1
|
Midavaine É, Brouillette RL, Théberge E, Mona CE, Kashem SW, Côté J, Zeugin V, Besserer-Offroy É, Longpré JM, Marsault É, Sarret P. Discovery of a CCR2-targeting pepducin therapy for chronic pain. Pharmacol Res 2024; 205:107242. [PMID: 38823470 DOI: 10.1016/j.phrs.2024.107242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 05/21/2024] [Accepted: 05/27/2024] [Indexed: 06/03/2024]
Abstract
Targeting the CCL2/CCR2 chemokine axis has been shown to be effective at relieving pain in rodent models of inflammatory and neuropathic pain, therefore representing a promising avenue for the development of non-opioid analgesics. However, clinical trials targeting this receptor for inflammatory conditions and painful neuropathies have failed to meet expectations and have all been discontinued due to lack of efficacy. To overcome the poor selectivity of CCR2 chemokine receptor antagonists, we generated and characterized the function of intracellular cell-penetrating allosteric modulators targeting CCR2, namely pepducins. In vivo, chronic intrathecal administration of the CCR2-selective pepducin PP101 was effective in alleviating neuropathic and bone cancer pain. In the setting of bone metastases, we found that T cells infiltrate dorsal root ganglia (DRG) and induce long-lasting pain hypersensitivity. By acting on CCR2-expressing DRG neurons, PP101 attenuated the altered phenotype of sensory neurons as well as the neuroinflammatory milieu of DRGs, and reduced bone cancer pain by blocking CD4+ and CD8+ T cell infiltration. Notably, PP101 demonstrated its efficacy in targeting the neuropathic component of bone cancer pain, as evidenced by its anti-nociceptive effects in a model of chronic constriction injury of the sciatic nerve. Importantly, PP101-induced reduction of CCR2 signaling in DRGs did not result in deleterious tumor progression or adverse behavioral effects. Thus, targeting neuroimmune crosstalk through allosteric inhibition of CCR2 could represent an effective and safe avenue for the management of chronic pain.
Collapse
Affiliation(s)
- Élora Midavaine
- Department of Pharmacology & Physiology, Institute of pharmacology of Sherbrooke, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada; Department of Anatomy, University of California, San Francisco, San Francisco, CA 94158, USA.
| | - Rebecca L Brouillette
- Department of Pharmacology & Physiology, Institute of pharmacology of Sherbrooke, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Elizabeth Théberge
- Department of Pharmacology & Physiology, Institute of pharmacology of Sherbrooke, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Christine E Mona
- Department of Pharmacology & Physiology, Institute of pharmacology of Sherbrooke, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Sakeen W Kashem
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Jérôme Côté
- Department of Pharmacology & Physiology, Institute of pharmacology of Sherbrooke, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Vera Zeugin
- Department of Pharmacology & Physiology, Institute of pharmacology of Sherbrooke, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Élie Besserer-Offroy
- Department of Pharmacology & Physiology, Institute of pharmacology of Sherbrooke, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Jean-Michel Longpré
- Department of Pharmacology & Physiology, Institute of pharmacology of Sherbrooke, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Éric Marsault
- Department of Pharmacology & Physiology, Institute of pharmacology of Sherbrooke, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Philippe Sarret
- Department of Pharmacology & Physiology, Institute of pharmacology of Sherbrooke, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada.
| |
Collapse
|
2
|
Jimenez-Andrade JM, Ramírez-Rosas MB, Hee Park S, Parker R, Eber MR, Cain R, Newland M, Hsu FC, Kittel CA, Martin TJ, Muñoz-Islas E, Shiozawa Y, Peters CM. Evaluation of pain related behaviors and disease related outcomes in an immunocompetent mouse model of prostate cancer induced bone pain. J Bone Oncol 2023; 43:100510. [PMID: 38075938 PMCID: PMC10701434 DOI: 10.1016/j.jbo.2023.100510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/25/2023] [Accepted: 10/27/2023] [Indexed: 02/12/2024] Open
Abstract
Cancer-induced bone pain (CIBP) is the most common and devastating symptom of bone metastatic cancer that substantially disrupts patients' quality of life. Currently, there are few effective analgesic treatments for CIBP other than opioids which come with severe side effects. In order to better understand the factors and mechanisms responsible for CIBP it is essential to have clinically relevant animal models that mirror pain-related symptoms and disease progression observed in patients with bone metastatic cancer. In the current study, we characterize a syngeneic mouse model of prostate cancer induced bone pain. We transfected a prostate cancer cell line (RM1) with green fluorescent protein (GFP) and luciferase reporters in order to visualize tumor growth longitudinally in vivo and to assess the relationship between sensory neurons and tumor cells within the bone microenvironment. Following intra-femoral injection of the RM1 prostate cancer cell line into male C57BL/6 mice, we observed a progressive increase in spontaneous guarding of the inoculated limb between 12 and 21 days post inoculation in tumor bearing compared to sham operated mice. Daily running wheel performance was evaluated as a measure of functional impairment and potentially movement evoked pain. We observed a progressive reduction in the distance traveled and percentage of time at optimal velocity between 12 and 21 days post inoculation in tumor bearing compared to sham operated mice. We utilized histological, radiographic and μCT analysis to examine tumor induced bone remodeling and observed osteolytic lesions as well as extra-periosteal aberrant bone formation in the tumor bearing femur, similar to clinical findings in patients with bone metastatic prostate cancer. Within the tumor bearing femur, we observed reorganization of blood vessels, macrophage and nerve fibers within the intramedullary space and periosteum adjacent to tumor cells. Tumor bearing mice displayed significant increases in the injury marker ATF3 and upregulation of the neuropeptides SP and CGRP in the ipsilateral DRG as well as increased measures of central sensitization and glial activation in the ipsilateral spinal cord. This immunocompetent mouse model will be useful when combined with cell type selective transgenic mice to examine tumor, immune cell and sensory neuron interactions in the bone microenvironment and their role in pain and disease progression associated with bone metastatic prostate cancer.
Collapse
Affiliation(s)
| | - Martha B. Ramírez-Rosas
- Universidad Autónoma de Tamaulipas, Campus Reynosa Aztlán, Reynosa, Tamaulipas, 88700 Mexico
| | - Sun Hee Park
- Department of Cancer Biology and Comprehensive Cancer Center, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
| | - Renee Parker
- Department of Anesthesiology, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
| | - Matthew R. Eber
- Department of Cancer Biology and Comprehensive Cancer Center, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
| | - Rebecca Cain
- Department of Anesthesiology, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
| | - Mary Newland
- Department of Anesthesiology, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
| | - Fang-Chi Hsu
- Department of Biostatistics and Data Science, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
| | - Carol A. Kittel
- Department of Biostatistics and Data Science, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
| | - Thomas J. Martin
- Department of Anesthesiology, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
| | - Enriqueta Muñoz-Islas
- Universidad Autónoma de Tamaulipas, Campus Reynosa Aztlán, Reynosa, Tamaulipas, 88700 Mexico
| | - Yusuke Shiozawa
- Department of Cancer Biology and Comprehensive Cancer Center, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
| | - Christopher M. Peters
- Department of Anesthesiology, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
| |
Collapse
|
3
|
Yang L, Liu B, Zheng S, Xu L, Yao M. Understanding the initiation, delivery and processing of bone cancer pain from the peripheral to the central nervous system. Neuropharmacology 2023; 237:109641. [PMID: 37392821 DOI: 10.1016/j.neuropharm.2023.109641] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 06/01/2023] [Accepted: 06/20/2023] [Indexed: 07/03/2023]
Abstract
Bone cancer pain is a complex condition characterized by persistent, sudden, spontaneous pain accompanied by hyperalgesia that typically arises from bone metastases or primary bone tumors, causing severe discomfort and significantly diminishing cancer patients' quality of life and confidence in their ability to overcome the disease. It is widely known that peripheral nerves are responsible for detecting harmful stimuli, which are then transmitted to the brain via the spinal cord, resulting in the perception of pain. In the case of bone cancer, tumors and stromal cells within the bone marrow release various chemical signals, including inflammatory factors, colony-stimulating factors, chemokines, and hydrogen ions. Consequently, the nociceptors located at the nerve endings within the bone marrow sense these chemical signals, generating electrical signals that are then transmitted to the brain through the spinal cord. Subsequently, the brain processes these electrical signals in a complex manner to create the sensation of bone cancer pain. Numerous studies have investigated the transmission of bone cancer pain from the periphery to the spinal cord. However, the processing of pain information induced by bone cancer within the brain remains unclear. With the continuous advancements in brain science and technology, the brain mechanism of bone cancer pain would become more clearly understood. Herein, we focus on summarizing the peripheral nerve perception of the spinal cord transmission of bone cancer pain and provide a brief overview of the ongoing research regarding the brain mechanisms involved in bone cancer pain.
Collapse
Affiliation(s)
- Lei Yang
- Department of Anesthesia and Pain Medicine, Affiliated Hospital of Jiaxing University, No. 1882 Zhong-Huan-Nan Road, Jiaxing, 314001, China
| | - Beibei Liu
- Department of Anesthesia and Pain Medicine, Affiliated Hospital of Jiaxing University, No. 1882 Zhong-Huan-Nan Road, Jiaxing, 314001, China
| | - Shang Zheng
- Department of Anesthesia and Pain Medicine, Affiliated Hospital of Jiaxing University, No. 1882 Zhong-Huan-Nan Road, Jiaxing, 314001, China
| | - Longsheng Xu
- Department of Anesthesia and Pain Medicine, Affiliated Hospital of Jiaxing University, No. 1882 Zhong-Huan-Nan Road, Jiaxing, 314001, China.
| | - Ming Yao
- Department of Anesthesia and Pain Medicine, Affiliated Hospital of Jiaxing University, No. 1882 Zhong-Huan-Nan Road, Jiaxing, 314001, China.
| |
Collapse
|
4
|
Tang Y, Chen Y, Yang M, Zheng Q, Li Y, Bao Y. Knockdown of PAR2 alleviates cancer-induced bone pain by inhibiting the activation of astrocytes and the ERK pathway. BMC Musculoskelet Disord 2022; 23:514. [PMID: 35637468 PMCID: PMC9150294 DOI: 10.1186/s12891-022-05312-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 04/04/2022] [Indexed: 12/02/2022] Open
Abstract
OBJECTIVE Cancer-induced bone pain (CIBP) is a kind of pain with complex pathophysiology. Proteinase-activated receptor 2 (PAR-2) is involved in CIBP. This study explored the effects of PAR-2 on CIBP rats. METHODS CIBP rat model was established by injecting Walker 256 rat breast cancer cells into the left tibia of female Sprague-Dawley rats and verified by tibial morphology observation, HE staining, and mechanical hyperalgesia assay. CIBP rats were injected with PAR-2 inhibitor, ERK activator, and CREB inhibitor through the spinal cord sheath on the 13th day after operation. CIBP behaviors were measured by mechanical hyperalgesia assay. On the 14th day after operation, L4-5 spinal cord tissues were obtained. PAR-2 expression, co-expression of PAR-2 and astrocyte marker GFAP, GFAP mRNA and protein levels and the ERK pathway-related protein levels were detected by Western blot, immunofluorescence double staining, RT-qPCR, and Western blot. RESULTS CIBP rats had obvious mechanical hyperalgesia and thermal hyperalgesia from the 7th day after modeling; mechanical hyperalgesia threshold and thermal threshold were decreased; PAR-2 was increased in spinal cord tissues and was co-expressed with GFAP. PAR-2 silencing alleviated rat CIBP by inhibiting astrocyte activation. p-ERK/t-ERK and p-CREB/t-CREB levels in CIBP spinal cord were elevated, the ERK/CREB pathway was activated, while the ERK/CREB pathway was inhibited by PAR-2 silencing. The alleviating effect of PAR-2 inhibitor on hyperalgesia behaviors in CIBP rats were weakened by ERK activator, while were partially restored by CREB inhibitor. CONCLUSIONS PAR-2 knockdown inhibited the ERK/CREB pathway activation and astrocyte activation, thus alleviating CIBP in rats.
Collapse
Affiliation(s)
- Yiting Tang
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beixiange 5, Xicheng District, 100053, Beijing, China
| | - Yupeng Chen
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beixiange 5, Xicheng District, 100053, Beijing, China
| | - Mingzhu Yang
- Department of Hematology and Oncology, Qinghai Provincial Hospital of Traditional Chinese Medicine, No.338 Qiyi Road, Chengzhong District, 810000, Xining, Qinghai Province, China
| | - Qiuhui Zheng
- Department of Hematology and Oncology, Qinghai Provincial Hospital of Traditional Chinese Medicine, No.338 Qiyi Road, Chengzhong District, 810000, Xining, Qinghai Province, China
| | - Yaoyuan Li
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beixiange 5, Xicheng District, 100053, Beijing, China
| | - Yanju Bao
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beixiange 5, Xicheng District, 100053, Beijing, China.
| |
Collapse
|
5
|
Chen H, Yu J, Hang L, Li S, Lu W, Xu Z. Evidence of the Involvement of Spinal EZH2 in the Development of Bone Cancer Pain in Rats. J Pain Res 2021; 14:3593-3600. [PMID: 34849017 PMCID: PMC8627314 DOI: 10.2147/jpr.s331114] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 11/11/2021] [Indexed: 11/26/2022] Open
Abstract
Introduction Bone cancer pain (BCP) seriously affects the quality of life of patients with advanced cancer, but effective treatment methods are lacking. This study mainly investigates the role of EZH2 in a well-established BCP model induced by Walker 256 breast cancer cells in rats. Methods Female Sprague–Dawley rats of the same age weighing approximately 160 g were selected for the experiment. The BCP model was established by injecting inactivated Walker 256 breast cancer cells into the tibia. von Frey filaments were used to measure the paw withdrawal threshold, and bone destruction in the rat was observed using x-ray. The spinal EZH2 and H3K27Tm levels were measured using Western blotting and RT–qPCR analysis. Intrathecal injection of an EZH2 inhibitor was performed to examine the role of EZH2 in trigeminal BCP. Results Experimental results showed that injecting Walker 256 breast cancer cells into the tibia induced bone cancer pain. Spinal EZH2 and H3K27Tm levels were significantly increased over time in BCP rats. An intrathecal injection of 3-deazaneplanocin A (DZNep), a selective EZH2 inhibitor, downregulated the expression of EZH2 and attenuate the BCP-induced mechanical allodynia state. Conclusion Intrathecal injection of DZNep relieve bone cancer pain in rats. EZH2 expressed in spinal cord tissue may be involved in the process of bone cancer pain in rats.
Collapse
Affiliation(s)
- Haoming Chen
- Department of Anesthesiology, Kunshan First People's Hospital Affiliated to Jiangsu University, Kunshan, Jiangsu, 215300, People's Republic of China
| | - Jianmang Yu
- Department of Anesthesiology, Kunshan First People's Hospital Affiliated to Jiangsu University, Kunshan, Jiangsu, 215300, People's Republic of China
| | - Lihua Hang
- Department of Anesthesiology, Kunshan First People's Hospital Affiliated to Jiangsu University, Kunshan, Jiangsu, 215300, People's Republic of China
| | - Shuai Li
- Department of Anesthesiology, Kunshan First People's Hospital Affiliated to Jiangsu University, Kunshan, Jiangsu, 215300, People's Republic of China
| | - Weikang Lu
- Department of Anesthesiology, Kunshan First People's Hospital Affiliated to Jiangsu University, Kunshan, Jiangsu, 215300, People's Republic of China
| | - Zhenkai Xu
- Department of Anesthesiology, Kunshan First People's Hospital Affiliated to Jiangsu University, Kunshan, Jiangsu, 215300, People's Republic of China
| |
Collapse
|
6
|
Wang GJ, Zhang X, Huang LD, Xiao Y. Involvement of the Sodium Channel Nav1.7 in Paclitaxel-induced Peripheral Neuropathy through ERK1/2 Signaling in Rats. Curr Neurovasc Res 2021; 17:267-274. [PMID: 32407275 DOI: 10.2174/1567202617666200514113441] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 03/02/2020] [Accepted: 03/07/2020] [Indexed: 12/18/2022]
Abstract
BACKGROUND Paclitaxel treatment is a major cause of chemotherapy-induced peripheral neuropathy. The sodium channel Nav1.7 plays a critical role in pain perception. However, whether Nav1.7 in the dorsal root ganglion (DRG) is involved in paclitaxel-induced peripheral neuropathy remains unclear. Thus, our study aimed to evaluate whether Nav1.7 participates in the pathogenesis of paclitaxel-induced neuropathy. METHODS Paclitaxel-induced peripheral neuropathy was generated by intraperitoneal administration of paclitaxel on four alternate days. RESULTS The results showed that DRG mRNA and protein expression levels of Nav1.7 were upregulated between days 7 and 21 after the administration of paclitaxel. Besides, paclitaxel upregulated extracellular signal-regulated kinase (ERK1/2) phosphorylation in DRG. Intrathecal injection of U0126 (a MEK inhibitor) blocking ERK1/2 phosphorylation blunted up-regulation of Nav1.7 in the DRG and correspondingly attenuated hyperalgesia. CONCLUSION These results indicated that the sodium channel Nav1.7 in the DRG exerted an important function in paclitaxel-induced neuropathy, which was associated with ERK phosphorylation in neurons.
Collapse
Affiliation(s)
- Guang Jie Wang
- Department of Anesthesiology, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, China
| | - Xi Zhang
- Department of Anesthesiology, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, China
| | - Li-De Huang
- Department of Anesthesiology, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, China
| | - Yun Xiao
- Department of Anesthesiology, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, China
| |
Collapse
|
7
|
Fu J, Ni C, Ni H, Xu L, He Q, Pan H, Huang D, Sun Y, Luo G, Liu M, Yao M. Spinal Nrf2 translocation may inhibit neuronal NF-κB activation and alleviate allodynia in a rat model of bone cancer pain. J Neurochem 2021; 158:1110-1130. [PMID: 34254317 PMCID: PMC9292887 DOI: 10.1111/jnc.15468] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 03/23/2021] [Accepted: 07/02/2021] [Indexed: 01/11/2023]
Abstract
Bone cancer pain (BCP) is a clinical pathology that urgently needs to be solved, but research on the mechanism of BCP has so far achieved limited success. Nuclear factor erythroid 2 (NFE2)-related factor 2 (Nrf2) has been shown to be involved in pain, but its involvement in BCP and the specific mechanism have yet to be examined. This study aimed to test the hypothesis that BCP induces the transfer of Nrf2 from the cytoplasm to the nucleus and further promotes nuclear transcription to activate heme oxygenase-1 (HO-1) and inhibit the activation of nuclear factor-kappa B (NF-κB) signalling, ultimately regulating the neuroinflammatory response. Von-Frey was used for behavioural analysis in rats with BCP, whereas western blotting, real-time quantitative PCR (RT-PCR) and enzyme-linked immunosorbent assay (ELISA) were used to detect molecular expression changes, and immunofluorescence was used to detect cellular localization. We demonstrated that BCP induced increased Nrf2 nuclear protein expression with decreased cytoplasmic protein expression in the spinal cord. Further increases in Nrf2 nuclear protein expression can alleviate hyperalgesia and activate HO-1 to inhibit the expression of NF-κB nuclear protein and inflammatory factors. Strikingly, intrathecal administration of the corresponding siRNA reversed the above effects. In addition, the results of double immune labelling revealed that Nrf2 and NF-κB were coexpressed in spinal cord neurons of rats with BCP. In summary, these findings suggest that the entry of Nrf2 into the nucleus promotes the expression of HO-1, inhibiting activation of the NF-κB signalling pathway, reducing neuroinflammation and ultimately exerting an anti-nociceptive effect.
Collapse
Affiliation(s)
- Jie Fu
- Department of Anesthesiology and Pain Research CenterThe First Hospital of Jiaxing or The Affiliated Hospital of Jiaxing UniversityJiaxingChina
| | - Chaobo Ni
- Department of Anesthesiology and Pain Research CenterThe First Hospital of Jiaxing or The Affiliated Hospital of Jiaxing UniversityJiaxingChina
| | - Hua‐Dong Ni
- Department of Anesthesiology and Pain Research CenterThe First Hospital of Jiaxing or The Affiliated Hospital of Jiaxing UniversityJiaxingChina
| | - Long‐Sheng Xu
- Department of Anesthesiology and Pain Research CenterThe First Hospital of Jiaxing or The Affiliated Hospital of Jiaxing UniversityJiaxingChina
| | - Qiu‐Li He
- Department of Anesthesiology and Pain Research CenterThe First Hospital of Jiaxing or The Affiliated Hospital of Jiaxing UniversityJiaxingChina
| | - Huan Pan
- Department of Anesthesiology and Pain Research CenterThe First Hospital of Jiaxing or The Affiliated Hospital of Jiaxing UniversityJiaxingChina
| | - Dong‐Dong Huang
- Department of Anesthesiology and Pain Research CenterThe First Hospital of Jiaxing or The Affiliated Hospital of Jiaxing UniversityJiaxingChina
| | - Yan‐Bao Sun
- Department of Anesthesiology and Pain Research CenterThe First Hospital of Jiaxing or The Affiliated Hospital of Jiaxing UniversityJiaxingChina
| | - Ge Luo
- Department of Anesthesiology and Pain Research CenterThe First Hospital of Jiaxing or The Affiliated Hospital of Jiaxing UniversityJiaxingChina
| | - Ming‐Juan Liu
- Department of Anesthesiology and Pain Research CenterThe First Hospital of Jiaxing or The Affiliated Hospital of Jiaxing UniversityJiaxingChina
| | - Ming Yao
- Department of Anesthesiology and Pain Research CenterThe First Hospital of Jiaxing or The Affiliated Hospital of Jiaxing UniversityJiaxingChina
| |
Collapse
|
8
|
Midavaine É, Côté J, Marchand S, Sarret P. Glial and neuroimmune cell choreography in sexually dimorphic pain signaling. Neurosci Biobehav Rev 2021; 125:168-192. [PMID: 33582232 DOI: 10.1016/j.neubiorev.2021.01.023] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 11/03/2020] [Accepted: 01/25/2021] [Indexed: 12/17/2022]
Abstract
Chronic pain is a major global health issue that affects all populations regardless of sex, age, ethnicity/race, or country of origin, leading to persistent physical and emotional distress and to the loss of patients' autonomy and quality of life. Despite tremendous efforts in the elucidation of the mechanisms contributing to the pathogenesis of chronic pain, the identification of new potential pain targets, and the development of novel analgesics, the pharmacological treatment options available for pain management remain limited, and most novel pain medications have failed to achieve advanced clinical development, leaving many patients with unbearable and undermanaged pain. Sex-specific susceptibility to chronic pain conditions as well as sex differences in pain sensitivity, pain tolerance and analgesic efficacy are increasingly recognized in the literature and have thus prompted scientists to seek mechanistic explanations. Hence, recent findings have highlighted that the signaling mechanisms underlying pain hypersensitivity are sexually dimorphic, which sheds light on the importance of conducting preclinical and clinical pain research on both sexes and of developing sex-specific pain medications. This review thus focuses on the clinical and preclinical evidence supporting the existence of sex differences in pain neurobiology. Attention is drawn to the sexually dimorphic role of glial and immune cells, which are both recognized as key players in neuroglial maladaptive plasticity at the origin of the transition from acute pain to chronic pathological pain. Growing evidence notably attributes to microglial cells a pivotal role in the sexually dimorphic pain phenotype and in the sexually dimorphic analgesic efficacy of opioids. This review also summarizes the recent advances in understanding the pathobiology underpinning the development of pain hypersensitivity in both males and females in different types of pain conditions, with particular emphasis on the mechanistic signaling pathways driving sexually dimorphic pain responses.
Collapse
Affiliation(s)
- Élora Midavaine
- Department of Pharmacology-Physiology, Institut de pharmacologie de Sherbrooke, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada; Centre de recherche du Centre hospitalier universitaire de Sherbrooke, CIUSSS de l'Estrie - CHUS, Sherbrooke, Québec, Canada.
| | - Jérôme Côté
- Department of Pharmacology-Physiology, Institut de pharmacologie de Sherbrooke, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada; Centre de recherche du Centre hospitalier universitaire de Sherbrooke, CIUSSS de l'Estrie - CHUS, Sherbrooke, Québec, Canada
| | - Serge Marchand
- Department of Pharmacology-Physiology, Institut de pharmacologie de Sherbrooke, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada; Centre de recherche du Centre hospitalier universitaire de Sherbrooke, CIUSSS de l'Estrie - CHUS, Sherbrooke, Québec, Canada
| | - Philippe Sarret
- Department of Pharmacology-Physiology, Institut de pharmacologie de Sherbrooke, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada; Centre de recherche du Centre hospitalier universitaire de Sherbrooke, CIUSSS de l'Estrie - CHUS, Sherbrooke, Québec, Canada.
| |
Collapse
|
9
|
Diaz-delCastillo M, Hansen RB, Appel CK, Nielsen L, Nielsen SN, Karyniotakis K, Dahl LM, Andreasen RB, Heegaard AM. Modulation of Rat Cancer-Induced Bone Pain is Independent of Spinal Microglia Activity. Cancers (Basel) 2020; 12:cancers12102740. [PMID: 32987667 PMCID: PMC7598664 DOI: 10.3390/cancers12102740] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 08/20/2020] [Accepted: 09/21/2020] [Indexed: 12/17/2022] Open
Abstract
The dissemination of cancer to bone can cause significant cancer-induced bone pain (CIBP), severely impairing the patient's quality of life. Several rodent models have been developed to explore the nociceptive mechanisms of CIBP, including intratibial inoculation of breast carcinoma cells in syngeneic Sprague Dawley rats. Using this model, we investigated whether resident spinal microglial cells are involved in the transmission and modulation of CIBP, a long-debated disease feature. Immunohistochemical staining of ionizing calcium-binding adaptor molecule 1 (Iba-1) and phosphorylated p38-mitogen-activated protein kinase (P-p38 MAPK) showed no spinal microglial reaction in cancer-bearing rats, independently of disease stage, sex, or carcinoma cell line. As a positive control, significant upregulation of both Iba-1 and P-p38 was observed in a rat model of neuropathic pain. Additionally, intrathecal administration of the microglial inhibitor minocycline did not ameliorate pain-like behaviors in cancer-bearing rats, in contrast to spinal morphine administration. Our results indicate that microglial reaction is not a main player in CIBP, adding to the debate that even within the same models of CIBP, significant variations are seen in disease features considered potential drug targets. We suggest that this heterogeneity may reflect the clinical landscape, underscoring the need for understanding the translational value of CIBP models.
Collapse
|
10
|
Ni H, Xu M, Xie K, Fei Y, Deng H, He Q, Wang T, Liu S, Zhu J, Xu L, Yao M. Liquiritin Alleviates Pain Through Inhibiting CXCL1/CXCR2 Signaling Pathway in Bone Cancer Pain Rat. Front Pharmacol 2020; 11:436. [PMID: 32390832 PMCID: PMC7193085 DOI: 10.3389/fphar.2020.00436] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 03/20/2020] [Indexed: 01/06/2023] Open
Abstract
Bone cancer pain (BCP) is an intractable clinical problem, and lacked effective drugs for treating it. Recent research showed that several chemokines in the spinal cord are involved in the pathogenesis of BCP. In this study, the antinociceptive effects of liquiritin, which is an active component extracted from Glycyrrhizae Radix, were tested and the underlying mechanisms targeting spinal dorsal horn (SDH) were investigated. The BCP group displayed a significant decrease in the mechanical withdrawal threshold on days 6, 12, and 18 when compared with sham groups. Intrathecal administration of different doses of liquiritin alleviated mechanical allodynia in BCP rats. The results of immunofluorescent staining and western blotting showed that liquiritin inhibited BCP-induced activation of astrocytes in the spinal cord. Moreover, intrathecal administration of liquiritin effectively inhibited the activation of CXCL1/CXCR2 signaling pathway and production of IL-1β and IL-17 in BCP rats. In astroglial-enriched cultures, Lipopolysaccharides (LPS) elicited the release of chemokine CXCL1, and the release was decreased in a dose-dependent manner by liquiritin. In primary neurons, liquiritin indirectly reduced the increase of CXCR2 by astroglial-enriched-conditioned medium but not directly on the CXCR2 target site. These results suggested that liquiritin effectively attenuated BCP in rats by inhibiting the activation of spinal astrocytic CXCL1 and neuronal CXCR2 pathway. These findings provided evidence regarding the the antinociceptive effect of liquiritin on BCP.
Collapse
Affiliation(s)
- Huadong Ni
- Department of Anesthesiology and Pain Research Center, The Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Miao Xu
- Department of Anesthesiology and Pain Research Center, The Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Keyue Xie
- Department of Anesthesiology and Pain Research Center, The Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Yong Fei
- Department of Anesthesiology and Pain Research Center, The Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Housheng Deng
- Department of Anesthesiology and Pain Research Center, The Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Qiuli He
- Department of Anesthesiology and Pain Research Center, The Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Tingting Wang
- Department of Anesthesiology and Pain Research Center, The Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Songlei Liu
- Department of Anesthesiology and Pain Research Center, The Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Jianjun Zhu
- Department of Anesthesiology and Pain Research Center, The Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Longsheng Xu
- Department of Anesthesiology and Pain Research Center, The Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Ming Yao
- Department of Anesthesiology and Pain Research Center, The Affiliated Hospital of Jiaxing University, Jiaxing, China
| |
Collapse
|
11
|
Wu XP, Yang YP, She RX, Xing ZM, Chen HW, Zhang YW. microRNA-329 reduces bone cancer pain through the LPAR1-dependent LPAR1/ERK signal transduction pathway in mice. Ther Adv Med Oncol 2019; 11:1758835919875319. [PMID: 31692673 PMCID: PMC6811758 DOI: 10.1177/1758835919875319] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Accepted: 08/19/2019] [Indexed: 12/11/2022] Open
Abstract
Background: Bone cancer pain (BCP) is a common symptom occurring among patients with
cancer and has a detrimental effect on their quality of life. Growing
evidence has implicated microRNA-329 (miR-329) in the progression of bone
diseases. In the present study, we aimed to elucidate the potential effects
of miR-329 on BCP in a BCP mouse model via binding to
lysophosphatidic acid receptor 1 (LPAR1) through the LPAR1/extracellular
signal-regulated kinase (ERK) signaling pathway. Methods: Initially, a BCP mouse model was established via injection
of 4 × 104 murine breast tumor (4T1 cell) cells (4 μl). The
interaction between miR-329 and LPAR1 was identified using a bioinformatics
website and dual luciferase reporter gene assay. The modeled mice were
subsequently treated with miR-329 mimic, LPAR1 shRNA, or both, in order to
examine the effect of miR-329 on the paw withdrawal threshold (PWT) and paw
withdrawal latency (PWL) of mice, the expression of LPAR1/ERK signaling
pathway-related genes. Results: The positive expression rate of LPAR1 protein and extent of ERK1/2
phosphorylation were increased in BCP mouse models. LPAR1 is a target gene
of miR-329, which can inhibit the expression of LPAR1. In response to
miR-329 overexpression and LPAR1 silencing, BCP mice showed increased PWT
and PWL, along with decreased LPAR1 expression and ratio of p-ERK/ERK. Conclusions: Altogether, the results obtained indicated that miR-329 can potentially
alleviate BCP in mice via the inhibition of LPAR1 and
blockade of the LPAR1/ERK signaling pathway, highlighting that upregulation
of miR-329 could serve as a therapeutic target for BCP treatment.
Collapse
Affiliation(s)
- Xian-Ping Wu
- Department of Anesthesiology, Shunde Hospital of Guangzhou University of Chinese Medicine, Foshan, P.R. China
| | - Yan-Ping Yang
- Department of Anesthesiology, Shunde Hospital of Guangzhou University of Chinese Medicine, Foshan, P.R. China
| | - Rui-Xuan She
- Department of Anesthesiology, Shunde Hospital of Guangzhou University of Chinese Medicine, Foshan, P.R. China
| | - Zu-Min Xing
- Department of Anesthesiology, Shunde Hospital of Southern Medical University (The First People's Hospital of Shunde Foshan), Foshan, P.R. China
| | - Han-Wen Chen
- Department of Anesthesiology, Shunde Hospital of Southern Medical University (The First People's Hospital of Shunde Foshan), Foshan, P.R. China
| | - Yi-Wen Zhang
- Department of Anesthesiology, Shunde Hospital of Southern Medical University (The First People's Hospital of Shunde Foshan), Foshan, P.R. China
| |
Collapse
|
12
|
He Q, Wang T, Ni H, Liu Q, An K, Tao J, Chen Y, Xu L, Zhu C, Yao M. Endoplasmic reticulum stress promoting caspase signaling pathway-dependent apoptosis contributes to bone cancer pain in the spinal dorsal horn. Mol Pain 2019; 15:1744806919876150. [PMID: 31452457 PMCID: PMC6767730 DOI: 10.1177/1744806919876150] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Affiliation(s)
- Qiuli He
- Department of Anesthesiology, Bengbu Medical College, Bengbu, China.,Department of Anesthesiology and Pain Research Center, The First Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Tingting Wang
- Department of Anesthesiology and Pain Research Center, The First Affiliated Hospital of Jiaxing University, Jiaxing, China.,The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Huadong Ni
- Department of Anesthesiology and Pain Research Center, The First Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Qianying Liu
- Department of Anesthesiology, Bengbu Medical College, Bengbu, China
| | - Kang An
- Department of Anesthesiology, Affliated Drum Tower Hospital of Medical School of Nanjing University, Nanjing, China
| | - Jiachun Tao
- Department of Anesthesiology and Pain Research Center, The First Affiliated Hospital of Jiaxing University, Jiaxing, China.,The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yajing Chen
- Department of Anesthesiology, Bengbu Medical College, Bengbu, China
| | - Longsheng Xu
- Department of Anesthesiology and Pain Research Center, The First Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Chunyan Zhu
- Department of Anesthesiology and Pain Research Center, The First Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Ming Yao
- Department of Anesthesiology and Pain Research Center, The First Affiliated Hospital of Jiaxing University, Jiaxing, China
| |
Collapse
|
13
|
Transcriptional Regulation of Voltage-Gated Sodium Channels Contributes to GM-CSF-Induced Pain. J Neurosci 2019; 39:5222-5233. [PMID: 31015342 DOI: 10.1523/jneurosci.2204-18.2019] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Revised: 04/12/2019] [Accepted: 04/15/2019] [Indexed: 11/21/2022] Open
Abstract
Granulocyte-macrophage colony-stimulating factor (GM-CSF) induces the production of granulocyte and macrophage populations from the hematopoietic progenitor cells; it is one of the most common growth factors in the blood. GM-CSF is also involved in bone cancer pain development by regulating tumor-nerve interactions, remodeling of peripheral nerves, and sensitization of damage-sensing (nociceptive) nerves. However, the precise mechanism for GM-CSF-dependent pain is unclear. In this study, we found that GM-CSF is highly expressed in human malignant osteosarcoma. Female Sprague Dawley rats implanted with bone cancer cells develop mechanical and thermal hyperalgesia, but antagonizing GM-CSF in these animals significantly reduced such hypersensitivity. The voltage-gated Na+ channels Nav1.7, Nav1.8, and Nav1.9 were found to be selectively upregulated in rat DRG neurons treated with GM-CSF, which resulted in enhanced excitability. GM-CSF activated the Janus kinase 2 (Jak2)-signal transducer and activator of transcription protein 3 (Stat3) signaling pathway, which promoted the transcription of Nav1.7-1.9 in DRG neurons. Accordingly, targeted knocking down of either Nav1.7-1.9 or Jak2/Stat3 in DRG neurons in vivo alleviated the hyperalgesia in male Sprague Dawley rats. Our findings describe a novel bone cancer pain mechanism and provide a new insight into the physiological and pathological functions of GM-CSF.SIGNIFICANCE STATEMENT It has been reported that granulocyte-macrophage colony-stimulating factor (GM-CSF) plays a key role in bone cancer pain, yet the underlying mechanisms involved in the GM-CSF-mediated signaling pathway in nociceptors is not fully understood. Here, we showed that GM-CSF promotes bone cancer-associated pain by enhancing the excitability of DRG neurons via the Janus kinase 2 (Jak2)-signal transducer and activator of transcription protein 3 (Stat3)-mediated upregulation of expression of nociceptor-specific voltage-gated sodium channels. Our study provides a detailed understanding of the roles that sodium channels and the Jak2/Stat3 pathway play in the GM-CSF-mediated bone cancer pain; our data also highlight the therapeutic potential of targeting GM-CSF.
Collapse
|
14
|
Xiong W, Tan M, Tong Z, Yin C, He L, Liu L, Shen Y, Guan S, Ge H, Li G, Liang S, Gao Y. Effects of long non-coding RNA uc.48+ on pain transmission in trigeminal neuralgia. Brain Res Bull 2019; 147:92-100. [PMID: 30772439 DOI: 10.1016/j.brainresbull.2019.02.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Revised: 02/02/2019] [Accepted: 02/11/2019] [Indexed: 12/29/2022]
Abstract
Trigeminal neuralgia (TN) is the most common neuropathic pain in the facial area, for which the effective therapy is unavailable. Long non-coding RNA (lncRNA) such as lncRNA uc.48+ is involved in diabetic neuropathic pain and may affect purinergic signaling in ganglia of diabetic rats. In this research, chronic constriction injury of the infraorbital nerve (CCI-ION) was applied to establish a rat model of TN. Five days after local injection of siRNA targeting the lncRNA uc.48+ in trigeminal ganglia (TGs), the upregulated uc.48+ expression and the reduced mechanical withdrawal threshold (MWT) in the TN rats were significantly reversed. The expression of P2X7 receptor in TGs was increased in the TN group compared with the sham group, but uc.48+ siRNA treatment mitigated this effect. The phosphorylation of ERK1/2 in TGs of TN rats was significantly enhanced compared with the sham group, while uc.48+ siRNA treatment reversed this change. In addition, injection of the lncRNA uc.48+ overexpression plasmid in TGs of control rats significantly reduced the MWT but elevated the expression of P2X7 in TGs; the phosphorylation of ERK1/2 in TGs in these uc.48+-overexpressed rats was significantly higher, similar to the observations in rats of TN model. The interaction between uc.48+ and the P2X7 receptor was detected by RNA binding protein immunoprecipitation (RIP), indicating that P2X7 receptor could specifically bind to uc.48 + . In summary, knockdown of lncRNA uc.48+ by siRNA could inhibit transduction of TN signals, whereas uc.48+ overexpression promoted TN signal transduction. LncRNA uc.48+ may interact with P2X7 receptor to upregulate expression of P2X7 receptor and furthermore enhance the phosphorylation of ERK1/2 in TGs, thereby participating in pain transmission in TN.
Collapse
Affiliation(s)
- Wei Xiong
- Affiliated Stomatological Hospital of Nanchang University, Nanchang, Jiangxi, 330006, PR China; Jiangxi Provincial Key Laboratory of Oral Biomedicine, Nanchang, Jiangxi, 330006, PR China
| | - Mengxia Tan
- Department of Physiology, Basic Medical College, Nanchang University, Nanchang, Jiangxi, 330006, PR China; Department of Basic Medicine, Jiangxi Health Vocational College, Nanchang, Jiangxi, 330006, PR China
| | - Zhoujie Tong
- Queen Mary College, Nanchang University, Nanchang, Jiangxi, 330006, PR China
| | - Cancan Yin
- Affiliated Stomatological Hospital of Nanchang University, Nanchang, Jiangxi, 330006, PR China
| | - Lingkun He
- Affiliated Stomatological Hospital of Nanchang University, Nanchang, Jiangxi, 330006, PR China
| | - Lijuan Liu
- Affiliated Stomatological Hospital of Nanchang University, Nanchang, Jiangxi, 330006, PR China
| | - Yulin Shen
- Department of Physiology, Basic Medical College, Nanchang University, Nanchang, Jiangxi, 330006, PR China
| | - Shu Guan
- Department of Physiology, Basic Medical College, Nanchang University, Nanchang, Jiangxi, 330006, PR China
| | - Huixiang Ge
- Department of Physiology, Basic Medical College, Nanchang University, Nanchang, Jiangxi, 330006, PR China
| | - Guodong Li
- Department of Physiology, Basic Medical College, Nanchang University, Nanchang, Jiangxi, 330006, PR China; Department of Clinical Translational Research, Singapore General Hospital, Singapore, 169856, Singapore
| | - Shangdong Liang
- Department of Physiology, Basic Medical College, Nanchang University, Nanchang, Jiangxi, 330006, PR China; Jiangxi Provincial Key Laboratory of Autonomic Nervous Function and Disease, Nanchang, Jiangxi, 330006, PR China
| | - Yun Gao
- Department of Physiology, Basic Medical College, Nanchang University, Nanchang, Jiangxi, 330006, PR China; Jiangxi Provincial Key Laboratory of Autonomic Nervous Function and Disease, Nanchang, Jiangxi, 330006, PR China.
| |
Collapse
|
15
|
Shenoy PA, Kuo A, Khan N, Gorham L, Nicholson JR, Corradini L, Vetter I, Smith MT. The Somatostatin Receptor-4 Agonist J-2156 Alleviates Mechanical Hypersensitivity in a Rat Model of Breast Cancer Induced Bone Pain. Front Pharmacol 2018; 9:495. [PMID: 29867498 PMCID: PMC5962878 DOI: 10.3389/fphar.2018.00495] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Accepted: 04/25/2018] [Indexed: 12/12/2022] Open
Abstract
In the majority of patients with breast cancer in the advanced stages, skeletal metastases are common, which may cause excruciating pain. Currently available drug treatments for relief of breast cancer-induced bone pain (BCIBP) include non-steroidal anti-inflammatory drugs and strong opioid analgesics along with inhibitors of osteoclast activity such as bisphosphonates and monoclonal antibodies such as denosumab. However, these medications often lack efficacy and/or they may produce serious dose-limiting side effects. In the present study, we show that J-2156, a somatostatin receptor type 4 (SST4 receptor) selective agonist, reverses pain-like behaviors in a rat model of BCIBP induced by unilateral intra-tibial injection of Walker 256 breast cancer cells. Following intraperitoneal administration, the ED50 of J-2156 for the relief of mechanical allodynia and mechanical hyperalgesia in the ipsilateral hindpaws was 3.7 and 8.0 mg/kg, respectively. Importantly, the vast majority of somatosensory neurons in the dorsal root ganglia including small diameter C-fibers and medium-large diameter fibers, that play a crucial role in cancer pain hypersensitivities, expressed the SST4 receptor. J-2156 mediated pain relief in BCIBP-rats was confirmed by observations of a reduction in the levels of phosphorylated extracellular signal-regulated kinase (pERK), a protein essential for central sensitization and persistent pain, in the spinal dorsal horn. Our results demonstrate the potential of the SST4 receptor as a pharmacological target for relief of BCIBP and we anticipate the present work to be a starting point for further mechanism-based studies.
Collapse
Affiliation(s)
- Priyank A Shenoy
- Faculty of Medicine, School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Andy Kuo
- Faculty of Medicine, School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Nemat Khan
- Faculty of Medicine, School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Louise Gorham
- Department of CNS Diseases Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Janet R Nicholson
- Department of CNS Diseases Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Laura Corradini
- Department of CNS Diseases Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Irina Vetter
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia.,Faculty of Health and Behavioural Sciences, School of Pharmacy, The University of Queensland, Brisbane, QLD, Australia
| | - Maree T Smith
- Faculty of Medicine, School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, Australia.,Faculty of Health and Behavioural Sciences, School of Pharmacy, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
16
|
Spinal PKC activation — Induced neuronal HMGB1 translocation contributes to hyperalgesia in a bone cancer pain model in rats. Exp Neurol 2018; 303:80-94. [DOI: 10.1016/j.expneurol.2018.02.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 01/22/2018] [Accepted: 02/06/2018] [Indexed: 12/31/2022]
|
17
|
Activated Glia Increased the Level of Proinflammatory Cytokines in a Resiniferatoxin-Induced Neuropathic Pain Rat Model. Reg Anesth Pain Med 2018; 41:744-749. [PMID: 27429048 DOI: 10.1097/aap.0000000000000441] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND AND OBJECTIVES Administration of resiniferatoxin (RTX) can mimic the clinical symptoms of postherpetic neuralgia. However, it is unclear whether activated glia contribute to the pathogenesis of RTX-induced neuropathic pain; furthermore, the relationship between p38, N-methyl-D-aspartate receptor type 2B (NR2B) as well as proinflammatory cytokines and activated glia remains unknown. METHODS Intraperitoneal injection of RTX was performed to induce neuropathic pain in rats. Mechanical allodynia and thermal hyperalgesia were assessed by von Frey filaments and a radiant heat stimulus, respectively. Western blot and immunofluorescence labeling examined the expression of NR2B, activated glia markers, p38, and proinflammatory cytokines in the spinal cord. We further investigated the effect of the glial inhibitors, fluorocitrate and minocycline, on nociceptive behaviors and expression of p38, NR2B, and proinflammatory cytokines. RESULTS Resiniferatoxin leads to an increase of paw withdrawal latency to a heat stimulus and caused a mechanical allodynia within 2 weeks. The expression of tumor necrosis factor α, IL-1β, p38, and NR2B was up-regulated in RTX-induced neuropathic pain rat model and lasted for at least 49 days. Microglia were activated at the early phase of the disease, whereas activated astrocytes were detected in the sustainment phase. Both minocycline and fluorocitrate attenuated the nociceptive behaviors and expression of related proteins. CONCLUSIONS Activated glia participate in the pathogenesis of RTX-induced neuropathic pain and are likely to be the source of proinflammatory cytokines. Inhibition of glia contributes to an analgesic effect. These findings provide a novel strategy for the treatment of postherpetic neuralgia.
Collapse
|
18
|
Han MM, Yang CW, Cheung CW, Li J. Blockage of spinal endothelin A receptors attenuates bone cancer pain via regulation of the Akt/ERK signaling pathway in mice. Neuropeptides 2018; 68:36-42. [PMID: 29395120 DOI: 10.1016/j.npep.2018.01.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 12/17/2017] [Accepted: 01/21/2018] [Indexed: 10/18/2022]
Abstract
Bone cancer pain (BCP) is a common source of pain in patients with advanced stage and metastatic cancer; however, existing treatment for this kind of pain remains deficient. Being closely related to sensory change and inflammatory pain in both the central and peripheral nervous systems, endothelin A receptor (ETAR) plays an essential role in pain processing. As a result, ETAR antagonist has been reported to alleviate both neuropathic and inflammatory pain. Thus far, the role of ETAR in the process of BCP is still ambiguous. In this study, by using a BCP mouse model, the analgesic effect and molecular mechanism of the ETAR antagonist BQ-123 was investigated. Pain sensation in the BCP mouse model was investigated by the number of spontaneous flinches (NSF) and pain withdrawal threshold (PWT), and the mechanism of BCP was assessed by measuring p-Akt, p-Akt/t-Akt, p-ERK-1/2 and p-ERK-1/2/t-ERK-1/2 levels in L4-6 segments of the spinal cord. Our results demonstrated that BCP mice showed a higher NSF and a lower PWT score than Sham mice. In addition to the development of nociceptive sensitization, p-Akt, p-Akt/t-Akt, p-ERK-1/2 and p-ERK-1/2/t-ERK-1/2 were up-regulated correspondingly in L4-6 segments of the spinal cord in BCP mice. BQ-123 treatment showed a promising analgesic effect, and the effect was correlated to the down-regulation of p-Akt, p-Akt/t-Akt, p-ERK-1/2 and p-ERK-1/2/t-ERK-1/2 in spinal cord cells. The results suggested that intrathecal administration of BQ-123 was able to relieve BCP in mice as a consequence of suppressing the Akt and ERK signalling pathways.
Collapse
Affiliation(s)
- Ming-Ming Han
- School of Medicine, Shandong University, Jinan, Shandong, China; Department of Anesthesiology, Anhui Provincial Hospital, Anhui Medical University, Hefei, China
| | - Cheng-Wei Yang
- School of Medicine, Shandong University, Jinan, Shandong, China; Department of Anesthesiology, Anhui Provincial Hospital, Anhui Medical University, Hefei, China
| | - Chi-Wai Cheung
- Department of Anesthesiology, The University of Hong Kong, Hong Kong, China; Laboratory and Clinical Research Institute for Pain, The University of Hong Kong, Hong Kong, China; Research Center of Heart, Brain, Hormone and Healthy Aging, The University of Hong Kong, Hong Kong, China
| | - Juan Li
- Department of Anesthesiology, Anhui Provincial Hospital, Anhui Medical University, Hefei, China; School of Medicine, Shandong University, Jinan, Shandong, China.
| |
Collapse
|
19
|
HDAC inhibitor TSA ameliorates mechanical hypersensitivity and potentiates analgesic effect of morphine in a rat model of bone cancer pain by restoring μ-opioid receptor in spinal cord. Brain Res 2017; 1669:97-105. [DOI: 10.1016/j.brainres.2017.05.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 05/12/2017] [Accepted: 05/13/2017] [Indexed: 01/09/2023]
|
20
|
Sun Y, Wu YX, Zhang P, Peng G, Yu SY. Anti-rheumatic drug iguratimod protects against cancer-induced bone pain and bone destruction in a rat model. Oncol Lett 2017; 13:4849-4856. [PMID: 28588731 PMCID: PMC5452928 DOI: 10.3892/ol.2017.6045] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 01/26/2017] [Indexed: 01/14/2023] Open
Abstract
The bone is one of the most common sites of metastasis in patients with cancer. Current treatments for bone metastases include bisphosphonates, denosumab, non-steroidal anti-inflammatory drugs and analgesics, but each of them has certain limitations. Cytokines and mediators released from various cells in the bone microenvironment may drive a vicious cycle of osteolytic bone metastases. Iguratimod (T-614), a novel disease-modifying anti-rheumatic drug, has demonstrated therapeutic effects by suppressing the production of inflammatory cytokines in rats and patients with rheumatoid arthritis. Therefore, the current study evaluated the hypothesis that iguratimod may protect against cancer-induced bone pain and bone metastasis in a rat model. For this purpose, rats inoculated with Walker 256 cells were treated with iguratimod from days 11–17 post-surgery. Mechanical paw withdrawal thresholds and expression levels of phosphorylated extracellular signal-related kinase (pERK) and c-Fos in the spinal cord were investigated to detect changes in bone pain. Bone destruction levels were detected using X-rays, hematoxylin and eosin and tartrate-resistant acid phosphatase staining. The results revealed that mechanical paw withdrawal thresholds and the expression levels of pERK and c-Fos declined in a dose-dependent manner in rats treated with iguratimod, and bone destruction severity was also reduced. These findings may provide important new insights into the treatment of bone metastasis symptoms.
Collapse
Affiliation(s)
- Yue Sun
- Cancer Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Ying-Xing Wu
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Peng Zhang
- Cancer Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Guang Peng
- Department of Clinical Cancer Prevention, MD Anderson Cancer Center, University of Texas, Houston, TX 77030, USA
| | - Shi-Ying Yu
- Cancer Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| |
Collapse
|
21
|
Li TF, Wu HY, Wang YR, Li XY, Wang YX. Molecular signaling underlying bulleyaconitine A (BAA)-induced microglial expression of prodynorphin. Sci Rep 2017; 7:45056. [PMID: 28327597 PMCID: PMC5361206 DOI: 10.1038/srep45056] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 02/20/2017] [Indexed: 12/30/2022] Open
Abstract
Bulleyaconitine (BAA) has been shown to possess antinociceptive activities by stimulation of dynorphin A release from spinal microglia. This study investigated its underlying signal transduction mechanisms. The data showed that (1) BAA treatment induced phosphorylation of CREB (rather than NF-κB) and prodynorphin expression in cultured primary microglia, and antiallodynia in neuropathy, which were totally inhibited by the CREB inhibitor KG-501; (2) BAA upregulated phosphorylation of p38 (but not ERK or JNK), and the p38 inhibitor SB203580 (but not ERK or JNK inhibitor) and p38β gene silencer siRNA/p38β (but not siRNA/p38α) completely blocked BAA-induced p38 phosphorylation and/or prodynorphin expression, and antiallodynia; (3) BAA stimulated cAMP production and PKA phosphorylation, and the adenylate cyclase inhibitor DDA and PKA inhibitor H-89 entirely antagonized BAA-induced prodynorphin expression and antiallodynia; (4) The Gs-protein inhibitor NF449 completely inhibited BAA-increased cAMP level, prodynorphin expression and antiallodynia, whereas the antagonists of noradrenergic, corticotrophin-releasing factor, A1 adenosine, formyl peptide, D1/D2 dopamine, and glucagon like-peptide-1 receptors failed to block BAA-induced antiallodynia. The data indicate that BAA-induced microglial expression of prodynorphin is mediated by activation of the cAMP-PKA-p38β-CREB signaling pathway, suggesting that its possible target is a Gs-protein-coupled receptor - "aconitine receptor", although the chemical identity is not illustrated.
Collapse
Affiliation(s)
- Teng-Fei Li
- King’s Lab, Shanghai Jiao Tong University School of Pharmacy, 800 Dongchuan Road, Shanghai 200240, China
| | - Hai-Yun Wu
- King’s Lab, Shanghai Jiao Tong University School of Pharmacy, 800 Dongchuan Road, Shanghai 200240, China
| | - Yi-Rui Wang
- King’s Lab, Shanghai Jiao Tong University School of Pharmacy, 800 Dongchuan Road, Shanghai 200240, China
| | - Xin-Yan Li
- King’s Lab, Shanghai Jiao Tong University School of Pharmacy, 800 Dongchuan Road, Shanghai 200240, China
| | - Yong-Xiang Wang
- King’s Lab, Shanghai Jiao Tong University School of Pharmacy, 800 Dongchuan Road, Shanghai 200240, China
| |
Collapse
|
22
|
Liu M, Yao M, Wang H, Xu L, Zheng Y, Huang B, Ni H, Xu S, Zhou X, Lian Q. P2Y 12 receptor-mediated activation of spinal microglia and p38MAPK pathway contribute to cancer-induced bone pain. J Pain Res 2017; 10:417-426. [PMID: 28243146 PMCID: PMC5317303 DOI: 10.2147/jpr.s124326] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Background Cancer-induced bone pain (CIBP) is one of the most challenging clinical problems due to a lack of understanding the mechanisms. Recent evidence has demonstrated that activation of microglial G-protein-coupled P2Y12 receptor (P2Y12R) and proinflammatory cytokine production play an important role in neuropathic pain generation and maintenance. However, whether P2Y12R is involved in CIBP remains unknown. Methods The purpose of this study was to investigate the role of P2Y12R in CIBP and its molecular mechanisms. Using the bone cancer model inoculated with Walker 256 tumor cells into the left tibia of Sprague Dawley rat, we blocked spinal P2Y12R through intrathecal administration of its selective antagonist MRS2395 (400 pmol/µL, 15 µL). Results We found that not only the ionized calcium-binding adapter molecule 1 (Iba-1)-positive microglia in the ipsilateral spinal cord but also mechanical allodynia was significantly inhibited. Furthermore, it decreased the phosphorylation of p38 mitogen-activated protein kinase (p38 MAPK) and the production of proinflammatory cytokines interleukin-1β (IL-1β) and interleukin-6 (IL-6), whereas it increased tumor necrosis factor-α (TNF-α). Conclusion Taken together, our present results suggest that microglial P2Y12R in the spinal cord may contribute to CIBP by the activation of spinal microglia and p38MAPK pathway, thus identifying a potential therapeutic target for the treatment of CIBP.
Collapse
Affiliation(s)
- Mingjuan Liu
- Department of Anesthesiology and Pain Medicine, The First Hospital of Jiaxing, The First Affiliated Hospital of Jiaxing University, Jiaxing
| | - Ming Yao
- Department of Anesthesiology and Pain Medicine, The First Hospital of Jiaxing, The First Affiliated Hospital of Jiaxing University, Jiaxing; Department of Anesthesiology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Hanqi Wang
- Department of Anesthesiology and Pain Medicine, The First Hospital of Jiaxing, The First Affiliated Hospital of Jiaxing University, Jiaxing
| | - Longsheng Xu
- Department of Anesthesiology and Pain Medicine, The First Hospital of Jiaxing, The First Affiliated Hospital of Jiaxing University, Jiaxing
| | - Ying Zheng
- Department of Anesthesiology and Pain Medicine, The First Hospital of Jiaxing, The First Affiliated Hospital of Jiaxing University, Jiaxing
| | - Bing Huang
- Department of Anesthesiology and Pain Medicine, The First Hospital of Jiaxing, The First Affiliated Hospital of Jiaxing University, Jiaxing
| | - Huadong Ni
- Department of Anesthesiology and Pain Medicine, The First Hospital of Jiaxing, The First Affiliated Hospital of Jiaxing University, Jiaxing
| | - Shijie Xu
- Department of Anesthesiology and Pain Medicine, The First Hospital of Jiaxing, The First Affiliated Hospital of Jiaxing University, Jiaxing
| | - Xuyan Zhou
- Department of Anesthesiology and Pain Medicine, The First Hospital of Jiaxing, The First Affiliated Hospital of Jiaxing University, Jiaxing
| | - Qingquan Lian
- Department of Anesthesiology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China
| |
Collapse
|
23
|
Song Z, Xiong B, Zheng H, Manyande A, Guan X, Cao F, Ren L, Zhou Y, Ye D, Tian Y. STAT1 as a downstream mediator of ERK signaling contributes to bone cancer pain by regulating MHC II expression in spinal microglia. Brain Behav Immun 2017; 60:161-173. [PMID: 27742579 DOI: 10.1016/j.bbi.2016.10.009] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 10/08/2016] [Accepted: 10/10/2016] [Indexed: 01/05/2023] Open
Abstract
Major histocompatibility class II (MHC II)-specific activation of CD4+ T helper cells generates specific and persistent adaptive immunity against tumors. Emerging evidence demonstrates that MHC II is also involved in basic pain perception; however, little is known regarding its role in the development of cancer-induced bone pain (CIBP). In this study, we demonstrate that MHC II expression was markedly induced on the spinal microglia of CIBP rats in response to STAT1 phosphorylation. Mechanical allodynia was ameliorated by either pharmacological or genetic inhibition of MHC II upregulation, which was also attenuated by the inhibition of pSTAT1 and pERK but was deteriorated by intrathecal injection of IFNγ. Furthermore, inhibition of ERK signaling decreased the phosphorylation of STAT1, as well as the production of MHC II in vivo and in vitro. These findings suggest that STAT1 contributes to bone cancer pain as a downstream mediator of ERK signaling by regulating MHC II expression in spinal microglia.
Collapse
Affiliation(s)
- Zhenpeng Song
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Department of Pain Medicine, Binzhou Medical University Hospital, Binzhou 256600, China
| | - Bingrui Xiong
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Hua Zheng
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Anne Manyande
- School of Human and Social Sciences, University of West London, Middlesex TW8 9GA, UK
| | - Xuehai Guan
- Department of Anesthesiology, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning 530021, China
| | - Fei Cao
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Lifang Ren
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yaqun Zhou
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Dawei Ye
- Cancer Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Yuke Tian
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
24
|
Ren F, Jiao H, Cai H. Analgesic Effect of Intrathecal Administration of Chemokine Receptor CCR2 Antagonist is Related to Change in Spinal NR2B, nNOS, and SIGIRR Expression in Rat with Bone Cancer Pain. Cell Biochem Biophys 2017; 72:611-6. [PMID: 25653100 DOI: 10.1007/s12013-014-0510-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The purpose of this study is to investigate the analgesic effect of intrathecal injection of chemokine receptor CCR2 antagonist RS102895, and its effect on spinal expression of N-methyl-D-aspartate (NMDA) receptor NR2B subunit, neuronal nitric oxide synthase (nNOS), and SIGIRR in a rat model of bone cancer pain (BCP). A rat model of BCP was established by intro-tibial inoculation of W256 breast cancer cells. Female SD rats were randomly divided into five groups (n = 10 each): Sham group, Sham + RS102895 group, BCP group, BCP + RS102895 group, and BCP + DMSO group. Rats received intrathecal injections of either RS102895 (3 g/l) 10 μl or 10 % DMSO 10 μl on day 9 to day 20 after operation. Pain thresholds of mechanical stimulation and thermal stimulation of each group were measured one day before and at 3rd, 6th, 9th, 12th, 15th, and 20th days after surgery. Spinal expression of NR2B, nNOS, and SIGIRR was detected by RT-PCR and Western blot. CCR2 antagonist RS102895 can suppress the pain induced by both mechanical and thermal stimulation in rats with BCP. Spinal expression of CCR2, NR2B, and nNOS was significantly up-regulated, while SIGIRR was down-regulated in BCP rats, and intrathecal injection of RS102895 effectively reversed the pattern of NR2B, nNOS, and SIGIRR expression in spinal cord. Analgesic effects of CCR2 antagonist RS102895 in BCP rats may be related to its downregulation of signal transduction pathway of NMDAR/nNOS and upregulation of Toll-interleukin-1 receptor member SIGIRR.
Collapse
Affiliation(s)
- Fei Ren
- Department of Anesthesiology, Xiangya Hospital of Central South University, Changsha, 410008, Hunan, People's Republic of China
| | - Hena Jiao
- Department of Anesthesiology, Xiangya Hospital of Central South University, Changsha, 410008, Hunan, People's Republic of China
| | - Hongwei Cai
- Department of Anesthesiology, Xiangya Hospital of Central South University, Changsha, 410008, Hunan, People's Republic of China.
| |
Collapse
|
25
|
Liu L, Gao XJ, Ren CG, Hu JH, Liu XW, Zhang P, Zhang ZW, Fu ZJ. Monocyte chemoattractant protein-1 contributes to morphine tolerance in rats with cancer-induced bone pain. Exp Ther Med 2016; 13:461-466. [PMID: 28352316 PMCID: PMC5348680 DOI: 10.3892/etm.2016.3979] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 10/21/2016] [Indexed: 12/27/2022] Open
Abstract
Cancer-induced bone pain can severely compromise the life quality of patients, while tolerance limits the use of opioids in the treatment of cancer pain. Monocyte chemoattractant protein-1 (MCP-1) is known to contribute to neuropathic pain. However, the role of spinal MCP-1 in the development of morphine tolerance in patients with cancer-induced bone pain remains unclear. The aim of the present study was to investigate the role of spinal MCP-1 in morphine tolerance in bone cancer pain rats (MTBP rats). Bone cancer pain was induced by intramedullary injection of Walker 256 cells into the tibia of the rats, while morphine tolerance was induced by continuous intrathecal injection of morphine over a period of 9 days. In addition, anti-MCP-1 antibodies were intrathecally injected to rats in various groups in order to investigate the association of MCP-1 with mechanical and heat hyperalgesia using the paw withdrawal threshold (PWT) and thermal withdrawal latency (TWL) tests, respectively. Furthermore, MCP-1 and CCR2 expression levels were measured using reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and western blot analysis, and CCR2 expression levels were measured using RT-qPCR. The results indicated that MCP-1 and CCR2 expression levels were significantly increased in the spinal cord of MTBP rats. Intrathecal administration of anti-MCP-1 neutralizing antibodies was observed to attenuate the mechanical and thermal allodynia in MTBP rats. Therefore, the upregulation of spinal MCP-1 and CCR2 expression levels may contribute to the development of mechanical allodynia in MTBP rats. In conclusion, MCP-1/CCR2 signaling may serve a crucial role in morphine tolerance development in rats suffering from cancer-induced bone pain.
Collapse
Affiliation(s)
- Lei Liu
- Department of Pain Management, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China; Department of Anesthesiology, Liaocheng People's Hospital, Liaocheng, Shandong 252000, P.R. China
| | - Xiu-Juan Gao
- Department of Anesthesiology, Liaocheng People's Hospital, Liaocheng, Shandong 252000, P.R. China
| | - Chun-Guang Ren
- Department of Anesthesiology, Liaocheng People's Hospital, Liaocheng, Shandong 252000, P.R. China
| | - Ji-Hua Hu
- Department of Anesthesiology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Xian-Wen Liu
- Department of Anesthesiology, Liaocheng People's Hospital, Liaocheng, Shandong 252000, P.R. China
| | - Ping Zhang
- Department of Anesthesiology, Liaocheng People's Hospital, Liaocheng, Shandong 252000, P.R. China
| | - Zong-Wang Zhang
- Department of Anesthesiology, Liaocheng People's Hospital, Liaocheng, Shandong 252000, P.R. China
| | - Zhi-Jian Fu
- Department of Pain Management, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| |
Collapse
|
26
|
Guo CH, Bai L, Wu HH, Yang J, Cai GH, Zeng SX, Wang X, Wu SX, Ma W. Midazolam and ropivacaine act synergistically to inhibit bone cancer pain with different mechanisms in rats. Oncol Rep 2016; 37:249-258. [PMID: 27841001 DOI: 10.3892/or.2016.5241] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 10/24/2016] [Indexed: 11/06/2022] Open
Abstract
Analgesic strategy of a single drug analgesia in bone cancer pain (BCP) has shifted to combined analgesia with different drugs which have different mechanism. After tumor cell inculation, the activation of signal transducer and activator of transcription (STAT3) and extracellular signal-regulated kinase (ERK) signaling pathway are involved in the development and maintenance of BCP, whereas a decrease in the expression of spinal STAT3 and ERK through using their specific blocker, lead to attenuation of BCP. Hence, in this study, we clarified that intrathecal (i.t.) injection of midazolam (MZL) and ropivacaine (Ropi) induces synergistic analgesia on BCP and is accompanied with different mechanisms of these analgesic effect. Hargreaves heat test was used to detect the analgesic effect of single dose of i.t. MZL, Ropi and their combination on the BCP rats. At consecutive daily administration experiment, thermal hyperalgesia was recorded, and immunohistochemical staining was used to detect the expression of c-Fos, spinal glial fibrillary acidic protein (GFAP) and ionized calcium binding adapter molecule-1 (IBA-1). Then, western blot analysis was used to examine spinal TSPO, GFAP, IBA-1, pERK/ERK and pSTAT3/STAT3 levels on day 14 after tumor cell inoculation. i.t. MZL or Ropi showed a short-term analgesia dose-dependently, and MZL displayed better effect on inhibition of pSTAT3 expression than pERK, but Ropi was just the reverse, then consecutive daily administrations of their combination acted synergistically to attenuate thermal hyperalgesia with downregulated spinal 'neuron-astrocytic activation' in the BCP rats. i.t. co-delivery of MZL and Ropi shows synergistic analgesia on the BCP with the inhibition of spinal 'neuron-astrocytic activation'. Spinal different signaling pathway inhibition for MZL and Ropi may be involved in this process.
Collapse
Affiliation(s)
- Chi-Hua Guo
- Department of Orthopedics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Lu Bai
- Department of Medical Imaging, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Huang-Hui Wu
- Department of Anesthesiology, Fuzhou General Hospital of Nanjing Military Region, Fuzhou, Fujian 350025, P.R. China
| | - Jing Yang
- Institute of Neuroscience, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, P.R. China
| | - Guo-Hong Cai
- Department of Neurobiology and Collaborative Innovation Center for Brain Science, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Si-Xiang Zeng
- Department of Orthopedics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Xin Wang
- Department of Neurobiology and Collaborative Innovation Center for Brain Science, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Sheng-Xi Wu
- Department of Neurobiology and Collaborative Innovation Center for Brain Science, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Wei Ma
- Department of Orthopedics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| |
Collapse
|
27
|
Dodds KN, Beckett EAH, Evans SF, Grace PM, Watkins LR, Hutchinson MR. Glial contributions to visceral pain: implications for disease etiology and the female predominance of persistent pain. Transl Psychiatry 2016; 6:e888. [PMID: 27622932 PMCID: PMC5048206 DOI: 10.1038/tp.2016.168] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 07/14/2016] [Accepted: 07/22/2016] [Indexed: 12/27/2022] Open
Abstract
In the central nervous system, bidirectional signaling between glial cells and neurons ('neuroimmune communication') facilitates the development of persistent pain. Spinal glia can contribute to heightened pain states by a prolonged release of neurokine signals that sensitize adjacent centrally projecting neurons. Although many persistent pain conditions are disproportionately common in females, whether specific neuroimmune mechanisms lead to this increased susceptibility remains unclear. This review summarizes the major known contributions of glia and neuroimmune interactions in pain, which has been determined principally in male rodents and in the context of somatic pain conditions. It is then postulated that studying neuroimmune interactions involved in pain attributed to visceral diseases common to females may offer a more suitable avenue for investigating unique mechanisms involved in female pain. Further, we discuss the potential for primed spinal glia and subsequent neurogenic inflammation as a contributing factor in the development of peripheral inflammation, therefore, representing a predisposing factor for females in developing a high percentage of such persistent pain conditions.
Collapse
Affiliation(s)
- K N Dodds
- Discipline of Physiology, School of Medicine, University of Adelaide, Adelaide, SA, Australia
| | - E A H Beckett
- Discipline of Physiology, School of Medicine, University of Adelaide, Adelaide, SA, Australia
| | - S F Evans
- Discipline of Pharmacology, School of Medicine, University of Adelaide, Adelaide, SA, Australia
- Pelvic Pain SA, Norwood, SA, Australia
| | - P M Grace
- Discipline of Pharmacology, School of Medicine, University of Adelaide, Adelaide, SA, Australia
- Department of Psychology and Neuroscience, Center for Neuroscience, University of Colorado Boulder, Boulder, CO, USA
| | - L R Watkins
- Department of Psychology and Neuroscience, Center for Neuroscience, University of Colorado Boulder, Boulder, CO, USA
| | - M R Hutchinson
- Discipline of Physiology, School of Medicine, University of Adelaide, Adelaide, SA, Australia
- ARC Centre of Excellence for Nanoscale BioPhotonics, University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
28
|
Shenoy PA, Kuo A, Vetter I, Smith MT. The Walker 256 Breast Cancer Cell- Induced Bone Pain Model in Rats. Front Pharmacol 2016; 7:286. [PMID: 27630567 PMCID: PMC5005431 DOI: 10.3389/fphar.2016.00286] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 08/18/2016] [Indexed: 12/19/2022] Open
Abstract
The majority of patients with terminal breast cancer show signs of bone metastasis, the most common cause of pain in cancer. Clinically available drug treatment options for the relief of cancer-associated bone pain are limited due to either inadequate pain relief and/or dose-limiting side-effects. One of the major hurdles in understanding the mechanism by which breast cancer causes pain after metastasis to the bones is the lack of suitable preclinical models. Until the late twentieth century, all animal models of cancer induced bone pain involved systemic injection of cancer cells into animals, which caused severe deterioration of animal health due to widespread metastasis. In this mini-review we have discussed details of a recently developed and highly efficient preclinical model of breast cancer induced bone pain: Walker 256 cancer cell- induced bone pain in rats. The model involves direct localized injection of cancer cells into a single tibia in rats, which avoids widespread metastasis of cancer cells and hence animals maintain good health throughout the experimental period. This model closely mimics the human pathophysiology of breast cancer induced bone pain and has great potential to aid in the process of drug discovery for treating this intractable pain condition.
Collapse
Affiliation(s)
- Priyank A Shenoy
- School of Biomedical Sciences, The University of QueenslandBrisbane, QLD, Australia; Centre for Integrated Preclinical Drug Development, The University of QueenslandBrisbane, QLD, Australia
| | - Andy Kuo
- Centre for Integrated Preclinical Drug Development, The University of Queensland Brisbane, QLD, Australia
| | - Irina Vetter
- Institute for Molecular Bioscience, The University of QueenslandBrisbane, QLD, Australia; School of Pharmacy, The University of QueenslandBrisbane, QLD, Australia
| | - Maree T Smith
- Centre for Integrated Preclinical Drug Development, The University of QueenslandBrisbane, QLD, Australia; School of Pharmacy, The University of QueenslandBrisbane, QLD, Australia
| |
Collapse
|
29
|
Zhou YQ, Liu Z, Liu HQ, Liu DQ, Chen SP, Ye DW, Tian YK. Targeting glia for bone cancer pain. Expert Opin Ther Targets 2016; 20:1365-1374. [PMID: 27428617 DOI: 10.1080/14728222.2016.1214716] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
INTRODUCTION Bone cancer pain (BCP) remains to be a clinical challenge with limited pharmaceutical interventions. Therefore, novel therapeutic targets for the management of BCP are in desperate need. Recently, a growing body of evidence has suggested that glial cells may play a pivotal role in the pathogenesis of BCP. Areas covered: This review summarizes the recent progress in the understanding of glia in BCP and reveals the potential therapeutic targets in glia for BCP treatment. Expert opinion: Pharmacological interventions inhibiting the activation of glial cells, suppressing glia-derived proinflammatory cytokines, cell surface receptors, and the intracellular signaling pathways may be beneficial for the pain management of advanced cancer patients. However, these pharmacological interventions should not disrupt the normal function of glia cells since they play a vital supportive and protective role in the central nervous system.
Collapse
Affiliation(s)
- Ya-Qun Zhou
- a Research Center for Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College , Huazhong University of Science and Technology , Wuhan , China.,b Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College , Huazhong University of Science and Technology , Wuhan , China
| | - Zheng Liu
- c Department of Urology , Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology , Wuhan , China
| | - Hui-Quan Liu
- d Cancer Center, Tongji Hospital, Tongji Medical college , Huazhong University of Science and Technology , Wuhan , China
| | - Dai-Qiang Liu
- a Research Center for Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College , Huazhong University of Science and Technology , Wuhan , China.,b Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College , Huazhong University of Science and Technology , Wuhan , China
| | - Shu-Ping Chen
- a Research Center for Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College , Huazhong University of Science and Technology , Wuhan , China.,b Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College , Huazhong University of Science and Technology , Wuhan , China
| | - Da-Wei Ye
- d Cancer Center, Tongji Hospital, Tongji Medical college , Huazhong University of Science and Technology , Wuhan , China
| | - Yu-Ke Tian
- a Research Center for Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College , Huazhong University of Science and Technology , Wuhan , China.,b Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College , Huazhong University of Science and Technology , Wuhan , China
| |
Collapse
|
30
|
Hou Y, Wang L, Gao J, Jin X, Ji F, Yang J. A modified procedure for lumbar intrathecal catheterization in rats. Neurol Res 2016; 38:725-32. [DOI: 10.1080/01616412.2016.1196870] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
31
|
Bian J, Zhu S, Ma W, Li C, Ashraf MA. Analgesic effect and possible mechanism of SCH772984 intrathecal injection on rats with bone cancer pain. Saudi Pharm J 2016; 24:354-62. [PMID: 27275127 PMCID: PMC4881153 DOI: 10.1016/j.jsps.2016.04.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
This study is to establish a model of rat tibial osteocarcinoma pain, intrathecally inject specific ERK1/2 inhibitors SCH772984, observe the analgesic effect, and discuss the influence of ERK-P90RSK-Fos signal path in bone cancer pain. Forty female SD rats were randomly divided into 5 groups. Establish a bone cancer pain model after putting the intrathecal tube 5d and determine the rats' mechanical withdrawal threshold (MWT) after tube 5d; 40 SD rats with intrathecal tube back 5d were randomly divided into 5 groups. Sham Group receives no medication, the other four respectively receive 5% DMSO 10 μl, SCH 0.1, 1.0, 10 μg (SCH dissolved in 10 μl 5% DMSO) intrathecally. Determine the rats' mechanical withdrawal threshold (MWT) before and after giving medication 1, 3, 6, 9, 12, 15, 18, 24 h, and 2 min spontaneous paw withdrawal. Western blot and immuno-fluorescence determine the expression condition of spinal cord dorsal horn of p-ERK, p-p90RSK and Fos protein. Intrathecal injection of SCH772984 has analgesic effects on rats with bone cancer pain, and the effects enhance with increasing dose; intrathecal injection of SCH772984 10 μg could greatly reduce the expression of spinal dorsal horn Fos protein. Injecting walker 256 tumor cells into rats' tibia could cause behavior changes, such as idiopathic pain sensitivity and pain; the intrathecal tube almost has no effect on motor function of rats; ERK1/2 is involved in bone cancer pain, and intrathecal injection of ERK1/2 specific inhibitors SCH772984 10 μg may effectively relieve bone cancer pain.
Collapse
Affiliation(s)
- Juhua Bian
- Jiangsu Provincial Key Laboratory of Anesthesiology, Xuzhou Medical College, Xuzhou City, China
| | - Shanshan Zhu
- Department of Anesthesiology, Xuzhou Cancer Hospital, Xuzhou City, China
| | - Wenwen Ma
- Department of Anesthesiology, Xuzhou Cancer Hospital, Xuzhou City, China
| | - Chunwei Li
- Jiangsu Provincial Key Laboratory of Anesthesiology, Xuzhou Medical College, Xuzhou City, China
| | - Muhammad Aqeel Ashraf
- Faculty of Science and Natural Resources, University Malaysia Sabah, 88400 Kota Kinabalau, Sabah, Malaysia
| |
Collapse
|
32
|
Liang Y, Liu Y, Hou B, Zhang W, Liu M, Sun YE, Ma Z, Gu X. CREB-regulated transcription coactivator 1 enhances CREB-dependent gene expression in spinal cord to maintain the bone cancer pain in mice. Mol Pain 2016; 12:12/0/1744806916641679. [PMID: 27060162 PMCID: PMC4955996 DOI: 10.1177/1744806916641679] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 01/06/2016] [Indexed: 12/29/2022] Open
Abstract
Background cAMP response element binding protein (CREB)-dependent gene expression plays an important role in central sensitization. CREB-regulated transcription coactivator 1 (CRTC1) dramatically increases CREB-mediated transcriptional activity. Brain-derived neurotrophic factor, N-methyl-d-aspartate receptor subunit 2B, and miRNA-212/132, which are highly CREB responsive, function downstream from CREB/CRTC1 to mediate activity-dependent synaptic plasticity and in turn loops back to amplify CREB/CRTC1 signaling. This study aimed to investigate the role of spinal CRTC1 in the maintenance of bone cancer pain using an RNA interference method. Results Osteosarcoma cells were implanted into the intramedullary space of the right femurs of C3H/HeNCrlVr mice to induce bone cancer pain. Western blotting was applied to examine the expression of spinal phospho-Ser133 CREB and CRTC1. We further investigated effects of repeated intrathecal administration with Adenoviruses expressing CRTC1-small interfering RNA (siRNA) on nociceptive behaviors and on the upregulation of CREB/CRTC1-target genes associated with bone cancer pain. Inoculation of osteosarcoma cells induced progressive mechanical allodynia and spontaneous pain, and resulted in upregulation of spinal p-CREB and CRTC1. Repeated intrathecal administration with Adenoviruses expressing CRTC1-siRNA attenuated bone cancer–evoked pain behaviors, and reduced CREB/CRTC1-target genes expression in spinal cord, including BDNF, NR2B, and miR-212/132. Conclusions Upregulation of CRTC1 enhancing CREB-dependent gene transcription in spinal cord may play an important role in bone cancer pain. Inhibition of spinal CRTC1 expression reduced bone cancer pain. Interruption to the positive feedback circuit between CREB/CRTC1 and its targets may contribute to the analgesic effects. These findings may provide further insight into the mechanisms and treatment of bone cancer pain.
Collapse
Affiliation(s)
- Ying Liang
- Department of Anesthesiology, Affiliated Drum Tower Hospital of Medical School of Nanjing University, Nanjing, China
| | - Yue Liu
- Department of Anesthesiology, Affiliated Drum Tower Hospital of Medical School of Nanjing University, Nanjing, China
| | - Bailing Hou
- Department of Anesthesiology, Affiliated Drum Tower Hospital of Medical School of Nanjing University, Nanjing, China
| | - Wei Zhang
- Department of Anesthesiology, Affiliated Drum Tower Hospital of Medical School of Nanjing University, Nanjing, China
| | - Ming Liu
- Department of Anesthesiology, Affiliated Drum Tower Hospital of Medical School of Nanjing University, Nanjing, China
| | - Yu-E Sun
- Department of Anesthesiology, Affiliated Drum Tower Hospital of Medical School of Nanjing University, Nanjing, China
| | - Zhengliang Ma
- Department of Anesthesiology, Affiliated Drum Tower Hospital of Medical School of Nanjing University, Nanjing, China
| | - Xiaoping Gu
- Department of Anesthesiology, Affiliated Drum Tower Hospital of Medical School of Nanjing University, Nanjing, China
| |
Collapse
|
33
|
Hou B, Cui X, Liu Y, Zhang W, Liu M, Sun YE, Ma Z, Gu X. Positive feedback regulation between microRNA-132 and CREB in spinal cord contributes to bone cancer pain in mice. Eur J Pain 2016; 20:1299-308. [PMID: 26919478 DOI: 10.1002/ejp.854] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/10/2016] [Indexed: 12/14/2022]
Abstract
BACKGROUND cAMP response element-binding protein (CREB)-dependent gene expression plays an important role in central sensitization. CREB-regulated transcription coactivator 1 (CRTC1) dramatically increase CREB-mediated transcriptional activity. microRNA-132 (miR-132), which is highly CREB-responsive, functions downstream from CREB/CRTC1 to mediate activity-dependent synaptic plasticity and in turn loops back to amplify CREB/CRTC1 signalling. This study aimed to investigate the positive feedback regulation between miR-132 and CREB in spinal cord in the maintenance of bone cancer pain. METHODS Osteosarcoma cells were implanted into the intramedullary space of the right femurs of C3H/HeNCrlVr mice to induce bone cancer pain. We further investigated effects of repeated intrathecal administration with Adenoviruses expressing CREB-siRNA or miR-132 antisense locked nucleic acid (LNA), respectively, on nociceptive behaviours and on the activity of CREB/CRTC1 signalling. RESULTS Intramedullary inoculation of osteosarcoma cells resulted in up-regulation of spinal p-CREB, CRTC1 and CREB-target genes (NR2B and miR-132). Repeated intrathecal administration with Adenoviruses expressing CREB-siRNA or miR-132 LNA-AS, respectively, attenuated bone cancer-evoked pain behaviours, reduced the activity of CREB/CRTC1 signalling and down-regulated CREB-target gene NR2B expression in spinal cord. CONCLUSIONS These findings suggest that activation of spinal CREB/CRTC1 signalling may play an important role in bone cancer pain. Interruption to the positive feedback regulation between CREB/CRTC1 and its target gene miR-132 can effectively relieved the bone cancer-induced mechanical allodynia and spontaneous pain. WHAT DOES THIS STUDY ADD?: The positive feedback regulation between CREB/CRTC1 and its target gene miR-132 in spinal cord plays an important role in bone cancer pain.
Collapse
Affiliation(s)
- B Hou
- Department of Anesthesiology, Affiliated Drum Tower Hospital of Medical School of Nanjing University, Nanjing, Jiangsu province, China
| | - X Cui
- Department of Anesthesiology, Affiliated Drum Tower Hospital of Medical School of Nanjing University, Nanjing, Jiangsu province, China
| | - Y Liu
- Department of Anesthesiology, Affiliated Drum Tower Hospital of Medical School of Nanjing University, Nanjing, Jiangsu province, China
| | - W Zhang
- Department of Anesthesiology, Affiliated Drum Tower Hospital of Medical School of Nanjing University, Nanjing, Jiangsu province, China
| | - M Liu
- Department of Anesthesiology, Affiliated Drum Tower Hospital of Medical School of Nanjing University, Nanjing, Jiangsu province, China
| | - Y E Sun
- Department of Anesthesiology, Affiliated Drum Tower Hospital of Medical School of Nanjing University, Nanjing, Jiangsu province, China
| | - Z Ma
- Department of Anesthesiology, Affiliated Drum Tower Hospital of Medical School of Nanjing University, Nanjing, Jiangsu province, China
| | - X Gu
- Department of Anesthesiology, Affiliated Drum Tower Hospital of Medical School of Nanjing University, Nanjing, Jiangsu province, China
| |
Collapse
|
34
|
Zhu S, Wang C, Han Y, Song C, Hu X, Liu Y. Sigma-1 Receptor Antagonist BD1047 Reduces Mechanical Allodynia in a Rat Model of Bone Cancer Pain through the Inhibition of Spinal NR1 Phosphorylation and Microglia Activation. Mediators Inflamm 2015; 2015:265056. [PMID: 26696751 PMCID: PMC4677253 DOI: 10.1155/2015/265056] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 11/05/2015] [Indexed: 11/17/2022] Open
Abstract
Previous studies have demonstrated that sigma-1 receptor plays important roles in the induction phase of rodent neuropathic pain; however, whether it is involved in bone cancer pain (BCP) and the underlying mechanisms remain elusive. The aim of this study was to examine the potential role of the spinal sigma-1 receptor in the development of bone cancer pain. Walker 256 mammary gland carcinoma cells were implanted into the intramedullary space of the right tibia of Sprague-Dawley rats to induce ongoing bone cancer-related pain behaviors; our findings indicated that, on days 7, 10, 14, and 21 after operation, the expression of sigma-1 receptor in the spinal cord was higher in BCP rats compared to the sham rats. Furthermore, intrathecal injection of 120 nmol of sigma-1 receptor antagonist BD1047 on days 5, 6, and 7 after operation attenuated mechanical allodynia as well as the associated induction of c-Fos and activation of microglial cells, NR1, and the subsequent Ca(2+)-dependent signals of BCP rats. These results suggest that sigma-1 receptor is involved in the development of bone cancer pain and that targeting sigma-1 receptor may be a new strategy for the treatment of bone cancer pain.
Collapse
Affiliation(s)
- Shanshan Zhu
- Department of Anesthesiology, Xuzhou Cancer Hospital, Affiliated Xuzhou Hospital, Jiangsu University, Xuzhou 221005, China
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical College, Xuzhou 221002, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou 221002, China
| | - Chenchen Wang
- Department of Anesthesiology, Xuzhou Children's Hospital, Xuzhou 221006, China
| | - Yuan Han
- Department of Anesthesiology, Affiliated Hospital, Xuzhou Medical College, Xuzhou 221006, China
| | - Chao Song
- Department of Oncology, Affiliated Hospital, Xuzhou Medical College, Xuzhou 221006, China
| | - Xueming Hu
- Department of Pain, Affiliated Hospital, Xuzhou Medical College, Xuzhou 221006, China
| | - Yannan Liu
- Department of Anesthesiology, Xuzhou Maternity and Child Health Hospital, Xuzhou 221009, China
| |
Collapse
|
35
|
Fan H, Li TF, Gong N, Wang YX. Shanzhiside methylester, the principle effective iridoid glycoside from the analgesic herb Lamiophlomis rotata, reduces neuropathic pain by stimulating spinal microglial β-endorphin expression. Neuropharmacology 2015; 101:98-109. [PMID: 26363192 DOI: 10.1016/j.neuropharm.2015.09.010] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2015] [Revised: 09/04/2015] [Accepted: 09/07/2015] [Indexed: 12/22/2022]
Abstract
Lamiophlomis rotata (L. rotata, Duyiwei) is an orally available Tibetan analgesic herb widely prescribed in China. Shanzhiside methylester (SM) is a principle effective iridoid glycoside of L. rotata and serves as a small molecule glucagon-like peptide-1 (GLP-1) receptor agonist. This study aims to evaluate the signal mechanisms underlying SM anti-allodynia, determine the ability of SM to induce anti-allodynic tolerance, and illustrate the interactions between SM and morphine, or SM and β-endorphin, in anti-allodynia and anti-allodynic tolerance. Intrathecal SM exerted dose-dependent and long-lasting (>4 h) anti-allodynic effects in spinal nerve injury-induced neuropathic rats, with a maximal inhibition of 49% and a projected ED50 of 40.4 μg. SM and the peptidic GLP-1 receptor agonist exenatide treatments over 7 days did not induce self-tolerance to anti-allodynia or cross-tolerance to morphine or β-endorphin. In contrast, morphine and β-endorphin induced self-tolerance and cross-tolerance to SM and exenatide. In the spinal dorsal horn and primary microglia, SM significantly evoked β-endorphin expression, which was completely prevented by the microglial inhibitor minocycline and p38 mitogen-activated protein kinase (MAPK) inhibitor SB203580. SM anti-allodynia was totally inhibited by the GLP-1 receptor antagonist exendin(9-39), minocycline, β-endorphin antiserum, μ-opioid receptor antagonist CTAP, and SB203580. SM and exenatide specifically activated spinal p38 MAPK phosphorylation. These results indicate that SM reduces neuropathic pain by activating spinal GLP-1 receptors and subsequently stimulating microglial β-endorphin expression via the p38 MAPK signaling. Stimulation of the endogenous β-endorphin expression may be a novel and effective strategy for the discovery and development of analgesics for the long-term treatment of chronic pain.
Collapse
Affiliation(s)
- Hui Fan
- King's Lab, Shanghai Jiao Tong University School of Pharmacy, 800 Dongchuan Road, Shanghai, 200240, China
| | - Teng-Fei Li
- King's Lab, Shanghai Jiao Tong University School of Pharmacy, 800 Dongchuan Road, Shanghai, 200240, China
| | - Nian Gong
- King's Lab, Shanghai Jiao Tong University School of Pharmacy, 800 Dongchuan Road, Shanghai, 200240, China
| | - Yong-Xiang Wang
- King's Lab, Shanghai Jiao Tong University School of Pharmacy, 800 Dongchuan Road, Shanghai, 200240, China.
| |
Collapse
|
36
|
Narayanan KB, Ali M, Barclay BJ, Cheng QS, D'Abronzo L, Dornetshuber-Fleiss R, Ghosh PM, Gonzalez Guzman MJ, Lee TJ, Leung PS, Li L, Luanpitpong S, Ratovitski E, Rojanasakul Y, Romano MF, Romano S, Sinha RK, Yedjou C, Al-Mulla F, Al-Temaimi R, Amedei A, Brown DG, Ryan EP, Colacci A, Hamid RA, Mondello C, Raju J, Salem HK, Woodrick J, Scovassi AI, Singh N, Vaccari M, Roy R, Forte S, Memeo L, Kim SY, Bisson WH, Lowe L, Park HH. Disruptive environmental chemicals and cellular mechanisms that confer resistance to cell death. Carcinogenesis 2015; 36 Suppl 1:S89-110. [PMID: 26106145 DOI: 10.1093/carcin/bgv032] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Cell death is a process of dying within biological cells that are ceasing to function. This process is essential in regulating organism development, tissue homeostasis, and to eliminate cells in the body that are irreparably damaged. In general, dysfunction in normal cellular death is tightly linked to cancer progression. Specifically, the up-regulation of pro-survival factors, including oncogenic factors and antiapoptotic signaling pathways, and the down-regulation of pro-apoptotic factors, including tumor suppressive factors, confers resistance to cell death in tumor cells, which supports the emergence of a fully immortalized cellular phenotype. This review considers the potential relevance of ubiquitous environmental chemical exposures that have been shown to disrupt key pathways and mechanisms associated with this sort of dysfunction. Specifically, bisphenol A, chlorothalonil, dibutyl phthalate, dichlorvos, lindane, linuron, methoxychlor and oxyfluorfen are discussed as prototypical chemical disruptors; as their effects relate to resistance to cell death, as constituents within environmental mixtures and as potential contributors to environmental carcinogenesis.
Collapse
Affiliation(s)
- Kannan Badri Narayanan
- Department of Chemistry and Biochemistry, Yeungnam University, Gyeongsan 712-749, South Korea, Sultan Zainal Abidin University, Malaysia, Plant Biotechnologies Inc, St. Albert AB, Canada, Computer Science Department, Southern Illinois University, Carbondale, IL 62901, USA, Department of Urology, University of California Davis, Sacramento, CA 95817, USA, Department of Pharmacology and Toxicology, University of Vienna, Austria, University of Puerto Rico, Medical Sciences Campus, School of Public Health, Nutrition Program, San Juan Puerto Rico 00936-5067, USA, Department of Anatomy, College of Medicine, Yeungnam University, Daegu, 705-717, South Korea, School of Biomedical Science, The Chinese University Of Hong Kong, Hong Kong, China, Siriraj Center of Excellence for Stem Cell Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand, Department of Otolaryngology/Head and Neck Surgery, Head and Neck Cancer Research Division, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA, Department of Pharmaceutical Sciences, Mary Babb Randolph Cancer Center, West Virginia University, Morgantown, WV 26506, USA, Department of Molecular Medicine and Medical Biotechnology, Federico II University of Naples, 80131 Naples, Italy, Department of Molecular and Experimental Medicine, MEM 180, The Scripps Research Institute, La Jolla, CA 92037, USA, Department of Biology, Jackson State University, Jackson, MS 39217, USA, Department of Pathology, Kuwait University, Safat 13110, Kuwait, Department of Experimental and Clinical Medicine, University of Firenze, Firenze, 50134, Italy, Department of Environmental and Radiological Health Sciences, Colorado state University/ Colorado School of Public Health, Fort Collins, CO 80523-1680, USA, Center for Environmental Carcinogenesis and Risk Assessment, Environmental Protection and Health Prevention Agency, Bologna, 40126, Italy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Se
| | - Manaf Ali
- Sultan Zainal Abidin University, Malaysia
| | | | - Qiang Shawn Cheng
- Computer Science Department, Southern Illinois University, Carbondale, IL 62901, USA
| | - Leandro D'Abronzo
- Department of Urology, University of California Davis, Sacramento, CA 95817, USA
| | | | - Paramita M Ghosh
- Department of Urology, University of California Davis, Sacramento, CA 95817, USA
| | - Michael J Gonzalez Guzman
- University of Puerto Rico, Medical Sciences Campus, School of Public Health, Nutrition Program, San Juan Puerto Rico 00936-5067, USA
| | - Tae-Jin Lee
- Department of Anatomy, College of Medicine, Yeungnam University, Daegu, 705-717, South Korea
| | - Po Sing Leung
- School of Biomedical Science, The Chinese University Of Hong Kong, Hong Kong, China
| | - Lin Li
- School of Biomedical Science, The Chinese University Of Hong Kong, Hong Kong, China
| | - Suidjit Luanpitpong
- Siriraj Center of Excellence for Stem Cell Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Edward Ratovitski
- Department of Otolaryngology/Head and Neck Surgery, Head and Neck Cancer Research Division, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Yon Rojanasakul
- Department of Pharmaceutical Sciences, Mary Babb Randolph Cancer Center, West Virginia University, Morgantown, WV 26506, USA
| | - Maria Fiammetta Romano
- Department of Molecular Medicine and Medical Biotechnology, Federico II University of Naples, 80131 Naples, Italy
| | - Simona Romano
- Department of Molecular Medicine and Medical Biotechnology, Federico II University of Naples, 80131 Naples, Italy
| | - Ranjeet K Sinha
- Department of Molecular and Experimental Medicine, MEM 180, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Clement Yedjou
- Department of Biology, Jackson State University, Jackson, MS 39217, USA
| | - Fahd Al-Mulla
- Department of Pathology, Kuwait University, Safat 13110, Kuwait
| | | | - Amedeo Amedei
- Department of Experimental and Clinical Medicine, University of Firenze, Firenze, 50134, Italy
| | - Dustin G Brown
- Department of Environmental and Radiological Health Sciences, Colorado state University/ Colorado School of Public Health, Fort Collins, CO 80523-1680, USA
| | - Elizabeth P Ryan
- Department of Environmental and Radiological Health Sciences, Colorado state University/ Colorado School of Public Health, Fort Collins, CO 80523-1680, USA
| | - Annamaria Colacci
- Center for Environmental Carcinogenesis and Risk Assessment, Environmental Protection and Health Prevention Agency, Bologna, 40126, Italy
| | - Roslida A Hamid
- Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor 43400, Malaysia
| | - Chiara Mondello
- Institute of Molecular Genetics, National Research Council, Pavia, 27100, Italy
| | - Jayadev Raju
- Toxicology Research Division, Bureau of Chemical Safety Food Directorate, Health Products and Food Branch Health Canada, Ottawa, Ontario, K1A0K9, Canada
| | - Hosni K Salem
- Urology Department, Kasr Al-Ainy School of Medicine, Cairo University, El Manial, Cairo, 12515, Egypt
| | - Jordan Woodrick
- Molecular Oncology Program, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington DC, 20057, USA
| | - A Ivana Scovassi
- Institute of Molecular Genetics, National Research Council, Pavia, 27100, Italy
| | - Neetu Singh
- Advenced Molecular Science Research Centre, King George's Medical University, Lucknow, Uttar Pradesh, 226003, India
| | - Monica Vaccari
- Center for Environmental Carcinogenesis and Risk Assessment, Environmental Protection and Health Prevention Agency, Bologna, 40126, Italy
| | - Rabindra Roy
- Molecular Oncology Program, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington DC, 20057, USA
| | - Stefano Forte
- Mediterranean Institute of Oncology, Viagrande, 95029, Italy
| | - Lorenzo Memeo
- Mediterranean Institute of Oncology, Viagrande, 95029, Italy
| | - Seo Yun Kim
- Department of Internal Medicine, Korea Cancer Center Hospital, Seoul 139-706, South Korea
| | - William H Bisson
- Environmental and Molecular Toxicology, Environmental Health Science Center, Oregon State University, Corvallis, OR 97331, USA and
| | - Leroy Lowe
- Getting to Know Cancer, Truro, Nova Scotia, Canada
| | - Hyun Ho Park
- Department of Chemistry and Biochemistry, Yeungnam University, Gyeongsan 712-749, South Korea, Sultan Zainal Abidin University, Malaysia, Plant Biotechnologies Inc, St. Albert AB, Canada, Computer Science Department, Southern Illinois University, Carbondale, IL 62901, USA, Department of Urology, University of California Davis, Sacramento, CA 95817, USA, Department of Pharmacology and Toxicology, University of Vienna, Austria, University of Puerto Rico, Medical Sciences Campus, School of Public Health, Nutrition Program, San Juan Puerto Rico 00936-5067, USA, Department of Anatomy, College of Medicine, Yeungnam University, Daegu, 705-717, South Korea, School of Biomedical Science, The Chinese University Of Hong Kong, Hong Kong, China, Siriraj Center of Excellence for Stem Cell Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand, Department of Otolaryngology/Head and Neck Surgery, Head and Neck Cancer Research Division, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA, Department of Pharmaceutical Sciences, Mary Babb Randolph Cancer Center, West Virginia University, Morgantown, WV 26506, USA, Department of Molecular Medicine and Medical Biotechnology, Federico II University of Naples, 80131 Naples, Italy, Department of Molecular and Experimental Medicine, MEM 180, The Scripps Research Institute, La Jolla, CA 92037, USA, Department of Biology, Jackson State University, Jackson, MS 39217, USA, Department of Pathology, Kuwait University, Safat 13110, Kuwait, Department of Experimental and Clinical Medicine, University of Firenze, Firenze, 50134, Italy, Department of Environmental and Radiological Health Sciences, Colorado state University/ Colorado School of Public Health, Fort Collins, CO 80523-1680, USA, Center for Environmental Carcinogenesis and Risk Assessment, Environmental Protection and Health Prevention Agency, Bologna, 40126, Italy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Se
| |
Collapse
|
37
|
Yao CY, Weng ZL, Zhang JC, Feng T, Lin Y, Yao S. Interleukin-17A Acts to Maintain Neuropathic Pain Through Activation of CaMKII/CREB Signaling in Spinal Neurons. Mol Neurobiol 2015; 53:3914-3926. [PMID: 26166359 DOI: 10.1007/s12035-015-9322-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 06/24/2015] [Indexed: 10/23/2022]
Abstract
Immunity and neuroinflammation play major roles in neuropathic pain. Spinal interleukin (IL)-17A, as a mediator connecting innate and adaptive immunity, has been shown to be an important cytokine in neuroinflammation and acute neuropathic pain. However, the effects and underlying mechanisms of spinal IL-17A in the maintenance of neuropathic pain remain unknown. This study was designed to investigate whether spinal IL-17A acted to maintain neuropathic pain and to elucidate the underlying mechanisms in IL-17A knockout or wild-type (WT) mice following L4 spinal nerve ligation (L4 SNL). WT mice were treated with anti-IL-17A neutralized monoclonal antibody (mAb) or recombinant IL-17A (rIL-17A). We showed that IL-17A levels were significantly increased 1, 3, 7, and 14 days after SNL in spinal cord. Double immunofluorescence staining showed that astrocytes were the major cellular source of spinal IL-17A. IL-17A knockout or anti-IL-17A mAb treatment significantly ameliorated hyperalgesia 7 days after SNL, which was associated with a significant reduction of p-CaMKII and p-CREB levels in spinal cord, whereas rIL-17A treatment conferred the opposite effects. Furthermore, we showed that blocking CaMKII with KN93 significantly reduced SNL- or rIL-17A-induced hyperalgesia and p-CREB expression. Our in vitro data showed that KN93 also significantly inhibited rIL-17A-induced CREB activation in primary cultured spinal neurons. Taken together, our study indicates that astrocytic IL-17A plays important roles in the maintenance of neuropathic pain through CaMKII/CREB signaling pathway in spinal cord, and thus targeting IL-17A may offer an attractive strategy for the treatment of chronic persistent neuropathic pain.
Collapse
Affiliation(s)
- Cheng-Ye Yao
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Ze-Lin Weng
- Department of Pain, The Second Hospital of Xiamen, Xiamen, People's Republic of China
| | - Jian-Cheng Zhang
- Department of Anesthesia, Institute of Anesthesia and Critical Care, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China.,Department of Critical Care Medicine, Institute of Anesthesia and Critical Care, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tao Feng
- Department of Anesthesia, Institute of Anesthesia and Critical Care, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Yun Lin
- Department of Anesthesia, Institute of Anesthesia and Critical Care, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China. .,Department of Critical Care Medicine, Institute of Anesthesia and Critical Care, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Shanglong Yao
- Department of Anesthesia, Institute of Anesthesia and Critical Care, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China.,Department of Critical Care Medicine, Institute of Anesthesia and Critical Care, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
38
|
Borges G, Berrocoso E, Mico JA, Neto F. ERK1/2: Function, signaling and implication in pain and pain-related anxio-depressive disorders. Prog Neuropsychopharmacol Biol Psychiatry 2015; 60:77-92. [PMID: 25708652 DOI: 10.1016/j.pnpbp.2015.02.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Revised: 01/31/2015] [Accepted: 02/15/2015] [Indexed: 12/15/2022]
Abstract
Despite the increasing knowledge regarding pain modulation, the understanding of the mechanisms behind a complex and pathologic chronic pain condition is still insufficient. These knowledge gaps might result in ineffective therapeutic approaches to relieve painful sensations. As a result, severe untreated chronic pain frequently triggers the onset of new disorders such as depression and/or anxiety, and therefore, both the diagnosis and treatment of patients suffering from chronic pain become seriously compromised, prompting a self-perpetuating cycle of symptomatology. The extracellular signal-regulated kinases 1 and 2 (ERK1/2) are molecules strongly implicated in the somatic component of pain at the spinal cord level and have been emerging as mediators of the emotional-affective component as well. Although these molecules might represent good biomarkers, their use as pharmacological targets is still open to discussion as paradoxical information has been obtained. Here we review the current scientific literature regarding ERK1/2 signaling in the modulation of pain, depression and anxiety, including the emotional-affective spheres of the pain experience.
Collapse
Affiliation(s)
- Gisela Borges
- Neuropsycopharmacology and Psychobiology Research Group, Department of Neuroscience (Pharmacology and Psychiatry), University of Cádiz, 11003 Cádiz, Spain; Departamento de Biologia Experimental, Centro de Investigação Médica da Faculdade de Medicina da Universidade do Porto (CIM-FMUP), 4200-319 Porto, Portugal; Grupo de Morfofisiologia do Sistema Nervoso, Instituto de Biologia Molecular e Celular (IBMC), Porto, Portugal
| | - Esther Berrocoso
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain; Neuropsychopharmacology and Psychobiology Research Group, Psychobiology Area, Department of Psychology, University of Cádiz, 11510 Cádiz, Spain
| | - Juan Antonio Mico
- Neuropsycopharmacology and Psychobiology Research Group, Department of Neuroscience (Pharmacology and Psychiatry), University of Cádiz, 11003 Cádiz, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
| | - Fani Neto
- Departamento de Biologia Experimental, Centro de Investigação Médica da Faculdade de Medicina da Universidade do Porto (CIM-FMUP), 4200-319 Porto, Portugal; Grupo de Morfofisiologia do Sistema Nervoso, Instituto de Biologia Molecular e Celular (IBMC), Porto, Portugal.
| |
Collapse
|
39
|
Guo G, Gao F. CXCR3: latest evidence for the involvement of chemokine signaling in bone cancer pain. Exp Neurol 2015; 265:176-9. [PMID: 25681573 DOI: 10.1016/j.expneurol.2015.02.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2014] [Revised: 01/22/2015] [Accepted: 02/05/2015] [Indexed: 11/26/2022]
Abstract
Growing evidence indicates that chemokines participate in the generation and maintenance of bone cancer pain (BCP). Recent work in Exp Neurol by Guan et al. (2015) demonstrated the involvement of spinal chemokine receptor CXCR3 and its downstream PI3K/Akt and Raf/MEK/ERK signaling pathways in BCP. This work provides new evidence to support that chemokines participate in central sensitization in BCP condition. Reviewed evidence suggests that few chemokines have been proved to be related to cancer pain. The underlying relationship between CXCR3 signaling and BCP condition requires further study.
Collapse
Affiliation(s)
- Genhua Guo
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Road, Wuhan 430030, PR China
| | - Feng Gao
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Road, Wuhan 430030, PR China.
| |
Collapse
|
40
|
Guan XH, Fu QC, Shi D, Bu HL, Song ZP, Xiong BR, Shu B, Xiang HB, Xu B, Manyande A, Cao F, Tian YK. Activation of spinal chemokine receptor CXCR3 mediates bone cancer pain through an Akt-ERK crosstalk pathway in rats. Exp Neurol 2015; 263:39-49. [DOI: 10.1016/j.expneurol.2014.09.019] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Revised: 08/30/2014] [Accepted: 09/12/2014] [Indexed: 12/29/2022]
|
41
|
MCP-1 stimulates spinal microglia via PI3K/Akt pathway in bone cancer pain. Brain Res 2014; 1599:158-67. [PMID: 25555372 DOI: 10.1016/j.brainres.2014.12.043] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Revised: 12/19/2014] [Accepted: 12/21/2014] [Indexed: 01/25/2023]
Abstract
Accumulating evidence suggests that chemokine monocyte chemoattractant protein-1 (MCP-1) is significantly involved in the activation of spinal microglia associated with pathological pain, at the same time that the phosphatidylinositol 3-kinase/Protein Kinase B (PI3K/Akt) pathway localized in spinal microglia is involved in both neuropathic and inflammatory pain. However, whether there is a connection between MCP-1 and the PI3K/Akt pathway and in their underlying mechanisms in bone cancer pain (BCP) has not yet been elucidated. In the current study, we investigated the expression changes of p-Akt in microglia and OX-42 (microglia marker) after being stimulated with MCP-1 in vitro, as well as in a BCP model that was established by an intramedullary injection of mammary gland carcinoma cells(Walker 256 cells) into the tibia of rats. We observed a significant increase in expression levels of p-Akt and OX-42 in microglia as well as in spinal dorsal horns of BCP rats. Furthermore, the intrathecal administration of an anti-MCP-1 neutralizing antibody or PI3K inhibitor LY294002 reduced the expression of p-Akt or OX-42, and LY294002 attenuated the mechanical allodynia of BCP rats. These results suggest that MCP-1 may stimulate spinal microglia via the PI3K/Akt pathway in BCP.
Collapse
|
42
|
Zhao Z, Fan H, Higgins T, Qi J, Haines D, Trivett A, Oppenheim JJ, Wei H, Li J, Lin H, Howard OMZ. Fufang Kushen injection inhibits sarcoma growth and tumor-induced hyperalgesia via TRPV1 signaling pathways. Cancer Lett 2014; 355:232-41. [PMID: 25242356 DOI: 10.1016/j.canlet.2014.08.037] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Revised: 08/26/2014] [Accepted: 08/27/2014] [Indexed: 12/22/2022]
Abstract
Cancer pain is a deleterious consequence of tumor growth and related inflammation. Opioids and anti-inflammatory drugs provide first line treatment for cancer pain, but both are limited by side effects. Fufang Kushen injection (FKI) is GMP produced, traditional Chinese medicine used alone or with chemotherapy to reduce cancer-associated pain. FKI limited mouse sarcoma growth both in vivo and in vitro, in part, by reducing the phosphorylation of ERK and AKT kinases and BAD. FKI inhibited TRPV1 mediated capsaicin-induced ERK phosphorylation and reduced tumor-induced proinflammatory cytokine production. Thus, FKI limited cancer pain both directly by blocking TRPV1 signaling and indirectly by reducing tumor growth.
Collapse
Affiliation(s)
- Zhizheng Zhao
- Laboratory of Molecular Immunoregulation, Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute-Frederick, Frederick, MD 21702, USA; Guang An Men Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Huiting Fan
- Laboratory of Molecular Immunoregulation, Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute-Frederick, Frederick, MD 21702, USA; Guang An Men Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Tim Higgins
- Laboratory of Molecular Immunoregulation, Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute-Frederick, Frederick, MD 21702, USA
| | - Jia Qi
- Neuronal Networks Section, Intramural Research Program, National Institute on Drug Abuse, NIH, 251 Bayview Blvd, Baltimore, MD 21224, USA
| | - Diana Haines
- Leidos Biomedical, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Anna Trivett
- Laboratory of Molecular Immunoregulation, Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute-Frederick, Frederick, MD 21702, USA
| | - Joost J Oppenheim
- Laboratory of Molecular Immunoregulation, Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute-Frederick, Frederick, MD 21702, USA
| | - Hou Wei
- Guang An Men Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Jie Li
- Guang An Men Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Hongsheng Lin
- Guang An Men Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - O M Zack Howard
- Laboratory of Molecular Immunoregulation, Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute-Frederick, Frederick, MD 21702, USA.
| |
Collapse
|
43
|
Jin XH, Wang LN, Zuo JL, Yang JP, Liu SL. P2X4 receptor in the dorsal horn partially contributes to brain-derived neurotrophic factor oversecretion and toll-like receptor-4 receptor activation associated with bone cancer pain. J Neurosci Res 2014; 92:1690-702. [PMID: 24984884 DOI: 10.1002/jnr.23443] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Revised: 02/05/2014] [Accepted: 05/30/2014] [Indexed: 01/23/2023]
Abstract
Previous studies have suggested that the microglial P2X7 purinoceptor is involved in the release of tumor necrosis factor-α (TNFα) following activation of toll-like receptor-4 (TLR4), which is associated with nociceptive behavior. In addition, this progress is evoked by the activation of the P2X4 purinoceptor (P2X4R). Although P2X4R is also localized within spinal microglia in the dorsal horn, little is known about its role in cancer-induced bone pain (CIBP), which is in some ways unique. With the present rat model of CIBP, we demonstrate a critical role of the microglial P2X4R in the enhanced nociceptive transmission, which is associated with TLR4 activation and secretion of brain-derived neurotrophic factor (BDNF) and TNFα in the dorsal horn. We assessed mechanical threshold and spontaneous pain of CIBP rats. Moreover, P2X4R small interfering RNA (siRNA) was administered intrathecally, and real-time PCR, Western blots, immunofluorescence histochemistry, and ELISA were used to detect the expression of P2X4R, TLR4, OX-42, phosphorylated-p38 MAPK (p-p38), BDNF, and TNFα. Compared with controls, intrathecal injection of P2X4R siRNA could prevent nociceptive behavior induced by ATP plus lipopolysaccharide and CIBP and reduce the expression of P2X4R, TLR4, p-p38, BDNF, and TNFα. In addition, the increase of BDNF protein in rat microglial cells depended on P2X4 receptor signaling, which is partially associated with TLR4 activation. The ability of microglial P2X4R to activate TLR4 in spinal cord leading to behavioral hypersensitivity and oversecretion of BDNF could provide an opportunity for the prevention and treatment of CIBP.
Collapse
Affiliation(s)
- Xiao-Hong Jin
- Department of Anesthesiology, The First Affiliated Hospital of Soochow University, Suzhou City, China
| | | | | | | | | |
Collapse
|
44
|
Jiang J, Zhang J, Yao P, Wu X, Li K. Activation of spinal neuregulin 1-ErbB2 signaling pathway in a rat model of cancer-induced bone pain. Int J Oncol 2014; 45:235-44. [PMID: 24818668 DOI: 10.3892/ijo.2014.2429] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Accepted: 04/23/2014] [Indexed: 11/06/2022] Open
Abstract
Current therapies for cancer-induced bone pain (CIBP) are still limited. Until recently, the molecular mechanisms underlying the spinal cell-mediated CIBP remain largely unknown. To better understand the role of spinal cells in CIBP, we investigated the role of spinal neuregulin1 (NRG1)‑ErbB2 signaling pathway in CIBP. In this study, a rat model of CIBP was established by intra-tibia inoculation of Walker 256 mammary gland carcinoma cells. Tibia bone destruction was evaluated using various methods of Walker 256 inoculation, radiobioassay and histological analysis. Pain-like behavior including thermal hyperalgesia and mechanical allodynia were determined by measuring paw withdrawal latency (PWL) and mechanical paw withdrawal thresholds (PWT). The expression level of mRNA or protein of target genes was examined by quantitative reverse transcription-polymerase chain reaction (qPCR) and western blot analysis, respectively. Bone destruction, as well as thermal hyperalgesia and mechanical allodynia, were observed at the 6th day following Walker 256 inoculation. A time-dependent increase in the levels of NRG1, ErbB2 and p-ErbB2 could be detected within three weeks after tumor cell injection. ErbB2 signaling inactivation by PD168393 treatment significantly attenuated pain-like behavior, associated with inhibition of Akt-1 and p38MAPK activation. Administration of exogenous NRG1 provoked pain-like behavior in rats by induction of activation of ErbB2, Akt-1 and p38MAPK, which could be blocked by ErbB2 inhibitor. Our results indicate that activation of NRG1‑ErbB2 signaling pathway plays a critical role in the induction of CIBP. Akt-1 and p38MAPK may be potent players involved in the NRG1-ErbB2 pathway in CIBP.
Collapse
Affiliation(s)
- Jingjing Jiang
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Jin Zhang
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Peng Yao
- Department of Pain Management, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Xiuying Wu
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Ke Li
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| |
Collapse
|
45
|
Worsley MA, Allen CE, Billinton A, King AE, Boissonade FM. Chronic tooth pulp inflammation induces persistent expression of phosphorylated ERK (pERK) and phosphorylated p38 (pp38) in trigeminal subnucleus caudalis. Neuroscience 2014; 269:318-30. [PMID: 24709040 PMCID: PMC4030309 DOI: 10.1016/j.neuroscience.2014.03.056] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Revised: 03/13/2014] [Accepted: 03/27/2014] [Indexed: 12/29/2022]
Abstract
Chronic inflammation of tooth pulp activates pERK and pp38 in the trigeminal nucleus Activation is persistent and bilateral, and further increased by acute stimulation This altered signaling may be relevant in the development of chronic pulpitic pain pERK and pp38 are more sensitive markers of central change than Fos expression Sequential activation in different cell types may be linked to pain progression
Background Extracellular signal-regulated kinase (ERK) and p38 mitogen-activated protein kinase are transiently phosphorylated (activated) in the spinal cord and trigeminal nucleus by acute noxious stimuli. Acute stimulation of dental pulp induces short-lived ERK activation in trigeminal subnucleus caudalis (Vc), and p38 inhibition attenuates short-term sensitization in Vc induced by acute pulpal stimulation. We have developed a model to study central changes following chronic inflammation of dental pulp that induces long-term sensitization. Here, we examine the effects of chronic inflammation and acute stimulation on the expression of phosphorylated ERK (pERK), phosphorylated p38 (pp38) and Fos in Vc. Results Chronic inflammation alone induced bilateral expression of pERK and pp38 in Vc, but did not induce Fos expression. Stimulation of both non-inflamed and inflamed pulps significantly increased pERK and pp38 bilaterally; expression was greatest in inflamed, stimulated animals, and was similar following 10-min and 60-min stimulation. Stimulation for 60 min, but not 10 min, induced Fos in ipsilateral Vc; Fos expression was significantly greater in inflamed, stimulated animals. pERK was present in both neurons and astrocytes; pp38 was present in neurons and other non-neuronal, non-astrocytic cell types. Conclusions This study provides the first demonstration that chronic inflammation of tooth pulp induces persistent bilateral activation of ERK and p38 within Vc, and that this activation is further increased by acute stimulation. This altered activity in intracellular signaling is likely to be linked to the sensitization that is seen in our animal model and in patients with pulpitis. Our data indicate that pERK and pp38 are more accurate markers of central change than Fos expression. In our model, localization of pERK and pp38 within specific cell types differs from that seen following acute stimulation. This may indicate specific roles for different cell types in the induction and maintenance of pulpitic and other types of pain.
Collapse
Affiliation(s)
- M A Worsley
- Unit of Oral & Maxillofacial Medicine & Surgery, School of Clinical Dentistry, University of Sheffield, Claremont Crescent, Sheffield S10 2TA, UK
| | - C E Allen
- Unit of Oral & Maxillofacial Medicine & Surgery, School of Clinical Dentistry, University of Sheffield, Claremont Crescent, Sheffield S10 2TA, UK
| | | | - A E King
- School of Biomedical Sciences, University of Leeds, UK
| | - F M Boissonade
- Unit of Oral & Maxillofacial Medicine & Surgery, School of Clinical Dentistry, University of Sheffield, Claremont Crescent, Sheffield S10 2TA, UK.
| |
Collapse
|
46
|
Nag S, Mokha SS. Activation of a Gq-coupled membrane estrogen receptor rapidly attenuates α2-adrenoceptor-induced antinociception via an ERK I/II-dependent, non-genomic mechanism in the female rat. Neuroscience 2014; 267:122-34. [PMID: 24613724 DOI: 10.1016/j.neuroscience.2014.02.040] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Revised: 02/24/2014] [Accepted: 02/24/2014] [Indexed: 01/04/2023]
Abstract
Though sex differences in pain and analgesia are known, underlying mechanisms remain elusive. This study addresses the selective contribution of membrane estrogen receptors (mERs) and mER-initiated non-genomic signaling mechanisms in our previously reported estrogen-induced attenuation of α2-adrenoceptor-mediated antinociception. By selectively targeting spinal mERs in ovariectomized female rats using β-estradiol 6-(O-carboxy-methyl)oxime bovine serum albumin (E2BSA) (membrane impermeant estradiol analog), and ERα selective agonist 4,4',4″-(4-propyl-[1H]-pyrazole-1,3,5-triyl)trisphenol (PPT), ERβ selective agonist 2,3-bis(4-hydroxyphenyl)-propionitrile (DPN), G-protein-coupled estrogen receptor 30 (GPR30) agonist G1 and Gq-coupled mER (Gq-mER) agonist STX, we provide strong evidence that Gq-mER activation may solely contribute to suppressing clonidine (an α2-adrenoceptor agonist)-induced antinociception, using the nociceptive tail-flick test. Increased tail-flick latencies (TFLs) by intrathecal (i.t.) clonidine were not significantly altered by i.t. PPT, DPN, or G1. In contrast, E2BSA or STX rapidly and dose-dependently attenuated clonidine-induced increase in TFL. ICI 182,780, the ER antagonist, blocked this effect. Consistent with findings with the lack of effect of ERα and ERβ agonists that modulate receptor-regulated transcription, inhibition of de novo protein synthesis using anisomycin also failed to alter the effect of E2BSA or STX, arguing against a contribution of genomic mechanisms. Immunoblotting of spinal tissue revealed that mER activation increased levels of phosphorylated extracellular signal-regulated kinase (ERK) but not of protein kinase A (PKA) or C (PKC). In vivo inhibition of ERK with U0126 blocked the effect of STX and restored clonidine antinociception. Although estrogen-induced delayed genomic mechanisms may still exist, data presented here indicate that Gq-mER may solely mediate estradiol-induced attenuation of clonidine antinociception via a rapid, reversible, and ERK-dependent, non-genomic mechanism, suggesting that Gq-mER blockade might provide improved analgesia in females.
Collapse
Affiliation(s)
- S Nag
- Department of Neuroscience and Pharmacology, Meharry Medical College, Nashville, TN 37208, United States.
| | - S S Mokha
- Department of Neuroscience and Pharmacology, Meharry Medical College, Nashville, TN 37208, United States
| |
Collapse
|
47
|
Xu J, Zhu MD, Zhang X, Tian H, Zhang JH, Wu XB, Gao YJ. NFκB-mediated CXCL1 production in spinal cord astrocytes contributes to the maintenance of bone cancer pain in mice. J Neuroinflammation 2014; 11:38. [PMID: 24580964 PMCID: PMC3941254 DOI: 10.1186/1742-2094-11-38] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Accepted: 02/21/2014] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Bone cancer pain (BCP) is one of the most disabling factors in patients suffering from primary bone cancer or bone metastases. Recent studies show several chemokines (for example, CCL2, CXCL10) in the spinal cord are involved in the pathogenesis of BCP. Here we investigated whether and how spinal CXCL1 contributes to BCP. METHODS Mouse prostate tumor cell line, RM-1 cells were intramedullary injected into the femur to induce BCP. The mRNA expression of CXCL1 and CXCR2 was detected by quantitative real-time PCR. The protein expression and distribution of CXCL1, NFκB, and CXCR2 was examined by immunofluorescence staining and western blot. The effect of CXCL1 neutralizing antibody, NFκB antagonist, and CXCR2 antagonist on pain hypersensitivity was checked by behavioral testing. RESULTS Intramedullary injection of RM-1 cells into the femur induced cortical bone damage and persistent (>21 days) mechanical allodynia and heat hyperalgesia. Tumor cell inoculation also produced CXCL1 upregulation in activated astrocytes in the spinal cord for more than 21 days. Inhibition of CXCL1 by intrathecal administration of CXCL1 neutralizing antibody at 7 days after inoculation attenuated mechanical allodynia and heat hyperalgesia. In cultured astrocytes, TNF-α induced robust CXCL1 expression, which was dose-dependently decreased by NFκB inhibitor. Furthermore, inoculation induced persistent NFκB phosphorylation in spinal astrocytes. Intrathecal injection of NFκB inhibitor attenuated BCP and reduced CXCL1 increase in the spinal cord. Finally, CXCR2, the primary receptor of CXCL1, was upregulated in dorsal horn neurons after inoculation. Inhibition of CXCR2 by its selective antagonist SB225002 attenuated BCP. CONCLUSION NFκB mediates CXCL1 upregulation in spinal astrocytes in the BCP model. In addition, CXCL1 may be released from astrocytes and act on CXCR2 on neurons in the spinal cord and be involved in the maintenance of BCP. Inhibition of the CXCL1 signaling may provide a new therapy for BCP management.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yong-Jing Gao
- Pain Research Laboratory, Institute of Nautical Medicine, Jiangsu Key Laboratory of Neuroregeneration, Nantong University, 19 Qixiu Road, Nantong 226001, China.
| |
Collapse
|
48
|
Ducourneau VR, Dolique T, Hachem-Delaunay S, Miraucourt LS, Amadio A, Blaszczyk L, Jacquot F, Ly J, Devoize L, Oliet SH, Dallel R, Mothet JP, Nagy F, Fénelon VS, Voisin DL. Cancer pain is not necessarily correlated with spinal overexpression of reactive glia markers. Pain 2014; 155:275-291. [DOI: 10.1016/j.pain.2013.10.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Revised: 10/04/2013] [Accepted: 10/07/2013] [Indexed: 12/21/2022]
|
49
|
Liu S, Liu YP, Song WB, Song XJ. EphrinB-EphB receptor signaling contributes to bone cancer pain via Toll-like receptor and proinflammatory cytokines in rat spinal cord. Pain 2013; 154:2823-2835. [DOI: 10.1016/j.pain.2013.08.017] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Revised: 08/19/2013] [Accepted: 08/19/2013] [Indexed: 12/29/2022]
|
50
|
A systematic review and meta-analysis on the use of traditional Chinese medicine compound kushen injection for bone cancer pain. Support Care Cancer 2013; 22:825-36. [DOI: 10.1007/s00520-013-2063-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2013] [Accepted: 11/15/2013] [Indexed: 10/26/2022]
|