1
|
Puri S, Ong C, Chiu YF, Lebowitz J, Sideris A, Gonzalez Della Valle A, Chalmers BP. Preoperative Cannabis Use Did Not Increase Opioid Utilization After Primary Total Knee Arthroplasty in a Propensity Score-Matched Model. HSS J 2024; 20:268-273. [PMID: 39281986 PMCID: PMC11393616 DOI: 10.1177/15563316221151158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 10/14/2022] [Indexed: 09/18/2024]
Abstract
Background: Recreational and medicinal cannabis use is becoming increasingly popular, but there are little data on its effect on postoperative pain and opioid consumption after primary total knee arthroplasty (TKA). Purpose: We sought to evaluate the relationship between self-reported preoperative cannabis use and postoperative opioid consumption and post-discharge opioid prescriptions following elective primary TKA. Methods: We identified all patients who underwent unilateral, primary TKA for a diagnosis of osteoarthritis at a single institution between February 1, 2019, and April 30, 2021, and subdivided them into current cannabis users and non-users based on self-reported data. Regular users were propensity score-matched 1:6 with non-users using logistic regression on age, sex, body mass index (BMI), history of chronic pain, smoking status, history of anxiety/depression, American Society of Anesthesiology (ASA) classification, and type of anesthesia. Outcomes of interest included median inpatient (total, daily, and hourly) morphine milligram equivalents (MMEs), discharge MMEs, and outpatient MMEs within 90 days after surgery. Results: A cohort of 70 current cannabis users was matched with 420 non-users. There were no significant differences in opioid use in inpatient MMEs (hourly, daily, or total), discharge MMEs, or outpatient MMEs between cohorts. Also, there was no significant difference in hospital stay between cohorts. Conclusion: In this retrospective propensity score-matched model, preoperative cannabis use did not independently increase opioid use post-TKA in the inpatient or outpatient setting when compared with non-use. More rigorous, prospective study is warranted.
Collapse
Affiliation(s)
- Simarjeet Puri
- Adult Reconstruction and Joint Replacement, Department of Orthopedic Surgery, Hospital for Special Surgery, New York, NY, USA
| | - Christian Ong
- Adult Reconstruction and Joint Replacement, Department of Orthopedic Surgery, Hospital for Special Surgery, New York, NY, USA
| | - Yu-Fen Chiu
- Biostatistics Core, Research Administration, Hospital for Special Surgery, New York, NY, USA
| | - Juliana Lebowitz
- Operational Excellence, Hospital for Special Surgery, New York, NY, USA
| | - Alexandra Sideris
- Department of Anesthesiology, Critical Care & Pain Management, Hospital for Special Surgery, New York, NY, USA
| | - Alejandro Gonzalez Della Valle
- Adult Reconstruction and Joint Replacement, Department of Orthopedic Surgery, Hospital for Special Surgery, New York, NY, USA
| | - Brian P Chalmers
- Adult Reconstruction and Joint Replacement, Department of Orthopedic Surgery, Hospital for Special Surgery, New York, NY, USA
| |
Collapse
|
2
|
Maroto IB, Moreno E, Costas-Insua C, Merino-Gracia J, Diez-Alarcia R, Álvaro-Blázquez A, Canales Á, Canela EI, Casadó V, Urigüen L, Rodríguez-Crespo I, Guzmán M. Selective inhibition of cannabinoid CB 1 receptor-evoked signalling by the interacting protein GAP43. Neuropharmacology 2023; 240:109712. [PMID: 37689260 DOI: 10.1016/j.neuropharm.2023.109712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/05/2023] [Accepted: 09/06/2023] [Indexed: 09/11/2023]
Abstract
Cannabinoids exert pleiotropic effects on the brain by engaging the cannabinoid CB1 receptor (CB1R), a presynaptic metabotropic receptor that regulates key neuronal functions in a highly context-dependent manner. We have previously shown that CB1R interacts with growth-associated protein of 43 kDa (GAP43) and that this interaction inhibits CB1R function on hippocampal excitatory synaptic transmission, thereby impairing the therapeutic effect of cannabinoids on epileptic seizures in vivo. However, the underlying molecular features of this interaction remain unexplored. Here, we conducted mechanistic experiments on HEK293T cells co-expressing CB1R and GAP43 and show that GAP43 modulates CB1R signalling in a strikingly selective manner. Specifically, GAP43 did not affect the archetypical agonist-evoked (i) CB1R/Gi/o protein-coupled signalling pathways, such as cAMP/PKA and ERK, or (ii) CB1R internalization and intracellular trafficking. In contrast, GAP43 blocked an alternative agonist-evoked CB1R-mediated activation of the cytoskeleton-associated ROCK signalling pathway, which relied on the GAP43-mediated impairment of CB1R/Gq/11 protein coupling. GAP43 also abrogated CB1R-mediated ROCK activation in mouse hippocampal neurons, and this process led in turn to a blockade of cannabinoid-evoked neurite collapse. An NMR-based characterization of the CB1R-GAP43 interaction supported that GAP43 binds directly and specifically through multiple amino acid stretches to the C-terminal domain of the receptor. Taken together, our findings unveil a CB1R-Gq/11-ROCK signalling axis that is selectively impaired by GAP43 and may ultimately control neurite outgrowth.
Collapse
Affiliation(s)
- Irene B Maroto
- Department of Biochemistry and Molecular Biology, Instituto Universitario de Investigación Neuroquímica (IUIN), Complutense University, 28040, Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28029, Madrid, Spain; Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28034, Madrid, Spain
| | - Estefanía Moreno
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology and Institute of Biomedicine of the University of Barcelona, University of Barcelona, 08028, Barcelona, Spain
| | - Carlos Costas-Insua
- Department of Biochemistry and Molecular Biology, Instituto Universitario de Investigación Neuroquímica (IUIN), Complutense University, 28040, Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28029, Madrid, Spain; Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28034, Madrid, Spain
| | - Javier Merino-Gracia
- Department of Biochemistry and Molecular Biology, Instituto Universitario de Investigación Neuroquímica (IUIN), Complutense University, 28040, Madrid, Spain
| | - Rebeca Diez-Alarcia
- Department of Pharmacology, University of the Basque Country/Euskal Herriko Unibertsitatea, 48940, Leioa, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), 28029, Madrid, Spain; Biocruces Bizkaia Health Research Institute, 48903, Barakaldo, Bizkaia, Spain
| | - Alicia Álvaro-Blázquez
- Department of Biochemistry and Molecular Biology, Instituto Universitario de Investigación Neuroquímica (IUIN), Complutense University, 28040, Madrid, Spain; Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28034, Madrid, Spain
| | - Ángeles Canales
- Department of Organic Chemistry, Instituto Universitario de Investigación Neuroquímica (IUIN), Complutense University, 28040, Madrid, Spain
| | - Enric I Canela
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology and Institute of Biomedicine of the University of Barcelona, University of Barcelona, 08028, Barcelona, Spain
| | - Vicent Casadó
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology and Institute of Biomedicine of the University of Barcelona, University of Barcelona, 08028, Barcelona, Spain
| | - Leyre Urigüen
- Department of Pharmacology, University of the Basque Country/Euskal Herriko Unibertsitatea, 48940, Leioa, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), 28029, Madrid, Spain; Biocruces Bizkaia Health Research Institute, 48903, Barakaldo, Bizkaia, Spain
| | - Ignacio Rodríguez-Crespo
- Department of Biochemistry and Molecular Biology, Instituto Universitario de Investigación Neuroquímica (IUIN), Complutense University, 28040, Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28029, Madrid, Spain; Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28034, Madrid, Spain
| | - Manuel Guzmán
- Department of Biochemistry and Molecular Biology, Instituto Universitario de Investigación Neuroquímica (IUIN), Complutense University, 28040, Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28029, Madrid, Spain; Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28034, Madrid, Spain.
| |
Collapse
|
3
|
Che T, Roth BL. Molecular basis of opioid receptor signaling. Cell 2023; 186:5203-5219. [PMID: 37995655 PMCID: PMC10710086 DOI: 10.1016/j.cell.2023.10.029] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/13/2023] [Accepted: 10/27/2023] [Indexed: 11/25/2023]
Abstract
Opioids are used for pain management despite the side effects that contribute to the opioid crisis. The pursuit of non-addictive opioid analgesics remains unattained due to the unresolved intricacies of opioid actions, receptor signaling cascades, and neuronal plasticity. Advancements in structural, molecular, and computational tools illuminate the dynamic interplay between opioids and opioid receptors, as well as the molecular determinants of signaling pathways, which are potentially interlinked with pharmacological responses. Here, we review the molecular basis of opioid receptor signaling with a focus on the structures of opioid receptors bound to endogenous peptides or pharmacological agents. These insights unveil specific interactions that dictate ligand selectivity and likely their distinctive pharmacological profiles. Biochemical analysis further unveils molecular features governing opioid receptor signaling. Simultaneously, the synergy between computational biology and medicinal chemistry continues to expedite the discovery of novel chemotypes with the promise of yielding more efficacious and safer opioid compounds.
Collapse
Affiliation(s)
- Tao Che
- Department of Anesthesiology, Washington University School of Medicine, Saint Louis, MO 63110, USA; Center for Clinical Pharmacology, University of Health Sciences & Pharmacy and Washington University School of Medicine, Saint Louis, MO 63110, USA.
| | - Bryan L Roth
- Department of Pharmacology, University of North Carolina Chapel Hill School of Medicine, Chapel Hill 27599, NC, USA.
| |
Collapse
|
4
|
Piscura MK, Henderson-Redmond AN, Barnes RC, Mitra S, Guindon J, Morgan DJ. Mechanisms of cannabinoid tolerance. Biochem Pharmacol 2023; 214:115665. [PMID: 37348821 PMCID: PMC10528043 DOI: 10.1016/j.bcp.2023.115665] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/09/2023] [Accepted: 06/13/2023] [Indexed: 06/24/2023]
Abstract
Cannabis has been used recreationally and medically for centuries, yet research into understanding the mechanisms of its therapeutic effects has only recently garnered more attention. There is evidence to support the use of cannabinoids for the treatment of chronic pain, muscle spasticity, nausea and vomiting due to chemotherapy, improving weight gain in HIV-related cachexia, emesis, sleep disorders, managing symptoms in Tourette syndrome, and patient-reported muscle spasticity from multiple sclerosis. However, tolerance and the risk for cannabis use disorder are two significant disadvantages for cannabinoid-based therapies in humans. Recent work has revealed prominent sex differences in the acute response and tolerance to cannabinoids in both humans and animal models. This review will discuss evidence demonstrating cannabinoid tolerance in rodents, non-human primates, and humans and our current understanding of the neuroadaptations occurring at the cannabinoid type 1 receptor (CB1R) that are responsible tolerance. CB1R expression is downregulated in tolerant animals and humans while there is strong evidence of CB1R desensitization in cannabinoid tolerant rodent models. Throughout the review, critical knowledge gaps are indicated and discussed, such as the lack of a neuroimaging probe to assess CB1R desensitization in humans. The review discusses the intracellular signaling pathways that are responsible for mediating CB1R desensitization and downregulation including the action of G protein-coupled receptor kinases, β-arrestin2 recruitment, c-Jun N-terminal kinases, protein kinase A, and the intracellular trafficking of CB1R. Finally, the review discusses approaches to reduce cannabinoid tolerance in humans based on our current understanding of the neuroadaptations and mechanisms responsible for this process.
Collapse
Affiliation(s)
- Mary K Piscura
- Department of Biomedical Sciences, Marshall University, Huntington, WV 25755, USA; Department of Biomedical Sciences, Edward Via College of Osteopathic Medicine, Auburn, AL 36832, USA
| | | | - Robert C Barnes
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Swarup Mitra
- Department of Biomedical Sciences, Marshall University, Huntington, WV 25755, USA
| | - Josée Guindon
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Daniel J Morgan
- Department of Biomedical Sciences, Marshall University, Huntington, WV 25755, USA.
| |
Collapse
|
5
|
Flannery LE, Kerr DM, Hughes EM, Kelly C, Costello J, Thornton AM, Humphrey RM, Finn DP, Roche M. N-acylethanolamine regulation of TLR3-induced hyperthermia and neuroinflammatory gene expression: A role for PPARα. J Neuroimmunol 2021; 358:577654. [PMID: 34265624 PMCID: PMC8243641 DOI: 10.1016/j.jneuroim.2021.577654] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 06/11/2021] [Accepted: 06/28/2021] [Indexed: 12/12/2022]
Abstract
Increasing evidence suggests that SARS-CoV-2, the virus responsible for the COVID-19 pandemic, is associated with increased risk of developing neurological or psychiatric conditions such as depression, anxiety or dementia. While the precise mechanism underlying this association is unknown, aberrant activation of toll-like receptor (TLR)3, a viral recognizing pattern recognition receptor, may play a key role. Synthetic cannabinoids and enhancing cannabinoid tone via inhibition of fatty acid amide hydrolase (FAAH) has been demonstrated to modulate TLR3-induced neuroimmune responses and associated sickness behaviour. However, the role of individual FAAH substrates, and the receptor mechanisms mediating these effects, are unknown. The present study examined the effects of intracerebral or systemic administration of the FAAH substrates N-oleoylethanolamide (OEA), N-palmitoylethanolamide (PEA) or the anandamide (AEA) analogue meth-AEA on hyperthermia and hypothalamic inflammatory gene expression following administration of the TLR3 agonist, and viral mimetic, poly I:C. The data demonstrate that meth-AEA does not alter TLR3-induced hyperthermia or hypothalamic inflammatory gene expression. In comparison, OEA and PEA attenuated the TLR3-induced hyperthermia, although only OEA attenuated the expression of hyperthermia-related genes (IL-1β, iNOS, COX2 and m-PGES) in the hypothalamus. OEA, but not PEA, attenuated TLR3-induced increases in the expression of all IRF- and NFκB-related genes examined in the hypothalamus, but not in the spleen. Antagonism of PPARα prevented the OEA-induced attenuation of IRF- and NFκB-related genes in the hypothalamus following TLR3 activation but did not significantly alter temperature. PPARα agonism did not alter TLR3-induced hyperthermia or hypothalamic inflammatory gene expression. These data indicate that OEA may be the primary FAAH substrate that modulates TLR3-induced neuroinflammation and hyperthermia, effects partially mediated by PPARα.
Collapse
Affiliation(s)
- Lisa E Flannery
- Physiology, National University of Ireland, Galway, Ireland; Centre for Pain Research and Galway Neuroscience Centre, National University of Ireland, Galway, Ireland
| | - Daniel M Kerr
- Pharmacology and Therapeutics, School of Medicine, National University of Ireland, Galway, Ireland; Centre for Pain Research and Galway Neuroscience Centre, National University of Ireland, Galway, Ireland
| | - Edel M Hughes
- Physiology, National University of Ireland, Galway, Ireland
| | - Colm Kelly
- Physiology, National University of Ireland, Galway, Ireland
| | | | | | - Rachel M Humphrey
- Physiology, National University of Ireland, Galway, Ireland; Centre for Pain Research and Galway Neuroscience Centre, National University of Ireland, Galway, Ireland
| | - David P Finn
- Pharmacology and Therapeutics, School of Medicine, National University of Ireland, Galway, Ireland; Centre for Pain Research and Galway Neuroscience Centre, National University of Ireland, Galway, Ireland
| | - Michelle Roche
- Physiology, National University of Ireland, Galway, Ireland; Centre for Pain Research and Galway Neuroscience Centre, National University of Ireland, Galway, Ireland.
| |
Collapse
|
6
|
Wei S, Han CZY, Wang J, Li K, Ru QM, Wang Y, Ma MT, Wang LQ, Liu X, Wang R. Repeated Endomorphin Analogue MEL-0614 Reduces Tolerance and Improves Chronic Postoperative Pain without Modulating the P2X7R Signaling Pathway. ACS Chem Neurosci 2021; 12:3124-3139. [PMID: 34351126 DOI: 10.1021/acschemneuro.1c00418] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The clinical treatment of chronic postoperative pain (CPSP) remains challenging. The side effects of chronic morphine treatment limit its clinical application. MEL-0614, a novel endomorphin analogue that is highly selective and agonistic for μ opioid receptor (MOR), produces a more powerful analgesic effect than that of morphine. In this study, we explored the difference in antinociceptive tolerance and related mechanisms between MEL-0614 and morphine in CPSP induced in a skin/muscle incision and retraction (SMIR) mice model. We found that acute administration of MEL-0614 (1, 3, 5, and 10 nmol, i.t.) produced a dose-dependent analgesic effect that was superior to that of morphine in the SMIR mice model. Long-term MEL-0614 treatment (10 nmol, i.t.) did not induce tolerance compared with morphine. Notably, tolerance induced by morphine could be greatly prevented and/or inhibited via cross-administration or coadministration between MEL-0614 and morphine. In addition, MEL-0614 accelerated the recovery of postoperative pain, whereas morphine aggravated postoperative pain and prolonged its recovery time regardless of preoperative or postoperative treatment. In addition, MEL-0614 did not activate microglia and the P2X7R signaling pathway and showed reduced expression iba1 and P2X7R compared with that observed after morphine administration. Release of inflammatory factors was induced by continued administration of morphine during SMIR surgery, but MEL-0614 did not promote the activation of inflammatory factors. Our results showed that MEL-0614 has superior analgesic effects in CPSP and leads to tolerance to a lesser degree than morphine. Further, MEL-0614 may be used as a promising treatment option for the long-term treatment in CPSP.
Collapse
Affiliation(s)
- Shuang Wei
- Department of Pharmacology, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| | - Chao-Zhen-Yi Han
- Department of Pharmacology, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| | - Jing Wang
- Department of Pharmacology, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| | - Kai Li
- Department of Pharmacology, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| | - Qiao-Min Ru
- Department of Pharmacology, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| | - Yuan Wang
- Department of Pharmacology, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| | - Meng-Tao Ma
- Department of Pharmacology, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| | - Lin-Qing Wang
- Department of Pharmacology, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| | - Xin Liu
- Department of Pharmacology, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| | - Rui Wang
- Department of Pharmacology, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
7
|
Ramos-Miguel A, Sánchez-Blázquez P, García-Sevilla JA. Effects of Gαi 2 and Gαz protein knockdown on alpha 2A-adrenergic and cannabinoid CB 1 receptor regulation of MEK-ERK and FADD pathways in mouse cerebral cortex. Pharmacol Rep 2021; 73:1122-1135. [PMID: 33641090 DOI: 10.1007/s43440-021-00240-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 02/05/2021] [Accepted: 02/18/2021] [Indexed: 11/29/2022]
Abstract
BACKGROUND Alpha2A-adrenergic (α2A-AR) and cannabinoid CB1 (CB1-R) receptors exert their functions modulating multiple signaling pathways, including MEK-ERK (extracellular signal-regulated kinases) and FADD (Fas-associated protein with death domain) cascades. These molecules are relevant in finding biased agonists with fewer side effects, but the mechanisms involving their modulations by α2A-AR- and CB1-R in vivo are unclear. This study investigated the roles of Gαi2 and Gαz proteins in mediating α2A-AR- and CB1-R-induced alterations of MEK-ERK and FADD phosphorylation (p-) in mouse brain cortex. METHODS Gαi2 or Gαz protein knockdown was induced in mice with selective antisense oligodeoxinucleotides (ODNs; 3 nmol/day, 5 days) prior to UK-14,304 (UK or brimonidine; 1 mg/kg) or WIN55212-2 (WIN; 8 mg/kg) acute treatments. Inactivated (p-T286) MEK1, activated (p-S217/221) MEK1/2, activated (p-T202/Y204) ERK1/2, p-S191 FADD, and the corresponding total forms of these proteins were quantified by immunoblotting. RESULTS Increased (+ 88%) p-T286 MEK1 cortical density, with a concomitant reduction (-43%) of activated ERK was observed in UK-treated mice. Both effects were attenuated by Gαi2 or Gαz antisense ODNs. Contrastingly, WIN induced Gαi2- and Gαz-independent upregulations of p-T286 MEK1 (+ 63%), p-S217/221 MEK1/2 (+ 86%), and activated ERK (+ 111%) in brain. Pro-apoptotic FADD was downregulated (- 34 to 39%) following UK and WIN administration, whereas the neuroprotective p-S191 FADD was increased (+ 74%) in WIN-treated mice only. None of these latter effects required from Gαi2 or Gαz protein integrity. CONCLUSION The results indicate that α2A-AR (UK), but not CB1-R (WIN), agonists use Gαi2 and Gαz proteins to modulate MEK-ERK, but not FADD, pathway in mouse brain cortex.
Collapse
Affiliation(s)
- Alfredo Ramos-Miguel
- Department of Pharmacology, University of the Basque Country (EHU/UPV), Barrio Sarriena s/n, ES48940, Leioa, Biscay, Spain. .,Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain. .,Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada.
| | | | - Jesús A García-Sevilla
- Laboratori de Neurofarmacologia, Institut Universitari d'Investigació en Ciències de la Salut (IUNICS), Universitat de les Illes Balears, Palma de Mallorca, Spain
| |
Collapse
|
8
|
Lyons EL, Leone-Kabler S, Kovach AL, Thomas BF, Howlett AC. Cannabinoid receptor subtype influence on neuritogenesis in human SH-SY5Y cells. Mol Cell Neurosci 2020; 109:103566. [PMID: 33049367 DOI: 10.1016/j.mcn.2020.103566] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 10/01/2020] [Accepted: 10/06/2020] [Indexed: 10/23/2022] Open
Abstract
Human SH-SY5Y neuroblastoma cells stably expressing exogenous CB1 (CB1XS) or CB2 (CB2XS) receptors were developed to investigate endocannabinoid signaling in the extension of neuronal projections. Expression of cannabinoid receptors did not alter proliferation rate, viability, or apoptosis relative to parental SH-SY5Y. Transcripts for endogenous cannabinoid system enzymes (diacylglycerol lipase, monoacylglycerol lipase, α/β-hydrolase domain containing proteins 6 and 12, N-acyl phosphatidylethanolamine-phospholipase D, and fatty acid amide hydrolase) were not altered by CB1 or CB2 expression. Endocannabinoid ligands 2-arachidonoylglycerol (2-AG) and anandamide were quantitated in SH-SY5Y cells, and diacylglycerol lipase inhibitor tetrahydrolipstatin decreased 2-AG abundance by 90% but did not alter anandamide abundance. M3 muscarinic agonist oxotremorine M, and inhibitors of monoacylglycerol lipase and α/β hydrolase domain containing proteins 6 &12 increased 2-AG abundance. CB1 receptor expression increased lengths of short (<30 μm) and long (>30 μm) projections, and this effect was significantly reduced by tetrahydrolipstatin, indicative of stimulation by endogenously produced 2-AG. Pertussis toxin, Gβγ inhibitor gallein, and β-arrestin inhibitor barbadin did not significantly alter long projection length in CB1XS, but significantly reduced short projections, with gallein having the greatest inhibition. The rho kinase inhibitor Y27632 increased CB1 receptor-mediated long projection extension, indicative of actin cytoskeleton involvement. CB1 receptor expression increased GAP43 and ST8SIA2 mRNA and decreased ITGA1 mRNA, whereas CB2 receptor expression increased NCAM and SYT mRNA. We propose that basal endogenous production of 2-AG provides autocrine stimulation of CB1 receptor signaling through Gi/o, Gβγ, and β-arrestin mechanisms to promote neuritogenesis, and rho kinase influences process extension.
Collapse
Affiliation(s)
- Erica L Lyons
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, One Medical Center Blvd., Winston-Salem, NC 27157, USA.
| | - Sandra Leone-Kabler
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, One Medical Center Blvd., Winston-Salem, NC 27157, USA.
| | - Alexander L Kovach
- Discovery Sciences, RTI International, PO Box 12194, Research Triangle Park, NC 27709, USA.
| | - Brian F Thomas
- Discovery Sciences, RTI International, PO Box 12194, Research Triangle Park, NC 27709, USA.
| | - Allyn C Howlett
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, One Medical Center Blvd., Winston-Salem, NC 27157, USA.
| |
Collapse
|
9
|
Kesner AJ, Lovinger DM. Cannabinoids, Endocannabinoids and Sleep. Front Mol Neurosci 2020; 13:125. [PMID: 32774241 PMCID: PMC7388834 DOI: 10.3389/fnmol.2020.00125] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 06/22/2020] [Indexed: 12/21/2022] Open
Abstract
Sleep is a vital function of the nervous system that contributes to brain and bodily homeostasis, energy levels, cognitive ability, and other key functions of a variety of organisms. Dysfunctional sleep induces neural problems and is a key part of almost all human psychiatric disorders including substance abuse disorders. The hypnotic effects of cannabis have long been known and there is increasing use of phytocannabinoids and other formulations as sleep aids. Thus, it is crucial to gain a better understanding of the neurobiological basis of cannabis drug effects on sleep, as well as the role of the endogenous cannabinoid system in sleep physiology. In this review article, we summarize the current state of knowledge concerning sleep-related endogenous cannabinoid function derived from research on humans and rodent models. We also review information on acute and chronic cannabinoid drug effects on sleep in these organisms, and molecular mechanisms that may contribute to these effects. We point out the potential benefits of acute cannabinoids for sleep improvement, but also the potential sleep-disruptive effects of withdrawal following chronic cannabinoid drug use. Prescriptions for future research in this burgeoning field are also provided.
Collapse
Affiliation(s)
- Andrew J Kesner
- Division of Intramural Clinical and Biological Research, National Institute on Alcohol Abuse and Alcoholism (NIAAA), National Institute of Health (NIH), Bethesda, MD, United States
- Center on Compulsive Behaviors, Intramural Research Program, National Institute of Health (NIH), Bethesda, MD, United States
| | - David M Lovinger
- Division of Intramural Clinical and Biological Research, National Institute on Alcohol Abuse and Alcoholism (NIAAA), National Institute of Health (NIH), Bethesda, MD, United States
| |
Collapse
|
10
|
Braile M, Cristinziano L, Marcella S, Varricchi G, Marone G, Modestino L, Ferrara AL, De Ciuceis A, Scala S, Galdiero MR, Loffredo S. LPS-mediated neutrophil VEGF-A release is modulated by cannabinoid receptor activation. J Leukoc Biol 2020; 109:621-631. [PMID: 32573828 DOI: 10.1002/jlb.3a0520-187r] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 05/14/2020] [Accepted: 05/28/2020] [Indexed: 12/15/2022] Open
Abstract
Neutrophils (PMNs) are innate immune cells with primary roles in inflammation and in host defense against infections. Both inflammatory and tumor angiogenesis are modulated by a sequential, coordinated production of angiogenic factors such as vascular endothelial growth factors (VEGFs), angiopoietins, hepatocyte growth factor (HGF), and chemokines. These factors are produced by several immune cells, including PMNs. Activation of cannabinoid receptor type-1 (CB1 ) and -2 (CB2 ) has been suggested as a new strategy to modulate in vitro and in vivo angiogenesis. We sought to investigate whether activation of CB1 and CB2 by CB agonists modulate LPS-mediated angiogenic activity of human PMNs. Highly purified PMNs were isolated from buffy coats of healthy donors. Cells were stimulated with CB1 and CB2 agonists/antagonists alone and/or in combination with LPS. Angiogenic factors in cell-free supernatants were measured by ELISA. The modulation of activation markers of PMNs by CB agonists was evaluated by flow cytometry. Angiogenesis in vitro was measured as tube formation by optical microscopy. Endothelial cell permeability was assessed by an in vitro vascular permeability assay. LPS-activated PMNs released VEGF-A, CXCL8, and HGF. Preincubation of PMNs with low concentrations of CB1 and CB2 agonists inhibited VEGF-A release induced by LPS, but did not affect CXCL8 and HGF production. The effects of CB agonists on VEGF-A release induced by LPS were reversed by preincubation with CB antagonists. CB agonists modulated in vitro angiogenesis and endothelial permeability induced by supernatants of LPS-activated PMNs through the reduction of VEGF-A. Neutrophils play a central role in the control of bacterial infections and in the outcome of sepsis. The latter condition is associated with an increase in circulating levels of VEGF-A. We demonstrated that low concentrations of CB agonists inhibit VEGF-A release from LPS-activated PMNs. These results suggest that CB agonists might represent a novel therapeutic strategy in patients with sepsis.
Collapse
Affiliation(s)
- Mariantonia Braile
- Department of Translational Medical Sciences and Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy
| | - Leonardo Cristinziano
- Department of Translational Medical Sciences and Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy
| | - Simone Marcella
- Department of Translational Medical Sciences and Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy
| | - Gilda Varricchi
- Department of Translational Medical Sciences and Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy.,WAO Center of Excellence, Naples, Italy.,CNR Institute of Experimental Endocrinology and Oncology "G. Salvatore", Naples, Italy
| | - Giancarlo Marone
- Department of Public Health, University of Naples Federico II, Italy.,Azienda Ospedaliera Ospedali dei Colli-Monaldi Hospital Pharmacy, Naples, Italy
| | - Luca Modestino
- Department of Translational Medical Sciences and Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy
| | - Anne Lise Ferrara
- Department of Translational Medical Sciences and Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy
| | - Agnese De Ciuceis
- Department of Translational Medical Sciences and Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy
| | - Sara Scala
- Department of Translational Medical Sciences and Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy
| | - Maria Rosaria Galdiero
- Department of Translational Medical Sciences and Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy.,WAO Center of Excellence, Naples, Italy.,CNR Institute of Experimental Endocrinology and Oncology "G. Salvatore", Naples, Italy
| | - Stefania Loffredo
- Department of Translational Medical Sciences and Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy.,WAO Center of Excellence, Naples, Italy.,CNR Institute of Experimental Endocrinology and Oncology "G. Salvatore", Naples, Italy
| |
Collapse
|
11
|
Thompson KJ, Tobin AB. Crosstalk between the M 1 muscarinic acetylcholine receptor and the endocannabinoid system: A relevance for Alzheimer's disease? Cell Signal 2020; 70:109545. [PMID: 31978506 PMCID: PMC7184673 DOI: 10.1016/j.cellsig.2020.109545] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 01/19/2020] [Accepted: 01/20/2020] [Indexed: 12/16/2022]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder which accounts for 60-70% of the 50 million worldwide cases of dementia and is characterised by cognitive impairments, many of which have long been associated with dysfunction of the cholinergic system. Although the M1 muscarinic acetylcholine receptor (mAChR) is considered a promising drug target for AD, ligands targeting this receptor have so far been unsuccessful in clinical trials. As modulatory receptors to cholinergic transmission, the endocannabinoid system may be a promising drug target to allow fine tuning of the cholinergic system. Furthermore, disease-related changes have been found in the endocannabinoid system during AD progression and indeed targeting the endocannabinoid system at specific disease stages alleviates cognitive symptoms in numerous mouse models of AD. Here we review the role of the endocannabinoid system in AD, and its crosstalk with mAChRs as a potential drug target for cholinergic dysfunction.
Collapse
Affiliation(s)
- Karen J Thompson
- Centre for Translational Pharmacology, Institute of Molecular Cell and Systems Biology, Davidson Building, University of Glasgow, Glasgow G12 8QQ, UK.
| | - Andrew B Tobin
- Centre for Translational Pharmacology, Institute of Molecular Cell and Systems Biology, Davidson Building, University of Glasgow, Glasgow G12 8QQ, UK
| |
Collapse
|
12
|
Gambino G, Rizzo V, Giglia G, Ferraro G, Sardo P. Cannabinoids, TRPV and nitric oxide: the three ring circus of neuronal excitability. Brain Struct Funct 2019; 225:1-15. [PMID: 31792694 DOI: 10.1007/s00429-019-01992-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 11/22/2019] [Indexed: 12/13/2022]
Abstract
Endocannabinoid system is considered a relevant player in the regulation of neuronal excitability, since it contributes to maintaining the balance of the synaptic ionic milieu. Perturbations to bioelectric conductances have been implicated in the pathophysiological processes leading to hyperexcitability and epileptic seizures. Cannabinoid influence on neurosignalling is exerted on classic receptor-mediated mechanisms or on further molecular targets. Among these, transient receptor potential vanilloid (TRPV) are ionic channels modulated by cannabinoids that are involved in the transduction of a plethora of stimuli and trigger fundamental downstream pathways in the post-synaptic site. In this review, we aim at providing a brief summary of the most recent data about the cross-talk between cannabinoid system and TRPV channels, drawing attention on their role on neuronal hyperexcitability. Then, we aim to unveil a plausible point of interaction between these neural signalling systems taking into consideration nitric oxide, a gaseous molecule inducing profound modifications to neural performances. From this novel perspective, we struggle to propose innovative cellular mechanisms in the regulation of hyperexcitability phenomena, with the goal of exploring plausible CB-related mechanisms underpinning epileptic seizures.
Collapse
Affiliation(s)
- Giuditta Gambino
- Department of Experimental Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D.), Sezione di Fisiologia Umana G. Pagano, University of Palermo, Corso Tukory 129, Palermo, Italy.
| | - Valerio Rizzo
- Department of Experimental Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D.), Sezione di Fisiologia Umana G. Pagano, University of Palermo, Corso Tukory 129, Palermo, Italy
| | - Giuseppe Giglia
- Department of Experimental Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D.), Sezione di Fisiologia Umana G. Pagano, University of Palermo, Corso Tukory 129, Palermo, Italy
| | - Giuseppe Ferraro
- Department of Experimental Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D.), Sezione di Fisiologia Umana G. Pagano, University of Palermo, Corso Tukory 129, Palermo, Italy
| | - Pierangelo Sardo
- Department of Experimental Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D.), Sezione di Fisiologia Umana G. Pagano, University of Palermo, Corso Tukory 129, Palermo, Italy
| |
Collapse
|
13
|
Salem F, Bahrami F, Bahari Z, Jangravi Z, Najafizadeh-Sari S. Agonists of CB1 and NMDA receptors decrease the toxic effect of organophosphorus compound paraoxon on PC12 cells. UKRAINIAN BIOCHEMICAL JOURNAL 2019. [DOI: 10.15407/ubj91.05.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
14
|
Alexander JC, Joshi GP. A review of the anesthetic implications of marijuana use. Proc (Bayl Univ Med Cent) 2019; 32:364-371. [PMID: 31384188 DOI: 10.1080/08998280.2019.1603034] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 03/22/2019] [Accepted: 04/01/2019] [Indexed: 02/06/2023] Open
Abstract
Marijuana, derived from plants of the genus Cannabis, is the most commonly used illicit drug in the United States. Marijuana is illegal at the federal level and remains a Drug Enforcement Agency Schedule 1 substance. Nevertheless, most states have passed less stringent legislation related to its use, ranging from decriminalization of possession to allowing medical or even recreational use, and some county and municipal law enforcement agencies have refrained from prosecuting personal possession and/or use even when statute would require such action. Therefore, as use of marijuana becomes more common in the larger population, more patients who are chronic and/or heavy users of marijuana present for surgical procedures, raising the question of best practices to care for these patients in the perioperative period. This review summarizes the known physiologic effects of marijuana in humans, discusses potential implications of marijuana use that the anesthesiologist should consider at each phase of the perioperative period, and outlines recommendations for future study.
Collapse
Affiliation(s)
- John C Alexander
- Department of Anesthesiology and Pain Management, The University of Texas Southwestern Medical CenterDallasTexas
| | - Girish P Joshi
- Department of Anesthesiology and Pain Management, The University of Texas Southwestern Medical CenterDallasTexas
| |
Collapse
|
15
|
|
16
|
Morales P, Goya P, Jagerovic N. Emerging strategies targeting CB 2 cannabinoid receptor: Biased agonism and allosterism. Biochem Pharmacol 2018; 157:8-17. [PMID: 30055149 DOI: 10.1016/j.bcp.2018.07.031] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 07/23/2018] [Indexed: 01/24/2023]
Abstract
During these last years, the CB2 cannabinoid receptor has emerged as a potential anti-inflammatory target in diseases such as multiple sclerosis, amyotrophic lateral sclerosis, Huntington's disease, ischemic stroke, autoimmune diseases, osteoporosis, and cancer. However, the development of clinically useful CB2 agonists reveals to be very challenging. Allosterism and biased-signaling mechanisms at CB2 receptor may offer new avenues for the development of improved CB2 receptor-targeted therapies. Although there has been some exploration of CB1 receptor activation by new CB1 allosteric or biased-signaling ligands, the CB2 receptor is still at initial stages in this domain. In an effort to understand the molecular basis behind these pharmacological approaches, we have analyzed and summarized the structural data reported so far at CB2 receptor.
Collapse
Affiliation(s)
- Paula Morales
- Instituto de Química Médica, Consejo Superior de Investigaciones Científicas, Unidad Asociada I+D+i IQM/Universidad Rey Juan Carlos (URJC), Calle Juan de la Cierva, 3, E-28006 Madrid, Spain
| | - Pilar Goya
- Instituto de Química Médica, Consejo Superior de Investigaciones Científicas, Unidad Asociada I+D+i IQM/Universidad Rey Juan Carlos (URJC), Calle Juan de la Cierva, 3, E-28006 Madrid, Spain
| | - Nadine Jagerovic
- Instituto de Química Médica, Consejo Superior de Investigaciones Científicas, Unidad Asociada I+D+i IQM/Universidad Rey Juan Carlos (URJC), Calle Juan de la Cierva, 3, E-28006 Madrid, Spain.
| |
Collapse
|
17
|
Endocannabinoid control of glutamate NMDA receptors: the therapeutic potential and consequences of dysfunction. Oncotarget 2018; 7:55840-55862. [PMID: 27323834 PMCID: PMC5342457 DOI: 10.18632/oncotarget.10095] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 06/06/2016] [Indexed: 01/04/2023] Open
Abstract
Glutamate is probably the most important excitatory neurotransmitter in the brain. The glutamate N-methyl-D-aspartate receptor (NMDAR) is a calcium-gated channel that coordinates with G protein-coupled receptors (GPCRs) to establish the efficiency of the synaptic transmission. Cross-regulation between these receptors requires the concerted activity of the histidine triad nucleotide-binding protein 1 (HINT1) and of the sigma receptor type 1 (σ1R). Essential brain functions like learning, memory formation and consolidation, mood and behavioral responses to exogenous stimuli depend on the activity of NMDARs. In this biological context, endocannabinoids are released to retain NMDAR activity within physiological limits. The efficacy of such control depends on HINT1/σ1R assisting in the physical coupling between cannabinoid type 1 receptors (CB1Rs) and NMDARs to dampen their activity. Subsequently, the calcium-regulated HINT1/σ1R protein tandem uncouples CB1Rs to prevent NMDAR hypofunction. Thus, early recruitment or a disproportionate cannabinoid induced response can bring about excess dampening of NMDAR activity, impeding its adequate integration with GPCR signaling. Alternatively, this control circuit can apparently be overridden in situations where bursts of NMDAR overactivity provoke convulsive syndromes. In this review we will discuss the possible relevance of the HINT1/σ1R tandem and its use by endocannabinoids to diminish NMDAR activity and their implications in psychosis/schizophrenia, as well as in NMDAR-mediated convulsive episodes.
Collapse
|
18
|
Hunter MR, Finlay DB, Macdonald CE, Cawston EE, Grimsey NL, Glass M. Real-Time Measurement of Cannabinoid Receptor-Mediated cAMP Signaling. Methods Enzymol 2017; 593:43-59. [PMID: 28750814 DOI: 10.1016/bs.mie.2017.05.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cannabinoid receptors, like other GPCRs, signal via a spectrum of related signaling pathways. Recently, monitoring GPCR-mediated cAMP signaling has become significantly easier with the development of genetically encoded, transfectable cAMP biosensors. Cell lines transfected with these biosensors can be monitored continuously, allowing the analysis of receptor-mediated signaling in unprecedented detail. Here, we describe a protocol for transfectable biosensors which report cellular cAMP concentrations by bioluminescence resonance energy transfer (BRET). This assay system has been utilized to elucidate the temporal nature of agonists and allosteric modulators of the cannabinoid receptor CB1. In particular, the CB1 allosteric modulator ORG27569 has been shown to modify receptor agonism in a time-dependent fashion; a characteristic which would not have been observed via traditional endpoint methods of detecting cAMP signaling. BRET cAMP biosensors are suitable for miniaturization and automation, and as such are valuable and cost-effective tools for moderate- to high-throughput experimental protocols.
Collapse
|
19
|
Abstract
An agonist that acts through a single receptor can activate numerous signaling pathways. Recent studies have suggested that different ligands can differentially activate these pathways by stabilizing a limited range of receptor conformations, which in turn preferentially drive different downstream signaling cascades. This concept, termed "biased signaling" represents an exciting therapeutic opportunity to target specific pathways that elicit only desired effects, while avoiding undesired effects mediated by different signaling cascades. The cannabinoid receptors CB1 and CB2 each activate multiple pathways, and evidence is emerging for bias within these pathways. This review will summarize the current evidence for biased signaling through cannabinoid receptor subtypes CB1 and CB2.
Collapse
Affiliation(s)
- Mikkel Søes Ibsen
- Department of Pharmacology, School of Medical Sciences, University of Auckland, Auckland, New Zealand
| | - Mark Connor
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, 2 Technology Place, Macquarie University, New South Wales, Australia
| | - Michelle Glass
- Department of Pharmacology, School of Medical Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
20
|
Yousefpour M, Naderi N, Motamedi F. Effect of interaction between acute administration of morphine and cannabinoid compounds on spontaneous excitatory and inhibitory postsynaptic currents of magnocellular neurons of supraoptic nucleus. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2016; 19:676-84. [PMID: 27482350 PMCID: PMC4951608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
OBJECTIVES Opioids and cannabinoids are two important compounds that have been shown to influence the activity of magnocellular neurons (MCNs) of supraoptic nucleus (SON). The interaction between opioidergic and cannabinoidergic systems in various structures of the brain and spinal cord is now well established, but not in the MCNs of SON. MATERIALS AND METHODS In this study, whole cell patch clamp recording of neurons in rat brain slice was used to investigate the effect of acute morphine and cannabinoid administration on spontaneous inhibitory and excitatory spostsynaptic currents (sIPSCs and sEPSCs) in MCNs. RESULTS Bath application of morphine produced an increase in sEPSCs frequency and a decrease in sIPSCs frequency. In contrast, bath application of URB597 (fatty acid amide hydrolase (FAAH) inhibitor) produced a decrease in sEPSCs frequency but an increase in sIPSCs frequency. WIN55212-2 (cannabinoid receptor agonist) decreased both sIPSCs and sEPSCs frequencies of MCNs. Co-application of morphine and URB597 attenuated the effect of morphine on MCNs. CONCLUSION Taken together, these data indicated that at the cellular level, pharmacological augmentation of endocannabinoids could attenuate morphine effects on MCNs.
Collapse
Affiliation(s)
- Mitra Yousefpour
- Department of Physiology, Faculty of Medicine, Artesh University of Medical Science, Tehran, Iran,Corresponding author: Mitra Yousefpour. Fatemi., Shahid Etemadzadeh, Artesh University of Medical Science. Tel: 09122111572, 43822357;
| | - Nima Naderi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fereshteh Motamedi
- Neuroscience Research Center, Shahid Beheshti University of Medical Science, Tehran, Iran,Department of Physiology, Faculty of Medicine, Shahid Beheshti University of Medical Science, Tehran, Iran
| |
Collapse
|
21
|
Chopda GR, Parge V, Thakur GA, Gatley SJ, Makriyannis A, Paronis CA. Tolerance to the Diuretic Effects of Cannabinoids and Cross-Tolerance to a κ-Opioid Agonist in THC-Treated Mice. J Pharmacol Exp Ther 2016; 358:334-41. [PMID: 27231154 DOI: 10.1124/jpet.116.232132] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 05/23/2016] [Indexed: 01/15/2023] Open
Abstract
Daily treatment with cannabinoids results in tolerance to many, but not all, of their behavioral and physiologic effects. The present studies investigated the effects of 7-day exposure to 10 mg/kg daily of Δ(9)-tetrahydrocannabinol (THC) on the diuretic and antinociceptive effects of THC and the synthetic cannabinoid AM4054. Comparison studies determined diuretic responses to the κ-opioid agonist U50,488 and furosemide. After determination of control dose-response functions, mice received 10 mg/kg daily of THC for 7 days, and dose-response functions were re-determined 24 hours, 7 days, or 14 days later. THC and AM4054 had biphasic diuretic effects under control conditions with maximum effects of 30 and 35 ml/kg of urine, respectively. In contrast, antinociceptive effects of both drugs increased monotonically with dose to >90% of maximal possible effect. Treatment with THC produced 9- and 7-fold rightward shifts of the diuresis and antinociception dose-response curves for THC and, respectively, 7- and 3-fold rightward shifts in the AM4054 dose-response functions. U50,488 and furosemide increased urine output to >35 ml/kg under control conditions. The effects of U50,488 were attenuated after 7-day treatment with THC, whereas the effects of furosemide were unaltered. Diuretic effects of THC and AM4054 recovered to near-baseline levels within 14 days after stopping daily THC injections, whereas tolerance to the antinociceptive effects persisted longer than 14 days. The tolerance induced by 7-day treatment with THC was accompanied by a 55% decrease in the Bmax value for cannabinoid receptors (CB1). These data indicate that repeated exposure to THC produces similar rightward shifts in the ascending and descending limbs of cannabinoid diuresis dose-effect curves and to antinociceptive effects while resulting in a flattening of the U50,488 diuresis dose-effect function.
Collapse
Affiliation(s)
- Girish R Chopda
- Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts (G.R.C., V.P., G.A.T., S.J.G., A.M., C.A.P.); Dicerna Pharmaceuticals, Cambridge, Massachusetts (G.R.C.); Momenta Pharmaceuticals, Cambridge, Massachusetts (V.P.); Preclinical Pharmacology Program, McLean Hospital, Belmont, Massachusetts (C.A.P.)
| | - Viraj Parge
- Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts (G.R.C., V.P., G.A.T., S.J.G., A.M., C.A.P.); Dicerna Pharmaceuticals, Cambridge, Massachusetts (G.R.C.); Momenta Pharmaceuticals, Cambridge, Massachusetts (V.P.); Preclinical Pharmacology Program, McLean Hospital, Belmont, Massachusetts (C.A.P.)
| | - Ganesh A Thakur
- Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts (G.R.C., V.P., G.A.T., S.J.G., A.M., C.A.P.); Dicerna Pharmaceuticals, Cambridge, Massachusetts (G.R.C.); Momenta Pharmaceuticals, Cambridge, Massachusetts (V.P.); Preclinical Pharmacology Program, McLean Hospital, Belmont, Massachusetts (C.A.P.)
| | - S John Gatley
- Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts (G.R.C., V.P., G.A.T., S.J.G., A.M., C.A.P.); Dicerna Pharmaceuticals, Cambridge, Massachusetts (G.R.C.); Momenta Pharmaceuticals, Cambridge, Massachusetts (V.P.); Preclinical Pharmacology Program, McLean Hospital, Belmont, Massachusetts (C.A.P.)
| | - Alexandros Makriyannis
- Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts (G.R.C., V.P., G.A.T., S.J.G., A.M., C.A.P.); Dicerna Pharmaceuticals, Cambridge, Massachusetts (G.R.C.); Momenta Pharmaceuticals, Cambridge, Massachusetts (V.P.); Preclinical Pharmacology Program, McLean Hospital, Belmont, Massachusetts (C.A.P.)
| | - Carol A Paronis
- Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts (G.R.C., V.P., G.A.T., S.J.G., A.M., C.A.P.); Dicerna Pharmaceuticals, Cambridge, Massachusetts (G.R.C.); Momenta Pharmaceuticals, Cambridge, Massachusetts (V.P.); Preclinical Pharmacology Program, McLean Hospital, Belmont, Massachusetts (C.A.P.)
| |
Collapse
|
22
|
Pava MJ, Makriyannis A, Lovinger DM. Endocannabinoid Signaling Regulates Sleep Stability. PLoS One 2016; 11:e0152473. [PMID: 27031992 PMCID: PMC4816426 DOI: 10.1371/journal.pone.0152473] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2015] [Accepted: 03/15/2016] [Indexed: 11/18/2022] Open
Abstract
The hypnogenic properties of cannabis have been recognized for centuries, but endogenous cannabinoid (endocannabinoid) regulation of vigilance states is poorly characterized. We report findings from a series of experiments in mice measuring sleep with polysomnography after various systemic pharmacological manipulations of the endocannabinoid system. Rapid, unbiased scoring of vigilance states was achieved using an automated algorithm that we devised and validated. Increasing endocannabinoid tone with a selective inhibitor of monoacyglycerol lipase (JZL184) or fatty acid amide hydrolase (AM3506) produced a transient increase in non-rapid eye movement (NREM) sleep due to an augmentation of the length of NREM bouts (NREM stability). Similarly, direct activation of type 1 cannabinoid (CB1) receptors with CP47,497 increased NREM stability, but both CP47,497 and JZL184 had a secondary effect that reduced NREM sleep time and stability. This secondary response to these drugs was similar to the early effect of CB1 blockade with the antagonist/inverse agonist AM281, which fragmented NREM sleep. The magnitude of the effects produced by JZL184 and AM281 were dependent on the time of day this drug was administered. While activation of CB1 resulted in only a slight reduction in gamma power, CB1 blockade had dramatic effects on broadband power in the EEG, particularly at low frequencies. However, CB1 blockade did not significantly reduce the rebound in NREM sleep following total sleep deprivation. These results support the hypothesis that endocannabinoid signaling through CB1 is necessary for NREM stability but it is not necessary for sleep homeostasis.
Collapse
MESH Headings
- Algorithms
- Amidohydrolases/antagonists & inhibitors
- Amidohydrolases/metabolism
- Animals
- Benzodioxoles/pharmacology
- Drug Inverse Agonism
- Electrodes, Implanted
- Electroencephalography
- Male
- Mice
- Mice, Inbred C57BL
- Monoacylglycerol Lipases/antagonists & inhibitors
- Monoacylglycerol Lipases/metabolism
- Morpholines/pharmacology
- Piperidines/pharmacology
- Pyrazoles/pharmacology
- Receptor, Cannabinoid, CB1/agonists
- Receptor, Cannabinoid, CB1/antagonists & inhibitors
- Receptor, Cannabinoid, CB1/metabolism
- Signal Transduction/drug effects
- Sleep/drug effects
- Sleep/physiology
- Sleep Deprivation/physiopathology
- Sleep, REM/drug effects
- Sleep, REM/physiology
Collapse
Affiliation(s)
- Matthew J. Pava
- Section on Synaptic Pharmacology, Laboratory for Integrative Neuroscience, Division of Intramural Biological and Clinical Research, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, MD, United States of America
| | - Alexandros Makriyannis
- Center for Drug Discovery and Departments of Chemistry and Chemical Biology and Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts, United States of America
| | - David M. Lovinger
- Section on Synaptic Pharmacology, Laboratory for Integrative Neuroscience, Division of Intramural Biological and Clinical Research, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, MD, United States of America
| |
Collapse
|
23
|
Rodríguez-Muñoz M, Cortés-Montero E, Pozo-Rodrigálvarez A, Sánchez-Blázquez P, Garzón-Niño J. The ON:OFF switch, σ1R-HINT1 protein, controls GPCR-NMDA receptor cross-regulation: implications in neurological disorders. Oncotarget 2015; 6:35458-77. [PMID: 26461475 PMCID: PMC4742118 DOI: 10.18632/oncotarget.6064] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 09/23/2015] [Indexed: 12/11/2022] Open
Abstract
In the brain, the histidine triad nucleotide-binding protein 1 (HINT1) and sigma 1 receptors (σ1Rs) coordinate the activity of certain G-protein coupled receptors (GPCRs) with that of glutamate N-methyl-D-aspartate receptors (NMDARs). To determine the role of HINT1-σ1R in the plasticity of GPCR-NMDAR interactions, substances acting at MOR, cannabinoid CB1 receptor, NMDAR and σ1R were injected into mice, and their effects were evaluated through in vivo, ex vivo, and in vitro assays. It was observed that HINT1 protein binds to GPCRs and NMDAR NR1 subunits in a calcium-independent manner, whereas σ1R binding to these proteins increases in the presence of calcium. In this scenario, σ1R agonists keep HINT1 at the GPCR and stimulate GPCR-NMDAR interaction, whereas σ1R antagonists transfer HINT1 to NR1 subunits and disengage both receptors. This regulation is lost in σ1R-/- mice, where HINT1 proteins mostly associate with NMDARs, and GPCRs are physically and functionally disconnected from NMDARs. In HINT1-/- mice, ischemia produces low NMDAR-mediated brain damage, suggesting that several different GPCRs enhance glutamate excitotoxicity via HINT1-σ1R. Thus, several GPCRs associate with NMDARs by a dynamic process under the physiological control of HINT1 proteins and σ1Rs. The NMDAR-HINT1-σ1R complex deserves attention because it offers new therapeutic opportunities.
Collapse
Affiliation(s)
- María Rodríguez-Muñoz
- Department of Molecular, Cellular and Developmental Neurobiology, Laboratory of Neuropharmacology. Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC). Madrid, Spain
| | - Elsa Cortés-Montero
- Department of Molecular, Cellular and Developmental Neurobiology, Laboratory of Neuropharmacology. Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC). Madrid, Spain
| | - Andrea Pozo-Rodrigálvarez
- Department of Molecular, Cellular and Developmental Neurobiology, Laboratory of Neuropharmacology. Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC). Madrid, Spain
| | - Pilar Sánchez-Blázquez
- Department of Molecular, Cellular and Developmental Neurobiology, Laboratory of Neuropharmacology. Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC). Madrid, Spain
| | - Javier Garzón-Niño
- Department of Molecular, Cellular and Developmental Neurobiology, Laboratory of Neuropharmacology. Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC). Madrid, Spain
| |
Collapse
|
24
|
Nasehi M, Kafi F, Khakpai F, Zarrindast MR. Involvement of the serotonergic system of the ventral hippocampus (CA3) on amnesia induced by ACPA in mice. Behav Brain Res 2015; 286:356-63. [DOI: 10.1016/j.bbr.2015.03.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 02/27/2015] [Accepted: 03/04/2015] [Indexed: 10/23/2022]
|
25
|
Rodríguez-Muñoz M, Sánchez-Blázquez P, Herrero-Labrador R, Martínez-Murillo R, Merlos M, Vela JM, Garzón J. The σ1 receptor engages the redox-regulated HINT1 protein to bring opioid analgesia under NMDA receptor negative control. Antioxid Redox Signal 2015; 22:799-818. [PMID: 25557043 PMCID: PMC4367239 DOI: 10.1089/ars.2014.5993] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Revised: 12/16/2014] [Accepted: 01/01/2015] [Indexed: 12/12/2022]
Abstract
AIMS The in vivo pharmacology of the sigma 1 receptor (σ1R) is certainly complex; however, σ1R antagonists are of therapeutic interest, because they enhance mu-opioid receptor (MOR)-mediated antinociception and reduce neuropathic pain. Thus, we investigated whether the σ1R is involved in the negative control that glutamate N-methyl-d-aspartate acid receptors (NMDARs) exert on opioid antinociception. RESULTS The MOR C terminus carries the histidine triad nucleotide-binding protein 1 (HINT1) coupled to the regulator of G-protein signaling RGSZ2-neural nitric oxide synthase assembly. Activated MORs stimulate the production of nitric oxide (NO), and the redox zinc switch RGSZ2 converts this signal into free zinc ions that are required to recruit the redox sensor PKCγ to HINT1 proteins. Then, PKCγ impairs HINT1-RGSZ2 association and enables σ1R-NR1 interaction with MOR-HINT1 complexes to restrain opioid signaling. The inhibition of NOS or the absence of σ1Rs prevents HINT1-PKCγ interaction, and MOR-NMDAR cross-regulation fails. The σ1R antagonists transitorily remove the binding of σ1Rs to NR1 subunits, facilitate the entrance of negative regulators of NMDARs, likely Ca(2+)-CaM, and prevent NR1 interaction with HINT1, thereby impairing the negative feedback of glutamate on opioid analgesia. INNOVATION A redox-regulated process situates MOR signaling under NMDAR control, and in this context, the σ1R binds to the cytosolic C terminal region of the NMDAR NR1 subunit. CONCLUSION The σ1R antagonists enhance opioid analgesia in naïve mice by releasing MORs from the negative influence of NMDARs, and they also reset antinociception in morphine tolerant animals. Moreover, σ1R antagonists alleviate neuropathic pain, probably by driving the inhibition of up-regulated NMDARs.
Collapse
Affiliation(s)
- María Rodríguez-Muñoz
- Neurofarmacología, Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Pilar Sánchez-Blázquez
- Neurofarmacología, Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Raquel Herrero-Labrador
- Neurofarmacología, Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Ricardo Martínez-Murillo
- Neurofarmacología, Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Manuel Merlos
- Drug Discovery & Preclinical Development, Esteve, Barcelona, Spain
| | - José Miguel Vela
- Drug Discovery & Preclinical Development, Esteve, Barcelona, Spain
| | - Javier Garzón
- Neurofarmacología, Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| |
Collapse
|
26
|
Garzón J, Herrero-Labrador R, Rodríguez-Muñoz M, Shah R, Vicente-Sánchez A, Wagner CR, Sánchez-Blázquez P. HINT1 protein: A new therapeutic target to enhance opioid antinociception and block mechanical allodynia. Neuropharmacology 2015; 89:412-23. [DOI: 10.1016/j.neuropharm.2014.10.022] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Revised: 10/21/2014] [Accepted: 10/27/2014] [Indexed: 12/17/2022]
|
27
|
The calcium-sensitive Sigma-1 receptor prevents cannabinoids from provoking glutamate NMDA receptor hypofunction: implications in antinociception and psychotic diseases. Int J Neuropsychopharmacol 2014; 17:1943-55. [PMID: 24485144 DOI: 10.1017/s1461145714000029] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Through the cannabinoid receptor 1 (CB1), the endocannabinoid system plays a physiological role in maintaining the activity of glutamate N-methyl-D-aspartate (NMDA) receptor within harmless limits. The influence of cannabinoids must be proportional to the stimulus in order to prevent NMDAR overactivation or exaggerated hypofunction that may precipitate symptoms of psychosis. In this framework, the recently reported association of CB1s with NMDARs, which mediates the reduction of cannabinoid analgesia promoted by NMDAR antagonism, could also support the precipitation of schizophrenia brought about by the abuse of smoked cannabis, mostly among vulnerable individuals. Accordingly, we have investigated this possibility using neuroprotection and analgesia as reporters of the CB1-NMDAR connection. We found that the Sigma 1 receptor (σ1R) acts as a safety switch, releasing NMDARs from the influence of CB1s and thereby avoiding glutamate hypofunction. In σ1R(-/-) mice the activity of NMDARs increases and cannot be regulated by cannabinoids, and NMDAR antagonism produces no effect on cannabinoid analgesia. In wild-type mice, ligands of the σ1R did not affect the CB1-NMDAR regulatory association, however, experimental NMDAR hypofunction enabled σ1R antagonists to release NMDARs from the negative control of CB1s. Of the σ1R antagonists tested, their order of activity was: S1RA > BD1047 ≫ NE100 = BD1063, although SKF10047, PRE-084 and (+)pentazocine were inactive yet able to abolish the effect of S1RA in this paradigm. Thus, the σ1R controls the extent of CB1-NMDAR interaction and its failure might constitute a vulnerability factor for cannabis abuse, potentially precipitating schizophrenia that might otherwise be induced later in time by the endogenous system.
Collapse
|
28
|
Bajo M, Madamba SG, Roberto M, Siggins GR. Acute morphine alters GABAergic transmission in the central amygdala during naloxone-precipitated morphine withdrawal: role of cyclic AMP. Front Integr Neurosci 2014; 8:45. [PMID: 24926240 PMCID: PMC4044973 DOI: 10.3389/fnint.2014.00045] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2014] [Accepted: 05/14/2014] [Indexed: 01/23/2023] Open
Abstract
The central amygdala (CeA) plays an important role in opioid addiction. Therefore, we examined the effects of naloxone-precipitated morphine withdrawal (WD) on GABAergic transmission in rat CeA neurons using whole-cell recordings with naloxone in the bath. The basal frequency of miniature inhibitory postsynaptic currents (mIPSCs) increased in CeA neurons from WD compared to placebo rats. Acute morphine (10 μ M) had mixed effects (≥20% change from baseline) on mIPSCs in placebo and WD rats. In most CeA neurons (64%) from placebo rats, morphine significantly decreased mIPSC frequency and amplitude. In 32% of placebo neurons, morphine significantly increased mIPSC amplitudes but had no effect on mIPSC frequency. In WD rats, acute morphine significantly increased mIPSC frequency but had no effect on mIPSC amplitude in 41% of CeA neurons. In 45% of cells, acute morphine significantly decreased mIPSC frequency and amplitude. Pre-treatment with the cyclic AMP inhibitor (R)-adenosine, cyclic 3',5'-(hydrogenphosphorothioate) triethylammonium (RP), prevented acute morphine-induced potentiation of mIPSCs. Pre-treatment of slices with the Gi/o G-protein subunit inhibitor pertussis toxin (PTX) did not prevent the acute morphine-induced enhancement or inhibition of mIPSCs. PTX and RP decreased basal mIPSC frequencies and amplitudes only in WD rats. The results suggest that inhibition of GABAergic transmission in the CeA by acute morphine is mediated by PTX-insensitive mechanisms, although PTX-sensitive mechanisms cannot be ruled out for non-morphine responsive cells; by contrast, potentiation of GABAergic transmission is mediated by activated cAMP signaling that also mediates the increased basal GABAergic transmission in WD rats. Our data indicate that during the acute phase of WD, the CeA opioid and GABAergic systems undergo neuroadaptative changes conditioned by a previous chronic morphine exposure and dependence.
Collapse
Affiliation(s)
- Michal Bajo
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute La Jolla, CA, USA
| | - Samuel G Madamba
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute La Jolla, CA, USA
| | - Marisa Roberto
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute La Jolla, CA, USA
| | - George R Siggins
- Department of Molecular and Cellular Neuroscience, The Scripps Research Institute La Jolla, CA, USA
| |
Collapse
|
29
|
Sánchez-Blázquez P, Rodríguez-Muñoz M, Garzón J. The cannabinoid receptor 1 associates with NMDA receptors to produce glutamatergic hypofunction: implications in psychosis and schizophrenia. Front Pharmacol 2014; 4:169. [PMID: 24427139 PMCID: PMC3877778 DOI: 10.3389/fphar.2013.00169] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Accepted: 12/16/2013] [Indexed: 01/11/2023] Open
Abstract
The endocannabinoid system is widespread throughout the central nervous system and its type 1 receptor (CB1) plays a crucial role in preventing the neurotoxicity caused by activation of glutamate N-methyl-D-aspartate receptors (NMDARs). Indeed, it is the activity of NMDARs themselves that provides the demands on the endogenous cannabinoids in order to control their calcium currents. Therefore, a physiological role of this system is to maintain NMDAR activity within safe limits, thereby protecting neural cells from excitotoxicity. Thus, cannabinoids may be able to control NMDAR overactivation-related neural dysfunctions; however, the major obstacles to the therapeutic utilization of these compounds are their psychotropic effects and negative influence on cognitive performance. Studies in humans have indicated that abuse of smoked cannabis can promote psychosis and even circumstantially precipitate symptoms of schizophrenia, although the latter appears to require a prior vulnerability in the individual. It is possible that cannabinoids provoke psychosis/schizophrenia reflecting a mechanism common to neuroprotection: the reduction of NMDAR activity. Cannabinoids are proposed to produce such effect by reducing the pre-synaptic release of glutamate or interfering with post-synaptic NMDAR-regulated signaling pathways. The efficacy of such control requires the endocannabinoid system to apply its negative influence in a manner that is proportional to the strength of NMDAR signaling. Thus, cannabinoids acting at the wrong time or exerting an inappropriate influence on their receptors may cause NMDAR hypofunction. The purpose of the present review is to draw the attention of the reader to the newly described functional and physical CB1-NMDAR association, which may elucidate the scenario required for the rapid and efficacious control of NMDAR activity. Whether alterations in these mechanisms may increase NMDAR hypofunction leading to vulnerability to schizophrenia will be outlined.
Collapse
Affiliation(s)
- Pilar Sánchez-Blázquez
- Neurofarmacología, Instituto Cajal, Consejo Superior de Investigaciones Cientificas Madrid, Spain
| | - María Rodríguez-Muñoz
- Neurofarmacología, Instituto Cajal, Consejo Superior de Investigaciones Cientificas Madrid, Spain
| | - Javier Garzón
- Neurofarmacología, Instituto Cajal, Consejo Superior de Investigaciones Cientificas Madrid, Spain
| |
Collapse
|
30
|
Sánchez-Blázquez P, Rodríguez-Muñoz M, Vicente-Sánchez A, Garzón J. Cannabinoid receptors couple to NMDA receptors to reduce the production of NO and the mobilization of zinc induced by glutamate. Antioxid Redox Signal 2013; 19:1766-82. [PMID: 23600761 PMCID: PMC3837442 DOI: 10.1089/ars.2012.5100] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
AIMS Overactivation of glutamate N-methyl-D-aspartate receptor (NMDAR) increases the cytosolic concentrations of calcium and zinc, which significantly contributes to neural death. Since cannabinoids prevent the NMDAR-mediated increase in cytosolic calcium, we investigated whether they also control the rise of potentially toxic free zinc ions, as well as the processes implicated in this phenomenon. RESULTS The cannabinoid receptors type 1 (CNR1) and NMDARs are cross-regulated in different regions of the nervous system. Cannabinoids abrogated the stimulation of the nitric oxide-zinc pathway by NMDAR, an effect that required the histidine triad nucleotide-binding protein 1 (HINT1). Conversely, NMDAR antagonism reduced the analgesia promoted by the CNR1 agonist WIN55,212-2 and impaired its capacity to internalize CNR1s. At the cell surface, CNR1s co-immunoprecipitated with the NR1 subunits of NMDARs, an association that diminished after the administration of NMDA in vivo or as a consequence of neuropathic overactivation of NMDARs, both situations in which cannabinoids do not control NMDAR activity. Under these circumstances, inhibition of protein kinase A (PKA) restored the association between CNR1s and NR1 subunits, and cannabinoids regained control over NMDAR activity. Notably, CNR1 and NR1 associated poorly in HINT1(-/-) mice, in which there was little cross-regulation between these receptors. INNOVATION The CNR1 can regulate NMDAR function when the receptor is coupled to HINT1. Thus, internalization of CNR1s drives the co-internalization of the NR1 subunits, neutralizing the overactivation of NMDARs. CONCLUSION Cannabinoids require the HINT1 protein to counteract the toxic effects of NMDAR-mediated NO production and zinc release. This study situates the HINT1 protein at the forefront of cannabinoid protection against NMDAR-mediated brain damage.
Collapse
Affiliation(s)
- Pilar Sánchez-Blázquez
- Department of Neuropharmacology, Cajal Institute, Consejo Superior de Investigaciones Científicas (CSIC) , Madrid, Spain
| | | | | | | |
Collapse
|
31
|
Vicente-Sánchez A, Sánchez-Blázquez P, Rodríguez-Muñoz M, Garzón J. HINT1 protein cooperates with cannabinoid 1 receptor to negatively regulate glutamate NMDA receptor activity. Mol Brain 2013; 6:42. [PMID: 24093505 PMCID: PMC3851374 DOI: 10.1186/1756-6606-6-42] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Accepted: 09/19/2013] [Indexed: 01/02/2023] Open
Abstract
Background G protein-coupled receptors (GPCRs) are the targets of a large number of drugs currently in therapeutic use. Likewise, the glutamate ionotropic N-methyl-D-aspartate receptor (NMDAR) has been implicated in certain neurological disorders, such as neurodegeration, neuropathic pain and mood disorders, as well as psychosis and schizophrenia. Thus, there is now an important need to characterize the interactions between GPCRs and NMDARs. Indeed, these interactions can produce distinct effects, and whereas the activation of Mu-opioid receptor (MOR) increases the calcium fluxes associated to NMDARs, that of type 1 cannabinoid receptor (CNR1) antagonizes their permeation. Notably, a series of proteins interact with these receptors affecting their responses and interactions, and then emerge as novel therapeutic targets for the aforementioned pathologies. Results We found that in the presence of GPCRs, the HINT1 protein influences the activity of NMDARs, whereby NMDAR activation was enhanced in CNR1+/+/HINT1-/- cortical neurons and the cannabinoid agonist WIN55,212-2 provided these cells with no protection against a NMDA insult. NMDAR activity was normalized in these cells by the lentiviral expression of HINT1, which also restored the neuroprotection mediated by cannabinoids. NMDAR activity was also enhanced in CNR1-/-/HINT1+/+ neurons, although this activity was dampened by the expression of GPCRs like the MOR, CNR1 or serotonin 1A (5HT1AR). Conclusions The HINT1 protein plays an essential role in the GPCR-NMDAR connection. In the absence of receptor activation, GPCRs collaborate with HINT1 proteins to negatively control NMDAR activity. When activated, most GPCRs release the control of HINT1 and NMDAR responsiveness is enhanced. However, cannabinoids that act through CNR1 maintain the negative control of HINT1 on NMDAR function and their protection against glutamate excitotoxic insult persists.
Collapse
|
32
|
Sánchez-Blázquez P, Rodríguez-Muñoz M, Bailón C, Garzón J. GPCRs promote the release of zinc ions mediated by nNOS/NO and the redox transducer RGSZ2 protein. Antioxid Redox Signal 2012; 17:1163-77. [PMID: 22563771 DOI: 10.1089/ars.2012.4517] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
AIMS Morphine signaling via the μ-opioid receptor (MOR) is coupled to redox-dependent zinc release from endogenous stores. Thus, MOR activation stimulates the complex formed by RGSZ2 (a regulator of G protein signaling) and neural nitric oxide synthase (nNOS) to produce NO, and to recruit PKCγ and Raf-1 in a zinc-dependent manner. Accordingly, we investigated whether redox regulation of zinc metabolism was unique to the MOR, or if it is a signaling mechanism shared by G-protein coupled receptors (GPCRs). RESULTS A physical interaction with the RGSZ2-nNOS complex was detected for the following GPCRs: neuropeptides, MOR and δ-opioid (DOR); biogenic amines, 5HT1A, 5HT2A, α2A, D1 and D2; acetylcholine, muscarinic M2 and M4; excitatory amino acid glutamate, mGlu2 and mGlu5; and derivatives of arachidonic acid (anandamide), CB1. Agonist activation of these receptors induced the release of zinc ions from the RGSZ2 zinc finger via a nNOS/NO-dependent mechanism, recruiting PKCγ and Raf-1 to the C terminus or the third internal loop of the GPCR. INNOVATION A series of GPCRs share an unexpected mechanistic feature, the nNOS/NO-dependent regulation of zinc ion signaling via a redox mechanism. The RGSZ2 protein emerges as a potential redox zinc switch that converts NO signals into zinc signals, thereby able to modulate the function of redox sensor proteins like PKCγ or Raf-1. CONCLUSION Redox mechanisms are crucial for the successful propagation of GPCR signals in neurons. Thus, dysfunctions of GPCR-regulated NO/zinc signaling may contribute to neurodegenerative and mood disorders such as Alzheimer's disease and depression.
Collapse
|
33
|
Pava MJ, Woodward JJ. A review of the interactions between alcohol and the endocannabinoid system: implications for alcohol dependence and future directions for research. Alcohol 2012; 46:185-204. [PMID: 22459871 PMCID: PMC3327810 DOI: 10.1016/j.alcohol.2012.01.002] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Revised: 01/10/2012] [Accepted: 01/26/2012] [Indexed: 12/17/2022]
Abstract
Over the past fifty years a significant body of evidence has been compiled suggesting an interaction between the endocannabinoid (EC) system and alcohol dependence. However, much of this work has been conducted only in the past two decades following the elucidation of the molecular constituents of the EC system that began with the serendipitous discovery of the cannabinoid 1 receptor (CB1). Since then, novel pharmacological and genetic tools have enabled researchers to manipulate select components of the EC system, to determine their contribution to the motivation to consume ethanol. From these preclinical studies, it is evident that CB1 contributes the motivational and reinforcing properties of ethanol, and chronic consumption of ethanol alters EC transmitter levels and CB1 expression in brain nuclei associated with addiction pathways. These results are augmented by in vitro and ex vivo studies showing that acute and chronic treatment with ethanol produces physiologically relevant alterations in the function of the EC system. This report provides a current and comprehensive review of the literature regarding the interactions between ethanol and the EC system. We begin be reviewing the studies published prior to the discovery of the EC system that compared the behavioral and physiological effects of cannabinoids with ethanol in addition to cross-tolerance between these drugs. Next, a brief overview of the molecular constituents of the EC system is provided as context for the subsequent review of more recent studies examining the interaction of ethanol with the EC system. These results are compiled into a summary providing a scheme for the known changes to the components of the EC system in different stages of alcohol dependence. Finally, future directions for research are discussed.
Collapse
Affiliation(s)
- Matthew J. Pava
- Department of Neurosciences, Medical University of South Carolina, Charleston, SC 29403, USA
- Charleston Alcohol Research Center, Medical University of South Carolina, Charleston, SC 29403, USA
| | - John J. Woodward
- Department of Neurosciences, Medical University of South Carolina, Charleston, SC 29403, USA
- Charleston Alcohol Research Center, Medical University of South Carolina, Charleston, SC 29403, USA
| |
Collapse
|
34
|
Pava MJ, Blake EM, Green ST, Mizroch BJ, Mulholland PJ, Woodward JJ. Tolerance to cannabinoid-induced behaviors in mice treated chronically with ethanol. Psychopharmacology (Berl) 2012; 219:137-47. [PMID: 21701813 PMCID: PMC3249519 DOI: 10.1007/s00213-011-2387-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2011] [Accepted: 06/12/2011] [Indexed: 01/30/2023]
Abstract
RATIONALE Chronic ethanol (EtOH) treatment decreases the motor-impairing effects of cannabinoids and downregulates the cannabinoid type 1 (CB1) receptor. However, these studies have been limited to measures of ataxia and analysis of CB1 expression from whole-brain or hippocampal preparations. OBJECTIVE To more fully assess the interactions between ethanol and cannabinoids, a tetrad of four well-characterized cannabinoid-induced behaviors (hypolocomotion, antinociception, hypothermia, and catalepsy) was measured in mice following EtOH treatment. Additionally, immunoblotting assessed CB1 protein in tissue from nine brain regions associated with these behaviors and the addiction neurocircuitry. MATERIALS AND METHODS Male C57Bl/6J mice were administered EtOH (0, 2, or 4 g/kg; intraperitoneally (i.p.)) twice daily for 10 days. Tetrad behaviors induced by the CB1 agonist WIN 55212-2 (3 mg/kg, i.p.) were measured in subjects 1 or 10 days following the last EtOH injection. In a separate group of animals, tissue was collected at the same time points for immunoblot analysis. RESULTS EtOH-treated mice were less sensitive to the hypothermic, hypolocomotive, and antinociceptive effects of WIN, and this effect reversed to control levels over a 10-day abstinence period. EtOH treatment did not affect WIN-induced catalepsy. CB1 protein expression was significantly altered in several brain areas including the hypothalamus, periaqueductal gray, ventral tegmental area, and cerebellum. CONCLUSIONS These results show that chronic EtOH treatment significantly affects the behavioral sensitivity to cannabinoid drugs and alters CB1 expression in several brain regions. Furthermore, these effects are selective as some behaviors and brain regions display an altered response while others do not.
Collapse
Affiliation(s)
- Matthew J. Pava
- Department of Neurosciences, Medical University of South Carolina, Charleston, SC
- Charleston Alcohol Research Center, Medical University of South Carolina, Charleston, SC
| | - Emily M. Blake
- Program in Neuroscience, College of Charleston, Charleston, SC
| | | | | | - Patrick J. Mulholland
- Department of Neurosciences, Medical University of South Carolina, Charleston, SC
- Charleston Alcohol Research Center, Medical University of South Carolina, Charleston, SC
| | - John J. Woodward
- Department of Neurosciences, Medical University of South Carolina, Charleston, SC
- Charleston Alcohol Research Center, Medical University of South Carolina, Charleston, SC
| |
Collapse
|
35
|
Rodríguez-Muñoz M, Sánchez-Blázquez P, Vicente-Sánchez A, Bailón C, Martín-Aznar B, Garzón J. The histidine triad nucleotide-binding protein 1 supports mu-opioid receptor-glutamate NMDA receptor cross-regulation. Cell Mol Life Sci 2011; 68:2933-49. [PMID: 21153910 PMCID: PMC11114723 DOI: 10.1007/s00018-010-0598-x] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2010] [Revised: 11/04/2010] [Accepted: 11/19/2010] [Indexed: 10/18/2022]
Abstract
A series of pharmacological and physiological studies have demonstrated the functional cross-regulation between MOR and NMDAR. These receptors coexist at postsynaptic sites in midbrain periaqueductal grey (PAG) neurons, an area implicated in the analgesic effects of opioids like morphine. In this study, we found that the MOR-associated histidine triad nucleotide-binding protein 1 (HINT1) is essential for maintaining the connection between the NMDAR and MOR. Morphine-induced analgesic tolerance is prevented and even rescued by inhibiting PKC or by antagonizing NMDAR. However, in the absence of HINT1, the MOR becomes supersensitive to morphine before suffering a profound and lasting desensitization that is refractory to PKC inhibition or NMDAR antagonism. Thus, HINT1 emerges as a key protein that is critical for sustaining NMDAR-mediated regulation of MOR signaling strength. Thus, HINT1 deficiency may contribute to opioid-intractable pain syndromes by causing long-term MOR desensitization via mechanisms independent of NMDAR.
Collapse
Affiliation(s)
- María Rodríguez-Muñoz
- Centro de Investigación Biomédica en Red de Salud Mental, CIBERSAM, ISCIII, Avda Dr. Arce 37, 28002 Madrid, Spain
| | - Pilar Sánchez-Blázquez
- Neurofarmacología, Instituto Cajal, CSIC, Avda Dr. Arce 37, 28002 Madrid, Spain
- Centro de Investigación Biomédica en Red de Salud Mental, CIBERSAM, ISCIII, Avda Dr. Arce 37, 28002 Madrid, Spain
| | - Ana Vicente-Sánchez
- Neurofarmacología, Instituto Cajal, CSIC, Avda Dr. Arce 37, 28002 Madrid, Spain
- Centro de Investigación Biomédica en Red de Salud Mental, CIBERSAM, ISCIII, Avda Dr. Arce 37, 28002 Madrid, Spain
| | - Concha Bailón
- Neurofarmacología, Instituto Cajal, CSIC, Avda Dr. Arce 37, 28002 Madrid, Spain
- Centro de Investigación Biomédica en Red de Salud Mental, CIBERSAM, ISCIII, Avda Dr. Arce 37, 28002 Madrid, Spain
| | - Beatriz Martín-Aznar
- Centro de Investigación Biomédica en Red de Salud Mental, CIBERSAM, ISCIII, Avda Dr. Arce 37, 28002 Madrid, Spain
| | - Javier Garzón
- Neurofarmacología, Instituto Cajal, CSIC, Avda Dr. Arce 37, 28002 Madrid, Spain
- Centro de Investigación Biomédica en Red de Salud Mental, CIBERSAM, ISCIII, Avda Dr. Arce 37, 28002 Madrid, Spain
| |
Collapse
|
36
|
Abstract
This paper is the 32nd consecutive installment of the annual review of research concerning the endogenous opioid system. It summarizes papers published during 2009 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior (Section 2), and the roles of these opioid peptides and receptors in pain and analgesia (Section 3); stress and social status (Section 4); tolerance and dependence (Section 5); learning and memory (Section 6); eating and drinking (Section 7); alcohol and drugs of abuse (Section 8); sexual activity and hormones, pregnancy, development and endocrinology (Section 9); mental illness and mood (Section 10); seizures and neurologic disorders (Section 11); electrical-related activity and neurophysiology (Section 12); general activity and locomotion (Section 13); gastrointestinal, renal and hepatic functions (Section 14); cardiovascular responses (Section 15); respiration and thermoregulation (Section 16); and immunological responses (Section 17).
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, 65-30 Kissena Blvd., Flushing, NY 11367, USA.
| |
Collapse
|
37
|
Seyrek M, Kahraman S, Deveci MS, Yesilyurt O, Dogrul A. Systemic cannabinoids produce CB1-mediated antinociception by activation of descending serotonergic pathways that act upon spinal 5-HT7 and 5-HT2A receptors. Eur J Pharmacol 2010; 649:183-94. [DOI: 10.1016/j.ejphar.2010.09.039] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2010] [Revised: 07/24/2010] [Accepted: 09/14/2010] [Indexed: 12/27/2022]
|
38
|
Börner C, Smida M, Höllt V, Schraven B, Kraus J. Cannabinoid receptor type 1- and 2-mediated increase in cyclic AMP inhibits T cell receptor-triggered signaling. J Biol Chem 2010; 284:35450-60. [PMID: 19858202 DOI: 10.1074/jbc.m109.006338] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The aim of this study was to characterize inhibitory mechanisms on T cell receptor signaling mediated by the cannabinoid receptors CB1 and CB2. Both receptors are coupled to G(i/o) proteins, which are associated with inhibition of cyclic AMP formation. In human primary and Jurkat T lymphocytes, activation of CB1 by R(+)-methanandamide, CB2 by JWH015, and both by Delta9-tetrahydrocannabinol induced a short decrease in cyclic AMP lasting less than 1 h. However, this decrease was followed by a massive (up to 10-fold) and sustained (at least up to 48 h) increase in cyclic AMP. Mediated by the cyclic AMP-activated protein kinase A and C-terminal Src kinase, the cannabinoids induced a stable phosphorylation of the inhibitory Tyr-505 of the leukocyte-specific protein tyrosine kinase (Lck). By thus arresting Lck in its inhibited form, the cannabinoids prevented the dephosphorylation of Lck at Tyr-505 in response to T cell receptor activation, which is necessary for the subsequent initiation of T cell receptor signaling. In this way the cannabinoids inhibited the T cell receptor-triggered signaling, i.e. the activation of the zeta-chain-associated protein kinase of 70 kDa, the linker for activation of T cells, MAPK, the induction of interleukin-2, and T cell proliferation. All of the effects of the cannabinoids were blocked by the CB1 and CB2 antagonists AM281 and AM630. These findings help to better understand the immunosuppressive effects of cannabinoids and explain the beneficial effects of these drugs in the treatment of T cell-mediated autoimmune disorders like multiple sclerosis.
Collapse
Affiliation(s)
- Christine Börner
- Departments of Pharmacology and Toxicology, University of Magdeburg, 39120 Magdeburg, Germany
| | | | | | | | | |
Collapse
|
39
|
Chu J, Zheng H, Zhang Y, Loh HH, Law PY. Agonist-dependent mu-opioid receptor signaling can lead to heterologous desensitization. Cell Signal 2010; 22:684-96. [PMID: 20043990 DOI: 10.1016/j.cellsig.2009.12.003] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2009] [Revised: 12/07/2009] [Accepted: 12/19/2009] [Indexed: 12/18/2022]
Abstract
Desensitization of the micro-opioid receptor (MOR) has been implicated as an important regulatory process in the development of tolerance to opiates. Monitoring the release of intracellular Ca(2+) ([Ca(2+)](i)), we reported that [D-Ala(2), N-Me-Phe(4), Gly(5)-ol]-enkephalin (DAMGO)-induced receptor desensitization requires receptor phosphorylation and recruitment of beta-arrestins (betaArrs), while morphine-induced receptor desensitization does not. In current studies, we established that morphine-induced MOR desensitization is protein kinase C (PKC)-dependent. By using RNA interference techniques and subtype specific inhibitors, PKCepsilon was shown to be the PKC subtype activated by morphine and the subtype responsible for morphine-induced desensitization. In contrast, DAMGO did not increase PKCepsilon activity and DAMGO-induced MOR desensitization was not affected by modulating PKCepsilon activity. Among the various proteins within the receptor signaling complex, Galphai2 was phosphorylated by morphine-activated PKCepsilon. Moreover, mutating three putative PKC phosphorylation sites, Ser(44), Ser(144) and Ser(302) on Galphai2 to Ala attenuated morphine-induced, but not DAMGO-induced desensitization. In addition, pretreatment with morphine desensitized cannabinoid receptor CB1 agonist WIN 55212-2-induced [Ca(2+)](i) release, and this desensitization could be reversed by pretreating the cells with PKCepsilon inhibitor or overexpressing Galphai2 with the putative PKC phosphorylation sites mutated. Thus, depending on the agonist, activation of MOR could lead to heterologous desensitization and probable crosstalk between MOR and other Galphai-coupled receptors, such as the CB1.
Collapse
Affiliation(s)
- Ji Chu
- Department of Pharmacology, University of Minnesota, 6-120 Jackson Hall, 321 Church St. S.E., Minneapolis, Minnesota 55455-0217, USA.
| | | | | | | | | |
Collapse
|