1
|
Di Sario F, Piloni F, Gasparini F, Serpetti E, Bruschi B, Coccia P, Lionetti ME, Gatti S. Severe pancytopenia at the presentation of Imerslund-Gräsbeck syndrome in a 23-month-old Italian boy. Ital J Pediatr 2024; 50:186. [PMID: 39294696 PMCID: PMC11411748 DOI: 10.1186/s13052-024-01759-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 09/05/2024] [Indexed: 09/21/2024] Open
Abstract
BACKGROUND Imerslund-Gräsbeck syndrome (IGS) is a rare autosomal recessive disorder characterized by megaloblastic anemia due to selective cobalamin malabsorption and benign proteinuria. IGS is caused by a disfunction of the cubam receptor, which mediates the reabsorption of cobalamin in the ileum and the reuptake of albumin in renal proximal tubules. CASE PRESENTATION We describe the case of a 23-month-old-italian infant presenting with severe pancytopenia and failure to thrive in whom the diagnosis of IGS was made and vitamin B12 replacement therapy was resolutive. Genetic analysis (NGS with CNV analysis including 214 genes involved in bone marrow failure and anemia), showed the presence of two pathogenetic variants in the AMN gene (c-208-2 A > G and c.1006 + 34_1007-31del). These variants have been previously described in the literature, but their combination has never been reported. CONCLUSIONS Imerslund-Gräsbeck syndrome should be considered in the differential diagnosis of children with severe pancytopenia even in those without neurological involvement. This case emphasizes the importance of an early diagnosis and prompt treatment, to prevent irreversible neurological injury.
Collapse
Affiliation(s)
- Francesca Di Sario
- Department of Pediatrics, Polytechnic University of Marche, via Corridoni, Ancona, 60123, Italy
| | - Francesca Piloni
- Department of Pediatrics, Polytechnic University of Marche, via Corridoni, Ancona, 60123, Italy
| | - Francesco Gasparini
- Department of Pediatrics, Polytechnic University of Marche, via Corridoni, Ancona, 60123, Italy
| | - Eleonora Serpetti
- Department of Pediatrics, Polytechnic University of Marche, via Corridoni, Ancona, 60123, Italy
| | - Barbara Bruschi
- Department of Pediatric Haematology and Oncology, Azienda Ospedaliera delle Marche, via Corridoni 11, Ancona, 60123, Italy
| | - Paola Coccia
- Department of Pediatric Haematology and Oncology, Azienda Ospedaliera delle Marche, via Corridoni 11, Ancona, 60123, Italy
| | - Maria Elena Lionetti
- Department of Pediatrics, Polytechnic University of Marche, via Corridoni, Ancona, 60123, Italy
| | - Simona Gatti
- Department of Pediatrics, Polytechnic University of Marche, via Corridoni, Ancona, 60123, Italy.
| |
Collapse
|
2
|
Mucha P, Kus F, Cysewski D, Smolenski RT, Tomczyk M. Vitamin B 12 Metabolism: A Network of Multi-Protein Mediated Processes. Int J Mol Sci 2024; 25:8021. [PMID: 39125597 PMCID: PMC11311337 DOI: 10.3390/ijms25158021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/12/2024] [Accepted: 07/19/2024] [Indexed: 08/12/2024] Open
Abstract
The water-soluble vitamin, vitamin B12, also known as cobalamin, plays a crucial role in cellular metabolism, particularly in DNA synthesis, methylation, and mitochondrial functionality. Its deficiency can lead to hematological and neurological disorders; however, the manifestation of these clinical outcomes is relatively late. It leads to difficulties in the early diagnosis of vitamin B12 deficiency. A prolonged lack of vitamin B12 may have severe consequences including increased morbidity to neurological and cardiovascular diseases. Beyond inadequate dietary intake, vitamin B12 deficiency might be caused by insufficient bioavailability, blood transport disruptions, or impaired cellular uptake and metabolism. Despite nearly 70 years of knowledge since the isolation and characterization of this vitamin, there are still gaps in understanding its metabolic pathways. Thus, this review aims to compile current knowledge about the crucial proteins necessary to efficiently accumulate and process vitamin B12 in humans, presenting these systems as a multi-protein network. The epidemiological consequences, diagnosis, and treatment of vitamin B12 deficiency are also highlighted. We also discuss clinical warnings of vitamin B12 deficiency based on the ongoing test of specific moonlighting proteins engaged in vitamin B12 metabolic pathways.
Collapse
Affiliation(s)
- Patryk Mucha
- Department of Biochemistry, Medical University of Gdansk, 80-210 Gdansk, Poland; (P.M.); (F.K.); (R.T.S.)
| | - Filip Kus
- Department of Biochemistry, Medical University of Gdansk, 80-210 Gdansk, Poland; (P.M.); (F.K.); (R.T.S.)
- Laboratory of Protein Biochemistry, Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, 80-307 Gdansk, Poland
| | - Dominik Cysewski
- Clinical Research Centre, Medical University of Bialystok, 15-276 Bialystok, Poland;
| | - Ryszard T. Smolenski
- Department of Biochemistry, Medical University of Gdansk, 80-210 Gdansk, Poland; (P.M.); (F.K.); (R.T.S.)
| | - Marta Tomczyk
- Department of Biochemistry, Medical University of Gdansk, 80-210 Gdansk, Poland; (P.M.); (F.K.); (R.T.S.)
| |
Collapse
|
3
|
Attardi E, Tiberi L, Mattiuz G, Formicola D, Dirupo E, Raddi MG, Consagra A, Vergani D, Artuso R, Santini V. Prospective genetic germline evaluation in a consecutive group of adult patients aged <60 years with myelodysplastic syndromes. Hemasphere 2024; 8:e112. [PMID: 39015540 PMCID: PMC11250510 DOI: 10.1002/hem3.112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 04/18/2024] [Accepted: 05/11/2024] [Indexed: 07/18/2024] Open
Abstract
Relevance of germline (GL) predisposition in myelodysplastic syndromes (MDSs) was stressed in both 2022 WHO and International Consensus classifications, but its incidence is probably underestimated, especially in young adult patients. We selected a cohort of 31 consecutive de novo MDS patients with unusual young age (<60 years). We performed exome sequencing (ES) on DNA extracted from noninvasive sources (peripheral blood and saliva), filtering for a panel of 344 genes specifically tailored for detecting GL variants related to clonal and nonclonal cytopenia. We observed at least one high- or low-confidence GL MDS variant in 7/31 (22.6%) and 9/31 (29.0%) of cases, respectively. Four of 31 patients (12.9%) confirmed having established MDS/AML predisposing disorders. We found heterozygous variants in genes involved in DNA repair/cancer predisposition (ATM, ATR, FANCM, PARN, BRCA1, BRCA2, CHEK2, MSH2) in 9/31 (29.0%) cases and variants affecting ribosome biogenesis (SBDS), hematopoietic stem cell (GATA2), and megakaryocyte (ANKRD26) differentiation in single cases. Two cases had variants in RBBP6, a gene previously described exclusively in familial myeloproliferative neoplasms. Lastly, four cases had variants in genes related to inherited anemias (CUBN and PIEZO1 genes). Our results showed that "young" MDS patients aged 40-60 years carried reported and unreported GL variants with an unexpectedly high proportion, and these events co-occurred with somatic mutations recurrent in myeloid neoplasms. We explored the "no man's land" of the young adult MDS cases adopting a practical and scalable diagnostic tool, capable to detect GL variants avoiding invasive methods.
Collapse
Affiliation(s)
- Enrico Attardi
- MDS Unit, Hematology, AOU Careggi ‐ Department of Experimental and Clinical MedicineUniversity of FlorenceFlorenceItaly
| | - Lucia Tiberi
- Medical Genetics UnitMeyer Children's Hospital IRCCSFlorenceItaly
| | - Giorgio Mattiuz
- MDS Unit, Hematology, AOU Careggi ‐ Department of Experimental and Clinical MedicineUniversity of FlorenceFlorenceItaly
| | | | - Elia Dirupo
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”University of FlorenceFlorenceItaly
| | - Marco G. Raddi
- MDS Unit, Hematology, AOU Careggi ‐ Department of Experimental and Clinical MedicineUniversity of FlorenceFlorenceItaly
| | - Angela Consagra
- MDS Unit, Hematology, AOU Careggi ‐ Department of Experimental and Clinical MedicineUniversity of FlorenceFlorenceItaly
| | - Debora Vergani
- Medical Genetics UnitMeyer Children's Hospital IRCCSFlorenceItaly
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”University of FlorenceFlorenceItaly
| | - Rosangela Artuso
- Medical Genetics UnitMeyer Children's Hospital IRCCSFlorenceItaly
| | - Valeria Santini
- MDS Unit, Hematology, AOU Careggi ‐ Department of Experimental and Clinical MedicineUniversity of FlorenceFlorenceItaly
| |
Collapse
|
4
|
Moutapam-Ngamby-Adriaansen Y, Maillot F, Labarthe F, Lioger B. Blood cytopenias as manifestations of inherited metabolic diseases: a narrative review. Orphanet J Rare Dis 2024; 19:65. [PMID: 38355710 PMCID: PMC10865644 DOI: 10.1186/s13023-024-03074-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 02/03/2024] [Indexed: 02/16/2024] Open
Abstract
Inherited Metabolic Diseases (IMD) encompass a diverse group of rare genetic conditions that, despite their individual rarity, collectively affect a substantial proportion, estimated at as much as 1 in 784 live births. Among their wide-ranging clinical manifestations, cytopenia stands out as a prominent feature. Consequently, IMD should be considered a potential diagnosis when evaluating patients presenting with cytopenia. However, it is essential to note that the existing scientific literature pertaining to the link between IMD and cytopenia is limited, primarily comprising case reports and case series. This paucity of data may contribute to the inadequate recognition of the association between IMD and cytopenia, potentially leading to underdiagnosis. In this review, we synthesize our findings from a literature analysis along with our clinical expertise to offer a comprehensive insight into the clinical presentation of IMD cases associated with cytopenia. Furthermore, we introduce a structured diagnostic approach underpinned by decision-making algorithms, with the aim of enhancing the early identification and management of IMD-related cytopenia.
Collapse
Affiliation(s)
- Yannick Moutapam-Ngamby-Adriaansen
- Service de Médecine Interne, CHRU de Tours, Tours Cedex 1, France.
- Service de Médecine Interne Et Polyvalente, 2, Centre Hospitalier de Blois, Mail Pierre Charlot, 41000, Blois, France.
| | - François Maillot
- Service de Médecine Interne, CHRU de Tours, Tours Cedex 1, France
- Reference Center for Inborn Errors of Metabolism ToTeM, CHRU de Tours, Hôpital Clocheville, 49 Bd Béranger, 37000, Tours, France
- INSERM U1253, iBrain, Université François Rabelais de Tours, 10 Boulevard Tonnellé, 37000, Tours, France
- INSERM U1069, Nutrition, Croissance et Cancer, Faculté de Médecine, Université François Rabelais de Tours, 10 Boulevard Tonnellé, 37000, Tours, France
| | - François Labarthe
- Reference Center for Inborn Errors of Metabolism ToTeM, CHRU de Tours, Hôpital Clocheville, 49 Bd Béranger, 37000, Tours, France
- INSERM U1069, Nutrition, Croissance et Cancer, Faculté de Médecine, Université François Rabelais de Tours, 10 Boulevard Tonnellé, 37000, Tours, France
- Service de Pédiatrie, CHRU de Tours, Tours Cedex 1, France
| | - Bertrand Lioger
- Service de Médecine Interne Et Polyvalente, 2, Centre Hospitalier de Blois, Mail Pierre Charlot, 41000, Blois, France
| |
Collapse
|
5
|
Kingma SDK, Neven J, Bael A, Meuwissen MEC, van den Akker M. Imerslund-Gräsbeck syndrome: a comprehensive review of reported cases. Orphanet J Rare Dis 2023; 18:291. [PMID: 37710296 PMCID: PMC10500774 DOI: 10.1186/s13023-023-02889-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 08/25/2023] [Indexed: 09/16/2023] Open
Abstract
Imerslund-Gräsbeck syndrome (IGS) is a rare autosomal recessive disorder characterized by vitamin B12 malabsorption. Most patients present with non-specific symptoms attributed to vitamin B12 deficiency, and proteinuria. Patients may if untreated, develop severe neurocognitive manifestations. If recognized and treated with sufficient doses of vitamin B12, patients recover completely. We provide, for the first time, an overview of all previously reported cases of IGS. In addition, we provide a complete review of IGS and describe two new patients.
Collapse
Affiliation(s)
- Sandra D K Kingma
- Centre for Metabolic Diseases, University Hospital Antwerp, University of Antwerp, Drie Eikenstraat 655, Edegem, Antwerp, 2650, Belgium
- Department of Pediatrics, University Hospital Antwerp, University of Antwerp, Drie Eikenstraat 655, Edegem, 2650, Belgium
- Faculty of medicine and health sciences, University of Antwerp, Antwerp, Belgium
| | - Julie Neven
- Department of Pediatrics, University Hospital Antwerp, University of Antwerp, Drie Eikenstraat 655, Edegem, 2650, Belgium
| | - An Bael
- Faculty of medicine and health sciences, University of Antwerp, Antwerp, Belgium
- Department of Pediatric Nephrology, ZNA Queen Paola Children's Hospital, Lindendreef 1, Antwerp, 2020, Belgium
| | - Marije E C Meuwissen
- Center of Medical Genetics, University Hospital Antwerp, Drie Eikenstraat 655, Edegem, 2650, Belgium
| | - Machiel van den Akker
- Department of Pediatrics, University Hospital Antwerp, University of Antwerp, Drie Eikenstraat 655, Edegem, 2650, Belgium.
- Faculty of medicine and health sciences, University of Antwerp, Antwerp, Belgium.
- Department of Pediatrics, ZNA Queen Paola Children's Hospital, Lindendreef 1, Antwerp, 2020, Belgium.
- Pediatric Hematology and Oncology, Department of Pediatrics, University Hospital Antwerp, Drie Eikenstraat 655, Edegem, Antwerp, 2650, Belgium.
| |
Collapse
|
6
|
Vanden Eynde N, Koshy P, De Somer L, Knops N. Lessons for the clinical nephrologist: an unusual cause of isolated proteinuria in a child with Familial Mediterranean Fever. J Nephrol 2023:10.1007/s40620-023-01619-7. [PMID: 37036663 DOI: 10.1007/s40620-023-01619-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 03/03/2023] [Indexed: 04/11/2023]
Affiliation(s)
- Nathalie Vanden Eynde
- Department of Pediatrics, UZLeuven, Herestraat 49, 3000, Leuven, Belgium.
- Centre for Medical Genetics, Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Laarbeeklaan 101, 1090, Jette, Brussels, Belgium.
| | - Priyanka Koshy
- Department of Anatomopathology, UZLeuven, Herestraat 49, 3000, Leuven, Belgium
| | - Lien De Somer
- Department of Pediatric Rheumatology, UZLeuven, Herestraat 49, 3000, Leuven, Belgium
| | - Noël Knops
- Department of Pediatric Nephrology, UZLeuven, Herestraat 49, 3000, Leuven, Belgium
| |
Collapse
|
7
|
Ran J, Chen Q, Hu Y, Yang P, Yu G, Liao X, Lei J. Isolated Proteinuria Caused by CUBN Gene Mutations: A Case Report and Review of the Literature. Case Rep Nephrol Dial 2023; 13:27-35. [PMID: 37384121 PMCID: PMC10293958 DOI: 10.1159/000530466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 03/27/2023] [Indexed: 06/30/2023] Open
Abstract
Mutations in the cubilin (CUBN) gene commonly cause Imerslund-Gräsbeck syndrome, while isolated proteinuria as a result of CUBN variations is rarely reported. The clinical manifestation is mainly chronic isolated proteinuria in the non-nephrotic range. However, findings to date suggest that isolated proteinuria associated with abnormalities in the CUBN gene is benign and does not affect long-term prognosis of kidney function. We identified 2 patients with isolated proteinuria triggered by compound heterozygous CUBN mutations. Renal functions of both patients remained normal over a 10-year follow-up period, supporting the benign nature of proteinuria caused by CUBN gene variations. Two novel mutation sites were detected, expanding the genotypic spectrum of CUBN variations. In addition, etiology, pathogenesis, clinical manifestations, auxiliary examination, and treatment of the condition were reviewed, with the aim of providing further guidance for clinical management.
Collapse
Affiliation(s)
- Jingyang Ran
- Nephrology Department, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qingsong Chen
- Nephrology Department, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yudong Hu
- Nephrology Department, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Pengfei Yang
- Nephrology Department, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Guiquan Yu
- Nephrology Department, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaohui Liao
- Nephrology Department, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jianrong Lei
- Nephrology Department, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
8
|
Elangovan R, Baruteau J. Inherited and acquired vitamin B12 deficiencies: Which administration route to choose for supplementation? Front Pharmacol 2022; 13:972468. [PMID: 36249776 PMCID: PMC9559827 DOI: 10.3389/fphar.2022.972468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 08/23/2022] [Indexed: 11/13/2022] Open
Abstract
Vitamin B12 or cobalamin deficiency is a commonly encountered clinical scenario and most clinicians will have familiarity prescribing Vitamin B12 to treat their patients. Despite the high prevalence of this condition, there is widespread heterogeneity regarding routes, schedules and dosages of vitamin B12 administration. In this review, we summarise the complex metabolic pathway of Vitamin B12, the inherited and acquired causes of Vitamin B12 deficiency and subsequently highlight the disparate international practice of prescribing Vitamin B12 replacement therapy. We describe the evidence base underpinning the novel sublingual, intranasal and subcutaneous modes of B12 replacement in comparison to intramuscular and oral routes, with their respective benefits for patient compliance and cost-saving.
Collapse
Affiliation(s)
- Ramyia Elangovan
- Metabolic Medicine Department, Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom
| | - Julien Baruteau
- Metabolic Medicine Department, Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom
- Genetics and Genomic Medicine Department, Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
- National Institute of Health Research Great Ormond Street Biomedical Research Centre, London, United Kingdom
- *Correspondence: Julien Baruteau,
| |
Collapse
|
9
|
Gerrard A, Dawson C. Homocystinuria diagnosis and management: it is not all classical. J Clin Pathol 2022; 75:jclinpath-2021-208029. [PMID: 36123115 DOI: 10.1136/jcp-2021-208029] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 09/02/2022] [Indexed: 11/04/2022]
Abstract
Homocystinuria (HCU) refers to a group of inherited disorders of homocysteine metabolism associated with high blood homocysteine concentration, thromboembolic tendency and neurocognitive symptoms. The most common causes of a high blood homocysteine relate to underlying vitamin B12 or folate deficiency which must be excluded first. Thereafter, an inherited metabolic condition can be considered.The most prevalent inherited disorder of homocysteine metabolism is classical HCU caused by deficiency of the pyridoxine-dependent enzyme, cystathione beta-synthase, which converts homocysteine to cystathionine in the transsulphuration pathway. An alternative route for homocysteine metabolism is its remethylation to methionine by the cobalamin-dependent enzyme, methionine synthase, using the folate derivative, methyltetrahydrofolate, as a methyl donor. Remethylation defects are caused by impaired activity of methionine synthase itself, of an enzyme required to generate its methylcobalamin cofactor from dietary vitamin B12, or of the enzyme methyltetrahydrofolate reductase (MTHFR), which generates the methyl donor.The correct diagnosis can be inferred from additional laboratory investigations including a complete blood count and quantitation of methionine and methylmalonic acid. Methionine is high/normal in HCU and low in the remethylation disorders. In the latter, cobalamin defects are readily distinguished from MTHFR by a coexisting macrocytic anaemia and further delineated by presence or absence of methylmalonic acid in urine or plasma.Lowering homocysteine reverses thromboembolic risk. In HCU, this may be achieved with pyridoxine alone or with betaine as an alternative methyl donor. Some patients additionally follow a methionine-restricted diet. Betaine is the primary treatment for MTHFR and cobalamin disorders are managed with high-dose hydroxocobalamin.
Collapse
Affiliation(s)
- Adam Gerrard
- Department of Clinical Chemistry, Birmingham Women's and Children's Hospitals NHS Foundation Trust, Birmingham, UK
| | - Charlotte Dawson
- Department of Endocrinology and Metabolism, Queen Elizabeth Hospital Birmingham, Birmingham, UK
| |
Collapse
|
10
|
Joseph FD, Campbell DR, Cohn S, Roach ES. A Child with Falls, Fatigue, and Dementia. Pediatr Rev 2022; 43:466-468. [PMID: 35909134 DOI: 10.1542/pir.2020-003053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- Freddie D Joseph
- Division of Child Neurology, Dell Children's Medical Center, Austin, TX
| | - Damian R Campbell
- Division of Child Neurology, University of Texas Dell Medical School, Austin, TX
| | - Shannon Cohn
- Division of Hematology/Oncology, Dell Children's Medical Center, Austin, TX
| | - E Steve Roach
- Department of Neurology, University of Texas Dell Medical School, Austin, TX
| |
Collapse
|
11
|
Yang J, Xu Y, Deng L, Zhou L, Qiu L, Zhang Y, Zhou J. CUBN gene mutations may cause focal segmental glomerulosclerosis (FSGS) in children. BMC Nephrol 2022; 23:15. [PMID: 34979989 PMCID: PMC8725476 DOI: 10.1186/s12882-021-02654-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 12/20/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Imerslund-Gräsbeck Syndrome (IGS) is mainly caused by CUBN gene biallelic mutations. Proteinuria accompanies IGS specific symptoms in about half of the patients, isolated proteinuria is rarely reported. Here we present 3 patients with isolated proteinuria and focal segmental glomerulosclerosis (FSGS) caused by CUBN gene biallelic pathogenic variants. METHOD Whole exome sequencing was performed on three children with isolated proteinuria. CUBN gene biallelic pathogenic variants were found and then verified by sanger sequencing. Their clinical, pathological and molecular genetic characteristics were analyzed and correlated accordingly. RESULTS All three children presented with isolated proteinuria, no megaloblastic anemia. Their urine levels of β2 microglobulin were normal or slightly higher. Renal biopsies showed focal segmental glomerulosclerosis with mild glomerular mesangial hypercellularity, partial effacement of foot processes and podocyte microvillation. Two of them were found to carry compound heterozygous mutations and one homozygous mutation of CUBN gene. Totally four CUBN gene biallelic pathogenic variants were identified, including c.9287 T > C (p.L3096P), c.122 + 1G > A, c.7906C > T (p.R2636*), c.10233G > A (p.W3411*). Except for intron splice-site mutation, all other variants are located in highly conserved sites of CUB domain for binding to albumin. CONCLUSION The results demonstrate that CUBN gene mutations may cause isolated proteinuria pathologically presented as FSGS. Our cases extend the spectrum of renal manifestation and genotype of CUBN gene mutations.
Collapse
Affiliation(s)
- Jing Yang
- Department of Pediatrics, Tongji Hospital, Tongji Medical college, Huazhong University of Science and Technology, Jiefang Ave. No. 1095, Wuhan, 430030, China
| | - Yongli Xu
- Department of Pediatrics, Tongji Hospital, Tongji Medical college, Huazhong University of Science and Technology, Jiefang Ave. No. 1095, Wuhan, 430030, China
| | - Linxia Deng
- Department of Pediatrics, Tongji Hospital, Tongji Medical college, Huazhong University of Science and Technology, Jiefang Ave. No. 1095, Wuhan, 430030, China
| | - Luowen Zhou
- Department of Neurosurgery, Tongji Hospital, Tongji Medical college, Huazhong University of Science and Technology, Wuhan, China
| | - Liru Qiu
- Department of Pediatrics, Tongji Hospital, Tongji Medical college, Huazhong University of Science and Technology, Jiefang Ave. No. 1095, Wuhan, 430030, China
| | - Yu Zhang
- Department of Pediatrics, Tongji Hospital, Tongji Medical college, Huazhong University of Science and Technology, Jiefang Ave. No. 1095, Wuhan, 430030, China
| | - Jianhua Zhou
- Department of Pediatrics, Tongji Hospital, Tongji Medical college, Huazhong University of Science and Technology, Jiefang Ave. No. 1095, Wuhan, 430030, China.
| |
Collapse
|
12
|
Eslamiyeh H. Acute cerebellar ataxia as the first manifestation of Imerslund-Gräsbeck syndrome. IRANIAN JOURNAL OF CHILD NEUROLOGY 2021; 15:105-108. [PMID: 34782847 PMCID: PMC8570629 DOI: 10.22037/ijcn.v15i4.27482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 12/05/2020] [Indexed: 11/18/2022]
Abstract
Imerslund-Gräsbeck syndrome is a rare condition caused by vitamin B12 deficiency and proteinuria. In this article, we reported the case of a 10-year-old girl with imbalance and urinary incontinence. The case had cerebellar ataxia as the primary manifestation. The disequilibrium had progressed gradually within three weeks and was consistent with the symptoms of cerebellar involvement and urinary incontinence. Brain and cervico-thoraco-lumbar magnetic resonance imaging were normal. The patient had elevated lactate dehydrogenase (LDH=4775), in addition to macrocytic anemia, on laboratory examinations; thus, the possibility of malignancy was raised. Then, bone marrow aspiration was performed, showing hypercellular marrow with megaloblastic changes. This finding proved megaloblastic anemia. Regarding the low prevalence of vitamin B12 deficiency in healthy individuals, extensive studies were performed to find out the cause. The serum level of vitamin B12 was found to be lower than the normal range. Although urinalysis revealed significant proteinuria, further nephrological investigations did not indicate any abnormalities. No evidence of serious problems was observed in the gastrointestinal tract study, and metabolic studies were normal. Finally, based on the obtained data, Imerslund-Gräsbeck syndrome was recognized. Patient was treated by vitamin B12 injection, leading to improved balance, and in one-month follow-up, she was able to walk independently, and the cerebellar symptoms had greatly disappeared; however, proteinuria persisted.
Collapse
Affiliation(s)
- Hosein Eslamiyeh
- 1.Pediatric Neurology, Department of Pediatrics, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| |
Collapse
|
13
|
Vincenti A, Bertuzzo L, Limitone A, D’Antona G, Cena H. Perspective: Practical Approach to Preventing Subclinical B12 Deficiency in Elderly Population. Nutrients 2021; 13:1913. [PMID: 34199569 PMCID: PMC8226782 DOI: 10.3390/nu13061913] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/25/2021] [Accepted: 05/30/2021] [Indexed: 12/11/2022] Open
Abstract
Vitamin B12 (also known as cobalamin) is an essential water-soluble vitamin that plays a pivotal role for several physiologic functions during one's lifespan. Only certain microorganisms are able to synthetize B12, thus humans obtain cobalamin exclusively from their diet, specifically from animal-derived foods. Specific sub-group populations are at risk of vitamin B12 subclinical deficiency due to different factors including poor intake of animal source foods and age-dependent decrease in the capacity of intestinal B12 uptake. Consumption of animal products produces some negative health issues and negatively impacts sustainability while a plant-based diet increases the risk of B12 deficiency. Taking a cue from the aforementioned considerations, this narrative review aims to summarize facts about B12 deficiency and the burden of inadequate dietary intake in elderly population, as well as to discuss sustainable approaches to vitamin B12 deficiency in aging population.
Collapse
Affiliation(s)
- Alessandra Vincenti
- Laboratory of Dietetics and Clinical Nutrition, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, 27100 Pavia, Italy;
| | - Laura Bertuzzo
- Glaxosmithkline (GSK) Consumer Healthcare, via Zambeletti s.n.c., 20021 Baranzate, Italy; (L.B.); (A.L.)
| | - Antonio Limitone
- Glaxosmithkline (GSK) Consumer Healthcare, via Zambeletti s.n.c., 20021 Baranzate, Italy; (L.B.); (A.L.)
| | - Giuseppe D’Antona
- Centro di Ricerca Interdipartimentale nelle Attività Motorie e Sportive (CRIAMS)—Sport Medicine Centre, University of Pavia, 27058 Voghera, Italy;
| | - Hellas Cena
- Laboratory of Dietetics and Clinical Nutrition, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, 27100 Pavia, Italy;
- Clinical Nutrition and Dietetics Service, Unit of Internal Medicine and Endocrinology, ICS Maugeri IRCCS, 27100 Pavia, Italy
| |
Collapse
|
14
|
Novel CUBN Mutation in a Young Child With Megaloblastic Anemia. J Pediatr Hematol Oncol 2021; 43:e546-e549. [PMID: 33031161 DOI: 10.1097/mph.0000000000001958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 09/03/2020] [Indexed: 10/23/2022]
Abstract
Inherited disorders of cobalamin (Cbl, vitamin B12) metabolism are rare causes of megaloblastic anemia and neurologic abnormalities. More prevalent in certain ethnic groups, these disorders occur despite adequate Cbl intake and usually result from abnormal vitamin cell transport or processing. Cubilin (CUBN, intrinsic factor-cobalamin receptor) is the intestinal receptor for the endocytosis of intrinsic factor-vitamin B12. Its gene is localized to chromosome 10p13 and mutations involving CUBN have been described in patients with congenital megaloblastic anemia. In this report, we describe a novel CUBN pathogenic variant in a child with megaloblastic anemia.
Collapse
|
15
|
Sobczyńska-Malefora A, Delvin E, McCaddon A, Ahmadi KR, Harrington DJ. Vitamin B 12 status in health and disease: a critical review. Diagnosis of deficiency and insufficiency - clinical and laboratory pitfalls. Crit Rev Clin Lab Sci 2021; 58:399-429. [PMID: 33881359 DOI: 10.1080/10408363.2021.1885339] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Vitamin B12 (cobalamin) is an essential cofactor for two metabolic pathways. It is obtained principally from food of animal origin. Cobalamin becomes bioavailable through a series of steps pertaining to its release from dietary protein, intrinsic factor-mediated absorption, haptocorrin or transcobalamin-mediated transport, cellular uptake, and two enzymatic conversions (via methionine synthase and methylmalonyl-CoA-mutase) into cofactor forms: methylcobalamin and adenosylcobalamin. Vitamin B12 deficiency can masquerade as a multitude of illnesses, presenting different perspectives from the point of view of the hematologist, neurologist, gastroenterologist, general physician, or dietician. Increased physician vigilance and heightened patient awareness often account for its early presentation, and testing sometimes occurs during a phase of vitamin B12 insufficiency before the main onset of the disease. The chosen test often depends on its availability rather than on the diagnostic performance and sensitivity to irrelevant factors interfering with vitamin B12 markers. Although serum B12 is still the most commonly used and widely available test, diagnostics by holotranscobalamin, serum methylmalonic acid, and plasma homocysteine measurements have grown in the last several years in routine practice. The lack of a robust absorption test, coupled with compromised sensitivity and specificity of other tests (intrinsic factor and gastric parietal cell antibodies), hinders determination of the cause for depleted B12 status. This can lead to incorrect supplementation regimes and uncertainty regarding later treatment. This review discusses currently available knowledge on vitamin B12, informs the reader about the pitfalls of tests for assessing its deficiency, reviews B12 status in various populations at different disease stages, and provides recommendations for interpretation, treatment, and associated risks. Future directions for diagnostics of B12 status and health interventions are also discussed.
Collapse
Affiliation(s)
- Agata Sobczyńska-Malefora
- The Nutristasis Unit, Viapath, St. Thomas' Hospital, London, UK.,Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Edgard Delvin
- Sainte-Justine UHC Research Centre, Montreal, Canada.,Department of Biochemistry and Molecular Medicine, University of Montreal, Montreal, Canada
| | | | - Kourosh R Ahmadi
- Department of Nutrition & Metabolism, School of Biosciences and Medicine, University of Surrey, Guildford, UK
| | - Dominic J Harrington
- The Nutristasis Unit, Viapath, St. Thomas' Hospital, London, UK.,Faculty of Life Sciences and Medicine, King's College London, London, UK
| |
Collapse
|
16
|
Electrochemical sensors as a versatile tool for the quantitative analysis of Vitamin B12. CHEMICAL PAPERS 2021. [DOI: 10.1007/s11696-021-01574-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
17
|
Rayinda T, van Steensel M, Danarti R. Inherited skin disorders presenting with poikiloderma. Int J Dermatol 2021; 60:1343-1353. [PMID: 33739439 DOI: 10.1111/ijd.15498] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 01/05/2021] [Accepted: 02/08/2021] [Indexed: 11/28/2022]
Abstract
Poikiloderma is a skin condition that combines atrophy, telangiectasia, and macular pigment changes (hypo- as well as hyperpigmentation). It is often mistaken for mottled pigmentation by general practitioners or nondermatology specialists. Poikiloderma can be a key presenting symptom of Rothmund-Thomson syndrome (RTS), dyskeratosis congenita (DC), hereditary sclerosing poikiloderma (HSP), hereditary fibrosing poikiloderma with tendon contractures, myopathy, and pulmonary fibrosis (POIKTMP), xeroderma pigmentosum (XP), Bloom syndrome (BS), Kindler syndrome (KS), and Clericuzio-type poikiloderma with neutropenia (PN). In these conditions, poikiloderma starts early in life, usually before the second or third year. They may also be associated with photosensitivity and other significant multi-organ manifestation developed later in life. Poikiloderma could indicate the presence of a genetic disorder with potentially serious consequences. Poikiloderma almost always precedes more severe manifestations of these genodermatoses. Prompt diagnosis at the time of presentation could help to prevent complications and mitigate the course of the disease. This review discusses these to help the practicing clinician manage patients presenting with the symptom. To further facilitate early recognition, this paper also proposes a simple diagnostic algorithm.
Collapse
Affiliation(s)
- Tuntas Rayinda
- Department of Dermatology and Venereology, Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Maurice van Steensel
- Skin Research Institute of Singapore, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore.,Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore.,National Skin Center, Singapore, Singapore
| | - Retno Danarti
- Department of Dermatology and Venereology, Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| |
Collapse
|
18
|
Elshinawy M, Gao HH, Al-Nabhani DM, Al-Thihli KA. Clinical and molecular characteristics of imerslund-gräsbeck syndrome: First report of a novel Frameshift variant in Exon 11 of AMN gene. Int J Lab Hematol 2021; 43:1009-1015. [PMID: 33491342 DOI: 10.1111/ijlh.13473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 12/06/2020] [Accepted: 12/30/2020] [Indexed: 11/30/2022]
Abstract
INTRODUCTION Imerslund-Gräsbeck syndrome (IGS) is a rare autosomal-recessive disorder characterized by selective vitamin B12 malabsorption, megaloblastic anemia, and proteinuria. The precise incidence of this disorder is unknown in the Middle East and Arab countries. The disease is caused by a homozygous variant in either AMN or CUBN genes. In addition, some compound heterozygous variants are reported. METHODS Clinical and laboratory data of patients diagnosed with IGS in Oman were retrospectively collected. Mutation analysis for all genes involved in vitamin B12/folic acid metabolism and megaloblastic anemia was conducted using next-generation sequencing (NGS). RESULTS Three siblings (2 girls and a boy) have been diagnosed with the condition. They exhibit a phenotypic variability with different age of presentation and different spectrum of disease. All patients harbor a novel biallelic frameshift mutation in exon 11 of AMN gene (p.Pro409Glyfs*), which was not reported previously in the literature. Both parents are heterozygotes for the same variant. All patients responded well to vitamin B12 parenteral therapy, but proteinuria persisted. CONCLUSION In communities with high incidence of consanguinity, cases of early-onset vitamin B12 deficiency should be thoroughly investigated to explore the possibility of Imerslund-Gräsbeck syndrome and other vitamin B12-related hereditary disorders. Further local and regional studies are highly recommended.
Collapse
Affiliation(s)
- Mohamed Elshinawy
- Department of Child Health, Pediatric Hematology/Oncology, Sultan Qaboos University Hospital, Muscat, Oman.,Department of Pediatrics, Pediatric Hematology/Oncology, Faculty of Medicine, University of Alexandria, Alexandria, Egypt
| | | | - Dana M Al-Nabhani
- Department of Nephrology, Sultan Qaboos University Hospital, Muscat, Oman
| | - Khalid A Al-Thihli
- Genetic and developmental Medicine Department, Sultan Qaboos University Hospital, Muscat, Oman
| |
Collapse
|
19
|
Amlie-Wolf L, Baker L, Hiddemen O, Thomas M, Burke C, Gluck C, Zaritsky JJ, Gripp KW. Novel genetic testing model: A collaboration between genetic counselors and nephrology. Am J Med Genet A 2021; 185:1142-1150. [PMID: 33475249 DOI: 10.1002/ajmg.a.62088] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 11/09/2020] [Accepted: 01/09/2021] [Indexed: 11/08/2022]
Abstract
Many barriers to genetic testing currently exist which delay or prevent diagnosis. These barriers include wait times, staffing, education, and cost. Specialists are able to identify patients with disease that may need genetic testing, but lack the genetics support to facilitate that testing in the most cost, time, and medically effective manner. The Nephrology Division and the Genetic Testing Stewardship Program at Nemours A.I. duPont Hospital for Children created a novel service delivery model in which nephrologists and genetic counselors collaborate in order to highlight their complementary strengths (clinical expertise of nephrologists and genetics and counseling skills of genetic counselors). This collaboration has reduced many barriers to care for our patients. This workflow facilitated the offering of genetic testing to 76 patients, with 86 tests completed over a 20-month period. Thirty-two tests were deferred. Twenty-seven patients received a diagnosis, which lead to a change in their medical management, three of whom were diagnosed by cascade family testing. Forty-two patients had a negative result and 16 patients had one or more variants of uncertain significance on testing. The inclusion of genetic counselors in the workflow is integral toward choosing the most cost and time effective genetic testing strategy, as well as providing psychosocial support to families. The genetic counselors obtain informed consent, and review genetic test results and recommendations with the patient and their family. The availability of this program to our patients increased access to genetic testing and helps to provide diagnoses and supportive care.
Collapse
Affiliation(s)
- Louise Amlie-Wolf
- Precision Medicine/Genetic Testing Stewardship Program, Nemours A.I. duPont Hospital for Children Precision Medicine/Genetic Testing Stewardship Program, Wilmington, Delaware, USA
| | - Laura Baker
- Precision Medicine/Genetic Testing Stewardship Program, Nemours A.I. duPont Hospital for Children Precision Medicine/Genetic Testing Stewardship Program, Wilmington, Delaware, USA
| | - Olivia Hiddemen
- Precision Medicine/Genetic Testing Stewardship Program, Nemours A.I. duPont Hospital for Children Precision Medicine/Genetic Testing Stewardship Program, Wilmington, Delaware, USA
| | - Morgan Thomas
- Precision Medicine/Genetic Testing Stewardship Program, Nemours A.I. duPont Hospital for Children Precision Medicine/Genetic Testing Stewardship Program, Wilmington, Delaware, USA
| | - Christine Burke
- Division of Nephrology, Nemours A.I. duPont Hospital for Children, Wilmington, Delaware, USA
| | - Caroline Gluck
- Division of Nephrology, Nemours A.I. duPont Hospital for Children, Wilmington, Delaware, USA
| | - Joshua J Zaritsky
- Division of Nephrology, Nemours A.I. duPont Hospital for Children, Wilmington, Delaware, USA
| | - Karen W Gripp
- Precision Medicine/Genetic Testing Stewardship Program, Nemours A.I. duPont Hospital for Children Precision Medicine/Genetic Testing Stewardship Program, Wilmington, Delaware, USA
| |
Collapse
|
20
|
A child with Imerslund-Gräsbeck syndrome concealed by co-existing α-thalassaemia presenting with subacute combined degeneration of the spinal cord: a case report. BMC Pediatr 2021; 21:41. [PMID: 33461510 PMCID: PMC7812643 DOI: 10.1186/s12887-021-02499-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 01/10/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Imerslund-Gräsbeck syndrome is a rare genetic disease characterised by vitamin B12 deficiency and proteinuria. CASE PRESENTATION A 4-year old Sri Lankan boy presented with gradually worsening difficulty in walking for two weeks duration. He was previously diagnosed and managed as having non-transfusion-dependent α-thalassaemia based on the presence of hypochromic microcytic anaemia, haemoglobin H inclusion bodies in the blood film and compound heterozygous α-thalassaemia genotype with a gene deletion. However, his transfusion requirement increased over the past three months and he gradually lost his motor developmental milestones during two weeks before admission. The neurological examination revealed generalised hypotonia, exaggerated knee jerks and extensor plantar response. His complete blood count showed pancytopenia, and bone marrow biopsy revealed megaloblastic changes. Serum vitamin B12 and red blood cell folate levels were low. MRI revealed sub-acute combined degeneration of the spinal cord with characteristic 'inverted V sign'. Urine analysis showed non-nephrotic range proteinuria. The diagnosis of Imerslund-Gräsbeck syndrome was made due to the presence of non-nutritional vitamin B12 deficiency and asymptomatic proteinuria. He showed a rapid haematological and neurological improvement to intramuscular hydroxocobalamin. CONCLUSIONS This case report presents a rare occurrence of severe vitamin B12 deficiency due to Imerslund-Gräsbeck syndrome masked by co-existent α-thalassaemia, resulting in serious consequences. It highlights the need for a high index of suspicion in evaluating children with severe anaemia, especially in the presence of mixed pathologies.
Collapse
|
21
|
Abstract
Cobalamin or vitamin B12 (vitB12) is involved in DNA synthesis, haematopoiesis and myelinisation. Consequently, vitB12 deficiency causes various symptoms, such as megaloblastic anaemia, neurologic signs or pancytopenia. Despite possible severe symptoms, vitB12 deficiency can present asymptomatically. We report six paediatric patients with different aetiologies of vitB12 deficiency ranging from a subtle to a more overt presentation. VitB12 deficiency is a diagnostic challenge due to the lack of consensus on normal values of vitB12 and its co-markers (folate, holotranscobalamin, methylmalonic acid, homocysteine) and the lack in specificity and sensitivity of the serum vitB12 analysis. All cases were treated with parenteral vitB12. Last decades, evidence supporting high dose oral treatment being as effective as the intramuscular (IM) therapy, also in children, is growing.
Collapse
|
22
|
Ruan J, Han B, Zhuang J, Chen M, Chen F, Huang Y, Zhou W. Hereditary intrinsic factor deficiency in China caused by a novel mutation in the intrinsic factor gene-a case report. BMC MEDICAL GENETICS 2020; 21:221. [PMID: 33172407 PMCID: PMC7654184 DOI: 10.1186/s12881-020-01158-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 10/27/2020] [Indexed: 11/10/2022]
Abstract
Background Hereditary intrinsic factor deficiency is a rare disease characterized by cobalamin deficiency with the lack of gastric intrinsic factor because of gastric intrinsic factor (GIF) mutations. Patients usually present with cobalamin deficiency without gastroscopy abnormality and intrinsic factor antibodies. Case presentation A Chinese patient presented with recurrent severe anemia since age 2 with low cobalamin level and a mild elevation of indirect bilirubin. The hemoglobin level normalized each time after intramuscular vitamin B12 injection. Gene test verified a c.776delA frame shift mutation in exon 6 combined with c.585C > A nonsense early termination mutation in exon 5 of GIF which result in the dysfunction of gastric intrinsic factor protein. The hereditary intrinsic factor deficiency in literature was further reviewed and the ancestry of different mutation sites were discussed. Conclusions A novel compound heterozygous mutation of GIF in a Chinese patient of hereditary intrinsic factor deficiency was reported. It was the first identified mutation of GIF in East-Asia and may indicate a new ancestry.
Collapse
Affiliation(s)
- Jing Ruan
- Department of Hematology, Peking Union Medical College, Hospital, Chinese Academy of Medical Sciences, No.1 Shuaifuyuan, Dongcheng District, Beijing, 100730, China
| | - Bing Han
- Department of Hematology, Peking Union Medical College, Hospital, Chinese Academy of Medical Sciences, No.1 Shuaifuyuan, Dongcheng District, Beijing, 100730, China.
| | - Junling Zhuang
- Department of Hematology, Peking Union Medical College, Hospital, Chinese Academy of Medical Sciences, No.1 Shuaifuyuan, Dongcheng District, Beijing, 100730, China
| | - Miao Chen
- Department of Hematology, Peking Union Medical College, Hospital, Chinese Academy of Medical Sciences, No.1 Shuaifuyuan, Dongcheng District, Beijing, 100730, China
| | - Fangfei Chen
- Department of Hematology, Peking Union Medical College, Hospital, Chinese Academy of Medical Sciences, No.1 Shuaifuyuan, Dongcheng District, Beijing, 100730, China
| | - Yuzhou Huang
- Department of Hematology, Peking Union Medical College, Hospital, Chinese Academy of Medical Sciences, No.1 Shuaifuyuan, Dongcheng District, Beijing, 100730, China
| | - Wenzhe Zhou
- Department of Hematology, Peking Union Medical College, Hospital, Chinese Academy of Medical Sciences, No.1 Shuaifuyuan, Dongcheng District, Beijing, 100730, China
| |
Collapse
|
23
|
Serum albumin: clinical significance of drug binding and development as drug delivery vehicle. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2020; 123:193-218. [PMID: 33485484 DOI: 10.1016/bs.apcsb.2020.08.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Human serum albumin, the primary transport and reservoir protein in the human circulatory system, interacts with numerous endogenous and exogenous ligands of varying structural characteristics. The mode of binding of drugs to albumin is central to understanding their pharmacokinetic profiles and has a major influence on their in vivo efficacy. Altered drug binding to albumin due to drug-drug interactions or abnormal physiology may result in marked changes in the active drug concentration, thus affecting its pharmacokinetic and pharmacodynamic properties. The propensity of drug-drug interaction to be clinically significant as well as possible exploitation of such interactions for therapeutic purposes is reviewed. Being the major organs of albumin metabolism, any impairment in the liver and kidney functions frequently alter the level of serum albumin, which affects the pharmacokinetic profiles of drugs and may have serious clinical implications. The natural function of serum albumin as a drug carrier is facilitated by its interaction with various cellular receptors. These receptors not only promote the uptake of drugs into cells but are also responsible for the extraordinarily long circulatory half-life of albumin. This property in combination with the presence of multiple ligand binding pockets have led to the emergence of serum albumin as an attractive vehicle for novel drug delivery systems. Here, we provide an overview of various albumin-based drug delivery strategies, classified according to their methods of drug attachment, and highlight their experimental and clinical successes.
Collapse
|
24
|
Chen RY, Li XZ, Lin Q, Zhu Y, Shen YY, Xu QY, Zhu XM, Chen LQ, Wu HY, Chen XQ. Proteinuria as a presenting sign of combined methylmalonic acidemia and homocysteinemia: case report. BMC MEDICAL GENETICS 2020; 21:183. [PMID: 32957924 PMCID: PMC7507264 DOI: 10.1186/s12881-020-01122-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 09/10/2020] [Indexed: 11/24/2022]
Abstract
Background Disorders of the metabolism and absorption of vitamin B12 can lead to decrease in activity of methionine synthetase and methylmalonate coenzyme A mutase (MMUT), which results in increased levels of methylmalonic acid and homocysteine in blood and urine. Often, combined methylmalonic acidemia (MMA) and homocysteinemia is misdiagnosed due to a lack of specific symptoms. The clinical manifestations are diverse, but proteinuria as the initial presentation is rare. Case presentation Two cases of MMA with homocysteinemia in children are reported. Proteinuria were a primary presenting symptom, followed by anemia and neurologic symptoms (frequent convulsions and unstable walking, respectively). Screening of amino acids and acyl carnitine in serum showed that the propionyl carnitine:acetylcarnitine ratio increased. Profiling of urinary organic acids by gas chromatography–mass spectrometry revealed high levels of methylmalonic acid. Homocysteine content in blood was increased. Comprehensive genetic analyses of peripheral blood-derived DNA demonstrated heterozygous variants of methylmalonic aciduria type C and homocystinuria (MMACHC) and amnionless (AMN) genes in our two patients, respectively. After active treatment, the clinical manifestations in Case 1 were relieved and urinary protein ceased to be observed; Case 2 had persistent proteinuria and was lost to follow-up. Conclusions Analyses of the organic acids in blood and urine suggested MMA combined with homocysteinemia. In such diseases, reports of renal damage are uncommon and proteinuria as the initial presentation is rare. Molecular analysis indicated two different genetic causes. Although the pathologic mechanisms were related to vitamin B12, the severity and prognosis of renal lesions were different. Therefore, gene detection provides new insights into inherited metabolic diseases.
Collapse
Affiliation(s)
- Ru-Yue Chen
- Department of Nephrology and Immunology, Children's Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Xiao-Zhong Li
- Department of Nephrology and Immunology, Children's Hospital of Soochow University, Suzhou, Jiangsu, China.
| | - Qiang Lin
- Department of Nephrology and Immunology, Children's Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Yun Zhu
- Department of Nephrology and Immunology, Children's Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Yun-Yan Shen
- Department of Nephrology and Immunology, Children's Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Qin-Ying Xu
- Department of Nephrology and Immunology, Children's Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Xue-Ming Zhu
- Department of Pathology, Children's Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Lin-Qi Chen
- Department of Endocrinology, Children's Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Hai-Ying Wu
- Department of Endocrinology, Children's Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Xu-Qin Chen
- Department of Neurology, Children's Hospital of Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
25
|
Bi Z, Cao J, Shang K, Su Z, Xu S, Liu C. Correlation between anemia and clinical severity in subacute combined degeneration patients. J Clin Neurosci 2020; 80:11-15. [PMID: 33099331 DOI: 10.1016/j.jocn.2020.08.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 07/31/2020] [Accepted: 08/03/2020] [Indexed: 10/23/2022]
Abstract
OBJECTIVES Subacute combined degeneration (SCD) is a demyelinating disease commonly caused by vitamin B12 deficiency. Several studies have been reported SCD could be accompanied by anemia. However, the correlation between anemia and clinical severity of SCD patients is unclear. In this study, we aim to analyze the clinical characteristics of SCD concomitant with anemia, and investigate the effect of anemia in predicting the severity of SCD. METHODS A total 42 patients were included in the study. Clinical, laboratory, radiological findings, and outcomes from the patients were analyzed. All patients were treated with vitamin B12 for no less than 6 months and a functional disability rating scale was used to evaluate severity of neurological impairment at the time of admission and 3 and 6 months after admission in our study. RESULTS 85.7% patients had macrocytosis. Decreased serum vitamin B12 levels were found in 27 patients (64.3%). MRI showed long-segment abnormality on the spinal cord in 22 patients. No differences in rating score were found in patients grouped by sex, age, clinical course, serum vitamin B12, or MRI manifestations at the time of admission or at the follow-up visits. Negative correlation was seen between hemoglobin levels and the clinical severity scores on admission. CONCLUSION Not all patients with SCD concomitant with anemia had decreased serum vitamin B12 level. The inverse correlation between hemoglobin level and clinical severity suggests the degree of anemia can help in evaluating the extent of neurologic impairment.
Collapse
Affiliation(s)
- Zhuajin Bi
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jie Cao
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ke Shang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhuyi Su
- School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Shabei Xu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Chenchen Liu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
26
|
Urae S, Harita Y, Udagawa T, Ode KL, Nagahama M, Kajiho Y, Kanda S, Saito A, Ueda HR, Nangaku M, Oka A. A cellular model of albumin endocytosis uncovers a link between membrane and nuclear proteins. J Cell Sci 2020; 133:jcs242859. [PMID: 32482797 DOI: 10.1242/jcs.242859] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 05/20/2020] [Indexed: 12/21/2022] Open
Abstract
Cubilin (CUBN) and amnionless (AMN), expressed in kidney and intestine, form a multiligand receptor complex called CUBAM that plays a crucial role in albumin absorption. To date, the mechanism of albumin endocytosis mediated by CUBAM remains to be elucidated. Here, we describe a quantitative assay to evaluate albumin uptake by CUBAM using cells expressing full-length CUBN and elucidate the crucial roles of the C-terminal part of CUBN and the endocytosis signal motifs of AMN in albumin endocytosis. We also demonstrate that nuclear valosin-containing protein-like 2 (NVL2), an interacting protein of AMN, is involved in this process. Although NVL2 was mainly localized in the nucleolus in cells without AMN expression, it was translocated to the extranuclear compartment when coexpressed with AMN. NVL2 knockdown significantly impaired internalization of the CUBN-albumin complex in cultured cells, demonstrating an involvement of NVL2 in endocytic regulation. These findings uncover a link between membrane and nucleolar proteins that is involved in endocytic processes.
Collapse
Affiliation(s)
- Seiya Urae
- Department of Pediatrics, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-8655, Japan
- Division of Nephrology and Endocrinology, The University of Tokyo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Yutaka Harita
- Department of Pediatrics, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Tomohiro Udagawa
- Department of Pediatrics and Developmental Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Koji L Ode
- Department of Systems Pharmacology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-8654, Japan
| | - Masami Nagahama
- Laboratory of Molecular and Cellular Biochemistry, Meiji Pharmaceutical University, Kiyose-shi, Tokyo 204-8588, Japan
| | - Yuko Kajiho
- Department of Pediatrics, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Shoichiro Kanda
- Department of Pediatrics, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Akihiko Saito
- Department of Applied Molecular Medicine, Niigata University Graduate School of Medical and Dental Sciences, Niigata-shi, Niigata 951-8510, Japan
| | - Hiroki R Ueda
- Department of Systems Pharmacology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-8654, Japan
- Laboratory for Synthetic Biology, RIKEN Center for Biosystems Dynamics Research, Wako-shi, Saitama 351-0198, Japan
| | - Masaomi Nangaku
- Division of Nephrology and Endocrinology, The University of Tokyo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Akira Oka
- Department of Pediatrics, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-8655, Japan
| |
Collapse
|
27
|
Casanova F, Tyrrell J, Beaumont RN, Ji Y, Jones SE, Hattersley AT, Weedon MN, Murray A, Shore AC, Frayling TM, Wood AR. A genome-wide association study implicates multiple mechanisms influencing raised urinary albumin-creatinine ratio. Hum Mol Genet 2020; 28:4197-4207. [PMID: 31630189 PMCID: PMC7246045 DOI: 10.1093/hmg/ddz243] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Revised: 09/27/2019] [Accepted: 10/04/2019] [Indexed: 12/15/2022] Open
Abstract
Raised albumin–creatinine ratio (ACR) is an indicator of microvascular damage and renal disease. We aimed to identify genetic variants associated with raised ACR and study the implications of carrying multiple ACR-raising alleles with metabolic and vascular-related disease. We performed a genome-wide association study of ACR using 437 027 individuals from the UK Biobank in the discovery phase, 54 527 more than previous studies, and followed up our findings in independent studies. We identified 62 independent associations with ACR across 56 loci (P < 5 × 10–8), of which 20 were not previously reported. Pathway analyses and the identification of 20 of the 62 variants (at r2 > 0.8) coinciding with signals for at least 16 related metabolic and vascular traits, suggested multiple pathways leading to raised ACR levels. After excluding variants at the CUBN locus, known to alter ACR via effects on renal absorption, an ACR genetic risk score was associated with a higher risk of hypertension, and less strongly, type 2 diabetes and stroke. For some rare genotype combinations at the CUBN locus, most individuals had ACR levels above the microalbuminuria clinical threshold. Contrary to our hypothesis, individuals carrying more CUBN ACR-raising alleles, and above the clinical threshold, had a higher frequency of vascular disease. The CUBN allele effects on ACR were twice as strong in people with diabetes—a result robust to an optimization-algorithm approach to simulating interactions, validating previously reported gene–diabetes interactions (P ≤ 4 × 10–5). In conclusion, a variety of genetic mechanisms and traits contribute to variation
in ACR.
Collapse
Affiliation(s)
- Francesco Casanova
- Diabetes and Vascular Medicine, NIHR Exeter Clinical Research Facility and College of Medicine and Health, University of Exeter, Exeter, UK
| | - Jessica Tyrrell
- Diabetes and Vascular Medicine, NIHR Exeter Clinical Research Facility and College of Medicine and Health, University of Exeter, Exeter, UK
| | - Robin N Beaumont
- Genetics of Complex Traits, College of Medicine and Health, University of Exeter, Exeter, UK
| | - Yingjie Ji
- Genetics of Complex Traits, College of Medicine and Health, University of Exeter, Exeter, UK
| | - Samuel E Jones
- Genetics of Complex Traits, College of Medicine and Health, University of Exeter, Exeter, UK
| | - Andrew T Hattersley
- Institute of Biomedical & Clinical Science, University of Exeter, Exeter, UK
| | - Michael N Weedon
- Genetics of Complex Traits, College of Medicine and Health, University of Exeter, Exeter, UK
| | - Anna Murray
- Genetics of Complex Traits, College of Medicine and Health, University of Exeter, Exeter, UK
| | - Angela C Shore
- Diabetes and Vascular Medicine, NIHR Exeter Clinical Research Facility and College of Medicine and Health, University of Exeter, Exeter, UK
| | - Timothy M Frayling
- Genetics of Complex Traits, College of Medicine and Health, University of Exeter, Exeter, UK
| | - Andrew R Wood
- Genetics of Complex Traits, College of Medicine and Health, University of Exeter, Exeter, UK
| |
Collapse
|
28
|
Wu P, Rybin D, Bielak LF, Feitosa MF, Franceschini N, Li Y, Lu Y, Marten J, Musani SK, Noordam R, Raghavan S, Rose LM, Schwander K, Smith AV, Tajuddin SM, Vojinovic D, Amin N, Arnett DK, Bottinger EP, Demirkan A, Florez JC, Ghanbari M, Harris TB, Launer LJ, Liu J, Liu J, Mook-Kanamori DO, Murray AD, Nalls MA, Peyser PA, Uitterlinden AG, Voortman T, Bouchard C, Chasman D, Correa A, de Mutsert R, Evans MK, Gudnason V, Hayward C, Kao L, Kardia SLR, Kooperberg C, Loos RJF, Province MM, Rankinen T, Redline S, Ridker PM, Rotter JI, Siscovick D, Smith BH, van Duijn C, Zonderman AB, Rao DC, Wilson JG, Dupuis J, Meigs JB, Liu CT, Vassy JL. Smoking-by-genotype interaction in type 2 diabetes risk and fasting glucose. PLoS One 2020; 15:e0230815. [PMID: 32379818 PMCID: PMC7205201 DOI: 10.1371/journal.pone.0230815] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 03/09/2020] [Indexed: 02/07/2023] Open
Abstract
Smoking is a potentially causal behavioral risk factor for type 2 diabetes (T2D), but not all smokers develop T2D. It is unknown whether genetic factors partially explain this variation. We performed genome-environment-wide interaction studies to identify loci exhibiting potential interaction with baseline smoking status (ever vs. never) on incident T2D and fasting glucose (FG). Analyses were performed in participants of European (EA) and African ancestry (AA) separately. Discovery analyses were conducted using genotype data from the 50,000-single-nucleotide polymorphism (SNP) ITMAT-Broad-CARe (IBC) array in 5 cohorts from from the Candidate Gene Association Resource Consortium (n = 23,189). Replication was performed in up to 16 studies from the Cohorts for Heart Aging Research in Genomic Epidemiology Consortium (n = 74,584). In meta-analysis of discovery and replication estimates, 5 SNPs met at least one criterion for potential interaction with smoking on incident T2D at p<1x10-7 (adjusted for multiple hypothesis-testing with the IBC array). Two SNPs had significant joint effects in the overall model and significant main effects only in one smoking stratum: rs140637 (FBN1) in AA individuals had a significant main effect only among smokers, and rs1444261 (closest gene C2orf63) in EA individuals had a significant main effect only among nonsmokers. Three additional SNPs were identified as having potential interaction by exhibiting a significant main effects only in smokers: rs1801232 (CUBN) in AA individuals, rs12243326 (TCF7L2) in EA individuals, and rs4132670 (TCF7L2) in EA individuals. No SNP met significance for potential interaction with smoking on baseline FG. The identification of these loci provides evidence for genetic interactions with smoking exposure that may explain some of the heterogeneity in the association between smoking and T2D.
Collapse
Affiliation(s)
- Peitao Wu
- Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts, MA, United States of America
| | - Denis Rybin
- Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts, MA, United States of America
| | - Lawrence F. Bielak
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, United States of America
| | - Mary F. Feitosa
- Division of Statistical Genomics, Department of Genetics, Washington University School of Medicine, St. Louis, MO, United States of America
| | - Nora Franceschini
- University of North Carolina, Chapel Hill, NC, United States of America
| | - Yize Li
- Division of Biostatistics, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Yingchang Lu
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
| | - Jonathan Marten
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Solomon K. Musani
- Jackson Heart Study, University of Mississippi Medical Center, MS, United States of America
| | - Raymond Noordam
- Department of Internal Medicine, Section of Gerontology and Geriatrics, Leiden University Medical Center, Leiden, the Netherlands
| | - Sridharan Raghavan
- Section of Hospital Medicine, Veterans Affairs Eastern Colorado Healthcare System, Denver, CO, United States of America
- Division of General Internal Medicine, University of Colorado School of Medicine, Aurora, CO, United States of America
- Colorado Cardiovascular Outcomes Research Consortium, Aurora, CO, United States of America
| | - Lynda M. Rose
- Division of Preventive Medicine, Brigham and Women's Hospital, Boston, MA, United States of America
| | - Karen Schwander
- Division of Biostatistics, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Albert V. Smith
- Icelandic Heart Association, Kopavogur, Iceland
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Salman M. Tajuddin
- Laboratory of Epidemiology and Population Science, National Institute on Aging, National Institutes of Health, Baltimore, MD, United States of America
| | - Dina Vojinovic
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Najaf Amin
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Donna K. Arnett
- Dean's Office, University of Kentucky College of Public Health, Lexington, Kentucky, United States of America
| | - Erwin P. Bottinger
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
| | - Ayse Demirkan
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Jose C. Florez
- Diabetes Unit and Center for Genomic Medicine, Massachusetts General Hospital, Massachusetts General Hospital, Boston, MA, United States of America
- Programs in Metabolism and Medical & Population Genetics, Broad Institute, Cambridge, MA, United States of America
- Department of Medicine, Harvard Medical School, Boston, MA, United States of America
| | - Mohsen Ghanbari
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands
- Department of Genetics, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Tamara B. Harris
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, Intramural Research Program, National Institutes of Health, Bethesda, MD, United States of America
| | - Lenore J. Launer
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, Intramural Research Program, National Institutes of Health, Bethesda, MD, United States of America
| | - Jingmin Liu
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, United States of America
| | - Jun Liu
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Dennis O. Mook-Kanamori
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, The Netherlands
- Department of Public Health and Primary Care, Leiden University Medical Center, Leiden, The Netherlands
| | - Alison D. Murray
- The Institute of Medical Sciences, Aberdeen Biomedical Imaging Centre, University of Aberdeen, Aberdeen, United Kingdom
| | - Mike A. Nalls
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, United States of America
- Data Tecnica International LLC, Glen Echo, MD, United States of America
| | - Patricia A. Peyser
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, United States of America
| | - André G. Uitterlinden
- Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Trudy Voortman
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Claude Bouchard
- Human Genomics Laboratory, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA, United States of America
| | - Daniel Chasman
- Division of Preventive Medicine, Brigham and Women's Hospital, Boston, MA, United States of America
- Harvard Medical School, Boston, MA, United States of America
| | - Adolfo Correa
- Department of Medicine, University of Mississippi Medical Center, Jackson, MS, United States of America
| | - Renée de Mutsert
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Michele K. Evans
- Laboratory of Epidemiology and Population Science, National Institute on Aging, National Institutes of Health, Baltimore, MD, United States of America
| | - Vilmundur Gudnason
- Icelandic Heart Association, Kopavogur, Iceland
- University of Iceland, Reykjavik, Iceland
| | - Caroline Hayward
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Linda Kao
- Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD, United States of America
- Welch Center for Prevention, Epidemiology and Clinical Research, Johns Hopkins University, Baltimore, MD, United States of America
- Department of Epidemiology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, United States of America
| | - Sharon L. R. Kardia
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, United States of America
| | - Charles Kooperberg
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, United States of America
| | - Ruth J. F. Loos
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
- The Mindich Child Health and Development Institute, Ichan School of Medicine at Mount Sinai, New York, NY, United States of America
| | - Michael M. Province
- Division of Statistical Genomics, Department of Genetics, Washington University School of Medicine, St. Louis, MO, United States of America
| | - Tuomo Rankinen
- Human Genomics Laboratory, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA, United States of America
| | - Susan Redline
- Harvard Medical School, Boston, MA, United States of America
- Departments of Medicine, Brigham and Women's Hospital, Boston, MA, United States of America
- Beth Israel Deaconess Medical Center, Boston, MA, United States of America
| | - Paul M. Ridker
- Division of Preventive Medicine, Brigham and Women's Hospital, Boston, MA, United States of America
- Harvard Medical School, Boston, MA, United States of America
| | - Jerome I. Rotter
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, United States of America
| | - David Siscovick
- The New York Academy of Medicine, New York, NY, United States of America
| | - Blair H. Smith
- Division of Population Health and Genomics, University of Dundee, Dundee, United Kingdom
| | - Cornelia van Duijn
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Alan B. Zonderman
- Laboratory of Epidemiology and Population Science, National Institute on Aging, National Institutes of Health, Baltimore, MD, United States of America
| | - D. C. Rao
- Division of Biostatistics, Washington University School of Medicine, St. Louis, MO, United States of America
| | - James G. Wilson
- Department of Medicine, University of Mississippi Medical Center, Jackson, MS, United States of America
| | - Josée Dupuis
- Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts, MA, United States of America
- The National Heart, Lung, and Blood Institute’s Framingham Heart Study, Framingham, MA, United States of America
| | - James B. Meigs
- Programs in Metabolism and Medical & Population Genetics, Broad Institute, Cambridge, MA, United States of America
- Division of General Internal Medicine Division, Massachusetts General Hospital, Boston, MA, United States of America
- Department of Medicine, Harvard Medical School, Boston, MA, United States of America
| | - Ching-Ti Liu
- Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts, MA, United States of America
| | - Jason L. Vassy
- Department of Medicine, Harvard Medical School, Boston, MA, United States of America
- VA Boston Healthcare System, Boston, MA, United States of America
| |
Collapse
|
29
|
Casanova F, Wood AR, Yaghootkar H, Beaumont RN, Jones SE, Gooding KM, Aizawa K, Strain WD, Hattersley AT, Khan F, Shore AC, Frayling TM, Tyrrell J. A Mendelian Randomization Study Provides Evidence That Adiposity and Dyslipidemia Lead to Lower Urinary Albumin-to-Creatinine Ratio, a Marker of Microvascular Function. Diabetes 2020; 69:1072-1082. [PMID: 31915152 PMCID: PMC7611011 DOI: 10.2337/db19-0862] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 12/23/2019] [Indexed: 01/22/2023]
Abstract
Urinary albumin-to-creatinine ratio (ACR) is a marker of diabetic nephropathy and microvascular damage. Metabolic-related traits are observationally associated with ACR, but their causal role is uncertain. Here, we confirmed ACR as a marker of microvascular damage and tested whether metabolic-related traits have causal relationships with ACR. The association between ACR and microvascular function (responses to acetylcholine [ACH] and sodium nitroprusside) was tested in the SUMMIT study. Two-sample Mendelian randomization (MR) was used to infer the causal effects of 11 metabolic risk factors, including glycemic, lipid, and adiposity traits, on ACR. MR was performed in up to 440,000 UK Biobank and 54,451 CKDGen participants. ACR was robustly associated with microvascular function measures in SUMMIT. Using MR, we inferred that higher triglyceride (TG) and LDL cholesterol (LDL-C) levels caused elevated ACR. A 1 SD higher TG and LDL-C level caused a 0.062 (95% CI 0.040, 0.083) and a 0.026 (95% CI 0.008, 0.044) SD higher ACR, respectively. There was evidence that higher body fat and visceral body fat distribution caused elevated ACR, while a metabolically "favorable adiposity" phenotype lowered ACR. ACR is a valid marker for microvascular function. MR suggested that seven traits have causal effects on ACR, highlighting the role of adiposity-related traits in causing lower microvascular function.
Collapse
Affiliation(s)
- Francesco Casanova
- Diabetes and Vascular Medicine, NIHR Exeter Clinical Research Facility and Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, U.K
| | - Andrew R Wood
- Genetics of Complex Traits, Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, U.K
| | - Hanieh Yaghootkar
- Genetics of Complex Traits, Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, U.K
- Research Centre for Optimal Health, School of Life Sciences, University of Westminster, London, U.K
| | - Robert N Beaumont
- Genetics of Complex Traits, Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, U.K
| | - Samuel E Jones
- Genetics of Complex Traits, Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, U.K
| | - Kim M Gooding
- Diabetes and Vascular Medicine, NIHR Exeter Clinical Research Facility and Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, U.K
| | - Kunihiko Aizawa
- Diabetes and Vascular Medicine, NIHR Exeter Clinical Research Facility and Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, U.K
| | - W David Strain
- Diabetes and Vascular Medicine, NIHR Exeter Clinical Research Facility and Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, U.K
| | - Andrew T Hattersley
- Diabetes and Vascular Medicine, NIHR Exeter Clinical Research Facility and Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, U.K
| | - Faisel Khan
- Division of Systems Medicine, School of Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, U.K
| | - Angela C Shore
- Diabetes and Vascular Medicine, NIHR Exeter Clinical Research Facility and Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, U.K
| | - Timothy M Frayling
- Genetics of Complex Traits, Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, U.K
| | - Jessica Tyrrell
- Genetics of Complex Traits, Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, U.K.
| |
Collapse
|
30
|
Bedin M, Boyer O, Servais A, Li Y, Villoing-Gaudé L, Tête MJ, Cambier A, Hogan J, Baudouin V, Krid S, Bensman A, Lammens F, Louillet F, Ranchin B, Vigneau C, Bouteau I, Isnard-Bagnis C, Mache CJ, Schäfer T, Pape L, Gödel M, Huber TB, Benz M, Klaus G, Hansen M, Latta K, Gribouval O, Morinière V, Tournant C, Grohmann M, Kuhn E, Wagner T, Bole-Feysot C, Jabot-Hanin F, Nitschké P, Ahluwalia TS, Köttgen A, Andersen CBF, Bergmann C, Antignac C, Simons M. Human C-terminal CUBN variants associate with chronic proteinuria and normal renal function. J Clin Invest 2020; 130:335-344. [PMID: 31613795 PMCID: PMC6934218 DOI: 10.1172/jci129937] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 10/02/2019] [Indexed: 12/30/2022] Open
Abstract
BACKGROUNDProteinuria is considered an unfavorable clinical condition that accelerates renal and cardiovascular disease. However, it is not clear whether all forms of proteinuria are damaging. Mutations in CUBN cause Imerslund-Gräsbeck syndrome (IGS), which is characterized by intestinal malabsorption of vitamin B12 and in some cases proteinuria. CUBN encodes for cubilin, an intestinal and proximal tubular uptake receptor containing 27 CUB domains for ligand binding.METHODSWe used next-generation sequencing for renal disease genes to genotype cohorts of patients with suspected hereditary renal disease and chronic proteinuria. CUBN variants were analyzed using bioinformatics, structural modeling, and epidemiological methods.RESULTSWe identified 39 patients, in whom biallelic pathogenic variants in the CUBN gene were associated with chronic isolated proteinuria and early childhood onset. Since the proteinuria in these patients had a high proportion of albuminuria, glomerular diseases such as steroid-resistant nephrotic syndrome or Alport syndrome were often the primary clinical diagnosis, motivating renal biopsies and the use of proteinuria-lowering treatments. However, renal function was normal in all cases. By contrast, we did not found any biallelic CUBN variants in proteinuric patients with reduced renal function or focal segmental glomerulosclerosis. Unlike the more N-terminal IGS mutations, 37 of the 41 proteinuria-associated CUBN variants led to modifications or truncations after the vitamin B12-binding domain. Finally, we show that 4 C-terminal CUBN variants are associated with albuminuria and slightly increased GFR in meta-analyses of large population-based cohorts.CONCLUSIONCollectively, our data suggest an important role for the C-terminal half of cubilin in renal albumin reabsorption. Albuminuria due to reduced cubilin function could be an unexpectedly common benign condition in humans that may not require any proteinuria-lowering treatment or renal biopsy.FUNDINGATIP-Avenir program, Fondation Bettencourt-Schueller (Liliane Bettencourt Chair of Developmental Biology), Agence Nationale de la Recherche (ANR) Investissements d'avenir program (ANR-10-IAHU-01) and NEPHROFLY (ANR-14-ACHN-0013, to MS), Steno Collaborative Grant 2018 (NNF18OC0052457, to TSA and MS), Heisenberg Professorship of the German Research Foundation (KO 3598/5-1, to AK), Deutsche Forschungsgemeinschaft (DFG) Collaborative Research Centre (SFB) KIDGEM 1140 (project 246781735, to CB), and Federal Ministry of Education and Research (BMB) (01GM1515C, to CB).
Collapse
Affiliation(s)
| | - Olivia Boyer
- Laboratory of Hereditary Kidney Disease, Imagine Institute, INSERM U1163, Université de Paris, Paris, France
- Department of Pediatric Nephrology and
| | - Aude Servais
- Laboratory of Hereditary Kidney Disease, Imagine Institute, INSERM U1163, Université de Paris, Paris, France
- Department of Nephrology, Necker Hospital, Assistance Publique Hôpitaux de Paris (APHP), Paris, France
| | - Yong Li
- Institute of Genetic Epidemiology, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany
| | | | - Marie-Josephe Tête
- Laboratory of Hereditary Kidney Disease, Imagine Institute, INSERM U1163, Université de Paris, Paris, France
| | - Alexandra Cambier
- Department of Pediatric Nephrology and Transplantation, Robert-Debré Hospital, APHP, Paris, France
| | - Julien Hogan
- Department of Pediatric Nephrology and Transplantation, Robert-Debré Hospital, APHP, Paris, France
| | - Veronique Baudouin
- Department of Pediatric Nephrology and Transplantation, Robert-Debré Hospital, APHP, Paris, France
| | | | | | - Florie Lammens
- Centre Hospitalier Régional Universitaire de Lille, Lille, France
| | | | - Bruno Ranchin
- Department of Pediatric Nephrology, Hospices Civils de Lyon, Bron, France
| | - Cecile Vigneau
- Centre Hospitalier Universitaire de Rennes, INSERM U1085 IRSET-9, Rennes, France
| | - Iseline Bouteau
- Centre Hospitalier Universitaire de Poitiers, Poitiers, France
| | | | | | - Tobias Schäfer
- Renal Division, University Medical Center Freiburg, Freiburg, Germany
| | - Lars Pape
- Department of Pediatric Kidney, Liver and Metabolic Disease, Hannover Medical School, Hannover, Germany
| | - Markus Gödel
- Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tobias B. Huber
- Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Günter Klaus
- Department of Child and Adolescent Medicine, University Medical Center Marburg-Giessen, Marburg, Germany
| | - Matthias Hansen
- KfH-Nierenzentrum für Kinder und Jugendliche und Clementine-Kinderhospital, Frankfurt, Germany
| | - Kay Latta
- KfH-Nierenzentrum für Kinder und Jugendliche und Clementine-Kinderhospital, Frankfurt, Germany
| | - Olivier Gribouval
- Laboratory of Hereditary Kidney Disease, Imagine Institute, INSERM U1163, Université de Paris, Paris, France
| | | | - Carole Tournant
- Department of Genetics, Necker Hospital, APHP, Paris, France
| | - Maik Grohmann
- Center for Human Genetics, Bioscientia, Ingelheim, Germany
- Center for Human Genetics, Mainz, Germany
| | - Elisa Kuhn
- Center for Human Genetics, Bioscientia, Ingelheim, Germany
| | - Timo Wagner
- Center for Human Genetics, Bioscientia, Ingelheim, Germany
| | - Christine Bole-Feysot
- Bioinformatic Platform, INSERM UMR 1163, Institut Imagine, Paris, France
- Bioinformatics Core Facility, Structure Fédérative de Recherche Necker, INSERM US24/CNRS UMS3633, Université de Paris, Paris, France
| | - Fabienne Jabot-Hanin
- Bioinformatic Platform, INSERM UMR 1163, Institut Imagine, Paris, France
- Bioinformatics Core Facility, Structure Fédérative de Recherche Necker, INSERM US24/CNRS UMS3633, Université de Paris, Paris, France
| | - Patrick Nitschké
- Bioinformatic Platform, INSERM UMR 1163, Institut Imagine, Paris, France
- Bioinformatics Core Facility, Structure Fédérative de Recherche Necker, INSERM US24/CNRS UMS3633, Université de Paris, Paris, France
| | | | - Anna Köttgen
- Institute of Genetic Epidemiology, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany
| | | | - Carsten Bergmann
- Center for Human Genetics, Bioscientia, Ingelheim, Germany
- Center for Human Genetics, Mainz, Germany
- Renal Division, Department of Medicine, University Hospital Freiburg, Freiburg, Germany
| | - Corinne Antignac
- Laboratory of Hereditary Kidney Disease, Imagine Institute, INSERM U1163, Université de Paris, Paris, France
- Department of Genetics, Necker Hospital, APHP, Paris, France
| | | |
Collapse
|
31
|
Bedin M, Boyer O, Servais A, Li Y, Villoing-Gaudé L, Tête MJ, Cambier A, Hogan J, Baudouin V, Krid S, Bensman A, Lammens F, Louillet F, Ranchin B, Vigneau C, Bouteau I, Isnard-Bagnis C, Mache CJ, Schäfer T, Pape L, Gödel M, Huber TB, Benz M, Klaus G, Hansen M, Latta K, Gribouval O, Morinière V, Tournant C, Grohmann M, Kuhn E, Wagner T, Bole-Feysot C, Jabot-Hanin F, Nitschké P, Ahluwalia TS, Köttgen A, Andersen CBF, Bergmann C, Antignac C, Simons M. Human C-terminal CUBN variants associate with chronic proteinuria and normal renal function. J Clin Invest 2020. [PMID: 31613795 DOI: 10.1172/jci12937] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2023] Open
Abstract
BACKGROUNDProteinuria is considered an unfavorable clinical condition that accelerates renal and cardiovascular disease. However, it is not clear whether all forms of proteinuria are damaging. Mutations in CUBN cause Imerslund-Gräsbeck syndrome (IGS), which is characterized by intestinal malabsorption of vitamin B12 and in some cases proteinuria. CUBN encodes for cubilin, an intestinal and proximal tubular uptake receptor containing 27 CUB domains for ligand binding.METHODSWe used next-generation sequencing for renal disease genes to genotype cohorts of patients with suspected hereditary renal disease and chronic proteinuria. CUBN variants were analyzed using bioinformatics, structural modeling, and epidemiological methods.RESULTSWe identified 39 patients, in whom biallelic pathogenic variants in the CUBN gene were associated with chronic isolated proteinuria and early childhood onset. Since the proteinuria in these patients had a high proportion of albuminuria, glomerular diseases such as steroid-resistant nephrotic syndrome or Alport syndrome were often the primary clinical diagnosis, motivating renal biopsies and the use of proteinuria-lowering treatments. However, renal function was normal in all cases. By contrast, we did not found any biallelic CUBN variants in proteinuric patients with reduced renal function or focal segmental glomerulosclerosis. Unlike the more N-terminal IGS mutations, 37 of the 41 proteinuria-associated CUBN variants led to modifications or truncations after the vitamin B12-binding domain. Finally, we show that 4 C-terminal CUBN variants are associated with albuminuria and slightly increased GFR in meta-analyses of large population-based cohorts.CONCLUSIONCollectively, our data suggest an important role for the C-terminal half of cubilin in renal albumin reabsorption. Albuminuria due to reduced cubilin function could be an unexpectedly common benign condition in humans that may not require any proteinuria-lowering treatment or renal biopsy.FUNDINGATIP-Avenir program, Fondation Bettencourt-Schueller (Liliane Bettencourt Chair of Developmental Biology), Agence Nationale de la Recherche (ANR) Investissements d'avenir program (ANR-10-IAHU-01) and NEPHROFLY (ANR-14-ACHN-0013, to MS), Steno Collaborative Grant 2018 (NNF18OC0052457, to TSA and MS), Heisenberg Professorship of the German Research Foundation (KO 3598/5-1, to AK), Deutsche Forschungsgemeinschaft (DFG) Collaborative Research Centre (SFB) KIDGEM 1140 (project 246781735, to CB), and Federal Ministry of Education and Research (BMB) (01GM1515C, to CB).
Collapse
Affiliation(s)
| | - Olivia Boyer
- Laboratory of Hereditary Kidney Disease, Imagine Institute, INSERM U1163, Université de Paris, Paris, France
- Department of Pediatric Nephrology and
| | - Aude Servais
- Laboratory of Hereditary Kidney Disease, Imagine Institute, INSERM U1163, Université de Paris, Paris, France
- Department of Nephrology, Necker Hospital, Assistance Publique Hôpitaux de Paris (APHP), Paris, France
| | - Yong Li
- Institute of Genetic Epidemiology, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany
| | | | - Marie-Josephe Tête
- Laboratory of Hereditary Kidney Disease, Imagine Institute, INSERM U1163, Université de Paris, Paris, France
| | - Alexandra Cambier
- Department of Pediatric Nephrology and Transplantation, Robert-Debré Hospital, APHP, Paris, France
| | - Julien Hogan
- Department of Pediatric Nephrology and Transplantation, Robert-Debré Hospital, APHP, Paris, France
| | - Veronique Baudouin
- Department of Pediatric Nephrology and Transplantation, Robert-Debré Hospital, APHP, Paris, France
| | | | | | - Florie Lammens
- Centre Hospitalier Régional Universitaire de Lille, Lille, France
| | | | - Bruno Ranchin
- Department of Pediatric Nephrology, Hospices Civils de Lyon, Bron, France
| | - Cecile Vigneau
- Centre Hospitalier Universitaire de Rennes, INSERM U1085 IRSET-9, Rennes, France
| | - Iseline Bouteau
- Centre Hospitalier Universitaire de Poitiers, Poitiers, France
| | | | | | - Tobias Schäfer
- Renal Division, University Medical Center Freiburg, Freiburg, Germany
| | - Lars Pape
- Department of Pediatric Kidney, Liver and Metabolic Disease, Hannover Medical School, Hannover, Germany
| | - Markus Gödel
- Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tobias B Huber
- Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Günter Klaus
- Department of Child and Adolescent Medicine, University Medical Center Marburg-Giessen, Marburg, Germany
| | - Matthias Hansen
- KfH-Nierenzentrum für Kinder und Jugendliche und Clementine-Kinderhospital, Frankfurt, Germany
| | - Kay Latta
- KfH-Nierenzentrum für Kinder und Jugendliche und Clementine-Kinderhospital, Frankfurt, Germany
| | - Olivier Gribouval
- Laboratory of Hereditary Kidney Disease, Imagine Institute, INSERM U1163, Université de Paris, Paris, France
| | | | - Carole Tournant
- Department of Genetics, Necker Hospital, APHP, Paris, France
| | - Maik Grohmann
- Center for Human Genetics, Bioscientia, Ingelheim, Germany
- Center for Human Genetics, Mainz, Germany
| | - Elisa Kuhn
- Center for Human Genetics, Bioscientia, Ingelheim, Germany
| | - Timo Wagner
- Center for Human Genetics, Bioscientia, Ingelheim, Germany
| | - Christine Bole-Feysot
- Bioinformatic Platform, INSERM UMR 1163, Institut Imagine, Paris, France
- Bioinformatics Core Facility, Structure Fédérative de Recherche Necker, INSERM US24/CNRS UMS3633, Université de Paris, Paris, France
| | - Fabienne Jabot-Hanin
- Bioinformatic Platform, INSERM UMR 1163, Institut Imagine, Paris, France
- Bioinformatics Core Facility, Structure Fédérative de Recherche Necker, INSERM US24/CNRS UMS3633, Université de Paris, Paris, France
| | - Patrick Nitschké
- Bioinformatic Platform, INSERM UMR 1163, Institut Imagine, Paris, France
- Bioinformatics Core Facility, Structure Fédérative de Recherche Necker, INSERM US24/CNRS UMS3633, Université de Paris, Paris, France
| | | | - Anna Köttgen
- Institute of Genetic Epidemiology, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany
| | | | - Carsten Bergmann
- Center for Human Genetics, Bioscientia, Ingelheim, Germany
- Center for Human Genetics, Mainz, Germany
- Renal Division, Department of Medicine, University Hospital Freiburg, Freiburg, Germany
| | - Corinne Antignac
- Laboratory of Hereditary Kidney Disease, Imagine Institute, INSERM U1163, Université de Paris, Paris, France
- Department of Genetics, Necker Hospital, APHP, Paris, France
| | | |
Collapse
|
32
|
Kather S, Grützner N, Kook PH, Dengler F, Heilmann RM. Review of cobalamin status and disorders of cobalamin metabolism in dogs. J Vet Intern Med 2019; 34:13-28. [PMID: 31758868 PMCID: PMC6979111 DOI: 10.1111/jvim.15638] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 09/25/2019] [Indexed: 12/04/2022] Open
Abstract
Disorders of cobalamin (vitamin B12) metabolism are increasingly recognized in small animal medicine and have a variety of causes ranging from chronic gastrointestinal disease to hereditary defects in cobalamin metabolism. Measurement of serum cobalamin concentration, often in combination with serum folate concentration, is routinely performed as a diagnostic test in clinical practice. While the detection of hypocobalaminemia has therapeutic implications, interpretation of cobalamin status in dogs can be challenging. The aim of this review is to define hypocobalaminemia and cobalamin deficiency, normocobalaminemia, and hypercobalaminemia in dogs, describe known cobalamin deficiency states, breed predispositions in dogs, discuss the different biomarkers of importance for evaluating cobalamin status in dogs, and discuss the management of dogs with hypocobalaminemia.
Collapse
Affiliation(s)
- Stefanie Kather
- Department for Small Animals, Veterinary Teaching Hospital, College of Veterinary Medicine, University of Leipzig, Leipzig, Germany
| | - Niels Grützner
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany.,School of Veterinary Science, Massey University, Palmerston North, New Zealand
| | - Peter H Kook
- Clinic for Small Animal Internal Medicine, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Franziska Dengler
- Institute of Veterinary Physiology, College of Veterinary Medicine, University of Leipzig, Leipzig, Germany
| | - Romy M Heilmann
- Department for Small Animals, Veterinary Teaching Hospital, College of Veterinary Medicine, University of Leipzig, Leipzig, Germany.,School of Veterinary Science, Massey University, Palmerston North, New Zealand
| |
Collapse
|
33
|
Ciancio JIR, Furman M, Banka S, Grunewald S. Profound vitamin D deficiency in four siblings with Imerslund-Grasbeck syndrome with homozygous CUBN mutation. JIMD Rep 2019; 49:43-47. [PMID: 31497480 PMCID: PMC6718117 DOI: 10.1002/jmd2.12072] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 07/12/2019] [Accepted: 07/15/2019] [Indexed: 11/16/2022] Open
Abstract
Imerslund-Grasbeck syndrome (IGS, OMIM 261100) is a rare autosomal recessive disease characterized by vitamin B12 malabsorption resulting in megaloblastic anemia and asymptomatic proteinuria. IGS is caused by bi-allelic mutations in either CUBN or AMN that respectively encode the cubilin and amnionless subunits of the cobalamin-intrinsic factor receptor. We report four siblings (three boys, one girl) of non-consanguineous parents of Jewish background, aged 10 months to 12 years, with homozygous CUBN frameshift c.2614_2615deIGA p.(Asp872LeufisTer3) mutation and typical features of IGS. The two older brothers presented in early infancy with lethargy, mouth ulcerations, eosinophilic enterocolitis, megaloblastic anemia and failure to thrive. Investigations revealed low serum cobalamin levels. Intramuscular hydroxycobalamin supplementation resulted in dramatic resolution of all symptoms including lethargy. A positive impact on their growth curve was seen. Prospective early treatment in the younger siblings prevented these manifestations. Proteinuria with proximal tubulopathy was seen in all patients, plasma protein level and renal function were normal. All children had pronounced vitamin D deficiency and required high doses of oral supplementation. Vitamin B12 treatment could be individually adjusted; requirement decreased with age. Tubulopathy showed improvement over time. Low vitamin D could be explained by cubilin being involved in reabsorption of vitamin carriers.
Collapse
Affiliation(s)
- Jose I. R. Ciancio
- Metabolic Medicine DepartmentGreat Ormond Street Hospital for Children NHS Foundation TrustLondonUK
| | - Mark Furman
- Consultant Paediatric GastroenterologistRoyal Free HospitalLondonUK
| | - Siddharth Banka
- Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and HealthThe University of ManchesterManchesterUK
- Manchester Centre for Genomic Medicine, St. Mary's HospitalManchester University, NHS Foundation Trust, Health Innovation ManchesterManchesterUK
| | - Stephanie Grunewald
- Metabolic Medicine DepartmentGreat Ormond Street Hospital for Children NHS Foundation TrustLondonUK
| |
Collapse
|
34
|
Jayasinghe K, White SM, Kerr PG, MacGregor D, Stark Z, Wilkins E, Simons C, Mallett A, Quinlan C. Isolated proteinuria due to CUBN homozygous mutation - challenging the investigative paradigm. BMC Nephrol 2019; 20:330. [PMID: 31438875 PMCID: PMC6704575 DOI: 10.1186/s12882-019-1474-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Accepted: 07/19/2019] [Indexed: 11/25/2022] Open
Abstract
Background Proteinuria is a common clinical presentation, the diagnostic workup for which involves many non-invasive and invasive investigations. We report on two siblings that highlight the clinically relevant functional role of cubulin for albumin resorption in the proximal tubule and supports the use of genomic sequencing early in the diagnostic work up of patients who present with proteinuria. Case presentation An 8-year-old boy was referred with an incidental finding of proteinuria. All preliminary investigations were unremarkable. Further assessment revealed consanguineous family history and a brother with isolated proteinuria. Renal biopsy demonstrated normal light microscopy and global glomerular basement membrane thinning on electron microscopy. Chromosomal microarray revealed long continuous stretches of homozygosity (LCSH) representing ~ 4.5% of the genome. Shared regions of LCSH between the brothers were identified and their further research genomic analysis implicated a homozygous stop-gain variant in CUBN (10p12.31). Conclusions CUBN mutations have been implicated as a hereditary cause of megaloblastic anaemia and variable proteinuria. This is the second reported family with isolated proteinuria due to biallelic CUBN variants in the absence of megaloblastic anaemia, demonstrating the ability of genomic testing to identify genetic causes of nephropathy within expanding associated phenotypic spectra. Genomic sequencing, undertaken earlier in the diagnostic trajectory, may reduce the need for invasive investigations and the time to definitive diagnosis for patients and families.
Collapse
Affiliation(s)
- Kushani Jayasinghe
- Department of Nephrology, Monash Medical Centre, Melbourne, Australia.,Monash University, Melbourne, Australia.,Murdoch Children's Research Institute, Melbourne, Australia.,The KidGen Collaborative, Australian Genomics Health Alliance, Victoria, Australia
| | - Susan M White
- The KidGen Collaborative, Australian Genomics Health Alliance, Victoria, Australia.,Department of Paediatrics, University of Melbourne, Victoria, Australia.,Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, Australia
| | - Peter G Kerr
- Department of Nephrology, Monash Medical Centre, Melbourne, Australia.,Monash University, Melbourne, Australia
| | - Duncan MacGregor
- Department of Pathology, Royal Children's Hospital, Melbourne, Australia
| | - Zornitza Stark
- Murdoch Children's Research Institute, Melbourne, Australia.,The KidGen Collaborative, Australian Genomics Health Alliance, Victoria, Australia.,Department of Paediatrics, University of Melbourne, Victoria, Australia.,Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, Australia
| | - Ella Wilkins
- Murdoch Children's Research Institute, Melbourne, Australia.,The KidGen Collaborative, Australian Genomics Health Alliance, Victoria, Australia.,Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, Australia
| | - Cas Simons
- Murdoch Children's Research Institute, Melbourne, Australia.,The KidGen Collaborative, Australian Genomics Health Alliance, Victoria, Australia
| | - Andrew Mallett
- Murdoch Children's Research Institute, Melbourne, Australia.,The KidGen Collaborative, Australian Genomics Health Alliance, Victoria, Australia.,Kidney Health Service and Conjoint Renal Research Laboratory, Royal Brisbane and Women's Hospital, Brisbane, Australia.,Institute for Molecular Bioscience and Faculty of Medicine, The University of Queensland, Brisbane, Australia
| | - Catherine Quinlan
- Murdoch Children's Research Institute, Melbourne, Australia. .,The KidGen Collaborative, Australian Genomics Health Alliance, Victoria, Australia. .,Department of Paediatric Nephrology, Royal Children's Hospital, 50 Flemington Street, Parkville, Australia.
| |
Collapse
|
35
|
Podzolkov VI, Dragomiretskaya NA, Dambaeva OT, Auvinen ST, Medvedev ID. Hypervitaminosis B12 - a new marker and predictor of prognostically unfavorable diseases. TERAPEVT ARKH 2019; 91:160-167. [DOI: 10.26442/00403660.2019.08.000378] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Indexed: 11/22/2022]
Abstract
A high serum vitamin B12 level (hypercobalaminemia) is a underestimated anomaly. Clinically, it can be paradoxically accompanied by signs of deficiency, which are related to defects in tissue uptake of vitamin B12. The increase in the level of serum cobalamin occurs mainly in serious diseases that require early diagnosis: hemoblastosis, liver and kidney diseases, etc. This review presents data on the metabolism of vitamin B12 and the potential significance of increasing its level as a marker for the early diagnosis of these diseases.
Collapse
|
36
|
Huemer M, Baumgartner MR. The clinical presentation of cobalamin-related disorders: From acquired deficiencies to inborn errors of absorption and intracellular pathways. J Inherit Metab Dis 2019; 42:686-705. [PMID: 30761552 DOI: 10.1002/jimd.12012] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Revised: 09/25/2018] [Accepted: 09/27/2018] [Indexed: 12/11/2022]
Abstract
This review gives an overview of clinical characteristics, treatment and outcome of nutritional and acquired cobalamin (Cbl; synonym: vitamin B12) deficiencies, inborn errors of Cbl absorption and intracellular trafficking, as well as methylenetetrahydrofolate dehydrogenase (MTHFD1) and methylene tetrahydrofolate reductase (MTHFR) deficiencies, which impair Cbl-dependent remethylation. Acquired and inborn Cbl-related disorders and MTHFR deficiency cause multisystem, often severe disease. Failure to thrive, neurocognitive or psychiatric symptoms, eye disease, bone marrow alterations, microangiopathy and thromboembolic events are characteristic. The recently identified MTHFD1 defect additionally presents with severe immune deficiency. Deficient Cbl-dependent enzymes cause reduced methylation capacity and metabolite toxicity. Further net-effects of perturbed Cbl function or reduced Cbl supply causing oxidative stress, altered cytokine regulation or immune functions are discussed.
Collapse
Affiliation(s)
- Martina Huemer
- Division of Metabolism and Children's Research Center, University Children's Hospital Zürich, Zürich, Switzerland
- Department of Paediatrics, Landeskrankenhaus Bregenz, Bregenz, Austria
| | - Matthias R Baumgartner
- Division of Metabolism and Children's Research Center, University Children's Hospital Zürich, Zürich, Switzerland
| |
Collapse
|
37
|
Ahluwalia TS, Schulz CA, Waage J, Skaaby T, Sandholm N, van Zuydam N, Charmet R, Bork-Jensen J, Almgren P, Thuesen BH, Bedin M, Brandslund I, Christensen CK, Linneberg A, Ahlqvist E, Groop PH, Hadjadj S, Tregouet DA, Jørgensen ME, Grarup N, Pedersen O, Simons M, Groop L, Orho-Melander M, McCarthy MI, Melander O, Rossing P, Kilpeläinen TO, Hansen T. A novel rare CUBN variant and three additional genes identified in Europeans with and without diabetes: results from an exome-wide association study of albuminuria. Diabetologia 2019; 62:292-305. [PMID: 30547231 PMCID: PMC6323095 DOI: 10.1007/s00125-018-4783-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 10/22/2018] [Indexed: 01/06/2023]
Abstract
AIMS/HYPOTHESIS Identifying rare coding variants associated with albuminuria may open new avenues for preventing chronic kidney disease and end-stage renal disease, which are highly prevalent in individuals with diabetes. Efforts to identify genetic susceptibility variants for albuminuria have so far been limited, with the majority of studies focusing on common variants. METHODS We performed an exome-wide association study to identify coding variants in a two-stage (discovery and replication) approach. Data from 33,985 individuals of European ancestry (15,872 with and 18,113 without diabetes) and 2605 Greenlanders were included. RESULTS We identified a rare (minor allele frequency [MAF]: 0.8%) missense (A1690V) variant in CUBN (rs141640975, β = 0.27, p = 1.3 × 10-11) associated with albuminuria as a continuous measure in the combined European meta-analysis. The presence of each rare allele of the variant was associated with a 6.4% increase in albuminuria. The rare CUBN variant had an effect that was three times stronger in individuals with type 2 diabetes compared with those without (pinteraction = 7.0 × 10-4, β with diabetes = 0.69, β without diabetes = 0.20) in the discovery meta-analysis. Gene-aggregate tests based on rare and common variants identified three additional genes associated with albuminuria (HES1, CDC73 and GRM5) after multiple testing correction (pBonferroni < 2.7 × 10-6). CONCLUSIONS/INTERPRETATION The current study identifies a rare coding variant in the CUBN locus and other potential genes associated with albuminuria in individuals with and without diabetes. These genes have been implicated in renal and cardiovascular dysfunction. The findings provide new insights into the genetic architecture of albuminuria and highlight target genes and pathways for the prevention of diabetes-related kidney disease.
Collapse
Affiliation(s)
- Tarunveer S Ahluwalia
- Steno Diabetes Center Copenhagen, Niels Steensens Vej 2, 2820, Gentofte, Denmark.
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
- Copenhagen Prospective Studies on Asthma in Childhood, Gentofte and Herlev Hospital, University of Copenhagen, Copenhagen, Denmark.
| | | | - Johannes Waage
- Copenhagen Prospective Studies on Asthma in Childhood, Gentofte and Herlev Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Tea Skaaby
- Center for Clinical Research and Prevention, Bispebjerg and Frederiksberg Hospital, Capital Region, Copenhagen, Denmark
| | - Niina Sandholm
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland
- Abdominal Center, Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Research Programs Unit, Diabetes and Obesity, University of Helsinki, Helsinki, Finland
| | - Natalie van Zuydam
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Romain Charmet
- Inserm UMR-S 1166, Sorbonne Universités, UPMC Université Paris, Paris, France
| | - Jette Bork-Jensen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Peter Almgren
- Department of Clinical Sciences Malmö, Lund University, Malmö, Sweden
| | - Betina H Thuesen
- Center for Clinical Research and Prevention, Bispebjerg and Frederiksberg Hospital, Capital Region, Copenhagen, Denmark
| | - Mathilda Bedin
- Paris Descartes University-Sorbonne Paris Cité, Imagine Institute, Paris, France
| | - Ivan Brandslund
- Department of Clinical Immunology and Biochemistry, Lillebaelt Hospital, Vejle, Denmark
| | - Cramer K Christensen
- Department of Internal Medicine and Endocrinology, Lillebaelt Hospital, Vejle, Denmark
| | - Allan Linneberg
- Center for Clinical Research and Prevention, Bispebjerg and Frederiksberg Hospital, Capital Region, Copenhagen, Denmark
| | - Emma Ahlqvist
- Department of Clinical Sciences Malmö, Lund University, Malmö, Sweden
| | - Per-Henrik Groop
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland
- Abdominal Center, Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Research Programs Unit, Diabetes and Obesity, University of Helsinki, Helsinki, Finland
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Samy Hadjadj
- L'institut du thorax, Department of Endocrinology, CIC 1413 INSERM, CHU Nantes, Nantes, France
| | | | - Marit E Jørgensen
- Steno Diabetes Center Copenhagen, Niels Steensens Vej 2, 2820, Gentofte, Denmark
- National Institute of Public Health, University of Southern Denmark, Copenhagen, Denmark
| | - Niels Grarup
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Oluf Pedersen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Matias Simons
- Paris Descartes University-Sorbonne Paris Cité, Imagine Institute, Paris, France
| | - Leif Groop
- Department of Clinical Sciences Malmö, Lund University, Malmö, Sweden
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| | | | - Mark I McCarthy
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Olle Melander
- Department of Clinical Sciences Malmö, Lund University, Malmö, Sweden
| | - Peter Rossing
- Steno Diabetes Center Copenhagen, Niels Steensens Vej 2, 2820, Gentofte, Denmark
- University of Copenhagen, Copenhagen, Denmark
| | - Tuomas O Kilpeläinen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Torben Hansen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
38
|
Pacitto A, Prontera P, Stangoni G, Stefanelli M, Ceppi S, Cerri C, Gurdo G, Mencarelli A, Esposito S. Imerslund-Gräsbeck Syndrome in an Infant with a Novel Intronic Variant in the AMN Gene: A Case Report. Int J Mol Sci 2019; 20:ijms20030527. [PMID: 30691194 PMCID: PMC6387074 DOI: 10.3390/ijms20030527] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Revised: 01/09/2019] [Accepted: 01/15/2019] [Indexed: 11/25/2022] Open
Abstract
Imerslund-Gräsbeck syndrome (IGS) is a rare autosomal recessive disorder clinically characterized by megaloblastic anemia, benign mild proteinuria, and other nonspecific symptoms. Several pathogenetic variants in the amnionless (AMN) or cubilin (CUBN) genes have been described in IGS. We describe a case of IGS with urinary tract infection and mild but persistent proteinuria at onset in an 11-month-old female child. With the appearance of macrocytic anemia, aphthous stomatitis, and neurological signs, IGS was clinically suspected, and vitamin B12 parenteral therapy was started. Sequence analysis showed the presence of a novel intronic variant c.513+5G>A of AMN, never before described in the literature, that was in compound heterozygosity with the known pathogenetic variant c.1006+34_1007-31del. Analysis extension to the parents revealed the presence of variant c.1006+34_1007-31 in the father and c.513+5G>A in the mother. In the present case with IGS, the novel intronic variant of AMN was identified in “trans” with a known pathogenic variant (c.1006-31 del) and the new variant was interpreted to be pathogenetic since it was not found in the public database of polymorphisms and because it was predicted to alter a donor splicing site. Our case underlines the relevance in detecting certain subtle symptoms, such as mild but persistent proteinuria associated with megaloblastic anemia, to reach a correct diagnosis of a rare but treatable disorder.
Collapse
Affiliation(s)
- Alessandra Pacitto
- Pediatric Clinic, Department of Surgical and Biomedical Sciences, Università degli Studi di Perugia, Piazza Menghini 1, 06129 Perugia, Italy.
| | - Paolo Prontera
- Medical Genetics Unit, Santa Maria della Misericordia Hospital, Piazza Menghini 1, 06129 Perugia, Italy.
| | - Gabriela Stangoni
- Medical Genetics Unit, Santa Maria della Misericordia Hospital, Piazza Menghini 1, 06129 Perugia, Italy.
| | - Maurizio Stefanelli
- Pediatric Clinic, Department of Surgical and Biomedical Sciences, Università degli Studi di Perugia, Piazza Menghini 1, 06129 Perugia, Italy.
| | - Stefania Ceppi
- Pediatric Clinic, Department of Surgical and Biomedical Sciences, Università degli Studi di Perugia, Piazza Menghini 1, 06129 Perugia, Italy.
| | - Carla Cerri
- Pediatric Oncohematology Unit, Santa Maria della Misericordia Hospital, Piazza Menghini 1, 06129 Perugia, Italy.
| | - Grazia Gurdo
- Pediatric Oncohematology Unit, Santa Maria della Misericordia Hospital, Piazza Menghini 1, 06129 Perugia, Italy.
| | - Annalisa Mencarelli
- Pediatric Clinic, Department of Surgical and Biomedical Sciences, Università degli Studi di Perugia, Piazza Menghini 1, 06129 Perugia, Italy.
| | - Susanna Esposito
- Pediatric Clinic, Department of Surgical and Biomedical Sciences, Università degli Studi di Perugia, Piazza Menghini 1, 06129 Perugia, Italy.
| |
Collapse
|
39
|
Kook PH, Hersberger M. Daily oral cyanocobalamin supplementation in Beagles with hereditary cobalamin malabsorption (Imerslund-Gräsbeck syndrome) maintains normal clinical and cellular cobalamin status. J Vet Intern Med 2018; 33:751-757. [PMID: 30554416 PMCID: PMC6430909 DOI: 10.1111/jvim.15380] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 11/13/2018] [Indexed: 12/25/2022] Open
Abstract
Background Efficacy of PO cobalamin (Cbl) supplementation in dogs with hereditary Cbl malabsorption (Imerslund‐Gräsbeck syndrome, IGS) is unknown. Objectives To evaluate PO Cbl supplementation in Beagles with IGS previously treated parenterally. We hypothesized that 1 mg cyano‐Cbl daily PO would maintain clinical and metabolic remission. Animals Three client‐owned Beagles with IGS and 48 healthy control dogs. Methods Prospective study. Daily PO cyanocobalamin (cyano‐Cbl; 1 mg) supplementation was monitored for 13 (2 dogs) and 8 months (1 dog). Health status was assessed by owner observations. Methylmalonic acid (MMA)‐to‐creatinine concentrations were measured using an ultra‐performance liquid chromatography‐tandem mass spectrometry (UPLC‐TMS) method on urine samples collected monthly. Concurrent measurements of serum MMA concentration (n = 7; UPLC‐TMS) were available for 1 dog. Results All dogs remained in excellent health during PO supplementation. Urine MMA remained consistently low in 2 dogs (median, 2.5 mmol/mol creatinine; range, 1.2‐9; healthy dogs [n = 30], median, 2.9 mmol/mol creatinine; range, 1.3‐76.5). Urine MMA ranged from 38.9‐84.9 mmol/mol creatinine during the first 6 months in 1 dog already known to excrete comparable amounts when supplemented parenterally. Brief antibiotic treatment for an unrelated condition after 6 months resulted in low urine MMA (median, 2.8 mmol/mol creatinine; range, 1.9‐4.8) for the next 7 months. All concurrent serum MMA concentrations (median, 651 nmol/L; range, 399‐919) before and after month 6 were within the established reference interval (393‐1476 nmol/L; n = 48). Conclusions and Clinical Importance One milligram of cyano‐Cbl daily PO appears efficacious for maintaining normal clinical status and normal cellular markers of Cbl metabolism in Beagles with IGS.
Collapse
Affiliation(s)
- Peter H Kook
- Clinic for Small Animal Internal Medicine, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Martin Hersberger
- Department of Clinical Chemistry, University Children's Hospital Zurich, Zurich, Switzerland
| |
Collapse
|
40
|
Structural assembly of the megadalton-sized receptor for intestinal vitamin B 12 uptake and kidney protein reabsorption. Nat Commun 2018; 9:5204. [PMID: 30523278 PMCID: PMC6283879 DOI: 10.1038/s41467-018-07468-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 11/01/2018] [Indexed: 11/08/2022] Open
Abstract
The endocytic receptor cubam formed by the 460-kDa protein cubilin and the 45-kDa transmembrane protein amnionless (AMN), is essential for intestinal vitamin B12 (B12) uptake and for protein (e.g. albumin) reabsorption from the kidney filtrate. Loss of function of any of the two components ultimately leads to serious B12 deficiency and urinary protein loss in humans (Imerslund-Gräsbeck’s syndrome, IGS). Here, we present the crystal structure of AMN in complex with the amino-terminal region of cubilin, revealing a sophisticated assembly of three cubilin subunits combining into a single intertwined β-helix domain that docks to a corresponding three-faced β-helix domain in AMN. This β-helix-β-helix association thereby anchors three ligand-binding cubilin subunits to the transmembrane AMN. Electron microscopy of full-length cubam reveals a 700–800 Å long tree-like structure with the potential of dimerization into an even larger complex. Furthermore, effects of known human mutations causing IGS are explained by the structural information. Cubilin and the transmembrane protein amnionless (AMN) form the endocytic receptor cubam that is essential for intestinal vitamin B12 uptake. Here the authors present the 2.3 Å crystal structure of AMN in complex with the amino-terminal region of cubilin and discuss cubam architecture and disease causing mutations.
Collapse
|
41
|
Méjécase C, Hummel A, Mohand-Saïd S, Andrieu C, El Shamieh S, Antonio A, Condroyer C, Boyard F, Foussard M, Blanchard S, Letexier M, Saraiva JP, Sahel JA, Zeitz C, Audo I. Whole exome sequencing resolves complex phenotype and identifies CC2D2A mutations underlying non-syndromic rod-cone dystrophy. Clin Genet 2018; 95:329-333. [PMID: 30267408 DOI: 10.1111/cge.13453] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 09/11/2018] [Accepted: 09/25/2018] [Indexed: 01/20/2023]
Abstract
Genetic investigations were performed in three brothers from a consanguineous union, the two oldest diagnosed with rod-cone dystrophy (RCD), the youngest with early-onset cone-rod dystrophy and the two youngest with nephrotic-range proteinuria. Targeted next-generation sequencing did not identify homozygous pathogenic variant in the oldest brother. Whole exome sequencing (WES) applied to the family identified compound heterozygous variants in CC2D2A (c.2774G>C p.(Arg925Pro); c.4730_4731delinsTGTATA p.(Ala1577Valfs*5)) in the three brothers with a homozygous deletion in CNGA3 (c.1235_1236del p.(Glu412Valfs*6)) in the youngest correcting his diagnosis to achromatopsia plus RCD. None of the three subjects had cerebral abnormalities or learning disabilities inconsistent with Meckel-Gruber and Joubert syndromes, usually associated with CC2D2A mutations. Interestingly, an African woman with RCD shared the CC2D2A missense variant (c.2774G>C p.(Arg925Pro); with c.3182+355_3825del p.(?)). The two youngest also carried compound heterozygous variants in CUBN (c.7906C>T rs137998687 p.(Arg2636*); c.10344C>G p.(Cys3448Trp)) that may explain their nephrotic-range proteinuria. Our study identifies for the first time CC2D2A mutations in isolated RCD and underlines the power of WES to decipher complex phenotypes.
Collapse
Affiliation(s)
- Cécile Méjécase
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Aurélie Hummel
- Department of Nephrology, Necker-Enfants Malades Hospital, Paris, France
| | - Saddek Mohand-Saïd
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France.,CHNO des Quinze-Vingts, DHU Sight Restore, INSERM-DGOS CIC 1423, Paris, France
| | - Camille Andrieu
- CHNO des Quinze-Vingts, DHU Sight Restore, INSERM-DGOS CIC 1423, Paris, France
| | - Said El Shamieh
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France.,Department of Medical Laboratory Technology, Faculty of Health Sciences, Beirut Arab University, Beirut, Lebanon
| | - Aline Antonio
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France.,CHNO des Quinze-Vingts, DHU Sight Restore, INSERM-DGOS CIC 1423, Paris, France
| | | | - Fiona Boyard
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Marine Foussard
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | | | | | | | - José-Alain Sahel
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France.,CHNO des Quinze-Vingts, DHU Sight Restore, INSERM-DGOS CIC 1423, Paris, France.,Institute of Ophthalmology, University College of London, London, UK.,Fondation Ophtalmologique Adolphe de Rothschild, Paris, France.,Académie des Sciences, Institut de France, Paris, France.,Department of Ophthalmology, The University of Pittsburgh School of Medicine, Pittsburg, Pennsylvania, USA
| | - Christina Zeitz
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Isabelle Audo
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France.,CHNO des Quinze-Vingts, DHU Sight Restore, INSERM-DGOS CIC 1423, Paris, France.,Institute of Ophthalmology, University College of London, London, UK
| |
Collapse
|
42
|
Cao J, Su ZY, Xu SB, Liu CC. Subacute Combined Degeneration: A Retrospective Study of 68 Cases with Short-Term Follow-Up. Eur Neurol 2018; 79:247-255. [PMID: 29698962 DOI: 10.1159/000488913] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 04/02/2018] [Indexed: 11/19/2022]
Abstract
PURPOSE The study aimed to analyze the clinical characteristics, laboratory test results, neuroimaging findings, and outcomes in patients diagnosed with subacute combined degeneration (SCD). MATERIALS AND METHODS A total of 68 patients with SCD who had been appropriately treated for no less than 6 months were included in our study. Histories, results of routine blood tests, biochemical indices, serum vitamin B12 levels, and spinal magnetic resonance imaging (MRI) findings from the patients were studied and analyzed. Clinical signs and symptoms, graded using a functional disability rating scale, were scored at the time of admission and 3 and 6 months after admission. RESULTS Limb numbness, limb weakness, and gait disturbances were the most common symptoms in patients with SCD. All patients showed clinical improvement to different degrees at the follow-up visits after vitamin B12 treatment. No differences in rating score were found in patients grouped by sex, hemoglobin level, serum vitamin B12, or MRI manifestations at the time of admission or at the follow-up visits. Younger patients and those with shorter disease courses had better rating scores at the short-term follow-up visits. CONCLUSION Anemia, low levels of serum vitamin B12, and MRI abnormalities in the spinal cord are not expected to be associated with worse clinical manifestations. The age of onset and course of disease are important in evaluating the short-term prognosis of patients with SCD.
Collapse
|
43
|
Kook PH, Reusch CE, Hersberger M. Prospective long-term evaluation of parenteral hydroxocobalamin supplementation in juvenile beagles with selective intestinal cobalamin malabsorption (Imerslund-Gräsbeck syndrome). J Vet Intern Med 2018; 32:1033-1040. [PMID: 29572946 PMCID: PMC5980559 DOI: 10.1111/jvim.15090] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 01/24/2018] [Accepted: 01/31/2018] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Prospective studies on maintenance treatment for Beagles with hereditary selective cobalamin (Cbl) malabsorption (Imerslund-Gräsbeck syndrome, IGS) are lacking. In our experience, measurement of methylmalonic acid (MMA), a Cbl-dependent metabolite, seems more helpful to monitor Cbl status as compared with serum Cbl concentrations. OBJECTIVES To evaluate a standardized Cbl supplementation scheme in Beagles with IGS. We hypothesized that a single parenteral dose of 1 mg hydroxocobalamin (OH-Cbl) would maintain clinical and metabolic remission for up to 2 months. ANIMALS Six client-owned juvenile Beagles with genetically confirmed IGS and 28 healthy control dogs. METHODS Prospective study. Monthly IM OH-Cbl (1 mg) supplementation was done over a median of 9 months (range, 6-13) in 6 dogs, followed by bimonthly (every 2 months) injections in 5 dogs over a median of 6 months (range, 3-10). Health status was assessed by routine clinical examinations at injection time points and owner observations. Voided urine samples were collected immediately before OH-Cbl injections for measurement of MMA-to-creatinine concentrations using a gas-liquid chromatography-tandem mass spectrometry (GC-MS) method. RESULTS All dogs were clinically healthy while receiving monthly and bimonthly OH-Cbl supplementation. Urinary MMA results in healthy dogs ranged from 1.3 to 76.5 mmol/mol creatinine (median, 2.9). Median urinary MMA concentrations did not differ between dogs with IGS receiving monthly (n = 49; 5.3 mmol/mol creatinine; range, 2.3-50.4) and bimonthly (n = 31; 5.3 mmol/mol creatinine; range, 1.6-50) injections. CONCLUSIONS AND CLINICAL IMPORTANCE A maintenance parenteral dose of 1 mg OH-Cbl monthly or bimonthly appears adequate in Beagles with IGS monitored by metabolic testing.
Collapse
Affiliation(s)
- Peter Hendrik Kook
- Department for Small Animals, Clinic for Small Animal Internal Medicine, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 260, Zurich, Switzerland
| | - C E Reusch
- Department for Small Animals, Clinic for Small Animal Internal Medicine, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 260, Zurich, Switzerland
| | - M Hersberger
- Department of Clinical Chemistry, University Children's Hospital Zurich, Zurich, Switzerland
| |
Collapse
|
44
|
Cil O, Perwad F. Monogenic Causes of Proteinuria in Children. Front Med (Lausanne) 2018; 5:55. [PMID: 29594119 PMCID: PMC5858124 DOI: 10.3389/fmed.2018.00055] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 02/15/2018] [Indexed: 01/02/2023] Open
Abstract
Glomerular disease is a common cause for proteinuria and chronic kidney disease leading to end-stage renal disease requiring dialysis or kidney transplantation in children. Nephrotic syndrome in children is diagnosed by the presence of a triad of proteinuria, hypoalbuminemia, and edema. Minimal change disease is the most common histopathological finding in children and adolescents with nephrotic syndrome. Focal segmental sclerosis is also found in children and is the most common pathological finding in patients with monogenic causes of nephrotic syndrome. Current classification system for nephrotic syndrome is based on response to steroid therapy as a majority of patients develop steroid sensitive nephrotic syndrome regardless of histopathological diagnosis or the presence of genetic mutations. Recent studies investigating the genetics of nephrotic syndrome have shed light on the pathophysiology and mechanisms of proteinuria in nephrotic syndrome. Gene mutations have been identified in several subcellular compartments of the glomerular podocyte and play a critical role in mitochondrial function, actin cytoskeleton dynamics, cell-matrix interactions, slit diaphragm, and podocyte integrity. A subset of genetic mutations are known to cause nephrotic syndrome that is responsive to immunosuppressive therapy but clinical data are limited with respect to renal prognosis and disease progression in a majority of patients. To date, more than 50 genes have been identified as causative factors in nephrotic syndrome in children and adults. As genetic testing becomes more prevalent and affordable, we expect rapid advances in our understanding of mechanisms of proteinuria and genetic diagnosis will help direct future therapy for individual patients.
Collapse
Affiliation(s)
- Onur Cil
- Department of Pediatrics, Division of Nephrology, University of California San Francisco, San Francisco, CA, United States
| | - Farzana Perwad
- Department of Pediatrics, Division of Nephrology, University of California San Francisco, San Francisco, CA, United States
| |
Collapse
|
45
|
McCallum KE, Watson PJ. Hereditary selective cobalamin malabsorption and concurrent pancreatitis in a young Border collie. VETERINARY RECORD CASE REPORTS 2018. [DOI: 10.1136/vetreccr-2017-000568] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
| | - Penny J Watson
- Department of Veterinary MedicineCambridge Veterinary SchoolCambridgeUK
| |
Collapse
|
46
|
Katakam PK, Hegde AP, Venkataramaiahyappa M. Vitamin B 12 deficiency: unusual cause of jaundice in an adolescent. BMJ Case Rep 2018; 2018:bcr-2017-222302. [PMID: 29330271 DOI: 10.1136/bcr-2017-222302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Vitamin B12 deficiency in vegans is a known cause of megaloblastic anaemia. We report an adolescent girl who presented with jaundice and weight loss for 6 months secondary to vitamin B12 deficiency, leading to megaloblastic anaemia. Replacement with vitamin B12 reversed her symptoms, resulting in weight gain, and normalised her haemoglobin, red blood cell morphology, bilirubin levels and serum vitamin B12 levels.
Collapse
Affiliation(s)
- Phalguna Kousika Katakam
- Department of Paediatrics, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Asha P Hegde
- Department of Paediatrics, Melaka-Manipal Medical College, Manipal Academy of Higher Education, Manipal, Udupi, Karnataka, India
| | - Manju Venkataramaiahyappa
- Department of Paediatrics, Melaka-Manipal Medical College, Manipal Academy of Higher Education, Manipal, Udupi, Karnataka, India
| |
Collapse
|
47
|
Erles K, Mugford A, Barfield D, Leeb T, Kook PH. Systemic Scedosporium prolificans infection in an 11-month-old Border collie with cobalamin deficiency secondary to selective cobalamin malabsorption (canine Imerslund-Gräsbeck syndrome). J Small Anim Pract 2017; 59:253-256. [PMID: 28390190 DOI: 10.1111/jsap.12678] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 08/09/2016] [Accepted: 09/17/2016] [Indexed: 11/28/2022]
Abstract
An 11-month-old Border collie presented collapsed and continued to deteriorate rapidly despite supportive treatment. The dog had a history of failure to thrive and recurring respiratory infection. Laboratory abnormalities included neutrophilic leucocytosis, Heinz body anaemia, hyperammonaemia, hyperbilirubinaemia, proteinuria and hypocobalaminaemia. Post-mortem examination revealed multi-focal necrosis within the heart, kidneys, pancreas, liver, meninges and cerebral cortex. Fungal hyphae in lesions were identified as Scedosporium prolificans following culture. Subsequent genotyping confirmed that the dog carried the CUBN:c.8392delC mutation in a homozygous state, verifying hereditary cobalamin deficiency (a.k.a. Imerslund-Gräsbeck syndrome). Cobalamin deficiency may have been a predisposing factor for the development of systemic fungal infection in this dog.
Collapse
Affiliation(s)
- K Erles
- Department of Pathology and Pathogen Biology, The Royal Veterinary College, Hatfield AL9 7TA, UK
| | - A Mugford
- Department of Clinical Science and Services, The Royal Veterinary College, Hatfield AL9 7TA, UK
| | - D Barfield
- Department of Clinical Science and Services, The Royal Veterinary College, Hatfield AL9 7TA, UK
| | - T Leeb
- Institute of Genetics, Vetsuisse Faculty, University of Berne, 3012 Berne, Switzerland
| | - P H Kook
- Clinic for Small Animal Internal Medicine, Vetsuisse Faculty, University of Zurich, 8057 Zurich, Switzerland
| |
Collapse
|
48
|
Nielsen R, Christensen EI, Birn H. Megalin and cubilin in proximal tubule protein reabsorption: from experimental models to human disease. Kidney Int 2017; 89:58-67. [PMID: 26759048 DOI: 10.1016/j.kint.2015.11.007] [Citation(s) in RCA: 313] [Impact Index Per Article: 44.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 08/17/2015] [Accepted: 08/19/2015] [Indexed: 01/19/2023]
Abstract
Proximal tubule protein uptake is mediated by 2 receptors, megalin and cubilin. These receptors rescue a variety of filtered ligands, including biomarkers, essential vitamins, and hormones. Receptor gene knockout animal models have identified important functions of the receptors and have established their essential role in modulating urinary protein excretion. Rare genetic syndromes associated with dysfunction of these receptors have been identified and characterized, providing additional information on the importance of these receptors in humans. Using various disease models in combination with receptor gene knockout, the implications of receptor dysfunction in acute and chronic kidney injury have been explored and have pointed to potential new roles of these receptors. Based on data from animal models, this paper will review current knowledge on proximal tubule endocytic receptor function and regulation, and their role in renal development, protein reabsorption, albumin uptake, and normal renal physiology. These findings have implications for the pathophysiology and diagnosis of proteinuric renal diseases. We will examine the limitations of the different models and compare the findings to phenotypic observations in inherited human disorders associated with receptor dysfunction. Furthermore, evidence from receptor knockout mouse models as well as human observations suggesting a role of protein receptors for renal disease will be discussed in light of conditions such as chronic kidney disease, diabetes, and hypertension.
Collapse
Affiliation(s)
- Rikke Nielsen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | | | - Henrik Birn
- Department of Biomedicine, Aarhus University, Aarhus, Denmark; Department of Renal Medicine, Aarhus University Hospital, Aarhus, Denmark.
| |
Collapse
|
49
|
Goudarzipour K, Zavvar N, Behnam B, Ahmadi MA. Imerslund-Grasbeck syndrome in a 5-year-old Iranian boy. Indian J Nephrol 2016; 26:455-457. [PMID: 27942180 PMCID: PMC5131387 DOI: 10.4103/0971-4065.175984] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Imerslund-Grasbeck syndrome (IGS) is a rare syndrome characterized by clinical symptoms and signs of Vitamin B12 deficiency and proteinuria. Our patient was a 5-year-old boy with pallor, lack of appetite, and low weight gain. Laboratory studies showed severe macrocytic anemia, normal reticulocyte count, negative direct coombs test, normal osmotic fragility, and autohemolysis test. He has had intermittent proteinuria since 3 years ago despite normal creatinine level and absence of hematuria or hypertension. Finally, based on low level of serum B12 vitamin and normal folate level accompanied by asymptomatic proteinuria, the diagnosis of IGS was made. Furthermore, his sister has had laboratory abnormalities without any symptoms. IGS responded to B12 replacement therapy dramatically but intermittent proteinuria persisted even after appropriate therapy.
Collapse
Affiliation(s)
- K Goudarzipour
- Pediatric Congenital Hematologic Disorders Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - N Zavvar
- Pediatric Congenital Hematologic Disorders Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - B Behnam
- Functional Neurosurgery Research Center, Shohada Tajrish Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - M A Ahmadi
- Functional Neurosurgery Research Center, Shohada Tajrish Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
50
|
Buers I, Pennekamp P, Nitschke Y, Lowe C, Skryabin BV, Rutsch F. Lmbrd1 expression is essential for the initiation of gastrulation. J Cell Mol Med 2016; 20:1523-33. [PMID: 27061115 PMCID: PMC4956942 DOI: 10.1111/jcmm.12844] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 02/24/2016] [Indexed: 01/06/2023] Open
Abstract
The rare inborn cblF defect of cobalamin metabolism is caused by mutations in the limb region 1 (LMBR1) domain containing 1 gene (LMBRD1). This defect is characterized by massive accumulation of free cobalamin in lysosomes and loss of mitochondrial succinyl‐CoA synthesis and cytosolic methionine synthesis. Affected children suffer from heart defects, developmental delay and megaloblastic anemia. LMBRD1 encodes for LMBD1, a predicted lysosomal cobalamin transport protein. In this study, we determine the physiological function of LMBRD1 during embryogenesis by generating Lmbrd1 deficient mice using the Cre/LoxP system. Complete loss of Lmbrd1 function is accompanied by early embryonic death in mice. Whole mount in situ hybridization studies against bone morphogenetic protein 4 and Nodal show that initial formation of the proximal–distal axis is unaffected in early embryonic stages whereas the initiation of gastrulation is disturbed shown by the expression pattern of even skipped homeotic gene 1 and fibroblast growth factor 8 in Lmbrd1 deficient mice. We conclude that intact function of LMBD1 is essential for the initiation of gastrulation.
Collapse
Affiliation(s)
- Insa Buers
- Department of General Pediatrics, Müenster University Children's Hospital, Müenster, Germany
| | - Petra Pennekamp
- Department of General Pediatrics, Müenster University Children's Hospital, Müenster, Germany
| | - Yvonne Nitschke
- Department of General Pediatrics, Müenster University Children's Hospital, Müenster, Germany
| | - Chrishanthi Lowe
- Department of General Pediatrics, Müenster University Children's Hospital, Müenster, Germany
| | - Boris V Skryabin
- Institute of Experimental Pathology, Müenster University, Müenster, Germany.,Department of Medicine (TRAM), University Hospital of Müenster, Münster, Germany
| | - Frank Rutsch
- Department of General Pediatrics, Müenster University Children's Hospital, Müenster, Germany
| |
Collapse
|