1
|
Syed Hashim SA, Naina Mohamed I, Mohamed N. The Effects of Acute and Chronic Alcohol Administration and Withdrawal on Bone Microstructure, Mechanical Strength, and Remodeling Protein Expression and Their Relation to an Antioxidant and FGF23 In Vivo. Biomedicines 2024; 12:1515. [PMID: 39062088 PMCID: PMC11274769 DOI: 10.3390/biomedicines12071515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/15/2024] [Accepted: 06/27/2024] [Indexed: 07/28/2024] Open
Abstract
Alcohol's detrimental effects on bone health are well established, yet some literature suggests moderate consumption may offer benefits. With alcohol use on the rise, we investigate the impact of acute and chronic alcohol administration, along with withdrawal, on male Wistar rat femurs. We observed a transient cortical thickness increase with acute alcohol (AA) compared to chronic exposure (CA) but no significant changes in trabecular parameters or mechanical properties. High osteocalcin and osteopontin expression levels were noted in AA, alongside elevated RANKL expression. Conversely, CA showed low TRAP levels. FGF23 expression significantly increased during alcohol withdrawal (AW), while GPX decreased after chronic exposure but rose during withdrawal. Although mechanical strength changes were insignificant, biochemical shifts suggest alcohol exposure promotes bone resorption, reduces antioxidant protection, and potentially hampers active vitamin D and phosphate reabsorption via FGF23 upregulation.
Collapse
Affiliation(s)
- Syed Alhafiz Syed Hashim
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia; (S.A.S.H.); (I.N.M.)
- Institute of Pharmaceutical Science, King’s College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, UK
| | - Isa Naina Mohamed
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia; (S.A.S.H.); (I.N.M.)
| | - Norazlina Mohamed
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia; (S.A.S.H.); (I.N.M.)
| |
Collapse
|
2
|
Gerace E, Curti L, Caffino L, Bigagli E, Mottarlini F, Castillo Díaz F, Ilari A, Luceri C, Dani C, Fumagalli F, Masi A, Mannaioni G. Ethanol-induced AMPA alterations are mediated by mGLU5 receptors through miRNA upregulation in hippocampal slices. Eur J Pharmacol 2023; 955:175878. [PMID: 37433363 DOI: 10.1016/j.ejphar.2023.175878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 06/26/2023] [Indexed: 07/13/2023]
Abstract
Prenatal alcohol exposure (PAE) affects neuronal networks and brain development causing a range of physical, cognitive and behavioural disorders in newborns that persist into adulthood. The array of consequences associated with PAE can be grouped under the umbrella-term 'fetal alcohol spectrum disorders' (FASD). Unfortunately, there is no cure for FASD as the molecular mechanisms underlying this pathology are still unknown. We have recently demonstrated that chronic EtOH exposure, followed by withdrawal, induces a significant decrease in AMPA receptor (AMPAR) expression and function in developing hippocampus in vitro. Here, we explored the EtOH-dependent pathways leading to hippocampal AMPAR suppression. Organotypic hippocampal slices (2 days in cultures) were exposed to EtOH (150 mM) for 7 days followed by 24 h EtOH withdrawal. Then, the slices were analysed by means of RT-PCR for miRNA content, western blotting for AMPA and NMDA related-synaptic proteins expression in postsynaptic compartment and electrophysiology to record electrical properties from CA1 pyramidal neurons. We observed that EtOH induces a significant downregulation of postsynaptic AMPA and NMDA subunits and relative scaffolding protein expression and, accordingly, a decrease of AMPA-mediated neurotransmission. Simultaneously, we found that chronic EtOH induced-upregulation of miRNA 137 and 501-3p and decreased AMPA-mediated neurotransmission are prevented by application of the selective mGlu5 antagonist MPEP during EtOH withdrawal. Our data indicate mGlu5 via miRNA137 and 501-3p expression as key factors in the regulation of AMPAergic neurotransmission that may contribute, at least in part, to the pathogenesis of FASD.
Collapse
Affiliation(s)
- Elisabetta Gerace
- Department of Neurosciences, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy; Department of Health Sciences (DSS), University of Florence, Florence, Italy.
| | - Lorenzo Curti
- Department of Neurosciences, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy
| | - Lucia Caffino
- Department of Pharmacological and Biomolecular Sciences 'Rodolfo Paoletti', Università degli Studi di Milano, Italy
| | - Elisabetta Bigagli
- Department of Neurosciences, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy
| | - Francesca Mottarlini
- Department of Pharmacological and Biomolecular Sciences 'Rodolfo Paoletti', Università degli Studi di Milano, Italy
| | - Fernando Castillo Díaz
- Department of Pharmacological and Biomolecular Sciences 'Rodolfo Paoletti', Università degli Studi di Milano, Italy
| | - Alice Ilari
- Department of Neurosciences, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy
| | - Cristina Luceri
- Department of Neurosciences, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy
| | - Carlo Dani
- Department of Neurosciences, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy; Division of Neonatology, Careggi University Hospital of Florence, Florence, Italy
| | - Fabio Fumagalli
- Department of Pharmacological and Biomolecular Sciences 'Rodolfo Paoletti', Università degli Studi di Milano, Italy
| | - Alessio Masi
- Department of Neurosciences, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy
| | - Guido Mannaioni
- Department of Neurosciences, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy
| |
Collapse
|
3
|
Hanim A, Mohamed IN, Mohamed RMP, Mokhtar MH, Makpol S, Naomi R, Bahari H, Kamal H, Kumar J. Alcohol Dependence Modulates Amygdalar mTORC2 and PKCε Expression in a Rodent Model. Nutrients 2023; 15:3036. [PMID: 37447362 PMCID: PMC10346598 DOI: 10.3390/nu15133036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 06/24/2023] [Accepted: 06/25/2023] [Indexed: 07/15/2023] Open
Abstract
Multiple alcohol use disorder (AUD)-related behavioral alterations are governed by protein kinase C epsilon (PKCε), particularly in the amygdala. Protein kinase C (PKC) is readily phosphorylated at Ser729 before activation by the mTORC2 protein complex. In keeping with this, the current study was conducted to assess the variations in mTORC2 and PKCε during different ethanol exposure stages. The following groups of rats were employed: control, acute, chronic, ethanol withdrawal (EW), and EW + ethanol (EtOH). Ethanol-containing and non-ethanol-containing modified liquid diets (MLDs) were administered for 27 days. On day 28, either saline or ethanol (2.5 g/kg, 20% v/v) was intraperitoneally administered, followed by bilateral amygdala extraction. PKCε mRNA levels were noticeably increased in the amygdala of the EW + EtOH and EW groups. Following chronic ethanol consumption, the stress-activated map kinase-interacting protein 1 (Sin1) gene expression was markedly decreased. In the EW, EW + EtOH, and chronic ethanol groups, there was a profound increase in the protein expression of mTOR, Sin1, PKCε, and phosphorylated PKCε (Ser729). The PKCε gene and protein expressions showed a statistically significant moderate association, according to a correlation analysis. Our results suggest that an elevated PKCε protein expression in the amygdala during EW and EW + EtOH occurred at the transcriptional level. However, an elevation in the PKCε protein expression, but not its mRNA, after chronic ethanol intake warrants further investigation to fully understand the signaling pathways during different episodes of AUD.
Collapse
Affiliation(s)
- Athirah Hanim
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia; (A.H.); (M.H.M.); (H.K.)
| | - Isa N. Mohamed
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia;
| | - Rashidi M. P. Mohamed
- Department of Family Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia;
| | - Mohd Helmy Mokhtar
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia; (A.H.); (M.H.M.); (H.K.)
| | - Suzana Makpol
- Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia;
| | - Ruth Naomi
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia; (R.N.); (H.B.)
| | - Hasnah Bahari
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia; (R.N.); (H.B.)
| | - Haziq Kamal
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia; (A.H.); (M.H.M.); (H.K.)
| | - Jaya Kumar
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia; (A.H.); (M.H.M.); (H.K.)
| |
Collapse
|
4
|
Ahmad Hariza AM, Mohd Yunus MH, Murthy JK, Wahab S. Clinical Improvement in Depression and Cognitive Deficit Following Electroconvulsive Therapy. Diagnostics (Basel) 2023; 13:diagnostics13091585. [PMID: 37174977 PMCID: PMC10178332 DOI: 10.3390/diagnostics13091585] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/17/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023] Open
Abstract
Electroconvulsive therapy (ECT) is a long-standing treatment choice for disorders such as depression when pharmacological treatments have failed. However, a major drawback of ECT is its cognitive side effects. While numerous studies have investigated the therapeutic effects of ECT and its mechanism, much less research has been conducted regarding the mechanism behind the cognitive side effects of ECT. As both clinical remission and cognitive deficits occur after ECT, it is possible that both may share a common mechanism. This review highlights studies related to ECT as well as those investigating the mechanism of its outcomes. The process underlying these effects may lie within BDNF and NMDA signaling. Edema in the astrocytes may also be responsible for the adverse cognitive effects and is mediated by metabotropic glutamate receptor 5 and the protein Homer1a.
Collapse
Affiliation(s)
- Ahmad Mus'ab Ahmad Hariza
- Department of Physiology, Faculty of Medicine, UKM Medical Centre, Jalan Yaacob Latiff, Bandar Tun Razak, Kuala Lumpur 56000, Malaysia
| | - Mohd Heikal Mohd Yunus
- Department of Physiology, Faculty of Medicine, UKM Medical Centre, Jalan Yaacob Latiff, Bandar Tun Razak, Kuala Lumpur 56000, Malaysia
| | - Jaya Kumar Murthy
- Department of Physiology, Faculty of Medicine, UKM Medical Centre, Jalan Yaacob Latiff, Bandar Tun Razak, Kuala Lumpur 56000, Malaysia
| | - Suzaily Wahab
- Department of Psychiatry, Faculty of Medicine, UKM Medical Centre, Jalan Yaacob Latiff, Bandar Tun Razak, Kuala Lumpur 56000, Malaysia
| |
Collapse
|
5
|
Hazani HM, Naina Mohamed I, Muzaimi M, Mohamed W, Yahaya MF, Teoh SL, Pakri Mohamed RM, Mohamad Isa MF, Abdulrahman SM, Ramadah R, Kamaluddin MR, Kumar J. Goofballing of Opioid and Methamphetamine: The Science Behind the Deadly Cocktail. Front Pharmacol 2022; 13:859563. [PMID: 35462918 PMCID: PMC9021401 DOI: 10.3389/fphar.2022.859563] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 03/18/2022] [Indexed: 11/23/2022] Open
Abstract
Globally, millions of people suffer from various substance use disorders (SUD), including mono-and polydrug use of opioids and methamphetamine. Brain regions such as the cingulate cortex, infralimbic cortex, dorsal striatum, nucleus accumbens, basolateral and central amygdala have been shown to play important roles in addiction-related behavioral changes. Clinical and pre-clinical studies have characterized these brain regions and their corresponding neurochemical changes in numerous phases of drug dependence such as acute drug use, intoxication, craving, withdrawal, and relapse. At present, many studies have reported the individual effects of opioids and methamphetamine. However, little is known about their combined effects. Co-use of these drugs produces effects greater than either drug alone, where one decreases the side effects of the other, and the combination produces a prolonged intoxication period or a more desirable intoxication effect. An increasing number of studies have associated polydrug abuse with poorer treatment outcomes, drug-related deaths, and more severe psychopathologies. To date, the pharmacological treatment efficacy for polydrug abuse is vague, and still at the experimental stage. This present review discusses the human and animal behavioral, neuroanatomical, and neurochemical changes underlying both morphine and methamphetamine dependence separately, as well as its combination. This narrative review also delineates the recent advances in the pharmacotherapy of mono- and poly drug-use of opioids and methamphetamine at clinical and preclinical stages.
Collapse
Affiliation(s)
- Hanis Mohammad Hazani
- Department of Physiology, Faculty of Medicine, The National University of Malaysia, Cheras, Malaysia
| | - Isa Naina Mohamed
- Department of Pharmacology, Faculty of Medicine, The National University of Malaysia, Cheras, Malaysia
| | - Mustapha Muzaimi
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia
| | - Wael Mohamed
- Basic Medical Science Department, Kulliyyah of Medicine, International Islamic University Malaysia, Kuantan, Malaysia
- Faculty of Medicine, Department of Clinical Pharmacology, Menoufia University, Shebin El-Kom, Egypt
| | - Mohamad Fairuz Yahaya
- Department of Anatomy, Faculty of Medicine, National University of Malaysia, Cheras, Malaysia
| | - Seong Lin Teoh
- Department of Anatomy, Faculty of Medicine, National University of Malaysia, Cheras, Malaysia
| | | | | | | | - Ravi Ramadah
- National Anti-Drugs Agency Malaysia, Selangor, Malaysia
| | - Mohammad Rahim Kamaluddin
- Centre for Research in Psychology and Human Well-Being, Faculty of Social Sciences and Humanities, The National University of Malaysia, Bangi, Malaysia
| | - Jaya Kumar
- Department of Physiology, Faculty of Medicine, The National University of Malaysia, Cheras, Malaysia
| |
Collapse
|
6
|
Sontate KV, Rahim Kamaluddin M, Naina Mohamed I, Mohamed RMP, Shaikh MF, Kamal H, Kumar J. Alcohol, Aggression, and Violence: From Public Health to Neuroscience. Front Psychol 2022; 12:699726. [PMID: 35002823 PMCID: PMC8729263 DOI: 10.3389/fpsyg.2021.699726] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 11/17/2021] [Indexed: 12/16/2022] Open
Abstract
Alcohol has been associated with violent crimes and domestic violence across many nations. Various etiological factors were linked to chronic alcohol use and violence including psychiatric comorbidities of perpetrators such as personality disorders, mood disorders, and intermittent explosive disorders. Aggression is the precursor of violence and individuals prone to aggressive behaviors are more likely to commit impulsive violent crimes, especially under the influence of alcohol. Findings from brain studies indicate long-term alcohol consumption induced morphological changes in brain regions involved in self-control, decision-making, and emotional processing. In line with this, the inherent dopaminergic and serotonergic anomalies seen in aggressive individuals increase their susceptibility to commit violent crimes when alcohol present in their system. In relation to this, this article intends to investigate the influence of alcohol on aggression with sociopsychological and neuroscientific perspectives by looking into comorbidity of personality or mood disorders, state of the mind during alcohol consumption, types of beverages, environmental trigger, neurochemical changes, and gender differences that influence individual responses to alcohol intake and susceptibility to intoxicated aggression.
Collapse
Affiliation(s)
| | - Mohammad Rahim Kamaluddin
- Centre for Research in Psychology and Human Well-Being, Faculty of Social Sciences and Humanities, Universiti Kebangsaan Malaysia, Bangi, Malaysia
| | - Isa Naina Mohamed
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| | - Rashidi Mohamed Pakri Mohamed
- Department of Family Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| | - Mohd Farooq Shaikh
- Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Subang Jaya, Malaysia
| | - Haziq Kamal
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| | - Jaya Kumar
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| |
Collapse
|
7
|
Winters ND, Bedse G, Astafyev AA, Patrick TA, Altemus M, Morgan AJ, Mukerjee S, Johnson KD, Mahajan VR, Uddin MJ, Kingsley PJ, Centanni SW, Siciliano CA, Samuels DC, Marnett LJ, Winder DG, Patel S. Targeting diacylglycerol lipase reduces alcohol consumption in preclinical models. J Clin Invest 2021; 131:146861. [PMID: 34292886 PMCID: PMC8409586 DOI: 10.1172/jci146861] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 07/20/2021] [Indexed: 12/13/2022] Open
Abstract
Alcohol use disorder (AUD) is associated with substantial morbidity, mortality, and societal cost, and pharmacological treatment options for AUD are limited. The endogenous cannabinoid (eCB) signaling system is critically involved in reward processing and alcohol intake is positively correlated with release of the eCB ligand 2-Arachidonoylglycerol (2-AG) within reward neurocircuitry. Here we show that genetic and pharmacological inhibition of diacylglycerol lipase (DAGL), the rate limiting enzyme in the synthesis of 2-AG, reduces alcohol consumption in a variety of preclinical models ranging from a voluntary free-access model to aversion resistant-drinking and dependence-like drinking induced via chronic intermittent ethanol vapor exposure in mice. DAGL inhibition during either chronic alcohol consumption or protracted withdrawal was devoid of anxiogenic and depressive-like behavioral effects. Lastly, DAGL inhibition also prevented ethanol-induced suppression of GABAergic transmission onto midbrain dopamine neurons, providing mechanistic insight into how DAGL inhibition could affect alcohol reward. These data suggest reducing 2-AG signaling via inhibition of DAGL could represent an effective approach to reduce alcohol consumption across the spectrum of AUD severity.
Collapse
Affiliation(s)
- Nathan D. Winters
- Department of Psychiatry and Behavioral Sciences
- Vanderbilt Center for Addiction Research
- Department of Pharmacology
| | - Gaurav Bedse
- Department of Psychiatry and Behavioral Sciences
- Vanderbilt Center for Addiction Research
| | | | | | | | | | - Snigdha Mukerjee
- Vanderbilt Center for Addiction Research
- Department of Pharmacology
| | | | | | - Md Jashim Uddin
- Departments of Biochemistry and Chemistry, A.B. Hancock Jr. Memorial Laboratory for Cancer Research, Vanderbilt Institute of Chemical Biology
| | - Philip J. Kingsley
- Departments of Biochemistry and Chemistry, A.B. Hancock Jr. Memorial Laboratory for Cancer Research, Vanderbilt Institute of Chemical Biology
| | - Samuel W. Centanni
- Vanderbilt Center for Addiction Research
- Department of Molecular Physiology and Biophysics
- Vanderbilt Brain Institute, and
| | - Cody A. Siciliano
- Vanderbilt Center for Addiction Research
- Department of Pharmacology
- Vanderbilt Brain Institute, and
| | - David C. Samuels
- Department of Molecular Physiology and Biophysics
- Vanderbilt Genetics Institute, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Lawrence J. Marnett
- Department of Pharmacology
- Departments of Biochemistry and Chemistry, A.B. Hancock Jr. Memorial Laboratory for Cancer Research, Vanderbilt Institute of Chemical Biology
| | - Danny G. Winder
- Vanderbilt Center for Addiction Research
- Department of Molecular Physiology and Biophysics
- Vanderbilt Brain Institute, and
| | - Sachin Patel
- Department of Psychiatry and Behavioral Sciences
- Vanderbilt Center for Addiction Research
- Department of Pharmacology
- Department of Molecular Physiology and Biophysics
- Vanderbilt Brain Institute, and
| |
Collapse
|
8
|
Kamal H, Tan GC, Ibrahim SF, Shaikh MF, Mohamed IN, Mohamed RMP, Hamid AA, Ugusman A, Kumar J. Alcohol Use Disorder, Neurodegeneration, Alzheimer's and Parkinson's Disease: Interplay Between Oxidative Stress, Neuroimmune Response and Excitotoxicity. Front Cell Neurosci 2020; 14:282. [PMID: 33061892 PMCID: PMC7488355 DOI: 10.3389/fncel.2020.00282] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 08/10/2020] [Indexed: 12/12/2022] Open
Abstract
Alcohol use disorder (AUD) has been associated with neurodegenerative diseases such as Alzheimer's and Parkinson's disease. Prolonged excessive alcohol intake contributes to increased production of reactive oxygen species that triggers neuroimmune response and cellular apoptosis and necrosis via lipid peroxidation, mitochondrial, protein or DNA damage. Long term binge alcohol consumption also upregulates glutamate receptors, glucocorticoids and reduces reuptake of glutamate in the central nervous system, resulting in glutamate excitotoxicity, and eventually mitochondrial injury and cell death. In this review, we delineate the following principles in alcohol-induced neurodegeneration: (1) alcohol-induced oxidative stress, (2) neuroimmune response toward increased oxidants and lipopolysaccharide, (3) glutamate excitotoxicity and cell injury, and (4) interplay between oxidative stress, neuroimmune response and excitotoxicity leading to neurodegeneration and (5) potential chronic alcohol intake-induced development of neurodegenerative diseases, including Alzheimer's and Parkinson's disease.
Collapse
Affiliation(s)
- Haziq Kamal
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Geok Chin Tan
- Department of Pathology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Siti Fatimah Ibrahim
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Mohd. Farooq Shaikh
- Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Selangor, Malaysia
| | - Isa Naina Mohamed
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Rashidi M. Pakri Mohamed
- Department of Family Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Adila A. Hamid
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Azizah Ugusman
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Jaya Kumar
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| |
Collapse
|
9
|
Johnson KA, Lovinger DM. Allosteric modulation of metabotropic glutamate receptors in alcohol use disorder: Insights from preclinical investigations. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2020; 88:193-232. [PMID: 32416868 DOI: 10.1016/bs.apha.2020.02.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Metabotropic glutamate (mGlu) receptors are family C G protein-coupled receptors (GPCRs) that modulate neuronal excitability and synaptic transmission throughout the nervous system. Owing to recent advances in development of subtype-selective allosteric modulators of mGlu receptors, individual members of the mGlu receptor family have been proposed as targets for treating a variety of neurological and psychiatric disorders, including substance use disorders. In this chapter, we highlight preclinical evidence that allosteric modulators of mGlu receptors could be useful for reducing alcohol consumption and preventing relapse in alcohol use disorder (AUD). We begin with an overview of the preclinical models that are used to study mGlu receptor involvement in alcohol-related behaviors. Alcohol exposure causes adaptations in both expression and function of various mGlu receptor subtypes, and pharmacotherapies aimed at reversing these adaptations have the potential to reduce alcohol consumption and seeking. Positive allosteric modulators (PAMs) of mGlu2 and negative allosteric modulators of mGlu5 show particular promise for reducing alcohol intake and/or preventing relapse. Finally, this chapter discusses important considerations for translating preclinical findings toward the development of clinically useful drugs, including the potential for PAMs to avoid tolerance issues that are frequently observed with repeated administration of GPCR agonists.
Collapse
Affiliation(s)
- Kari A Johnson
- Department of Pharmacology, Uniformed Services University of the Health Sciences, Bethesda, MD, United States.
| | - David M Lovinger
- Laboratory for Integrative Neuroscience, National Institute on Alcohol Abuse and Alcoholism, US National Institutes of Health, Rockville, MD, United States
| |
Collapse
|
10
|
Sharma N, Zameer S, Akhtar M, Vohora D. Effect of lacosamide on ethanol induced conditioned place preference and withdrawal associated behavior in mice: Possible contribution of hippocampal CRMP-2. Pharmacol Rep 2019; 71:804-810. [PMID: 31377562 DOI: 10.1016/j.pharep.2019.04.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Revised: 12/25/2018] [Accepted: 04/13/2019] [Indexed: 11/26/2022]
Abstract
BACKGROUND Excessive consumption of ethanol is known to activate the mTORC1 pathway and to enhance the Collapsin Response Mediator Protein-2 (CRMP-2) levels in the limbic region of brain. The latter helps in forming microtubule assembly that is linked to drug taking or addiction-like behavior in rodents. Therefore, in this study, we investigated the effect of lacosamide, an antiepileptic drug and a known CRMP-2 inhibitor, which binds to CRMP-2 and inhibits the formation of microtubule assembly, on ethanol-induced conditioned place preference (CPP) in mice. METHODS The behavior of mice following ethanol addiction and withdrawal was assessed by performing different behavioral paradigms. Mice underwent ethanol-induced CPP training with alternate dose of ethanol (2 g/kg, po) and saline (10 ml/kg, po). The effect of lacosamide on the expression of ethanol-induced CPP and on ethanol withdrawal associated anxiety and depression-like behavior was evaluated. The effect of drug on locomotor activity was also assessed and hippocampal CRMP-2 levels were measured. RESULTS Ethanol-induced CPP was associated with enhanced CRMP-2 levels in the hippocampus. Lacosamide significantly reduced the expression of ethanol-induced CPP and alleviated the levels of hippocampal CRMP-2 but aggravated withdrawal-associated anxiety and depression in mice. CONCLUSION The present study demonstrated the beneficial effect of lacosamide in attenuation of expression of ethanol induced conditioned place preference via reduction of hippocampal CRMP-2 level. These findings suggest that lacosamide may be investigated further for ethanol addiction but not for managing withdrawal.
Collapse
Affiliation(s)
- Nidhi Sharma
- Neurobehavioral Pharmacology Laboratory, Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Saima Zameer
- Neurobehavioral Pharmacology Laboratory, Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Mohd Akhtar
- Neurobehavioral Pharmacology Laboratory, Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Divya Vohora
- Neurobehavioral Pharmacology Laboratory, Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India.
| |
Collapse
|
11
|
Kasten CR, Holmgren EB, Wills TA. Metabotropic Glutamate Receptor Subtype 5 in Alcohol-Induced Negative Affect. Brain Sci 2019; 9:E183. [PMID: 31366097 PMCID: PMC6721373 DOI: 10.3390/brainsci9080183] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 07/26/2019] [Accepted: 07/28/2019] [Indexed: 02/07/2023] Open
Abstract
Allosteric modulators of metabotropic glutamate 5 receptors (mGlu5 receptors) have been identified as a promising treatment to independently alleviate both negative affective states and ethanol-seeking and intake. However, these conditions are often comorbid and might precipitate one another. Acute and protracted ethanol withdrawal can lead to negative affective states. In turn, these states are primary drivers of alcohol relapse, particularly among women. The current review synthesizes preclinical studies that have observed the role of mGlu5 receptor modulation in negative affective states following ethanol exposure. The primary behavioral assays discussed are ethanol-seeking and intake, development and extinction of ethanol-associated cues and contexts, behavioral despair, and anxiety-like activity. The work done to-date supports mGlu5 receptor modulation as a promising target for mediating negative affective states to reduce ethanol intake or prevent relapse. Limitations in interpreting these data include the lack of models that use alcohol-dependent animals, limited use of adolescent and female subjects, and a lack of comprehensive evaluations of negative affective-like behavior.
Collapse
Affiliation(s)
- Chelsea R Kasten
- LSU Health Sciences Center-New Orleans, Department of Cell Biology and Anatomy, Medical Education Building, 1901 Perdido Street, Room 6103, New Orleans, LA 70112, USA
| | - Eleanor B Holmgren
- LSU Health Sciences Center-New Orleans, Department of Cell Biology and Anatomy, Medical Education Building, 1901 Perdido Street, Room 6103, New Orleans, LA 70112, USA
| | - Tiffany A Wills
- LSU Health Sciences Center-New Orleans, Department of Cell Biology and Anatomy, Medical Education Building, 1901 Perdido Street, Room 6103, New Orleans, LA 70112, USA.
| |
Collapse
|
12
|
Sengmany K, Hellyer SD, Albold S, Wang T, Conn PJ, May LT, Christopoulos A, Leach K, Gregory KJ. Kinetic and system bias as drivers of metabotropic glutamate receptor 5 allosteric modulator pharmacology. Neuropharmacology 2019; 149:83-96. [PMID: 30763654 DOI: 10.1016/j.neuropharm.2019.02.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 01/18/2019] [Accepted: 02/04/2019] [Indexed: 12/17/2022]
Abstract
Allosteric modulators of the metabotropic glutamate receptor subtype 5 (mGlu5) have been proposed as potential therapies for various CNS disorders. These ligands bind to sites distinct from the orthosteric (or endogenous) ligand, often with improved subtype selectivity and spatio-temporal control over receptor responses. We recently revealed that mGlu5 allosteric agonists and positive allosteric modulators exhibit biased agonism and/or modulation. To establish whether negative allosteric modulators (NAMs) engender similar bias, we rigorously characterized the pharmacology of eight diverse mGlu5 NAMs. Radioligand inhibition binding studies revealed novel modes of interaction with mGlu5 for select NAMs, with biphasic or incomplete inhibition of the radiolabeled NAM, [3H]methoxy-PEPy. We assessed mGlu5-mediated intracellular Ca2+ (iCa2+) mobilization and inositol phosphate (IP1) accumulation in HEK293A cells stably expressing low levels of mGlu5 (HEK293A-rat mGlu5-low) and mouse embryonic cortical neurons. The apparent affinity of acetylenic NAMs, MPEP, MTEP and dipraglurant, was dependent on the signaling pathway measured, agonist used, and cell type (HEK293A-rat mGlu5-low versus mouse cortical neurons). In contrast, the acetylenic partial NAM, M-5MPEP, and structurally distinct NAMs (VU0366248, VU0366058, fenobam), had similar affinity estimates irrespective of the assay or cellular background. Biased modulation was evident for VU0366248 in mouse cortical neurons where it was a NAM for DHPG-mediated iCa2+ mobilization, but neutral with DHPG in IP1 accumulation assays. Overall, this study highlights the inherent complexity in mGlu5 NAM pharmacology that we hypothesize may influence interpretation when translating into preclinical models and beyond in the design and development of novel therapeutics for neuropsychiatric and neurological disorders.
Collapse
Affiliation(s)
- Kathy Sengmany
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Department of Pharmacology, Monash University, Parkville, VIC, Australia
| | - Shane D Hellyer
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Department of Pharmacology, Monash University, Parkville, VIC, Australia
| | - Sabine Albold
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Department of Pharmacology, Monash University, Parkville, VIC, Australia
| | - Taide Wang
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Department of Pharmacology, Monash University, Parkville, VIC, Australia
| | - P Jeffrey Conn
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Lauren T May
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Department of Pharmacology, Monash University, Parkville, VIC, Australia
| | - Arthur Christopoulos
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Department of Pharmacology, Monash University, Parkville, VIC, Australia
| | - Katie Leach
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Department of Pharmacology, Monash University, Parkville, VIC, Australia
| | - Karen J Gregory
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Department of Pharmacology, Monash University, Parkville, VIC, Australia.
| |
Collapse
|
13
|
Lee KM, Coelho MA, Class MA, Sern KR, Bocz MD, Szumlinski KK. mGlu5 Receptor Blockade Within the Nucleus Accumbens Shell Reduces Behavioral Indices of Alcohol Withdrawal-Induced Anxiety in Mice. Front Pharmacol 2018; 9:1306. [PMID: 30483137 PMCID: PMC6243038 DOI: 10.3389/fphar.2018.01306] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 10/25/2018] [Indexed: 11/13/2022] Open
Abstract
Withdrawal from binge-drinking increases negative affect, coinciding with increased expression of the metabotropic glutamate receptor 5 (mGlu5) within the shell of the nucleus accumbens (AcbSh). Supporting a causal-effect relationship, systemic treatment with the mGlu5 receptor antagonist MTEP [3-((2-Methyl-4-thiazolyl)ethynyl)pyridine] is anxiolytic in binge-drinking adult and adolescent mice. Here, we employed neuropharmacological approaches to examine the functional relevance of AcbSh mGlu5 for behavioral indices of alcohol withdrawal-induced hyper-anxiety. Adult (PND 56) and adolescent (PND 28) male C57BL/6J mice consumed alcohol under modified Drinking-in-the-Dark procedures (10, 20, and 40% alcohol v/v) for 14 days. At an alcohol withdrawal time-point when mice manifest robust behavioral signs of hyper-anxiety (1 and 28 days withdrawal for adults and adolescents, respectively), mice were infused intra-AcbSh with 0, 1 or 10 μg MTEP and then affect was assayed in the light-dark shuttle box, marble-burying and forced swim tests. Brain tissue was collected to evaluate changes in Egr1 (early growth response protein 1) induction to index AcbSh neuronal activity. As expected, alcohol-experienced mice exhibited behavioral signs of hyper-emotionality. The anxiolytic effects of intra-AchSh MTEP were modest, but dose-dependent, and varied with age of drinking-onset. In adult-onset mice, only the 1 μg MTEP dose reduced withdrawal-induced hyper-anxiety, whereas only the higher dose was effective in adolescent-onset animals. MTEP reduced Egr1 expression within the AcbSh, irrespective of alcohol drinking history or age of drinking-onset. However, only the high MTEP dose reduced Egr1 expression in adolescent-onset binging mice. These results implicate AcbSh mGlu5 in modulating alcohol withdrawal-induced negative affect and suggest age differences in the neurobiological effects of alcohol withdrawal and behavioral responsiveness to mGlu5 blockade within the AcbSh.
Collapse
Affiliation(s)
- Kaziya M. Lee
- Department of Psychological & Brain Sciences, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Michal A. Coelho
- Department of Psychological & Brain Sciences, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - MacKayla A. Class
- Department of Psychological & Brain Sciences, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Kimberly R. Sern
- Department of Psychological & Brain Sciences, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Mark D. Bocz
- Department of Psychological & Brain Sciences, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Karen K. Szumlinski
- Department of Psychological & Brain Sciences, University of California, Santa Barbara, Santa Barbara, CA, United States
- Department of Molecular, Cellular, and Developmental Biology and the Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, CA, United States
| |
Collapse
|
14
|
Kumar J, Solaiman A, Mahakkanukrauh P, Mohamed R, Das S. Sleep Related Epilepsy and Pharmacotherapy: An Insight. Front Pharmacol 2018; 9:1088. [PMID: 30319421 PMCID: PMC6171479 DOI: 10.3389/fphar.2018.01088] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 09/07/2018] [Indexed: 01/26/2023] Open
Abstract
In the last several decades, sleep-related epilepsy has drawn considerable attention among epileptologists and neuroscientists in the interest of new paradigms of the disease etiology, pathogenesis and management. Sleep-related epilepsy is nocturnal seizures that manifest solely during the sleep state. Sleep comprises two distinct stages i.e., non-rapid eye movement (NREM) and rapid eye movement (REM) that alternate every 90 min with NREM preceding REM. Current findings indicate that the sleep-related epilepsy manifests predominantly during the synchronized stages of sleep; NREM over REM stage. Sleep related hypermotor epilepsy (SHE), benign partial epilepsy with centrotemporal spikes or benign rolandic epilepsy (BECTS), and Panayiotopoulos Syndrome (PS) are three of the most frequently implicated epilepsies occurring during the sleep state. Although some familial types are described, others are seemingly sporadic occurrences. In the present review, we aim to discuss the predominance of sleep-related epilepsy during NREM, established familial links to the pathogenesis of SHE, BECTS and PS, and highlight the present available pharmacotherapy options.
Collapse
Affiliation(s)
- Jaya Kumar
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| | - Amro Solaiman
- Department of Anatomy, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| | - Pasuk Mahakkanukrauh
- Department of Anatomy, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Excellence Centre in Forensic Osteology Research Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Rashidi Mohamed
- Department of Familty Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| | - Srijit Das
- Department of Anatomy, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| |
Collapse
|
15
|
Lee KM, Coelho MA, Class MA, Szumlinski KK. mGlu5-dependent modulation of anxiety during early withdrawal from binge-drinking in adult and adolescent male mice. Drug Alcohol Depend 2018; 184:1-11. [PMID: 29324247 PMCID: PMC6371787 DOI: 10.1016/j.drugalcdep.2017.10.031] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 10/26/2017] [Accepted: 10/29/2017] [Indexed: 10/18/2022]
Abstract
Binge alcohol-drinking elicits symptoms of negative affect such as anxiety upon cessation, which is a source of negative reinforcement for perpetuating this pattern of alcohol abuse. Binge-induced anxiety during early (24 h) withdrawal is associated with increased expression of metabotropic glutamate receptor 5 (mGlu5) within the nucleus accumbens shell (AcbSh) of adult male mice, but was unchanged in anxiety-resilient adolescents. Herein, we determined the role of mGlu5 signaling in withdrawal-induced anxiety via pharmacological manipulation using the mGlu5 negative allosteric modulator MTEP and the positive allosteric modulator CDPPB. Adult (PND 56) and adolescent (PND 28) male C57BL/6J mice binge-drank for 14 days under 3-bottle-choice procedures for 2 h/day; control animals drank water only. Approximately 24 h following the final alcohol presentation, animals were treated with 30 mg/kg IP MTEP, CDPPB, or vehicle and then tested, thirty minutes later, for behavioral signs of anxiety. Vehicle-treated binge-drinking adults exhibited hyperanxiety in all paradigms, while vehicle-treated binge-drinking adolescents did not exhibit withdrawal-induced anxiety. In adults, 30 mg/kg MTEP decreased alcohol-induced anxiety across paradigms, while 3 mg/kg MTEP was anxiolytic in adult water controls. CDPPB was modestly anxiogenic in both alcohol- and water-drinking mice. Adolescent animals showed minimal response to either CDPPB or MTEP, suggesting that anxiety in adolescence may be mGlu5-independent. These results demonstrate a causal role for mGlu5 in withdrawal-induced anxiety in adults and suggest age-related differences in the behavioral pharmacology of the negative reinforcing properties of alcohol.
Collapse
Affiliation(s)
- Kaziya M. Lee
- Department of Psychological and Brain Sciences, University of California Santa Barbara, Santa Barbara, CA, 93106-9660, USA
| | - Michal A. Coelho
- Department of Psychological and Brain Sciences, University of California Santa Barbara, Santa Barbara, CA, 93106-9660, USA
| | - MacKayla A. Class
- Department of Psychological and Brain Sciences, University of California Santa Barbara, Santa Barbara, CA, 93106-9660, USA,Department of Molecular, Cellular and Developmental Biology and the Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, CA, 93106-9625, USA
| | - Karen K. Szumlinski
- Department of Psychological and Brain Sciences, University of California Santa Barbara, Santa Barbara, CA, 93106-9660, USA,Department of Molecular, Cellular and Developmental Biology and the Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, CA, 93106-9625, USA,Corresponding author at: University of California Santa Barbara, Santa Barbara, CA, 93106-9660, USA. (K.K. Szumlinski)
| |
Collapse
|
16
|
Leurquin-Sterk G, Ceccarini J, Crunelle CL, de Laat B, Verbeek J, Deman S, Neels H, Bormans G, Peuskens H, Van Laere K. Lower Limbic Metabotropic Glutamate Receptor 5 Availability in Alcohol Dependence. J Nucl Med 2018; 59:682-690. [PMID: 29348321 DOI: 10.2967/jnumed.117.199422] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 10/30/2017] [Indexed: 01/18/2023] Open
Abstract
Animal studies suggest an important role for the metabotropic glutamate receptor subtype 5 (mGlu5) in the pathophysiology of alcohol dependence, but direct human evidence is lacking. The goal of this study was to investigate cerebral mGlu5 availability in alcohol-dependent subjects versus controls using 18F-3-fluoro-5-[(pyridin-3-yl)ethynyl]benzonitrile (18F-FPEB) PET. Methods: Dynamic 90-min 18F-FPEB scans combined with arterial blood sampling were acquired for 16 recently abstinent alcohol-dependent subjects and 32 age-matched controls. Regional mGlu5 availability was quantified by the 18F-FPEB total distribution volume using both a voxel-by-voxel and a volume-of-interest analysis with partial-volume effect correction. Alcohol consumption within the last 3 mo was assessed by questionnaires and by hair ethyl glucuronide analysis. Craving was assessed using the Desire for Alcohol Questionnaire. Results: mGlu5 availability was lower in mainly limbic regions of alcohol-dependent subjects than in controls (P < 0.05, familywise error-corrected), ranging from 14% in the posterior cingulate cortex to 36% in the caudate nucleus. Lower mGlu5 availability was associated with higher hair ethyl glucuronide levels for most regions and was related to a lower level of craving specifically in the middle frontal gyrus, cingulate cortex, and inferolateral temporal lobe. Conclusion: These findings provide human in vivo evidence that limbic mGlu5 has a role in the pathophysiology of alcohol dependence, possibly involved in a compensatory mechanism helping to reduce craving during abstinence.
Collapse
Affiliation(s)
- Gil Leurquin-Sterk
- Division of Nuclear Medicine and Molecular Imaging, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | - Jenny Ceccarini
- Division of Nuclear Medicine and Molecular Imaging, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | - Cleo L Crunelle
- Toxicological Center, University of Antwerp, Wilrijk, Belgium.,Department of Psychiatry, University Hospital Brussels, Brussels, Belgium
| | - Bart de Laat
- Division of Nuclear Medicine and Molecular Imaging, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium.,MoSAIC: Molecular Small Animal Imaging Center, KU Leuven, Leuven, Belgium
| | - Jef Verbeek
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Stephanie Deman
- Genomics Core, UZ Leuven, and Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Hugo Neels
- Toxicological Center, University of Antwerp, Wilrijk, Belgium
| | - Guy Bormans
- Laboratory for Radiopharmacy, KU Leuven, Leuven, Belgium; and
| | - Hendrik Peuskens
- University Psychiatric Center, KU Leuven, Kortenberg, and Kliniek Broeders Alexianen, Tienen, Belgium
| | - Koen Van Laere
- Division of Nuclear Medicine and Molecular Imaging, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium.,MoSAIC: Molecular Small Animal Imaging Center, KU Leuven, Leuven, Belgium
| |
Collapse
|
17
|
de Guglielmo G, Kallupi M, Cole MD, George O. Voluntary induction and maintenance of alcohol dependence in rats using alcohol vapor self-administration. Psychopharmacology (Berl) 2017; 234:2009-2018. [PMID: 28342089 PMCID: PMC5658208 DOI: 10.1007/s00213-017-4608-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 03/12/2017] [Indexed: 01/08/2023]
Abstract
RATIONALE A major issue in the addiction field is the limited number of animal models of the voluntary induction and maintenance of alcohol dependence in outbred rats. OBJECTIVES To address this issue, we developed a novel apparatus that vaporizes alcohol for 2-10 min after an active nosepoke response. METHODS Male Wistar rats were allowed to self-administer alcohol vapor for 8 h/day every other day for 24 sessions (escalated) or eight sessions (non-escalated). Escalated and non-escalated rats were then tested for progressive ratio responding. Anxiety-like behavior, somatic signs of withdrawal, and hyperalgesia were assessed during acute withdrawal. RESULTS The results showed that rats exhibited excellent discrimination between the active and inactive operanda (>85%), and the escalated rats quickly increased their blood alcohol levels from ~50 to >200 mg% in ~6 weeks. Compared with non-escalated rats, escalated rats exhibited severe addiction-like behavior, including somatic signs of withdrawal, anxiety-like behavior, hyperalgesia, and higher responding on a progressive ratio schedule of reinforcement. CONCLUSIONS These results demonstrate that outbred rats will voluntarily self-administer alcohol vapor to the point of dependence without the use of forced alcohol administration, sweeteners, food/water restriction, operant pretraining, or behavioral/genetic selection. This novel animal model may be particularly useful for medication development to help unveil the neuronal circuitry that underlies the voluntary induction of alcohol addiction and identify novel molecular targets that are specifically recruited after the voluntary induction and maintenance of alcohol dependence.
Collapse
Affiliation(s)
- Giordano de Guglielmo
- Department of Neuroscience, The Scripps Research Institute, 10550 North Torrey Pines Road, SP30-2400, La Jolla, CA, 92037, USA
| | - Marsida Kallupi
- Department of Neuroscience, The Scripps Research Institute, 10550 North Torrey Pines Road, SP30-2400, La Jolla, CA, 92037, USA
| | - Maury D Cole
- Department of Neuroscience, The Scripps Research Institute, 10550 North Torrey Pines Road, SP30-2400, La Jolla, CA, 92037, USA
| | - Olivier George
- Department of Neuroscience, The Scripps Research Institute, 10550 North Torrey Pines Road, SP30-2400, La Jolla, CA, 92037, USA.
| |
Collapse
|
18
|
Lee KM, Coelho MA, Sern KR, Class MA, Bocz MD, Szumlinski KK. Anxiolytic effects of buspirone and MTEP in the Porsolt Forced Swim Test. CHRONIC STRESS 2017; 1. [PMID: 28884167 PMCID: PMC5584874 DOI: 10.1177/2470547017712985] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Traditionally, a reduction in floating behavior or immobility in the Porsolt forced swim
test is employed as a predictor of anti-depressant efficacy. However, over the past
several years, our studies of alcohol withdrawal-induced negative affect consistently
indicate the coincidence of increased anxiety-related behaviors on various behavioral
tests with reduced immobility in the forced swim test. Further, this
behavioral profile correlates with increased mGlu5 protein expression within limbic brain
regions. As the role for mGlu5 in anxiety is well established, we hypothesized that the
reduced immobility exhibited by alcohol-withdrawn mice when tested in the forced swim test
might reflect anxiety, possibly a hyper-reactivity to the acute swim stressor. Herein, we
evaluated whether or not the decreased forced swim test immobility during alcohol
withdrawal responds to systemic treatment with a behaviorally effective dose of the
prototypical anxiolytic, buspirone (5 mg/kg). We also determined the functional relevance
of the withdrawal-induced increase in mGlu5 expression for forced swim test behavior by
comparing the effects of buspirone to a behaviorally effective dose of the mGlu5 negative
allosteric modulator MTEP (3 mg/kg). Adult male C57BL/6J mice were subjected to a 14-day,
multi-bottle, binge-drinking protocol that elicits hyper-anxiety and increases
glutamate-related protein expression during early withdrawal. Control animals received
only water. At 24-h withdrawal, animals from each drinking condition were subdivided into
groups and treated with an intraperitoneal injection of buspirone, MTEP, or vehicle,
30 min prior to the forced swim test. Drug effects on general locomotor activity were also
assessed. As we reported previously, alcohol-withdrawn animals exhibited significantly
reduced immobility in the forced swim test compared to water controls. Both buspirone and
MTEP significantly increased immobility in alcohol-withdrawn animals, with a modest
increase also seen in water controls. No significant group differences were observed for
locomotor activity, indicating that neither anxiolytic was sedating. These results provide
predictive validity for increased swimming/reduced immobility in the forced swim test as a
model of anxiety and provide novel evidence in favor of mGlu5 inhibition as an effective
therapeutic strategy for treating hyper-anxiety during alcohol withdrawal.
Collapse
Affiliation(s)
- Kaziya M Lee
- Department of Psychological and Brain Sciences, University of California Santa Barbara, Santa Barbara, CA, USA, 93106-9660
| | - Michal A Coelho
- Department of Psychological and Brain Sciences, University of California Santa Barbara, Santa Barbara, CA, USA, 93106-9660
| | - Kimberly R Sern
- Department of Psychological and Brain Sciences, University of California Santa Barbara, Santa Barbara, CA, USA, 93106-9660
| | - MacKayla A Class
- Department of Psychological and Brain Sciences, University of California Santa Barbara, Santa Barbara, CA, USA, 93106-9660
| | - Mark D Bocz
- Department of Psychological and Brain Sciences, University of California Santa Barbara, Santa Barbara, CA, USA, 93106-9660
| | - Karen K Szumlinski
- Department of Psychological and Brain Sciences, University of California Santa Barbara, Santa Barbara, CA, USA, 93106-9660.,Department of Molecular, Cellular and Developmental Biology and the Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, CA, USA, 93106-9625
| |
Collapse
|
19
|
Mohamed RMP, Kumar J, Yap E, Mohamed IN, Sidi H, Adam RL, Das S. Try to Remember: Interplay between Memory and Substance Use Disorder. Curr Drug Targets 2017. [PMID: 28641520 DOI: 10.2174/1389450118666170622092824] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Memories associated with substance use disorders, or substance-associated cues increase the likelihood of craving and relapse during abstinence. There is a growing consensus that manipulation of synaptic plasticity may reduce the strength of substance abuse-related memories. On the biological front, there are new insights that suggest memories associated with substance use disorder may follow unique neurobiological pathways that render them more accessible to pharmacological intervention. In parallel to this, research in neurochemistry has identified several potential candidate molecules that could influence the formation and maintenance of long-term memory. Drugs that target these molecules (blebbistatin, isradipine and zeta inhibitory peptide) have shown promise at the preclinical stage. In this review, we shall provide an overview of the evolving understanding on the biochemical mechanisms involved in memory formation and expound on the premise that substance use disorder is a learning disorder.
Collapse
Affiliation(s)
- Rashidi Mohamed Pakri Mohamed
- Department of Psychological Medicine, Faculty of Medicine, University of Malaya, Lembah Pantai, 59100 Kuala Lumpur, Malaysia
| | - Jaya Kumar
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, 56000 Cheras, Kuala Lumpur, Malaysia
| | - Ernie Yap
- Department of Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, 56000 Cheras, Kuala Lumpur, Malaysia
| | - Isa Naina Mohamed
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, 56000 Cheras, Kuala Lumpur, Malaysia
| | - Hatta Sidi
- Department of Psychiatry, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, 56000 Cheras, Kuala Lumpur, Malaysia
| | - Raja Lope Adam
- Department of Psychiatry, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, 56000 Cheras, Kuala Lumpur, Malaysia
| | - Srijit Das
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, 56000 Cheras, Kuala Lumpur, Malaysia
| |
Collapse
|
20
|
Goodwani S, Saternos H, Alasmari F, Sari Y. Metabotropic and ionotropic glutamate receptors as potential targets for the treatment of alcohol use disorder. Neurosci Biobehav Rev 2017; 77:14-31. [PMID: 28242339 DOI: 10.1016/j.neubiorev.2017.02.024] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 02/13/2017] [Accepted: 02/22/2017] [Indexed: 12/16/2022]
Abstract
Emerging evidence indicates that dysfunctional glutamate neurotransmission is critical in the initiation and development of alcohol and drug dependence. Alcohol consumption induced downregulation of glutamate transporter 1 (GLT-1) as reported in previous studies from our laboratory. Glutamate is the major excitatory neurotransmitter in the brain, which acts via interactions with several glutamate receptors. Alcohol consumption interferes with the glutamatergic signal transmission by altering the functions of these receptors. Among the glutamate receptors involved in alcohol-drinking behavior are the metabotropic receptors such as mGluR1/5, mGluR2/3, and mGluR7, as well as the ionotropic receptors, NMDA and AMPA. Preclinical studies using agonists and antagonists implicate these glutamatergic receptors in the development of alcohol use disorder (AUD). Therefore, the purpose of this review is to discuss the neurocircuitry involving glutamate transmission in animals exposed to alcohol and further outline the role of metabotropic and ionotropic receptors in the regulation of alcohol-drinking behavior. This review provides ample information about the potential therapeutic role of glutamatergic receptors for the treatment of AUD.
Collapse
Affiliation(s)
- Sunil Goodwani
- University of Toledo, College of Pharmacy and Pharmaceutical Sciences, Department of Pharmacology and Experimental Therapeutics, Toledo, OH 43614, USA; The Neurodegeneration Consortium, Institute for Applied Cancer Science, The University of Texas MD Anderson Cancer Center, Houston, TX, 77054, USA
| | - Hannah Saternos
- University of Toledo, College of Pharmacy and Pharmaceutical Sciences, Department of Pharmacology and Experimental Therapeutics, Toledo, OH 43614, USA
| | - Fawaz Alasmari
- University of Toledo, College of Pharmacy and Pharmaceutical Sciences, Department of Pharmacology and Experimental Therapeutics, Toledo, OH 43614, USA
| | - Youssef Sari
- University of Toledo, College of Pharmacy and Pharmaceutical Sciences, Department of Pharmacology and Experimental Therapeutics, Toledo, OH 43614, USA.
| |
Collapse
|
21
|
Reilly MT, Noronha A, Goldman D, Koob GF. Genetic studies of alcohol dependence in the context of the addiction cycle. Neuropharmacology 2017; 122:3-21. [PMID: 28118990 DOI: 10.1016/j.neuropharm.2017.01.017] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 01/13/2017] [Accepted: 01/19/2017] [Indexed: 12/16/2022]
Abstract
Family, twin and adoption studies demonstrate clearly that alcohol dependence and alcohol use disorders are phenotypically complex and heritable. The heritability of alcohol use disorders is estimated at approximately 50-60% of the total phenotypic variability. Vulnerability to alcohol use disorders can be due to multiple genetic or environmental factors or their interaction which gives rise to extensive and daunting heterogeneity. This heterogeneity makes it a significant challenge in mapping and identifying the specific genes that influence alcohol use disorders. Genetic linkage and (candidate gene) association studies have been used now for decades to map and characterize genomic loci and genes that underlie the genetic vulnerability to alcohol use disorders. These approaches have been moderately successful in identifying several genes that contribute to the complexity of alcohol use disorders. Recently, genome-wide association studies have become one of the major tools for identifying genes for alcohol use disorders by examining correlations between millions of common single-nucleotide polymorphisms with diagnosis status. Genome-wide association studies are just beginning to uncover novel biology; however, the functional significance of results remains a matter of extensive debate and uncertainty. In this review, we present a select group of genome-wide association studies of alcohol dependence, as one example of a way to generate functional hypotheses, within the addiction cycle framework. This analysis may provide novel directions for validating the functional significance of alcohol dependence candidate genes. This article is part of the Special Issue entitled "Alcoholism".
Collapse
Affiliation(s)
- Matthew T Reilly
- National Institutes of Health (NIH), National Institute on Alcohol Abuse and Alcoholism (NIAAA), Division of Neuroscience and Behavior, 5635 Fishers Lane, Bethesda, MD 20852, USA.
| | - Antonio Noronha
- National Institutes of Health (NIH), National Institute on Alcohol Abuse and Alcoholism (NIAAA), Division of Neuroscience and Behavior, 5635 Fishers Lane, Bethesda, MD 20852, USA
| | - David Goldman
- National Institutes of Health (NIH), National Institute on Alcohol Abuse and Alcoholism (NIAAA), Chief, Laboratory of Neurogenetics, 5635 Fishers Lane, Bethesda, MD 20852, USA
| | - George F Koob
- National Institutes of Health (NIH), National Institute on Alcohol Abuse and Alcoholism (NIAAA), Director NIAAA, 5635 Fishers Lane, Bethesda, MD 20852, USA
| |
Collapse
|
22
|
Cruz JND, Magro DDD, Lima DDD, Cruz JGPD. Simvastatin treatment reduces the cholesterol content of membrane/lipid rafts, implicating the N -methyl-D-aspartate receptor in anxiety: a literature review. BRAZ J PHARM SCI 2017. [DOI: 10.1590/s2175-97902017000116102] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
23
|
Albasanz JL, Santana S, Guzman-Sanchez F, León D, Burgos JS, Martín M. 2-Methyl-6-(phenylethynyl)pyridine Hydrochloride Modulates Metabotropic Glutamate 5 Receptors Endogenously Expressed in Zebrafish Brain. ACS Chem Neurosci 2016; 7:1690-1697. [PMID: 27635438 DOI: 10.1021/acschemneuro.6b00213] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Due to phylogenetic proximity to the human, zebrafish has been recognized as a reliable model to study Alzheimer's disease (AD) and other central nervous system disorders. Furthermore, metabotropic glutamate receptors have been previously reported to be impaired in brain from AD patients. Metabotropic glutamate 5 (mGlu5) receptors are G-protein coupled receptors proposed as potential targets for therapy of different neurodegenerative disorders. Thus, MPEP (2-methyl-6-(phenylethynyl)pyridine hydrochloride), a selective noncompetitive mGlu5 receptor antagonist, has been suggested for pharmacological treatment of AD. The aim of the present work was to quantify mGlu5 receptors in brain from zebrafish and to study the possible modulation of these receptors by MPEP treatment. To this end, radioligand binding assay and open field test were used. Results showed a slightly higher presence of mGlu5 receptors in brain from male than in that from female zebrafish. However, a significant increase of mGlu5 receptor in male without variation in female was observed after MPEP treatment. This gender specific response was also observed in locomotor behavior, being significantly decreased only in male zebrafish. These results confirm the presence of mGlu5 receptors in brain from zebrafish and their gender specific modulation by selective antagonist treatment and suggest a role of these receptors on locomotor activity, which is affected in many disorders. In addition, our data point to zebrafish as a useful model to study mGlu receptor function in both healthy and pathological conditions.
Collapse
Affiliation(s)
- José Luis Albasanz
- Departamento de Química Inorgánica,
Orgánica y Bioquímica, Facultad de Medicina de Ciudad
Real/Facultad de Ciencias y Tecnologías Químicas, Universidad de Castilla-La Mancha, Centro Regional de Investigaciones Biomédicas (CRIB), Avenida Camilo José Cela 10, 13071 Ciudad Real, Spain
| | | | | | - David León
- Departamento de Química Inorgánica,
Orgánica y Bioquímica, Facultad de Medicina de Ciudad
Real/Facultad de Ciencias y Tecnologías Químicas, Universidad de Castilla-La Mancha, Centro Regional de Investigaciones Biomédicas (CRIB), Avenida Camilo José Cela 10, 13071 Ciudad Real, Spain
| | | | - Mairena Martín
- Departamento de Química Inorgánica,
Orgánica y Bioquímica, Facultad de Medicina de Ciudad
Real/Facultad de Ciencias y Tecnologías Químicas, Universidad de Castilla-La Mancha, Centro Regional de Investigaciones Biomédicas (CRIB), Avenida Camilo José Cela 10, 13071 Ciudad Real, Spain
| |
Collapse
|
24
|
Zanos P, Georgiou P, Gonzalez LR, Hourani S, Chen Y, Kitchen I, Kieffer BL, Winsky-Sommerer R, Bailey A. Emotional Impairment and Persistent Upregulation of mGlu5 Receptor following Morphine Abstinence: Implications of an mGlu5-MOPr Interaction. Int J Neuropsychopharmacol 2016; 19:pyw011. [PMID: 26861145 PMCID: PMC4966274 DOI: 10.1093/ijnp/pyw011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 02/02/2016] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND A difficult problem in treating opioid addicts is the maintenance of a drug-free state because of the negative emotional symptoms associated with withdrawal, which may trigger relapse. Several lines of evidence suggest a role for the metabotropic glutamate receptor 5 in opioid addiction; however, its involvement during opioid withdrawal is not clear. METHODS Mice were treated with a 7-day escalating-dose morphine administration paradigm. Following withdrawal, the development of affective behaviors was assessed using the 3-chambered box, open-field, elevated plus-maze and forced-swim tests. Metabotropic glutamate receptor 5 autoradiographic binding was performed in mouse brains undergoing chronic morphine treatment and 7 days withdrawal. Moreover, since there is evidence showing direct effects of opioid drugs on the metabotropic glutamate receptor 5 system, the presence of an metabotropic glutamate receptor 5/μ-opioid receptor interaction was assessed by performing metabotropic glutamate receptor 5 autoradiographic binding in brains of mice lacking the μ-opioid receptor gene. RESULTS Withdrawal from chronic morphine administration induced anxiety-like, depressive-like, and impaired sociability behaviors concomitant with a marked upregulation of metabotropic glutamate receptor 5 binding. Administration of the metabotropic glutamate receptor 5 antagonist, 3-((2-Methyl-4-thiazolyl)ethynyl)pyridine, reversed morphine abstinence-induced depressive-like behaviors. A brain region-specific increase in metabotropic glutamate receptor 5 binding was observed in the nucleus accumbens shell, thalamus, hypothalamus, and amygdala of μ-opioid receptor knockout mice compared with controls. CONCLUSIONS These results suggest an association between metabotropic glutamate receptor 5 alterations and the emergence of opioid withdrawal-related affective behaviors. This study supports metabotropic glutamate receptor 5 system as a target for the development of pharmacotherapies for the treatment of opioid addiction. Moreover, our data show direct effects of μ-opioid receptor system manipulation on metabotropic glutamate receptor 5 binding in the brain.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Alexis Bailey
- School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey, UK (Dr Zanos, Dr Georgiou, Ms Rojo Gonzalez, Prof. Hourani, Prof. Kitchen, Dr Winsky-Sommerer, and Dr Bailey); Department of Psychiatry, University of Maryland, School of Medicine, Baltimore, MD (Dr Zanos and Dr Georgiou); Institute of Psychiatry, Psychology and Neuroscience, Kings College London, London, UK (Dr Chen); Institut de Génétique et de Biologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Université de Strasbourg, Illkirch, France (Prof. Kieffer); Douglas Hospital Research Center, Department of Psychiatry, Faculty of Medicine, McGill University, Montreal, Quebec, Canada (Prof. Kieffer); Institute of Medical and Biomedical Education, St George's University of London, London (Dr Bailey).
| |
Collapse
|
25
|
Kumar J, Hapidin H, Get Bee YT, Ismail Z. The effects of acute ethanol administration on ethanol withdrawal-induced anxiety-like syndrome in rats: A biochemical study. Alcohol 2016; 50:9-17. [PMID: 26626323 DOI: 10.1016/j.alcohol.2015.10.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2015] [Accepted: 10/20/2015] [Indexed: 01/13/2023]
Abstract
Withdrawal from long-term ethanol consumption results in overexcitation of glutamatergic neurotransmission in the amygdala, which induces an anxiety-like syndrome. Most alcoholics that suffer from such symptoms frequently depend on habitual drinking as self-medication to alleviate their symptoms. Metabotropic glutamate receptor subtype 5 (mGlu5) and protein kinase C (PKC) epsilon have been reported to mediate acute and chronic effects of ethanol. This study explores the changes in mGlu5 and PKC epsilon in the amygdala following acute administration of ethanol during ethanol withdrawal (EW) induced anxiety. Male Wistar rats were fed a modified liquid diet containing low-fat cow milk, sucrose, and maltodextrin, with a gradual introduction of 2.4%, 4.8% and 7.2% ethanol for 20 days. Six hours into EW, the rats were intraperitoneally injected with normal saline and ethanol (2.5 g/kg, 20% v/v), and exposed to open-field and elevated plus maze tests. Then, amygdala tissue was dissected from the rat brain for Western blot and gene expression studies. EW-induced anxiety was accompanied by a significant increase in mGlu5, total PKC epsilon, and phosphorylated PKC epsilon protein levels, and also of mRNA of mGlu5 (GRM5) in the amygdala. Acute administration of ethanol significantly attenuated EW-induced anxiety as well as an EW-induced increase in GRM5. The acute challenge of ethanol to EW rats had little effect on the phosphorylated and total protein levels of PKC epsilon in the amygdala. Our results demonstrate that amygdala PKC epsilon may not be directly involved in the development of anxiety following EW.
Collapse
Affiliation(s)
- Jaya Kumar
- Department of Physiology, Faculty of Medicine, Pre-Clinical Building, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, Bandar Tun Razak, 56000 Cheras, Kuala Lumpur, Malaysia.
| | - Hermizi Hapidin
- School of Health Sciences, Health Campus, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia
| | - Yvonne-Tee Get Bee
- School of Health Sciences, Health Campus, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia
| | - Zalina Ismail
- BRAINetwork Centre for Neurocognitive Science, School of Health Sciences, Health Campus, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia
| |
Collapse
|
26
|
DeLorenzo C, Sovago J, Gardus J, Xu J, Yang J, Behrje R, Kumar JSD, Devanand DP, Pelton GH, Mathis CA, Mason NS, Gomez-Mancilla B, Aizenstein H, Mann JJ, Parsey RV. Characterization of brain mGluR5 binding in a pilot study of late-life major depressive disorder using positron emission tomography and [¹¹C]ABP688. Transl Psychiatry 2015; 5:e693. [PMID: 26645628 PMCID: PMC5068588 DOI: 10.1038/tp.2015.189] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 10/05/2015] [Accepted: 10/26/2015] [Indexed: 01/06/2023] Open
Abstract
The metabotropic glutamate receptor subtype 5 (mGluR5) has been implicated in the pathophysiology of mood and anxiety disorders and is a potential treatment target in major depressive disorder (MDD). This study compared brain mGluR5 binding in elderly patients suffering from MDD with that in elderly healthy volunteers using positron emission tomography (PET) and [(11)C]ABP688. Twenty elderly (mean age: 63.0 ± 6.3) subjects with MDD and twenty-two healthy volunteers in the same age range (mean age: 66.4 ± 7.3) were examined with PET after a single bolus injection of [(11)C]ABP688, with many receiving arterial sampling. PET images were analyzed on a region of interest and a voxel level to compare mGluR5 binding in the brain between the two groups. Differences in [(11)C]ABP688 binding between patients with early- and late-onset depression were also assessed. In contrast to a previously published report in a younger cohort, no significant difference in [(11)C]ABP688 binding was observed between elderly subjects with MDD and healthy volunteers. [(11)C]ABP688 binding was also similar between subgroups with early- or late-onset depression. We believe this is the first study to examine mGluR5 expression in depression in the elderly. Although future work is required, results suggest potential differences in the pathophysiology of elderly depression versus depression earlier in life.
Collapse
Affiliation(s)
- C DeLorenzo
- Department of Psychiatry, Columbia University, New York, NY, USA,Department of Psychiatry, Stony Brook University, Stony Brook, NY, USA,Department of Psychiatry, Stony Brook University, HSC-T-10, Room 40D, Stony Brook, NY 11794, USA. E-mail:
| | - J Sovago
- Novartis Institute for BioMedical Research, Novartis Pharma AG, Basel, Switzerland
| | - J Gardus
- Department of Psychiatry, Stony Brook University, Stony Brook, NY, USA
| | - J Xu
- Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, NY, USA
| | - J Yang
- Department of Preventive Medicine, Stony Brook University, Stony Brook, NY, USA
| | - R Behrje
- Novartis Pharmaceuticals Corporations, East Hanover, NJ, USA
| | - J S D Kumar
- Department of Psychiatry, Columbia University, New York, NY, USA
| | - D P Devanand
- Department of Psychiatry, Columbia University, New York, NY, USA
| | - G H Pelton
- Department of Psychiatry, Columbia University, New York, NY, USA
| | - C A Mathis
- Department of Radiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - N S Mason
- Department of Radiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - B Gomez-Mancilla
- Novartis Institute for BioMedical Research, Novartis Pharma AG, Basel, Switzerland
| | - H Aizenstein
- Department of Radiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - J J Mann
- Department of Psychiatry, Columbia University, New York, NY, USA
| | - R V Parsey
- Department of Psychiatry, Stony Brook University, Stony Brook, NY, USA
| |
Collapse
|
27
|
Reynolds AR, Williams LA, Saunders MA, Prendergast MA. Group 1 mGlu-family proteins promote neuroadaptation to ethanol and withdrawal-associated hippocampal damage. Drug Alcohol Depend 2015; 156:213-220. [PMID: 26442908 PMCID: PMC4633372 DOI: 10.1016/j.drugalcdep.2015.09.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Revised: 09/14/2015] [Accepted: 09/14/2015] [Indexed: 11/27/2022]
Abstract
BACKGROUND Group 1 mGlu-family proteins (i.e., mGlu) consist of mGlu1 and mGlu5 and their activity may influence voluntary ethanol intake. The present studies sought to examine the influence of these receptors on the development of ethanol dependence using in vitro and in vivo models of chronic, intermittent ethanol (CIE). METHODS Rat hippocampal explants were exposed to CIE with or without the addition of mGlu1 antagonist (7-hydroxyimino)cyclopropa[b]chromen-1a-carboxylate ethyl ester (CPCCOEt; 0.5, 1, and 3μM) or mGlu5 antagonist (E)-2-methyl-6-styryl-pyridine (SIB-1893; 20, 100, and 200μM) to assess sparing of withdrawal-induced cytotoxicity. In a separate study, adult male rats were administered CIE with or without the addition of oral administration of group 1 mGlu antagonist 2-methyl-6-(phenylethynyl)-pyridine (MPEP; 3mg/kg). Blood ethanol levels (BELs) were determined at 0930h on Day 2 of Weeks 1, 2, and 3. Withdrawal behavior was monitored during Day 6 of the third consecutive withdrawal. RESULTS CIE produced significant hippocampal cytotoxicity. These effects were attenuated by co-exposure to CPCCOEt (3μM) with ethanol in the CA3. By contrast, these effects were blocked by SIB-1893 (20μM) in each primary cell layer. Oral administration of MPEP with ethanol significantly attenuated behavioral effects of subsequent withdrawal and reduced BELs. CONCLUSIONS These data demonstrate that ethanol activates group 1 mGlu-family proteins to promote withdrawal-associated cytotoxicity in vitro and physical dependence in vivo. These findings suggest that group 1 mGlu-family proteins may be therapeutic targets for treatment of alcohol use disorders.
Collapse
Affiliation(s)
| | - Luke A. Williams
- University of Kentucky, Department of Psychology,University of Kentucky, Spinal Cord and Brain Injury Research Center
| | - Meredith A. Saunders
- University of Kentucky, Department of Psychology,University of Kentucky, Spinal Cord and Brain Injury Research Center
| | - Mark A. Prendergast
- University of Kentucky, Department of Psychology,University of Kentucky, Spinal Cord and Brain Injury Research Center
| |
Collapse
|