1
|
Kamiyama D, Nishida Y, Kamiyama R, Sego A, Vining G, Bui K, Fitch M, Do H, Avraham O, Chihara T. The VAPB Axis Precisely Coordinates the Timing of Motoneuron Dendritogenesis in Neural Map Development. RESEARCH SQUARE 2024:rs.3.rs-5684747. [PMID: 39801516 PMCID: PMC11722539 DOI: 10.21203/rs.3.rs-5684747/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/23/2025]
Abstract
In Drosophila motoneurons, spatiotemporal dendritic patterns are established in the ventral nerve cord. While many guidance cues have been identified, the mechanisms of temporal regulation remain unknown. Previously, we identified the actin modulator Cdc42 GTPase as a key factor in this process. In this report, we further identify the upstream factors that activate Cdc42. Using single-cell genetics, FRET-based imaging, and biochemical techniques, we demonstrate that the guanine nucleotide exchange factor Vav is anchored to the plasma membrane via the Eph receptor tyrosine kinase, enabling Cdc42 activation. VAMP-associated protein 33 (Vap33), an Eph ligand supplied non-cell-autonomously, may induce Eph autophosphorylation, initiating downstream signaling. Traditionally known as an ER-resident protein, Vap33 is secreted extracellularly at the onset of Cdc42 activation, acting as a temporal cue. In humans, VAPB-the ortholog of Vap33-is similarly secreted in the spinal cord, and its dysregulation leads to amyotrophic lateral sclerosis type 8 (ALS8) and spinal muscular atrophy (SMA). Our findings provide a framework linking VAPB signaling to motor circuitry formation in both health and disease.
Collapse
|
2
|
Chen J, Stork T, Kang Y, Nardone KAM, Auer F, Farrell RJ, Jay TR, Heo D, Sheehan A, Paton C, Nagel KI, Schoppik D, Monk KR, Freeman MR. Astrocyte growth is driven by the Tre1/S1pr1 phospholipid-binding G protein-coupled receptor. Neuron 2024; 112:93-112.e10. [PMID: 38096817 PMCID: PMC11073822 DOI: 10.1016/j.neuron.2023.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 07/31/2023] [Accepted: 11/08/2023] [Indexed: 01/06/2024]
Abstract
Astrocytes play crucial roles in regulating neural circuit function by forming a dense network of synapse-associated membrane specializations, but signaling pathways regulating astrocyte morphogenesis remain poorly defined. Here, we show the Drosophila lipid-binding G protein-coupled receptor (GPCR) Tre1 is required for astrocytes to establish their intricate morphology in vivo. The lipid phosphate phosphatases Wunen/Wunen2 also regulate astrocyte morphology and, via Tre1, mediate astrocyte-astrocyte competition for growth-promoting lipids. Loss of s1pr1, the functional analog of Tre1 in zebrafish, disrupts astrocyte process elaboration, and live imaging and pharmacology demonstrate that S1pr1 balances proper astrocyte process extension/retraction dynamics during growth. Loss of Tre1 in flies or S1pr1 in zebrafish results in defects in simple assays of motor behavior. Tre1 and S1pr1 are thus potent evolutionarily conserved regulators of the elaboration of astrocyte morphological complexity and, ultimately, astrocyte control of behavior.
Collapse
Affiliation(s)
- Jiakun Chen
- Vollum Institute, Oregon Health & Science University, Portland, OR 97239, USA.
| | - Tobias Stork
- Vollum Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Yunsik Kang
- Vollum Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Katherine A M Nardone
- Departments of Otolaryngology and Neuroscience and Physiology, Neuroscience Institute, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Franziska Auer
- Departments of Otolaryngology and Neuroscience and Physiology, Neuroscience Institute, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Ryan J Farrell
- Neuroscience Institute, NYU Medical Center, New York, NY 10016, USA
| | - Taylor R Jay
- Vollum Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Dongeun Heo
- Vollum Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Amy Sheehan
- Vollum Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Cameron Paton
- Vollum Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | | | - David Schoppik
- Departments of Otolaryngology and Neuroscience and Physiology, Neuroscience Institute, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Kelly R Monk
- Vollum Institute, Oregon Health & Science University, Portland, OR 97239, USA.
| | - Marc R Freeman
- Vollum Institute, Oregon Health & Science University, Portland, OR 97239, USA.
| |
Collapse
|
3
|
Mitchell JW, Midillioglu I, Schauer E, Wang B, Han C, Wildonger J. Coordination of Pickpocket ion channel delivery and dendrite growth in Drosophila sensory neurons. PLoS Genet 2023; 19:e1011025. [PMID: 37943859 PMCID: PMC10662761 DOI: 10.1371/journal.pgen.1011025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/21/2023] [Accepted: 10/23/2023] [Indexed: 11/12/2023] Open
Abstract
Sensory neurons enable an organism to perceive external stimuli, which is essential for survival. The sensory capacity of a neuron depends on the elaboration of its dendritic arbor and the localization of sensory ion channels to the dendritic membrane. However, it is not well understood when and how ion channels localize to growing sensory dendrites and whether their delivery is coordinated with growth of the dendritic arbor. We investigated the localization of the DEG/ENaC/ASIC ion channel Pickpocket (Ppk) in the peripheral sensory neurons of developing fruit flies. We used CRISPR-Cas9 genome engineering approaches to tag endogenous Ppk1 and visualize it live, including monitoring Ppk1 membrane localization via a novel secreted split-GFP approach. Fluorescently tagged endogenous Ppk1 localizes to dendrites, as previously reported, and, unexpectedly, to axons and axon terminals. In dendrites, Ppk1 is present throughout actively growing dendrite branches and is stably integrated into the neuronal cell membrane during the expansive growth of the arbor. Although Ppk channels are dispensable for dendrite growth, we found that an over-active channel mutant severely reduces dendrite growth, likely by acting at an internal membrane and not the dendritic membrane. Our data reveal that the molecular motor dynein and recycling endosome GTPase Rab11 are needed for the proper trafficking of Ppk1 to dendrites. Based on our data, we propose that Ppk channel transport is coordinated with dendrite morphogenesis, which ensures proper ion channel density and distribution in sensory dendrites.
Collapse
Affiliation(s)
- Josephine W. Mitchell
- Integrated Program in Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Biochemistry Department, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Department of Chemistry and Biochemistry, Kalamazoo College, Kalamazoo, Michigan, United States of America
| | - Ipek Midillioglu
- Pediatrics, University of California, San Diego, La Jolla, California, United States of America
| | - Ethan Schauer
- Pediatrics, University of California, San Diego, La Jolla, California, United States of America
| | - Bei Wang
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, New York, United States of America
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| | - Chun Han
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, New York, United States of America
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| | - Jill Wildonger
- Biochemistry Department, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Pediatrics, University of California, San Diego, La Jolla, California, United States of America
- Cell & Developmental Biology, School of Biological Sciences, University of California, San Diego, La Jolla, California, United States of America
| |
Collapse
|
4
|
Truman JW, Riddiford LM. Drosophila postembryonic nervous system development: a model for the endocrine control of development. Genetics 2023; 223:iyac184. [PMID: 36645270 PMCID: PMC9991519 DOI: 10.1093/genetics/iyac184] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 12/13/2022] [Indexed: 01/17/2023] Open
Abstract
During postembryonic life, hormones, including ecdysteroids, juvenile hormones, insulin-like peptides, and activin/TGFβ ligands act to transform the larval nervous system into an adult version, which is a fine-grained mosaic of recycled larval neurons and adult-specific neurons. Hormones provide both instructional signals that make cells competent to undergo developmental change and timing cues to evoke these changes across the nervous system. While touching on all the above hormones, our emphasis is on the ecdysteroids, ecdysone and 20-hydroxyecdysone (20E). These are the prime movers of insect molting and metamorphosis and are involved in all phases of nervous system development, including neurogenesis, pruning, arbor outgrowth, and cell death. Ecdysteroids appear as a series of steroid peaks that coordinate the larval molts and the different phases of metamorphosis. Each peak directs a stereotyped cascade of transcription factor expression. The cascade components then direct temporal programs of effector gene expression, but the latter vary markedly according to tissue and life stage. The neurons read the ecdysteroid titer through various isoforms of the ecdysone receptor, a nuclear hormone receptor. For example, at metamorphosis the pruning of larval neurons is mediated through the B isoforms, which have strong activation functions, whereas subsequent outgrowth is mediated through the A isoform through which ecdysteroids play a permissive role to allow local tissue interactions to direct outgrowth. The major circulating ecdysteroid can also change through development. During adult development ecdysone promotes early adult patterning and differentiation while its metabolite, 20E, later evokes terminal adult differentiation.
Collapse
Affiliation(s)
- James W Truman
- Friday Harbor Laboratories, University of Washington, Friday Harbor, WA 98250, USA
- Department of Biology, University of Washington, Box 351800, Seattle, WA 98195, USA
| | - Lynn M Riddiford
- Friday Harbor Laboratories, University of Washington, Friday Harbor, WA 98250, USA
- Department of Biology, University of Washington, Box 351800, Seattle, WA 98195, USA
| |
Collapse
|
5
|
Sobrido-Cameán D, Oswald MCW, Bailey DMD, Mukherjee A, Landgraf M. Activity-regulated growth of motoneurons at the neuromuscular junction is mediated by NADPH oxidases. Front Cell Neurosci 2023; 16:1106593. [PMID: 36713781 PMCID: PMC9880070 DOI: 10.3389/fncel.2022.1106593] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 12/27/2022] [Indexed: 01/15/2023] Open
Abstract
Neurons respond to changes in the levels of activity they experience in a variety of ways, including structural changes at pre- and postsynaptic terminals. An essential plasticity signal required for such activity-regulated structural adjustments are reactive oxygen species (ROS). To identify sources of activity-regulated ROS required for structural plasticity in vivo we used the Drosophila larval neuromuscular junction as a highly tractable experimental model system. For adjustments of presynaptic motor terminals, we found a requirement for both NADPH oxidases, Nox and dual oxidase (Duox), that are encoded in the Drosophila genome. This contrasts with the postsynaptic dendrites from which Nox is excluded. NADPH oxidases generate ROS to the extracellular space. Here, we show that two aquaporins, Bib and Drip, are necessary ROS conduits in the presynaptic motoneuron for activity regulated, NADPH oxidase dependent changes in presynaptic motoneuron terminal growth. Our data further suggest that different aspects of neuronal activity-regulated structural changes might be regulated by different ROS sources: changes in bouton number require both NADPH oxidases, while activity-regulated changes in the number of active zones might be modulated by other sources of ROS. Overall, our results show NADPH oxidases as important enzymes for mediating activity-regulated plasticity adjustments in neurons.
Collapse
|
6
|
Jaszczak JS, DeVault L, Jan LY, Jan YN. Steroid hormone signaling activates thermal nociception during Drosophila peripheral nervous system development. eLife 2022; 11:e76464. [PMID: 35353036 PMCID: PMC8967384 DOI: 10.7554/elife.76464] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 03/07/2022] [Indexed: 12/27/2022] Open
Abstract
Sensory neurons enable animals to detect environmental changes and avoid harm. An intriguing open question concerns how the various attributes of sensory neurons arise in development. Drosophila melanogaster larvae undergo a behavioral transition by robustly activating a thermal nociceptive escape behavior during the second half of larval development (third instar). The Class IV dendritic arborization (C4da) neurons are multimodal sensors which tile the body wall of Drosophila larvae and detect nociceptive temperature, light, and mechanical force. In contrast to the increase in nociceptive behavior in the third instar, we find that ultraviolet light-induced Ca2+ activity in C4da neurons decreases during the same period of larval development. Loss of ecdysone receptor has previously been shown to reduce nociception in third instar larvae. We find that ligand-dependent activation of ecdysone signaling is sufficient to promote nociceptive responses in second instar larvae and suppress expression of subdued (encoding a TMEM16 channel). Reduction of subdued expression in second instar C4da neurons not only increases thermal nociception but also decreases the response to ultraviolet light. Thus, steroid hormone signaling suppresses subdued expression to facilitate the sensory switch of C4da neurons. This regulation of a developmental sensory switch through steroid hormone regulation of channel expression raises the possibility that ion channel homeostasis is a key target for tuning the development of sensory modalities.
Collapse
Affiliation(s)
- Jacob S Jaszczak
- Department of Physiology, Department of Biochemistry and Biophysics, University of California, San FranciscoSan FranciscoUnited States
- Howard Hughes Medical InstituteChevy ChaseUnited States
| | - Laura DeVault
- Department of Physiology, Department of Biochemistry and Biophysics, University of California, San FranciscoSan FranciscoUnited States
- Department of Developmental Biology, Washington University Medical SchoolSaint LouisUnited States
| | - Lily Yeh Jan
- Department of Physiology, Department of Biochemistry and Biophysics, University of California, San FranciscoSan FranciscoUnited States
- Howard Hughes Medical InstituteChevy ChaseUnited States
| | - Yuh Nung Jan
- Department of Physiology, Department of Biochemistry and Biophysics, University of California, San FranciscoSan FranciscoUnited States
- Howard Hughes Medical InstituteChevy ChaseUnited States
| |
Collapse
|
7
|
Dhawan S, Myers P, Bailey DMD, Ostrovsky AD, Evers JF, Landgraf M. Reactive Oxygen Species Mediate Activity-Regulated Dendritic Plasticity Through NADPH Oxidase and Aquaporin Regulation. Front Cell Neurosci 2021; 15:641802. [PMID: 34290589 PMCID: PMC8288108 DOI: 10.3389/fncel.2021.641802] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 06/02/2021] [Indexed: 12/17/2022] Open
Abstract
Neurons utilize plasticity of dendritic arbors as part of a larger suite of adaptive plasticity mechanisms. This explicitly manifests with motoneurons in the Drosophila embryo and larva, where dendritic arbors are exclusively postsynaptic and are used as homeostatic devices, compensating for changes in synaptic input through adapting their growth and connectivity. We recently identified reactive oxygen species (ROS) as novel plasticity signals instrumental in this form of dendritic adjustment. ROS correlate with levels of neuronal activity and negatively regulate dendritic arbor size. Here, we investigated NADPH oxidases as potential sources of such activity-regulated ROS and implicate Dual Oxidase (but not Nox), which generates hydrogen peroxide extracellularly. We further show that the aquaporins Bib and Drip, but not Prip, are required for activity-regulated ROS-mediated adjustments of dendritic arbor size in motoneurons. These results suggest a model whereby neuronal activity leads to activation of the NADPH oxidase Dual Oxidase, which generates hydrogen peroxide at the extracellular face; aquaporins might then act as conduits that are necessary for these extracellular ROS to be channeled back into the cell where they negatively regulate dendritic arbor size.
Collapse
Affiliation(s)
- Serene Dhawan
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom
- Neural Circuits and Evolution Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Philip Myers
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - David M. D. Bailey
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom
| | - Aaron D. Ostrovsky
- Centre for Organismal Studies, Heidelberg University, Heidelberg, Germany
| | - Jan Felix Evers
- Centre for Organismal Studies, Heidelberg University, Heidelberg, Germany
| | - Matthias Landgraf
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
8
|
Bolus H, Crocker K, Boekhoff-Falk G, Chtarbanova S. Modeling Neurodegenerative Disorders in Drosophila melanogaster. Int J Mol Sci 2020; 21:E3055. [PMID: 32357532 PMCID: PMC7246467 DOI: 10.3390/ijms21093055] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 04/14/2020] [Accepted: 04/21/2020] [Indexed: 12/12/2022] Open
Abstract
Drosophila melanogaster provides a powerful genetic model system in which to investigate the molecular mechanisms underlying neurodegenerative diseases. In this review, we discuss recent progress in Drosophila modeling Alzheimer's Disease, Parkinson's Disease, Amyotrophic Lateral Sclerosis (ALS), Huntington's Disease, Ataxia Telangiectasia, and neurodegeneration related to mitochondrial dysfunction or traumatic brain injury. We close by discussing recent progress using Drosophila models of neural regeneration and how these are likely to provide critical insights into future treatments for neurodegenerative disorders.
Collapse
Affiliation(s)
- Harris Bolus
- Department of Biological Sciences, University of Alabama, Tuscaloosa, AL 35487, USA;
| | - Kassi Crocker
- Genetics Graduate Training Program, School of Medicine and Public Health, University of Wisconsin–Madison, Madison, WI 53705, USA;
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin–Madison, Madison, WI 53705, USA
| | - Grace Boekhoff-Falk
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin–Madison, Madison, WI 53705, USA
| | | |
Collapse
|
9
|
Oswald MC, Brooks PS, Zwart MF, Mukherjee A, West RJ, Giachello CN, Morarach K, Baines RA, Sweeney ST, Landgraf M. Reactive oxygen species regulate activity-dependent neuronal plasticity in Drosophila. eLife 2018; 7:39393. [PMID: 30540251 PMCID: PMC6307858 DOI: 10.7554/elife.39393] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 12/12/2018] [Indexed: 12/11/2022] Open
Abstract
Reactive oxygen species (ROS) have been extensively studied as damaging agents associated with ageing and neurodegenerative conditions. Their role in the nervous system under non-pathological conditions has remained poorly understood. Working with the Drosophila larval locomotor network, we show that in neurons ROS act as obligate signals required for neuronal activity-dependent structural plasticity, of both pre- and postsynaptic terminals. ROS signaling is also necessary for maintaining evoked synaptic transmission at the neuromuscular junction, and for activity-regulated homeostatic adjustment of motor network output, as measured by larval crawling behavior. We identified the highly conserved Parkinson’s disease-linked protein DJ-1β as a redox sensor in neurons where it regulates structural plasticity, in part via modulation of the PTEN-PI3Kinase pathway. This study provides a new conceptual framework of neuronal ROS as second messengers required for neuronal plasticity and for network tuning, whose dysregulation in the ageing brain and under neurodegenerative conditions may contribute to synaptic dysfunction.
Collapse
Affiliation(s)
- Matthew Cw Oswald
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom
| | - Paul S Brooks
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom
| | | | - Amrita Mukherjee
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom
| | - Ryan Jh West
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom.,Department of Biology, University of York, York, United Kingdom
| | - Carlo Ng Giachello
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Khomgrit Morarach
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom
| | - Richard A Baines
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Sean T Sweeney
- Department of Biology, University of York, York, United Kingdom
| | - Matthias Landgraf
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
10
|
Antonacci S, Forand D, Wolf M, Tyus C, Barney J, Kellogg L, Simon MA, Kerr G, Wells KL, Younes S, Mortimer NT, Olesnicky EC, Killian DJ. Conserved RNA-binding proteins required for dendrite morphogenesis in Caenorhabditis elegans sensory neurons. G3 (BETHESDA, MD.) 2015; 5:639-53. [PMID: 25673135 PMCID: PMC4390579 DOI: 10.1534/g3.115.017327] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 02/09/2015] [Indexed: 01/22/2023]
Abstract
The regulation of dendritic branching is critical for sensory reception, cell-cell communication within the nervous system, learning, memory, and behavior. Defects in dendrite morphology are associated with several neurologic disorders; thus, an understanding of the molecular mechanisms that govern dendrite morphogenesis is important. Recent investigations of dendrite morphogenesis have highlighted the importance of gene regulation at the posttranscriptional level. Because RNA-binding proteins mediate many posttranscriptional mechanisms, we decided to investigate the extent to which conserved RNA-binding proteins contribute to dendrite morphogenesis across phyla. Here we identify a core set of RNA-binding proteins that are important for dendrite morphogenesis in the PVD multidendritic sensory neuron in Caenorhabditis elegans. Homologs of each of these genes were previously identified as important in the Drosophila melanogaster dendritic arborization sensory neurons. Our results suggest that RNA processing, mRNA localization, mRNA stability, and translational control are all important mechanisms that contribute to dendrite morphogenesis, and we present a conserved set of RNA-binding proteins that regulate these processes in diverse animal species. Furthermore, homologs of these genes are expressed in the human brain, suggesting that these RNA-binding proteins are candidate regulators of dendrite development in humans.
Collapse
Affiliation(s)
- Simona Antonacci
- Department of Molecular Biology, Colorado College, Colorado Springs, Colorado 80903
| | - Daniel Forand
- Department of Biology, University of Colorado Colorado Springs, Colorado Springs, Colorado 80918
| | - Margaret Wolf
- Department of Molecular Biology, Colorado College, Colorado Springs, Colorado 80903
| | - Courtney Tyus
- Department of Molecular Biology, Colorado College, Colorado Springs, Colorado 80903
| | - Julia Barney
- Department of Molecular Biology, Colorado College, Colorado Springs, Colorado 80903
| | - Leah Kellogg
- Department of Molecular Biology, Colorado College, Colorado Springs, Colorado 80903
| | - Margo A Simon
- Department of Molecular Biology, Colorado College, Colorado Springs, Colorado 80903
| | - Genevieve Kerr
- Department of Molecular Biology, Colorado College, Colorado Springs, Colorado 80903
| | - Kristen L Wells
- Department of Molecular Biology, Colorado College, Colorado Springs, Colorado 80903
| | - Serena Younes
- Department of Biology, University of Colorado Colorado Springs, Colorado Springs, Colorado 80918
| | - Nathan T Mortimer
- Department of Biological Sciences, University of Denver, Denver, Colorado 80208
| | - Eugenia C Olesnicky
- Department of Biology, University of Colorado Colorado Springs, Colorado Springs, Colorado 80918
| | - Darrell J Killian
- Department of Molecular Biology, Colorado College, Colorado Springs, Colorado 80903
| |
Collapse
|
11
|
Neuron-glia interactions through the Heartless FGF receptor signaling pathway mediate morphogenesis of Drosophila astrocytes. Neuron 2014; 83:388-403. [PMID: 25033182 DOI: 10.1016/j.neuron.2014.06.026] [Citation(s) in RCA: 161] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/17/2014] [Indexed: 11/24/2022]
Abstract
Astrocytes are critically important for neuronal circuit assembly and function. Mammalian protoplasmic astrocytes develop a dense ramified meshwork of cellular processes to form intimate contacts with neuronal cell bodies, neurites, and synapses. This close neuron-glia morphological relationship is essential for astrocyte function, but it remains unclear how astrocytes establish their intricate morphology, organize spatial domains, and associate with neurons and synapses in vivo. Here we characterize a Drosophila glial subtype that shows striking morphological and functional similarities to mammalian astrocytes. We demonstrate that the Fibroblast growth factor (FGF) receptor Heartless autonomously controls astrocyte membrane growth, and the FGFs Pyramus and Thisbe direct astrocyte processes to ramify specifically in CNS synaptic regions. We further show that the shape and size of individual astrocytes are dynamically sculpted through inhibitory or competitive astrocyte-astrocyte interactions and Heartless FGF signaling. Our data identify FGF signaling through Heartless as a key regulator of astrocyte morphological elaboration in vivo.
Collapse
|
12
|
Ferreira T, Ou Y, Li S, Giniger E, van Meyel DJ. Dendrite architecture organized by transcriptional control of the F-actin nucleator Spire. Development 2014; 141:650-60. [PMID: 24449841 DOI: 10.1242/dev.099655] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The architectures of dendritic trees are crucial for the wiring and function of neuronal circuits because they determine coverage of receptive territories, as well as the nature and strength of sensory or synaptic inputs. Here, we describe a cell-intrinsic pathway sculpting dendritic arborization (da) neurons in Drosophila that requires Longitudinals Lacking (Lola), a BTB/POZ transcription factor, and its control of the F-actin cytoskeleton through Spire (Spir), an actin nucleation protein. Loss of Lola from da neurons reduced the overall length of dendritic arbors, increased the expression of Spir, and produced inappropriate F-actin-rich dendrites at positions too near the cell soma. Selective removal of Lola from only class IV da neurons decreased the evasive responses of larvae to nociception. The increased Spir expression contributed to the abnormal F-actin-rich dendrites and the decreased nocifensive responses because both were suppressed by reduced dose of Spir. Thus, an important role of Lola is to limit expression of Spir to appropriate levels within da neurons. We found Spir to be expressed in dendritic arbors and to be important for their development. Removal of Spir from class IV da neurons reduced F-actin levels and total branch number, shifted the position of greatest branch density away from the cell soma, and compromised nocifensive behavior. We conclude that the Lola-Spir pathway is crucial for the spatial arrangement of branches within dendritic trees and for neural circuit function because it provides balanced control of the F-actin cytoskeleton.
Collapse
Affiliation(s)
- Tiago Ferreira
- McGill Centre for Research in Neuroscience, McGill University Health Centre, 1650 Cedar Avenue, Montreal, QC H3G 1A4, Canada
| | | | | | | | | |
Collapse
|
13
|
Extensive use of RNA-binding proteins in Drosophila sensory neuron dendrite morphogenesis. G3-GENES GENOMES GENETICS 2014; 4:297-306. [PMID: 24347626 PMCID: PMC3931563 DOI: 10.1534/g3.113.009795] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The large number of RNA-binding proteins and translation factors encoded in the Drosophila and other metazoan genomes predicts widespread use of post-transcriptional regulation in cellular and developmental processes. Previous studies identified roles for several RNA-binding proteins in dendrite branching morphogenesis of Drosophila larval sensory neurons. To determine the larger contribution of post-transcriptional gene regulation to neuronal morphogenesis, we conducted an RNA interference screen to identify additional Drosophila proteins annotated as either RNA-binding proteins or translation factors that function in producing the complex dendritic trees of larval class IV dendritic arborization neurons. We identified 88 genes encoding such proteins whose knockdown resulted in aberrant dendritic morphology, including alterations in dendritic branch number, branch length, field size, and patterning of the dendritic tree. In particular, splicing and translation initiation factors were associated with distinct and characteristic phenotypes, suggesting that different morphogenetic events are best controlled at specific steps in post-transcriptional messenger RNA metabolism. Many of the factors identified in the screen have been implicated in controlling the subcellular distributions and translation of maternal messenger RNAs; thus, common post-transcriptional regulatory strategies may be used in neurogenesis and in the generation of asymmetry in the female germline and embryo.
Collapse
|
14
|
Dendritic growth gated by a steroid hormone receptor underlies increases in activity in the developing Drosophila locomotor system. Proc Natl Acad Sci U S A 2013; 110:E3878-87. [PMID: 24043825 DOI: 10.1073/pnas.1311711110] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
As animals grow, their nervous systems also increase in size. How growth in the central nervous system is regulated and its functional consequences are incompletely understood. We explored these questions, using the larval Drosophila locomotor system as a model. In the periphery, at neuromuscular junctions, motoneurons are known to enlarge their presynaptic axon terminals in size and strength, thereby compensating for reductions in muscle excitability that are associated with increases in muscle size. Here, we studied how motoneurons change in the central nervous system during periods of animal growth. We find that within the central nervous system motoneurons also enlarge their postsynaptic dendritic arbors, by the net addition of branches, and that these scale with overall animal size. This dendritic growth is gated on a cell-by-cell basis by a specific isoform of the steroid hormone receptor ecdysone receptor-B2, for which functions have thus far remained elusive. The dendritic growth is accompanied by synaptic strengthening and results in increased neuronal activity. Electrical properties of these neurons, however, are independent of ecdysone receptor-B2 regulation. We propose that these structural dendritic changes in the central nervous system, which regulate neuronal activity, constitute an additional part of the adaptive response of the locomotor system to increases in body and muscle size as the animal grows.
Collapse
|
15
|
Iyer EPR, Iyer SC, Sullivan L, Wang D, Meduri R, Graybeal LL, Cox DN. Functional genomic analyses of two morphologically distinct classes of Drosophila sensory neurons: post-mitotic roles of transcription factors in dendritic patterning. PLoS One 2013; 8:e72434. [PMID: 23977298 PMCID: PMC3744488 DOI: 10.1371/journal.pone.0072434] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Accepted: 07/10/2013] [Indexed: 11/19/2022] Open
Abstract
Background Neurons are one of the most structurally and functionally diverse cell types found in nature, owing in large part to their unique class specific dendritic architectures. Dendrites, being highly specialized in receiving and processing neuronal signals, play a key role in the formation of functional neural circuits. Hence, in order to understand the emergence and assembly of a complex nervous system, it is critical to understand the molecular mechanisms that direct class specific dendritogenesis. Methodology/Principal Findings We have used the Drosophila dendritic arborization (da) neurons to gain systems-level insight into dendritogenesis by a comparative study of the morphologically distinct Class-I (C-I) and Class-IV (C-IV) da neurons. We have used a combination of cell-type specific transcriptional expression profiling coupled to a targeted and systematic in vivo RNAi functional validation screen. Our comparative transcriptomic analyses have revealed a large number of differentially enriched/depleted gene-sets between C-I and C-IV neurons, including a broad range of molecular factors and biological processes such as proteolytic and metabolic pathways. Further, using this data, we have identified and validated the role of 37 transcription factors in regulating class specific dendrite development using in vivo class-specific RNAi knockdowns followed by rigorous and quantitative neurometric analysis. Conclusions/Significance This study reports the first global gene-expression profiles from purified Drosophila C-I and C-IV da neurons. We also report the first large-scale semi-automated reconstruction of over 4,900 da neurons, which were used to quantitatively validate the RNAi screen phenotypes. Overall, these analyses shed global and unbiased novel insights into the molecular differences that underlie the morphological diversity of distinct neuronal cell-types. Furthermore, our class-specific gene expression datasets should prove a valuable community resource in guiding further investigations designed to explore the molecular mechanisms underlying class specific neuronal patterning.
Collapse
Affiliation(s)
- Eswar Prasad R. Iyer
- School of Systems Biology, Krasnow Institute for Advanced Study, George Mason University, Fairfax, Virginia, United States of America
| | - Srividya Chandramouli Iyer
- School of Systems Biology, Krasnow Institute for Advanced Study, George Mason University, Fairfax, Virginia, United States of America
| | - Luis Sullivan
- School of Systems Biology, Krasnow Institute for Advanced Study, George Mason University, Fairfax, Virginia, United States of America
| | - Dennis Wang
- School of Systems Biology, Krasnow Institute for Advanced Study, George Mason University, Fairfax, Virginia, United States of America
| | - Ramakrishna Meduri
- School of Systems Biology, Krasnow Institute for Advanced Study, George Mason University, Fairfax, Virginia, United States of America
| | - Lacey L. Graybeal
- School of Systems Biology, Krasnow Institute for Advanced Study, George Mason University, Fairfax, Virginia, United States of America
| | - Daniel N. Cox
- School of Systems Biology, Krasnow Institute for Advanced Study, George Mason University, Fairfax, Virginia, United States of America
- * E-mail:
| |
Collapse
|
16
|
R7 photoreceptor axon growth is temporally controlled by the transcription factor Ttk69, which inhibits growth in part by promoting transforming growth factor-β/activin signaling. J Neurosci 2013; 33:1509-20. [PMID: 23345225 DOI: 10.1523/jneurosci.2023-12.2013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Work on axon growth has classically focused on understanding how extrinsic cues control growth cone dynamics independent of the cell body. However, more recently, neuron-intrinsic transcription factors have been shown to influence both normal and regenerative axon growth, suggesting that understanding their mechanism of action is of clinical importance. We are studying axon targeting in the Drosophila visual system and here show that the BTB/POZ zinc-finger transcription factor Tramtrack69 (Ttk69) plays an instructive role in inhibiting the growth of R7 photoreceptor axon terminals. Although ttk69 mutant R7 axons project to the correct medullar target layer, M6, their terminals fail to remain retinotopically restricted and instead grow laterally within M6. This overgrowth is not caused by an inability to be repelled by neighboring R7 axons or by an inability to recognize and initiate synapse formation with postsynaptic targets. The overgrowth is progressive and occurs even if contact between ttk69 mutant R7 axons and their normal target layer is disrupted. Ttk69 is first expressed in wild-type R7s after their axons have reached the medulla; ttk69 mutant R7 axon terminal overgrowth begins shortly after this time point. We find that expressing Ttk69 prematurely in R7s collapses their growth cones and disrupts axon extension, indicating that Ttk69 plays an instructive role in this process. A TGF-β/Activin pathway was shown previously to inhibit R7 axon terminal growth. We find that Ttk69 is required for normal activation of this pathway but that Ttk69 likely also inhibits R7 axon growth by a TGF-β/Activin-independent mechanism.
Collapse
|
17
|
Danielsen ET, Moeller ME, Rewitz KF. Nutrient Signaling and Developmental Timing of Maturation. Curr Top Dev Biol 2013; 105:37-67. [DOI: 10.1016/b978-0-12-396968-2.00002-6] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
18
|
Garred MM, Wang MM, Guo X, Harrington CA, Lein PJ. Transcriptional responses of cultured rat sympathetic neurons during BMP-7-induced dendritic growth. PLoS One 2011; 6:e21754. [PMID: 21765909 PMCID: PMC3135585 DOI: 10.1371/journal.pone.0021754] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2011] [Accepted: 06/06/2011] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Dendrites are the primary site of synapse formation in the vertebrate nervous system; however, relatively little is known about the molecular mechanisms that regulate the initial formation of primary dendrites. Embryonic rat sympathetic neurons cultured under defined conditions extend a single functional axon, but fail to form dendrites. Addition of bone morphogenetic proteins (BMPs) triggers these neurons to extend multiple dendrites without altering axonal growth or cell survival. We used this culture system to examine differential gene expression patterns in naïve vs. BMP-treated sympathetic neurons in order to identify candidate genes involved in regulation of primary dendritogenesis. METHODOLOGY/PRINCIPAL FINDINGS To determine the critical transcriptional window during BMP-induced dendritic growth, morphometric analysis of microtubule-associated protein (MAP-2)-immunopositive processes was used to quantify dendritic growth in cultures exposed to the transcription inhibitor actinomycin-D added at varying times after addition of BMP-7. BMP-7-induced dendritic growth was blocked when transcription was inhibited within the first 24 hr after adding exogenous BMP-7. Thus, total RNA was isolated from sympathetic neurons exposed to three different experimental conditions: (1) no BMP-7 treatment; (2) treatment with BMP-7 for 6 hr; and (3) treatment with BMP-7 for 24 hr. Affymetrix oligonucleotide microarrays were used to identify differential gene expression under these three culture conditions. BMP-7 significantly regulated 56 unique genes at 6 hr and 185 unique genes at 24 hr. Bioinformatic analyses implicate both established and novel genes and signaling pathways in primary dendritogenesis. CONCLUSIONS/SIGNIFICANCE This study provides a unique dataset that will be useful in generating testable hypotheses regarding transcriptional control of the initial stages of dendritic growth. Since BMPs selectively promote dendritic growth in central neurons as well, these findings may be generally applicable to dendritic growth in other neuronal cell types.
Collapse
Affiliation(s)
- Michelle M. Garred
- Gene Microarray Shared Resource, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Michael M. Wang
- Departments of Neurology and Molecular & Integrative Physiology, University of Michigan, VA Ann Arbor Healthcare System, Ann Arbor, Michigan, United States of America
| | - Xin Guo
- Department of Environmental Health Sciences, Johns Hopkins University, Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Christina A. Harrington
- Gene Microarray Shared Resource, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Pamela J. Lein
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California Davis, Davis, California, United States of America
| |
Collapse
|
19
|
Nicolaï LJJ, Ramaekers A, Raemaekers T, Drozdzecki A, Mauss AS, Yan J, Landgraf M, Annaert W, Hassan BA. Genetically encoded dendritic marker sheds light on neuronal connectivity in Drosophila. Proc Natl Acad Sci U S A 2010; 107:20553-8. [PMID: 21059961 PMCID: PMC2996714 DOI: 10.1073/pnas.1010198107] [Citation(s) in RCA: 193] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In recent years, Drosophila melanogaster has emerged as a powerful model for neuronal circuit development, pathology, and function. A major impediment to these studies has been the lack of a genetically encoded, specific, universal, and phenotypically neutral marker of the somatodendritic compartment. We have developed such a marker and show that it is effective and specific in all neuronal populations tested in the peripheral and central nervous system. The marker, which we name DenMark (Dendritic Marker), is a hybrid protein of the mouse protein ICAM5/Telencephalin and the red fluorescent protein mCherry. We show that DenMark is a powerful tool for revealing novel aspects of the neuroanatomy of developing dendrites, identifying previously unknown dendritic arbors, and elucidating neuronal connectivity.
Collapse
Affiliation(s)
- Laura J. J. Nicolaï
- Laboratory of Neurogenetics and
- Center for Human Genetics, Katholieke Universiteit Leuven School of Medicine, 3000 Leuven, Belgium
- Doctoral Program in Molecular and Developmental Genetics, Katholieke Universiteit Leuven Group Biomedicine, 3000 Leuven, Belgium; and
| | - Ariane Ramaekers
- Laboratory of Neurogenetics and
- Center for Human Genetics, Katholieke Universiteit Leuven School of Medicine, 3000 Leuven, Belgium
| | - Tim Raemaekers
- Laboratory of Membrane Trafficking, Department of Molecular and Developmental Genetics, Flanders Institute of Biotechnology (VIB), 3000 Leuven, Belgium
- Center for Human Genetics, Katholieke Universiteit Leuven School of Medicine, 3000 Leuven, Belgium
| | - Andrzej Drozdzecki
- Laboratory of Membrane Trafficking, Department of Molecular and Developmental Genetics, Flanders Institute of Biotechnology (VIB), 3000 Leuven, Belgium
- Center for Human Genetics, Katholieke Universiteit Leuven School of Medicine, 3000 Leuven, Belgium
| | - Alex S. Mauss
- Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, United Kingdom
| | - Jiekun Yan
- Laboratory of Neurogenetics and
- Center for Human Genetics, Katholieke Universiteit Leuven School of Medicine, 3000 Leuven, Belgium
| | - Matthias Landgraf
- Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, United Kingdom
| | - Wim Annaert
- Laboratory of Membrane Trafficking, Department of Molecular and Developmental Genetics, Flanders Institute of Biotechnology (VIB), 3000 Leuven, Belgium
- Center for Human Genetics, Katholieke Universiteit Leuven School of Medicine, 3000 Leuven, Belgium
- Doctoral Program in Molecular and Developmental Genetics, Katholieke Universiteit Leuven Group Biomedicine, 3000 Leuven, Belgium; and
| | - Bassem A. Hassan
- Laboratory of Neurogenetics and
- Center for Human Genetics, Katholieke Universiteit Leuven School of Medicine, 3000 Leuven, Belgium
- Doctoral Program in Molecular and Developmental Genetics, Katholieke Universiteit Leuven Group Biomedicine, 3000 Leuven, Belgium; and
| |
Collapse
|
20
|
Vonhoff F, Duch C. Tiling among stereotyped dendritic branches in an identified Drosophila motoneuron. J Comp Neurol 2010; 518:2169-85. [PMID: 20437522 DOI: 10.1002/cne.22380] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Different types of neurons can be distinguished by the specific targeting locations and branching patterns of their dendrites, which form the blueprint for wiring the brain. Unraveling which specific signals control different aspects of dendritic architecture, such as branching and elongation, pruning and cessation of growth, territory formation, tiling, and self-avoidance requires a quantitative comparison in control and genetically manipulated neurons. The highly conserved shapes of individually identified Drosophila neurons make them well suited for the analysis of dendritic architecture principles. However, to date it remains unclear how tightly dendritic architecture principles of identified central neurons are regulated. This study uses quantitative reconstructions of dendritic architecture of an identified Drosophila flight motoneuron (MN5) with a complex dendritic tree, comprising more than 4,000 dendritic branches and 6 mm total length. MN5 contains a fixed number of 23 dendritic subtrees, which tile into distinct, nonoverlapping volumes of the diffuse motor neuropil. Across-animal comparison and quantitative analysis suggest that tiling of the different dendritic subtrees of the same neuron is caused by competitive and repulsive interactions among subtrees, perhaps allowing different dendritic compartments to be connected to different circuit elements. We also show that dendritic architecture is similar among different wildtype and GAL4 driver fly lines. Metric and topological dendritic architecture features are sufficiently constant to allow for studies of the underlying control mechanisms by genetic manipulations. Dendritic territory and certain topological measures, such as tree compactness, are most constant, suggesting that these reflect the intrinsic molecular identity of the neuron. J. Comp. Neurol. 518:2169-2185, 2010. (c) 2010 Wiley-Liss, Inc.
Collapse
Affiliation(s)
- F Vonhoff
- School of Life Sciences, Arizona State University, Tempe, Arizona 85287, USA
| | | |
Collapse
|
21
|
Targeted gain-of-function screening in Drosophila using GAL4-UAS and random transposon insertions. Genet Res (Camb) 2009; 91:243-58. [PMID: 19640320 DOI: 10.1017/s0016672309990152] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Alterations in the activity level or temporal expression of key signalling genes elicit profound patterning effects during development. Consequently, gain-of-function genetic schemes that overexpress or misexpress such loci can identify novel candidates for functions essential for a developmental process. GAL4-Upstream Activating Sequence (UAS)-targeted regulation of gene expression in Drosophila has allowed rapid analyses of coding sequences for potential roles in specific tissues at particular developmental stages. GAL4 has also been combined with randomly mobilized transposons capable of UAS-directed misexpression or overexpression of flanking sequences. This combination has produced a genetic screening system that can uncover novel loci refractory to standard loss of function genetic approaches, such as redundant genes. Available libraries of strains with sequenced insertion sites can allow direct correlation of phenotypes to genetic function. These techniques have also been applied to genetic interaction screening, where a GAL4 driver and UAS-regulated insertion collection are combined with an extant mutant genotype. In this article, we summarize studies that have utilized GAL4-UAS overexpression or misexpression of random loci to screen for candidates involved in specific developmental processes.
Collapse
|
22
|
Tsubouchi A, Tsuyama T, Fujioka M, Kohda H, Okamoto-Furuta K, Aigaki T, Uemura T. Mitochondrial protein Preli-like is required for development of dendritic arbors and prevents their regression in the Drosophila sensory nervous system. Development 2009; 136:3757-66. [PMID: 19855018 DOI: 10.1242/dev.042135] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Dynamic morphological changes in mitochondria depend on the balance of fusion and fission in various eukaryotes, and are crucial for mitochondrial activity. Mitochondrial dysfunction has emerged as a common theme that underlies numerous neurological disorders, including neurodegeneration. However, how this abnormal mitochondrial activity leads to neurodegenerative disorders is still largely unknown. Here, we show that the Drosophila mitochondrial protein Preli-like (Prel), a member of the conserved PRELI/MSF1 family, contributes to the integrity of mitochondrial structures, the activity of respiratory chain complex IV and the cellular ATP level. When Prel function was impaired in neurons in vivo, the cellular ATP level decreased and mitochondria became fragmented and sparsely distributed in dendrites and axons. Notably, the dendritic arbors were simplified and downsized, probably as a result of breakage of proximal dendrites and progressive retraction of terminal branches. By contrast, abrogation of the mitochondria transport machinery per se had a much less profound effect on the arbor morphogenesis. Interestingly, overexpression of Drob-1 (Debcl), a Drosophila Bax-like Bcl-2 family protein, in the wild-type background produced dendrite phenotypes that were reminiscent of the prel phenotype. Moreover, expression of the Drob-1 antagonist Buffy in prel mutant neurons substantially restored the dendritic phenotype. Our observations suggest that Prel-dependent regulation of mitochondrial activity is important for both growth and prevention of breakage of dendritic branches.
Collapse
Affiliation(s)
- Asako Tsubouchi
- Graduate School of Biostudies, Kyoto University, Yoshida Konoe-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | | | | | | | | | | | | |
Collapse
|
23
|
Long H, Ou Y, Rao Y, van Meyel DJ. Dendrite branching and self-avoidance are controlled by Turtle, a conserved IgSF protein in Drosophila. Development 2009; 136:3475-84. [PMID: 19783736 DOI: 10.1242/dev.040220] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The dendritic trees of neurons result from specific patterns of growth and branching, and dendrite branches of the same neuron avoid one another to spread over a particular receptive field. Recognition molecules on the surfaces of dendrites influence these patterning and avoidance processes by promoting attractive, repulsive or adhesive responses to specific cues. The Drosophila transmembrane protein Turtle (Tutl) and its orthologs in other species are conserved members of the immunoglobulin superfamily, the in vivo functions of which are unknown. In Drosophila sensory neurons, we show that the tutl gene is required to restrain dendrite branch formation in neurons with simple arbors, and to promote dendrite self-avoidance in neurons with complex arbors. The cytoplasmic tail of Tutl is dispensable for control of dendrite branching, suggesting that Tutl acts as a ligand or co-receptor for an unidentified recognition molecule to influence the architecture of dendrites and their coverage of receptive territories.
Collapse
Affiliation(s)
- Hong Long
- Centre for Research in Neuroscience and Department of Neurology and Neurosurgery, McGill University, and the McGill University Health Centre Research Institute, QC, Canada
| | | | | | | |
Collapse
|
24
|
Brierley DJ, Blanc E, Reddy OV, VijayRaghavan K, Williams DW. Dendritic targeting in the leg neuropil of Drosophila: the role of midline signalling molecules in generating a myotopic map. PLoS Biol 2009; 7:e1000199. [PMID: 19771147 PMCID: PMC2737123 DOI: 10.1371/journal.pbio.1000199] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2009] [Accepted: 08/12/2009] [Indexed: 01/19/2023] Open
Abstract
Neural maps are emergent, highly ordered structures that are essential for organizing and presenting synaptic information. Within the embryonic nervous system of Drosophila motoneuron dendrites are organized topographically as a myotopic map that reflects their pattern of innervation in the muscle field. Here we reveal that this fundamental organizational principle exists in adult Drosophila, where the dendrites of leg motoneurons also generate a myotopic map. A single postembryonic neuroblast sequentially generates different leg motoneuron subtypes, starting with those innervating proximal targets and medial neuropil regions and producing progeny that innervate distal muscle targets and lateral neuropil later in the lineage. Thus the cellular distinctions in peripheral targets and central dendritic domains, which make up the myotopic map, are linked to the birth-order of these motoneurons. Our developmental analysis of dendrite growth reveals that this myotopic map is generated by targeting. We demonstrate that the medio-lateral positioning of motoneuron dendrites in the leg neuropil is controlled by the midline signalling systems Slit-Robo and Netrin-Fra. These results reveal that dendritic targeting plays a major role in the formation of myotopic maps and suggests that the coordinate spatial control of both pre- and postsynaptic elements by global neuropilar signals may be an important mechanism for establishing the specificity of synaptic connections.
Collapse
Affiliation(s)
- David J. Brierley
- Medical Research Council (MRC) Centre for Developmental Neurobiology, King's College London, London, United Kingdom
| | - Eric Blanc
- Medical Research Council (MRC) Centre for Developmental Neurobiology, King's College London, London, United Kingdom
| | - O. Venkateswara Reddy
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India
| | - K. VijayRaghavan
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India
| | - Darren W. Williams
- Medical Research Council (MRC) Centre for Developmental Neurobiology, King's College London, London, United Kingdom
| |
Collapse
|
25
|
Mauss A, Tripodi M, Evers JF, Landgraf M. Midline signalling systems direct the formation of a neural map by dendritic targeting in the Drosophila motor system. PLoS Biol 2009; 7:e1000200. [PMID: 19771146 PMCID: PMC2736389 DOI: 10.1371/journal.pbio.1000200] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2009] [Accepted: 08/12/2009] [Indexed: 12/30/2022] Open
Abstract
A fundamental strategy for organising connections in the nervous system is the formation of neural maps. Map formation has been most intensively studied in sensory systems where the central arrangement of axon terminals reflects the distribution of sensory neuron cell bodies in the periphery or the sensory modality. This straightforward link between anatomy and function has facilitated tremendous progress in identifying cellular and molecular mechanisms that underpin map development. Much less is known about the way in which networks that underlie locomotion are organised. We recently showed that in the Drosophila embryo, dendrites of motorneurons form a neural map, being arranged topographically in the antero-posterior axis to represent the distribution of their target muscles in the periphery. However, the way in which a dendritic myotopic map forms has not been resolved and whether postsynaptic dendrites are involved in establishing sets of connections has been relatively little explored. In this study, we show that motorneurons also form a myotopic map in a second neuropile axis, with respect to the ventral midline, and they achieve this by targeting their dendrites to distinct medio-lateral territories. We demonstrate that this map is "hard-wired"; that is, it forms in the absence of excitatory synaptic inputs or when presynaptic terminals have been displaced. We show that the midline signalling systems Slit/Robo and Netrin/Frazzled are the main molecular mechanisms that underlie dendritic targeting with respect to the midline. Robo and Frazzled are required cell-autonomously in motorneurons and the balance of their opposite actions determines the dendritic target territory. A quantitative analysis shows that dendritic morphology emerges as guidance cue receptors determine the distribution of the available dendrites, whose total length and branching frequency are specified by other cell intrinsic programmes. Our results suggest that the formation of dendritic myotopic maps in response to midline guidance cues may be a conserved strategy for organising connections in motor systems. We further propose that sets of connections may be specified, at least to a degree, by global patterning systems that deliver pre- and postsynaptic partner terminals to common "meeting regions."
Collapse
Affiliation(s)
- Alex Mauss
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom
| | - Marco Tripodi
- Friedrich Miescher Institut and Biozentrum, Department of Cell Biology, University of Basel, Basel, Switzerland
| | - Jan Felix Evers
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom
| | - Matthias Landgraf
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
26
|
Brown HLD, Truman JW. Fine-tuning of secondary arbor development: the effects of the ecdysone receptor on the adult neuronal lineages of the Drosophila thoracic CNS. Development 2009; 136:3247-56. [PMID: 19710167 DOI: 10.1242/dev.039859] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The adult central nervous system (CNS) of Drosophila is largely composed of relatively homogenous neuronal classes born during larval life. These adult-specific neuron lineages send out initial projections and then arrest development until metamorphosis, when intense sprouting occurs to establish the massive synaptic connections necessary for the behavior and function of the adult fly. In this study, we identified and characterized specific lineages in the adult CNS and described their secondary branch patterns. Because prior studies show that the outgrowth of incumbent remodeling neurons in the CNS is highly dependent on the ecdysone pathway, we investigated the role of ecdysone in the development of the adult-specific neuronal lineages using a dominant-negative construct of the ecdysone receptor (EcR-DN). When EcR-DN was expressed in clones of the adult-specific lineages, neuroblasts persisted longer, but we saw no alteration in the initial projections of the lineages. Defects were observed in secondary arbors of adult neurons, including clumping and cohesion of fine branches, misrouting, smaller arbors and some defasciculation. The defects varied across the multiple neuron lineages in both appearance and severity. These results indicate that the ecdysone receptor complex influences the fine-tuning of connectivity between neuronal circuits, in conjunction with other factors driving outgrowth and synaptic partnering.
Collapse
Affiliation(s)
- Heather L D Brown
- Department of Biology, University of Washington, Seattle, WA 98195, USA.
| | | |
Collapse
|
27
|
Corty MM, Matthews BJ, Grueber WB. Molecules and mechanisms of dendrite development in Drosophila. Development 2009; 136:1049-61. [PMID: 19270170 DOI: 10.1242/dev.014423] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Neurons are one of the most morphologically diverse cell types, in large part owing to their intricate dendrite branching patterns. Dendrites are structures that are specialized to receive and process inputs in neurons, thus their specific morphologies reflect neural connectivity and influence information flow through circuits. Recent studies in Drosophila on the molecular basis of dendrite diversity, dendritic guidance, the cell biology of dendritic branch patterning and territory formation have identified numerous intrinsic and extrinsic cues that shape diverse features of dendrites. As we discuss in this review, many of the mechanisms that are being elucidated show conservation in diverse systems.
Collapse
Affiliation(s)
- Megan M Corty
- Center for Neurobiology and Behavior, Columbia University Medical Center, New York, NY 10032, USA.
| | | | | |
Collapse
|