicine, School of Medicine, Stanford University, Stanford, California, USA
| | - Vanessa O. Zambelli
- Department of Anesthesiology, Perioperative and Pain Medicine, School of Medicine, Stanford University, Stanford, California, USA.,Laboratory of Pain and Signaling, Butantan Institute, Sāo Paulo, Brazil
| | - Pritam Sinharoy
- Department of Anesthesiology, Perioperative and Pain Medicine, School of Medicine, Stanford University, Stanford, California, USA
| | - Laura Brabenec
- Department of Anesthesiology, Intensive Care and Pain Medicine, University Hospital Muenster, Muenster, Germany
| | - Yang Bian
- Department of Anesthesiology, Perioperative and Pain Medicine, School of Medicine, Stanford University, Stanford, California, USA
| | - Freeborn Rwere
- Department of Anesthesiology, Perioperative and Pain Medicine, School of Medicine, Stanford University, Stanford, California, USA
| | - Rafaela C.R. Hell
- Department of Anesthesiology, Perioperative and Pain Medicine, School of Medicine, Stanford University, Stanford, California, USA
| | - Beatriz Stein Neto
- Department of Anesthesiology, Perioperative and Pain Medicine, School of Medicine, Stanford University, Stanford, California, USA.,Laboratory of Pain and Signaling, Butantan Institute, Sāo Paulo, Brazil
| | - Barbara Hung
- Department of Anesthesiology, Perioperative and Pain Medicine, School of Medicine, Stanford University, Stanford, California, USA
| | - Xuan Yu
- Department of Anesthesiology, Perioperative and Pain Medicine, School of Medicine, Stanford University, Stanford, California, USA
| | - Meng Zhao
- Department of Pathology, ,Stanford Diabetes Research Center, and,Stanford Cardiovascular Institute, School of Medicine, Stanford University, Stanford, California, USA
| | - Zhaofei Luo
- Department of Anesthesiology and Perioperative Medicine, the Second Hospital of Anhui Medical University, Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China
| | - Chao Wu
- Department of Anesthesiology and Perioperative Medicine, the Second Hospital of Anhui Medical University, Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China
| | - Lijun Xu
- Department of Anesthesiology, Perioperative and Pain Medicine, School of Medicine, Stanford University, Stanford, California, USA
| | - Katrin J. Svensson
- Department of Pathology, ,Stanford Diabetes Research Center, and,Stanford Cardiovascular Institute, School of Medicine, Stanford University, Stanford, California, USA
| | - Stacy L. McAllister
- Department of Anesthesiology, Perioperative and Pain Medicine, School of Medicine, Stanford University, Stanford, California, USA.,Department of Obstetrics and Gynecology, School of Medicine, Emory University, Atlanta, Georgia, USA
| | - Creed M. Stary
- Department of Anesthesiology, Perioperative and Pain Medicine, School of Medicine, Stanford University, Stanford, California, USA
| | - Nana-Maria Wagner
- Department of Anesthesiology, Intensive Care and Pain Medicine, University Hospital Muenster, Muenster, Germany
| | - Ye Zhang
- Department of Anesthesiology and Perioperative Medicine, the Second Hospital of Anhui Medical University, Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China
| | - Eric R. Gross
- Department of Anesthesiology, Perioperative and Pain Medicine, School of Medicine, Stanford University, Stanford, California, USA.,Stanford Diabetes Research Center, and,Stanford Cardiovascular Institute, School of Medicine, Stanford University, Stanford, California, USA
| |
Collapse
|
2
|
Chen W, Xu Q, Ma X, Mo J, Lin G, He G, Chu Z, Li J. Synthesis and biological evaluation of N-(benzene sulfonyl)acetamide derivatives as anti-inflammatory and analgesic agents with COX-2/5-LOX/TRPV1 multifunctional inhibitory activity. Bioorg Med Chem Lett 2023; 80:129101. [PMID: 36481449 DOI: 10.1016/j.bmcl.2022.129101] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/24/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022]
Abstract
In this study, a series of structurally novel N-(benzene sulfonyl) acetamide derivatives were designed, synthesized, and biologically evaluated as COX-2/5-LOX/TRPV1 multitarget inhibitors for anti-inflammatory and analgesic therapy. Among them, 9a and 9b displayed favorable COX-2 (9a IC50 = 0.011 μM, 9b IC50 = 0.023 μM), 5-LOX (9a IC50 = 0.046 μM, 9b IC50 = 0.31 μM) and TRPV1 (9a IC50 = 0.008 μM, 9b IC50 = 0.14 μM) inhibitory activities. The pharmacokinetic (PK) study of 9a in SD rats at the dosage of 10 mg/kg demonstrated a high oral exposure, an acceptable clearance and a favorable bioavailability (Cmax = 5807.18 ± 2657.83 ng/mL, CL = 3.24 ± 1.47 mL/min/kg, F = 96.8 %). Further in vivo efficacy studies illustrated that 9a was capable of ameliorating formalin-induced pain and inhibiting capsaicin-induced ear edema.
Collapse
Affiliation(s)
- Wenli Chen
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China; Hefei Industrial Pharmaceutical Institute Co., Ltd., Hefei, Anhui 230061, China
| | - Qinlong Xu
- Hefei Industrial Pharmaceutical Institute Co., Ltd., Hefei, Anhui 230061, China
| | - Xiaodong Ma
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Jiajia Mo
- Hefei Industrial Pharmaceutical Institute Co., Ltd., Hefei, Anhui 230061, China
| | - Gaofeng Lin
- Hefei Industrial Pharmaceutical Institute Co., Ltd., Hefei, Anhui 230061, China
| | - Guangwei He
- Hefei Industrial Pharmaceutical Institute Co., Ltd., Hefei, Anhui 230061, China
| | - Zhaoxing Chu
- Hefei Industrial Pharmaceutical Institute Co., Ltd., Hefei, Anhui 230061, China.
| | - Jiaming Li
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China.
| |
Collapse
|
3
|
Ríos AS, Paula De Vincenti A, Casadei M, Aquino JB, Brumovsky PR, Paratcha G, Ledda F. Etv4 regulates nociception by controlling peptidergic sensory neuron development and peripheral tissue innervation. Development 2022; 149:276156. [PMID: 35904071 DOI: 10.1242/dev.200583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 07/14/2022] [Indexed: 11/20/2022]
Abstract
ABSTRACT
The perception of noxious environmental stimuli by nociceptive sensory neurons is an essential mechanism for the prevention of tissue damage. Etv4 is a transcriptional factor expressed in most nociceptors in dorsal root ganglia (DRG) during the embryonic development. However, its physiological role remains unclear. Here, we show that Etv4 ablation results in defects in the development of the peripheral peptidergic projections in vivo, and in deficits in axonal elongation and growth cone morphology in cultured sensory neurons in response to NGF. From a mechanistic point of view, our findings reveal that NGF regulates Etv4-dependent gene expression of molecules involved in extracellular matrix (ECM) remodeling. Etv4-null mice were less sensitive to noxious heat stimuli and chemical pain, and this behavioral phenotype correlates with a significant reduction in the expression of the pain-transducing ion channel TRPV1 in mutant mice. Together, our data demonstrate that Etv4 is required for the correct innervation and function of peptidergic sensory neurons, regulating a transcriptional program that involves molecules associated with axonal growth and pain transduction.
Collapse
Affiliation(s)
- Antonella S. Ríos
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires 1 , Buenos Aires C1405 BWE, Argentina
| | - Ana Paula De Vincenti
- Laboratorio de Neurociencia Molecular y Celular, Instituto de Biología Celular y Neurociencias (IBCN)-CONICET-UBA, Facultad de Medicina. Universidad de Buenos Aires, Buenos Aires (UBA) 2 , Buenos Aires 1121, CP1121 , Argentina
| | - Mailin Casadei
- Instituto de Investigaciones en Medicina Traslacional, CONICET-Universidad Austral 3 , Buenos Aires B1629 ODT, Argentina
| | - Jorge B. Aquino
- Instituto de Investigaciones en Medicina Traslacional, CONICET-Universidad Austral 3 , Buenos Aires B1629 ODT, Argentina
| | - Pablo R. Brumovsky
- Instituto de Investigaciones en Medicina Traslacional, CONICET-Universidad Austral 3 , Buenos Aires B1629 ODT, Argentina
| | - Gustavo Paratcha
- Laboratorio de Neurociencia Molecular y Celular, Instituto de Biología Celular y Neurociencias (IBCN)-CONICET-UBA, Facultad de Medicina. Universidad de Buenos Aires, Buenos Aires (UBA) 2 , Buenos Aires 1121, CP1121 , Argentina
| | - Fernanda Ledda
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires 1 , Buenos Aires C1405 BWE, Argentina
| |
Collapse
|
4
|
Tuckey B, Srbely J, Rigney G, Vythilingam M, Shah J. Impaired Lymphatic Drainage and Interstitial Inflammatory Stasis in Chronic Musculoskeletal and Idiopathic Pain Syndromes: Exploring a Novel Mechanism. FRONTIERS IN PAIN RESEARCH 2021; 2:691740. [PMID: 35295453 PMCID: PMC8915610 DOI: 10.3389/fpain.2021.691740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 07/19/2021] [Indexed: 11/13/2022] Open
Abstract
A normal functioning lymphatic pump mechanism and unimpaired venous drainage are required for the body to remove inflammatory mediators from the extracellular compartment. Impaired vascular perfusion and/or lymphatic drainage may result in the accumulation of inflammatory substances in the interstitium, creating continuous nociceptor activation and related pathophysiological states including central sensitization and neuroinflammation. We hypothesize that following trauma and/or immune responses, inflammatory mediators may become entrapped in the recently discovered interstitial, pre-lymphatic pathways and/or initial lymphatic vessels. The ensuing interstitial inflammatory stasis is a pathophysiological state, created by specific pro-inflammatory cytokine secretion including tumor necrosis factor alpha, interleukin 6, and interleukin 1b. These cytokines can disable the local lymphatic pump mechanism, impair vascular perfusion via sympathetic activation and, following transforming growth factor beta 1 expression, may lead to additional stasis through direct fascial compression of pre-lymphatic pathways. These mechanisms, when combined with other known pathophysiological processes, enable us to describe a persistent feed-forward loop capable of creating and maintaining chronic pain syndromes. The potential for concomitant visceral and/or vascular dysfunction, initiated and maintained by the same feed-forward inflammatory mechanism, is also described.
Collapse
Affiliation(s)
- Brian Tuckey
- Department of Physical Therapy, Tuckey and Associates Physical Therapy, Frederick, MD, United States
| | - John Srbely
- Department of Human Health and Nutritional Sciences, University of Guelph, ON, Canada
| | - Grant Rigney
- Department of Psychiatry, Oxford University, Oxford, United Kingdom
| | - Meena Vythilingam
- Department of Health and Human Services, Center for Health Innovation, Office of the Assistant Secretary for Health, Washington, DC, United States
| | - Jay Shah
- Department of Rehabilitation Medicine, Clinical Center, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
5
|
Spekker E, Laborc KF, Bohár Z, Nagy-Grócz G, Fejes-Szabó A, Szűcs M, Vécsei L, Párdutz Á. Effect of dural inflammatory soup application on activation and sensitization markers in the caudal trigeminal nucleus of the rat and the modulatory effects of sumatriptan and kynurenic acid. J Headache Pain 2021; 22:17. [PMID: 33789568 PMCID: PMC8011387 DOI: 10.1186/s10194-021-01229-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 03/15/2021] [Indexed: 01/12/2023] Open
Abstract
Background The topical inflammatory soup can model the inflammation of the dura mater causing hypersensitivity and activation of the trigeminal system, a phenomenon present in migraineurs. Calcitonin gene-related peptide, transient receptor potential vanilloid-1 receptor, and neuronal nitric oxide synthase are important in the sensitization process there. 5-HT1B/1D receptor agonists, triptans are used as a treatment of migraine. Kynurenic acid an NMDA antagonist can act on structures involved in trigeminal activation. Aim We investigated the effect of inflammatory soup induced dural inflammation on the calcitonin gene-related peptide, transient receptor potential vanilloid-1 receptor, and neuronal nitric oxide synthase levels in the caudal trigeminal nucleus. We also tested whether pretreatment with a well-known antimigraine drug, such as sumatriptan and kynurenic acid, a compound with a different mechanism of action, can affect these changes and if their modulatory effects are comparable. Material and methods After subcutaneous sumatriptan or intraperitoneal kynurenic acid the dura mater of adult male Sprague-Dawley rats (n = 72) was treated with inflammatory soup or its vehicle (synthetic interstitial fluid). Two and a half or four hours later perfusion was performed and the caudal trigeminal nucleus was removed for immunohistochemistry. Results and conclusion Inflammatory soup increased calcitonin gene-related peptide, transient receptor potential vanilloid-1 receptor, and neuronal nitric oxide synthase in the caudal trigeminal nucleus compared to placebo, which was attenuated by sumatriptan and kynurenic acid. This suggests the involvement of 5-HT1B/1D and NMDA receptors in neurogenic inflammation development of the dura and thus in migraine attacks.
Collapse
Affiliation(s)
- Eleonóra Spekker
- Department of Neurology, Interdisciplinary Excellence Center, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, Semmelweis utca 6, Szeged, H-6725, Hungary
| | - Klaudia Flóra Laborc
- Department of Neurology, Interdisciplinary Excellence Center, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, Semmelweis utca 6, Szeged, H-6725, Hungary
| | - Zsuzsanna Bohár
- Department of Neurology, Interdisciplinary Excellence Center, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, Semmelweis utca 6, Szeged, H-6725, Hungary.,MTA-SZTE Neuroscience Research Group, Szeged, Hungary
| | - Gábor Nagy-Grócz
- Department of Neurology, Interdisciplinary Excellence Center, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, Semmelweis utca 6, Szeged, H-6725, Hungary.,Faculty of Health Sciences and Social Studies, University of Szeged, Szeged, Hungary
| | | | - Mónika Szűcs
- Department of Medical Physics and Informatics, University of Szeged, Szeged, Hungary
| | - László Vécsei
- Department of Neurology, Interdisciplinary Excellence Center, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, Semmelweis utca 6, Szeged, H-6725, Hungary. .,MTA-SZTE Neuroscience Research Group, Szeged, Hungary.
| | - Árpád Párdutz
- Department of Neurology, Interdisciplinary Excellence Center, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, Semmelweis utca 6, Szeged, H-6725, Hungary
| |
Collapse
|
6
|
Teixeira JM, Pimentel RM, Abdalla HB, Sousa HMX, Macedo CG, Napimoga MH, Tambeli CH, Oliveira‐Fusaro MCG, Clemente‐Napimoga JT. P2X7‐induced nociception in the temporomandibular joint of rats depends on inflammatory mechanisms and C‐fibres sensitization. Eur J Pain 2021; 25:1107-1118. [DOI: 10.1002/ejp.1732] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Juliana M. Teixeira
- Faculdade São Leopoldo Mandic Área de Fisiologia Instituto de Pesquisas São Leopoldo Mandic Campinas Brazil
| | - Rafael M. Pimentel
- Faculdade São Leopoldo Mandic Área de Fisiologia Instituto de Pesquisas São Leopoldo Mandic Campinas Brazil
| | - Henrique B. Abdalla
- Faculdade São Leopoldo Mandic Área de Fisiologia Instituto de Pesquisas São Leopoldo Mandic Campinas Brazil
| | - Hortência M. X. Sousa
- Laboratory of Orofacial Pain Department of Physiology Piracicaba Dental School State University of Campinas (UNICAMP) Piracicaba Brazil
| | - Cristina G. Macedo
- Faculdade São Leopoldo Mandic Área de Fisiologia Instituto de Pesquisas São Leopoldo Mandic Campinas Brazil
| | - Marcelo H. Napimoga
- Faculdade São Leopoldo Mandic Área de Imunologia Instituto de Pesquisas São Leopoldo Mandic Campinas Brazil
| | - Cláudia H. Tambeli
- Department of Structural and Functional Biology Institute of Biology State University of Campinas (UNICAMP) Campinas Brazil
| | - Maria C. G. Oliveira‐Fusaro
- Laboratory of Studies of Pain and Inflammation School of Applied Sciences State University of Campinas (UNICAMP) Limeira São Paulo Brazil
| | | |
Collapse
|
7
|
Gafurov O, Koroleva K, Giniatullin R. Antidromic Spike Propagation and Dissimilar Expression of P2X, 5-HT, and TRPV1 Channels in Peripheral vs. Central Sensory Axons in Meninges. Front Cell Neurosci 2021; 14:623134. [PMID: 33519387 PMCID: PMC7845021 DOI: 10.3389/fncel.2020.623134] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 12/17/2020] [Indexed: 12/29/2022] Open
Abstract
Background: The terminal branches of the trigeminal nerve in meninges are supposed to be the origin site of migraine pain. The main function of these peripheral sensory axons is the initiation and propagation of spikes in the orthodromic direction to the second order neurons in the brainstem. The stimulation of the trigeminal ganglion induces the release of the neuropeptide CGRP in meninges suggesting the antidromic propagation of excitation in these fibers. However, the direct evidence on antidromic spike traveling in meningeal afferents is missing. Methods: By recording of spikes from peripheral or central parts of the trigeminal nerve in rat meninges, we explored their functional activity and tested the expression of ATP-, serotonin-, and capsaicin-gated receptors in the distal vs. proximal parts of these nerves. Results: We show the significant antidromic propagation of spontaneous spikes in meningeal nerves which was, however, less intense than the orthodromic nociceptive traffic due to higher number of active fibers in the latter. Application of ATP, serotonin and capsaicin induced a high frequency nociceptive firing in peripheral processes while, in central parts, only ATP and capsaicin were effective. Disconnection of nerve from trigeminal ganglion dramatically reduced the tonic antidromic activity and attenuated the excitatory action of ATP. Conclusion: Our data indicate the bidirectional nociceptive traffic and dissimilar expression of P2X, 5-HT and TRPV1 receptors in proximal vs. distal parts of meningeal afferents, which is important for understanding the peripheral mechanisms of migraine pain.
Collapse
Affiliation(s)
- Oleg Gafurov
- Department of Human and Animal Physiology, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Kseniia Koroleva
- Department of Human and Animal Physiology, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia.,A.I. Virtanen Institute for Molecular Sciences, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| | - Rashid Giniatullin
- Department of Human and Animal Physiology, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia.,A.I. Virtanen Institute for Molecular Sciences, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
8
|
Rodionova K, Veelken R, Hilgers KF, Paulus EM, Linz P, Fischer MJM, Schenker M, Reeh P, Tiegs G, Ott C, Schmieder R, Schiffer M, Amann K, Ditting T. Afferent renal innervation in anti-Thy1.1 nephritis in rats. Am J Physiol Renal Physiol 2020; 319:F822-F832. [PMID: 33017188 DOI: 10.1152/ajprenal.00063.2020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Afferent renal nerves exhibit a dual function controlling central sympathetic outflow via afferent electrical activity and influencing intrarenal immunological processes by releasing peptides such as calcitonin gene-related peptide (CGRP). We tested the hypothesis that increased afferent and efferent renal nerve activity occur with augmented release of CGRP in anti-Thy1.1 nephritis, in which enhanced CGRP release exacerbates inflammation. Nephritis was induced in Sprague-Dawley rats by intravenous injection of OX-7 antibody (1.75 mg/kg), and animals were investigated neurophysiologically, electrophysiologically, and pathomorphologically 6 days later. Nephritic rats exhibited proteinuria (169.3 ± 10.2 mg/24 h) with increased efferent renal nerve activity (14.7 ± 0.9 bursts/s vs. control 11.5 ± 0.9 bursts/s, n = 11, P < 0.05). However, afferent renal nerve activity (in spikes/s) decreased in nephritis (8.0 ± 1.8 Hz vs. control 27.4 ± 4.1 Hz, n = 11, P < 0.05). In patch-clamp recordings, neurons with renal afferents from nephritic rats showed a lower frequency of high activity following electrical stimulation (43.4% vs. 66.4% in controls, P < 0.05). In vitro assays showed that renal tissue from nephritic rats exhibited increased CGRP release via spontaneous (14 ± 3 pg/mL vs. 6.8 ± 2.8 pg/ml in controls, n = 7, P < 0.05) and stimulated mechanisms. In nephritic animals, marked infiltration of macrophages in the interstitium (26 ± 4 cells/mm2) and glomeruli (3.7 ± 0.6 cells/glomerular cross-section) occurred. Pretreatment with the CGRP receptor antagonist CGRP8-37 reduced proteinuria, infiltration, and proliferation. In nephritic rats, it can be speculated that afferent renal nerves lose their ability to properly control efferent sympathetic nerve activity while influencing renal inflammation through increased CGRP release.
Collapse
Affiliation(s)
- Kristina Rodionova
- Department of Internal Medicine 4 (Nephrology und Hypertension), University of Erlangen, Erlangen, Germany
| | - Roland Veelken
- Department of Internal Medicine 4 (Nephrology und Hypertension), University of Erlangen, Erlangen, Germany.,Department of Internal Medicine 4 (Nephrology und Hypertension), Paracelsus Private Medical School, Klinikum Nuremberg, Nuremberg, Germany
| | - Karl F Hilgers
- Department of Internal Medicine 4 (Nephrology und Hypertension), University of Erlangen, Erlangen, Germany
| | - Eva-Maria Paulus
- Department of Internal Medicine 4 (Nephrology und Hypertension), University of Erlangen, Erlangen, Germany
| | - Peter Linz
- Department of Radiology, University of Erlangen, Erlangen, Germany
| | - Michael J M Fischer
- Center of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Martina Schenker
- Department of Internal Medicine 4 (Nephrology und Hypertension), University of Erlangen, Erlangen, Germany.,Department of Physiology and Pathophysiology, University Erlangen, Erlangen, Germany
| | - Peter Reeh
- Department of Physiology and Pathophysiology, University Erlangen, Erlangen, Germany
| | - Gisa Tiegs
- Center of Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christian Ott
- Department of Internal Medicine 4 (Nephrology und Hypertension), University of Erlangen, Erlangen, Germany.,Department of Internal Medicine 4 (Nephrology und Hypertension), Paracelsus Private Medical School, Klinikum Nuremberg, Nuremberg, Germany
| | - Roland Schmieder
- Department of Internal Medicine 4 (Nephrology und Hypertension), University of Erlangen, Erlangen, Germany
| | - Mario Schiffer
- Department of Internal Medicine 4 (Nephrology und Hypertension), University of Erlangen, Erlangen, Germany
| | - Kerstin Amann
- Department of Nephropathology, University of Erlangen, Erlangen, Germany
| | - Tilmann Ditting
- Department of Internal Medicine 4 (Nephrology und Hypertension), University of Erlangen, Erlangen, Germany.,Department of Internal Medicine 4 (Nephrology und Hypertension), Paracelsus Private Medical School, Klinikum Nuremberg, Nuremberg, Germany
| |
Collapse
|
9
|
Turner CG, Miller JT, Otis JS, Hayat MJ, Quyyumi AA, Wong BJ. Cutaneous sensory nerve-mediated microvascular vasodilation in normotensive and prehypertensive non-Hispanic Blacks and Whites. Physiol Rep 2020; 8:e14437. [PMID: 32401424 PMCID: PMC7219271 DOI: 10.14814/phy2.14437] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 04/04/2020] [Accepted: 04/17/2020] [Indexed: 11/24/2022] Open
Abstract
Relative to non-Hispanic Whites, non-Hispanic Blacks are disproportionately affected by elevated blood pressure (BP). It is unknown whether race or subclinical increases in BP affect the ability of cutaneous sensory nerves to induce cutaneous microvascular vasodilation. Sixteen participants who self-identified as non-Hispanic Black (n = 8) or non-Hispanic White (n = 8) were subgrouped as normotensive or prehypertensive. Participants were instrumented with three intradermal microdialysis fibers: (a) control, (b) 1 μM sodium nitroprusside (SNP), an exogenous nitric oxide (NO) donor, and (c) 20 mM NG -nitro-l-arginine methyl ester (L-NAME), a non-selective NO synthase inhibitor. A slow local heating protocol (33-40°C, 0.1°C/min) was used to assess the onset of cutaneous sensory nerve-mediated vasodilation (temperature threshold) and skin blood flow was measured using laser-Doppler flowmetry. At control sites, the temperature threshold occurred at a higher temperature in non-Hispanic Blacks (normotensive: 37.2 ± 0.6°C, prehypertensive: 38.9 ± 0.5°C) compared to non-Hispanic Whites (normotensive: 35.2 ± 0.8°C, prehypertensive: 35.2 ± 0.9°C). L-NAME shifted the temperature threshold higher in non-Hispanic Whites (normotensive: 37.8 ± 0.7°C, prehypertensive: 38.2 ± 0.8°C), but there was no observed effect in non-Hispanic Blacks. SNP did not affect temperature threshold in non-Hispanic Whites, but shifted the temperature threshold lower in non-Hispanic Blacks (normotensive: 34.6 ± 1.2°C, prehypertensive: 34.8 ± 1.1°C). SNP mitigated differences in temperature threshold across all groups. There was no effect found for BP status in either the non-Hispanic Black or non-Hispanic White groups. These data suggest that reduced NO bioavailability affects the ability of cutaneous sensory nerves to induce microvascular vasodilation in young, otherwise healthy non-Hispanic Blacks.
Collapse
Affiliation(s)
- Casey G. Turner
- Department of Kinesiology & HealthGeorgia State UniversityAtlantaGAUSA
| | - James T. Miller
- Department of Kinesiology & HealthGeorgia State UniversityAtlantaGAUSA
| | - Jeffrey S. Otis
- Department of Kinesiology & HealthGeorgia State UniversityAtlantaGAUSA
| | | | - Arshed A. Quyyumi
- Emory Clinical Cardiovascular Research InstituteSchool of MedicineEmory UniversityAtlantaGAUSA
| | - Brett J. Wong
- Department of Kinesiology & HealthGeorgia State UniversityAtlantaGAUSA
| |
Collapse
|
10
|
Liu Y, Qin X, Lu X, Jiang J. Effects of inhibiting the PI3K/Akt/mTOR signaling pathway on the pain of sciatic endometriosis in a rat model. Can J Physiol Pharmacol 2019; 97:963-970. [PMID: 31461309 DOI: 10.1139/cjpp-2019-0156] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
This study investigated the relationship between the pain of sciatic endometriosis and the phosphatidylinositol 3-kinase/protein kinase B/mammalian target of rapamycin (PI3K/Akt/mTOR) signaling pathway. Adult female Sprague–Dawley rats successfully received sciatic endometriosis induction. Mechanical paw withdrawal threshold and paw withdrawal latency were recorded to assess the mechanical hypersensitivity and thermal hyperalgesia. Quantitative real-time PCR, Western blotting, and enzyme-linked immunosorbent assays were used to detect PI3K, Akt, and mTOR expressions and their phosphorylation as well as the expressions of substance P, calcitonin gene-related peptide (CGRP), and nerve growth factor (NGF). Mechanical paw withdrawal threshold and paw withdrawal latency significantly decreased after sciatic endometriosis induction in rats; this decrease was ameliorated by inhibiting the PI3K/Akt/mTOR signaling pathway using LY294002. Compared with controls, rats with sciatic endometriosis showed increased PI3K, Akt, and mTOR expressions and elevated p-PI3K, p-Akt, and p-mTOR protein expressions. Higher NGF, substance P, and CGRP expressions were also found in the superficial dorsal horn of the spinal cord in rats with sciatic endometriosis than in control rats 21 days after surgery. Following the injection of LY294002 into rats with sciatic endometriosis, there was a significant decrease in the expressions of NGF, substance P, and CGRP. In conclusion, the inhibition of the PI3K/Akt/mTOR signaling pathway may alleviate endometriosis-associated sciatic nerve pain in a rat model of sciatic endometriosis.
Collapse
Affiliation(s)
- Yan Liu
- Department of Obstetrics and Gynecology, Liaocheng People’s Hospital, Liaocheng 252000, Shandong, China
- Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, Jinan 250000, Shandong, China
| | - Xuying Qin
- Department of Obstetrics and Gynecology, Liaocheng People’s Hospital, Liaocheng 252000, Shandong, China
| | - Xiaofen Lu
- Department of Obstetrics and Gynecology, Liaocheng People’s Hospital, Liaocheng 252000, Shandong, China
| | - Jie Jiang
- Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, Jinan 250000, Shandong, China
| |
Collapse
|
11
|
Yang MH, Jung SH, Sethi G, Ahn KS. Pleiotropic Pharmacological Actions of Capsazepine, a Synthetic Analogue of Capsaicin, against Various Cancers and Inflammatory Diseases. Molecules 2019; 24:molecules24050995. [PMID: 30871017 PMCID: PMC6429077 DOI: 10.3390/molecules24050995] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 03/07/2019] [Accepted: 03/08/2019] [Indexed: 12/21/2022] Open
Abstract
Capsazepine is a synthetic analogue of capsaicin that can function as an antagonist of TRPV1. Capsazepine can exhibit diverse effects on cancer (prostate cancer, breast cancer, colorectal cancer, oral cancer, and osteosarcoma) growth and survival, and can be therapeutically used against other major disorders such as colitis, pancreatitis, malaria, and epilepsy. Capsazepine has been reported to exhibit pleiotropic anti-cancer effects against numerous tumor cell lines. Capsazepine can modulate Janus activated kinase (JAK)/signal transducer and activator of the transcription (STAT) pathway, intracellular Ca2+ concentration, and reactive oxygen species (ROS)-JNK-CCAAT/enhancer-binding protein homologous protein (CHOP) pathways. It can inhibit cell proliferation, metastasis, and induce apoptosis. Moreover, capsazepine can exert anti-inflammatory effects through the downregulation of lipopolysaccharide (LPS)-induced nuclear transcription factor-kappa B (NF-κB), as well as the blockage of activation of both transient receptor potential cation channel subfamily V member 1 (TRPV1) and transient receptor potential cation channel, subfamily A, and member 1 (TRPA1). This review briefly summarizes the diverse pharmacological actions of capsazepine against various cancers and inflammatory conditions.
Collapse
Affiliation(s)
- Min Hee Yang
- KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul 02447, Korea.
| | - Sang Hoon Jung
- KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul 02447, Korea.
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore.
| | - Kwang Seok Ahn
- KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul 02447, Korea.
- Department of Science in Korean Medicine, Kyung Hee University, 24 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea.
- Comorbidity Research Institute, College of Korean Medicine, Kyung Hee University, 24 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea.
| |
Collapse
|
12
|
Grigore O, Mihailescu AI, Solomon I, Boda D, Caruntu C. Role of stress in modulation of skin neurogenic inflammation. Exp Ther Med 2019; 17:997-1003. [PMID: 30679965 PMCID: PMC6327627 DOI: 10.3892/etm.2018.7058] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 09/28/2018] [Indexed: 12/16/2022] Open
Abstract
There are complex interconnections between the nervous system and the skin highlighted by the impact of stress and neuroendocrine factors on various dermatological conditions. We investigated the influence of stress on skin neurogenic inflammation induced by capsaicin. A total of 31 healthy subjects were randomized into two groups: subjects in the stress group underwent a stress-inducing protocol and those in the control group were exposed to indifferent conditions. Subsequently, topical capsaicin cream was administered on the non-dominant anterior forearm of each subject from the two groups. The assessment of the local inflammatory reaction induced by capsaicin was performed by thermography at 25 and 40 min post-application. In both groups the inflammatory reaction induced by capsaicin was evidenced at 25 min and was maintained at 40 min post-application. However, at 40 min post-application the hyperthermal area was larger in subjects from the stress group, suggesting that stress exposure is associated with an amplification of the mechanisms involved in capsaicin-induced skin neurogenic inflammation.
Collapse
Affiliation(s)
- Ovidiu Grigore
- Department of Applied Electronics and Information Engineering, Polytechnic University of Bucharest, 061071 Bucharest, Romania
| | - Alexandra Ioana Mihailescu
- Department of Medical Psychology, ‘Carol Davila’ University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Iulia Solomon
- Department of Dermatology and Allergology, Elias Emergency University Hospital, 011461 Bucharest, Romania
| | - Daniel Boda
- Dermatology Research Laboratory, ‘Carol Davila’ University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Department of Dermatology, ‘Prof. N. Paulescu’ National Institute of Diabetes, Nutrition and Metabolic Diseases, 011233 Bucharest, Romania
| | - Constantin Caruntu
- Department of Dermatology, ‘Prof. N. Paulescu’ National Institute of Diabetes, Nutrition and Metabolic Diseases, 011233 Bucharest, Romania
- Department of Physiology, ‘Carol Davila’ University of Medicine and Pharmacy, 050474 Bucharest, Romania
| |
Collapse
|
13
|
Transient receptor potential melastatin-3 in the rat sensory ganglia of the trigeminal, glossopharyngeal and vagus nerves. J Chem Neuroanat 2019; 96:116-125. [PMID: 30639448 DOI: 10.1016/j.jchemneu.2019.01.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 01/08/2019] [Accepted: 01/09/2019] [Indexed: 02/06/2023]
Abstract
Transient receptor potential melastatin-3 (TRPM3) is a nonselective cation channel, has permeability of Ca2+, and probably participates in thermosensitive nociception. In this study, immunohistochemistry for TRPM3 was conducted in the rat trigeminal, glossopharyngeal and vagal sensory ganglia. TRPM3-immunoreactivity was expressed by half of sensory neurons in the trigeminal (TG), petrosal (PG) and jugular ganglia (JG), and by about 80% of sensory neurons in the nodose ganglion (NG). They mostly had small to medium-sized cell bodies. A trichrome immunofluorescence method showed co-existence of TRPM3 with TRP vanilloid 1 (TRPV1) and calcitonin gene-related peptide (CGRP). Approximately 70% of TRPM3-immunoreactive (-IR) neurons contained TRPV1-immunoreactivity in all the examined ganglia. More than 40% of TRPM3-IR neurons exhibited CGRP-immunoreactivity in the TG, PG and JG. Only a few sensory neurons co-expressed TRPM3- and CGRP-immunoreactivity in the NG. In addition, more than 40% of TRPM3-IR neurons bound to isolectin B4 in all the examined ganglia. By combination of retrograde tracing method and immunohistochemistry, half of TG neurons innervating the facial skin and incisive papilla expressed TRPM3-immunoreactivity whereas approximately 20% of those innervating the tooth pulp contained TRPM3-immunoreactivity. Co-expression of TRPM3-immunoreactivity with TRPV1- or CGRP-immunoreactivity was common among cutaneous and papillary TG neurons but not among pulpal TG neurons. More than 60% of PG and JG neurons innervating the external ear canal skin and circumvallate papilla contained TRPM3-immunoreactivity. Co-expression of TRPM3 with TRPV1 or CGRP was common among PG and JG neurons innervating the external ear canal skin. However, a smaller number of TRPM3-IR neurons co-expressing TRPV1- or CGRP-immunoreactivity innervate the circumvallate papilla in the PG. The present study suggests that expression of TRPM3 and its co-existence with TRPV1 and CGRP in sensory neurons depend on the variety of their peripheral targets in the trigeminal, glossopharyngeal and vagal nervous systems.
Collapse
|
14
|
Wang Y, Zhao Y, Ma X, Li J, Hou J, Lv X. Beneficial Effects of Electroacupuncture on Neuropathic Pain Evoked by Spinal Cord Injury and Involvement of PI3K-mTOR Mechanisms. Biol Res Nurs 2018; 21:5-13. [PMID: 30328377 DOI: 10.1177/1099800418804896] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The purpose of this study was to examine the beneficial effects of electroacupuncture (EA) on neuropathic pain evoked by spinal cord injury (SCI) and determine the underlying molecular mechanisms of these effects. SCI was induced in rats. Behavioral tests were performed to examine pain responses induced by mechanical and thermal stimulation. Western blot analysis was used to measure the protein expression of phosphorylated mammalian target of rapamycin (p-mTOR), mTOR-mediated phosphorylated ribosomal protein S6 kinase beta-1 (p-S6K1), and phosphorylated eukaryotic translation initiation factor 4E-binding protein 1 (p-4E-BP1) in the superficial dorsal horn of the spinal cord. We showed that SCI increased the expression of p-mTOR, p-S6K1, and p-4E-BP1. The EA intervention attenuated the upregulation of mTOR signaling and alleviated mechanical and thermal pain responses in SCI rats. Blocking spinal mTOR by intrathecal injection of rapamycin also inhibited mechanical and thermal pain. In addition, blocking spinal phosphorylated phosphatidylinositide 3-kinase (p-PI3K) pathway attenuated p-mTOR pathways and mechanical and thermal hyperalgesia in SCI rats. EA also decreased the enhanced p-PI3K in the superficial dorsal horn of SCI rats. In conclusion, findings revealed specific signaling pathways that lead to neuropathic pain in response to SCI, including activation of PI3K-mTOR signaling. Further, results link the beneficial role of EA in alleviating SCI-induced neuropathic pain to its effect on these molecular mechanisms.
Collapse
Affiliation(s)
- Yujie Wang
- 1 Department of Pulmonary Medicine, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Yu Zhao
- 2 Tumor Center, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Xiaohui Ma
- 2 Tumor Center, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Jing Li
- 3 Department of Radiology, The First Hospital (Eastern Division) of Jilin University, Changchun, Jilin, China
| | - Junling Hou
- 4 Department of Neurosurgery, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Xiaohong Lv
- 1 Department of Pulmonary Medicine, The First Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
15
|
Zhang X, Jiang N, Li J, Zhang D, Lv X. Rapamycin alleviates proinflammatory cytokines and nociceptive behavior induced by chemotherapeutic paclitaxel. Neurol Res 2018; 41:52-59. [PMID: 30325723 DOI: 10.1080/01616412.2018.1531199] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Background/Aims: Paclitaxel is largely used as a chemotherapeutic agent for the treatment of several types of cancers. However, one of the significant limiting complications of paclitaxel is painful peripheral neuropathy during its therapy. The purposes of this study were to examine (1) the effects of blocking mammalian target of rapamycin (mTOR) on mechanical and thermal hypersensitivity evoked by paclitaxel; and (2) the underlying mechanisms responsible for the role of mTOR in regulating paclitaxel-induced neuropathic pain. Methods: Behavioral test was performed to determine mechanical and thermal sensitivity in rats. ELISA was used to examine the levels of proinflammatory cytokines (PICs including IL-1β, IL-6, and TNF-α) and substance P and calcitonin gene-related peptide (CGRP) in the dorsal root ganglion (DGR); and Western blot analysis was used to examine expression of mTOR signal pathway. Results: Paclitaxel increased mechanical and thermal sensitivity as compared with vehicle control animals (P < 0.05 vs. controls). Paclitaxel also amplified the expression of p-mTOR, mTOR-mediated phosphorylation of p70 ribosomal S6 protein kinase 1 (p-S6K1), 4E-binding protein 1 (p-4E-BP1) in the DRG. Blocking mTOR using rapamycin attenuated peripheral painful neuropathy observed in paclitaxel rats (P < 0.05 vs. without rapamycin). This inhibitory effect was accompanied with decreases of IL-1β, IL-6, and TNF-α as well as substance P and CGRP. In addition, inhibition of phosphatidylinositide 3-kinase (p-PI3K) attenuated expression of p-mTOR and PICs/substance P/CGRP in paclitaxel rats and this further attenuated mechanical and thermal hypersensitivity. Conclusions: The data revealed specific signaling pathways leading to paclitaxel-induced peripheral neuropathic pain, including the activation of PI3K-mTOR, PIC signal, and substance P and CGRP. Inhibition of these pathways alleviates neuropathic pain. Targeting one or more of these molecular mediators may present new opportunities for treatment and management of neuropathic pain observed during chemotherapeutic application of paclitaxel.
Collapse
Affiliation(s)
- Xiaoli Zhang
- a Department of Pulmonary Medicine , The First Hospital (Eastern Division) of Jilin University , Changchun , China
| | - Nan Jiang
- a Department of Pulmonary Medicine , The First Hospital (Eastern Division) of Jilin University , Changchun , China
| | - Jing Li
- b Department of Radiology , The First Hospital (Eastern Division) of Jilin University , Changchun , China
| | - Dongyan Zhang
- c Department of Ophthalmology , The First Hospital of Jilin University , Changchun , China
| | - Xiaohong Lv
- a Department of Pulmonary Medicine , The First Hospital (Eastern Division) of Jilin University , Changchun , China
| |
Collapse
|
16
|
Xiang H, Liu Z, Wang F, Xu H, Roberts C, Fischer G, Stucky C, Caron D, Pan B, Hogan Q, Yu H. Primary sensory neuron-specific interference of TRPV1 signaling by AAV-encoded TRPV1 peptide aptamer attenuates neuropathic pain. Mol Pain 2018; 13:1744806917717040. [PMID: 28604222 PMCID: PMC5486490 DOI: 10.1177/1744806917717040] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Background TRPV1 (transient receptor potential vanilloid subfamily member 1) is a pain signaling channel highly expressed in primary sensory neurons. Attempts for analgesia by systemic TRPV1 blockade produce undesirable side effects, such as hyperthermia and impaired heat pain sensation. One approach for TRPV1 analgesia is to target TRPV1 along the peripheral sensory pathway. Results For functional blockade of TRPV1 signaling, we constructed an adeno-associated virus (AAV) vector expressing a recombinant TRPV1 interfering peptide aptamer, derived from a 38mer tetrameric assembly domain (TAD), encompassing residues 735 to 772 of rat TRPV1, fused to the C-terminus of enhanced green fluorescent protein (EGFP). AAV-targeted sensory neurons expressing EGFP-TAD after vector injection into the dorsal root ganglia (DRG) revealed decreased inward calcium current and diminished intracellular calcium accumulation in response to capsaicin, compared to neurons of naïve or expressing EGFP alone. To examine the potential for treating neuropathic pain, AAV-EGFP-TAD was injected into fourth and fifth lumbar (L) DRGs of rats subjected to neuropathic pain by tibial nerve injury (TNI). Results showed that AAV-directed selective expression of EGFP-TAD in L4/L5 DRG neuron somata, and their peripheral and central axonal projections can limit TNI-induced neuropathic pain behavior, including hypersensitivity to heat and, to a less extent, mechanical stimulation. Conclusion Selective inhibition of TRPV1 activity in primary sensory neurons by DRG delivery of AAV-encoded analgesic interfering peptide aptamers is efficacious in attenuation of neuropathic pain. With further improvements of vector constructs and in vivo application, this approach might have the potential to develop as an alternative gene therapy strategy to treat chronic pain, especially heat hypersensitivity, without complications due to systemic TRPV1 blockade.
Collapse
Affiliation(s)
- Hongfei Xiang
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
| | - Zhen Liu
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
| | - Fei Wang
- Medical Experiment Center, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, P.R. China 712046
| | - Hao Xu
- Department of Orthopedic Surgery, Affiliated Hospital of Qingdao University, Qingdao, P. R. China 266000
| | - Christopher Roberts
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
| | - Gregory Fischer
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
| | - Cheryl Stucky
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
| | - Dean Caron
- Zablocki Veterans Affairs Medical Center, Milwaukee, Wisconsin 53295
| | - Bin Pan
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
| | - Quinn Hogan
- 5Zablocki Veterans Affairs Medical Center, Milwaukee, Wisconsin 53295
| | | |
Collapse
|
17
|
Arreola-Peralta LD, Altamirano-Reyna F, Galindo-González DM, Solis-Anguiano JG, Lacivita E, Leopoldo M, Terrón JA. Potentiation of capsaicin-induced neurogenic inflammation by 5-HT7 receptors in the rat hind paw: Involvement of calcitonin gen-related peptide. Peptides 2018; 105:1-6. [PMID: 29730242 DOI: 10.1016/j.peptides.2018.05.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 04/18/2018] [Accepted: 05/02/2018] [Indexed: 12/13/2022]
Abstract
A decrease in the activation threshold of primary sensory neurons to transient receptor potential V1 (TRPV1) stimulation by serotonin 5-HT7 receptors has been reported but no confirmation if this might translate into facilitation of neurogenic inflammation has been provided. We analysed the modulation of capsaicin (CAP)-induced neurogenic inflammation in the rat hind paw by the selective 5-HT7 receptor agonist, LP-44, and the involvement of calcitonin gen-related peptide (CGRP) in this effect. Animals received intra-plantar injections (30 μL) of vehicle, CAP (0.05%, 0.1% and 0.2%), LP-44 (7.5 and 15 nmol) and the combination of LP-44 + CAP; then, the time course of the inflammatory responses was measured. The effect of the 5-HT7 receptor antagonist, SB-269970 (3 mg/kg, s.c.), on responses produced by LP-44 alone and combined with CAP was tested. As expected, CAP produced concentration- and time-dependent inflammatory responses in the hind paw. Interestingly, LP-44 by itself also produced inflammation in a concentration- and time-dependent manner, and magnified CAP-induced responses. Systemic pre-treatment with SB-269970 significantly blunted LP-44 (15 nmol)-induced inflammation as well as magnified inflammatory responses produced by the combination of LP-44 (7.5 and 15 nmol) + CAP (0.1%) thus confirming the involvement of 5-HT7 receptors. Finally, the non-peptide CGRP receptor antagonist, BIBN4096 (3 mg/kg, s.c.), strongly inhibited the potentiated inflammatory responses induced by LP-44 (7.5 and 15 nmol) + CAP (0.1%) thus substantiating their neurogenic nature. Thus, sensitization of CAP-sensitive primary sensory neurons by 5-HT7 receptors may result in facilitation of neurogenic inflammation involving CGRP in the rat hind paw.
Collapse
Affiliation(s)
- Luis D Arreola-Peralta
- Departamento de Farmacología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Mexico City, Mexico
| | - Frida Altamirano-Reyna
- Departamento de Farmacología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Mexico City, Mexico
| | - Deni M Galindo-González
- Departamento de Farmacología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Mexico City, Mexico
| | - Jessica G Solis-Anguiano
- Departamento de Farmacología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Mexico City, Mexico
| | - Enza Lacivita
- Dipartimento di Farmacia-Scienze del Farmaco, Universita degli Studi di Bari Aldo Moro, Bari, Italy
| | - Marcello Leopoldo
- Dipartimento di Farmacia-Scienze del Farmaco, Universita degli Studi di Bari Aldo Moro, Bari, Italy
| | - José A Terrón
- Departamento de Farmacología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Mexico City, Mexico.
| |
Collapse
|
18
|
Rohrs EL, Neubert JK, Caudle RM, Allen KD. Behavioral characteristics of capsaicin mediated cutaneous, myogenic, and arthrogenic orofacial nociception in rats. Arch Oral Biol 2018; 92:18-24. [PMID: 29738922 DOI: 10.1016/j.archoralbio.2018.04.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 04/06/2018] [Accepted: 04/26/2018] [Indexed: 12/18/2022]
Abstract
OBJECTIVE To assess changes in orofacial tactile sensitivity and gnawing related to capsaicin-mediated cutaneous, myogenic, and arthrogenic nociception in the rat. DESIGN After recovery from anesthesia, orofacial tactile sensitivity and gnawing were assessed using operant testing methods following capsaicin application. Twenty female CD-Hairless rats were tested with bilateral capsaicin cream application to the cheek or with isoflurane anesthesia alone. Following several weeks of recovery, animals (n = 20) received either 10 μL unilateral masseter injections of vehicle, or phosphate buffered saline (PBS) to assess injection sensitization. After several weeks, masseter capsaicin (1.0%) injections (10 μL) were assessed compared to vehicle and PBS (n = 13). Weeks later capsaicin TMJ injections were evaluated. Animals (n = 11) received either 10 μL unilateral TMJ injections of capsaicin solution (1%) or vehicle. RESULTS Capsaicin cream to the skin significantly altered gnawing activity (increased puncture time by 248 s (p = 0.0002)) and tactile sensitivity (decreased tolerated bottle distance by 0.980 cm compared to isoflurane only (p = 0.0001)). Similarly, capsaicin masseter injection increased puncture time (339.6 s, p = 0.07) and decreased tolerated bottle distance (1.04 cm, p = 0.005) compared to vehicle. However, intra-articular capsaicin in the TMJ only modified gnawing (increased puncture time by 133 s), with no changes found in tactile sensitivity compared to vehicle. CONCLUSION Application of capsaicin to the skin and masseter had similar behavioral effects; however, intra-articular injections to the TMJ only affected gnawing. These data indicate the behavioral changes in rodent models of myogenic and cutaneous pain may be markedly different than models of arthrogenic pain originating from the TMJ.
Collapse
Affiliation(s)
- Eric L Rohrs
- J Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, 1275 Center Drive, Gainesville, FL, 32611, United States.
| | - John K Neubert
- Department of Orthodontics, University of Florida, 1395 Center Drive, Gainesville, FL, 32611, United States; Pain Research and Intervention Center of Excellence, University of Florida, 1329 SW 16th Street, Gainesville, FL, 32608, United States.
| | - Robert M Caudle
- Department of Oral and Maxillofacial Surgery, University of Florida, 1395 Center Drive, D7-6, Gainesville, FL, 32610, United States; Pain Research and Intervention Center of Excellence, University of Florida, 1329 SW 16th Street, Gainesville, FL, 32608, United States.
| | - Kyle D Allen
- J Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, 1275 Center Drive, Gainesville, FL, 32611, United States; Pain Research and Intervention Center of Excellence, University of Florida, 1329 SW 16th Street, Gainesville, FL, 32608, United States; Institute for Cell Engineering and Regenerative Medicine, University of Florida, 300 Weil Hall, 1949 Stadium Road, Gainesville, FL, 32611, United States; Nanoscience Institute for Medical and Engineering Technology, University of Florida, 1041 Center Dr, Gainesville, FL, 32611, United States.
| |
Collapse
|
19
|
Duan Z, Su Z, Wang H, Pang X. Involvement of pro-inflammation signal pathway in inhibitory effects of rapamycin on oxaliplatin-induced neuropathic pain. Mol Pain 2018; 14:1744806918769426. [PMID: 29587559 PMCID: PMC5898663 DOI: 10.1177/1744806918769426] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Background Oxaliplatin is a third-generation chemotherapeutic agent that is commonly used to treat metastatic digestive tumors; however, one of the main limiting complications of oxaliplatin is painful peripheral neuropathy. The purpose of this study was to examine the underlying mechanisms by which mammalian target of rapamycin (mTOR) and its signal are responsible for oxaliplatin-evoked neuropathic pain. Methods Neuropathic pain was induced by intraperitoneal injection of oxaliplatin in rats. ELISA and Western blot analysis were used to examine the levels of pro-inflammatory cytokines (including interleukin (IL)-1β, IL-6, and tumor necrosis factor (TNF)-α) and the expression of mTOR signal pathway. Results Oxaliplatin increased mechanical and cold sensitivity as compared with control animals (P < 0.05 vs. control rats). Oxaliplatin also amplified the expression of p-mTOR and mTOR-mediated phosphorylation of p70 ribosomal S6 protein kinase 1 and 4E-binding protein 1 in the lumbar dorsal root ganglion. Blocking mTOR using rapamycin attenuated peripheral painful neuropathy observed in oxaliplatin rats (P < 0.05 vs. vehicle control). This inhibitory effect was accompanied with decreases of IL-1β, IL-6, and TNF-α. In addition, inhibition of phosphatidylinositide 3-kinase (p-PI3K) attenuated the expression of p-mTOR and the levels of pro-inflammatory cytokines in oxaliplatin rats, and this further attenuated mechanical and cold hypersensitivity. Conclusions The data revealed specific signaling pathways leading to oxaliplatin-induced peripheral neuropathic pain, including the activation of PI3K-mTOR and pro-inflammatory cytokine signal. Inhibition of these pathways alleviates neuropathic pain. Targeting one or more of these molecular mediators may present new opportunities for treatment and management of neuropathic pain observed during chemotherapeutic application of oxaliplatin.
Collapse
Affiliation(s)
- Zongsheng Duan
- 1 Department of Anesthesiology, The First Hospital of Jilin University, Changchun, China
| | - Zhenbo Su
- 2 Department of Anesthesiology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Hushan Wang
- 1 Department of Anesthesiology, The First Hospital of Jilin University, Changchun, China
| | - Xiaochuan Pang
- 3 Clinical Laboratory, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
20
|
Xiong BJ, Xu Y, Jin GL, Liu M, Yang J, Yu CX. Analgesic effects and pharmacologic mechanisms of the Gelsemium alkaloid koumine on a rat model of postoperative pain. Sci Rep 2017; 7:14269. [PMID: 29079733 PMCID: PMC5660238 DOI: 10.1038/s41598-017-14714-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 10/13/2017] [Indexed: 02/06/2023] Open
Abstract
Postoperative pain (POP) of various durations is a common complication of surgical procedures. POP is caused by nerve damage and inflammatory responses that are difficult to treat. The neuroinflammation-glia-steroid network is known to be important in POP. It has been reported that the Gelsemium alkaloid koumine possesses analgesic, anti-inflammatory and neurosteroid modulating activities. This study was undertaken to test the analgesic effects of koumine against POP and explore the underlying pharmacologic mechanisms. Our results showed that microglia and astroglia were activated in the spinal dorsal horn post-incision, along with an increase of proinflammatory cytokines (interleukin 1β, interleukin 6, and tumor necrosis factor α). Both subcutaneous and intrathecal (i.t.) koumine treatment after incision significantly prevented mechanical allodynia and thermal hyperalgesia, inhibited microglial and astroglial activation, and suppressed expression of proinflammatory cytokines. Moreover, the analgesic effects of koumine were antagonized by i.t. administration of translocator protein (18 kDa) (TSPO) antagonist PK11195 and GABAA receptor antagonist bicuculline. Together, koumine prevented mechanical allodynia and thermal hyperalgesia caused by POP. The pharmacologic mechanism of koumine-mediated analgesia might involve inhibition of spinal neuroinflammation and activation of TSPO. These data suggested that koumine might be a potential pharmacotherapy for the management of POP.
Collapse
Affiliation(s)
- Bo-Jun Xiong
- Department of Pharmacology and College of Pharmacy, Fujian Medical University, Fuzhou, 350122, Fujian, People's Republic of China
| | - Ying Xu
- Department of Pharmacology and College of Pharmacy, Fujian Medical University, Fuzhou, 350122, Fujian, People's Republic of China
- Fujian Key Laboratory of Natural Medicine Pharmacology, College of Pharmacy, Fujian Medical University, Fuzhou, 350122, Fujian, People's Republic of China
| | - Gui-Lin Jin
- Department of Pharmacology and College of Pharmacy, Fujian Medical University, Fuzhou, 350122, Fujian, People's Republic of China
- Fujian Key Laboratory of Natural Medicine Pharmacology, College of Pharmacy, Fujian Medical University, Fuzhou, 350122, Fujian, People's Republic of China
| | - Ming Liu
- Department of Pharmacology and College of Pharmacy, Fujian Medical University, Fuzhou, 350122, Fujian, People's Republic of China
| | - Jian Yang
- Department of Pharmacology and College of Pharmacy, Fujian Medical University, Fuzhou, 350122, Fujian, People's Republic of China
- Fujian Key Laboratory of Natural Medicine Pharmacology, College of Pharmacy, Fujian Medical University, Fuzhou, 350122, Fujian, People's Republic of China
| | - Chang-Xi Yu
- Department of Pharmacology and College of Pharmacy, Fujian Medical University, Fuzhou, 350122, Fujian, People's Republic of China.
- Fujian Key Laboratory of Natural Medicine Pharmacology, College of Pharmacy, Fujian Medical University, Fuzhou, 350122, Fujian, People's Republic of China.
| |
Collapse
|
21
|
Mousavi Majd A, Ebrahim Tabar F, Afghani A, Ashrafpour S, Dehghan S, Gol M, Ashrafpour M, Pourabdolhossein F. Inhibition of GABA A receptor improved spatial memory impairment in the local model of demyelination in rat hippocampus. Behav Brain Res 2017; 336:111-121. [PMID: 28866129 DOI: 10.1016/j.bbr.2017.08.046] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 08/20/2017] [Accepted: 08/29/2017] [Indexed: 12/15/2022]
Abstract
Cognitive impairment and memory deficit are common features in multiple Sclerosis patients. The mechanism of memory impairment in MS is unknown, but neuroimaging studies suggest that hippocampal demyelination is involved. Here, we investigate the role of GABA A receptor on spatial memory in the local model of hippocampal demyelination. Demyelination was induced in male Wistar rats by bilaterally injection of lysophosphatidylcholine (LPC) 1% into the CA1 region of the hippocampus. The treatment groups were received daily intraventricular injection of bicuculline (0.025, 0.05μg/2μl/animal) or muscimol (0.1, 0.2μg/2μl/animal) 5days after LPC injection. Morris Water Maze was used to evaluate learning and memory in rats. We used Luxol fast blue staining and qPCR to assess demyelination extention and MBP expression level respectively. Immunohistochemistry (IHC) for CD45 and H&E staining were performed to assess inflammatory cells infiltration. Behavioral study revealed that LPC injection in the hippocampus impaired learning and memory function. Animals treated with both doses of bicuculline improved spatial learning and memory function; however, muscimol treatment had no effect. Histological and MBP expression studies confirmed that demylination in LPC group was maximal. Bicuculline treatment significantly reduced demyelination extension and increased the level of MBP expression. H&E and IHC results showed that bicuculline reduced inflammatory cell infiltration in the lesion site. Bicuculline improved learning and memory and decreased demyelination extention in the LPC-induced hippocampal demyelination model. We conclude that disruption of GABAergic homeostasis in hippocampal demyelination context may be involved in memory impairment with the implications for both pathophysiology and therapy.
Collapse
Affiliation(s)
- Alireza Mousavi Majd
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran; Neuroscience Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Forough Ebrahim Tabar
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran; Neuroscience Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Arghavan Afghani
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran; Neuroscience Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Sahand Ashrafpour
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran; Neuroscience Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Samaneh Dehghan
- Physiology Departments, Faculty of Medicine, Tarbiat Modares University, Tehran, Iran
| | - Mohammad Gol
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
| | - Manouchehr Ashrafpour
- Neuroscience Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran; Physiology Departments, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Fereshteh Pourabdolhossein
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran; Neuroscience Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran; Physiology Departments, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran.
| |
Collapse
|
22
|
Lian YL, Cheng MJ, Zhang XX, Wang L. Elevated expression of transient receptor potential vanilloid type 1 in dorsal root ganglia of rats with endometriosis. Mol Med Rep 2017; 16:1920-1926. [PMID: 28627595 PMCID: PMC5561994 DOI: 10.3892/mmr.2017.6783] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 04/06/2017] [Indexed: 12/03/2022] Open
Abstract
Pain is the most pronounced complaint of women with endometriosis, however the underlying mechanism is still poorly understood. In the present study, the authors evaluate the effect of transient receptor potential vanilloid type 1 (TRPV1) of dorsal root ganglia (DRG) on endometriosis-associated pain. A total of 36 SD rats were randomly divided into a sham group (n=9) and a Model group (n=27), accepted auto‑transplanted pieces of fat or uterus to the pelvic cavity. At 4 weeks, the Model group was randomly subdivided into the following groups: ENDO group (no treatment, n=9), BCTC group (Model + BCTC, an antagonist of TRPV1, n=9), Vehicle group (Model + cyclodextrin, the vehicle of BCTC, n=9). Tail‑flick test was performed prior to surgery, 1 h prior to and following treatment of BCTC or cyclodextrin. The expression of TRPV1, substance P (SP), calcitonin gene‑related peptide (CGRP) in L1‑L6 DRG was measured via immunohistochemistry, western blotting and RT‑qPCR. The results indicated that the Model group exhibited a significant decrease in tail flick latency compared to pre‑surgical baseline, and the expression of TRPV1, SP, CGRP protein and mRNA in L1‑L6 DRG significantly increased compared to the sham group. BCTC significantly improved tail flick latency, and downregulated the expression of TRPV1, SP and CGRP protein and mRNA levels in L1‑L6 DRG compared to ENDO group. However, there were no significant differences of those in Vehicle group compared with the ENDO group. Taken together, the current study provides evidence that TRPV1 expressed in DRG may serve an important role in endometriosis-associated pain.
Collapse
Affiliation(s)
- Yu-Ling Lian
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200011, P.R. China
- Department of Obstetrics and Gynecology of Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai 200011, P.R. China
| | - Ming-Jun Cheng
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200011, P.R. China
- Department of Obstetrics and Gynecology of Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai 200011, P.R. China
| | - Xian-Xia Zhang
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200011, P.R. China
- Department of Obstetrics and Gynecology of Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai 200011, P.R. China
| | - Li Wang
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200011, P.R. China
- Department of Obstetrics and Gynecology of Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai 200011, P.R. China
| |
Collapse
|
23
|
Iyengar S, Ossipov MH, Johnson KW. The role of calcitonin gene-related peptide in peripheral and central pain mechanisms including migraine. Pain 2017; 158:543-559. [PMID: 28301400 PMCID: PMC5359791 DOI: 10.1097/j.pain.0000000000000831] [Citation(s) in RCA: 366] [Impact Index Per Article: 52.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 12/09/2016] [Accepted: 12/22/2016] [Indexed: 12/25/2022]
Abstract
Calcitonin gene-related peptide (CGRP) is a 37-amino acid peptide found primarily in the C and Aδ sensory fibers arising from the dorsal root and trigeminal ganglia, as well as the central nervous system. Calcitonin gene-related peptide was found to play important roles in cardiovascular, digestive, and sensory functions. Although the vasodilatory properties of CGRP are well documented, its somatosensory function regarding modulation of neuronal sensitization and of enhanced pain has received considerable attention recently. Growing evidence indicates that CGRP plays a key role in the development of peripheral sensitization and the associated enhanced pain. Calcitonin gene-related peptide is implicated in the development of neurogenic inflammation and it is upregulated in conditions of inflammatory and neuropathic pain. It is most likely that CGRP facilitates nociceptive transmission and contributes to the development and maintenance of a sensitized, hyperresponsive state not only of the primary afferent sensory neurons but also of the second-order pain transmission neurons within the central nervous system, thus contributing to central sensitization as well. The maintenance of a sensitized neuronal condition is believed to be an important factor underlying migraine. Recent successful clinical studies have shown that blocking the function of CGRP can alleviate migraine. However, the mechanisms through which CGRP may contribute to migraine are still not fully understood. We reviewed the role of CGRP in primary afferents, the dorsal root ganglion, and in the trigeminal system as well as its role in peripheral and central sensitization and its potential contribution to pain processing and to migraine.
Collapse
|
24
|
Chen D, Liu N, Li M, Liang S. Blocking PAR2 Alleviates Bladder Pain and Hyperactivity via TRPA1 Signal. Transl Neurosci 2016; 7:133-138. [PMID: 28123833 PMCID: PMC5234516 DOI: 10.1515/tnsci-2016-0020] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Accepted: 09/24/2016] [Indexed: 12/17/2022] Open
Abstract
Bladder disorders associated with interstitial cystitis are frequently characterized by increased contractility and pain. The goals of this study were to examine 1) the effects of blocking proteinase-activated receptor-2 (PAR2) on the exaggerated bladder activity and pain evoked by cystitis and 2) the underlying mechanisms responsible for the role of PAR2 in regulating cystic sensory activity. The protein expression of PAR2 was amplified in rats with cystitis by inducing it with systemic administration of cyclophosphamide (CYP) as compared with control rats. Blocking PAR2 by intrathecal infusion of PAR2 antagonist FSLLRY-NH2 attenuated bladder hyperactivity and pain. In addition, blocking PAR2 attenuated the transient receptor potential A1 (TRPA1) signal pathway, whereas inhibition of the TRPA1 decreased bladder hyperactivity and pain. The data revealed specific signaling pathways leading to CYP-induced bladder hyperactivity and pain, including the activation of PAR2 and TRPA1. Inhibition of these pathways alleviates cystic pain. Targeting one or more of these signaling molecules may present new opportunities for treatment and management of overactive bladder and pain often observed in cystitis.
Collapse
Affiliation(s)
- Daihui Chen
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University Chongqing 400012, P.R. China
| | - Nian Liu
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University Chongqing 400012, P.R. China
| | - Mao Li
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University Chongqing 400012, P.R. China
| | - Simin Liang
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University Chongqing 400012, P.R. China
| |
Collapse
|
25
|
Liang S, Li J, Gou X, Chen D. Blocking mammalian target of rapamycin alleviates bladder hyperactivity and pain in rats with cystitis. Mol Pain 2016; 12:12/0/1744806916668868. [PMID: 27780878 PMCID: PMC5084610 DOI: 10.1177/1744806916668868] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 06/27/2016] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Bladder disorders associated with interstitial cystitis are frequently characterized by increased contractility and pain. The purposes of this study were to examine (1) the effects of blocking mammalian target of rapamycin (mTOR) on the exaggerated bladder activity and pain evoked by cystitis and (2) the underlying mechanisms responsible for the role of mTOR in regulating cystic sensory activity. RESULTS The expression of p-mTOR, mTOR-mediated phosphorylation of p70 ribosomal S6 protein kinase 1 (p-S6K1), 4 E-binding protein 4 (p-4 E-BP1), as well as phosphatidylinositide 3-kinase (p-PI3K) pathway were amplified in cyclophosphamide rats as compared with control rats. Blocking mTOR by intrathecal infusion of rapamycin attenuated bladder hyperactivity and pain. In addition, blocking PI3K signal pathway attenuated activities of mTOR, which was accompanied with decreasing bladder hyperactivity and pain. Inhibition of either mTOR or PI3K blunted the enhanced spinal substance P and calcitonin gene-related peptide in cyclophosphamide rats. CONCLUSIONS The data for the first time revealed specific signaling pathways leading to cyclophosphamide-induced bladder hyperactivity and pain, including the activation of mTOR and PI3K. Inhibition of these pathways alleviates cystic pain. Targeting one or more of these signaling molecules may present new opportunities for treatment and management of overactive bladder and pain often observed in cystitis.
Collapse
Affiliation(s)
- Simin Liang
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jie Li
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xin Gou
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Daihui Chen
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
26
|
Dodds KN, Beckett EAH, Evans SF, Grace PM, Watkins LR, Hutchinson MR. Glial contributions to visceral pain: implications for disease etiology and the female predominance of persistent pain. Transl Psychiatry 2016; 6:e888. [PMID: 27622932 PMCID: PMC5048206 DOI: 10.1038/tp.2016.168] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 07/14/2016] [Accepted: 07/22/2016] [Indexed: 12/27/2022] Open
Abstract
In the central nervous system, bidirectional signaling between glial cells and neurons ('neuroimmune communication') facilitates the development of persistent pain. Spinal glia can contribute to heightened pain states by a prolonged release of neurokine signals that sensitize adjacent centrally projecting neurons. Although many persistent pain conditions are disproportionately common in females, whether specific neuroimmune mechanisms lead to this increased susceptibility remains unclear. This review summarizes the major known contributions of glia and neuroimmune interactions in pain, which has been determined principally in male rodents and in the context of somatic pain conditions. It is then postulated that studying neuroimmune interactions involved in pain attributed to visceral diseases common to females may offer a more suitable avenue for investigating unique mechanisms involved in female pain. Further, we discuss the potential for primed spinal glia and subsequent neurogenic inflammation as a contributing factor in the development of peripheral inflammation, therefore, representing a predisposing factor for females in developing a high percentage of such persistent pain conditions.
Collapse
Affiliation(s)
- K N Dodds
- Discipline of Physiology, School of Medicine, University of Adelaide, Adelaide, SA, Australia
| | - E A H Beckett
- Discipline of Physiology, School of Medicine, University of Adelaide, Adelaide, SA, Australia
| | - S F Evans
- Discipline of Pharmacology, School of Medicine, University of Adelaide, Adelaide, SA, Australia
- Pelvic Pain SA, Norwood, SA, Australia
| | - P M Grace
- Discipline of Pharmacology, School of Medicine, University of Adelaide, Adelaide, SA, Australia
- Department of Psychology and Neuroscience, Center for Neuroscience, University of Colorado Boulder, Boulder, CO, USA
| | - L R Watkins
- Department of Psychology and Neuroscience, Center for Neuroscience, University of Colorado Boulder, Boulder, CO, USA
| | - M R Hutchinson
- Discipline of Physiology, School of Medicine, University of Adelaide, Adelaide, SA, Australia
- ARC Centre of Excellence for Nanoscale BioPhotonics, University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
27
|
Wang X, Li X, Huang B, Ma S. Blocking mammalian target of rapamycin (mTOR) improves neuropathic pain evoked by spinal cord injury. Transl Neurosci 2016; 7:50-55. [PMID: 28123821 PMCID: PMC5234518 DOI: 10.1515/tnsci-2016-0008] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 12/15/2015] [Indexed: 12/17/2022] Open
Abstract
Spinal cord injury (SCI) is an extremely serious type of physical trauma observed in clinics. Neuropathic pain resulting from SCI has a lasting and significant impact on most aspects of daily life. Thus, a better understanding of the molecular pathways responsible for the cause of neuropathic pain observed in SCI is important to develop effective therapeutic agents and treatment strategies. Mammalian target of rapamycin (mTOR) is a serine/threonine protein kinase that is well known for its critical roles in regulating protein synthesis and growth. Furthermore, compelling evidence supports the notion that widespread dysregulation of mTOR and its downstream pathways are involved in neuropathic pain. Thus, in this study we specifically examined the underlying mechanisms by which mTOR and its signaling pathways are involved in SCI-evoked neuropathic pain in a rat model. Overall, we demonstrated that SCI increased the protein expression of p-mTOR, and mTORmediated- phosphorylation of 4E–binding protein 4 (4E-BP1) and p70 ribosomal S6 protein kinase 1 (S6K1) in the superficial dorsal horn of the spinal cord. Also, we showed that blocking spinal mTOR by intrathecal injection of rapamycin significantly inhibited pain responses induced by mechanical and thermal stimulation. In addition, blocking spinal phosphatidylinositide 3-kinase (p-PI3K) pathway significantly attenuated activities of p-mTOR pathways as well as mechanical and thermal hyperalgesia in SCI rats. Moreover, blocking mTOR and PI3K decreased the enhanced levels of substance P and calcitonin gene-related peptide (CGRP) in the dorsal horn of SCI rats. We revealed specific signaling pathways leading to SCI-evoked neuropathic pain, including the activation of PI3K, mTOR and its downstream signaling pathways. Targeting one or more of these signaling molecules may present new opportunities for treatment and management of neuropathic pain often observed in patients with SCI.
Collapse
Affiliation(s)
- Xiaoping Wang
- Department of Neurology Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital Chengdu, Sichuan 610072, P.R. China
| | - Xiaojia Li
- Department of Neurology Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital Chengdu, Sichuan 610072, P.R. China
| | - Bin Huang
- Department of Neurology Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital Chengdu, Sichuan 610072, P.R. China
| | - Shuai Ma
- Department of Neurology Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital Chengdu, Sichuan 610072, P.R. China
| |
Collapse
|
28
|
Yousuf MS, Kerr BJ. The Role of Regulatory Transporters in Neuropathic Pain. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2016; 75:245-71. [PMID: 26920015 DOI: 10.1016/bs.apha.2015.12.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Neuropathic pain arises from an injury or disease of the somatosensory nervous system rather than stimulation of pain receptors. As a result, the fine balance between excitation and inhibition is perturbed leading to hyperalgesia and allodynia. Various neuropathic pain models provide considerable evidence that changes in the glutamatergic, GABAergic, and monoaminergic systems. Neurotransmitter reuptake transporter proteins have the potential to change the temporal and spatial profile of various neurotransmitters throughout the nervous system. This, in turn, can affect the downstream effects of these neurotransmitters and hence modulate pain. This chapter explores various reuptake transporter systems and implicates their role in pain processing. Understanding the transporter systems will enhance drug discovery targeting different facets of neuropathic pain.
Collapse
Affiliation(s)
- Muhammad Saad Yousuf
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Bradley J Kerr
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada; Department of Pharmacology, University of Alberta, Edmonton, Alberta, Canada; Department of Anesthesiology and Pain Medicine, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
29
|
Muley MM, Krustev E, McDougall JJ. Preclinical Assessment of Inflammatory Pain. CNS Neurosci Ther 2015; 22:88-101. [PMID: 26663896 DOI: 10.1111/cns.12486] [Citation(s) in RCA: 116] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Revised: 10/28/2015] [Accepted: 10/29/2015] [Indexed: 12/21/2022] Open
Abstract
While acute inflammation is a natural physiological response to tissue injury or infection, chronic inflammation is maladaptive and engenders a considerable amount of adverse pain. The chemical mediators responsible for tissue inflammation act on nociceptive nerve endings to lower neuronal excitation threshold and sensitize afferent firing rate leading to the development of allodynia and hyperalgesia, respectively. Animal models have aided in our understanding of the pathophysiological mechanisms responsible for the generation of chronic inflammatory pain and allowed us to identify and validate numerous analgesic drug candidates. Here we review some of the commonly used models of skin, joint, and gut inflammatory pain along with their relative benefits and limitations. In addition, we describe and discuss several behavioral and electrophysiological approaches used to assess the inflammatory pain in these preclinical models. Despite significant advances having been made in this area, a gap still exists between fundamental research and the implementation of these findings into a clinical setting. As such we need to characterize inherent pathophysiological pathways and develop new endpoints in these animal models to improve their predictive value of human inflammatory diseases in order to design safer and more effective analgesics.
Collapse
Affiliation(s)
- Milind M Muley
- Departments of Pharmacology and Anaesthesia, Pain Management & Perioperative Medicine, Dalhousie University, Halifax, NS, Canada
| | - Eugene Krustev
- Departments of Pharmacology and Anaesthesia, Pain Management & Perioperative Medicine, Dalhousie University, Halifax, NS, Canada
| | - Jason J McDougall
- Departments of Pharmacology and Anaesthesia, Pain Management & Perioperative Medicine, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
30
|
Wei H, Wei Y, Tian F, Niu T, Yi G. Blocking proteinase-activated receptor 2 alleviated neuropathic pain evoked by spinal cord injury. Physiol Res 2015; 65:145-53. [PMID: 26596317 DOI: 10.33549/physiolres.933104] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Spinal cord injury (SCI) is an extremely serious type of physical trauma observed in clinics. Especially, neuropathic pain resulting from SCI has a lasting and significant impact on most aspects of daily life. Thus, a better understanding of the molecular pathways responsible for the cause of neuropathic pain observed in SCI is important to develop effectively therapeutic agents and treatment strategies. Proteinase-activated receptors (PARs) are a family member of G-protein-coupled receptors and are activated by a proteolytic mechanism. One of its subtypes PAR2 has been reported to be engaged in mechanical and thermal hyperalgesia. Thus, in this study we specifically examined the underlying mechanisms responsible for SCI evoked-neuropathic pain in a rat model. Overall, we demonstrated that SCI increases PAR2 and its downstream pathways TRPV1 and TRPA1 expression in the superficial dorsal horn of the spinal cord. Also, we showed that blocking spinal PAR2 by intrathecal injection of FSLLRY-NH2 significantly inhibits neuropathic pain responses induced by mechanical and thermal stimulation whereas FSLLRY-NH2 decreases the protein expression of TRPV1 and TRPA1 as well as the levels of substance P and calcitonin gene-related peptide. Results of this study have important implications, i.e. targeting one or more of these signaling molecules involved in activation of PAR2 and TRPV1/TRPA1 evoked by SCI may present new opportunities for treatment and management of neuropathic pain often observed in patients with SCI.
Collapse
Affiliation(s)
- H Wei
- Department of Orthopedics, Shandong Jining No. 1 People's Hospital, Jining, Shandong, China.
| | | | | | | | | |
Collapse
|
31
|
Gong K, Zou X, Fuchs PN, Lin Q. Minocycline inhibits neurogenic inflammation by blocking the effects of tumor necrosis factor-α. Clin Exp Pharmacol Physiol 2015; 42:940-949. [DOI: 10.1111/1440-1681.12444] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2015] [Revised: 06/19/2015] [Accepted: 06/27/2015] [Indexed: 01/25/2023]
Affiliation(s)
- Kerui Gong
- Department of Psychology; College of Science; University of Texas at Arlington; Arlington TX USA
- Department of Neurobiology; Tai Shan Medical University; Tai'an Shan Dong Province China
| | - Xiaoju Zou
- Department of Psychology; College of Science; University of Texas at Arlington; Arlington TX USA
| | - Perry N Fuchs
- Department of Psychology; College of Science; University of Texas at Arlington; Arlington TX USA
| | - Qing Lin
- Department of Psychology; College of Science; University of Texas at Arlington; Arlington TX USA
| |
Collapse
|
32
|
Wu YW, Hao T, Kou XX, Gan YH, Ma XC. Synovial TRPV1 is upregulated by 17-β-estradiol and involved in allodynia of inflamed temporomandibular joints in female rats. Arch Oral Biol 2015; 60:1310-8. [PMID: 26117090 DOI: 10.1016/j.archoralbio.2015.05.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 03/09/2015] [Accepted: 05/24/2015] [Indexed: 12/20/2022]
Abstract
Women with reproductive capability are more likely to suffer from temporomandibular disorders (TMD), with orofacial pain as the most common complaint. In the past, we focused on the role of estradiol in TMD pain through the nervous system. In this study, we explored estradiol's influence on synoviocyte gene expressions involved in the allodynia of the inflamed TMJ. The influence of 17-β-estradiol on NGF and TRPV1 expression in TMJ synovium was determined in vivo and in vitro and analyzed by Western blot and real-time PCR. Complete Freund's adjuvant (CFA) injection into the TMJ was used to induce TMJ arthritis. Capsazepine served as a TRPV1 antagonist. Head withdrawal threshold was examined using a von Frey Anesthesiometer. We observed that estradiol upregulated the expressions of TRPV1 and NGF in a dose-dependent manner. In the primary cultured synoviocytes, TRPV1 was upregulated by lipopolysaccharide (LPS), estradiol, and NGF, while NGF antibodies fully blocked LPS and estradiol-induced upregulation of TRPV1. Activation of TRPV1 in the primary synoviocytes with capsaicin, a TRPV1 agonist, dose-dependently enhanced COX-2 transcription. Moreover, intra-TMJ injection of TRPV1 antagonist, capsazepine, significantly attenuated allodynia of the inflamed TMJ induced by intra-TMJ injection of CFA in female rats. This article presents a possible local mechanism for estradiol that may be involved in TMJ inflammation or pain in the synovial membrane through the pain-related gene TRPV1. This finding could potentially help clinicians understand the sexual dimorphism of TMD pain.
Collapse
Affiliation(s)
- Yu-Wei Wu
- Laboratory of Molecular Biology and Center for TMD & Orofacial Pain, Peking University School and Hospital of Stomatology, China.
| | - Ting Hao
- Laboratory of Molecular Biology and Center for TMD & Orofacial Pain, Peking University School and Hospital of Stomatology, China
| | - Xiao-Xing Kou
- Laboratory of Molecular Biology and Center for TMD & Orofacial Pain, Peking University School and Hospital of Stomatology, China
| | - Ye-Hua Gan
- Laboratory of Molecular Biology and Center for TMD & Orofacial Pain, Peking University School and Hospital of Stomatology, China.
| | - Xu-Chen Ma
- Center for TMD & Orofacial Pain, Peking University School and Hospital of Stomatology, China.
| |
Collapse
|
33
|
Chen K, Zhang ZF, Liao MF, Yao WL, Wang J, Wang XR. Blocking PAR2 attenuates oxaliplatin-induced neuropathic pain via TRPV1 and releases of substance P and CGRP in superficial dorsal horn of spinal cord. J Neurol Sci 2015; 352:62-7. [DOI: 10.1016/j.jns.2015.03.029] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Revised: 03/11/2015] [Accepted: 03/17/2015] [Indexed: 02/08/2023]
|
34
|
Tian L, Fan T, Zhou N, Guo H, Zhang W. Role of PAR2 in regulating oxaliplatin-induced neuropathic pain via TRPA1. Transl Neurosci 2015; 6:111-116. [PMID: 28123794 PMCID: PMC4936617 DOI: 10.1515/tnsci-2015-0010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 03/02/2015] [Indexed: 12/21/2022] Open
Abstract
Oxaliplatin (OXL) is a third-generation chemotherapeutic agent commonly used to treat metastatic digestive tumors; however, one of the main limiting complications of OXL is neuropathic pain. In this study, the underlying mechanisms responsible for OXL evoked-neuropathic pain were examined. Using a rat model, the results demonstrated that intraperitoneal (i.p.) injection of OXL significantly increased mechanical pain and cold sensitivity as compared with control animals (P < 0.05 vs. control rats). Blocking proteinase-activated receptor 2 (PAR2) significantly attenuated mechanical pain and cold sensitivity observed in control rats and OXL rats (P < 0.05 vs. vehicle control). The attenuating effect of PAR2 on mechanical pain and cold sensitivity were significantly smaller in OXL-rats than in control rats. The role played by PAR2 downstream signaling pathways [namely, transient receptor potential ankyrin 1 (TRPA1)] in regulating OXL evoked-neuropathic pain was also examined. The data shows that TRPA1 expression was upregulated in the lumbar dorsal root ganglion (DRG) of OXL rats and blocking TRPA1 inhibited mechanical pain and heightened cold sensitivity (P < 0.05 vs. control rats). Blocking PAR2 also significantly decreased TRPA1 expression in the DRG. Findings in this study show that OXL intervention amplifies mechanical hyperalgesia and cold hypersensitivity and PAR2 plays an important role in regulating OXL-induced neuropathic pain via TRPA1 pathways.
Collapse
|
35
|
Malek N, Pajak A, Kolosowska N, Kucharczyk M, Starowicz K. The importance of TRPV1-sensitisation factors for the development of neuropathic pain. Mol Cell Neurosci 2015; 65:1-10. [PMID: 25662734 DOI: 10.1016/j.mcn.2015.02.001] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Revised: 01/20/2015] [Accepted: 02/02/2015] [Indexed: 12/17/2022] Open
Abstract
Transient receptor potential vanilloid type 1 (TRPV1), classically associated with transduction of high-temperature and low-pH pain, underlies pain hypersensitivity in neuropathic pain. The molecular regulation of TRPV1 channel activity is not yet fully understood. Therefore, we investigated factors regulating sensitisation of this receptor during development of neuropathic pain in a rat model of chronic construction injury (CCI) in the dorsal root ganglia (DRG). In the rat CCI model, elevated levels of pro-inflammatory cytokines (TNFα, IL-1β and IL-6) in DRG corresponded to development of neuropathic pain. We assessed the expression of known kinases influencing TRPV1 sensitisation at the mRNA and/or protein level. Protein kinase C ε (PKCε) showed the strongest upregulation at the mRNA and protein levels among all tested kinases. Co-expression of PKCε and TRPV1 in L5 DRG of CCI animals was high during the development of neuropathic pain. The number of neurons expressing PKCε increased throughout the experiment. We provide complex data on the expression of a variety of factors involved in TRPV1 sensitisation in a CCI model of neuropathic pain. Our study supports evidence for involvement of TRPV1 in the development of neuropathic pain, by showing increased expression of interleukins and kinases responsible for the channel sensitisation. TNFα and NGF seem to play a role in the transition from acute to neuropathic pain, while PKCε in its maintenance. Further studies might confirm their significance as novel targets for the treatment of neuropathic pain.
Collapse
Affiliation(s)
- Natalia Malek
- Laboratory of Pain Pathophysiology, Department of Pain Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, Smetna 12 Street, 31-343 Krakow, Poland.
| | - Agnieszka Pajak
- Laboratory of Pain Pathophysiology, Department of Pain Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, Smetna 12 Street, 31-343 Krakow, Poland.
| | - Natalia Kolosowska
- Laboratory of Pain Pathophysiology, Department of Pain Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, Smetna 12 Street, 31-343 Krakow, Poland.
| | - Mateusz Kucharczyk
- Laboratory of Pain Pathophysiology, Department of Pain Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, Smetna 12 Street, 31-343 Krakow, Poland.
| | - Katarzyna Starowicz
- Laboratory of Pain Pathophysiology, Department of Pain Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, Smetna 12 Street, 31-343 Krakow, Poland.
| |
Collapse
|
36
|
Takahashi N, Matsuda Y, Yamada H, Tabeta K, Nakajima T, Murakami S, Yamazaki K. Epithelial TRPV1 signaling accelerates gingival epithelial cell proliferation. J Dent Res 2014; 93:1141-7. [PMID: 25266715 DOI: 10.1177/0022034514552826] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Transient receptor potential cation channel subfamily V member 1 (TRPV1), a member of the calcium-permeable thermosensitive transient receptor potential superfamily, is a sensor of thermal and chemical stimuli. TRPV1 is activated by noxious heat (> 43°C), acidic conditions (pH < 6.6), capsaicin, and endovanilloids. This pain receptor was discovered on nociceptive fibers in the peripheral nervous system. TRPV1 was recently found to be expressed by non-neuronal cells, such as epithelial cells. The oral gingival epithelium is exposed to multiple noxious stimuli, including heat and acids derived from endogenous and exogenous substances; however, whether gingival epithelial cells (GECs) express TRPV1 is unknown. We show that both TRPV1 mRNA and protein are expressed by GECs. Capsaicin, a TRPV1 agonist, elevated intracellular Ca(2+) levels in the gingival epithelial cell line, epi 4. Moreover, TRPV1 activation in epi 4 cells accelerated proliferation. These responses to capsaicin were inhibited by a specific TRPV1 antagonist, SB-366791. We also observed GEC proliferation in capsaicin-treated mice in vivo. No effects were observed on GEC apoptosis by epithelial TRPV1 signaling. To examine the molecular mechanisms underlying this proliferative effect, we performed complementary (c)DNA microarray analysis of capsaicin-stimulated epi 4 cells. Compared with control conditions, 227 genes were up-regulated and 232 genes were down-regulated following capsaicin stimulation. Several proliferation-related genes were validated by independent experiments. Among them, fibroblast growth factor-17 and neuregulin 2 were significantly up-regulated in capsaicin-treated epi 4 cells. Our results suggest that functional TRPV1 is expressed by GECs and contributes to the regulation of cell proliferation.
Collapse
Affiliation(s)
- N Takahashi
- Laboratory of Periodontology and Immunology, Division of Oral Science for Health Promotion, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan Division of Periodontology, Department of Oral Biological Science, Niigata University Faculty of Dentistry, Niigata, Japan
| | - Y Matsuda
- Laboratory of Periodontology and Immunology, Division of Oral Science for Health Promotion, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan Division of Periodontology, Department of Oral Biological Science, Niigata University Faculty of Dentistry, Niigata, Japan
| | - H Yamada
- Laboratory of Periodontology and Immunology, Division of Oral Science for Health Promotion, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan Division of Periodontology, Department of Oral Biological Science, Niigata University Faculty of Dentistry, Niigata, Japan
| | - K Tabeta
- Division of Periodontology, Department of Oral Biological Science, Niigata University Faculty of Dentistry, Niigata, Japan
| | - T Nakajima
- General Dentistry and Clinical Education Unit, Niigata University Medical and Dental Hospital, Niigata, Japan
| | - S Murakami
- Department of Periodontology, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - K Yamazaki
- Laboratory of Periodontology and Immunology, Division of Oral Science for Health Promotion, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| |
Collapse
|
37
|
Bodkin JV, Fernandes ES. TRPV1 and SP: key elements for sepsis outcome? Br J Pharmacol 2013; 170:1279-92. [PMID: 23145480 PMCID: PMC3838676 DOI: 10.1111/bph.12056] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2012] [Revised: 10/10/2012] [Accepted: 11/04/2012] [Indexed: 12/30/2022] Open
Abstract
UNLABELLED Sensory neurons play important roles in many disorders, including inflammatory diseases, such as sepsis. Sepsis is a potentially lethal systemic inflammatory reaction to a local bacterial infection, affecting thousands of patients annually. Although associated with a high mortality rate, sepsis outcome depends on the severity of systemic inflammation, which can be directly influenced by several factors, including the immune response of the patient. Currently, there is a lack of effective drugs to treat sepsis, and thus there is a need to develop new drugs to improve sepsis outcome. Several mediators involved in the formation of sepsis have now been identified, but the mechanisms underlying the pathology remain poorly understood. The transient receptor potential vanilloid 1 (TRPV1) receptor and the neuropeptide substance P (SP) have recently been demonstrated as important targets for sepsis and are located on sensory neurones and non-neuronal cells. Herein, we highlight and review the importance of sensory neurones for the modulation of sepsis, with specific focus on recent findings relating to TRPV1 and SP, with their distinct abilities to alter the transition from local to systemic inflammation and also modify the overall sepsis outcome. We also emphasize the protective role of TRPV1 in this context. LINKED ARTICLES This article is part of a themed section on Neuropeptides. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2013.170.issue-7.
Collapse
|
38
|
Szolcsányi J. Neuroregulation of cutaneous microcirculation: the shadow of Sir Thomas Lewis. Trends Pharmacol Sci 2013; 34:591-2. [PMID: 24139692 DOI: 10.1016/j.tips.2013.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Accepted: 09/18/2013] [Indexed: 11/18/2022]
Affiliation(s)
- János Szolcsányi
- Department of Pharmacology and Pharmacotherapy, University of Pécs Medical School, H-7624 Pécs, Szigeti u. 12., Hungary.
| |
Collapse
|
39
|
Tao K, Wang HT, Chen B, Wang BT, Li ZY, Zhu XX, Tang CW, Hu DH. Effect of nonpeptide NK1 receptor antagonist L-703,606 on the edema formation in rats at early stage after deep partial-thickness skin scalding. ASIAN PAC J TROP MED 2013; 6:387-94. [DOI: 10.1016/s1995-7645(13)60044-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Revised: 02/24/2013] [Accepted: 03/20/2013] [Indexed: 10/26/2022] Open
|
40
|
Botz B, Imreh A, Sándor K, Elekes K, Szolcsányi J, Reglődi D, Quinn JP, Stewart J, Zimmer A, Hashimoto H, Helyes Z. Role of Pituitary Adenylate-Cyclase Activating Polypeptide and Tac1 gene derived tachykinins in sensory, motor and vascular functions under normal and neuropathic conditions. Peptides 2013; 43:105-12. [PMID: 23499760 DOI: 10.1016/j.peptides.2013.03.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Revised: 03/04/2013] [Accepted: 03/04/2013] [Indexed: 12/15/2022]
Abstract
Pituitary Adenylate-Cyclase Activating Polypeptide (PACAP) and Tac1 gene-encoded tachykinins (substance P: SP, neurokinin A: NKA) are expressed in capsaicin-sensitive nerves, but their role in nociception, inflammation and vasoregulation is unclear. Therefore, we investigated the function of these neuropeptides and the NK1 tachykinin receptor (from Tacr1 gene) in the partial sciatic nerve ligation-induced traumatic mononeuropathy model using gene deficient (PACAP(-/-), Tac1(-/-), and Tacr1(-/-)) mice. Mechanonociceptive threshold of the paw was measured with dynamic plantar aesthesiometry, motor coordination with Rota-Rod and cutaneous microcirculation with laser Doppler imaging. Neurogenic vasodilation was evoked by mustard oil stimulating sensory nerves. In wildtype mice 30-40% mechanical hyperalgesia developed one week after nerve ligation, which was not altered in Tac1(-/-) and Tacr1(-/-) mice, but was absent in PACAP(-/-) animals. Motor coordination of the PACAP(-/-) and Tac1(-/-) groups was significantly worse both before and after nerve ligation compared to their wildtypes, but it did not change in Tacr1(-/-) mice. Basal postoperative microcirculation on the plantar skin of PACAP(-/-) mice did not differ from the wildtypes, but was significantly lower in Tac1(-/-) and Tacr1(-/-) ones. In contrast, mustard oil-induced neurogenic vasodilation was significantly smaller in PACAP(-/-) mice, but not in Tacr1(-/-) and Tac1(-/-) animals. Both PACAP and SP/NKA, but not NK1 receptors participate in normal motor coordination. Tachykinins maintain basal cutaneous microcirculation. PACAP is a crucial mediator of neuropathic mechanical hyperalgesia and neurogenic vasodilation. Therefore identifying its target and developing selective, potent antagonists, might open promising new perspectives for the treatment of neuropathic pain and vascular complications.
Collapse
Affiliation(s)
- Bálint Botz
- Department of Pharmacology and Pharmacotherapy, University of Pécs, H-7624 Pécs, Szigeti u. 12, Hungary
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Bowler KE, Worsley MA, Broad L, Sher E, Benschop R, Johnson K, Yates JM, Robinson PP, Boissonade FM. Evidence for anti-inflammatory and putative analgesic effects of a monoclonal antibody to calcitonin gene-related peptide. Neuroscience 2012; 228:271-82. [PMID: 23098803 DOI: 10.1016/j.neuroscience.2012.10.030] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2012] [Revised: 09/26/2012] [Accepted: 10/13/2012] [Indexed: 10/27/2022]
Abstract
BACKGROUND Calcitonin gene-related peptide (CGRP) is a powerful pro-inflammatory mediator thought to play a significant role in the development of inflammation and pain. We investigated the role of CGRP in trigeminal inflammatory pain by determining the ability of a monoclonal antibody to CGRP to modify central Fos expression in response to stimulation of the inflamed ferret tooth pulp. We also assessed the effect of the antibody on pulpal inflammation. METHODS Ten adult ferrets were prepared under anaesthesia to allow stimulation of the upper and lower left canine pulps, recording from the digastric muscle and intravenous injections at subsequent experiments. In all animals, pulpal inflammation was induced by introducing human caries into a deep buccal cavity. Four days later animals were treated intravenously with either CGRP antibody (n=5) or vehicle (n=5). After a further 2 days animals were re-anaesthetised and the tooth pulps stimulated at 10 times jaw-opening reflex threshold. Brainstems and tooth pulps were processed immunohistochemically for Fos and the common leucocyte marker CD45, respectively. RESULTS Fos was expressed in ipsilateral trigeminal subnuclei caudalis (Vc) and oralis (Vo). Significantly fewer Fos-positive nuclei were present within Vc of CGRP antibody-treated animals (p=0.003 vs vehicle-treated). Mean percentage area of staining for CD45 was significantly less in antibody-treated animals (p=0.04 vs vehicle-treated). CONCLUSIONS This is the first direct evidence that sequestration of CGRP has anti-inflammatory and putative analgesic effects. Previous studies using this Fos model have demonstrated that it is able to predict clinical analgesic efficacy. Thus these data indicate that this antibody may have analgesic effects in dental pain and other types of inflammatory-mediated transmission, and suggest that this is in part due to peripheral anti-inflammatory effects.
Collapse
Affiliation(s)
- K E Bowler
- Unit of Oral & Maxillofacial Medicine & Surgery, School of Clinical Dentistry, University of Sheffield, Claremont Crescent, Sheffield S10 2TA, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Wong BJ, Fieger SM. Transient receptor potential vanilloid type 1 channels contribute to reflex cutaneous vasodilation in humans. J Appl Physiol (1985) 2012; 112:2037-42. [PMID: 22518827 DOI: 10.1152/japplphysiol.00209.2012] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Mechanisms underlying the cutaneous vasodilation in response to an increase in core temperature remain unresolved. The purpose of this study was to determine a potential contribution of transient receptor potential vanilloid type 1 (TRPV-1) channels to reflex cutaneous vasodilation. Twelve subjects were equipped with four microdialysis fibers on the ventral forearm, and each site randomly received 1) 90% propylene glycol + 10% lactated Ringer (vehicle control); 2) 10 mM l-NAME; 3) 20 mM capsazepine to inhibit TRPV-1 channels; 4) combined 10 mM l-NAME + 20 mM capsazepine. Whole body heating was achieved via water-perfused suits sufficient to raise oral temperature at least 0.8°C above baseline. Maximal skin blood flow was achieved by local heating to 43°C and infusion of 28 mM nitroprusside. Systemic arterial pressure (SAP) was measured, and skin blood flow was monitored via laser-Doppler flowmetry (LDF). Cutaneous vascular conductance (CVC) was calculated as LDF/SAP and normalized to maximal vasodilation (%CVC(max)). Capsazepine sites were significantly reduced compared with control (50 ± 4%CVC(max) vs. 67 ± 5%CVC(max), respectively; P < 0.05). l-NAME (33 ± 3%CVC(max)) and l-NAME + capsazepine (30 ± 4%CVC(max)) sites were attenuated compared with control (P < 0.01) and capsazepine (P < 0.05); however, there was no difference between l-NAME and combined l-NAME + capsazepine. These data suggest TRPV-1 channels participate in reflex cutaneous vasodilation and TRPV-1 channels may account for a portion of the NO component. TRPV-1 channels may have a direct neural contribution or have an indirect effect via increased arterial blood temperature. Whether the TRPV-1 channels directly or indirectly contribute to reflex cutaneous vasodilation remains uncertain.
Collapse
Affiliation(s)
- Brett J Wong
- Department of Kinesiology, Kansas State University, Manhattan, Kansas 66506, USA.
| | | |
Collapse
|
43
|
Wang J, Cao DY, Guo Y, Ma SJ, Luo R, Pickar JG, Zhao Y. Octreotide inhibits capsaicin-induced activation of C and Aδ afferent fibres in rat hairy skin in vivo. Clin Exp Pharmacol Physiol 2012; 38:521-7. [PMID: 21595740 DOI: 10.1111/j.1440-1681.2011.05542.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
1. The present study investigated whether the somatostatin receptor (SSTR) agonist, octreotide, could inhibit the activation of dorsal skin afferent fibres induced by local injection of capsaicin in the rat. 2. Single unit activity from Aδ mechano-heat sensitive (AMH; n = 41) and C mechano-heat sensitive (CMH; n = 30) afferents was recorded after their isolation in thin filaments from the dorsal cutaneous nerve branches. The effect of subcutaneous octreotide injection on the change in discharge rate and mechanical threshold induced by capsaicin was determined. 3. Capsaicin (0.05%) injection into the edge of the receptive field of both AMH and CMH units increased their discharge rate and decreased their mechanical threshold. Pre-injection of octreotide inhibited these responses, and co-application of SSTR antagonist, cyclosomatostatin, reversed the inhibitory effect of octreotide. 4. The present study provides electrophysiological evidence that the signal evoked by the somatostatin receptor inhibits the activation and mechanical sensitization evoked by capsaicin in the terminals in small-diameter sensory neurons.
Collapse
Affiliation(s)
- Jun Wang
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Medicine, Shaanxi, China
| | | | | | | | | | | | | |
Collapse
|
44
|
Cavallini N, Delbro D, Tobin G, Braide M. Neuropeptide release augments serum albumin loss and reduces ultrafiltration in peritoneal dialysis. Perit Dial Int 2011; 32:168-76. [PMID: 21965619 DOI: 10.3747/pdi.2010.00254] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND The triggers of the acute local inflammatory response to peritoneal dialysis (PD) fluid exposure remain unknown. In the present study, we investigated the effects of neurogenic inflammation and mast cell degranulation on water and solute transport in experimental PD. METHODS Single 2-hour dwells in rats with PD catheters were studied. Histamine and the neuropeptides substance P and calcitonin gene-related peptide (CGRP) were measured in PD fluid samples by ELISA. Radiolabeled albumin ((125)I and (131)I respectively) was used as an intraperitoneal (IP) and intravascular tracer. Glucose and urea concentrations were measured in plasma and PD fluid. The effects of varying the volume and osmolarity of a lactate-buffered PD fluid were compared and related to the effects of pharmacologic intervention. RESULTS Application of 20 mL 3.9% glucose PD fluid induced an IP histamine release during the first 30 minutes, blockable by the mast cell stabilizer doxantrazole and the substance P neurokinin-1 receptor (NK1R)-blocker spantide. Histamine release was also inhibited at a reduced PD volume (14 mL), but was not affected by normalizing the PD fluid osmolarity. Blockade of NK1R also reduced plasma albumin leakage to the peritoneal cavity. Inhibition of CGRP receptors by CGRP8-37 improved osmotic (transcapillary) and net ultrafiltration and reduced the dialysate urea concentration. Neuropeptide release was not clearly related to activation of the TrpV1 receptor, the classic trigger of neurogenic inflammation. CONCLUSIONS Neuropeptide release exaggerated albumin loss and reduced ultrafiltration in this rat PD model. Intervention aimed at the neuropeptide action substantially improved PD efficiency.
Collapse
Affiliation(s)
- Nicola Cavallini
- Institute of Biomedicine1 and Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden
| | | | | | | |
Collapse
|
45
|
Wong BJ, Fieger SM. Transient receptor potential vanilloid type-1 (TRPV-1) channels contribute to cutaneous thermal hyperaemia in humans. J Physiol 2011; 588:4317-26. [PMID: 20807792 DOI: 10.1113/jphysiol.2010.195511] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The initial, rapid increase in skin blood flow in response to direct application of heat is thought to be mediated by an axon reflex, which is dependent on intact cutaneous sensory nerves. We tested the hypothesis that inhibition of transient receptor potential vanilloid type 1 (TRPV-1) channels, which are putative channels located on sensory nerves, would attenuate the skin blood flow response to local heating in humans. Ten subjects were equipped with four microdialysis fibres which were randomly assigned one of four treatments: (1) vehicle control (90% propylene glycol + 10% lactated Ringer solution); (2) 20 mm capsazepine to inhibit TRPV-1 channels; (3) 10 mm l-NAME to inhibit NO synthase; and (4) combined 20 mm capsazepine + 10 mm l-NAME. Following baseline measurements, the temperature of skin heaters was increased from 33°C to 42°C at a rate of 1.0°C every 10 s and local temperature was held at 42°C for 20-30 min until a stable plateau in skin blood flow was achieved. An index of skin blood flow was measured directly over each microdialysis site via laser-Doppler flowmetry (LDF). Beat-by-beat blood pressure was measured via photoplethysmography and verified via automated brachial auscultation. At the end of the local heating protocol, temperature of the heaters was increased to 43°C and 28 mm nitroprusside was infused to achieve maximal vasodilatation. Cutaneous vascular conductance (CVC) was calculated as LDF/mean arterial pressure and normalized to maximal values (%CVCmax). Initial peak in capsazepine (44 ± 4%CVCmax), l-NAME (56 ± 4%CVCmax) and capsazepine + l-NAME (32 ± 6%CVCmax) sites was significantly attenuated compared to control (87 ± 5%CVCmax; P < 0.001 for all conditions). The plateau phase of thermal hyperaemia was significantly attenuated in capsazepine (73 ± 6%CVCmax), l-NAME (47 ± 5%CVCmax) and capsazepine + l-NAME (31 ± 7%CVCmax) sites compared to control (92 ± 5%CVCmax; P < 0.001 for all conditions). These data suggest TRPV-1 channels contribute substantially to the initial peak and modestly to the plateau phases of thermal hyperaemia. These data further suggest a portion of the NO component of thermal hyperaemia may be due to activation of TRPV-1 channels.
Collapse
Affiliation(s)
- Brett J Wong
- Department of Kinesiology, Kansas State University, Manhattan, KS 66506, USA.
| | | |
Collapse
|
46
|
Zhang X, Daugherty SL, de Groat WC. Activation of CaMKII and ERK1/2 contributes to the time-dependent potentiation of Ca2+ response elicited by repeated application of capsaicin in rat DRG neurons. Am J Physiol Regul Integr Comp Physiol 2010; 300:R644-54. [PMID: 21178121 DOI: 10.1152/ajpregu.00672.2010] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
When capsaicin is applied repeatedly to dorsal root ganglion (DRG) neurons for brief periods (10-15 s) at short intervals (5-10 min), the evoked responses rapidly decline, a phenomenon termed tachyphylaxis. In addition to this phenomenon, the present study using Ca(2+) imaging revealed that repeated application of capsaicin to rat dissociated DRG neurons at longer intervals (20-40 min) or during multiple applications at short intervals elicited an enhancement of the responses, termed potentiation. The potentiation occurred in 50-60% of the capsaicin-responsive cells, on average representing a 20- to 30% increase in the peak amplitude of the Ca(2+) signal, and was maximal at a 40-min application interval. An analysis of the mechanisms underlying potentiation revealed that it was suppressed by block of Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) with 5 μM KN-93 or block of the activation of extracellular signal-regulated kinase (ERK) 1/2 with 2 μM U-0126. Lowering the extracellular Ca(2+) concentration from 2 to 1 mM or pretreatment with deltamethrin (1 μM), which blocks calcineurin and tachyphylaxis, enhanced potentiation. Potentiation was not affected by: 1) inhibition of protein kinase C or protein kinase A, 2) block of the three subtypes of neurokinin receptors, or 3) block of the trafficking of transient receptor potential V1 channel to the membrane. These results indicate that the potentiation is a slowly developing Ca(2+)-modulated process that is mediated by a complex intracellular signaling pathway involving activation of CaMKII and ERK1/2. Potentiation may be an important peripheral autosensitization mechanism that occurs independently of the pronociceptive effects of inflammatory mediators and neurotrophic factors.
Collapse
Affiliation(s)
- Xiulin Zhang
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, School of Medicine, Pennsylvania, USA.
| | | | | |
Collapse
|
47
|
Dubin AE, Patapoutian A. Nociceptors: the sensors of the pain pathway. J Clin Invest 2010; 120:3760-72. [PMID: 21041958 DOI: 10.1172/jci42843] [Citation(s) in RCA: 729] [Impact Index Per Article: 52.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Specialized peripheral sensory neurons known as nociceptors alert us to potentially damaging stimuli at the skin by detecting extremes in temperature and pressure and injury-related chemicals, and transducing these stimuli into long-ranging electrical signals that are relayed to higher brain centers. The activation of functionally distinct cutaneous nociceptor populations and the processing of information they convey provide a rich diversity of pain qualities. Current work in this field is providing researchers with a more thorough understanding of nociceptor cell biology at molecular and systems levels and insight that will allow the targeted design of novel pain therapeutics.
Collapse
Affiliation(s)
- Adrienne E Dubin
- Department of Cell Biology, The Scripps Research Institute, La Jolla, California, USA.
| | | |
Collapse
|
48
|
Gong K, Yue Y, Zou X, Li D, Lin Q. Minocycline inhibits the enhancement of antidromic primary afferent stimulation-evoked vasodilation following intradermal capsaicin injection. Neurosci Lett 2010; 482:177-81. [PMID: 20654697 DOI: 10.1016/j.neulet.2010.07.031] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2010] [Revised: 07/06/2010] [Accepted: 07/13/2010] [Indexed: 02/07/2023]
Abstract
Neurogenic inflammation is induced by inflammatory mediators released in peripheral tissue from primary afferent nociceptors. Our previous studies suggest that neurogenic inflammation induced by intradermal injection of capsaicin results from the enhancement of dorsal root reflexes (DRRs), which involve antidromic activation of dorsal root ganglion (DRG) neurons. Numerous studies have reported the important role of glial modulation in pain. However, it remains unclear whether glial cells participate in the process of neurogenic inflammation-induced pain. Here we tested the role of DRG satellite glial cells (SGCs) in this process in anesthetized rats by administration of a glial inhibitor, minocycline. Electrical stimuli (ES, frequency 10 Hz; duration 1 ms; strength 3 mA) were applied to the cut distal ends of the L4-5 dorsal roots. The stimuli evoked antidromic action potentials designed to mimic DRRs. Local cutaneous blood flow in the hindpaw was measured using a Doppler flow meter. Antidromic ES for 10 min evoked a significant vasodilation that could be inhibited dose-dependently by local administration of the calcitonin gene-related peptide receptor antagonist, CGRP8-37. Pretreatment with capsaicin intradermally injected into the hindpaw 2h before the ES enhanced greatly the vasodilation evoked by antidromic ES, and this enhancement could be reversed by minocycline pretreatment. Our findings support the view that neurogenic inflammation following capsaicin injection involves antidromic activation of DRG neurons via the generation of DRRs. Inhibition of neurogenic inflammation by minocycline is suggested to be associated with its inhibitory effect on SGCs that are possibly activated following capsaicin injection.
Collapse
Affiliation(s)
- Kerui Gong
- Department of Psychology, University of Texas at Arlington, TX 76019, USA
| | | | | | | | | |
Collapse
|
49
|
Pan XQ, Gonzalez JA, Chang S, Chacko S, Wein AJ, Malykhina AP. Experimental colitis triggers the release of substance P and calcitonin gene-related peptide in the urinary bladder via TRPV1 signaling pathways. Exp Neurol 2010; 225:262-73. [PMID: 20501335 DOI: 10.1016/j.expneurol.2010.05.012] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2010] [Revised: 05/17/2010] [Accepted: 05/18/2010] [Indexed: 12/30/2022]
Abstract
Clinical data provide evidence of high level of co-morbidity among genitourinary and gastrointestinal disorders characterized by chronic pelvic pain. The objective of this study was to test the hypothesis that colonic inflammation can impact the function of the urinary bladder via activation of TRPV1 signaling pathways followed by alterations in gene and protein expression of substance P (SP) and calcitonin gene-related peptide (CGRP) in sensory neurons and in the bladder. Inflammation was induced by intracolonic instillation of trinitrobenzene sulfonic acid (TNBS, 12.5mg/kg), and desensitization of TRPV1 receptors was evoked by intracolonic resiniferatoxin (RTX, 10(-)(7)M). mRNA and protein concentrations of CGRP and SP were measured at 3, 5 and 30 days. RTX instillation in the colon caused 3-fold up-regulation of SP mRNA in the urinary bladder at day 5 (n=7, p ≤ 0.05) followed by 35-fold increase at day 30 (n=5, p ≤ 0.05). Likewise, TNBS colitis triggered 15.8-fold up-regulation of SP mRNA 1 month after TNBS (n=5, p ≤ 0.05). Desensitization of colonic TRPV1 receptors prior to TNBS abolished SP increase in the urinary bladder. RTX led to 4.3-fold increase of CGRP mRNA at day 5 (n=7, p ≤ 0.05 to control) in the bladder followed by 28-fold increase at day 30 post-RTX (n=4, p ≤ 0.05). Colitis did not alter CGRP concentration during acute phase; however, at day 30 mRNA level was increased by 17.8 ± 6.9-fold (n=5, p ≤ 0.05) in parallel with 4-fold increase in CGRP protein (n=5, p ≤ 0.01) in the detrusor. Protein concentration of CGRP in the spinal cord was diminished by 45-65% (p ≤ 0.05) during colitis. RTX pretreatment did not affect CGRP concentration in the urinary bladder; however, it caused a reduction in CGRP release from lumbosacral DRG neurons during acute phase (3 and 5 days post-TNBS). Our results clearly demonstrate that colonic inflammation triggers the release of pro-inflammatory neuropeptides SP and CGRP in the urinary bladder via activation of TRPV1 signaling mechanisms enunciating the neurogenic nature of pelvic organ cross-sensitization.
Collapse
Affiliation(s)
- Xiao-Qing Pan
- Division of Urology, Department of Surgery, University of Pennsylvania, Glenolden, PA, USA
| | | | | | | | | | | |
Collapse
|
50
|
Peptide-mediated transdermal delivery of botulinum neurotoxin type A reduces neurogenic inflammation in the skin. Pain 2010; 149:316-324. [PMID: 20223589 DOI: 10.1016/j.pain.2010.02.024] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2009] [Revised: 01/20/2010] [Accepted: 02/16/2010] [Indexed: 11/23/2022]
Abstract
Release of inflammatory pain mediators from peripheral sensory afferent endings contributes to the development of a positive feedback cycle resulting in chronic inflammation and pain. Botulinum neurotoxin type A (BoNT-A) blocks exocytosis of neurotransmitters and may therefore block the release of pain modulators in the periphery. Subcutaneous administration of BoNT-A (2.5, 5 and 10U) reduced plasma extravasation (PE) caused by electrical stimulation of the saphenous nerve or capsaicin in the rat hindpaw skin (ANOVA, Post hoc Tukey, p<0.05, n=6). Subcutaneous BoNT-A also reduced blood flow changes evoked by saphenous nerve stimulation (ANOVA, Post hoc Tukey, p<0.05, n=6). Subcutaneous BoNT-A had no effect on PE induced by local injection of substance P (SP) or vasodilation induced by local CGRP injection. Although BoNT-A is an effective treatment for a wide range of painful conditions, the toxin's large size necessitates that it be injected at numerous sites. We found that a short synthetic peptide (TD-1) can facilitate effective transdermal delivery of BoNT-A through intact skin. Coadministration of TD-1 and BoNT-A to the hindpaw skin resulted in a significant reduction in PE evoked by electrical stimulation. The findings show that BoNT-A can be administered subcutaneously or topically with a novel transdermal delivery peptide to reduce inflammation produced by activating nociceptors in the skin. Peptide-mediated delivery of BoNT-A is an easy and non-invasive way of administering the toxin that may prove to be useful in clinical practice.
Collapse
|