1
|
Mažerik J, Gondáš E, Dohál M, Smieško L, Jošková M, Fraňová S, Šutovská M. Targeting TMEM16A ion channels suppresses airway hyperreactivity, inflammation, and remodeling in an experimental Guinea pig asthma model. J Pharmacol Sci 2024; 156:239-246. [PMID: 39608849 DOI: 10.1016/j.jphs.2024.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 10/07/2024] [Accepted: 10/25/2024] [Indexed: 11/30/2024] Open
Abstract
Asthma is a chronic inflammatory disease characterized by airway hyperresponsiveness, inflammation, and remodeling. Calcium (Ca2+)-activated chloride (Cl-) channels, such as TMEM16A, are inferred to be involved in asthma. Therefore, the present study investigated the therapeutic potential of TMEM16A inhibition in a guinea pig model of ovalbumin (OVA)-induced allergic asthma. Guinea pigs were treated with a specific blocker, CaCCinh-A01 (10 μM), administered via inhalation. A significant reduction in cough reflex sensitivity and specific airway resistance was observed in animals treated with CaCCinh-A01, highlighting its potential to improve airway function. Despite a reduction in ciliary beating frequency (CBF), CaCCinh-A01 reduced airway mucus viscosity by decreasing the production of mucin-5AC (MUC5AC). The nonspecific reduction in the Th1/Th2 cytokine spectrum following CaCCinh-A01 treatment indicated the suppression of airway inflammation. Additionally, markers associated with airway remodeling were diminished, suggesting that CaCCinh-A01 may counteract structural changes in airway tissues. Therefore, inhibition appears to mitigate the pathological aspects of asthma, including airway hyperresponsiveness, inflammation, and remodeling. However, further studies are required to comprehensively evaluate the potential of TMEM16A as a therapeutic target for asthma.
Collapse
Affiliation(s)
- Jozef Mažerik
- Department of Pharmacology, Jessenius Faculty of Medicine in Martin, Comenius University Bratislava, Mala Hora 11161/4B, Martin, Slovakia.
| | - Eduard Gondáš
- Department of Pharmacology, Jessenius Faculty of Medicine in Martin, Comenius University Bratislava, Mala Hora 11161/4B, Martin, Slovakia
| | - Matúš Dohál
- Biomedical Centre, Jessenius Faculty of Medicine in Martin, Comenius University Bratislava, Mala Hora 11161/4C, Martin, Slovakia
| | - Lukáš Smieško
- Department of Pharmacology, Jessenius Faculty of Medicine in Martin, Comenius University Bratislava, Mala Hora 11161/4B, Martin, Slovakia
| | - Marta Jošková
- Department of Pharmacology, Jessenius Faculty of Medicine in Martin, Comenius University Bratislava, Mala Hora 11161/4B, Martin, Slovakia
| | - Soňa Fraňová
- Department of Pharmacology, Jessenius Faculty of Medicine in Martin, Comenius University Bratislava, Mala Hora 11161/4B, Martin, Slovakia
| | - Martina Šutovská
- Department of Pharmacology, Jessenius Faculty of Medicine in Martin, Comenius University Bratislava, Mala Hora 11161/4B, Martin, Slovakia
| |
Collapse
|
2
|
Cai Y, Li J, Fan K, Zhang D, Lu H, Chen G. Downregulation of chloride voltage-gated channel 7 contributes to hyperalgesia following spared nerve injury. J Biol Chem 2024; 300:107779. [PMID: 39276933 PMCID: PMC11490881 DOI: 10.1016/j.jbc.2024.107779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/22/2024] [Accepted: 08/30/2024] [Indexed: 09/17/2024] Open
Abstract
Alterations in anion balance potential, along with the involvement of cation-chloride cotransporters, play pivotal roles in the development of hyperalgesia after peripheral nerve injury. Chloride voltage-gated channel seven (CLCN7) is the predominant member of the CLC protein family. Investigations on CLCN7 have focused primarily on its involvement in osteosclerosis and lysosomal storage disorders; nevertheless, its contribution to neuropathic pain has not been determined. In this investigation, we noted high expression of CLCN7 in neurons situated within the spinal dorsal horns and dorsal root ganglions (DRGs). Immunofluorescence analysis revealed that CLCN7 was predominantly distributed among IB4-positive and CGRP-positive neurons. Furthermore, the expression of CLCN7 was observed to be mainly reduced in neurons within the spinal dorsal horns and in small- and medium-sized neurons located in the DRGs of spared nerve injury mice. Knockdown of CLCN7 via siRNA in the DRGs resulted in increased mechanical and thermal hyperalgesia in naïve mice. Furthermore, the excitability of cultured DRG neurons in vitro was augmented upon treatment with CLCN7 siRNA. These findings suggested that CLCN7 downregulation following SNI was crucial for the manifestation of mechanical and thermal hyperalgesia, highlighting potential targeting strategies for treating neuropathic pain.
Collapse
Affiliation(s)
- Yunyun Cai
- Center for Basic Medical Research, Medical School of Nantong University, Co-innovation Center of Neuroregeneration, Nantong, Jiangsu, China
| | - Jiajie Li
- Department of Histology and Embryology, Medical School of Nantong University, Nantong, Jiangsu, China
| | - Kewei Fan
- Center for Basic Medical Research, Medical School of Nantong University, Co-innovation Center of Neuroregeneration, Nantong, Jiangsu, China
| | - Dongmei Zhang
- Department of Rehabilitation Medicine, Affiliated Hospital 2 of Nantong University, Nantong, Jiangsu, China; Jiangsu Provincial Medical Key Discipline (Laboratory) Cultivation Unit of Immunology, Nantong First People's Hospital, Nantong, Jiangsu, China
| | - Hongjian Lu
- Department of Rehabilitation Medicine, Affiliated Hospital 2 of Nantong University, Nantong, Jiangsu, China; Jiangsu Provincial Medical Key Discipline (Laboratory) Cultivation Unit of Immunology, Nantong First People's Hospital, Nantong, Jiangsu, China; Medical Research Center, Affiliated Hospital 2 of Nantong University, Nantong, Jiangsu, China.
| | - Gang Chen
- Center for Basic Medical Research, Medical School of Nantong University, Co-innovation Center of Neuroregeneration, Nantong, Jiangsu, China; Department of Anesthesiology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China.
| |
Collapse
|
3
|
Satapathy T, Singh G, Pandey RK, Shukla SS, Bhardwaj SK, Gidwani B. Novel Targets and Drug Delivery System in the Treatment of Postoperative Pain: Recent Studies and Clinical Advancement. Curr Drug Targets 2024; 25:25-45. [PMID: 38037995 DOI: 10.2174/0113894501271207231127063431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 10/18/2023] [Accepted: 11/07/2023] [Indexed: 12/02/2023]
Abstract
Pain is generated by a small number of peripheral targets. These can be made more sensitive by inflammatory mediators. The number of opioids prescribed to the patients can be reduced dramatically with better pain management. Any therapy that safely and reliably provides extended analgesia and is flexible enough to facilitate a diverse array of release profiles would be useful for improving patient comfort, quality of care, and compliance after surgical procedures. Comparisons are made between new and traditional methods, and the current state of development has been discussed; taking into account the availability of molecular and cellular level data, preclinical and clinical data, and early post-market data. There are a number of benefits associated with the use of nanotechnology in the delivery of analgesics to specific areas of the body. Nanoparticles are able to transport drugs to inaccessible bodily areas because of their small molecular size. This review focuses on targets that act specifically or primarily on sensory neurons, as well as inflammatory mediators that have been shown to have an analgesic effect as a side effect of their anti- inflammatory properties. New, regulated post-operative pain management devices that use existing polymeric systems were presented in this article, along with the areas for potential development. Analgesic treatments, both pharmacological and non-pharmacological, have also been discussed.
Collapse
Affiliation(s)
- Trilochan Satapathy
- Department of Pharmacology, Columbia Institute of Pharmacy, Raipur, Chhattisgarh-493111, India
| | - Gulab Singh
- Department of Pharmacology, Columbia Institute of Pharmacy, Raipur, Chhattisgarh-493111, India
| | - Ravindra Kumar Pandey
- Department of Pharmacology, Columbia Institute of Pharmacy, Raipur, Chhattisgarh-493111, India
| | - Shiv Shankar Shukla
- Department of Pharmacology, Columbia Institute of Pharmacy, Raipur, Chhattisgarh-493111, India
| | - Shiv Kumar Bhardwaj
- Department of Pharmacology, Columbia Institute of Pharmacy, Raipur, Chhattisgarh-493111, India
| | - Beena Gidwani
- Department of Pharmacology, Columbia Institute of Pharmacy, Raipur, Chhattisgarh-493111, India
| |
Collapse
|
4
|
Wang Z, Choi K. Pharmacological modulation of chloride channels as a therapeutic strategy for neurological disorders. Front Physiol 2023; 14:1122444. [PMID: 36935741 PMCID: PMC10017882 DOI: 10.3389/fphys.2023.1122444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 02/09/2023] [Indexed: 03/06/2023] Open
Abstract
Chloride homeostasis is critical in the physiological functions of the central nervous system (CNS). Its concentration is precisely regulated by multiple ion-transporting proteins such as chloride channels and transporters that are widely distributed in the brain cells, including neurons and glia. Unlike ion transporters, chloride channels provide rapid responses to efficiently regulate ion flux. Some of chloride channels are also permeable to selected organic anions such as glutamate and γ-aminobutyric acid, suggesting neuroexcitatory and neuroinhibitory functions while gating. Dysregulated chloride channels are implicated in neurological disorders, e.g., ischemia and neuroinflammation. Modulation of chloride homeostasis through chloride channels has been suggested as a potential therapeutic approach for neurological disorders. The drug design for CNS diseases is challenging because it requires the therapeutics to traverse the blood-brain-barrier. Small molecules are a well-established modality with better cell permeability due to their lower molecular weight and flexibility for structure optimization compared to biologics. In this article, we describe the important roles of chloride homeostasis in each type of brain cells and introduce selected chloride channels identified in the CNS. We then discuss the contribution of their dysregulations towards the pathogenesis of neurological disorders, emphasizing the potential of targeting chloride channels as a therapeutic strategy for CNS disease treatment. Along with this literature survey, we summarize the small molecules that modulate chloride channels and propose the potential strategy of optimizing existing drugs to brain-penetrants to support future CNS drug discovery.
Collapse
|
5
|
Wu Y, Wang F. Inhibition of NKCC1 in spinal dorsal horn and dorsal root ganglion results in alleviation of neuropathic pain in rats with spinal cord contusion. Mol Pain 2023; 19:17448069231159855. [PMID: 36760008 PMCID: PMC9950615 DOI: 10.1177/17448069231159855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023] Open
Abstract
Previous studies have confirmed the relationship between chloride homeostasis and pain. However, the role of sodium potassium chloride co-transporter isoform 1 (NKCC1) in dorsal horn and dorsal root ganglion neurons (DRGs) in spinal cord injury (SCI)-induced neuropathic pain (NP) remains inconclusive. Therefore, we aimed to explore whether suppression of NKCC1 in the spinal cord and DRGs alleviate the NP of adult rats with thoracic spinal cord contusion. Thirty adult female Sprague-Dawley rats (8 week-old, weighing 250-280 g) were randomly divided into three groups with ten animals in each group (sham, SCI, and bumetanide groups). The paw withdrawal mechanical threshold and paw withdrawal thermal latency were recorded before injury (baseline) and on post-injury days 14, 21, 28, and 35. At the end of experiment, western blotting (WB) analysis, quantitative real-time Polymerase Chain Reaction (PCR) and immunofluorescence were performed to quantify NKCC1 expression. Our results revealed that NKCC1 protein expression in the spinal cord and DRGs was significantly up-regulated in rats with SCI. Intraperitoneal treatment of bumetanide (an NKCC1 inhibitor) reversed the expression of NKCC1 in the dorsal horn and DRGs and ameliorated mechanical ectopic pain and thermal hypersensitivities in the SCI rats. Our study demonstrated the occurrence of NKCC1 overexpression in the spinal cord and DRGs in a rodent model of NP and indicated that changes in the peripheral nervous system also play a major role in promoting pain sensitization after SCI.
Collapse
Affiliation(s)
- Yao Wu
- School of Rehabilitation Medicine, 12517Capital Medical University, Beijing, China.,Department of Spine Surgery, Beijing Bo'ai Hospital, China Rehabilitation Research Center, Beijing, China
| | - Fangyong Wang
- School of Rehabilitation Medicine, 12517Capital Medical University, Beijing, China.,Department of Spine Surgery, Beijing Bo'ai Hospital, China Rehabilitation Research Center, Beijing, China
| |
Collapse
|
6
|
Hudson KE, Grau JW. Ionic Plasticity: Common Mechanistic Underpinnings of Pathology in Spinal Cord Injury and the Brain. Cells 2022; 11:2910. [PMID: 36139484 PMCID: PMC9496934 DOI: 10.3390/cells11182910] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/12/2022] [Accepted: 09/14/2022] [Indexed: 11/16/2022] Open
Abstract
The neurotransmitter GABA is normally characterized as having an inhibitory effect on neural activity in the adult central nervous system (CNS), which quells over-excitation and limits neural plasticity. Spinal cord injury (SCI) can bring about a modification that weakens the inhibitory effect of GABA in the central gray caudal to injury. This change is linked to the downregulation of the potassium/chloride cotransporter (KCC2) and the consequent rise in intracellular Cl- in the postsynaptic neuron. As the intracellular concentration increases, the inward flow of Cl- through an ionotropic GABA-A receptor is reduced, which decreases its hyperpolarizing (inhibitory) effect, a modulatory effect known as ionic plasticity. The loss of GABA-dependent inhibition enables a state of over-excitation within the spinal cord that fosters aberrant motor activity (spasticity) and chronic pain. A downregulation of KCC2 also contributes to the development of a number of brain-dependent pathologies linked to states of neural over-excitation, including epilepsy, addiction, and developmental disorders, along with other diseases such as hypertension, asthma, and irritable bowel syndrome. Pharmacological treatments that target ionic plasticity have been shown to bring therapeutic benefits.
Collapse
Affiliation(s)
- Kelsey E. Hudson
- Neuroscience, Texas A&M University, College Station, TX 77843, USA
| | - James W. Grau
- Psychological & Brain Sciences, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
7
|
Pre-Synaptic GABAA in NaV1.8+ Primary Afferents Is Required for the Development of Punctate but Not Dynamic Mechanical Allodynia following CFA Inflammation. Cells 2022; 11:cells11152390. [PMID: 35954234 PMCID: PMC9368720 DOI: 10.3390/cells11152390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/26/2022] [Accepted: 07/27/2022] [Indexed: 01/27/2023] Open
Abstract
Hypersensitivity to mechanical stimuli is a cardinal symptom of neuropathic and inflammatory pain. A reduction in spinal inhibition is generally considered a causal factor in the development of mechanical hypersensitivity after injury. However, the extent to which presynaptic inhibition contributes to altered spinal inhibition is less well established. Here, we used conditional deletion of GABAA in NaV1.8-positive sensory neurons (Scn10aCre;Gabrb3fl/fl) to manipulate selectively presynaptic GABAergic inhibition. Behavioral testing showed that the development of inflammatory punctate allodynia was mitigated in mice lacking pre-synaptic GABAA. Dorsal horn cellular circuits were visualized in single slices using stimulus-tractable dual-labelling of c-fos mRNA for punctate and the cognate c-Fos protein for dynamic mechanical stimulation. This revealed a substantial reduction in the number of cells activated by punctate stimulation in mice lacking presynaptic GABAA and an approximate 50% overlap of the punctate with the dynamic circuit, the relative percentage of which did not change following inflammation. The reduction in dorsal horn cells activated by punctate stimuli was equally prevalent in parvalbumin- and calretinin-positive cells and across all laminae I–V, indicating a generalized reduction in spinal input. In peripheral DRG neurons, inflammation following complete Freund’s adjuvant (CFA) led to an increase in axonal excitability responses to GABA, suggesting that presynaptic GABA effects in NaV1.8+ afferents switch from inhibition to excitation after CFA. In the days after inflammation, presynaptic GABAA in NaV1.8+ nociceptors constitutes an “open gate” pathway allowing mechanoreceptors responding to punctate mechanical stimulation access to nociceptive dorsal horn circuits.
Collapse
|
8
|
Engels M, Kalia M, Rahmati S, Petersilie L, Kovermann P, van Putten MJAM, Rose CR, Meijer HGE, Gensch T, Fahlke C. Glial Chloride Homeostasis Under Transient Ischemic Stress. Front Cell Neurosci 2021; 15:735300. [PMID: 34602981 PMCID: PMC8481871 DOI: 10.3389/fncel.2021.735300] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 08/23/2021] [Indexed: 12/17/2022] Open
Abstract
High water permeabilities permit rapid adjustments of glial volume upon changes in external and internal osmolarity, and pathologically altered intracellular chloride concentrations ([Cl–]int) and glial cell swelling are often assumed to represent early events in ischemia, infections, or traumatic brain injury. Experimental data for glial [Cl–]int are lacking for most brain regions, under normal as well as under pathological conditions. We measured [Cl–]int in hippocampal and neocortical astrocytes and in hippocampal radial glia-like (RGL) cells in acute murine brain slices using fluorescence lifetime imaging microscopy with the chloride-sensitive dye MQAE at room temperature. We observed substantial heterogeneity in baseline [Cl–]int, ranging from 14.0 ± 2.0 mM in neocortical astrocytes to 28.4 ± 3.0 mM in dentate gyrus astrocytes. Chloride accumulation by the Na+-K+-2Cl– cotransporter (NKCC1) and chloride outward transport (efflux) through K+-Cl– cotransporters (KCC1 and KCC3) or excitatory amino acid transporter (EAAT) anion channels control [Cl–]int to variable extent in distinct brain regions. In hippocampal astrocytes, blocking NKCC1 decreased [Cl–]int, whereas KCC or EAAT anion channel inhibition had little effect. In contrast, neocortical astrocytic or RGL [Cl–]int was very sensitive to block of chloride outward transport, but not to NKCC1 inhibition. Mathematical modeling demonstrated that higher numbers of NKCC1 and KCC transporters can account for lower [Cl–]int in neocortical than in hippocampal astrocytes. Energy depletion mimicking ischemia for up to 10 min did not result in pronounced changes in [Cl–]int in any of the tested glial cell types. However, [Cl–]int changes occurred under ischemic conditions after blocking selected anion transporters. We conclude that stimulated chloride accumulation and chloride efflux compensate for each other and prevent glial swelling under transient energy deprivation.
Collapse
Affiliation(s)
- Miriam Engels
- Institute of Biological Information Processing, Molekular-und Zellphysiologie (IBI-1), Forschungszentrum Jülich, Jülich, Germany
| | - Manu Kalia
- Applied Analysis, Department of Applied Mathematics, University of Twente, Enschede, Netherlands.,Institute of Neurobiology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Sarah Rahmati
- Institute of Biological Information Processing, Molekular-und Zellphysiologie (IBI-1), Forschungszentrum Jülich, Jülich, Germany
| | - Laura Petersilie
- Institute of Neurobiology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Peter Kovermann
- Institute of Biological Information Processing, Molekular-und Zellphysiologie (IBI-1), Forschungszentrum Jülich, Jülich, Germany
| | | | - Christine R Rose
- Institute of Neurobiology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Hil G E Meijer
- Applied Analysis, Department of Applied Mathematics, University of Twente, Enschede, Netherlands
| | - Thomas Gensch
- Institute of Biological Information Processing, Molekular-und Zellphysiologie (IBI-1), Forschungszentrum Jülich, Jülich, Germany
| | - Christoph Fahlke
- Institute of Biological Information Processing, Molekular-und Zellphysiologie (IBI-1), Forschungszentrum Jülich, Jülich, Germany
| |
Collapse
|
9
|
Middleton SJ, Perez-Sanchez J, Dawes JM. The structure of sensory afferent compartments in health and disease. J Anat 2021; 241:1186-1210. [PMID: 34528255 PMCID: PMC9558153 DOI: 10.1111/joa.13544] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 08/12/2021] [Accepted: 08/30/2021] [Indexed: 12/20/2022] Open
Abstract
Primary sensory neurons are a heterogeneous population of cells able to respond to both innocuous and noxious stimuli. Like most neurons they are highly compartmentalised, allowing them to detect, convey and transfer sensory information. These compartments include specialised sensory endings in the skin, the nodes of Ranvier in myelinated axons, the cell soma and their central terminals in the spinal cord. In this review, we will highlight the importance of these compartments to primary afferent function, describe how these structures are compromised following nerve damage and how this relates to neuropathic pain.
Collapse
Affiliation(s)
- Steven J Middleton
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | | | - John M Dawes
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| |
Collapse
|
10
|
Bonalume V, Caffino L, Castelnovo LF, Faroni A, Liu S, Hu J, Milanese M, Bonanno G, Sohns K, Hoffmann T, De Col R, Schmelz M, Fumagalli F, Magnaghi V, Carr R. Axonal GABA A stabilizes excitability in unmyelinated sensory axons secondary to NKCC1 activity. J Physiol 2021; 599:4065-4084. [PMID: 34174096 DOI: 10.1113/jp279664] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 06/08/2021] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS GABA depolarized sural nerve axons and increased the electrical excitability of C-fibres via GABAA receptor. Axonal excitability responses to GABA increased monotonically with the rate of action potential firing. Action potential activity in unmyelinated C-fibres is coupled to Na-K-Cl cotransporter type 1 (NKCC1) loading of axonal chloride. Activation of axonal GABAA receptor stabilized C-fibre excitability during prolonged low frequency (2.5 Hz) firing. NKCC1 maintains intra-axonal chloride to provide feed-forward stabilization of C-fibre excitability and thus support sustained firing. ABSTRACT GABAA receptor (GABAA R)-mediated depolarization of dorsal root ganglia (DRG) axonal projections in the spinal dorsal horn is implicated in pre-synaptic inhibition. Inhibition, in this case, is predicated on an elevated intra-axonal chloride concentration and a depolarizing GABA response. In the present study, we report that the peripheral axons of DRG neurons are also depolarized by GABA and this results in an increase in the electrical excitability of unmyelinated C-fibre axons. GABAA R agonists increased axonal excitability, whereas GABA excitability responses were blocked by GABAA R antagonists and were absent in mice lacking the GABAA R β3 subunit selectively in DRG neurons (AdvillinCre or snsCre ). Under control conditions, excitability responses to GABA became larger at higher rates of electrical stimulation (0.5-2.5 Hz). However, during Na-K-Cl cotransporter type 1 (NKCC1) blockade, the electrical stimulation rate did not affect GABA response size, suggesting that NKCC1 regulation of axonal chloride is coupled to action potential firing. To examine this, activity-dependent conduction velocity slowing (activity-dependent slowing; ADS) was used to quantify C-fibre excitability loss during a 2.5 Hz challenge. ADS was reduced by GABAA R agonists and exacerbated by either GABAA R antagonists, β3 deletion or NKCC1 blockade. This illustrates that activation of GABAA R stabilizes C-fibre excitability during sustained firing. We posit that NKCC1 acts in a feed-forward manner to maintain an elevated intra-axonal chloride in C-fibres during ongoing firing. The resulting chloride gradient can be utilized by GABAA R to stabilize axonal excitability. The data imply that therapeutic strategies targeting axonal chloride regulation at peripheral loci of pain and itch may curtail aberrant firing in C-fibres.
Collapse
Affiliation(s)
- Veronica Bonalume
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Lucia Caffino
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Luca F Castelnovo
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
- Marine Science Institute, University of Texas at Austin, Port Aransas, TX, USA
| | - Alessandro Faroni
- Blond McIndoe Laboratories, Division of Cell Matrix Biology and Regenerative Medicine, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Sheng Liu
- Institute of Pharmacology, Heidelberg University, Mannheim, Germany
| | - Jing Hu
- Institute of Pharmacology, Heidelberg University, Mannheim, Germany
| | - Marco Milanese
- Department of Pharmacy (DIFAR), Pharmacology and Toxicology Unit, Università degli Studi di Genova, Genova, Italy
| | - Giambattista Bonanno
- Department of Pharmacy (DIFAR), Pharmacology and Toxicology Unit, Università degli Studi di Genova, Genova, Italy
- Ospedale Policlinico San Martino, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Genova, Italy
| | - Kyra Sohns
- Experimental Pain Research, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Tal Hoffmann
- Institute for Physiology and Pathophysiology, Friedrich-Alexander University, Erlangen, Germany
| | - Roberto De Col
- Experimental Pain Research, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Martin Schmelz
- Experimental Pain Research, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Fabio Fumagalli
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Valerio Magnaghi
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Richard Carr
- Experimental Pain Research, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| |
Collapse
|
11
|
Presynaptic Inhibition of Pain and Touch in the Spinal Cord: From Receptors to Circuits. Int J Mol Sci 2021; 22:ijms22010414. [PMID: 33401784 PMCID: PMC7795800 DOI: 10.3390/ijms22010414] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/28/2020] [Accepted: 12/30/2020] [Indexed: 02/07/2023] Open
Abstract
Sensory primary afferent fibers, conveying touch, pain, itch, and proprioception, synapse onto spinal cord dorsal horn neurons. Primary afferent central terminals express a wide variety of receptors that modulate glutamate and peptide release. Regulation of the amount and timing of neurotransmitter release critically affects the integration of postsynaptic responses and the coding of sensory information. The role of GABA (γ-aminobutyric acid) receptors expressed on afferent central terminals is particularly important in sensory processing, both in physiological conditions and in sensitized states induced by chronic pain. During the last decade, techniques of opto- and chemogenetic stimulation and neuronal selective labeling have provided interesting insights on this topic. This review focused on the recent advances about the modulatory effects of presynaptic GABAergic receptors in spinal cord dorsal horn and the neural circuits involved in these mechanisms.
Collapse
|
12
|
Tweety-Homolog 1 Facilitates Pain via Enhancement of Nociceptor Excitability and Spinal Synaptic Transmission. Neurosci Bull 2020; 37:478-496. [PMID: 33355899 DOI: 10.1007/s12264-020-00617-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Accepted: 06/09/2020] [Indexed: 12/21/2022] Open
Abstract
Tweety-homolog 1 (Ttyh1) is expressed in neural tissue and has been implicated in the generation of several brain diseases. However, its functional significance in pain processing is not understood. By disrupting the gene encoding Ttyh1, we found a loss of Ttyh1 in nociceptors and their central terminals in Ttyh1-deficient mice, along with a reduction in nociceptor excitability and synaptic transmission at identified synapses between nociceptors and spinal neurons projecting to the periaqueductal grey (PAG) in the basal state. More importantly, the peripheral inflammation-evoked nociceptor hyperexcitability and spinal synaptic potentiation recorded in spinal-PAG projection neurons were compromised in Ttyh1-deficient mice. Analysis of the paired-pulse ratio and miniature excitatory postsynaptic currents indicated a role of presynaptic Ttyh1 from spinal nociceptor terminals in the regulation of neurotransmitter release. Interfering with Ttyh1 specifically in nociceptors produces a comparable pain relief. Thus, in this study we demonstrated that Ttyh1 is a critical determinant of acute nociception and pain sensitization caused by peripheral inflammation.
Collapse
|
13
|
Wan L, Chen L, Yu J, Wang G, Wu Z, Qian B, Liu X, Wang Y. Coordinated downregulation of KCC2 and GABA A receptor contributes to inhibitory dysfunction during seizure induction. Biochem Biophys Res Commun 2020; 532:489-495. [PMID: 32892950 DOI: 10.1016/j.bbrc.2020.08.082] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 08/22/2020] [Indexed: 01/25/2023]
Abstract
The GABAA receptor (GABAAR) is the main inhibitory receptor in the adult mammalian brain. GABAAR function is dependent on its expression, distribution, and the chloride (Cl-) transmembrane gradient, which is determined by the potassium-chloride cotransporter 2 (KCC2) in the adult brain. KCC2 and GABAAR are downregulated in an activity-dependent manner during seizure induction. Functionally, KCC2 and GABAAR are closely related membrane proteins which modulate GABAergic inhibition. However, it remains unclear how their downregulation during seizure induction is coordinated. This study aimed to assess this interaction. Our results revealed that KCC2 and GABAAR were simultaneously downregulated in both in vivo and in vitro seizure models induced by the convulsant cyclothazide (CTZ), which was at least partly due to structural coupling in hippocampal neuronal membranes. Immunohistochemistry revealed colocalization of gephyrin with KCC2 and co-immunoprecipitation exhibited a direct coupling between GABAAR α1-subunit and KCC2 protein in hippocampal cell membranes. KCC2 specific short hairpin RNA (KCC2-shRNA) was employed to specifically reduce the expression of KCC2 in cultured hippocampal neurons. This resulted in a significant reduction in KCC2-independent GABAergic miniature inhibitory post-synaptic current (mIPSC) amplitude in shKCC2-transfected neurons. Further, pre-treatment with furosemide, a KCC2 inhibitor, during CTZ stimulation followed by washout significantly prevented convulsant stimulation-induced membrane KCC2 downregulation and significantly attenuated GABAAR downregulation concomitant with recovery of suppressed KCC2-independent GABAergic mIPSC amplitude. Our results suggest that the coordinated downregulation of KCC2 and GABAAR during seizure induction exerts a strong functional impact on GABAAR, highlighting an important regulatory mechanism in epilepsy.
Collapse
Affiliation(s)
- Li Wan
- Rehabilitation Center, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, 518035, China.
| | - Lulan Chen
- Department of Neurology, Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institute of Biological Science, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Jiangning Yu
- Department of Neurology, Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institute of Biological Science, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Guoxiang Wang
- Department of Neurology, Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institute of Biological Science, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Zheng Wu
- Department of Neurology, Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institute of Biological Science, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Binbin Qian
- Department of Neurology, Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institute of Biological Science, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Xu Liu
- Department of Neurology, Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institute of Biological Science, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| | - Yun Wang
- Department of Neurology, Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institute of Biological Science, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
14
|
Squillace S, Spiegel S, Salvemini D. Targeting the Sphingosine-1-Phosphate Axis for Developing Non-narcotic Pain Therapeutics. Trends Pharmacol Sci 2020; 41:851-867. [PMID: 33010954 DOI: 10.1016/j.tips.2020.09.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 09/02/2020] [Accepted: 09/10/2020] [Indexed: 02/07/2023]
Abstract
Chronic pain is a life-altering condition affecting millions of people. Current treatments are inadequate and prolonged therapies come with severe side effects, especially dependence and addiction to opiates. Identification of non-narcotic analgesics is of paramount importance. Preclinical and clinical studies suggest that sphingolipid metabolism alterations contribute to neuropathic pain development. Functional sphingosine-1-phosphate (S1P) receptor 1 (S1PR1) antagonists, such as FTY720/fingolimod, used clinically for non-pain conditions, are emerging as non-narcotic analgesics, supporting the repurposing of fingolimod for chronic pain treatment and energizing drug discovery focused on S1P signaling. Here, we summarize the role of S1P in pain to highlight the potential of targeting the S1P axis towards development of non-narcotic therapeutics, which, in turn, will hopefully help lessen misuse of opioid pain medications and address the ongoing opioid epidemic.
Collapse
Affiliation(s)
- Silvia Squillace
- Department of Pharmacology and Physiology and the Henry and Amelia Nasrallah Center for Neuroscience, Saint Louis University School of Medicine, St. Louis, MO 63104, USA
| | - Sarah Spiegel
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA
| | - Daniela Salvemini
- Department of Pharmacology and Physiology and the Henry and Amelia Nasrallah Center for Neuroscience, Saint Louis University School of Medicine, St. Louis, MO 63104, USA.
| |
Collapse
|
15
|
Differential expression of Na +/K +/Cl - cotransporter 1 in neurons and glial cells within the superficial spinal dorsal horn of rodents. Sci Rep 2020; 10:11715. [PMID: 32678166 PMCID: PMC7367302 DOI: 10.1038/s41598-020-68638-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 06/30/2020] [Indexed: 12/30/2022] Open
Abstract
Although convincing experimental evidence indicates that Na+/K+/Cl- cotransporter 1 (NKCC1) is involved in spinal nociceptive information processing and in the generation of hyperalgesia and allodynia in chronic pain states, the cellular distribution of NKCC1 in the superficial spinal dorsal horn is still poorly understood. Because this important piece of knowledge is missing, the effect of NKCC1 on pain processing is still open to conflicting interpretations. In this study, to provide the missing experimental data, we investigated the cellular distribution of NKCC1 in the superficial spinal dorsal horn by immunohistochemical methods. We demonstrated for the first time that almost all spinal axon terminals of peptidergic nociceptive primary afferents express NKCC1. In contrast, virtually all spinal axon terminals of nonpeptidergic nociceptive primary afferents were negative for NKCC1. Data on the colocalization of NKCC1 with axonal and glial markers indicated that it is almost exclusively expressed by axon terminals and glial cells in laminae I-IIo. In lamina IIi, however, we observed a strong immunostaining for NKCC1 also in the dendrites and cell bodies of PV-containing inhibitory neurons and a weak staining in PKCγ-containing excitatory neurons. Our results facilitate further thinking about the role of NKCC1 in spinal pain processing.
Collapse
|
16
|
Abstract
A limited number of peripheral targets generate pain. Inflammatory mediators can sensitize these. The review addresses targets acting exclusively or predominantly on sensory neurons, mediators involved in inflammation targeting sensory neurons, and mediators involved in a more general inflammatory process, of which an analgesic effect secondary to an anti-inflammatory effect can be expected. Different approaches to address these systems are discussed, including scavenging proinflammatory mediators, applying anti-inflammatory mediators, and inhibiting proinflammatory or facilitating anti-inflammatory receptors. New approaches are contrasted to established ones; the current stage of progress is mentioned, in particular considering whether there is data from a molecular and cellular level, from animals, or from human trials, including an early stage after a market release. An overview of publication activity is presented, considering a IuPhar/BPS-curated list of targets with restriction to pain-related publications, which was also used to identify topics.
Collapse
Affiliation(s)
- Cosmin I Ciotu
- Center of Physiology and Pharmacology, Medical University of Vienna, Schwarzspanierstrasse 17, 1090, Vienna, Austria
| | - Michael J M Fischer
- Center of Physiology and Pharmacology, Medical University of Vienna, Schwarzspanierstrasse 17, 1090, Vienna, Austria.
| |
Collapse
|
17
|
Shah S, Carver CM, Mullen P, Milne S, Lukacs V, Shapiro MS, Gamper N. Local Ca 2+ signals couple activation of TRPV1 and ANO1 sensory ion channels. Sci Signal 2020; 13:13/629/eaaw7963. [PMID: 32345727 DOI: 10.1126/scisignal.aaw7963] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
ANO1 (TMEM16A) is a Ca2+-activated Cl- channel (CaCC) expressed in peripheral somatosensory neurons that are activated by painful (noxious) stimuli. These neurons also express the Ca2+-permeable channel and noxious heat sensor TRPV1, which can activate ANO1. Here, we revealed an intricate mechanism of TRPV1-ANO1 channel coupling in rat dorsal root ganglion (DRG) neurons. Simultaneous optical monitoring of CaCC activity and Ca2+ dynamics revealed that the TRPV1 ligand capsaicin activated CaCCs. However, depletion of endoplasmic reticulum (ER) Ca2+ stores reduced capsaicin-induced Ca2+ increases and CaCC activation, suggesting that ER Ca2+ release contributed to TRPV1-induced CaCC activation. ER store depletion by plasma membrane-localized TRPV1 channels was demonstrated with an ER-localized Ca2+ sensor in neurons exposed to a cell-impermeable TRPV1 ligand. Proximity ligation assays established that ANO1, TRPV1, and the IP3 receptor IP3R1 were often found in close proximity to each other. Stochastic optical reconstruction microscopy (STORM) confirmed the close association between all three channels in DRG neurons. Together, our data reveal the existence of ANO1-containing multichannel nanodomains in DRG neurons and suggest that coupling between TRPV1 and ANO1 requires ER Ca2+ release, which may be necessary to enhance ANO1 activation.
Collapse
Affiliation(s)
- Shihab Shah
- School of Biomedical Science, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Chase M Carver
- Department of Cell and Integrative Physiology, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - Pierce Mullen
- School of Biomedical Science, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Stephen Milne
- School of Biomedical Science, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Viktor Lukacs
- School of Biomedical Science, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Mark S Shapiro
- Department of Cell and Integrative Physiology, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - Nikita Gamper
- School of Biomedical Science, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK. .,Department of Pharmacology, Hebei Medical University, Shijiazhuang 050017, People's Republic of China
| |
Collapse
|
18
|
Wilke BU, Kummer KK, Leitner MG, Kress M. Chloride - The Underrated Ion in Nociceptors. Front Neurosci 2020; 14:287. [PMID: 32322187 PMCID: PMC7158864 DOI: 10.3389/fnins.2020.00287] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Accepted: 03/12/2020] [Indexed: 01/06/2023] Open
Abstract
In contrast to pain processing neurons in the spinal cord, where the importance of chloride conductances is already well established, chloride homeostasis in primary afferent neurons has received less attention. Sensory neurons maintain high intracellular chloride concentrations through balanced activity of Na+-K+-2Cl- cotransporter 1 (NKCC1) and K+-Cl- cotransporter 2 (KCC2). Whereas in other cell types activation of chloride conductances causes hyperpolarization, activation of the same conductances in primary afferent neurons may lead to inhibitory or excitatory depolarization depending on the actual chloride reversal potential and the total amount of chloride efflux during channel or transporter activation. Dorsal root ganglion (DRG) neurons express a multitude of chloride channel types belonging to different channel families, such as ligand-gated, ionotropic γ-aminobutyric acid (GABA) or glycine receptors, Ca2+-activated chloride channels of the anoctamin/TMEM16, bestrophin or tweety-homolog family, CLC chloride channels and transporters, cystic fibrosis transmembrane conductance regulator (CFTR) as well as volume-regulated anion channels (VRACs). Specific chloride conductances are involved in signal transduction and amplification at the peripheral nerve terminal, contribute to excitability and action potential generation of sensory neurons, or crucially shape synaptic transmission in the spinal dorsal horn. In addition, chloride channels can be modified by a plethora of inflammatory mediators affecting them directly, via protein-protein interaction, or through signaling cascades. Since chloride channels as well as mediators that modulate chloride fluxes are regulated in pain disorders and contribute to nociceptor excitation and sensitization it is timely and important to emphasize their critical role in nociceptive primary afferents in this review.
Collapse
Affiliation(s)
| | | | | | - Michaela Kress
- Institute of Physiology, Department of Physiology and Medical Physics, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
19
|
Jang Y, Kim M, Hwang SW. Molecular mechanisms underlying the actions of arachidonic acid-derived prostaglandins on peripheral nociception. J Neuroinflammation 2020; 17:30. [PMID: 31969159 PMCID: PMC6975075 DOI: 10.1186/s12974-020-1703-1] [Citation(s) in RCA: 132] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 01/06/2020] [Indexed: 12/30/2022] Open
Abstract
Arachidonic acid-derived prostaglandins not only contribute to the development of inflammation as intercellular pro-inflammatory mediators, but also promote the excitability of the peripheral somatosensory system, contributing to pain exacerbation. Peripheral tissues undergo many forms of diseases that are frequently accompanied by inflammation. The somatosensory nerves innervating the inflamed areas experience heightened excitability and generate and transmit pain signals. Extensive studies have been carried out to elucidate how prostaglandins play their roles for such signaling at the cellular and molecular levels. Here, we briefly summarize the roles of arachidonic acid-derived prostaglandins, focusing on four prostaglandins and one thromboxane, particularly in terms of their actions on afferent nociceptors. We discuss the biosynthesis of the prostaglandins, their specific action sites, the pathological alteration of the expression levels of related proteins, the neuronal outcomes of receptor stimulation, their correlation with behavioral nociception, and the pharmacological efficacy of their regulators. This overview will help to a better understanding of the pathological roles that prostaglandins play in the somatosensory system and to a finding of critical molecular contributors to normalizing pain.
Collapse
Affiliation(s)
- Yongwoo Jang
- Department of Psychiatry and Program in Neuroscience, McLean Hospital, Harvard Medical School, Belmont, MA, 02478, USA.,Department of Biomedical Engineering, Hanyang University, Seoul, 04763, South Korea
| | - Minseok Kim
- Department of Biomedical Sciences, Korea University, Seoul, 02841, South Korea
| | - Sun Wook Hwang
- Department of Biomedical Sciences, Korea University, Seoul, 02841, South Korea. .,Department of Physiology, College of Medicine, Korea University, Seoul, 02841, South Korea.
| |
Collapse
|
20
|
Tan CY, Wang YP, Han YY, Lu BH, Ji W, Zhu LC, Wang Y, Shi WY, Shan LY, Zhang L, Ma KT, Li L, Si JQ. Expression and effect of sodium-potassium-chloride cotransporter on dorsal root ganglion neurons in a rat model of chronic constriction injury. Neural Regen Res 2020; 15:912-921. [PMID: 31719257 PMCID: PMC6990784 DOI: 10.4103/1673-5374.268904] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Sodium-potassium-chloride cotransporter 1 (NKCC1) and potassium-chloride cotransporter 2 (KCC2) are associated with the transmission of peripheral pain. We investigated whether the increase of NKCC1 and KCC2 is associated with peripheral pain transmission in dorsal root ganglion neurons. To this aim, rats with persistent hyperalgesia were randomly divided into four groups. Rats in the control group received no treatment, and the rat sciatic nerve was only exposed in the sham group. Rats in the chronic constriction injury group were established into chronic constriction injury models by ligating sciatic nerve and rats were given bumetanide, an inhibitor of NKCC1, based on chronic constriction injury modeling in the chronic constriction injury + bumetanide group. In the experiment measuring thermal withdrawal latency, bumetanide (15 mg/kg) was intravenously administered. In the patch clamp experiment, bumetanide (10 µg/µL) and acutely isolated dorsal root ganglion neurons (on day 14) were incubated for 1 hour, or bumetanide (5 µg/µL) was intrathecally injected. The Hargreaves test was conducted to detect changes in thermal hyperalgesia in rats. We found that the thermal withdrawal latency of rats was significantly decreased on days 7, 14, and 21 after model establishment. After intravenous injection of bumetanide, the reduction in thermal retraction latency caused by model establishment was significantly inhibited. Immunohistochemistry and western blot assay results revealed that the immune response and protein expression of NKCC1 in dorsal root ganglion neurons of the chronic constriction injury group increased significantly on days 7, 14, and 21 after model establishment. No immune response or protein expression of KCC2 was observed in dorsal root ganglion neurons before and after model establishment. The Cl– (chloride ion) fluorescent probe technique was used to evaluate the change of Cl– concentration in dorsal root ganglion neurons of chronic constriction injury model rats. We found that the relative optical density of N-(ethoxycarbonylmethyl)-6-methoxyquinolinium bromide (a Cl– fluorescent probe whose fluorescence intensity decreases as Cl– concentration increases) in the dorsal root ganglion neurons of the chronic constriction injury group was significantly decreased on days 7 and 14 after model establishment. The whole-cell patch clamp technique revealed that the resting potential and action potential frequency of dorsal root ganglion neurons increased, and the threshold and rheobase of action potentials decreased in the chronic constriction injury group on day 14 after model establishment. After bumetanide administration, the above indicators were significantly suppressed. These results confirm that CCI can induce abnormal overexpression of NKCC1, thereby increasing the Cl– concentration in dorsal root ganglion neurons; this then enhances the excitability of dorsal root ganglion neurons and ultimately promotes hyperalgesia and allodynia. In addition, bumetanide can achieve analgesic effects. All experiments were approved by the Institutional Ethics Review Board at the First Affiliated Hospital, College of Medicine, Shihezi University, China on February 22, 2017 (approval No. A2017-169-01).
Collapse
Affiliation(s)
- Chao-Yang Tan
- Department of Physiology, College of Medicine, Shihezi University, Shihezi, Xinjiang Uygur Autonomous Region; Department of Physiology, Medical College of Jiaxing University, Jiaxing, Zhejiang Province; Department of Health, Karamay Army Division, Chinese People's Liberation Army, Karamay, Xinjiang Uygur Autonomous Region, China
| | - Yan-Ping Wang
- Department of Physiology; Department of Nursing, Medical College of Jiaxing University, Jiaxing, Zhejiang Province, China
| | - Yuan-Yuan Han
- Department of Physiology, College of Medicine, Shihezi University, Shihezi, Xinjiang Uygur Autonomous Region; Department of Clinical Medicine, Karamay College of Xinjiang Medical University, Karamay, Xinjiang Uygur Autonomous Region, China
| | - Bi-Han Lu
- Department of Physiology, College of Medicine, Shihezi University, Shihezi, Xinjiang Uygur Autonomous Region, China
| | - Wei Ji
- Department of Physiology, College of Medicine, Shihezi University, Shihezi, Xinjiang Uygur Autonomous Region, China
| | - Li-Cang Zhu
- Department of Neurosurgery, First Affiliated Hospital, College of Medicine, Shihezi University, Shihezi, Xinjiang Uygur Autonomous Region, China
| | - Yang Wang
- Department of Physiology, College of Medicine; The key Laboratory of Xinjiang Endemic and Ethnic Diseases, College of Medicine, Shihezi University, Shihezi, Xinjiang Uygur Autonomous Region, China
| | - Wen-Yan Shi
- Department of Physiology, College of Medicine; The key Laboratory of Xinjiang Endemic and Ethnic Diseases, College of Medicine, Shihezi University, Shihezi, Xinjiang Uygur Autonomous Region, China
| | - Li-Ya Shan
- Department of Physiology, College of Medicine; The key Laboratory of Xinjiang Endemic and Ethnic Diseases, College of Medicine, Shihezi University, Shihezi, Xinjiang Uygur Autonomous Region, China
| | - Liang Zhang
- Department of Physiology, College of Medicine; The key Laboratory of Xinjiang Endemic and Ethnic Diseases, College of Medicine, Shihezi University, Shihezi, Xinjiang Uygur Autonomous Region, China
| | - Ke-Tao Ma
- Department of Physiology, College of Medicine; The key Laboratory of Xinjiang Endemic and Ethnic Diseases, College of Medicine, Shihezi University, Shihezi, Xinjiang Uygur Autonomous Region, China
| | - Li Li
- Department of Physiology, College of Medicine, Shihezi University, Shihezi, Xinjiang Uygur Autonomous Region; Department of Physiology, Medical College of Jiaxing University, Jiaxing, Zhejiang Province; The key Laboratory of Xinjiang Endemic and Ethnic Diseases, College of Medicine, Shihezi University, Shihezi, Xinjiang Uygur Autonomous Region, China
| | - Jun-Qiang Si
- Department of Physiology; The key Laboratory of Xinjiang Endemic and Ethnic Diseases, College of Medicine, Shihezi University, Shihezi, Xinjiang Uygur Autonomous Region; Department of Physiology, School of Basic Medical Sciences, Wuhan University; Department of Physiology, School of Basic Medical Sciences, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| |
Collapse
|
21
|
Xu ZZ, Chen QY, Deng SY, Zhang M, Tan CY, Yang Wang, Ma KT, Li L, Si JQ, Zhu LC. 17β-Estradiol Attenuates Neuropathic Pain Caused by Spared Nerve Injury by Upregulating CIC-3 in the Dorsal Root Ganglion of Ovariectomized Rats. Front Neurosci 2019; 13:1205. [PMID: 31787875 PMCID: PMC6856564 DOI: 10.3389/fnins.2019.01205] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 10/24/2019] [Indexed: 12/14/2022] Open
Abstract
17β-estradiol plays a role in pain sensitivity, analgesic drug efficacy, and neuropathic pain prevalence, but the underlying mechanisms remain unclear. Here, we investigated whether voltage-gated chloride channel-3 (ClC-3) impacts the effects of 17β-estradiol (E2) on spared nerve injury (SNI)-induced neuropathic pain in ovariectomized (OVX) female Sprague Dawley rats that were divided into OVX, OVX + SNI, OVX + SNI + E2, OVX + SNI + E2 + DMSO (vehicle, dimethyl sulfoxide), or OVX + SNI + E2+Cltx (ClC-3-blocker chlorotoxin) groups. Changes in ClC-3 protein expression were monitored by western blot analysis. Behavioral testing used the paw withdrawal threshold to acetone irritation and paw withdrawal thermal latency (PWTL) to thermal stimulation. Immunofluorescence indicated the localization and protein expression levels of ClC-3. OVX + SNI + E2 rats were subcutaneously injected with 17β-estradiol once daily for 7 days; a sheathed tube was implanted, and chlorotoxin was injected for 4 days. Intrathecal Cltx to OVX and OVX + SNI rats was administered for 4 consecutive days (days 7–10 after SNI) to further determine the contribution of ClC-3 to neuropathic pain. Patch clamp technology in current clamp mode was used to measure the current threshold (rheobase) dorsal root ganglion (DRG) neurons and the minimal current that evoked action potentials (APs) as excitability parameters. The mean number of APs at double-strength rheobase verified neuronal excitability. There was no difference in behaviors and ClC-3 expression after OVX. Compared with OVX + SNI rats, OVX + SNI + E2 rats showed a lower paw withdrawal threshold to the acetone stimulus, but the PWTL was not significantly different, indicating increased sensitivity to cold but not to thermal pain. Co-immunofluorescent data revealed that ClC-3 was mainly distributed in A- and C-type nociceptive neurons, especially in medium/small-sized neurons. 17β-estradiol administration was associated with increased expression of ClC-3. 17β-estradiol-induced increase in ClC-3 expression was blocked by co-administration of Cltx. Cltx causes hyperalgesia and decreased expression of ClC-3 in OVX rats. Patch clamp results suggested that 17β-estradiol attenuated the excitability of neurons induced by SNI by up-regulating the expression of ClC-3 in the DRG of OVX rats. 17β-estradiol administration significantly improved cold allodynia thresholds in OVX rats with SNI. The mechanism for this decreased sensitivity may be related to the upregulation of ClC-3 expression in the DRG.
Collapse
Affiliation(s)
- Zhen-Zhen Xu
- Department of Anesthesiology, First Affiliated Hospital of Shihezi University, Shihezi, China.,Department of Physiology, Shihezi University School of Medicine, Shihezi, China.,Key Laboratory of Xinjiang Endemic and Ethnic Disease, Shihezi University School of Medicine, Shihezi, China.,Department of Anesthesiology, Xiangyang Central Hospital, Hubei University of Arts and Science, Xiangyang, China
| | - Qin-Yi Chen
- Department of Anesthesiology, First Affiliated Hospital of Shihezi University, Shihezi, China.,Department of Physiology, Shihezi University School of Medicine, Shihezi, China.,Key Laboratory of Xinjiang Endemic and Ethnic Disease, Shihezi University School of Medicine, Shihezi, China.,Department of Anesthesiology, Xiangyang Central Hospital, Hubei University of Arts and Science, Xiangyang, China
| | - Shi-Yu Deng
- Department of Anesthesiology, First Affiliated Hospital of Shihezi University, Shihezi, China.,Department of Physiology, Shihezi University School of Medicine, Shihezi, China.,Key Laboratory of Xinjiang Endemic and Ethnic Disease, Shihezi University School of Medicine, Shihezi, China
| | - Meng Zhang
- Department of Anesthesiology, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, Chengdu, China
| | - Chao-Yang Tan
- Department of Physiology, Shihezi University School of Medicine, Shihezi, China.,Key Laboratory of Xinjiang Endemic and Ethnic Disease, Shihezi University School of Medicine, Shihezi, China
| | - Yang Wang
- Department of Physiology, Shihezi University School of Medicine, Shihezi, China.,Key Laboratory of Xinjiang Endemic and Ethnic Disease, Shihezi University School of Medicine, Shihezi, China
| | - Ke-Tao Ma
- Department of Physiology, Shihezi University School of Medicine, Shihezi, China.,Key Laboratory of Xinjiang Endemic and Ethnic Disease, Shihezi University School of Medicine, Shihezi, China
| | - Li Li
- Department of Physiology, Shihezi University School of Medicine, Shihezi, China.,Key Laboratory of Xinjiang Endemic and Ethnic Disease, Shihezi University School of Medicine, Shihezi, China.,Department of Physiology, Medical College of Jiaxing University, Jiaxing, China
| | - Jun-Qiang Si
- Department of Anesthesiology, First Affiliated Hospital of Shihezi University, Shihezi, China.,Department of Physiology, Shihezi University School of Medicine, Shihezi, China.,Key Laboratory of Xinjiang Endemic and Ethnic Disease, Shihezi University School of Medicine, Shihezi, China.,Department of Physiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Physiology, School of Basic Medical Sciences, Wuhan University School of Medicine, Wuhan, China
| | - Li-Cang Zhu
- Department of Physiology, Shihezi University School of Medicine, Shihezi, China.,Key Laboratory of Xinjiang Endemic and Ethnic Disease, Shihezi University School of Medicine, Shihezi, China
| |
Collapse
|
22
|
Ullrich F, Blin S, Lazarow K, Daubitz T, von Kries JP, Jentsch TJ. Identification of TMEM206 proteins as pore of PAORAC/ASOR acid-sensitive chloride channels. eLife 2019; 8:49187. [PMID: 31318332 PMCID: PMC6663466 DOI: 10.7554/elife.49187] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 07/17/2019] [Indexed: 01/09/2023] Open
Abstract
Acid-sensing ion channels have important functions in physiology and pathology, but the molecular composition of acid-activated chloride channels had remained unclear. We now used a genome-wide siRNA screen to molecularly identify the widely expressed acid-sensitive outwardly-rectifying anion channel PAORAC/ASOR. ASOR is formed by TMEM206 proteins which display two transmembrane domains (TMs) and are expressed at the plasma membrane. Ion permeation-changing mutations along the length of TM2 and at the end of TM1 suggest that these segments line ASOR’s pore. While not belonging to a gene family, TMEM206 has orthologs in probably all vertebrates. Currents from evolutionarily distant orthologs share activation by protons, a feature essential for ASOR’s role in acid-induced cell death. TMEM206 defines a novel class of ion channels. Its identification will help to understand its physiological roles and the diverse ways by which anion-selective pores can be formed.
Collapse
Affiliation(s)
- Florian Ullrich
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany.,Max-Delbrück-Centrum für Molekulare Medizin (MDC), Berlin, Germany
| | - Sandy Blin
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany.,Max-Delbrück-Centrum für Molekulare Medizin (MDC), Berlin, Germany
| | - Katina Lazarow
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany
| | - Tony Daubitz
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany.,Max-Delbrück-Centrum für Molekulare Medizin (MDC), Berlin, Germany
| | | | - Thomas J Jentsch
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany.,Max-Delbrück-Centrum für Molekulare Medizin (MDC), Berlin, Germany.,NeuroCure Cluster of Excellence, Charité Universitätsmedizin, Berlin, Germany
| |
Collapse
|
23
|
Shcheslavskiy VI, Shirmanova MV, Jelzow A, Becker W. Multiparametric Time-Correlated Single Photon Counting Luminescence Microscopy. BIOCHEMISTRY (MOSCOW) 2019; 84:S51-S68. [PMID: 31213195 DOI: 10.1134/s0006297919140049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Classic time-correlated single photon counting (TCSPC) technique involves detection of single photons of a periodic optical signal, registration of the photon arrival time in respect to the reference pulse, and construction of photon distribution with regard to the detection times. This technique achieves extremely high time resolution and near-ideal detection efficiency. Modern TCSPC is multi-dimensional, i.e., in addition to the photon arrival time relative to the excitation pulse, spatial coordinates within the image area, wavelength, time from the start of the experiment, and many other parameters are determined for each photon. Hence, the multi-dimensional TCSPC allows generation of photon distributions over these parameters. This review describes both classic and multi-dimensional types of TCSPC microscopy and their application for fluorescence lifetime imaging in different areas of biological studies.
Collapse
Affiliation(s)
- V I Shcheslavskiy
- Becker&Hickl GmbH, Berlin, 12277, Germany. .,Privolzhskiy Medical Research University, Nizhny Novgorod, 603005, Russia
| | - M V Shirmanova
- Privolzhskiy Medical Research University, Nizhny Novgorod, 603005, Russia
| | - A Jelzow
- Becker&Hickl GmbH, Berlin, 12277, Germany
| | - W Becker
- Becker&Hickl GmbH, Berlin, 12277, Germany
| |
Collapse
|
24
|
Giacco V, Panattoni G, Medelin M, Bonechi E, Aldinucci A, Ballerini C, Ballerini L. Cytokine inflammatory threat, but not LPS one, shortens GABAergic synaptic currents in the mouse spinal cord organotypic cultures. J Neuroinflammation 2019; 16:127. [PMID: 31238967 PMCID: PMC6593520 DOI: 10.1186/s12974-019-1519-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 06/11/2019] [Indexed: 01/02/2023] Open
Abstract
Background Synaptic dysfunction, named synaptopathy, due to inflammatory status of the central nervous system (CNS) is a recognized factor potentially underlying both motor and cognitive dysfunctions in neurodegenerative diseases. To gain knowledge on the mechanistic interplay between local inflammation and synapse changes, we compared two diverse inflammatory paradigms, a cytokine cocktail (CKs; IL-1β, TNF-α, and GM-CSF) and LPS, and their ability to tune GABAergic current duration in spinal cord cultured circuits. Methods We exploit spinal organotypic cultures, single-cell electrophysiology, immunocytochemistry, and confocal microscopy to explore synaptic currents and resident neuroglia reactivity upon CK or LPS incubation. Results Local inflammation in slice cultures induced by CK or LPS stimulations boosts network activity; however, only CKs specifically reduced GABAergic current duration. We pharmacologically investigated the contribution of GABAAR α-subunits and suggested that a switch of GABAAR α1-subunit might have induced faster GABAAR decay time, weakening the inhibitory transmission. Conclusions Lower GABAergic current duration could contribute to providing an aberrant excitatory transmission critical for pre-motor circuit tasks and represent a specific feature of a CK cocktail able to mimic an inflammatory reaction that spreads in the CNS. Our results describe a selective mechanism that could be triggered during specific inflammatory stress. Electronic supplementary material The online version of this article (10.1186/s12974-019-1519-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Vincenzo Giacco
- International School for Advanced Studies (SISSA/ISAS), 34136, Trieste, Italy.,Present address: Wolfson Centre for Age Related Disease, King's College London, Guy's Campus, London, SE1 1UL, UK
| | - Giulia Panattoni
- International School for Advanced Studies (SISSA/ISAS), 34136, Trieste, Italy
| | - Manuela Medelin
- Department of Life Sciences, University of Trieste, 34127, Trieste, Italy
| | - Elena Bonechi
- Department NEUROFARBA, University of Florence, 50139, Florence, Italy
| | | | - Clara Ballerini
- Dipartimento di Medicina Sperimentale e Clinica, University of Florence, 50139, Florence, Italy.
| | - Laura Ballerini
- International School for Advanced Studies (SISSA/ISAS), 34136, Trieste, Italy.
| |
Collapse
|
25
|
Hsu YT, Chang YG, Chern Y. Insights into GABA Aergic system alteration in Huntington's disease. Open Biol 2018; 8:rsob.180165. [PMID: 30518638 PMCID: PMC6303784 DOI: 10.1098/rsob.180165] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 10/30/2018] [Indexed: 12/15/2022] Open
Abstract
Huntington's disease (HD) is an autosomal dominant progressive neurodegenerative disease that is characterized by a triad of motor, psychiatric and cognitive impairments. There is still no effective therapy to delay or halt the disease progress. The striatum and cortex are two particularly affected brain regions that exhibit dense reciprocal excitatory glutamate and inhibitory gamma-amino butyric acid (GABA) connections. Imbalance between excitatory and inhibitory signalling is known to greatly affect motor and cognitive processes. Emerging evidence supports the hypothesis that disrupted GABAergic circuits underlie HD pathogenesis. In the present review, we focused on the multiple defects recently found in the GABAergic inhibitory system, including altered GABA level and synthesis, abnormal subunit composition and distribution of GABAA receptors and aberrant GABAA receptor-mediated signalling. In particular, the important role of cation–chloride cotransporters (i.e. NKCC1 and KCC2) is discussed. Recent studies also suggest that neuroinflammation contributes significantly to the abnormal GABAergic inhibition in HD. Thus, GABAA receptors and cation–chloride cotransporters are potential therapeutic targets for HD. Given the limited availability of therapeutic treatments for HD, a better understanding of GABAergic dysfunction in HD could provide novel therapeutic opportunities.
Collapse
Affiliation(s)
- Yi-Ting Hsu
- PhD Program for Translational Medicine, China Medical University and Academia Sinica, Taiwan, Republic of China.,Department of Neurology, China Medical University Hospital, Taichung, Taiwan, Republic of China
| | - Ya-Gin Chang
- Institute of Neuroscience, National Yang-Ming University, Taipei, Taiwan, Republic of China.,Taiwan International Graduate Program in Interdisciplinary Neuroscience, National Yang-Ming University and Academia Sinica, Taipei, Taiwan, Republic of China
| | - Yijuang Chern
- PhD Program for Translational Medicine, China Medical University and Academia Sinica, Taiwan, Republic of China .,Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan, Republic of China
| |
Collapse
|
26
|
Choi SI, Hwang SW. Depolarizing Effectors of Bradykinin Signaling in Nociceptor Excitation in Pain Perception. Biomol Ther (Seoul) 2018; 26:255-267. [PMID: 29378387 PMCID: PMC5933892 DOI: 10.4062/biomolther.2017.127] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2017] [Revised: 10/13/2017] [Accepted: 10/24/2017] [Indexed: 12/23/2022] Open
Abstract
Inflammation is one of the main causes of pathologic pain. Knowledge of the molecular links between inflammatory signals and pain-mediating neuronal signals is essential for understanding the mechanisms behind pain exacerbation. Some inflammatory mediators directly modulate the excitability of pain-mediating neurons by contacting the receptor molecules expressed in those neurons. For decades, many discoveries have accumulated regarding intraneuronal signals from receptor activation through electrical depolarization for bradykinin, a major inflammatory mediator that is able to both excite and sensitize pain-mediating nociceptor neurons. Here, we focus on the final effectors of depolarization, the neuronal ion channels, whose functionalities are specifically affected by bradykinin stimulation. Particular G-protein coupled signaling cascades specialized for each specific depolarizer ion channels are summarized. Some of these ion channels not only serve as downstream effectors but also play critical roles in relaying specific pain modalities such as thermal or mechanical pain. Accordingly, specific pain phenotypes altered by bradykinin stimulation are also discussed. Some members of the effector ion channels are both activated and sensitized by bradykinin-induced neuronal signaling, while others only sensitized or inhibited, which are also introduced. The present overview of the effect of bradykinin on nociceptor neuronal excitability at the molecular level may contribute to better understanding of an important aspect of inflammatory pain and help future design of further research on the components involved and pain modulating strategies.
Collapse
Affiliation(s)
- Seung-In Choi
- Department of Biomedical Sciences and Department of Physiology, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Sun Wook Hwang
- Department of Biomedical Sciences and Department of Physiology, Korea University College of Medicine, Seoul 02841, Republic of Korea
| |
Collapse
|
27
|
Jang IJ, Davies AJ, Akimoto N, Back SK, Lee PR, Na HS, Furue H, Jung SJ, Kim YH, Oh SB. Acute inflammation reveals GABA A receptor-mediated nociception in mouse dorsal root ganglion neurons via PGE 2 receptor 4 signaling. Physiol Rep 2018; 5:5/8/e13178. [PMID: 28438981 PMCID: PMC5408276 DOI: 10.14814/phy2.13178] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 01/30/2017] [Indexed: 12/29/2022] Open
Abstract
Gamma‐aminobutyric acid (GABA) depolarizes dorsal root ganglia (DRG) primary afferent neurons through activation of Cl− permeable GABAA receptors but the physiologic role of GABAA receptors in the peripheral terminals of DRG neurons remains unclear. In this study, we investigated the role of peripheral GABAA receptors in nociception using a mouse model of acute inflammation. In vivo, peripheral administration of the selective GABAA receptor agonist muscimol evoked spontaneous licking behavior, as well as spinal wide dynamic range (WDR) neuron firing, after pre‐conditioning with formalin but had no effect in saline‐treated mice. GABAA receptor‐mediated pain behavior after acute formalin treatment was abolished by the GABAA receptor blocker picrotoxin and cyclooxygenase inhibitor indomethacin. In addition, treatment with prostaglandin E2 (PGE2) was sufficient to reveal muscimol‐induced licking behavior. In vitro, GABA induced sub‐threshold depolarization in DRG neurons through GABAA receptor activation. Both formalin and PGE2 potentiated GABA‐induced Ca2+ transients and membrane depolarization in capsaicin‐sensitive nociceptive DRG neurons; these effects were blocked by the prostaglandin E2 receptor 4 (EP4) antagonist AH23848 (10 μmol/L). Furthermore, potentiation of GABA responses by PGE2 was prevented by the selective Nav1.8 antagonist A887826 (100 nmol/L). Although the function of the Na+‐K+‐2Cl‐ co‐transporter NKCC1 was required to maintain the Cl‐ ion gradient in isolated DRG neurons, NKCC1 was not required for GABAA receptor‐mediated nociceptive behavior after acute inflammation. Taken together, these results demonstrate that GABAA receptors may contribute to the excitation of peripheral sensory neurons in inflammation through a combined effect involving PGE2‐EP4 signaling and Na+ channel sensitization.
Collapse
Affiliation(s)
- In Jeong Jang
- Pain Laboratory, Dental Research Institute and Department of Neurobiology and Physiology School of Dentistry Seoul National University, Seoul, Korea
| | - Alexander J Davies
- Pain Laboratory, Dental Research Institute and Department of Neurobiology and Physiology School of Dentistry Seoul National University, Seoul, Korea.,Department of Brain and Cognitive Sciences, College of Natural Sciences Seoul National University, Seoul, Korea
| | - Nozomi Akimoto
- Department of Information Physiology, National Institute for Physiological Sciences, Okazaki, Japan
| | - Seung Keun Back
- Department of Physiology, Korea University College of Medicine, Seoul, Korea.,Department of Pharmacology and Biotechnology, College of Medical Engineering Konyang University, Daejeon, Korea
| | - Pa Reum Lee
- Pain Laboratory, Dental Research Institute and Department of Neurobiology and Physiology School of Dentistry Seoul National University, Seoul, Korea.,Department of Brain and Cognitive Sciences, College of Natural Sciences Seoul National University, Seoul, Korea
| | - Heung Sik Na
- Department of Physiology, Korea University College of Medicine, Seoul, Korea
| | - Hidemasa Furue
- Department of Information Physiology, National Institute for Physiological Sciences, Okazaki, Japan
| | - Sung Jun Jung
- Department of Physiology, Hanyang University, Seoul, Korea
| | - Yong Ho Kim
- Pain Laboratory, Dental Research Institute and Department of Neurobiology and Physiology School of Dentistry Seoul National University, Seoul, Korea
| | - Seog Bae Oh
- Pain Laboratory, Dental Research Institute and Department of Neurobiology and Physiology School of Dentistry Seoul National University, Seoul, Korea .,Department of Brain and Cognitive Sciences, College of Natural Sciences Seoul National University, Seoul, Korea
| |
Collapse
|
28
|
Medelin M, Giacco V, Aldinucci A, Castronovo G, Bonechi E, Sibilla A, Tanturli M, Torcia M, Ballerini L, Cozzolino F, Ballerini C. Bridging pro-inflammatory signals, synaptic transmission and protection in spinal explants in vitro. Mol Brain 2018; 11:3. [PMID: 29334986 PMCID: PMC5769440 DOI: 10.1186/s13041-018-0347-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 01/04/2018] [Indexed: 01/30/2023] Open
Abstract
Multiple sclerosis is characterized by tissue atrophy involving the brain and the spinal cord, where reactive inflammation contributes to the neurodegenerative processes. Recently, the presence of synapse alterations induced by the inflammatory responses was suggested by experimental and clinical observations, in experimental autoimmune encephalomyelitis mouse model and in patients, respectively. Further knowledge on the interplay between pro-inflammatory agents, neuroglia and synaptic dysfunction is crucial to the design of unconventional protective molecules. Here we report the effects, on spinal cord circuits, of a cytokine cocktail that partly mimics the signature of T lymphocytes sub population Th1. In embryonic mouse spinal organ-cultures, containing neuronal cells and neuroglia, cytokines induced inflammatory responses accompanied by a significant increase in spontaneous synaptic activity. We suggest that cytokines specifically altered signal integration in spinal networks by speeding the decay of GABAA responses. This hypothesis is supported by the finding that synapse protection by a non-peptidic NGF mimetic molecule prevented both the changes in the time course of GABA events and in network activity that were left unchanged by the cytokine production from astrocytes and microglia present in the cultured tissue. In conclusion, we developed an important tool for the study of synaptic alterations induced by inflammation, that takes into account the role of neuronal and not neuronal resident cells.
Collapse
Affiliation(s)
- M Medelin
- Department of Life Sciences, University of Trieste, 34127, Trieste, Italy.,International School for Advanced Studies (SISSA/ISAS), 34136, Trieste, Italy
| | - V Giacco
- International School for Advanced Studies (SISSA/ISAS), 34136, Trieste, Italy
| | - A Aldinucci
- Department NEUROFARBA, University of Florence, 50139, Florence, Italy
| | - G Castronovo
- Department of DSBSC, University of Florence, 50134, Florence, Italy
| | - E Bonechi
- Department NEUROFARBA, University of Florence, 50139, Florence, Italy
| | - A Sibilla
- Department NEUROFARBA, University of Florence, 50139, Florence, Italy
| | - M Tanturli
- Department of DSBSC, University of Florence, 50134, Florence, Italy
| | - M Torcia
- Department of DMSC, University of Florence, 50134, Florence, Italy
| | - L Ballerini
- International School for Advanced Studies (SISSA/ISAS), 34136, Trieste, Italy.
| | - F Cozzolino
- Department of DSBSC, University of Florence, 50134, Florence, Italy
| | - C Ballerini
- Department NEUROFARBA, University of Florence, 50139, Florence, Italy.
| |
Collapse
|
29
|
Qu L, Fu K, Shimada SG, LaMotte RH. Cl - channel is required for CXCL10-induced neuronal activation and itch response in a murine model of allergic contact dermatitis. J Neurophysiol 2017; 118:619-624. [PMID: 28446581 DOI: 10.1152/jn.00187.2017] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 04/14/2017] [Accepted: 04/26/2017] [Indexed: 12/21/2022] Open
Abstract
Persistent itch often accompanies allergic contact dermatitis (ACD), but the underlying mechanisms remain largely unexplored. We previously demonstrated that CXCL10/CXCR3 signaling activated a subpopulation of cutaneous primary sensory neurons and mediated itch response after contact hypersensitivity (CHS), a murine model of ACD, induced by squaric acid dibutylester. The purpose of this study was to determine the ionic mechanisms underlying CXCL10-induced neuronal activation and allergic itch. In whole cell recordings, CXCL10 triggered a current in dorsal root ganglion (DRG) neurons innervating the area of CHS. This current was modulated by intracellular Cl- and blocked by the general Cl- channel inhibitors. Moreover, increasing Ca2+ buffering capacity reduced this current. In addition, blockade of Cl- channels significantly suppressed CXCL10-induced Ca2+ response. In behavioral tests, injection of CXCL10 into CHS site exacerbated itch-related scratching behaviors. Moreover, the potentiating behavioral effects of CXCL10 were attenuated by either of two Cl- channel blockers. Thus we suggest that the Cl- channel acts as a downstream target mediating the excitatory and pruritic behavioral effects of CXCL10. Cl- channels may provide a promising therapeutic target for the treatment of allergic itch in which CXCL10/CXCR3 signaling may participate.NEW & NOTEWORTHY The ionic mechanisms underlying CXCL10-induced neuronal activation and allergic itch are largely unexplored. This study revealed that CXCL10 evoked an ionic current mainly carried by Cl- channels. We suggest that Cl- channels are likely key molecular candidates responsible for the CXCL10-evoked neuronal activation and itch-like behaviors in a murine model of allergic contact dermatitis induced by the antigen squaric acid dibutylester. Cl- channels may emerge as a promising drug target for the treatment of allergic itch in which CXCL10/CXCR3 signaling may participate.
Collapse
Affiliation(s)
- Lintao Qu
- Departments of Neurosurgery, Neurosurgery Pain Research Institute, Johns Hopkins School of Medicine, Baltimore, Maryland; and .,Department of Anesthesiology, Yale University School of Medicine, New Haven, Connecticut
| | - Kai Fu
- Department of Anesthesiology, Yale University School of Medicine, New Haven, Connecticut
| | - Steven G Shimada
- Department of Anesthesiology, Yale University School of Medicine, New Haven, Connecticut
| | - Robert H LaMotte
- Department of Anesthesiology, Yale University School of Medicine, New Haven, Connecticut
| |
Collapse
|
30
|
Chen L, Wan L, Wu Z, Ren W, Huang Y, Qian B, Wang Y. KCC2 downregulation facilitates epileptic seizures. Sci Rep 2017; 7:156. [PMID: 28279020 PMCID: PMC5427808 DOI: 10.1038/s41598-017-00196-7] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 02/13/2017] [Indexed: 11/18/2022] Open
Abstract
GABAA receptor-mediated inhibition depends on the maintenance of low level intracellular [Cl-] concentration, which in adult depends on neuron specific K+-Cl- cotransporter-2 (KCC2). Previous studies have shown that KCC2 was downregulated in both epileptic patients and various epileptic animal models. However, the temporal relationship between KCC2 downregulation and seizure induction is unclear yet. In this study, we explored the temporal relationship and the influence of KCC2 downregulation on seizure induction. Significant downregulation of plasma membrane KCC2 was directly associated with severe (Racine Score III and above) behavioral seizures in vivo, and occurred before epileptiform bursting activities in vitro induced by convulsant. Overexpression of KCC2 using KCC2 plasmid effectively enhanced resistance to convulsant-induced epileptiform bursting activities in vitro. Furthermore, suppression of membrane KCC2 expression, using shRNAKCC2 plasmid in vitro and shRNAKCC2 containing lentivirus in vivo, induced spontaneous epileptiform bursting activities in vitro and Racine III seizure behaviors accompanied by epileptic EEG in vivo. Our findings novelly demonstrated that altered expression of KCC2 is not the consequence of seizure occurrence but likely is the contributing factor.
Collapse
Affiliation(s)
- Lulan Chen
- Institutes of Brain Science, State Key Laboratory for Medical Neurobiology, Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, 200032, China
| | - Li Wan
- Institutes of Brain Science, State Key Laboratory for Medical Neurobiology, Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, 200032, China
| | - Zheng Wu
- Institutes of Brain Science, State Key Laboratory for Medical Neurobiology, Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, 200032, China
| | - Wanting Ren
- Institutes of Brain Science, State Key Laboratory for Medical Neurobiology, Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, 200032, China
| | - Yian Huang
- Institutes of Brain Science, State Key Laboratory for Medical Neurobiology, Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, 200032, China
| | - Binbin Qian
- Institutes of Brain Science, State Key Laboratory for Medical Neurobiology, Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, 200032, China
| | - Yun Wang
- Institutes of Brain Science, State Key Laboratory for Medical Neurobiology, Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
31
|
Chandran R, Mehta SL, Vemuganti R. Non-coding RNAs and neuroprotection after acute CNS injuries. Neurochem Int 2017; 111:12-22. [PMID: 28131900 DOI: 10.1016/j.neuint.2017.01.015] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2016] [Revised: 01/17/2017] [Accepted: 01/24/2017] [Indexed: 02/07/2023]
Abstract
Accumulating evidence indicates that various classes of non-coding RNAs (ncRNAs) including microRNAs (miRNAs), PIWI-interacting RNAs (piRNAs) and long non-coding RNAs (lncRNAs) play important roles in normal state as well as the diseases of the CNS. Interestingly, ncRNAs have been shown to interact with messenger RNA, DNA and proteins, and these interactions could induce epigenetic modifications and control transcription and translation, thereby adding a new layer of genomic regulation. The ncRNA expression profiles are known to be altered after acute CNS injuries including stroke, traumatic brain injury and spinal cord injury that are major contributors of morbidity and mortality worldwide. Hence, a better understanding of the functional significance of ncRNAs following CNS injuries could help in developing potential therapeutic strategies to minimize the neuronal damage in those conditions. The potential of ncRNAs in blood and CSF as biomarkers for diagnosis and/or prognosis of acute CNS injuries has also gained importance in the recent years. This review highlighted the current progress in the understanding of the role of ncRNAs in initiation and progression of secondary neuronal damage and their application as biomarkers after acute CNS injuries.
Collapse
Affiliation(s)
- Raghavendar Chandran
- Department of Neurological Surgery, University of Wisconsin-Madison and William S. Middleton Veterans Hospital, Madison, WI, USA
| | - Suresh L Mehta
- Department of Neurological Surgery, University of Wisconsin-Madison and William S. Middleton Veterans Hospital, Madison, WI, USA
| | - Raghu Vemuganti
- Department of Neurological Surgery, University of Wisconsin-Madison and William S. Middleton Veterans Hospital, Madison, WI, USA.
| |
Collapse
|
32
|
Pang RP, Xie MX, Yang J, Shen KF, Chen X, Su YX, Yang C, Tao J, Liang SJ, Zhou JG, Zhu HQ, Wei XH, Li YY, Qin ZH, Liu XG. Downregulation of ClC-3 in dorsal root ganglia neurons contributes to mechanical hypersensitivity following peripheral nerve injury. Neuropharmacology 2016; 110:181-189. [DOI: 10.1016/j.neuropharm.2016.07.023] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 06/28/2016] [Accepted: 07/19/2016] [Indexed: 01/18/2023]
|
33
|
Untiet V, Moeller LM, Ibarra-Soria X, Sánchez-Andrade G, Stricker M, Neuhaus EM, Logan DW, Gensch T, Spehr M. Elevated Cytosolic Cl- Concentrations in Dendritic Knobs of Mouse Vomeronasal Sensory Neurons. Chem Senses 2016; 41:669-76. [PMID: 27377750 DOI: 10.1093/chemse/bjw077] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
In rodents, the vomeronasal system controls social and sexual behavior. However, several mechanistic aspects of sensory signaling in the vomeronasal organ remain unclear. Here, we investigate the biophysical basis of a recently proposed vomeronasal signal transduction component-a Ca(2+)-activated Cl(-) current. As the physiological role of such a current is a direct function of the Cl(-) equilibrium potential, we determined the intracellular Cl(-) concentration in dendritic knobs of vomeronasal neurons. Quantitative fluorescence lifetime imaging of a Cl(-)-sensitive dye at the apical surface of the intact vomeronasal neuroepithelium revealed increased cytosolic Cl(-) levels in dendritic knobs, a substantially lower Cl(-) concentration in vomeronasal sustentacular cells, and an apparent Cl(-) gradient in vomeronasal neurons along their dendritic apicobasal axis. Together, our data provide a biophysical basis for sensory signal amplification in vomeronasal neuron microvilli by opening Ca(2+)-activated Cl(-) channels.
Collapse
Affiliation(s)
- Verena Untiet
- Institute of Complex Systems, Cellular Biophysics (ICS-4), Forschungszentrum Jülich, Leo-Brandt-Straße, D-52428 Jülich, Germany
| | - Lisa M Moeller
- Department of Chemosensation, Institute for Biology II, RWTH Aachen University, Worringerweg 3, D-52074 Aachen, Germany
| | - Ximena Ibarra-Soria
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | | | - Miriam Stricker
- Institute of Complex Systems, Cellular Biophysics (ICS-4), Forschungszentrum Jülich, Leo-Brandt-Straße, D-52428 Jülich, Germany
| | - Eva M Neuhaus
- Pharmacology and Toxicology, University Hospital Jena, Drackendorfer Straße 1, Friedrich Schiller University Jena, D-07743 Jena, Germany and
| | - Darren W Logan
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK, Monell Chemical Senses Center, 3500 Market Street, Philadelphia, PA 19104, USA
| | - Thomas Gensch
- Institute of Complex Systems, Cellular Biophysics (ICS-4), Forschungszentrum Jülich, Leo-Brandt-Straße, D-52428 Jülich, Germany
| | - Marc Spehr
- Department of Chemosensation, Institute for Biology II, RWTH Aachen University, Worringerweg 3, D-52074 Aachen, Germany,
| |
Collapse
|
34
|
Meissner L, Gallozzi M, Balbi M, Schwarzmaier S, Tiedt S, Terpolilli NA, Plesnila N. Temporal Profile of MicroRNA Expression in Contused Cortex after Traumatic Brain Injury in Mice. J Neurotrauma 2015; 33:713-20. [PMID: 26426744 DOI: 10.1089/neu.2015.4077] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
MicroRNAs (miRNAs) were recently identified as important regulators of gene expression under a wide range of physiological and pathophysiological conditions. Thus, they may represent a novel class of molecular targets for the management of traumatic brain injury (TBI). In this study, we investigated the temporal profile of miRNA expression during the development of secondary brain damage after experimental TBI. For this purpose, we used a controlled cortical impact model in C57Bl/6 mice (n = 6) to induce a cortical contusion and analyzed miRNA expression in the traumatized cortex by microarray analysis during the development of secondary contusion expansion-i.e., at 1, 6, and 12 h after TBI. Of a total 780 mature miRNA sequences analyzed, 410 were detected in all experimental groups. Of these, 158 miRNAs were significantly upregulated or downregulated in TBI compared with sham-operated animals, and 52 miRNAs increased more than twofold. We validated the upregulation of five of the most differentially expressed miRNAs (miR-21*, miR-144, miR-184, miR-451, miR-2137) and the downregulation of four of the most differentially expressed miRNAs (miR-107, miR-137, miR-190, miR-541) by quantitative polymerase chain reaction (qPCR). miR-2137, the most differentially expressed miRNA after TBI, was further investigated by in situ hybridization and was found to be upregulated in neurons within the traumatic penumbra. This study gives a comprehensive picture of miRNA expression levels during secondary contusion expansion after TBI and may pave the way for the identification of novel targets for the management of brain trauma.
Collapse
Affiliation(s)
- Lilja Meissner
- 1 Department of Neurodegeneration, Royal College of Surgeons in Ireland , Dublin, Ireland .,2 Institute for Stroke and Dementia Research, University of Munich Medical Center , Munich, Germany
| | - Micaela Gallozzi
- 1 Department of Neurodegeneration, Royal College of Surgeons in Ireland , Dublin, Ireland
| | - Matilde Balbi
- 1 Department of Neurodegeneration, Royal College of Surgeons in Ireland , Dublin, Ireland .,2 Institute for Stroke and Dementia Research, University of Munich Medical Center , Munich, Germany
| | - Susanne Schwarzmaier
- 1 Department of Neurodegeneration, Royal College of Surgeons in Ireland , Dublin, Ireland
| | - Steffen Tiedt
- 2 Institute for Stroke and Dementia Research, University of Munich Medical Center , Munich, Germany
| | - Nicole A Terpolilli
- 3 Institute for Surgical Research, University of Munich Medical Center , Munich, Germany
| | - Nikolaus Plesnila
- 1 Department of Neurodegeneration, Royal College of Surgeons in Ireland , Dublin, Ireland .,2 Institute for Stroke and Dementia Research, University of Munich Medical Center , Munich, Germany .,4 Munich Cluster of Systems Neurology (Synergy), Munich, Germany
| |
Collapse
|
35
|
Intracellular chloride concentration of the mouse vomeronasal neuron. BMC Neurosci 2015; 16:90. [PMID: 26667019 PMCID: PMC4678706 DOI: 10.1186/s12868-015-0230-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2015] [Accepted: 12/03/2015] [Indexed: 12/23/2022] Open
Abstract
Background The vomeronasal organ (VNO) is specialized in detecting pheromone and heterospecific cues in the environment. Recent studies demonstrate the involvement of multiple ion channels in VNO signal transduction, including the calcium-activated chloride channels (CACCs). Opening of CACCs appears to result in activation of VNO neuron through outflow of Cl− ions. However, the intracellular Cl− concentration remains undetermined. Results We used the chloride ion quenching dye, MQAE, to measure the intracellular Cl− concentration of VNO neuron in live VNO slices. The resting Cl− concentration in the VNO neurons is measured at 84.73 mM. Urine activation of the VNO neurons causes a drop in Cl− concentration, consistent with the notion of an efflux of Cl− to depolarize the cells. Similar observation is made for VNO neurons from mice with deletion of the transient receptor potential canonical channel 2 (TRPC2), which have a resting Cl− concentrations at 81 mM. Conclusions The VNO neurons rest at high intracellular Cl− concentration, which can lead to depolarization of the cell when chloride channels open. These results also provide additional support of TRPC2-independent pathway of VNO activation.
Collapse
|
36
|
Deba F, Bessac BF. Anoctamin-1 Cl(-) channels in nociception: activation by an N-aroylaminothiazole and capsaicin and inhibition by T16A[inh]-A01. Mol Pain 2015; 11:55. [PMID: 26364309 PMCID: PMC4567824 DOI: 10.1186/s12990-015-0061-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 09/07/2015] [Indexed: 11/29/2022] Open
Abstract
Background Anoctamin 1 (ANO1 or TMEM16A) Ca2+-gated Cl− channels of nociceptor neurons are emerging as important molecular components of peripheral pain transduction. At physiological intracellular Cl− concentrations ([Cl−]i) sensory neuronal Cl− channels are excitatory. The ability of sensory neuronal ANO1 to trigger action potentials and subsequent nocifensive (pain) responses were examined by direct activation with an N-aroylaminothiazole. ANO1 channels are also activated by intracellular Ca2+ ([Ca2+]i) from sensory neuronal TRPV1 (transient-receptor-potential vallinoid 1) ion channels and other noxicant receptors. Thus, sensory neuronal ANO1 can facilitate TRPV1 triggering of action potentials, resulting in enhanced nociception. This was investigated by reducing ANO1 facilitation of TRPV1 effects with: (1) T16A[inh]-A01 ANO1-inhibitor reagent at physiological [Cl−]i and (2) by lowering sensory neuronal [Cl−]i to switch ANO1 to be inhibitory. Results ANO1 effects on action potential firing of mouse dorsal root ganglia (DRG) neurons in vitro and mouse nocifensive behaviors in vivo were examined with an N-aroylaminothiazole ANO1-activator (E-act), a TRPV1-activator (capsaicin) and an ANO1-inhibitor (T16A[inh]-A01). At physiological [Cl−]i (40 mM), E-act (10 µM) increased current sizes (in voltage-clamp) and action potential firing (in current-clamp) recorded in DRG neurons using whole-cell electrophysiology. To not disrupt TRPV1 carried-Ca2+ activation of ANO1 in DRG neurons, ANO1 modulation of capsaicin-induced action potentials was measured by perforated-patch (Amphotericin–B) current-clamp technique. Subsequently, at physiological [Cl−]i, capsaicin (15 µM)-induced action potential firing was diminished by co-application with T16A[inh]-A01 (20 µM). Under conditions of low [Cl−]i (10 mM), ANO1 actions were reversed. Specifically, E-act did not trigger action potentials; however, capsaicin-induced action potential firing was inhibited by co-application of E-act, but was unaffected by co-application of T16A[inh]-A01. Nocifensive responses of mice hind paws were dramatically induced by subcutaneous injections of E-act (5 mM) or capsaicin (50 µM). The nocifensive responses were attenuated by co-injection with T16A[inh]-A01 (1.3 mM). Conclusions An ANO1-activator (E-act) induced [Cl−]i-dependent sensory neuronal action potentials and mouse nocifensive behaviors; thus, direct ANO1 activation can induce pain perception. ANO1-inhibition attenuated capsaicin-triggering of action potentials and capsaicin-induced nocifensive behaviors. These results indicate ANO1 channels are involved with TRPV1 actions in sensory neurons and inhibition of ANO1 could be a novel means of inducing analgesia. Electronic supplementary material The online version of this article (doi:10.1186/s12990-015-0061-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Farah Deba
- Department of Pharmaceutical Sciences, I. L. Rangel College of Pharmacy, Texas A&M Health Science Center, 1010 West Avenue B MSC 131, Kingsville, TX, 78363, USA.
| | - Bret F Bessac
- Department of Pharmaceutical Sciences, I. L. Rangel College of Pharmacy, Texas A&M Health Science Center, 1010 West Avenue B MSC 131, Kingsville, TX, 78363, USA.
| |
Collapse
|
37
|
Yaksh TL, Woller SA, Ramachandran R, Sorkin LS. The search for novel analgesics: targets and mechanisms. F1000PRIME REPORTS 2015; 7:56. [PMID: 26097729 PMCID: PMC4447049 DOI: 10.12703/p7-56] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The management of the pain state is of great therapeutic relevance to virtually every medical specialty. Failure to manage its expression has deleterious consequence to the well-being of the organism. An understanding of the complex biology of the mechanisms underlying the processing of nociceptive information provides an important pathway towards development of novel and robust therapeutics. Importantly, preclinical models have been of considerable use in determining the linkage between mechanism and the associated behaviorally defined pain state. This review seeks to provide an overview of current thinking targeting pain biology, the use of preclinical models and the development of novel pain therapeutics. Issues pertinent to the strengths and weaknesses of current development strategies for analgesics are considered.
Collapse
|
38
|
|
39
|
Becker W. Fluorescence lifetime imaging by multi-dimensional time correlated single photon counting. ACTA ACUST UNITED AC 2015. [DOI: 10.1016/j.medpho.2015.02.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
40
|
Emerging role of WNK1 in pathologic central nervous system signaling. Ann Neurosci 2014; 18:70-5. [PMID: 25205925 PMCID: PMC4117038 DOI: 10.5214/ans.0972.7531.1118212] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2011] [Revised: 03/30/2011] [Accepted: 04/21/2011] [Indexed: 01/28/2023] Open
Abstract
WNK1 (with no lysine (K)) is a widely expressed serine/threonine protein kinase. The role of this kinase was first described in the kidney where it dynamically controls ion channels that regulate changes in cell volume. WNK1, through intermediates oxidative stress-responsive kinase-1 (OSR1) and STE20/SPS1-related proline/alanine-rich kinase (SPAK), phosphorylates the inwardly directed Na+-K+-Cl---cotransporter 1 (NKCC1) and the outwardly directed K+-Cl--cotransporter 2 (KCC2), activating and deactivating these channels, respectively. WNK1, NKCC1 and KCC2 are also expressed in the central nervous system (CNS). Growing evidence implicates WNK1 playing a critical role in pathologic nervous system signaling where changes in intracellular ion concentration in response to γ-aminobutyric-acid (GABA) can activate otherwise silent pathways. This review will focus on current research about WNK1, its downstream effectors and role in GABA signaling. Future perspectives include investigating WNK1 expression in the CNS after spinal cord injury (SCI), where altered neuronal signaling could underlie pathological states such as neuropathic pain (NP).
Collapse
|
41
|
Propofol-induced pain sensation involves multiple mechanisms in sensory neurons. Pflugers Arch 2014; 467:2011-20. [DOI: 10.1007/s00424-014-1620-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Revised: 09/22/2014] [Accepted: 09/25/2014] [Indexed: 10/24/2022]
|
42
|
Guo D, Hu J. Spinal presynaptic inhibition in pain control. Neuroscience 2014; 283:95-106. [PMID: 25255936 DOI: 10.1016/j.neuroscience.2014.09.032] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Revised: 09/10/2014] [Accepted: 09/14/2014] [Indexed: 12/22/2022]
Abstract
The gate control theory proposed that the nociceptive sensory information transmitted to the brain relies on an interplay between the inputs from nociceptive and non-nociceptive primary afferent fibers. Both inputs are normally under strong inhibitory control in the spinal cord. Under healthy conditions, presynaptic inhibition activated by non-nociceptive fibers modulates the afferent input from nociceptive fibers onto spinal cord neurons, while postsynaptic inhibition controls the excitability of dorsal horn neurons, and silences the non-nociceptive information flow to nociceptive-specific (NS) projection neurons. However, under pathological conditions, this spinal inhibition may be altered and lead to chronic pain. This review summarizes our knowledge of presynaptic inhibition in pain control, with particular focus on how its alteration after nerve or tissue injury contributes to neuropathic or inflammatory pain syndromes, respectively.
Collapse
Affiliation(s)
- D Guo
- Centre for Integrative Neuroscience (CIN), Otfried-Mueller-Straße 25, 72076 Tuebingen, Germany
| | - J Hu
- Centre for Integrative Neuroscience (CIN), Otfried-Mueller-Straße 25, 72076 Tuebingen, Germany.
| |
Collapse
|
43
|
He Y, Xu S, Huang J, Gong Q. Analgesic effect of intrathecal bumetanide is accompanied by changes in spinal sodium-potassium-chloride co-transporter 1 and potassium-chloride co-transporter 2 expression in a rat model of incisional pain. Neural Regen Res 2014; 9:1055-62. [PMID: 25206759 PMCID: PMC4146300 DOI: 10.4103/1673-5374.133170] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/10/2014] [Indexed: 11/04/2022] Open
Abstract
Accumulating evidence has demonstrated that the sodium-potassium-chloride co-transporter 1 and potassium-chloride co-transporter 2 have a role in the modulation of pain transmission at the spinal level through chloride regulation in the pain pathway and by effecting neuronal excitability and pain sensitization. The present study aimed to investigate the analgesic effect of the specific sodium-potassium-chloride co-transporter 1 inhibitor bumetanide, and the change in spinal sodium-potassium-chloride co-transporter 1 and potassium-chloride co-transporter 2 expression in a rat model of incisional pain. Results showed that intrathecal bumetanide could decrease cumulative pain scores, and could increase thermal and mechanical pain thresholds in a rat model of incisional pain. Sodium-potassium-chloride co-transporter 1 expression increased in neurons from dorsal root ganglion and the deep laminae of the ipsilateral dorsal horn following incision. By contrast, potassium-chloride co-transporter 2 expression decreased in neurons of the deep laminae from the ipsilateral dorsal horn. These findings suggest that spinal sodium-potassium-chloride co-transporter 1 expression was up-regulated and spinal potassium-chloride co-transporter 2 expression was down-regulated following incision. Intrathecal bumetanide has analgesic effects on incisional pain through inhibition of sodium-potassium-chloride co-transporter 1.
Collapse
Affiliation(s)
- Yanbing He
- Department of Anesthesiology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China ; Department of Anesthesiology and Pain Medicine, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Shiyuan Xu
- Department of Anesthesiology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Junjie Huang
- Department of Anesthesiology and Pain Medicine, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Qingjuan Gong
- Department of Anesthesiology and Pain Medicine, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong Province, China
| |
Collapse
|
44
|
Arosio D, Ratto GM. Twenty years of fluorescence imaging of intracellular chloride. Front Cell Neurosci 2014; 8:258. [PMID: 25221475 PMCID: PMC4148895 DOI: 10.3389/fncel.2014.00258] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Accepted: 08/12/2014] [Indexed: 11/23/2022] Open
Abstract
Chloride homeostasis has a pivotal role in controlling neuronal excitability in the adult brain and during development. The intracellular concentration of chloride is regulated by the dynamic equilibrium between passive fluxes through membrane conductances and the active transport mediated by importers and exporters. In cortical neurons, chloride fluxes are coupled to network activity by the opening of the ionotropic GABAA receptors that provides a direct link between the activity of interneurons and chloride fluxes. These molecular mechanisms are not evenly distributed and regulated over the neuron surface and this fact can lead to a compartmentalized control of the intracellular concentration of chloride. The inhibitory drive provided by the activity of the GABAA receptors depends on the direction and strength of the associated currents, which are ultimately dictated by the gradient of chloride, the main charge carrier flowing through the GABAA channel. Thus, the intracellular distribution of chloride determines the local strength of ionotropic inhibition and influences the interaction between converging excitation and inhibition. The importance of chloride regulation is also underlined by its involvement in several brain pathologies, including epilepsy and disorders of the autistic spectra. The full comprehension of the physiological meaning of GABAergic activity on neurons requires the measurement of the spatiotemporal dynamics of chloride fluxes across the membrane. Nowadays, there are several available tools for the task, and both synthetic and genetically encoded indicators have been successfully used for chloride imaging. Here, we will review the available sensors analyzing their properties and outlining desirable future developments.
Collapse
Affiliation(s)
- Daniele Arosio
- Institute of Biophysics, National Research Council and Bruno Kessler Foundation Trento, Italy ; Centre for Integrative Biology, University of Trento Trento, Italy
| | - Gian Michele Ratto
- Nanoscience Institute, National Research Council of Italy Pisa, Italy ; NEST, Scuola Normale Superiore Pisa, Italy
| |
Collapse
|
45
|
Mòdol L, Cobianchi S, Navarro X. Prevention of NKCC1 phosphorylation avoids downregulation of KCC2 in central sensory pathways and reduces neuropathic pain after peripheral nerve injury. Pain 2014; 155:1577-1590. [PMID: 24813295 DOI: 10.1016/j.pain.2014.05.004] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Revised: 04/24/2014] [Accepted: 05/02/2014] [Indexed: 12/24/2022]
Abstract
Neuropathic pain after peripheral nerve injury is characterized by loss of inhibition in both peripheral and central pain pathways. In the adult nervous system, the Na(+)-K(+)-2Cl(-) (NKCC1) and neuron-specific K(+)-Cl(-) (KCC2) cotransporters are involved in setting the strength and polarity of GABAergic/glycinergic transmission. After nerve injury, the balance between these cotransporters changes, leading to a decrease in the inhibitory tone. However, the role that NKCC1 and KCC2 play in pain-processing brain areas is unknown. Our goal was to study the effects of peripheral nerve injury on NKCC1 and KCC2 expression in dorsal root ganglia (DRG), spinal cord, ventral posterolateral (VPL) nucleus of the thalamus, and primary somatosensory (S1) cortex. After sciatic nerve section and suture in adult rats, assessment of mechanical and thermal pain thresholds showed evidence of hyperalgesia during the following 2 months. We also found an increase in NKCC1 expression in the DRG and a downregulation of KCC2 in spinal cord after injury, accompanied by later decrease of KCC2 levels in higher projection areas (VPL and S1) from 2 weeks postinjury, correlating with neuropathic pain signs. Administration of bumetanide (30 mg/kg) during 2 weeks following sciatic nerve lesion prevented the previously observed changes in the spinothalamic tract projecting areas and the appearance of hyperalgesia. In conclusion, the present results indicate that changes in NKCC1 and KCC2 in DRG, spinal cord, and central pain areas may contribute to development of neuropathic pain.
Collapse
Affiliation(s)
- Laura Mòdol
- Institute of Neurosciences and Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Bellaterra, Spain
| | | | | |
Collapse
|
46
|
García G, Martínez-Rojas VA, Rocha-González HI, Granados-Soto V, Murbartián J. Evidence for the participation of Ca(2+)-activated chloride channels in formalin-induced acute and chronic nociception. Brain Res 2014; 1579:35-44. [PMID: 25036442 DOI: 10.1016/j.brainres.2014.07.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Revised: 06/23/2014] [Accepted: 07/07/2014] [Indexed: 01/03/2023]
Abstract
In this study we determined the role of Ca(2+)-activated chloride channels (CaCC) in acute and chronic nociceptive responses elicited by 1% formalin. Formalin injection produced a typical pattern of flinching behavior for about 1h. Moreover, it produced secondary allodynia and hyperalgesia in the ipsilateral and contralateral paws for at least 6 days. Local peripheral and intrathecal pre-treatment (-10 min) with the non-selective and selective CaCC blockers niflumic acid and CaCCinh-A01, respectively, prevented formalin-induced flinching behavior mainly during phase 2 of the formalin test. Furthermore, niflumic acid and CaCCinh-A01 also prevented in a dose-dependent manner the long-lasting evoked secondary mechanical allodynia and hyperalgesia in the ipsilateral and contralateral paws. Moreover, local peripheral and intrathecal post-treatment (on day 6) with both CaCC blockers decreased the established formalin-induced secondary mechanical allodynia and hyperalgesia behavior in both paws. CaCC anoctamin-1 and bestrophin-1 were detected in the dorsal root ganglia. Formalin injection increased anoctamin-1, but not bestrophin-1 protein levels at 6 days. Intrathecal injection of the CaCC inhibitor CaCCinh-A01 prevented formalin-induced anoctamin-1 increase. Data suggest that peripheral and spinal CaCC, and particularly anoctamin-1, participates in the acute nociception induced by formalin as well as in the development and maintenance of secondary mechanical allodynia and hyperalgesia. Thus, CaCC activity contributes to neuronal excitability in the process of nociception induced by formalin.
Collapse
Affiliation(s)
- Guadalupe García
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados (Cinvestav), Sede Sur. México, D.F., Mexico
| | - Vladimir A Martínez-Rojas
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados (Cinvestav), Sede Sur. México, D.F., Mexico
| | - Héctor I Rocha-González
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, México, D.F., Mexico
| | - Vinicio Granados-Soto
- Neurobiology of Pain Laboratory, Departamento de Farmacobiología, Cinvestav, Sede Sur, México, D.F., Mexico
| | - Janet Murbartián
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados (Cinvestav), Sede Sur. México, D.F., Mexico.
| |
Collapse
|
47
|
Kanazawa T, Matsumoto S. Expression of transient receptor potential vanilloid 1 and anoctamin 1 in rat trigeminal ganglion neurons innervating the tongue. Brain Res Bull 2014; 106:17-20. [PMID: 24792786 DOI: 10.1016/j.brainresbull.2014.04.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Revised: 04/22/2014] [Accepted: 04/23/2014] [Indexed: 10/25/2022]
Abstract
Transient receptor potential vanilloid 1 (TRPV1) is a polymodal sensor that is activated by heat (>43 °C), acid, or capsaicin, the pungent ingredient of hot peppers. Reports that mice lacking TRPV1 display heat avoidance behaviors and TRPV1-negative neurons respond to heat suggest that an additional heat sensor is present. Anoctamin 1 (ANO1; also known as transmembrane protein 16A [TMEM16A]), is a component of Ca(2+)-activated chloride channels (CaCCs), and has been recently identified as a heat sensor, activated by temperatures over 44 °C. ANO1 is highly co-localized with TRPV1 in small-diameter dorsal root ganglion (DRG) neurons. The aim of the present study was to investigate co-expression of ANO1 and TRPV1 in rat trigeminal ganglion (TG) neurons innervating the tongue by using retrograde labeling and immunohistochemical techniques. Fluoro-gold (FG) retrograde labeling was used to identify the TG neurons innervating the anterior two thirds of the tongue; as expected, most labeling was detected in the mandibular division of the TGs. The FG-labeled TG neurons showed TRPV1 immunoreactivity (17.9%) and ANO1 immunoreactivity (13.7%), indicating that TRPV1- and ANO1-expressing neurons were present in the mandibular division of the TGs. Seventy-six percent of the ANO1-immunoreactive TG neurons were also immunoreactive for TRPV1; this co-expression was mainly detected in small- to medium-diameter TG neurons. The high degree of co-expression of TRPV1 and ANO1 suggests that cooperation between ANO1 and TRPV1 plays a role in the signaling pathways of nociceptive TG neurons.
Collapse
Affiliation(s)
- Takuya Kanazawa
- Department of Physiology, School of Life Dentistry at Tokyo, Nippon Dental University, 1-9-20, Fujimi-cho, Chiyoda-ku, Tokyo 102-8159, Japan.
| | - Shigeji Matsumoto
- Department of Physiology, School of Life Dentistry at Tokyo, Nippon Dental University, 1-9-20, Fujimi-cho, Chiyoda-ku, Tokyo 102-8159, Japan
| |
Collapse
|
48
|
Du X, Gamper N. Potassium channels in peripheral pain pathways: expression, function and therapeutic potential. Curr Neuropharmacol 2013; 11:621-40. [PMID: 24396338 PMCID: PMC3849788 DOI: 10.2174/1570159x113119990042] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Electrical excitation of peripheral somatosensory nerves is a first step in generation of most pain signals in mammalian nervous system. Such excitation is controlled by an intricate set of ion channels that are coordinated to produce a degree of excitation that is proportional to the strength of the external stimulation. However, in many disease states this coordination is disrupted resulting in deregulated peripheral excitability which, in turn, may underpin pathological pain states (i.e. migraine, neuralgia, neuropathic and inflammatory pains). One of the major groups of ion channels that are essential for controlling neuronal excitability is potassium channel family and, hereby, the focus of this review is on the K+ channels in peripheral pain pathways. The aim of the review is threefold. First, we will discuss current evidence for the expression and functional role of various K+ channels in peripheral nociceptive fibres. Second, we will consider a hypothesis suggesting that reduced functional activity of K+ channels within peripheral nociceptive pathways is a general feature of many types of pain. Third, we will evaluate the perspectives of pharmacological enhancement of K+ channels in nociceptive pathways as a strategy for new analgesic drug design.
Collapse
Affiliation(s)
- Xiaona Du
- Department of Pharmacology, Hebei Medical University, Shijiazhuang, China
| | - Nikita Gamper
- Department of Pharmacology, Hebei Medical University, Shijiazhuang, China
- Faculty of Biological Sciences, University of Leeds, Leeds, UK
| |
Collapse
|
49
|
Zhu Y, Zhang XL, Gold MS. Activity-dependent hyperpolarization of EGABA is absent in cutaneous DRG neurons from inflamed rats. Neuroscience 2013; 256:1-9. [PMID: 24135545 DOI: 10.1016/j.neuroscience.2013.10.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Revised: 09/30/2013] [Accepted: 10/03/2013] [Indexed: 12/22/2022]
Abstract
A shift in GABA(A) signaling from inhibition to excitation in primary afferent neurons appears to contribute to the inflammation-induced increase in afferent input to the CNS. An activity-dependent depolarization of the GABA(A) current equilibrium potential (E(GABA)) has been described in CNS neurons which drives a shift in GABA(A) signaling from inhibition to excitation. The purpose of the present study was to determine if such an activity-dependent depolarization of E(GABA) occurs in primary afferents and whether the depolarization is amplified with persistent inflammation. Acutely dissociated retrogradely labeled cutaneous dorsal root ganglion (DRG) neurons from naïve and inflamed rats were studied with gramicidin perforated patch recording. Rather than a depolarization, 200 action potentials delivered at 2 Hz resulted in a ∼10 mV hyperpolarization of E(GABA) in cutaneous neurons from naïve rats. No such hyperpolarization was observed in neurons from inflamed rats. The shift in E(GABA) was not blocked by 10 μM bumetanide. Furthermore, because activity-dependent hyperpolarization of E(GABA) was fully manifest in the absence of HCO₃⁻ in the bath solution, this shift was not dependent on a change in HCO₃⁻-Cl⁻ exchanger activity, despite evidence of HCO₃⁻-Cl⁻ exchangers in DRG neurons that may contribute to the establishment of E(GABA) in the presence of HCO₃⁻. While the mechanism underlying the activity-dependent hyperpolarization of E(GABA) has yet to be identified, because this mechanism appears to function as a form of feedback inhibition, facilitating GABA-mediated inhibition of afferent activity, it may serve as a novel target for the treatment of inflammatory pain.
Collapse
Affiliation(s)
- Y Zhu
- Department of Neural and Pain Sciences, University of Maryland, Baltimore School of Dentistry, Baltimore, MD, USA; Department of Anesthesiology, Division of Gastroenterology Hepatology and Nutrition, University of Pittsburgh, Pittsburgh, PA, USA
| | - X-L Zhang
- Department of Anesthesiology, Division of Gastroenterology Hepatology and Nutrition, University of Pittsburgh, Pittsburgh, PA, USA; Department of Pharmacology and Cell Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - M S Gold
- Department of Anesthesiology, Division of Gastroenterology Hepatology and Nutrition, University of Pittsburgh, Pittsburgh, PA, USA; Department of Neurobiology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA; Department of Medicine, Division of Gastroenterology Hepatology and Nutrition, University of Pittsburgh, Pittsburgh, PA, USA; Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA; Pittsburgh Center for Pain Research, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
50
|
Bardoni R, Takazawa T, Tong CK, Choudhury P, Scherrer G, Macdermott AB. Pre- and postsynaptic inhibitory control in the spinal cord dorsal horn. Ann N Y Acad Sci 2013; 1279:90-6. [PMID: 23531006 DOI: 10.1111/nyas.12056] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Sensory information transmitted to the spinal cord dorsal horn is modulated by a complex network of excitatory and inhibitory interneurons. The two main inhibitory transmitters, GABA and glycine, control the flow of sensory information mainly by regulating the excitability of dorsal horn neurons. A presynaptic action of GABA has also been proposed as an important modulatory mechanism of transmitter release from sensory primary afferent terminals. By inhibiting the release of glutamate from primary afferent terminals, activation of presynaptic GABA receptors could play an important role in nociceptive and tactile sensory coding, while changes in their expression or function could be involved in pathological pain conditions, such as allodynia.
Collapse
Affiliation(s)
- Rita Bardoni
- Department of Biomedical, Metabolic and Neural Science, University of Modena and Reggio Emilia, Modena, Italy.
| | | | | | | | | | | |
Collapse
|