1
|
Chen CP, Huang JP, Wu FT, Wu PS, Pan YT, Lee CC, Chen WL, Wang W. Prenatal diagnosis of Jacobsen syndrome associated with a distal 11q deletion and a distal 8q duplication by chromosome microarray analysis in a fetus with a de novo unbalanced translocation of 46,XX,der(11)t(8;11)(q24.13;q23.3) and multiple congenital anomalies on fetal ultrasound. Taiwan J Obstet Gynecol 2024; 63:922-926. [PMID: 39482005 DOI: 10.1016/j.tjog.2024.09.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/10/2024] [Indexed: 11/03/2024] Open
Abstract
OBJECTIVE We present prenatal diagnosis of Jacobsen syndrome associated with a distal 11q deletion and a distal 8q duplication by chromosome microarray analysis (CMA) in a fetus with multiple congenital anomalies on fetal ultrasound. CASE REPORT A 41-year-old, gravida 2, para 1, woman underwent amniocentesis at 25 weeks of gestation because of intrauterine growth restriction, endocardial cushion defect, clenched hands, arthrogryposis, rocker bottom feet and craniosynostosis on fetal ultrasound. Amniocentesis revealed a karyotype of 46,XX,add(11)(q23.3). Array comparative genomic hybridization (aCGH) analysis of the DNA extracted from the uncultured amniocytes revealed the result of arr 8q24.13q24.3 × 3, 11q23.3q25 × 1. Analysis of FGFR2 revealed no mutation. The karyotype was 46,XX,der(11)t(8;11)(q24.13;q23.3). The parental karyotypes were normal. The pregnancy was subsequently terminated, and a dead malformed fetus was delivered with craniofacial dysmorphism of low-set malformed ears, depressed nasal bridge, hypertelorism, small mouth, clenched hands and rocker bottom feet. Cytogenetic analysis of the placenta revealed a karyotype of 46,XX,der(11)t(8;11)(q24.13;q23.3). aCGH analysis of the DNA extracted from the umbilical cord showed the result of arr 8q24.13q24.3 (126,302,369-146,280,020) × 3.0, arr 11q23.3q25 (120,469,928-134,868,407) × 1.0 [GRCh37] with a 19.978-Mb duplication of 8q24.13-q24.3 and a 14.398-Mb deletion of 11q23.3-q25 encompassing the genes of BSX, ETS1, FLI1 and ARHGAP32. CONCLUSION CMA is useful for detection of de novo chromosomal rearrangement in the fetus with multiple congenital anomalies on fetal ultrasound.
Collapse
Affiliation(s)
- Chih-Ping Chen
- Department of Obstetrics and Gynecology, MacKay Memorial Hospital, Taipei, Taiwan; Department of Medical Research, MacKay Memorial Hospital, Taipei, Taiwan; School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan; Institute of Clinical and Community Health Nursing, National Yang Ming Chiao Tung University, Taipei, Taiwan; Department of Obstetrics and Gynecology, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan; Department of Medical Laboratory Science and Biotechnology, College of Medical & Health Science, Asia University, Taichung, Taiwan.
| | - Jian-Pei Huang
- Department of Obstetrics and Gynecology, MacKay Memorial Hospital, Taipei, Taiwan; MacKay Junior College of Medicine, Nursing and Management, Taipei, Taiwan
| | - Fang-Tzu Wu
- Department of Obstetrics and Gynecology, MacKay Memorial Hospital, Taipei, Taiwan
| | | | - Yen-Ting Pan
- Department of Obstetrics and Gynecology, MacKay Memorial Hospital, Taipei, Taiwan
| | - Chen-Chi Lee
- Department of Obstetrics and Gynecology, MacKay Memorial Hospital, Taipei, Taiwan
| | - Wen-Lin Chen
- Department of Obstetrics and Gynecology, MacKay Memorial Hospital, Taipei, Taiwan
| | - Wayseen Wang
- Department of Medical Research, MacKay Memorial Hospital, Taipei, Taiwan
| |
Collapse
|
2
|
Nawaz K, Alifah N, Hussain T, Hameed H, Ali H, Hamayun S, Mir A, Wahab A, Naeem M, Zakria M, Pakki E, Hasan N. From genes to therapy: A comprehensive exploration of congenital heart disease through the lens of genetics and emerging technologies. Curr Probl Cardiol 2024; 49:102726. [PMID: 38944223 DOI: 10.1016/j.cpcardiol.2024.102726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 06/26/2024] [Indexed: 07/01/2024]
Abstract
Congenital heart disease (CHD) affects approximately 1 % of live births worldwide, making it the most common congenital anomaly in newborns. Recent advancements in genetics and genomics have significantly deepened our understanding of the genetics of CHDs. While the majority of CHD etiology remains unclear, evidence consistently indicates that genetics play a significant role in its development. CHD etiology holds promise for enhancing diagnosis and developing novel therapies to improve patient outcomes. In this review, we explore the contributions of both monogenic and polygenic factors of CHDs and highlight the transformative impact of emerging technologies on these fields. We also summarized the state-of-the-art techniques, including targeted next-generation sequencing (NGS), whole genome and whole exome sequencing (WGS, WES), single-cell RNA sequencing (scRNA-seq), human induced pluripotent stem cells (hiPSCs) and others, that have revolutionized our understanding of cardiovascular disease genetics both from diagnosis perspective and from disease mechanism perspective in children and young adults. These molecular diagnostic techniques have identified new genes and chromosomal regions involved in syndromic and non-syndromic CHD, enabling a more defined explanation of the underlying pathogenetic mechanisms. As our knowledge and technologies continue to evolve, they promise to enhance clinical outcomes and reduce the CHD burden worldwide.
Collapse
Affiliation(s)
- Khalid Nawaz
- Department of Medical Laboratory Technology, Khyber Medical University, Peshawar, 25100, Khyber Pakhtunkhwa, Pakistan
| | - Nur Alifah
- Faculty of Pharmacy, Universitas Hasanuddin, Jl. Perintis Kemerdekaan Km 10, Makassar, 90245, Republic of Indonesia
| | - Talib Hussain
- Women Dental College, Khyber Medical University, Abbottabad, 22080, Khyber Pakhtunkhwa, Pakistan
| | - Hamza Hameed
- Department of Cardiology, Pakistan Institute of Medical Sciences (PIMS), Islamabad, 04485, Punjab, Pakistan
| | - Haider Ali
- Department of Pharmacy, Kohat University of Science and Technology, Kohat, 26000, Khyber Pakhtunkhwa, Pakistan
| | - Shah Hamayun
- Department of Cardiology, Pakistan Institute of Medical Sciences (PIMS), Islamabad, 04485, Punjab, Pakistan
| | - Awal Mir
- Department of Medical Laboratory Technology, Khyber Medical University, Peshawar, 25100, Khyber Pakhtunkhwa, Pakistan
| | - Abdul Wahab
- Department of Pharmacy, Kohat University of Science and Technology, Kohat, 26000, Khyber Pakhtunkhwa, Pakistan
| | - Muhammad Naeem
- Department of Biological Sciences, National University of Medical Sciences (NUMS), Rawalpindi, Punjab, Pakistan
| | - Mohammad Zakria
- Advanced Center for Genomic Technologies, Khyber Medical University, Peshawar, 25100, Khyber Pakhtunkhwa, Pakistan
| | - Ermina Pakki
- Faculty of Pharmacy, Universitas Hasanuddin, Jl. Perintis Kemerdekaan Km 10, Makassar, 90245, Republic of Indonesia
| | - Nurhasni Hasan
- Faculty of Pharmacy, Universitas Hasanuddin, Jl. Perintis Kemerdekaan Km 10, Makassar, 90245, Republic of Indonesia.
| |
Collapse
|
3
|
Chatzi D, Kyriakoudi SA, Dermitzakis I, Manthou ME, Meditskou S, Theotokis P. Clinical and Genetic Correlation in Neurocristopathies: Bridging a Precision Medicine Gap. J Clin Med 2024; 13:2223. [PMID: 38673496 PMCID: PMC11050951 DOI: 10.3390/jcm13082223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/09/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024] Open
Abstract
Neurocristopathies (NCPs) encompass a spectrum of disorders arising from issues during the formation and migration of neural crest cells (NCCs). NCCs undergo epithelial-mesenchymal transition (EMT) and upon key developmental gene deregulation, fetuses and neonates are prone to exhibit diverse manifestations depending on the affected area. These conditions are generally rare and often have a genetic basis, with many following Mendelian inheritance patterns, thus making them perfect candidates for precision medicine. Examples include cranial NCPs, like Goldenhar syndrome and Axenfeld-Rieger syndrome; cardiac-vagal NCPs, such as DiGeorge syndrome; truncal NCPs, like congenital central hypoventilation syndrome and Waardenburg syndrome; and enteric NCPs, such as Hirschsprung disease. Additionally, NCCs' migratory and differentiating nature makes their derivatives prone to tumors, with various cancer types categorized based on their NCC origin. Representative examples include schwannomas and pheochromocytomas. This review summarizes current knowledge of diseases arising from defects in NCCs' specification and highlights the potential of precision medicine to remedy a clinical phenotype by targeting the genotype, particularly important given that those affected are primarily infants and young children.
Collapse
Affiliation(s)
| | | | | | | | | | - Paschalis Theotokis
- Department of Histology-Embryology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (D.C.); (S.A.K.); (I.D.); (M.E.M.); (S.M.)
| |
Collapse
|
4
|
Nunes N, Carvalho Nunes B, Zamariolli M, Cordeiro de Queiroz Soares D, Caires dos Santos L, Gollo Dantas A, Ayres Meloni V, Iole Belangero S, Gil-Da-Silva-Lopes VL, Ae Kim C, Melaragno MI. Variants in Candidate Genes for Phenotype Heterogeneity in Patients with the 22q11.2 Deletion Syndrome. Genet Res (Camb) 2024; 2024:5549592. [PMID: 38586596 PMCID: PMC10998724 DOI: 10.1155/2024/5549592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 02/29/2024] [Accepted: 03/20/2024] [Indexed: 04/09/2024] Open
Abstract
22q11.2 deletion syndrome (22q11.2DS) is a microdeletion syndrome with a broad and heterogeneous phenotype, even though most of the deletions present similar sizes, involving ∼3 Mb of DNA. In a relatively large population of a Brazilian 22q11.2DS cohort (60 patients), we investigated genetic variants that could act as genetic modifiers and contribute to the phenotypic heterogeneity, using a targeted NGS (Next Generation Sequencing) with a specific Ion AmpliSeq panel to sequence nine candidate genes (CRKL, MAPK1, HIRA, TANGO2, PI4KA, HDAC1, ZDHHC8, ZFPM2, and JAM3), mapped in and outside the 22q11.2 hemizygous deleted region. In silico prediction was performed, and the whole-genome sequencing annotation analysis package (WGSA) was used to predict the possible pathogenic effect of single nucleotide variants (SNVs). For the in silico prediction of the indels, we used the genomic variants filtered by a deep learning model in NGS (GARFIELD-NGS). We identified six variants, 4 SNVs and 2 indels, in MAPK1, JAM3, and ZFPM2 genes with possibly synergistic deleterious effects in the context of the 22q11.2 deletion. Our results provide the opportunity for the discovery of the co-occurrence of genetic variants with 22q11.2 deletions, which may influence the patients´ phenotype.
Collapse
Affiliation(s)
- Natalia Nunes
- Genetics Division, Department of Morphology and Genetics, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Beatriz Carvalho Nunes
- Genetics Division, Department of Morphology and Genetics, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Malú Zamariolli
- Genetics Division, Department of Morphology and Genetics, Universidade Federal de São Paulo, São Paulo, Brazil
| | | | - Leonardo Caires dos Santos
- Genetics Division, Department of Morphology and Genetics, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Anelisa Gollo Dantas
- Genetics Division, Department of Morphology and Genetics, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Vera Ayres Meloni
- Genetics Division, Department of Morphology and Genetics, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Sintia Iole Belangero
- Genetics Division, Department of Morphology and Genetics, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Vera Lúcia Gil-Da-Silva-Lopes
- Department of Translational Medicine, School of Medical Sciences, University of Campinas, Campinas, São Paulo, Brazil
| | - Chong Ae Kim
- Genetics Unit, Instituto da Criança, Universidade de São Paulo, São Paulo, Brazil
| | - Maria Isabel Melaragno
- Genetics Division, Department of Morphology and Genetics, Universidade Federal de São Paulo, São Paulo, Brazil
| |
Collapse
|
5
|
Passchier EMJ, Bisseling Q, Helman G, van Spaendonk RML, Simons C, Olsthoorn RCL, van der Veen H, Abbink TEM, van der Knaap MS, Min R. Megalencephalic leukoencephalopathy with subcortical cysts: a variant update and review of the literature. Front Genet 2024; 15:1352947. [PMID: 38487253 PMCID: PMC10938252 DOI: 10.3389/fgene.2024.1352947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 01/29/2024] [Indexed: 03/17/2024] Open
Abstract
The leukodystrophy megalencephalic leukoencephalopathy with subcortical cysts (MLC) is characterized by infantile-onset macrocephaly and chronic edema of the brain white matter. With delayed onset, patients typically experience motor problems, epilepsy and slow cognitive decline. No treatment is available. Classic MLC is caused by bi-allelic recessive pathogenic variants in MLC1 or GLIALCAM (also called HEPACAM). Heterozygous dominant pathogenic variants in GLIALCAM lead to remitting MLC, where patients show a similar phenotype in early life, followed by normalization of white matter edema and no clinical regression. Rare patients with heterozygous dominant variants in GPRC5B and classic MLC were recently described. In addition, two siblings with bi-allelic recessive variants in AQP4 and remitting MLC have been identified. The last systematic overview of variants linked to MLC dates back to 2006. We provide an updated overview of published and novel variants. We report on genetic variants from 508 patients with MLC as confirmed by MRI diagnosis (258 from our database and 250 extracted from 64 published reports). We describe 151 unique MLC1 variants, 29 GLIALCAM variants, 2 GPRC5B variants and 1 AQP4 variant observed in these MLC patients. We include experiments confirming pathogenicity for some variants, discuss particularly notable variants, and provide an overview of recent scientific and clinical insight in the pathophysiology of MLC.
Collapse
Affiliation(s)
- Emma M. J. Passchier
- Department of Child Neurology, Amsterdam Leukodystrophy Center, Emma Children’s Hospital, Amsterdam University Medical Center, Amsterdam Neuroscience, Amsterdam, Netherlands
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam, Netherlands
| | - Quinty Bisseling
- Department of Child Neurology, Amsterdam Leukodystrophy Center, Emma Children’s Hospital, Amsterdam University Medical Center, Amsterdam Neuroscience, Amsterdam, Netherlands
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam, Netherlands
| | - Guy Helman
- Translational Bioinformatics, Murdoch Children’s Research Institute, The Royal Children’s Hospital, Parkville, VIC, Australia
| | | | - Cas Simons
- Translational Bioinformatics, Murdoch Children’s Research Institute, The Royal Children’s Hospital, Parkville, VIC, Australia
- Centre for Population Genomics, Garvan Institute of Medical Research, Sydney, NSW, Australia
| | | | - Hieke van der Veen
- Department of Child Neurology, Amsterdam Leukodystrophy Center, Emma Children’s Hospital, Amsterdam University Medical Center, Amsterdam Neuroscience, Amsterdam, Netherlands
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam, Netherlands
| | - Truus E. M. Abbink
- Department of Child Neurology, Amsterdam Leukodystrophy Center, Emma Children’s Hospital, Amsterdam University Medical Center, Amsterdam Neuroscience, Amsterdam, Netherlands
| | - Marjo S. van der Knaap
- Department of Child Neurology, Amsterdam Leukodystrophy Center, Emma Children’s Hospital, Amsterdam University Medical Center, Amsterdam Neuroscience, Amsterdam, Netherlands
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam, Netherlands
| | - Rogier Min
- Department of Child Neurology, Amsterdam Leukodystrophy Center, Emma Children’s Hospital, Amsterdam University Medical Center, Amsterdam Neuroscience, Amsterdam, Netherlands
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam, Netherlands
| |
Collapse
|
6
|
Perrot A, Rickert-Sperling S. Human Genetics of Ventricular Septal Defect. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1441:505-534. [PMID: 38884729 DOI: 10.1007/978-3-031-44087-8_27] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
Ventricular septal defects (VSDs) are recognized as one of the commonest congenital heart diseases (CHD), accounting for up to 40% of all cardiac malformations, and occur as isolated CHDs as well as together with other cardiac and extracardiac congenital malformations in individual patients and families. The genetic etiology of VSD is complex and extraordinarily heterogeneous. Chromosomal abnormalities such as aneuploidy and structural variations as well as rare point mutations in various genes have been reported to be associated with this cardiac defect. This includes both well-defined syndromes with known genetic cause (e.g., DiGeorge syndrome and Holt-Oram syndrome) and so far undefined syndromic forms characterized by unspecific symptoms. Mutations in genes encoding cardiac transcription factors (e.g., NKX2-5 and GATA4) and signaling molecules (e.g., CFC1) have been most frequently found in VSD cases. Moreover, new high-resolution methods such as comparative genomic hybridization enabled the discovery of a high number of different copy number variations, leading to gain or loss of chromosomal regions often containing multiple genes, in patients with VSD. In this chapter, we will describe the broad genetic heterogeneity observed in VSD patients considering recent advances in this field.
Collapse
Affiliation(s)
- Andreas Perrot
- Experimental and Clinical Research Center, a Cooperation Between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité Universitätsmedizin Berlin, Berlin, Germany
| | | |
Collapse
|
7
|
Pfitzer C, Schmitt KRL, Benson WD. Human Genetics of Hypoplastic Left Heart Syndrome. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1441:937-945. [PMID: 38884762 DOI: 10.1007/978-3-031-44087-8_60] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
Hypoplastic left heart syndrome (HLHS) is a severe congenital cardiovascular malformation characterized by hypoplasia of the left ventricle, aorta, and other structures on the left side of the heart. The pathologic definition includes atresia or stenosis of both the aortic and mitral valves. Despite considerable progress in clinical and surgical management of HLHS, mortality and morbidity remain concerns. One barrier to progress in HLHS management is poor understanding of its cause. Several lines of evidence point to genetic origins of HLHS. First, some HLHS cases have been associated with cytogenetic abnormalities (e.g., Turner syndrome). Second, studies of family clustering of HLHS and related cardiovascular malformations have determined HLHS is heritable. Third, genomic regions that encode genes influencing the inheritance of HLHS have been identified. Taken together, these diverse studies provide strong evidence for genetic origins of HLHS and related cardiac phenotypes. However, using simple Mendelian inheritance models, identification of single genetic variants that "cause" HLHS has remained elusive, and in most cases, the genetic cause remains unknown. These results suggest that HLHS inheritance is complex rather than simple. The implication of this conclusion is that researchers must move beyond the expectation that a single disease-causing variant can be found. Utilization of complex models to analyze high-throughput genetic data requires careful consideration of study design.
Collapse
Affiliation(s)
- Constanze Pfitzer
- Department of Congenital Heart Disease/Paediatric Cardiology, German Heart Center Berlin, Berlin, Germany
| | - Katharina R L Schmitt
- Department of Congenital Heart Disease/Paediatric Cardiology, German Heart Center Berlin, Berlin, Germany
| | - Woodrow D Benson
- Department of Pediatrics, Herma Heart Center, Children's Hospital of Wisconsin, Medical College of Wisconsin, Milwaukee, WI, USA.
| |
Collapse
|
8
|
Qu Y, Lim JJY, An O, Yang H, Toh YC, Chua JJE. FEZ1 participates in human embryonic brain development by modulating neuronal progenitor subpopulation specification and migrations. iScience 2023; 26:108497. [PMID: 38213789 PMCID: PMC10783620 DOI: 10.1016/j.isci.2023.108497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 09/13/2023] [Accepted: 11/17/2023] [Indexed: 01/13/2024] Open
Abstract
Mutations in the human fasciculation and elongation protein zeta 1 (FEZ1) gene are found in schizophrenia and Jacobsen syndrome patients. Here, using human cerebral organoids (hCOs), we show that FEZ1 expression is turned on early during brain development and is detectable in both neuroprogenitor subtypes and immature neurons. FEZ1 deletion disrupts expression of neuronal and synaptic development genes. Using single-cell RNA sequencing, we detected abnormal expansion of homeodomain-only protein homeobox (HOPX)- outer radial glia (oRG), concurrent with a reduction of HOPX+ oRG, in FEZ1-null hCOs. HOPX- oRGs show higher cell mobility as compared to HOPX+ oRGs. Ectopic localization of neuroprogenitors to the outer layer is seen in FEZ1-null hCOs. Anomalous encroachment of TBR2+ intermediate progenitors into CTIP2+ deep layer neurons further indicated abnormalities in cortical layer formation these hCOs. Collectively, our findings highlight the involvement of FEZ1 in early cortical brain development and how it contributes to neurodevelopmental disorders.
Collapse
Affiliation(s)
- Yinghua Qu
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117456, Singapore
- Department of Biomedical Engineering, National University of Singapore, Singapore 117583, Singapore
| | - Jonathan Jun-Yong Lim
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117456, Singapore
- Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117456, Singapore
- LSI Neurobiology Programme, National University of Singapore, Singapore 117456, Singapore
| | - Omer An
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore
| | - Henry Yang
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore
| | - Yi-Chin Toh
- Department of Biomedical Engineering, National University of Singapore, Singapore 117583, Singapore
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, QLD 4059, Australia
- Centre for Biomedical Technologies, Queensland University of Technology, Brisbane, QLD 4059, Australia
| | - John Jia En Chua
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117456, Singapore
- Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117456, Singapore
- LSI Neurobiology Programme, National University of Singapore, Singapore 117456, Singapore
- Institute for Molecular and Cell Biology, A∗STAR, Singapore 138473, Singapore
| |
Collapse
|
9
|
Annear DJ, Kooy RF. Unravelling the link between neurodevelopmental disorders and short tandem CGG-repeat expansions. Emerg Top Life Sci 2023; 7:265-275. [PMID: 37768318 PMCID: PMC10754333 DOI: 10.1042/etls20230021] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 08/23/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023]
Abstract
Neurodevelopmental disorders (NDDs) encompass a diverse group of disorders characterised by impaired cognitive abilities and developmental challenges. Short tandem repeats (STRs), repetitive DNA sequences found throughout the human genome, have emerged as potential contributors to NDDs. Specifically, the CGG trinucleotide repeat has been implicated in a wide range of NDDs, including Fragile X Syndrome (FXS), the most common inherited form of intellectual disability and autism. This review focuses on CGG STR expansions associated with NDDs and their impact on gene expression through repeat expansion-mediated epigenetic silencing. We explore the molecular mechanisms underlying CGG-repeat expansion and the resulting epigenetic modifications, such as DNA hypermethylation and gene silencing. Additionally, we discuss the involvement of other CGG STRs in neurodevelopmental diseases. Several examples, including FMR1, AFF2, AFF3, XYLT1, FRA10AC1, CBL, and DIP2B, highlight the complex relationship between CGG STR expansions and NDDs. Furthermore, recent advancements in this field are highlighted, shedding light on potential future research directions. Understanding the role of STRs, particularly CGG-repeats, in NDDs has the potential to uncover novel diagnostic and therapeutic strategies for these challenging disorders.
Collapse
Affiliation(s)
- Dale J Annear
- Department of Medical Genetics, University of Antwerp, Antwerp, Belgium
| | - R Frank Kooy
- Department of Medical Genetics, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
10
|
Yamashita D, Muramatsu H, Narita A, Wakamatsu M, Tsumura Y, Sajiki D, Maemura R, Yamamori A, Imaya M, Narita K, Kataoka S, Taniguchi R, Nishio N, Okuno Y, Fujita N, Koh K, Umeda K, Morihana E, Iwafuchi H, Ito M, Kojima S, Hama A, Takahashi Y. Hematological abnormalities in Jacobsen syndrome: cytopenia of varying severities and morphological abnormalities in peripheral blood and bone marrow. Haematologica 2023; 108:3438-3443. [PMID: 37317839 PMCID: PMC10690895 DOI: 10.3324/haematol.2022.282513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 06/07/2023] [Indexed: 06/16/2023] Open
Affiliation(s)
- Daiki Yamashita
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya
| | - Hideki Muramatsu
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya.
| | - Atsushi Narita
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya
| | - Manabu Wakamatsu
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya
| | - Yusuke Tsumura
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya
| | - Daichi Sajiki
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya
| | - Ryo Maemura
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya
| | - Ayako Yamamori
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya
| | - Masayuki Imaya
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya
| | - Kotaro Narita
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya
| | - Shinsuke Kataoka
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya
| | - Rieko Taniguchi
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya
| | - Nobuhiro Nishio
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya
| | - Yusuke Okuno
- Department of Virology, Nagoya City University Graduate School of Medical Sciences, Nagoya
| | - Naoto Fujita
- Department of Pediatrics, Hiroshima Red Cross Hospital and Atomic-Bomb Survivors Hospital, Hiroshima
| | - Katsuyoshi Koh
- Department of Hematology/Oncology, Saitama Children's Medical Center, Saitama
| | - Katsutsugu Umeda
- Department of Pediatrics, Graduate School of Medicine, Kyoto University, Kyoto
| | - Eiji Morihana
- Department of Pediatric Cardiology, Aichi Children's Health and Medical Center, Obu
| | - Hideto Iwafuchi
- Department of Pathology, Shizuoka Children's Hospital, Shizuoka
| | - Masafumi Ito
- Department of Pathology, Japanese Red Cross Aichi Medical Center Nagoya First Hospital, Nagoya
| | - Seiji Kojima
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya
| | - Asahito Hama
- Department of Hematology and Oncology, Children's Medical Center, Japanese Red Cross Aichi Medical Center Nagoya First Hospital, Nagoya
| | - Yoshiyuki Takahashi
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya.
| |
Collapse
|
11
|
Fiorentino D, Dar P. Prenatal Screening for Microdeletions and Rare Autosomal Aneuploidies. Clin Obstet Gynecol 2023; 66:579-594. [PMID: 37438896 DOI: 10.1097/grf.0000000000000799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
Noninvasive prenatal screening with cell-free DNA is now considered a first-line screening for common aneuploidies. Advancements in existing laboratory techniques now allow to interrogate the entirety of the fetal genome, and many commercial laboratories have expanded their screening panels to include screening for rare autosomal aneuploidies and copy number variants. Here, we review the currently available data on the performance of fetal cell-free DNA to detect rare autosomal aneuploidies and copy number variants that are associated with clinically significant microdeletion and microduplication syndromes and the current position of medical societies on routine screening for these syndromes.
Collapse
Affiliation(s)
- Desiree Fiorentino
- Division of Fetal Medicine, Department of Obstetrics and Gynecology, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, New York
| | | |
Collapse
|
12
|
Soukkhaphone B, Baradaran M, Nguyen BD, Nshimyumukiza L, Little J, Rousseau F, Audibert F, Langlois S, Reinharz D. Expansion of non-invasive prenatal screening to the screening of 10 types of chromosomal anomalies: a cost-effectiveness analysis. BMJ Open 2023; 13:e069485. [PMID: 37648381 PMCID: PMC10471875 DOI: 10.1136/bmjopen-2022-069485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 08/18/2023] [Indexed: 09/01/2023] Open
Abstract
OBJECTIVES To determine the cost-effectiveness of the addition of chromosomal anomalies detectable by non-invasive prenatal screening (NIPS), in a prenatal screening programme targeting common aneuploidies. DESIGN, SETTING AND PARTICIPANTS A simulation study was conducted to study the addition of chromosomal anomalies detectable by NIPS (sex chromosome aneuploidies, 22q11.2 deletion syndrome, large deletion/duplication >7 Mb and rare autosomal trisomies) to five basic strategies currently aiming the common trisomies: three strategies currently offered by the public healthcare systems in Canada, whose first-tier test is performed with biochemical markers, and two programmes whose first-tier test consists of NIPS-based methods. OUTCOME MEASURES The total number of cases of chromosomal anomalies detected and the costs related to the consumption of medical services. RESULTS The most effective and the most cost-effective option in almost all prenatal screening strategies is the option that includes all targeted additional conditions. In the strategies where NIPS is used as first-tier testing, the cost per additional case detected by adding all possible additional anomalies to a programme that currently targets only common trisomies is $C25 710 (95% CI $C25 489 to $C25 934) for massively parallel shotgun sequencing and $C57 711 (95% CI $C57 141 to $C58 292) for targeted massively parallel sequencing, respectively. The acceptability curves show that at a willingness-to-pay of $C50 000 per one additional case detected, the expansion of NIPS-based methods for the detection of all possible additional conditions has a 90% probability of being cost-effective. CONCLUSION From an economic perspective, in strategies that use NIPS as a first-tier screening test, expanding the programmes to detect any considered chromosomal anomalies other than the three common trisomies would be cost-effective. However, the potential expansion of prenatal screening programmes also requires consideration of societal issues, including ethical ones.
Collapse
Grants
- PEGASUS 2 project, which funded by Genome Canada, the Canadian Institutes for Health Research, Genome Québec, Genome BC, Genome Alberta, the Québec Ministère de l'enseignement supérieur, de la recherche, de la science et de la technologie, the Fonds de recherche Québec - Santé, la Fondation de l’Université Laval and the Centre de recherche du CHU de Québec
Collapse
Affiliation(s)
| | | | | | - Leon Nshimyumukiza
- Laval University, Quebec City, Quebec, Canada
- Institut National d'Excellence en Santé et Services Sociaux, Quebec City, Quebec, Canada
| | | | - Francois Rousseau
- Laval University, Quebec City, Quebec, Canada
- CHU de Québec-Université Laval Research Center, Quebec City, Quebec, Canada
| | - Francois Audibert
- CHU Sainte-Justine, Quebec City, Quebec, Canada
- University of Montreal, Montreal, Quebec, Canada
| | - Sylvie Langlois
- The University of British Columbia, Vancouver, British Columbia, Canada
| | | |
Collapse
|
13
|
Kurimoto M. Treatment of Intracranial Hemorrhagic Lesions Associated With Jacobsen's Syndrome. Cureus 2023; 15:e43486. [PMID: 37711911 PMCID: PMC10499498 DOI: 10.7759/cureus.43486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/14/2023] [Indexed: 09/16/2023] Open
Abstract
Jacobsen's syndrome is a rare genetic disorder caused by deletion of the long arm of chromosome 11 (11q) and is characterized primarily by craniofacial dysmorphism, congenital heart defects, intellectual disability, Paris-Treussaud hemorrhagic disorder, structural renal defects, and immunodeficiency. Although the frequency of intracranial hemorrhage associated with Jacobsen's syndrome is low, it is recognized as an important prognostic factor. In this report, we describe a case of acute and chronic subdural hematoma that developed during anticoagulation therapy after cardiac surgery for congenital heart defects associated with Jacobsen's syndrome, making it difficult to decide on a treatment plan.
Collapse
Affiliation(s)
- Michihiro Kurimoto
- Pediatric Neurosurgery, Aichi Children's Health and Medical Center, Obu, JPN
| |
Collapse
|
14
|
Thomas RG. Recurrent pneumonia in a child with Jacobsen syndrome and common variable immune deficiency. Clin Case Rep 2023; 11:e7472. [PMID: 37323257 PMCID: PMC10268222 DOI: 10.1002/ccr3.7472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/21/2022] [Accepted: 05/18/2023] [Indexed: 06/17/2023] Open
Abstract
Recurrent severe respiratory infections in Jacobsen syndrome (JS) are unusual and should prompt evaluation of the immune system. A variety of immune defects have been reported in JS and intravenous immune globulin (IVIG) treatment reduces severe infections.
Collapse
Affiliation(s)
- Ryan G. Thomas
- Department of Pediatrics and Human DevelopmentMichigan State UniversityEast LansingMichiganUSA
| |
Collapse
|
15
|
Rraku E, Kerstjens-Frederikse WS, Swertz MA, Dijkhuizen T, van Ravenswaaij-Arts CMA, Engwerda A. The phenotypic spectrum of terminal and subterminal 6p deletions based on a social media-derived cohort and literature review. Orphanet J Rare Dis 2023; 18:68. [PMID: 36964621 PMCID: PMC10039519 DOI: 10.1186/s13023-023-02670-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 03/11/2023] [Indexed: 03/26/2023] Open
Abstract
BACKGROUND Terminal 6p deletions are rare, and information on their clinical consequences is scarce, which impedes optimal management and follow-up by clinicians. The parent-driven Chromosome 6 Project collaborates with families of affected children worldwide to better understand the clinical effects of chromosome 6 aberrations and to support clinical guidance. A microarray report is required for participation, and detailed phenotype information is collected directly from parents through a multilingual web-based questionnaire. Information collected from parents is then combined with case data from literature reports. Here, we present our findings on 13 newly identified patients and 46 literature cases with genotypically well-characterised terminal and subterminal 6p deletions. We provide phenotype descriptions for both the whole group and for subgroups based on deletion size and HI gene content. RESULTS The total group shared a common phenotype characterised by ocular anterior segment dysgenesis, vision problems, brain malformations, congenital defects of the cardiac septa and valves, mild to moderate hearing impairment, eye movement abnormalities, hypotonia, mild developmental delay and dysmorphic features. These characteristics were observed in all subgroups where FOXC1 was included in the deletion, confirming a dominant role for this gene. Additional characteristics were seen in individuals with terminal deletions exceeding 4.02 Mb, namely complex heart defects, corpus callosum abnormalities, kidney abnormalities and orofacial clefting. Some of these additional features may be related to the loss of other genes in the terminal 6p region, such as RREB1 for the cardiac phenotypes and TUBB2A and TUBB2B for the cerebral phenotypes. In the newly identified patients, we observed previously unreported features including gastrointestinal problems, neurological abnormalities, balance problems and sleep disturbances. CONCLUSIONS We present an overview of the phenotypic characteristics observed in terminal and subterminal 6p deletions. This reveals a common phenotype that can be highly attributable to haploinsufficiency of FOXC1, with a possible additional effect of other genes in the 6p25 region. We also delineate the developmental abilities of affected individuals and report on previously unrecognised features, showing the added benefit of collecting information directly from parents. Based on our overview, we provide recommendations for clinical surveillance to support clinicians, patients and families.
Collapse
Affiliation(s)
- Eleana Rraku
- Department of Genetics, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| | | | - Morris A Swertz
- Department of Genetics, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| | - Trijnie Dijkhuizen
- Department of Genetics, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| | - Conny M A van Ravenswaaij-Arts
- Department of Genetics, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands.
- ATN/Jonx, Groningen, The Netherlands.
| | - Aafke Engwerda
- Department of Genetics, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| |
Collapse
|
16
|
Mary L, Fradin M, Pasquier L, Quelin C, Loget P, Le Lous M, Le Bouar G, Nivot-Adamiak S, Lokchine A, Dubourg C, Jauffret V, Nouyou B, Henry C, Launay E, Odent S, Jaillard S, Belaud-Rotureau MA. Role of chromosomal imbalances in the pathogenesis of DSD: A retrospective analysis of 115 prenatal samples. Eur J Med Genet 2023; 66:104748. [PMID: 36948288 DOI: 10.1016/j.ejmg.2023.104748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 03/10/2023] [Accepted: 03/18/2023] [Indexed: 03/24/2023]
Abstract
Differences of sex development (DSDs) are a group of congenital conditions characterized by a discrepancy between chromosomal, gonadal, and genital sex development of an individual, with significant impact on medical, psychological and reproductive life. The genetic heterogeneity of DSDs complicates the diagnosis and almost half of the patients remains undiagnosed. In this context, chromosomal imbalances in syndromic DSD patients may help to identify new genes implicated in DSDs. In this study, we aimed at describing the burden of chromosomal imbalances including submicroscopic ones (copy number variants or CNVs) in a cohort of prenatal syndromic DSD patients, and review their role in DSDs. Our patients carried at least one pathogenic or likely pathogenic chromosomal imbalance/CNV or low-level mosaicism for aneuploidy. Almost half of the cases resulted from an unbalanced chromosomal rearrangement. Chromosome 9p/q, 4p/q, 3q and 11q anomalies were more frequently observed. Review of the literature confirmed the causative role of CNVs in DSDs, either in disruption of known DSD-causing genes (SOX9, NR0B1, NR5A1, AR, ATRX, …) or as a tool to suspect new genes in DSDs (HOXD cluster, ADCY2, EMX2, CAMK1D, …). Recurrent CNVs of regulatory elements without coding sequence content (i.e. duplications/deletions upstream of SOX3 or SOX9) confirm detection of CNVs as a mean to explore our non-coding genome. Thus, CNV detection remains a powerful tool to explore undiagnosed DSDs, either through routine techniques or through emerging technologies such as long-read whole genome sequencing or optical genome mapping.
Collapse
Affiliation(s)
- L Mary
- CHU Rennes, Service de Cytogénétique et Biologie Cellulaire, F-35033, Rennes, France; Univ Rennes, CHU Rennes, Inserm, EHESP, Irset, UMR_S, 1085, F-35000, Rennes, France.
| | - M Fradin
- Service de Génétique Clinique, Centre de Référence Anomalies Du Développement, CLAD Ouest, CHU Rennes, Rennes, France
| | - L Pasquier
- Service de Génétique Clinique, Centre de Référence Anomalies Du Développement, CLAD Ouest, CHU Rennes, Rennes, France; Université de Rennes, IGDR (Institut de Génétique et Développement), CNRS UMR 6290, INSERM ERL 1305, Rennes, France
| | - C Quelin
- Service de Génétique Clinique, Centre de Référence Anomalies Du Développement, CLAD Ouest, CHU Rennes, Rennes, France
| | - P Loget
- Service D'Anatomie Pathologique, Hôpital Pontchaillou, CHU Rennes, Rennes, France
| | - M Le Lous
- Unité de Médecine Fœtale, Service de Gynécologie-Obstétrique, CHU Rennes, Rennes, France
| | - G Le Bouar
- Unité de Médecine Fœtale, Service de Gynécologie-Obstétrique, CHU Rennes, Rennes, France
| | - S Nivot-Adamiak
- Service D'endocrinologie Pédiatrique, CHU Rennes, Rennes, France
| | - A Lokchine
- CHU Rennes, Service de Cytogénétique et Biologie Cellulaire, F-35033, Rennes, France
| | - C Dubourg
- Université de Rennes, IGDR (Institut de Génétique et Développement), CNRS UMR 6290, INSERM ERL 1305, Rennes, France; Service de Génétique Moléculaire et Génomique, CHU de Rennes, Rennes, 35033, France
| | - V Jauffret
- CHU Rennes, Service de Cytogénétique et Biologie Cellulaire, F-35033, Rennes, France
| | - B Nouyou
- CHU Rennes, Service de Cytogénétique et Biologie Cellulaire, F-35033, Rennes, France
| | - C Henry
- CHU Rennes, Service de Cytogénétique et Biologie Cellulaire, F-35033, Rennes, France
| | - E Launay
- CHU Rennes, Service de Cytogénétique et Biologie Cellulaire, F-35033, Rennes, France
| | - S Odent
- Service de Génétique Clinique, Centre de Référence Anomalies Du Développement, CLAD Ouest, CHU Rennes, Rennes, France; Université de Rennes, IGDR (Institut de Génétique et Développement), CNRS UMR 6290, INSERM ERL 1305, Rennes, France
| | - S Jaillard
- CHU Rennes, Service de Cytogénétique et Biologie Cellulaire, F-35033, Rennes, France; Univ Rennes, CHU Rennes, Inserm, EHESP, Irset, UMR_S, 1085, F-35000, Rennes, France
| | - M A Belaud-Rotureau
- CHU Rennes, Service de Cytogénétique et Biologie Cellulaire, F-35033, Rennes, France; Univ Rennes, CHU Rennes, Inserm, EHESP, Irset, UMR_S, 1085, F-35000, Rennes, France
| |
Collapse
|
17
|
Bosticardo M, Notarangelo LD. Human thymus in health and disease: Recent advances in diagnosis and biology. Semin Immunol 2023; 66:101732. [PMID: 36863139 PMCID: PMC10134747 DOI: 10.1016/j.smim.2023.101732] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 01/30/2023] [Accepted: 02/14/2023] [Indexed: 03/04/2023]
Abstract
The thymus is the crucial tissue where thymocytes develop from hematopoietic precursors that originate from the bone marrow and differentiate to generate a repertoire of mature T cells able to respond to foreign antigens while remaining tolerant to self-antigens. Until recently, most of the knowledge on thymus biology and its cellular and molecular complexity have been obtained through studies in animal models, because of the difficulty to gain access to thymic tissue in humans and the lack of in vitro models able to faithfully recapitulate the thymic microenvironment. This review focuses on recent advances in the understanding of human thymus biology in health and disease obtained through the use of innovative experimental techniques (eg. single cell RNA sequencing, scRNAseq), diagnostic tools (eg. next generation sequencing), and in vitro models of T-cell differentiation (artificial thymic organoids) and thymus development (eg. thymic epithelial cell differentiation from embryonic stem cells or induced pluripotent stem cells).
Collapse
Affiliation(s)
- Marita Bosticardo
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| | - Luigi D Notarangelo
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
18
|
Fabian J, Dworschak GC, Waffenschmidt L, Schierbaum L, Bendixen C, Heilmann-Heimbach S, Sivalingam S, Buness A, Schwarzer N, Boemers TM, Schmiedeke E, Neser J, Leonhardt J, Kosch F, Weih S, Gielen HM, Hosie S, Kabs C, Palta M, Märzheuser S, Bode LM, Lacher M, Schäfer FM, Stehr M, Knorr C, Ure B, Kleine K, Rolle U, Zaniew M, Phillip G, Zwink N, Jenetzky E, Reutter H, Hilger AC. Genome-wide identification of disease-causing copy number variations in 450 individuals with anorectal malformations. Eur J Hum Genet 2023; 31:105-111. [PMID: 36319675 PMCID: PMC9822900 DOI: 10.1038/s41431-022-01216-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 07/03/2022] [Accepted: 10/06/2022] [Indexed: 01/08/2023] Open
Abstract
Anorectal malformations (ARM) represent a spectrum of rare malformations originating from a perturbated development of the embryonic hindgut. Approximately 60% occur as a part of a defined genetic syndrome or within the spectrum of additional congenital anomalies. Rare copy number variations (CNVs) have been associated with both syndromic and non-syndromic forms. The present study represents the largest study to date to explore the contribution of CNVs to the expression of ARMs. SNP-array-based molecular karyotyping was applied in 450 individuals with ARM and 4392 healthy controls. CNVs were identified from raw intensity data using PennCNV. Overlapping CNVs between cases and controls were discarded. Remaining CNVs were filtered using a stringent filter algorithm of nine filter steps. Prioritized CNVs were confirmed using qPCR. Filtering prioritized and qPCR confirmed four microscopic chromosomal anomalies and nine submicroscopic CNVs comprising seven microdeletions (del2p13.2, del4p16.2, del7q31.33, del9p24.1, del16q12.1, del18q32, del22q11.21) and two microduplications (dup2p13.2, dup17q12) in 14 individuals (12 singletons and one affected sib-pair). Within these CNVs, based on their embryonic expression data and function, we suggest FOXK2, LPP, and SALL3 as putative candidate genes. Overall, our CNV analysis identified putative microscopic and submicroscopic chromosomal rearrangements in 3% of cases. Functional characterization and re-sequencing of suggested candidate genes is warranted.
Collapse
Affiliation(s)
- Julia Fabian
- grid.10388.320000 0001 2240 3300Institute of Human Genetics, Medical Faculty of the University Bonn & University Hospital Bonn, Bonn, Germany
| | - Gabriel C. Dworschak
- grid.10388.320000 0001 2240 3300Institute of Human Genetics, Medical Faculty of the University Bonn & University Hospital Bonn, Bonn, Germany ,grid.15090.3d0000 0000 8786 803XDepartment of Neuropediatrics, University Hospital Bonn, Bonn, Germany ,grid.10388.320000 0001 2240 3300Institute of Anatomy, Medical Faculty, University of Bonn, Bonn, Germany
| | - Lea Waffenschmidt
- grid.10388.320000 0001 2240 3300Institute of Human Genetics, Medical Faculty of the University Bonn & University Hospital Bonn, Bonn, Germany
| | - Luca Schierbaum
- grid.10388.320000 0001 2240 3300Institute of Human Genetics, Medical Faculty of the University Bonn & University Hospital Bonn, Bonn, Germany
| | - Charlotte Bendixen
- grid.10388.320000 0001 2240 3300Institute of Human Genetics, Medical Faculty of the University Bonn & University Hospital Bonn, Bonn, Germany ,grid.15090.3d0000 0000 8786 803XUnit of Pediatric Surgery, Department of General, Visceral, Vascular and Thoracic Surgery, University Hospital Bonn, Bonn, Germany
| | - Stefanie Heilmann-Heimbach
- grid.10388.320000 0001 2240 3300Institute of Human Genetics, Medical Faculty of the University Bonn & University Hospital Bonn, Bonn, Germany
| | - Sugirthan Sivalingam
- grid.10388.320000 0001 2240 3300Institute for Medical Biometry, Informatics and Epidemiology, Medical Faculty, University of Bonn, Bonn, Germany ,grid.10388.320000 0001 2240 3300Institute for Genomic Statistics and Bioinformatics, Medical Faculty, University of Bonn, Bonn, Germany ,grid.10388.320000 0001 2240 3300Core Unit for Bioinformatics Data Analysis, Medical Faculty, University of Bonn, Bonn, Germany
| | - Andreas Buness
- grid.10388.320000 0001 2240 3300Institute for Medical Biometry, Informatics and Epidemiology, Medical Faculty, University of Bonn, Bonn, Germany ,grid.10388.320000 0001 2240 3300Institute for Genomic Statistics and Bioinformatics, Medical Faculty, University of Bonn, Bonn, Germany ,grid.10388.320000 0001 2240 3300Core Unit for Bioinformatics Data Analysis, Medical Faculty, University of Bonn, Bonn, Germany
| | - Nicole Schwarzer
- SoMA, The German Patient Support Organization for Anorectal Malformations and Hirschsprung Disease, Munich, Germany
| | - Thomas M. Boemers
- grid.411097.a0000 0000 8852 305XDepartment of Pediatric Surgery and Pediatric Urology, Children’s Hospital of Cologne Amsterdamer Strasse, Cologne, Germany
| | - Eberhard Schmiedeke
- grid.419807.30000 0004 0636 7065Clinic for Pediatric Surgery and Pediatric Urology, Klinikum Bremen Mitte, Bremen, Germany
| | - Jörg Neser
- Department of Pediatric Surgery, General Hospital, Chemnitz, Germany
| | - Johannes Leonhardt
- Department of Pediatric Surgery, Children’s Hospital Braunschweig, Braunschweig, Germany
| | - Ferdinand Kosch
- grid.419594.40000 0004 0391 0800Department of Pediatric Surgery, Städtisches Klinikum Karlsruhe, Karlsruhe, Germany
| | - Sandra Weih
- grid.5963.9Department of Pediatric Surgery, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Helen Maya Gielen
- Department of Pediatric Surgery, Asklepios Klinik Nord Heidberg, Hamburg, Deutschland
| | - Stuart Hosie
- grid.6936.a0000000123222966Muenchen Klinik gGmbH, Muenchen, Klinik Schwabing, Technische Universitaet Muenchen, Munich, Germany
| | - Carmen Kabs
- grid.6936.a0000000123222966Muenchen Klinik gGmbH, Muenchen, Klinik Schwabing, Technische Universitaet Muenchen, Munich, Germany
| | - Markus Palta
- grid.491593.30000 0004 0636 5983Department of Pediatric Surgery, Evangelisches Krankenhaus Hamm, Hamm, Germany
| | - Stefanie Märzheuser
- grid.413108.f0000 0000 9737 0454Department of Pediatric Surgery, Rostock University Medical Center, Rostock, Germany
| | - Lena Marie Bode
- grid.9647.c0000 0004 7669 9786Department of Pediatric Surgery, University of Leipzig, Leipzig, Germany
| | - Martin Lacher
- grid.9647.c0000 0004 7669 9786Department of Pediatric Surgery, University of Leipzig, Leipzig, Germany
| | - Frank-Mattias Schäfer
- grid.490647.8Department of Pediatric Surgery and Pediatric Urology, Cnopfsche Kinderklinik-Klinik Hallerwiese, Nürnberg, Germany
| | - Maximilian Stehr
- grid.490647.8Department of Pediatric Surgery and Pediatric Urology, Cnopfsche Kinderklinik-Klinik Hallerwiese, Nürnberg, Germany
| | - Christian Knorr
- Department of Pediatric Surgery and Orthopedics, University Children’s Hospital Regensburg (KUNO) at the Hospital St. Hedwig of the Order of St. John, Regensburg, Germany
| | - Benno Ure
- grid.10423.340000 0000 9529 9877Center of Pediatric Surgery Hannover, Hannover Medical School, Hannover, Germany
| | - Katharina Kleine
- grid.506180.a0000 0004 0560 0400Department of Pediatric Surgery, Evangelisches Krankenhaus Oberhausen, Oberhausen, Germany
| | - Udo Rolle
- grid.7839.50000 0004 1936 9721Department of Pediatric Surgery and Pediatric Urology, Goethe University Frankfurt, Frankfurt, Germany
| | - Marcin Zaniew
- grid.28048.360000 0001 0711 4236Department of Pediatrics, University of Zielona Góra, Zielona Góra, Poland
| | - Grote Phillip
- grid.7839.50000 0004 1936 9721Institute of Cardiovascular Regeneration, Center for Molecular Medicine, University of Frankfurt, Frankfurt am Main, Germany
| | - Nadine Zwink
- grid.410607.4Department of Child and Adolescent Psychiatry, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Ekkehart Jenetzky
- grid.410607.4Department of Child and Adolescent Psychiatry, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany ,grid.412581.b0000 0000 9024 6397Faculty of Health, School of Medicine, University of Witten/Herdecke, Witten, Germany
| | - Heiko Reutter
- grid.10388.320000 0001 2240 3300Institute of Human Genetics, Medical Faculty of the University Bonn & University Hospital Bonn, Bonn, Germany ,grid.5330.50000 0001 2107 3311Division of Neonatology and Pediatric Intensive Care, Department of Pediatrics and Adolescent Medicine, Friedrich-Alexander University Nürnberg-Erlangen, Erlangen, Germany
| | - Alina C. Hilger
- grid.10388.320000 0001 2240 3300Institute of Human Genetics, Medical Faculty of the University Bonn & University Hospital Bonn, Bonn, Germany ,grid.5330.50000 0001 2107 3311Department of Pediatrics and Adolescent Medicine, Friedrich-Alexander University Nürnberg-Erlangen, Erlangen, Germany ,grid.411668.c0000 0000 9935 6525Research Center On Rare Kidney Diseases (RECORD), University Hospital Erlangen, 91054 Erlangen, Germany
| |
Collapse
|
19
|
Ferrigno F, Franceschini A, Kirk R, Amodeo A. Jacobsen Syndrome with Hypoplastic Left Heart Syndrome: Outcome after Cardiac Transplantation. J Cardiovasc Dev Dis 2022; 10:jcdd10010008. [PMID: 36661903 PMCID: PMC9864704 DOI: 10.3390/jcdd10010008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/14/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022] Open
Abstract
Jacobsen syndrome (JS) is a rare syndrome caused by a deletion of chromosome 11q. We report a patient with JS and hypoplastic left heart syndrome (HLHS) who required cardiac transplantation. She had many of the recognized morphological features in addition to immunological (lymphopenia) and hematological (thrombocytopenia) issues. The patient underwent a Norwood procedure with a modified Blalock-Taussig shunt (MBTS) and subsequently a Glenn procedure at six months of age. She developed desaturation, with severe tricuspid regurgitation and right ventricular dysfunction, and underwent heart transplantation at 7 months of age. After the transplant, she was hospitalized several times for severe infections. The diagnosis of Jacobsen syndrome came 2 months after transplant. Now, 5 years post-transplant, she is in relatively good health-her heart is functioning normally, her hospitalization rate is getting lower, and her immunological profile is stable.
Collapse
Affiliation(s)
- Federica Ferrigno
- The School of Pediatrics, University of Rome “Tor Vergata”, 00133 Rome, Italy
- Correspondence: ; Tel.: +39-3286426575
| | - Alessio Franceschini
- Department of Cardiosurgery, Cardiology, Heart and Lung Transplant, Bambino Gesù Children’s Hospital, IRCSS, 00165 Rome, Italy
| | - Richard Kirk
- Mechanical Circulatory Support Unit, Department of Cardiosurgery, Cardiology, Heart and Lung Transplant, Bambino Gesù Children’s Hospital, IRCSS, 00165 Rome, Italy
| | - Antonio Amodeo
- Mechanical Circulatory Support Unit, Department of Cardiosurgery, Cardiology, Heart and Lung Transplant, Bambino Gesù Children’s Hospital, IRCSS, 00165 Rome, Italy
| |
Collapse
|
20
|
Xiang J, Peng Z. Applications of Noninvasive Prenatal Testing for Subchromosomal Copy Number Variations Using Cell-Free DNA. Clin Lab Med 2022; 42:613-625. [PMID: 36368786 DOI: 10.1016/j.cll.2022.09.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Jiale Xiang
- BGI Genomics, BGI-Shenzhen, Shenzhen 518083, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhiyu Peng
- BGI Genomics, BGI-Shenzhen, Shenzhen 518083, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
21
|
Besnard F, Leclerc H, Boussaha M, Grohs C, Jewell N, Pinton A, Barasc H, Jourdain J, Femenia M, Dorso L, Strugnell B, Floyd T, Danchin C, Guatteo R, Cassart D, Hubin X, Mattalia S, Boichard D, Capitan A. Detailed analysis of mortality rates in the female progeny of 1,001 Holstein bulls allows the discovery of new dominant genetic defects. J Dairy Sci 2022; 106:439-451. [DOI: 10.3168/jds.2022-22365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 07/29/2022] [Indexed: 11/06/2022]
|
22
|
Trachsel T, Prader S, Steindl K, Pachlopnik Schmid J. Case report: ETS1 gene deletion associated with a low number of recent thymic emigrants in three patients with Jacobsen syndrome. Front Immunol 2022; 13:867206. [PMID: 36341443 PMCID: PMC9634179 DOI: 10.3389/fimmu.2022.867206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 10/10/2022] [Indexed: 11/30/2022] Open
Abstract
Jacobsen syndrome is a rare genetic disorder associated with a terminal deletion in chromosome 11. The clinical presentation is variable. Although immunodeficiency has been described in patients with Jacobsen syndrome, a clear genotype-phenotype correlation has not yet been established. Here, we report on the immunologic phenotypes of four patients with Jacobsen syndrome. All four patients showed one or more atypical immunologic features. One patient suffered from recurrent viral infections, two patients had experienced a severe bacterial infection and one had received antibiotic prophylaxis since early childhood. One patient had experienced severe, transient immune dysregulation. Hypogammaglobulinemia and low B cell counts were found in two patients, while the number of recent thymic emigrants (CD31+CD45RA+ CD4 cells) was abnormally low in three. When considering the six immune-related genes located within the affected part of chromosome 11 (ETS1, TIRAP, FLI1, NFRKB, THYN1, and SNX19), only the ETS1 gene was found be deleted in the three patients with low numbers of recent thymic emigrants and non-switched memory B cells. Our findings support the hypothesis whereby Jacobsen syndrome is associated with a combined immunodeficiency with variable presentation. Further investigations of potential genotype-phenotype correlations are warranted and might help to personalize patient management in individuals lacking immune-related genes. In addition, we recommend immunologic follow-up for all patients with Jacobsen syndrome, as immune abnormalities may develop over time.
Collapse
Affiliation(s)
- Tina Trachsel
- Division of Immunology, University Children’s Hospital Zurich, Zurich, Switzerland
| | - Seraina Prader
- Division of Immunology, University Children’s Hospital Zurich, Zurich, Switzerland
| | - Katharina Steindl
- Institute of Medical Genetics, University of Zurich, Schlieren, Switzerland
| | - Jana Pachlopnik Schmid
- Division of Immunology, University Children’s Hospital Zurich, Zurich, Switzerland
- Pediatric Immunology, University of Zurich, Zurich, Switzerland
- *Correspondence: Jana Pachlopnik Schmid,
| |
Collapse
|
23
|
Deletion of 11q24.2-qter in a male child with cleft lip and palate: an atypical feature of Jacobsen syndrome. J Genet 2022. [DOI: 10.1007/s12041-022-01380-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
24
|
Takeda C, Hirotsu A, Yasuhara G, Mizuno A, Tatsumi K, Kawamoto S. Utility of thromboelastogram in cardiac surgery in Jacobsen syndrome associated with platelet dysfunction: a case report. JA Clin Rep 2022; 8:67. [PMID: 35989376 PMCID: PMC9393117 DOI: 10.1186/s40981-022-00557-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/08/2022] [Accepted: 08/11/2022] [Indexed: 11/27/2022] Open
Abstract
Background Jacobsen syndrome is a rare genetic disorder with multiple congenital anomalies and platelet abnormalities caused by chromosome 11 deletion. Case presentation A 7-month-old boy with thrombocytopenia underwent ventricular septal defect closure. At the beginning of surgery, the platelet count was 168 × 103/μL, and heparinized kaolin with heparinase reaction time (HKH-R), which represents clot formation time, was prolonged at 30.4 min. Platelet transfusion was continued, and at the end of surgery, the platelet count and HKH-R values improved to 215 × 103/μL and 15 min, respectively. Conclusions As anesthetic management of patients with abnormal platelet function, the viscoelasticity test might be useful in evaluating hemostatic capacity.
Collapse
|
25
|
Wang L, Lin L, Qi H, Chen J, Grossfeld P. Endothelial Loss of ETS1 Impairs Coronary Vascular Development and Leads to Ventricular Non-Compaction. Circ Res 2022; 131:371-387. [PMID: 35894043 PMCID: PMC9624262 DOI: 10.1161/circresaha.121.319955] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 07/12/2022] [Indexed: 11/16/2022]
Abstract
RATIONALE Jacobsen syndrome is a rare chromosomal disorder caused by deletions in the long arm of human chromosome 11, resulting in multiple developmental defects including congenital heart defects. Combined studies in humans and genetically engineered mice implicate that loss of ETS1 (E26 transformation specific 1) is the cause of congenital heart defects in Jacobsen syndrome, but the underlying molecular and cellular mechanisms are unknown. OBJECTIVE To determine the role of ETS1 in heart development, specifically its roles in coronary endothelium and endocardium and the mechanisms by which loss of ETS1 causes coronary vascular defects and ventricular noncompaction. METHODS AND RESULTS ETS1 global and endothelial-specific knockout mice were used. Phenotypic assessments, RNA sequencing, and chromatin immunoprecipitation analysis were performed together with expression analysis, immunofluorescence and RNAscope in situ hybridization to uncover phenotypic and transcriptomic changes in response to loss of ETS1. Loss of ETS1 in endothelial cells causes ventricular noncompaction, reproducing the phenotype arising from global deletion of ETS1. Endothelial-specific deletion of ETS1 decreased the levels of Alk1 (activin receptor-like kinase 1), Cldn5 (claudin 5), Sox18 (SRY-box transcription factor 18), Robo4 (roundabout guidance receptor 4), Esm1 (endothelial cell specific molecule 1) and Kdr (kinase insert domain receptor), 6 important angiogenesis-relevant genes in endothelial cells, causing a coronary vasculature developmental defect in association with decreased compact zone cardiomyocyte proliferation. Downregulation of ALK1 expression in endocardium due to the loss of ETS1, along with the upregulation of TGF (transforming growth factor)-β1 and TGF-β3, occurred with increased TGFBR2/TGFBR1/SMAD2 signaling and increased extracellular matrix expression in the trabecular layer, in association with increased trabecular cardiomyocyte proliferation. CONCLUSIONS These results demonstrate the importance of endothelial and endocardial ETS1 in cardiac development. Delineation of the gene regulatory network involving ETS1 in heart development will enhance our understanding of the molecular mechanisms underlying ventricular and coronary vascular developmental defects and will lead to improved approaches for the treatment of patients with congenital heart disease.
Collapse
Affiliation(s)
- Lu Wang
- Division of Cardiology, Department of Pediatrics, UCSD School of Medicine, La Jolla, CA 92093, USA
| | - Lizhu Lin
- Division of Cardiology, Department of Pediatrics, UCSD School of Medicine, La Jolla, CA 92093, USA
| | - Hui Qi
- Division of Cardiology, Department of Pediatrics, UCSD School of Medicine, La Jolla, CA 92093, USA
| | - Ju Chen
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Paul Grossfeld
- Division of Cardiology, Department of Pediatrics, UCSD School of Medicine, La Jolla, CA 92093, USA
- Division of Cardiology, Rady Children’s Hospital San Diego, San Diego, CA, USA
| |
Collapse
|
26
|
Huisman EJ, Brooimans AR, Mayer S, Joosten M, de Bont L, Dekker M, Rammeloo ELM, Smiers FJ, van Hagen PM, Zwaan CM, de Haas M, Cnossen MH, Dalm VASH. Patients with Chromosome 11q Deletions Are Characterized by Inborn Errors of Immunity Involving both B and T Lymphocytes. J Clin Immunol 2022; 42:1521-1534. [PMID: 35763218 DOI: 10.1007/s10875-022-01303-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 06/04/2022] [Indexed: 11/30/2022]
Abstract
Disorders of the long arm of chromosome 11 (11q) are rare and involve various chromosomal regions. Patients with 11q disorders, including Jacobsen syndrome, often present with a susceptibility for bacterial and prolonged viral and fungal infections partially explained by hypogammaglobulinemia. Additional T lymphocyte or granular neutrophil dysfunction may also be present. In order to evaluate infectious burden and immunological function in patients with 11q disorders, we studied a cohort of 14 patients with 11q deletions and duplications. Clinically, 12 patients exhibited prolonged and repetitive respiratory tract infections, frequently requiring (prophylactic) antibiotic treatment (n = 7), ear-tube placement (n = 9), or use of inhalers (n = 5). Complicated varicella infections (n = 5), chronic eczema (n = 6), warts (n = 2), and chronic fungal infections (n = 4) were reported. Six patients were on immunoglobulin replacement therapy. We observed a high prevalence of low B lymphocyte counts (n = 8), decreased T lymphocyte counts (n = 5) and abnormal T lymphocyte function (n = 12). Granulocyte function was abnormal in 29% without a clinical phenotype. Immunodeficiency was found in patients with terminal and interstitial 11q deletions and in one patient with terminal 11q duplication. Genetically, FLI1 and ETS1 are seen as causative for the immunodeficiency, but these genes were deleted nor duplicated in 4 of our 14 patients. Alternative candidate genes on 11q may have a role in immune dysregulation. In conclusion, we present evidence that inborn errors of immunity are present in patients with 11q disorders leading to clinically relevant infections. Therefore, broad immunological screening and necessary treatment is of importance in this patient group.
Collapse
Affiliation(s)
- Elise J Huisman
- Department of Pediatric Hematology, Erasmus Medical Center Sophia Children's Hospital, University Medical Centre Rotterdam, Rotterdam, the Netherlands.,Unit of Transfusion Medicine, Sanquin Blood Supply, Amsterdam, the Netherlands
| | - A Rick Brooimans
- Laboratory Medical Immunological, Department of Immunology, Erasmus Medical Center, University Medical Centre Rotterdam, Rotterdam, the Netherlands
| | - Samone Mayer
- Department of Pediatric Hematology, Erasmus Medical Center Sophia Children's Hospital, University Medical Centre Rotterdam, Rotterdam, the Netherlands
| | - Marieke Joosten
- Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Louis de Bont
- Department of Pediatric Immunology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Mariëlle Dekker
- Department of Pediatrics, Albert Schweitzer Hospital, Dordrecht, the Netherlands
| | | | - Frans J Smiers
- Department of Pediatric Hematology, Leiden University Medical Center, Leiden, the Netherlands
| | - P Martin van Hagen
- Laboratory Medical Immunological, Department of Immunology, Erasmus Medical Center, University Medical Centre Rotterdam, Rotterdam, the Netherlands.,Department of Internal Medicine, Division of Allergy & Clinical Immunology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - C Michel Zwaan
- Department of Pediatric Oncology, Erasmus Medical Center Sophia Children's Hospital, University Medical Centre Rotterdam, Rotterdam, the Netherlands.,Department of Pediatric Oncology, Princess Máxima Center, Utrecht, the Netherlands
| | - Masja de Haas
- Laboratory of Immunohematology Diagnostics, Sanquin Diagnostic Services, Amsterdam, the Netherlands.,Department of Hematology, Leiden University Medical Center, Leiden, the Netherlands.,Department of Clinical Transfusion Research, Sanquin Research, Amsterdam, the Netherlands
| | - Marjon H Cnossen
- Department of Pediatric Hematology, Erasmus Medical Center Sophia Children's Hospital, University Medical Centre Rotterdam, Rotterdam, the Netherlands
| | - Virgil A S H Dalm
- Laboratory Medical Immunological, Department of Immunology, Erasmus Medical Center, University Medical Centre Rotterdam, Rotterdam, the Netherlands. .,Department of Internal Medicine, Division of Allergy & Clinical Immunology, Erasmus University Medical Center, Rotterdam, the Netherlands.
| |
Collapse
|
27
|
Razar RBBA, Qu Y, Gunaseelan S, Chua JJE. The importance of fasciculation and elongation protein zeta-1 in neural circuit establishment and neurological disorders. Neural Regen Res 2022; 17:1165-1171. [PMID: 34782550 PMCID: PMC8643053 DOI: 10.4103/1673-5374.327327] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/10/2021] [Accepted: 06/20/2021] [Indexed: 11/04/2022] Open
Abstract
The human brain contains an estimated 100 billion neurons that must be systematically organized into functional neural circuits for it to function properly. These circuits range from short-range local signaling networks between neighboring neurons to long-range networks formed between various brain regions. Compelling converging evidence indicates that alterations in neural circuits arising from abnormalities during early neuronal development or neurodegeneration contribute significantly to the etiology of neurological disorders. Supporting this notion, efforts to identify genetic causes of these disorders have uncovered an over-representation of genes encoding proteins involved in the processes of neuronal differentiation, maturation, synaptogenesis and synaptic function. Fasciculation and elongation protein zeta-1, a Kinesin-1 adapter, has emerged as a key central player involved in many of these processes. Fasciculation and elongation protein zeta-1-dependent transport of synaptic cargoes and mitochondria is essential for neuronal development and synapse establishment. Furthermore, it acts downstream of guidance cue pathways to regulate axo-dendritic development. Significantly, perturbing its function causes abnormalities in neuronal development and synapse formation both in the brain as well as the peripheral nervous system. Mutations and deletions of the fasciculation and elongation protein zeta-1 gene are linked to neurodevelopmental disorders. Moreover, altered phosphorylation of the protein contributes to neurodegenerative disorders. Together, these findings strongly implicate the importance of fasciculation and elongation protein zeta-1 in the establishment of neuronal circuits and its maintenance.
Collapse
Affiliation(s)
- Rafhanah Banu Bte Abdul Razar
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- LSI Neurobiology Programme, National University of Singapore, Singapore, Singapore
- Institute for Health Innovation and Technology, National University of Singapore, Singapore, Singapore
| | - Yinghua Qu
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- LSI Neurobiology Programme, National University of Singapore, Singapore, Singapore
| | - Saravanan Gunaseelan
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- LSI Neurobiology Programme, National University of Singapore, Singapore, Singapore
| | - John Jia En Chua
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- LSI Neurobiology Programme, National University of Singapore, Singapore, Singapore
- Institute for Health Innovation and Technology, National University of Singapore, Singapore, Singapore
- Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| |
Collapse
|
28
|
Dalen ML, Vigerust NF, Hammarström C, Holmstrøm H, Andresen JH. Neonatal interstitial lung disease in a girl with Jacobsen syndrome: a case report. J Med Case Rep 2022; 16:117. [PMID: 35321730 PMCID: PMC8944088 DOI: 10.1186/s13256-022-03351-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 03/01/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND We report a case of the neonatal interstitial lung disease pulmonary interstitial glycogenosis in a girl with Jacobsen syndrome. While Jacobsen syndrome is caused by a deletion on the long arm of chromosome 11 and is genetically confirmed, pulmonary interstitial glycogenosis is of unknown etiology and is diagnosed by lung biopsy. Pulmonary interstitial glycogenosis has not previously been described in association with Jacobsen syndrome. CASE PRESENTATION A term newborn small for gestational age Caucasian girl presented with respiratory distress, pulmonary hypertension, congenital heart defects, immunodeficiency, and thrombocytopenia. She was diagnosed with Jacobsen syndrome, but also had pulmonary interstitial glycogenosis, which contributed to significant morbidity. There was striking clinical improvement after steroid treatment of the pulmonary interstitial glycogenosis. CONCLUSIONS Interstitial lung disease should be considered as a differential diagnosis when respiratory distress and hypoxemia in the perinatal period worsens or persists despite standard treatment. Importantly, pulmonary interstitial glycogenosis may be treatable with corticosteroids. Whether there is a genetic link between pulmonary interstitial glycogenosis and Jacobsen syndrome is still unknown.
Collapse
Affiliation(s)
- Marit Lunde Dalen
- Department of Neonatal Intensive Care, Division of Paediatric and Adolescent Medicine, Oslo University Hospital, Nydalen, Box 4956, 0424, Oslo, Norway.
| | | | - Clara Hammarström
- Department of Pathology, Rikshospitalet, Oslo University Hospital, Oslo, Norway
| | - Henrik Holmstrøm
- Department of Paediatric Cardiology, Oslo University Hospital, Oslo, Norway.,Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | | |
Collapse
|
29
|
Yalcintepe S, Zhuri D, Sezginer Guler H, Atli E, Demir S, Atli EI, Mail C, Gurkan H. First Report of Jacobsen Syndrome with Dextrocardia Diagnosed with del(11)(q24q25). Mol Syndromol 2022; 13:235-239. [DOI: 10.1159/000519149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 08/20/2021] [Indexed: 11/19/2022] Open
Abstract
Jacobsen syndrome is a rare congenital disorder that is caused by the deletion of several genes in chromosome 11. A 10-year-old female with congenital heart disease, dextrocardia, and coarse facial appearance was examined in our medical genetics clinic. Chromosome analysis and array-CGH showed a copy number loss of 9 Mb in the 11q24.2q25 region. Herein, we report her clinical findings. This is the first case of Jacobsen syndrome with dextrocardia.
Collapse
|
30
|
Jacobsen syndrome with bilateral periventricular white matter lesions. World J Pediatr 2022; 18:142-143. [PMID: 34860330 DOI: 10.1007/s12519-021-00467-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Accepted: 09/16/2021] [Indexed: 10/19/2022]
|
31
|
Rosenberg AGW, Pater MRA, Pellikaan K, Davidse K, Kattentidt-Mouravieva AA, Kersseboom R, Bos-Roubos AG, van Eeghen A, Veen JMC, van der Meulen JJ, van Aalst-van Wieringen N, Hoekstra FME, van der Lely AJ, de Graaff LCG. What Every Internist-Endocrinologist Should Know about Rare Genetic Syndromes in Order to Prevent Needless Diagnostics, Missed Diagnoses and Medical Complications: Five Years of 'Internal Medicine for Rare Genetic Syndromes'. J Clin Med 2021; 10:jcm10225457. [PMID: 34830739 PMCID: PMC8622899 DOI: 10.3390/jcm10225457] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/11/2021] [Accepted: 11/17/2021] [Indexed: 02/06/2023] Open
Abstract
Patients with complex rare genetic syndromes (CRGS) have combined medical problems affecting multiple organ systems. Pediatric multidisciplinary (MD) care has improved life expectancy, however, transfer to internal medicine is hindered by the lack of adequate MD care for adults. We have launched an MD outpatient clinic providing syndrome-specific care for adults with CRGS, which, to our knowledge, is the first one worldwide in the field of internal medicine. Between 2015 and 2020, we have treated 720 adults with over 60 syndromes. Eighty-nine percent of the syndromes were associated with endocrine problems. We describe case series of missed diagnoses and patients who had undergone extensive diagnostic testing for symptoms that could actually be explained by their syndrome. Based on our experiences and review of the literature, we provide an algorithm for the clinical approach of health problems in CRGS adults. We conclude that missed diagnoses and needless invasive tests seem common in CRGS adults. Due to the increased life expectancy, an increasing number of patients with CRGS will transfer to adult endocrinology. Internist-endocrinologists (in training) should be aware of their special needs and medical pitfalls of CRGS will help prevent the burden of unnecessary diagnostics and under- and overtreatment.
Collapse
Affiliation(s)
- Anna G. W. Rosenberg
- Department of Internal Medicine, Division of Endocrinology, Erasmus MC, University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands; (A.G.W.R.); (M.R.A.P.); (K.P.); (K.D.); (F.M.E.H.); (A.J.v.d.L.)
- Dutch Center of Reference for Prader-Willi Syndrome, 3015 GD Rotterdam, The Netherlands
| | - Minke R. A. Pater
- Department of Internal Medicine, Division of Endocrinology, Erasmus MC, University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands; (A.G.W.R.); (M.R.A.P.); (K.P.); (K.D.); (F.M.E.H.); (A.J.v.d.L.)
| | - Karlijn Pellikaan
- Department of Internal Medicine, Division of Endocrinology, Erasmus MC, University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands; (A.G.W.R.); (M.R.A.P.); (K.P.); (K.D.); (F.M.E.H.); (A.J.v.d.L.)
- Dutch Center of Reference for Prader-Willi Syndrome, 3015 GD Rotterdam, The Netherlands
| | - Kirsten Davidse
- Department of Internal Medicine, Division of Endocrinology, Erasmus MC, University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands; (A.G.W.R.); (M.R.A.P.); (K.P.); (K.D.); (F.M.E.H.); (A.J.v.d.L.)
- Dutch Center of Reference for Prader-Willi Syndrome, 3015 GD Rotterdam, The Netherlands
| | | | - Rogier Kersseboom
- Stichting Zuidwester, 3241 LB Middelharnis, The Netherlands; (A.A.K.-M.); (R.K.)
| | - Anja G. Bos-Roubos
- Center of Excellence for Neuropsychiatry, Vincent van Gogh, 5803 DN Venray, The Netherlands;
| | - Agnies van Eeghen
- ‘s Heeren Loo, Care Group, 3818 LA Amersfoort, The Netherlands;
- Department of Pediatrics, Amsterdam University Medical Center, 1105 AZ Amsterdam, The Netherlands
- Academic Center for Growth Disorders, Erasmus MC, University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands
| | - José M. C. Veen
- ‘s Heeren Loo, Care Providing Agency, 6733 SC Wekerom, The Netherlands; (J.M.C.V.); (J.J.v.d.M.)
| | - Jiske J. van der Meulen
- ‘s Heeren Loo, Care Providing Agency, 6733 SC Wekerom, The Netherlands; (J.M.C.V.); (J.J.v.d.M.)
| | - Nina van Aalst-van Wieringen
- Department of Physical Therapy, Erasmus MC, University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands;
| | - Franciska M. E. Hoekstra
- Department of Internal Medicine, Division of Endocrinology, Erasmus MC, University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands; (A.G.W.R.); (M.R.A.P.); (K.P.); (K.D.); (F.M.E.H.); (A.J.v.d.L.)
- Department of Internal Medicine, Reinier de Graaf Hospital, 2625 AD Delft, The Netherlands
| | - Aart J. van der Lely
- Department of Internal Medicine, Division of Endocrinology, Erasmus MC, University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands; (A.G.W.R.); (M.R.A.P.); (K.P.); (K.D.); (F.M.E.H.); (A.J.v.d.L.)
| | - Laura C. G. de Graaff
- Department of Internal Medicine, Division of Endocrinology, Erasmus MC, University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands; (A.G.W.R.); (M.R.A.P.); (K.P.); (K.D.); (F.M.E.H.); (A.J.v.d.L.)
- Dutch Center of Reference for Prader-Willi Syndrome, 3015 GD Rotterdam, The Netherlands
- Academic Center for Growth Disorders, Erasmus MC, University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands
- ENCORE—Dutch Center of Reference for Neurodevelopmental Disorders, 3015 GD Rotterdam, The Netherlands
- Dutch Center of Reference for Turner Syndrome, 3015 GD Rotterdam, The Netherlands
- Dutch Center of Reference for Disorders of Sex Development, 3015 GD Rotterdam, The Netherlands
- Correspondence:
| |
Collapse
|
32
|
Findley TO, Crain AK, Mahajan S, Deniwar A, Davis J, Solis Zavala AS, Corno AF, Rodriguez-Buritica D. Congenital heart defects and copy number variants associated with neurodevelopmental impairment. Am J Med Genet A 2021; 188:13-23. [PMID: 34472185 DOI: 10.1002/ajmg.a.62484] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 06/02/2021] [Accepted: 08/05/2021] [Indexed: 01/21/2023]
Abstract
A genetic etiology is identifiable in 20%-30% of patients with congenital heart defects (CHD). Chromosomal microarray analysis (CMA) can detect copy number variants (CNV) associated with CHD. In previous studies, the diagnostic yield of postnatal CMA testing ranged from 4% to 28% in CHD patients. However, incidental pathogenic CNV and variants of unknown significance are often discovered without any known association with CHD. The study objective was to describe the rate of pathogenic CNV associated with neurodevelopmental impairment (NDI) and compare clinical findings in CHD neonates with genetic results. A single-center retrospective review was performed on all consecutive newborns with CHD admitted to a tertiary neonatal intensive care unit from January 2013 to March 2019 (n = 525). CHD phenotypes were classified as per the National Birth Defect Prevention Study. CMA detected pathogenic CNV in 21.3% (61/287) of neonates, and karyotype or fluorescence in situ hybridization detected aneuploidies in an additional 11% of the overall cohort (58/525). Atrioventricular septal defects and conotruncal defects showed the highest diagnostic yield by CMA (28.6% and 27.2%, respectively). Among neonates with pathogenic CNV on CMA, 78.7% (48/61) were associated with NDI. Neonates with pathogenic CNV were smaller in length at birth compared to those with benign CNV or variants of unknown significance (p = 0.005) and were more likely to be discharged with an enteral feeding tube (p = 0.027). CMA can discover genetic variants associated with NDI and are common in neonates with CHD. Genetic testing in the neonatal period can heighten awareness of genetic risk for NDI.
Collapse
Affiliation(s)
- Tina O Findley
- Department of Pediatrics, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Alyssa K Crain
- McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Smridhi Mahajan
- McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Ahmed Deniwar
- Department of Pediatrics, University of Texas Health Science Center at Houston, Houston, Texas, USA.,Children's Heart Institute, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Jessica Davis
- Department of Pediatrics, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Ana S Solis Zavala
- McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Antonio F Corno
- Children's Heart Institute, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - David Rodriguez-Buritica
- Department of Pediatrics, University of Texas Health Science Center at Houston, Houston, Texas, USA
| |
Collapse
|
33
|
Immune Deficiency in Jacobsen Syndrome: Molecular and Phenotypic Characterization. Genes (Basel) 2021; 12:genes12081197. [PMID: 34440371 PMCID: PMC8394748 DOI: 10.3390/genes12081197] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/29/2021] [Accepted: 07/30/2021] [Indexed: 02/01/2023] Open
Abstract
Jacobsen syndrome or JBS (OMIM #147791) is a contiguous gene syndrome caused by a deletion affecting the terminal q region of chromosome 11. The phenotype of patients with JBS is a specific syndromic phenotype predominately associated with hematological alterations. Complete and partial JBS are differentiated depending on which functional and causal genes are haploinsufficient in the patient. We describe the case of a 6-year-old Bulgarian boy in which it was possible to identify all of the major signs and symptoms listed by the Online Mendelian Inheritance in Man (OMIM) catalog using the Human Phenotype Ontology (HPO). Extensive blood and marrow tests revealed the existence of thrombocytopenia and leucopenia, specifically due to low levels of T and B cells and low levels of IgM. Genetic analysis using whole-genome single nucleotide polymorphisms (SNPs)/copy number variations (CNVs) microarray hybridization confirmed that the patient had the deletion arr[hg19]11q24.3q25(128,137,532–134,938,470)x1 in heterozygosis. This alteration was considered causal of partial JBS because the essential BSX and NRGN genes were not included, though 30 of the 96 HPO identifiers associated with this OMIM were identified in the patient. The deletion of the FLI-1, ETS1, JAM3 and THYN1 genes was considered to be directly associated with the immunodeficiency exhibited by the patient. Although immunodeficiency is widely accepted as a major sign of JBS, only constipation, bone marrow hypocellularity and recurrent respiratory infections have been included in the HPO as terms used to refer to the immunological defects in JBS. Exhaustive functional analysis and individual monitoring are required and should be mandatory for these patients.
Collapse
|
34
|
Ahn S, Jeon IS, Son DW, Ahn KJ, Lim KI, Kim HJ. Jacobsen Syndrome with White Matter Changes. ANNALS OF CHILD NEUROLOGY 2021. [DOI: 10.26815/acn.2021.00339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
35
|
Serra G, Memo L, Antona V, Corsello G, Favero V, Lago P, Giuffrè M. Jacobsen syndrome and neonatal bleeding: report on two unrelated patients. Ital J Pediatr 2021; 47:147. [PMID: 34210338 PMCID: PMC8252210 DOI: 10.1186/s13052-021-01108-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 06/11/2021] [Indexed: 11/10/2022] Open
Abstract
Introduction In 1973, Petrea Jacobsen described the first patient showing dysmorphic features, developmental delay and congenital heart disease (atrial and ventricular septal defect) associated to a 11q deletion, inherited from the father. Since then, more than 200 patients have been reported, and the chromosomal critical region responsible for this contiguous gene disorder has been identified. Patients’ presentation We report on two unrelated newborns observed in Italy affected by Jacobsen syndrome (JBS, also known as 11q23 deletion). Both patients presented prenatal and postnatal bleeding, growth and developmental delay, craniofacial dysmorphisms, multiple congenital anomalies, and pancytopenia of variable degree. Array comparative genomic hybridization (aCGH) identified a terminal deletion at 11q24.1-q25 of 12.5 Mb and 11 Mb, in Patient 1 and 2, respectively. Fluorescent in situ hybridization (FISH) analysis of the parents documented a de novo origin of the deletion for Patient 1; parents of Patient 2 refused further genetic investigations. Conclusions Present newborns show the full phenotype of JBS including thrombocytopenia, according to their wide 11q deletion size. Bleeding was particularly severe in one of them, leading to a cerebral hemorrhage. Our report highlights the relevance of early diagnosis, genetic counselling and careful management and follow-up of JBS patients, which may avoid severe clinical consequences and lower the mortality risk. It may provide further insights and a better characterization of JBS, suggesting new elements of the genotype-phenotype correlations.
Collapse
Affiliation(s)
- Gregorio Serra
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties "G. D'Alessandro", University of Palermo, Palermo, Italy.
| | - Luigi Memo
- Clinical Genetics Outpatient Service, Neonatology and Neonatal Intensive Care Unit, San Bortolo Hospital, Vicenza, Italy
| | - Vincenzo Antona
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties "G. D'Alessandro", University of Palermo, Palermo, Italy
| | - Giovanni Corsello
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties "G. D'Alessandro", University of Palermo, Palermo, Italy
| | - Valentina Favero
- Neonatal Intensive Care Unit, Ca' Foncello Hospital, Treviso, Italy
| | - Paola Lago
- Neonatal Intensive Care Unit, Ca' Foncello Hospital, Treviso, Italy
| | - Mario Giuffrè
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties "G. D'Alessandro", University of Palermo, Palermo, Italy
| |
Collapse
|
36
|
Kumar A, Sakakura K, Mitsuhashi T, Railean A, Luat AF. Alteration of the Arcuate Fasciculus in Jacobsen Syndrome Shown by Diffusion Tensor Imaging. Pediatr Neurol 2021; 120:4-6. [PMID: 33962347 DOI: 10.1016/j.pediatrneurol.2021.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 03/27/2021] [Accepted: 03/29/2021] [Indexed: 11/18/2022]
Affiliation(s)
- Ananyaa Kumar
- Division of Pediatric Neurology, Children's Hospital of Michigan, Detroit, Michigan
| | - Kazuki Sakakura
- Department of Pediatrics, Wayne State University School of Medicine, Detroit, Michigan; Department of Neurosurgery, University of Tsukuba, Tsukuba, Japan
| | - Takumi Mitsuhashi
- Department of Pediatrics, Wayne State University School of Medicine, Detroit, Michigan; Department of Neurosurgery, Juntendo University, Tokyo, Japan
| | - Anastasia Railean
- Department of Pediatrics, Wake Forest Baptist Health and Brenner Children's Hospital, Winston-Salem, North Carolina
| | - Aimee F Luat
- Division of Pediatric Neurology, Children's Hospital of Michigan, Detroit, Michigan; Department of Pediatrics, Wayne State University School of Medicine, Detroit, Michigan; Carman and Ann Adams, Department of Pediatrics, Children's Hospital of Michigan, Detroit, Michigan; Department of Pediatrics Central Michigan University College of Medicine, Mt. Pleasant, Michigan.
| |
Collapse
|
37
|
Inherited Platelet Disorders: An Updated Overview. Int J Mol Sci 2021; 22:ijms22094521. [PMID: 33926054 PMCID: PMC8123627 DOI: 10.3390/ijms22094521] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/17/2021] [Accepted: 04/21/2021] [Indexed: 02/06/2023] Open
Abstract
Platelets play a major role in hemostasis as ppwell as in many other physiological and pathological processes. Accordingly, production of about 1011 platelet per day as well as appropriate survival and functions are life essential events. Inherited platelet disorders (IPDs), affecting either platelet count or platelet functions, comprise a heterogenous group of about sixty rare diseases caused by molecular anomalies in many culprit genes. Their clinical relevance is highly variable according to the specific disease and even within the same type, ranging from almost negligible to life-threatening. Mucocutaneous bleeding diathesis (epistaxis, gum bleeding, purpura, menorrhagia), but also multisystemic disorders and/or malignancy comprise the clinical spectrum of IPDs. The early and accurate diagnosis of IPDs and a close patient medical follow-up is of great importance. A genotype-phenotype relationship in many IPDs makes a molecular diagnosis especially relevant to proper clinical management. Genetic diagnosis of IPDs has been greatly facilitated by the introduction of high throughput sequencing (HTS) techniques into mainstream investigation practice in these diseases. However, there are still unsolved ethical concerns on general genetic investigations. Patients should be informed and comprehend the potential implications of their genetic analysis. Unlike the progress in diagnosis, there have been no major advances in the clinical management of IPDs. Educational and preventive measures, few hemostatic drugs, platelet transfusions, thrombopoietin receptor agonists, and in life-threatening IPDs, allogeneic hematopoietic stem cell transplantation are therapeutic possibilities. Gene therapy may be a future option. Regular follow-up by a specialized hematology service with multidisciplinary support especially for syndromic IPDs is mandatory.
Collapse
|
38
|
Jensen KK, Oh KY, Patel N, Narasimhan ER, Ku AS, Sohaey R. Fetal Hepatomegaly: Causes and Associations. Radiographics 2021; 40:589-604. [PMID: 32125959 DOI: 10.1148/rg.2020190114] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Fetal hepatomegaly is associated with significant fetal morbidity and mortality. However, hepatomegaly might be overlooked when numerous other fetal anomalies are present, or it might not be noticed when it is an isolated entity. As the largest solid organ in the abdomen, the liver can be seen well with US or MRI, and the normal imaging characteristics are well described. The length of the fetal liver, which can be used to identify hepatomegaly, can be determined by measuring the liver from the diaphragm to the tip of the right lobe in the sagittal plane. Fetal hepatomegaly is seen with infection, transient abnormal myelopoiesis, liver storage and deposition diseases, some syndromes, large liver tumors, biliary atresia, and anemia. Some of these diagnoses are treatable during the fetal period. Attention to the associated findings and specific hepatic and nonhepatic imaging characteristics can help facilitate more accurate diagnoses and appropriate patient counseling.©RSNA, 2020.
Collapse
Affiliation(s)
- Kyle K Jensen
- From the Department of Diagnostic Radiology, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, L-340, Portland, OR 97239
| | - Karen Y Oh
- From the Department of Diagnostic Radiology, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, L-340, Portland, OR 97239
| | - Neel Patel
- From the Department of Diagnostic Radiology, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, L-340, Portland, OR 97239
| | - Evan R Narasimhan
- From the Department of Diagnostic Radiology, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, L-340, Portland, OR 97239
| | - Alexei S Ku
- From the Department of Diagnostic Radiology, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, L-340, Portland, OR 97239
| | - Roya Sohaey
- From the Department of Diagnostic Radiology, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, L-340, Portland, OR 97239
| |
Collapse
|
39
|
Luo S, Chen L, Wei W, Tan L, Zhang M, Duan Z, Cao J, Zhou Y, Zhou A, He X. Prenatal Genetic Diagnosis in Three Fetuses With Left Heart Hypoplasia (LHH) From Three Unrelated Families. Front Cardiovasc Med 2021; 8:631374. [PMID: 33898534 PMCID: PMC8062744 DOI: 10.3389/fcvm.2021.631374] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 03/04/2021] [Indexed: 01/15/2023] Open
Abstract
Background: Congenital heart defects (CHDs) are the most common birth defects, and left heart hypoplasia (LHH) is a severe form of CHD and responsible for more than 20% cardiac deaths during the first week of life, however, its genetic causes remain largely elusive. Methods: Three families with fetal LHH were recruited. Genomic DNA from amniotic fluid or peripheral blood, and trio whole exome sequencing (trio-WES) and copy number variation sequencing (CNV-seq) were performed. Results: All the three couples had no family history, and mid-gestation ultrasound revealed LHH and other variable cardiovascular defects in the fetuses. Trio-WES revealed de novo pathogenic variations in KMT2D (p.Gly3465Aspfs*37) (NM_003482) and WDFY3 (p.Ser117Xfs*) (NM_014991), and CNV-seq identified a deletion of 150 kb encompassing NOTCH1. KMT2D and NOTCH1 previously have been reported to be associated with CHDs, however, WDFY3 is reported for the first time to be possibly related to CHD in human. Conclusion: Our study suggested that genetic component is an important risk factor for the development of LHH, and next generation sequencing is a powerful tool for genetic diagnosis in fetuses with CHDs and genetic counseling, however, more studies and data are need to establish the correlation of fetal phenotypes and genotypes.
Collapse
Affiliation(s)
- Sukun Luo
- Precision Medical Center, Tongji Medical College, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Huazhong University of Science and Technology, Wuhan, China
| | - Luyi Chen
- Prenatal Diagnosis Center, Tongji Medical College, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Huazhong University of Science and Technology, Wuhan, China
| | - Weizhong Wei
- Ultrasonic Diagnosis Department, Tongji Medical College, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Huazhong University of Science and Technology, Wuhan, China
| | - Li Tan
- Precision Medical Center, Tongji Medical College, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Huazhong University of Science and Technology, Wuhan, China
| | - Meng Zhang
- Ultrasonic Diagnosis Department, Tongji Medical College, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Huazhong University of Science and Technology, Wuhan, China
| | - Zhengrong Duan
- Prenatal Diagnosis Center, Tongji Medical College, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Huazhong University of Science and Technology, Wuhan, China
| | - Jiangxia Cao
- Prenatal Diagnosis Center, Tongji Medical College, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Huazhong University of Science and Technology, Wuhan, China
| | - Yan Zhou
- Prenatal Diagnosis Center, Tongji Medical College, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Huazhong University of Science and Technology, Wuhan, China
| | - Aifen Zhou
- Prenatal Diagnosis Center, Tongji Medical College, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Huazhong University of Science and Technology, Wuhan, China
| | - Xuelian He
- Precision Medical Center, Tongji Medical College, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
40
|
Mitsogiannis MD, Pancho A, Aerts T, Sachse SM, Vanlaer R, Noterdaeme L, Schmucker D, Seuntjens E. Subtle Roles of Down Syndrome Cell Adhesion Molecules in Embryonic Forebrain Development and Neuronal Migration. Front Cell Dev Biol 2021; 8:624181. [PMID: 33585465 PMCID: PMC7876293 DOI: 10.3389/fcell.2020.624181] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 12/22/2020] [Indexed: 12/26/2022] Open
Abstract
Down Syndrome (DS) Cell Adhesion Molecules (DSCAMs) are transmembrane proteins of the immunoglobulin superfamily. Human DSCAM is located within the DS critical region of chromosome 21 (duplicated in Down Syndrome patients), and mutations or copy-number variations of this gene have also been associated to Fragile X syndrome, intellectual disability, autism, and bipolar disorder. The DSCAM paralogue DSCAM-like 1 (DSCAML1) maps to chromosome 11q23, implicated in the development of Jacobsen and Tourette syndromes. Additionally, a spontaneous mouse DSCAM deletion leads to motor coordination defects and seizures. Previous research has revealed roles for DSCAMs in several neurodevelopmental processes, including synaptogenesis, dendritic self-avoidance, cell sorting, axon growth and branching. However, their functions in embryonic mammalian forebrain development have yet to be completely elucidated. In this study, we revealed highly dynamic spatiotemporal patterns of Dscam and Dscaml1 expression in definite cortical layers of the embryonic mouse brain, as well as in structures and ganglionic eminence-derived neural populations within the embryonic subpallium. However, an in-depth histological analysis of cortical development, ventral forebrain morphogenesis, cortical interneuron migration, and cortical-subcortical connectivity formation processes in Dscam and Dscaml1 knockout mice (Dscam del17 and Dscaml1 GT ) at several embryonic stages indicated that constitutive loss of Dscam and Dscaml1 does not affect these developmental events in a significant manner. Given that several Dscam- and Dscaml1-linked neurodevelopmental disorders are associated to chromosomal region duplication events, we furthermore sought to examine the neurodevelopmental effects of Dscam and Dscaml1 gain of function (GOF). In vitro, ex vivo, and in vivo GOF negatively impacted neural migration processes important to cortical development, and affected the morphology of maturing neurons. Overall, these findings contribute to existing knowledge on the molecular etiology of human neurodevelopmental disorders by elucidating how dosage variations of genes encoding adhesive cues can disrupt cell-cell or cell-environment interactions crucial for neuronal migration.
Collapse
Affiliation(s)
- Manuela D. Mitsogiannis
- Developmental Neurobiology Group, Animal Physiology and Neurobiology Division, Department of Biology, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Anna Pancho
- Developmental Neurobiology Group, Animal Physiology and Neurobiology Division, Department of Biology, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Tania Aerts
- Developmental Neurobiology Group, Animal Physiology and Neurobiology Division, Department of Biology, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Sonja M. Sachse
- Neuronal Wiring Laboratory, Department of Neurosciences, VIB-KU Leuven Center for Brain & Disease Research, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Ria Vanlaer
- Developmental Neurobiology Group, Animal Physiology and Neurobiology Division, Department of Biology, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Lut Noterdaeme
- Developmental Neurobiology Group, Animal Physiology and Neurobiology Division, Department of Biology, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Dietmar Schmucker
- Neuronal Wiring Laboratory, Department of Neurosciences, VIB-KU Leuven Center for Brain & Disease Research, Katholieke Universiteit Leuven, Leuven, Belgium
- Neuronal Wiring Group, Life & Medical Sciences Institute, University of Bonn, Bonn, Germany
| | - Eve Seuntjens
- Developmental Neurobiology Group, Animal Physiology and Neurobiology Division, Department of Biology, Katholieke Universiteit Leuven, Leuven, Belgium
| |
Collapse
|
41
|
Gunaseelan S, Wang Z, Tong VKJ, Ming SWS, Razar RBBA, Srimasorn S, Ong WY, Lim KL, Chua JJE. Loss of FEZ1, a gene deleted in Jacobsen syndrome, causes locomotion defects and early mortality by impairing motor neuron development. Hum Mol Genet 2021; 30:5-20. [PMID: 33395696 DOI: 10.1093/hmg/ddaa281] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 12/10/2020] [Accepted: 12/23/2020] [Indexed: 01/05/2023] Open
Abstract
FEZ1-mediated axonal transport plays important roles in central nervous system development but its involvement in the peripheral nervous system is not well-characterized. FEZ1 is deleted in Jacobsen syndrome (JS), an 11q terminal deletion developmental disorder. JS patients display impaired psychomotor skills, including gross and fine motor delay, suggesting that FEZ1 deletion may be responsible for these phenotypes, given its association with the development of motor-related circuits. Supporting this hypothesis, our data show that FEZ1 is selectively expressed in the rat brain and spinal cord. Its levels progressively increase over the developmental course of human motor neurons (MN) derived from embryonic stem cells. Deletion of FEZ1 strongly impaired axon and dendrite development, and significantly delayed the transport of synaptic proteins into developing neurites. Concurring with these observations, Drosophila unc-76 mutants showed severe locomotion impairments, accompanied by a strong reduction of synaptic boutons at neuromuscular junctions. These abnormalities were ameliorated by pharmacological activation of UNC-51/ATG1, a FEZ1-activating kinase, with rapamycin and metformin. Collectively, the results highlight a role for FEZ1 in MN development and implicate its deletion as an underlying cause of motor impairments in JS patients.
Collapse
Affiliation(s)
- Saravanan Gunaseelan
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Ziyin Wang
- National Neuroscience Institute, Singapore, Singapore
| | - Venetia Kok Jing Tong
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,National Neuroscience Institute, Singapore, Singapore
| | - Sylvester Wong Shu Ming
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | | | - Sumitra Srimasorn
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Wei-Yi Ong
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Kah-Leong Lim
- National Neuroscience Institute, Singapore, Singapore.,Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - John Jia En Chua
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,LSI Neurobiology Programme, National University of Singapore, Singapore, Singapore.,Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Institute for Health Innovation and Technology, National University of Singapore, Singapore, Singapore.,Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| |
Collapse
|
42
|
Dayal D, Panigrahi I, Varma TH, Gupta S, Gupta A, Kumar R, Sachdeva N. Ten-year use of recombinant parathyroid hormone for the treatment of hypoparathyroidism in a boy with partial Jacobsen syndrome. Pediatr Endocrinol Diabetes Metab 2021; 27:57-61. [PMID: 33191722 PMCID: PMC10227483 DOI: 10.5114/pedm.2020.100402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 07/08/2020] [Indexed: 06/07/2023]
Abstract
Pediatric hypoparathyroidism (HPT) is caused by inherited or acquired defects involving the synthesis or secretion of PTH, resistance to PTH action, or inappropriate regulation of PTH. Several syndromes such as DiGeorge syndrome, HDR (hypoparathyroidism, sensorineural deafness and renal dysplasia) syndrome, HRD (hypoparathyroidism, retardation, and dysmorphism) syndrome, Kenny-Caffey syndrome etc. may have associated HPT. In the present communication, we describe, the hitherto unreported, occurrence of HPT in a child with partial Jacobsen syndrome. Chromosomal Microarray analysis showed a heterozygous deletion of 4.7 Mb at cytoband 11q24.3q25 encompassing approximately 20 genes including JAM3 and NTM genes. The child was treated with recombinant human parathyroid hormone (rhPTH1-34) for 10 years. Throughout follow up, he required several adjustments in dosages of rhPTH1-34 and oral calcium to maintain serum calcium concentrations in low normal ranges. The bone turnover markers remained normal and oral calcium supplements were completely taken off after 8 years. In conclusion, our single-case experience indicates that long-term therapy of chronic HPT with rhPTH1-34 is safe and reduces the need for additional therapies.
Collapse
Affiliation(s)
- Devi Dayal
- Endocrinology and Diabetes Unit, Department of Pediatrics, Postgraduate Institute of Medical Education and Research, India
| | - Inusha Panigrahi
- Genetic-Metabolic Unit, Department of Pediatrics, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Tandra Harish Varma
- Endocrinology and Diabetes Unit, Department of Pediatrics, Postgraduate Institute of Medical Education and Research, India
| | - Saniya Gupta
- Endocrinology and Diabetes Unit, Department of Pediatrics, Postgraduate Institute of Medical Education and Research, India
| | - Atul Gupta
- Endocrinology and Diabetes Unit, Department of Pediatrics, Postgraduate Institute of Medical Education and Research, India
| | - Rakesh Kumar
- Endocrinology and Diabetes Unit, Department of Pediatrics, Postgraduate Institute of Medical Education and Research, India
| | - Naresh Sachdeva
- Department of Endocrinology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
43
|
Dilley M, Wangberg H, Noone J, Geng B. Primary immunodeficiency diseases treated with immunoglobulin and associated comorbidities. Allergy Asthma Proc 2021; 42:78-86. [PMID: 33404391 DOI: 10.2500/aap.2021.42.200113] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Background: Primary immunodeficiency diseases (PIDD) consist of a heterogeneous group of disorders characterized by various aspects of immune dysregulation. Although the most universally recognized manifestation of PIDD is an increased susceptibility to infections, there is a growing body of evidence that patients with PIDD often have a higher incidence of lung disease, autoimmunity, autoinflammatory disorders, and malignancy. Objective: The purpose of this study was to better understand the noninfectious complications of PIDD by determining the comorbid disease prevalence across various age groups, genders, and immunoglobulin replacement types compared with the general population. Methods: A large U.S. insurance claims database was retrospectively analyzed for patients who had a diagnosis of PIDD and who had received intravenous immunoglobulin (IVIG) or subcutaneous immunoglobulin (SCIG). The prevalences of 31 different comorbid conditions in the Elixhauser comorbidity index were compared among the 3125 patients in the PIDD population to > 37 million controls separated by gender and by 10-year age cohorts. Results: In the PIDD population, statistically significantly higher comorbid diagnoses included chronic obstructive pulmonary disease-asthma in 51.5%, rheumatoid disease in 14%, deficiency anemia in 11.8%, hypothyroidism in 21.2%, lymphoma in 16.7%, neurologic disorders in 9.7%, arrhythmias in 19.9%, electrolyte disorders in 23.6%, coagulopathies in 16.9%, and weight loss in 8.4%. Conclusion: PIDD that require immunoglobulin replacement are associated with an increased risk of numerous comorbid conditions that affect morbidity and mortality. Recognition and increased awareness of these noninfectious complications can allow for better monitoring, care coordination, targeted treatments, and improved prognosis.
Collapse
Affiliation(s)
- Michelle Dilley
- From the Division of Allergy, Immunology and Rheumatology, University of California San Diego and Rady Children's Hospital, San Diego, California
| | - Hannah Wangberg
- From the Division of Allergy, Immunology and Rheumatology, University of California San Diego and Rady Children's Hospital, San Diego, California
| | - Joshua Noone
- Department of Public Health Sciences, University of North Carolina, Charlotte, North Carolina
| | - Bob Geng
- From the Division of Allergy, Immunology and Rheumatology, University of California San Diego and Rady Children's Hospital, San Diego, California
| |
Collapse
|
44
|
Pecci A, Balduini CL. Inherited thrombocytopenias: an updated guide for clinicians. Blood Rev 2020; 48:100784. [PMID: 33317862 DOI: 10.1016/j.blre.2020.100784] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 10/05/2020] [Accepted: 10/28/2020] [Indexed: 02/06/2023]
Abstract
The great advances in the knowledge of inherited thrombocytopenias (ITs) made since the turn of the century have significantly changed our view of these conditions. To date, ITs encompass 45 disorders with different degrees of complexity of the clinical picture and very wide variability in the prognosis. They include forms characterized by thrombocytopenia alone, forms that present with other congenital defects, and conditions that predispose to acquire additional diseases over the course of life. In this review, we recapitulate the clinical features of ITs with emphasis on the forms predisposing to additional diseases. We then discuss the key issues for a rational approach to the diagnosis of ITs in clinical practice. Finally, we aim to provide an updated and comprehensive guide to the treatment of ITs, including the management of hemostatic challenges, the treatment of severe forms, and the approach to the manifestations that add to thrombocytopenia.
Collapse
Affiliation(s)
- Alessandro Pecci
- Department of Internal Medicine, IRCCS Policlinico San Matteo Foundation and University of Pavia, Pavia, Italy.
| | | |
Collapse
|
45
|
Fujino S, Yoshihashi H, Takeda R, Ihara S, Miyama S. White matter abnormality in Jacobsen syndrome assessed by serial MRI. Brain Dev 2020; 42:621-625. [PMID: 32507665 DOI: 10.1016/j.braindev.2020.05.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 04/09/2020] [Accepted: 05/03/2020] [Indexed: 01/10/2023]
Abstract
INTRODUCTION Jacobsen syndrome (JS) is caused by a deletion at the terminus of the long arm of chromosome 11. There are few reports of JS associated with cerebral white matter abnormalities (WMA), and the etiology, pathophysiology, and time-dependent changes in WMA with JS still remain unclear. CASE REPORT The patient was a 2-month-old female with several morphological anomalies, including trigonocephaly, ectropion, flat nasal bridge, low-set ears, and sparse eyebrows. Chromosome analysis (G-banding karyotyping) of 46,XX,del(11)(q23.3) led to the diagnosis of JS. Head MRI performed at age 9 months indicated diffuse WMA with hyperintense signals on T2-weighted imaging. MRI at age 2.5 years demonstrated a decrease in the WMA and progressive myelination. DISCUSSION These findings suggested that the WMA in the present patient were due to chronic white matter edema associated with a deletion in the 11q terminal region of HEPACAM/GlialCAM, a causative gene for megalencephalic leukoencephalopathy with subcortical cysts type 2B (MLC2B). As with some of MLC2B patients, the WMA in the present patient improved over time. The present report is the first to document dramatic changes in WMA in JS visualized by serial MRI examinations from the neonatal period through early childhood. CONCLUSION The findings of the present study suggested that WMA in JS are due to chronic white matter edema associated with HEPACAM/GlialCAM deletion and show gradual improvement over time, as seen in some MLC2B patients.
Collapse
Affiliation(s)
- Shuhei Fujino
- Department of Neurology, Tokyo Metropolitan Children's Medical Center, Japan.
| | - Hiroshi Yoshihashi
- Department of Medical Genetics, Tokyo Metropolitan Children's Medical Center, Japan
| | - Ryojun Takeda
- Department of Medical Genetics, Tokyo Metropolitan Children's Medical Center, Japan
| | - Satoshi Ihara
- Department of Neurosurgery, Tokyo Metropolitan Children's Medical Center, Japan
| | - Sahoko Miyama
- Department of Neurology, Tokyo Metropolitan Children's Medical Center, Japan
| |
Collapse
|
46
|
Jung N, Shim YJ. Current Knowledge on Inherited Platelet Function Disorders. CLINICAL PEDIATRIC HEMATOLOGY-ONCOLOGY 2020. [DOI: 10.15264/cpho.2020.27.1.1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- Nani Jung
- Department of Pediatrics, Keimyung University School of Medicine, Keimyung University Dongsan Medical Center, Daegu, Korea
| | - Ye Jee Shim
- Department of Pediatrics, Keimyung University School of Medicine, Keimyung University Dongsan Medical Center, Daegu, Korea
| |
Collapse
|
47
|
6q25.1 (TAB2) microdeletion is a risk factor for hypoplastic left heart: a case report that expands the phenotype. BMC Cardiovasc Disord 2020; 20:137. [PMID: 32183715 PMCID: PMC7077097 DOI: 10.1186/s12872-020-01404-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 02/28/2020] [Indexed: 12/26/2022] Open
Abstract
Introduction Hypoplastic left heart syndrome (HLHS) is a rare but devastating congenital heart defect (CHD) accounting for 25% of all infant deaths due to a CHD. The etiology of HLHS remains elusive, but there is increasing evidence to support a genetic cause for HLHS; in particular, this syndrome is associated with abnormalities in genes involved in cardiac development. Consistent with the involvement of heritable genes in structural heart abnormalities, family members of HLHS patients have a higher incidence of both left- and right-sided valve abnormalities, including bicuspid aortic valve (BAV). Case presentation We previously described (Am J Med Genet A 173:1848–1857, 2017) a 4-generation family with a 6q25.1 microdeletion encompassing TAB2, a gene known to play an important role in outflow tract and cardiac valve formation during embryonic development. Affected adult family members have short stature, dysmorphic facial features, and multiple valve dysplasia, including BAV. This follow-up report includes previously unpublished details of the cardiac phenotype of affected family members. It also describes a baby recently born into this family who was diagnosed prenatally with short long bones, intrauterine growth restriction (IUGR), and HLHS. He was the second family member to have HLHS; the first died several decades ago. Postnatal genetic testing confirmed the baby had inherited the familial TAB2 deletion. Conclusions Our findings suggest TAB2 haploinsufficiency is a risk factor for HLHS and expands the phenotypic spectrum of this microdeletion syndrome. Chromosomal single nucleotide polymorphism (SNP) microarray analysis and molecular testing for a TAB2 loss of function variant should be considered for individuals with HLHS, particularly in those with additional non-cardiac findings such as IUGR, short stature, and/or dysmorphic facial features.
Collapse
|
48
|
Lalani SR. Other genomic disorders and congenital heart disease. AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2020; 184:107-115. [DOI: 10.1002/ajmg.c.31762] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 12/09/2019] [Indexed: 11/08/2022]
Affiliation(s)
- Seema R. Lalani
- Department of Molecular and Human GeneticsBaylor College of Medicine Houston Texas
| |
Collapse
|
49
|
Chen S, Wang R, Zhang X, Li L, Jiang Y, Liu R, Zhang H. Ultrasonographic findings and prenatal diagnosis of Jacobsen syndrome: A case report and review of the literature. Medicine (Baltimore) 2020; 99:e18695. [PMID: 31895838 PMCID: PMC6946260 DOI: 10.1097/md.0000000000018695] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
RATIONALE Jacobsen syndrome (JBS) is a rare chromosomal disorder with variable phenotypic expressivity, which is usually diagnosed in infancy and childhood based on clinical examination and hematological and cytogenetic findings. Prenatal diagnosis and fetal ultrasonographic findings of JBS are rare. PATIENT CONCERNS A 38-year-old, gravida 3, para 1, pregnant woman underwent clinical ultrasound examination at 22 weeks of gestation. DIAGNOSES Ultrasonographic findings indicated an interventricular septal defect, the presence of septal blood flow, dilation of the left renal pelvis, and a single umbilical artery. Amniocentesis was performed to evaluate possible genetic causes of this diagnosis by cytogenetic and single nucleotide polymorphism (SNP) array analysis. INTERVENTIONS After genetic counseling and informed consent, the couple elected to terminate the pregnancy. OUTCOMES Karyotype analysis showed that the fetal karyotype was 46,XX,del(11)(q23). The SNP array revealed a 6.118 Mb duplication of 11q23.2q23.3 and a 15.03 Mb deletion of 11q23.3q25. LESSONS Ultrasonographic findings of fetal JBS, including an interventricular septal defect, dilation of the left renal pelvis, and a single umbilical artery, may be associated with a 15.03 Mb deletion of 11q23.3q25. Further cases correlating phenotype and genotype are required to predict the postnatal phenotype.
Collapse
|
50
|
Puddy AC, Hughes JL, Joffe AL, Khanna PC, Thornburg CD, Mubarak SJ. Scurvy Findings in a Child with Jacobsen Syndrome: A Case Report. JBJS Case Connect 2019; 9:e0352. [PMID: 31584905 DOI: 10.2106/jbjs.cc.18.00352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
CASE We describe the first reported case of scurvy developing secondary to behavioral traits of Jacobsen syndrome. The diagnosis of scurvy was significantly delayed because bleeding symptoms were initially attributed to baseline thrombocytopenia and platelet dysfunction associated with Jacobsen syndrome and patient's medication. Following vitamin C supplementation, signs and symptoms of the patient's disease quickly resolved. CONCLUSIONS We aim to reinforce the need to consider nutritional deficiencies in patients with complex medical histories and behavioral issues, especially when presenting with new complaints.
Collapse
Affiliation(s)
- Alan C Puddy
- United States Air Force Medical Corps, San Antonio Military Medical Center, Fort Sam Houston, Texas
| | - Jessica L Hughes
- Department of Orthopedic Surgery, Baylor Scott and White, Temple, Texas
| | - Avrum L Joffe
- North Jersey Pediatric Orthopedics, Ridgewood, New Jersey
| | - Paritosh C Khanna
- Division of Radiology, Rady Children's Hospital-San Diego, San Diego, California
| | - Courtney D Thornburg
- Division of Hematology-Oncology, Rady Children's Hospital-San Diego, San Diego, California
| | - Scott J Mubarak
- Division of Orthopedic Surgery, Rady Children's Hospital-San Diego, San Diego, California
| |
Collapse
|