1
|
Zhu G, Zhou H, Ma Y, Liu R, Nie X, Qi W, Hao L, Guo X. A case of X-Linked adrenoleukodystrophy caused by a novel mutation with singular clinical manifestation: unilateral lower limb weakness. Neurol Sci 2024:10.1007/s10072-024-07828-7. [PMID: 39436520 DOI: 10.1007/s10072-024-07828-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 10/17/2024] [Indexed: 10/23/2024]
Abstract
X-linked adrenoleukodystrophy (X-ALD) is caused by mutations in the ABCD1 gene, leading to the accumulation of very long-chain fatty acids (VLCFAs) in plasma and tissues. It primarily affects the central nervous system white matter and the adrenal cortex. Clinical manifestations include myeloneuropathy, leukodystrophy, and adrenal insufficiency. Reliable methods for diagnosis include VLCFAs and genetic testing. We report the case of a 31-year-old male X-ALD patient who mainly presented with unilateral lower limb weakness. Adrenal insufficiency was not observed, and there was no evidence of peripheral nerve involvement in nerve conduction studies. MRI revealed only mild atrophy of thoracic spinal cord without other relevant abnormalities. Ultimately, Next-Generation Sequencing (NGS) and VLCFAs testing confirmed the diagnosis of X-ALD, and the NGS indicated a novel missense mutation.
Collapse
Affiliation(s)
- Geke Zhu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Han Zhou
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Yongbo Ma
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Rui Liu
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Xiangtao Nie
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Wenjing Qi
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Lei Hao
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
| | - Xiuming Guo
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
2
|
Antelo-Cea DA, Martínez-Rojas L, Cabrerizo-Ibáñez I, Roudi Rashtabady A, Hernández-Alvarez MI. Regulation of Mitochondrial and Peroxisomal Metabolism in Female Obesity and Type 2 Diabetes. Int J Mol Sci 2024; 25:11237. [PMID: 39457018 PMCID: PMC11508381 DOI: 10.3390/ijms252011237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 10/16/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024] Open
Abstract
Obesity and type 2 diabetes (T2D) are widespread metabolic disorders that significantly impact global health today, affecting approximately 17% of adults worldwide with obesity and 9.3% with T2D. Both conditions are closely linked to disruptions in lipid metabolism, where peroxisomes play a pivotal role. Mitochondria and peroxisomes are vital organelles responsible for lipid and energy regulation, including the β-oxidation and oxidation of very long-chain fatty acids (VLCFAs), cholesterol biosynthesis, and bile acid metabolism. These processes are significantly influenced by estrogens, highlighting the interplay between these organelles' function and hormonal regulation in the development and progression of metabolic diseases, such as obesity, metabolic dysfunction-associated fatty liver disease (MAFLD), and T2D. Estrogens modulate lipid metabolism through interactions with nuclear receptors, like peroxisome proliferator-activated receptors (PPARs), which are crucial for maintaining metabolic balance. Estrogen deficiency, such as in postmenopausal women, impairs PPAR regulation, leading to lipid accumulation and increased risk of metabolic disorders. The disruption of peroxisomal-mitochondrial function and estrogen regulation exacerbates lipid imbalances, contributing to insulin resistance and ROS accumulation. This review emphasizes the critical role of these organelles and estrogens in lipid metabolism and their implications for metabolic health, suggesting that therapeutic strategies, including hormone replacement therapy, may offer potential benefits in treating and preventing metabolic diseases.
Collapse
Affiliation(s)
- Damián A. Antelo-Cea
- Departament de Bioquímica i Biomedicina Molecular, Facultat de Biologia, Universitat de Barcelona, 08028 Barcelona, Spain; (D.A.A.-C.); (L.M.-R.); (I.C.-I.); (A.R.R.)
- IBUB Universitat de Barcelona—Institut de Biomedicina de la Universitat de Barcelona, 08028 Barcelona, Spain
| | - Laura Martínez-Rojas
- Departament de Bioquímica i Biomedicina Molecular, Facultat de Biologia, Universitat de Barcelona, 08028 Barcelona, Spain; (D.A.A.-C.); (L.M.-R.); (I.C.-I.); (A.R.R.)
| | - Izan Cabrerizo-Ibáñez
- Departament de Bioquímica i Biomedicina Molecular, Facultat de Biologia, Universitat de Barcelona, 08028 Barcelona, Spain; (D.A.A.-C.); (L.M.-R.); (I.C.-I.); (A.R.R.)
| | - Ayda Roudi Rashtabady
- Departament de Bioquímica i Biomedicina Molecular, Facultat de Biologia, Universitat de Barcelona, 08028 Barcelona, Spain; (D.A.A.-C.); (L.M.-R.); (I.C.-I.); (A.R.R.)
- IBUB Universitat de Barcelona—Institut de Biomedicina de la Universitat de Barcelona, 08028 Barcelona, Spain
| | - María Isabel Hernández-Alvarez
- Departament de Bioquímica i Biomedicina Molecular, Facultat de Biologia, Universitat de Barcelona, 08028 Barcelona, Spain; (D.A.A.-C.); (L.M.-R.); (I.C.-I.); (A.R.R.)
- IBUB Universitat de Barcelona—Institut de Biomedicina de la Universitat de Barcelona, 08028 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
3
|
Duncan CN, Bledsoe JR, Grzywacz B, Beckman A, Bonner M, Eichler FS, Kühl JS, Harris MH, Slauson S, Colvin RA, Prasad VK, Downey GF, Pierciey FJ, Kinney MA, Foos M, Lodaya A, Floro N, Parsons G, Dietz AC, Gupta AO, Orchard PJ, Thakar HL, Williams DA. Hematologic Cancer after Gene Therapy for Cerebral Adrenoleukodystrophy. N Engl J Med 2024; 391:1287-1301. [PMID: 39383458 DOI: 10.1056/nejmoa2405541] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/11/2024]
Abstract
BACKGROUND Gene therapy with elivaldogene autotemcel (eli-cel) consisting of autologous CD34+ cells transduced with lentiviral vector containing ABCD1 complementary DNA (Lenti-D) has shown efficacy in clinical studies for the treatment of cerebral adrenoleukodystrophy. However, the risk of oncogenesis with eli-cel is unclear. METHODS We performed integration-site analysis, genetic studies, flow cytometry, and morphologic studies in peripheral-blood and bone marrow samples from patients who received eli-cel therapy in two completed phase 2-3 studies (ALD-102 and ALD-104) and an ongoing follow-up study (LTF-304) involving the patients in both ALD-102 and ALD-104. RESULTS Hematologic cancer developed in 7 of 67 patients after the receipt of eli-cel (1 of 32 patients in the ALD-102 study and 6 of 35 patients in the ALD-104 study): myelodysplastic syndrome (MDS) with unilineage dysplasia in 2 patients at 14 and 26 months; MDS with excess blasts in 3 patients at 28, 42, and 92 months; MDS in 1 patient at 36 months; and acute myeloid leukemia (AML) in 1 patient at 57 months. In the 6 patients with available data, predominant clones contained lentiviral vector insertions at multiple loci, including at either MECOM-EVI1 (MDS and EVI1 complex protein EVI1 [ecotropic virus integration site 1], in 5 patients) or PRDM16 (positive regulatory domain zinc finger protein 16, in 1 patient). Several patients had cytopenias, and most had vector insertions in multiple genes within the same clone; 6 of the 7 patients also had somatic mutations (KRAS, NRAS, WT1, CDKN2A or CDKN2B, or RUNX1), and 1 of the 7 patients had monosomy 7. Of the 5 patients with MDS with excess blasts or MDS with unilineage dysplasia who underwent allogeneic hematopoietic stem-cell transplantation (HSCT), 4 patients remain free of MDS without recurrence of symptoms of cerebral adrenoleukodystrophy, and 1 patient died from presumed graft-versus-host disease 20 months after HSCT (49 months after receiving eli-cel). The patient with AML is alive and had full donor chimerism after HSCT; the patient with the most recent case of MDS is alive and awaiting HSCT. CONCLUSIONS Hematologic cancer developed in a subgroup of patients who were treated with eli-cel; the cases are associated with clonal vector insertions within oncogenes and clonal evolution with acquisition of somatic genetic defects. (Funded by Bluebird Bio; ALD-102, ALD-104, and LTF-304 ClinicalTrials.gov numbers, NCT01896102, NCT03852498, and NCT02698579, respectively.).
Collapse
Affiliation(s)
- Christine N Duncan
- From Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Harvard Medical School (C.N.D., D.A.W.), the Department of Pathology, Boston Children's Hospital (J.R.B., M.H.H.), and Massachusetts General Hospital and Harvard Medical School (F.S.E.) - all in Boston; the Department of Laboratory Medicine and Pathology, University of Minnesota Medical Center (B.G., A.B.), and the Division of Blood and Marrow Transplantation, Department of Pediatrics, University of Minnesota (A.O.G., P.J.O.) - both in Minneapolis; Bluebird Bio, Somerville, MA (M.B., S.S., R.A.C., V.K.P., G.F.D., F.J.P., M.A.K., M.F., A.L., N.F., G.P., A.C.D., H.L.T.); the Department of Pediatric Oncology, Hematology and Hemostaseology, Leipzig University Hospital, Leipzig, Germany (J.-S.K.); and the Division of Pediatric Transplant and Cellular Therapy, Duke University School of Medicine, Durham, NC (V.K.P.)
| | - Jacob R Bledsoe
- From Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Harvard Medical School (C.N.D., D.A.W.), the Department of Pathology, Boston Children's Hospital (J.R.B., M.H.H.), and Massachusetts General Hospital and Harvard Medical School (F.S.E.) - all in Boston; the Department of Laboratory Medicine and Pathology, University of Minnesota Medical Center (B.G., A.B.), and the Division of Blood and Marrow Transplantation, Department of Pediatrics, University of Minnesota (A.O.G., P.J.O.) - both in Minneapolis; Bluebird Bio, Somerville, MA (M.B., S.S., R.A.C., V.K.P., G.F.D., F.J.P., M.A.K., M.F., A.L., N.F., G.P., A.C.D., H.L.T.); the Department of Pediatric Oncology, Hematology and Hemostaseology, Leipzig University Hospital, Leipzig, Germany (J.-S.K.); and the Division of Pediatric Transplant and Cellular Therapy, Duke University School of Medicine, Durham, NC (V.K.P.)
| | - Bartosz Grzywacz
- From Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Harvard Medical School (C.N.D., D.A.W.), the Department of Pathology, Boston Children's Hospital (J.R.B., M.H.H.), and Massachusetts General Hospital and Harvard Medical School (F.S.E.) - all in Boston; the Department of Laboratory Medicine and Pathology, University of Minnesota Medical Center (B.G., A.B.), and the Division of Blood and Marrow Transplantation, Department of Pediatrics, University of Minnesota (A.O.G., P.J.O.) - both in Minneapolis; Bluebird Bio, Somerville, MA (M.B., S.S., R.A.C., V.K.P., G.F.D., F.J.P., M.A.K., M.F., A.L., N.F., G.P., A.C.D., H.L.T.); the Department of Pediatric Oncology, Hematology and Hemostaseology, Leipzig University Hospital, Leipzig, Germany (J.-S.K.); and the Division of Pediatric Transplant and Cellular Therapy, Duke University School of Medicine, Durham, NC (V.K.P.)
| | - Amy Beckman
- From Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Harvard Medical School (C.N.D., D.A.W.), the Department of Pathology, Boston Children's Hospital (J.R.B., M.H.H.), and Massachusetts General Hospital and Harvard Medical School (F.S.E.) - all in Boston; the Department of Laboratory Medicine and Pathology, University of Minnesota Medical Center (B.G., A.B.), and the Division of Blood and Marrow Transplantation, Department of Pediatrics, University of Minnesota (A.O.G., P.J.O.) - both in Minneapolis; Bluebird Bio, Somerville, MA (M.B., S.S., R.A.C., V.K.P., G.F.D., F.J.P., M.A.K., M.F., A.L., N.F., G.P., A.C.D., H.L.T.); the Department of Pediatric Oncology, Hematology and Hemostaseology, Leipzig University Hospital, Leipzig, Germany (J.-S.K.); and the Division of Pediatric Transplant and Cellular Therapy, Duke University School of Medicine, Durham, NC (V.K.P.)
| | - Melissa Bonner
- From Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Harvard Medical School (C.N.D., D.A.W.), the Department of Pathology, Boston Children's Hospital (J.R.B., M.H.H.), and Massachusetts General Hospital and Harvard Medical School (F.S.E.) - all in Boston; the Department of Laboratory Medicine and Pathology, University of Minnesota Medical Center (B.G., A.B.), and the Division of Blood and Marrow Transplantation, Department of Pediatrics, University of Minnesota (A.O.G., P.J.O.) - both in Minneapolis; Bluebird Bio, Somerville, MA (M.B., S.S., R.A.C., V.K.P., G.F.D., F.J.P., M.A.K., M.F., A.L., N.F., G.P., A.C.D., H.L.T.); the Department of Pediatric Oncology, Hematology and Hemostaseology, Leipzig University Hospital, Leipzig, Germany (J.-S.K.); and the Division of Pediatric Transplant and Cellular Therapy, Duke University School of Medicine, Durham, NC (V.K.P.)
| | - Florian S Eichler
- From Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Harvard Medical School (C.N.D., D.A.W.), the Department of Pathology, Boston Children's Hospital (J.R.B., M.H.H.), and Massachusetts General Hospital and Harvard Medical School (F.S.E.) - all in Boston; the Department of Laboratory Medicine and Pathology, University of Minnesota Medical Center (B.G., A.B.), and the Division of Blood and Marrow Transplantation, Department of Pediatrics, University of Minnesota (A.O.G., P.J.O.) - both in Minneapolis; Bluebird Bio, Somerville, MA (M.B., S.S., R.A.C., V.K.P., G.F.D., F.J.P., M.A.K., M.F., A.L., N.F., G.P., A.C.D., H.L.T.); the Department of Pediatric Oncology, Hematology and Hemostaseology, Leipzig University Hospital, Leipzig, Germany (J.-S.K.); and the Division of Pediatric Transplant and Cellular Therapy, Duke University School of Medicine, Durham, NC (V.K.P.)
| | - Jörn-Sven Kühl
- From Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Harvard Medical School (C.N.D., D.A.W.), the Department of Pathology, Boston Children's Hospital (J.R.B., M.H.H.), and Massachusetts General Hospital and Harvard Medical School (F.S.E.) - all in Boston; the Department of Laboratory Medicine and Pathology, University of Minnesota Medical Center (B.G., A.B.), and the Division of Blood and Marrow Transplantation, Department of Pediatrics, University of Minnesota (A.O.G., P.J.O.) - both in Minneapolis; Bluebird Bio, Somerville, MA (M.B., S.S., R.A.C., V.K.P., G.F.D., F.J.P., M.A.K., M.F., A.L., N.F., G.P., A.C.D., H.L.T.); the Department of Pediatric Oncology, Hematology and Hemostaseology, Leipzig University Hospital, Leipzig, Germany (J.-S.K.); and the Division of Pediatric Transplant and Cellular Therapy, Duke University School of Medicine, Durham, NC (V.K.P.)
| | - Marian H Harris
- From Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Harvard Medical School (C.N.D., D.A.W.), the Department of Pathology, Boston Children's Hospital (J.R.B., M.H.H.), and Massachusetts General Hospital and Harvard Medical School (F.S.E.) - all in Boston; the Department of Laboratory Medicine and Pathology, University of Minnesota Medical Center (B.G., A.B.), and the Division of Blood and Marrow Transplantation, Department of Pediatrics, University of Minnesota (A.O.G., P.J.O.) - both in Minneapolis; Bluebird Bio, Somerville, MA (M.B., S.S., R.A.C., V.K.P., G.F.D., F.J.P., M.A.K., M.F., A.L., N.F., G.P., A.C.D., H.L.T.); the Department of Pediatric Oncology, Hematology and Hemostaseology, Leipzig University Hospital, Leipzig, Germany (J.-S.K.); and the Division of Pediatric Transplant and Cellular Therapy, Duke University School of Medicine, Durham, NC (V.K.P.)
| | - Sarah Slauson
- From Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Harvard Medical School (C.N.D., D.A.W.), the Department of Pathology, Boston Children's Hospital (J.R.B., M.H.H.), and Massachusetts General Hospital and Harvard Medical School (F.S.E.) - all in Boston; the Department of Laboratory Medicine and Pathology, University of Minnesota Medical Center (B.G., A.B.), and the Division of Blood and Marrow Transplantation, Department of Pediatrics, University of Minnesota (A.O.G., P.J.O.) - both in Minneapolis; Bluebird Bio, Somerville, MA (M.B., S.S., R.A.C., V.K.P., G.F.D., F.J.P., M.A.K., M.F., A.L., N.F., G.P., A.C.D., H.L.T.); the Department of Pediatric Oncology, Hematology and Hemostaseology, Leipzig University Hospital, Leipzig, Germany (J.-S.K.); and the Division of Pediatric Transplant and Cellular Therapy, Duke University School of Medicine, Durham, NC (V.K.P.)
| | - Richard A Colvin
- From Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Harvard Medical School (C.N.D., D.A.W.), the Department of Pathology, Boston Children's Hospital (J.R.B., M.H.H.), and Massachusetts General Hospital and Harvard Medical School (F.S.E.) - all in Boston; the Department of Laboratory Medicine and Pathology, University of Minnesota Medical Center (B.G., A.B.), and the Division of Blood and Marrow Transplantation, Department of Pediatrics, University of Minnesota (A.O.G., P.J.O.) - both in Minneapolis; Bluebird Bio, Somerville, MA (M.B., S.S., R.A.C., V.K.P., G.F.D., F.J.P., M.A.K., M.F., A.L., N.F., G.P., A.C.D., H.L.T.); the Department of Pediatric Oncology, Hematology and Hemostaseology, Leipzig University Hospital, Leipzig, Germany (J.-S.K.); and the Division of Pediatric Transplant and Cellular Therapy, Duke University School of Medicine, Durham, NC (V.K.P.)
| | - Vinod K Prasad
- From Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Harvard Medical School (C.N.D., D.A.W.), the Department of Pathology, Boston Children's Hospital (J.R.B., M.H.H.), and Massachusetts General Hospital and Harvard Medical School (F.S.E.) - all in Boston; the Department of Laboratory Medicine and Pathology, University of Minnesota Medical Center (B.G., A.B.), and the Division of Blood and Marrow Transplantation, Department of Pediatrics, University of Minnesota (A.O.G., P.J.O.) - both in Minneapolis; Bluebird Bio, Somerville, MA (M.B., S.S., R.A.C., V.K.P., G.F.D., F.J.P., M.A.K., M.F., A.L., N.F., G.P., A.C.D., H.L.T.); the Department of Pediatric Oncology, Hematology and Hemostaseology, Leipzig University Hospital, Leipzig, Germany (J.-S.K.); and the Division of Pediatric Transplant and Cellular Therapy, Duke University School of Medicine, Durham, NC (V.K.P.)
| | - Gerald F Downey
- From Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Harvard Medical School (C.N.D., D.A.W.), the Department of Pathology, Boston Children's Hospital (J.R.B., M.H.H.), and Massachusetts General Hospital and Harvard Medical School (F.S.E.) - all in Boston; the Department of Laboratory Medicine and Pathology, University of Minnesota Medical Center (B.G., A.B.), and the Division of Blood and Marrow Transplantation, Department of Pediatrics, University of Minnesota (A.O.G., P.J.O.) - both in Minneapolis; Bluebird Bio, Somerville, MA (M.B., S.S., R.A.C., V.K.P., G.F.D., F.J.P., M.A.K., M.F., A.L., N.F., G.P., A.C.D., H.L.T.); the Department of Pediatric Oncology, Hematology and Hemostaseology, Leipzig University Hospital, Leipzig, Germany (J.-S.K.); and the Division of Pediatric Transplant and Cellular Therapy, Duke University School of Medicine, Durham, NC (V.K.P.)
| | - Francis J Pierciey
- From Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Harvard Medical School (C.N.D., D.A.W.), the Department of Pathology, Boston Children's Hospital (J.R.B., M.H.H.), and Massachusetts General Hospital and Harvard Medical School (F.S.E.) - all in Boston; the Department of Laboratory Medicine and Pathology, University of Minnesota Medical Center (B.G., A.B.), and the Division of Blood and Marrow Transplantation, Department of Pediatrics, University of Minnesota (A.O.G., P.J.O.) - both in Minneapolis; Bluebird Bio, Somerville, MA (M.B., S.S., R.A.C., V.K.P., G.F.D., F.J.P., M.A.K., M.F., A.L., N.F., G.P., A.C.D., H.L.T.); the Department of Pediatric Oncology, Hematology and Hemostaseology, Leipzig University Hospital, Leipzig, Germany (J.-S.K.); and the Division of Pediatric Transplant and Cellular Therapy, Duke University School of Medicine, Durham, NC (V.K.P.)
| | - Melissa A Kinney
- From Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Harvard Medical School (C.N.D., D.A.W.), the Department of Pathology, Boston Children's Hospital (J.R.B., M.H.H.), and Massachusetts General Hospital and Harvard Medical School (F.S.E.) - all in Boston; the Department of Laboratory Medicine and Pathology, University of Minnesota Medical Center (B.G., A.B.), and the Division of Blood and Marrow Transplantation, Department of Pediatrics, University of Minnesota (A.O.G., P.J.O.) - both in Minneapolis; Bluebird Bio, Somerville, MA (M.B., S.S., R.A.C., V.K.P., G.F.D., F.J.P., M.A.K., M.F., A.L., N.F., G.P., A.C.D., H.L.T.); the Department of Pediatric Oncology, Hematology and Hemostaseology, Leipzig University Hospital, Leipzig, Germany (J.-S.K.); and the Division of Pediatric Transplant and Cellular Therapy, Duke University School of Medicine, Durham, NC (V.K.P.)
| | - Marianna Foos
- From Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Harvard Medical School (C.N.D., D.A.W.), the Department of Pathology, Boston Children's Hospital (J.R.B., M.H.H.), and Massachusetts General Hospital and Harvard Medical School (F.S.E.) - all in Boston; the Department of Laboratory Medicine and Pathology, University of Minnesota Medical Center (B.G., A.B.), and the Division of Blood and Marrow Transplantation, Department of Pediatrics, University of Minnesota (A.O.G., P.J.O.) - both in Minneapolis; Bluebird Bio, Somerville, MA (M.B., S.S., R.A.C., V.K.P., G.F.D., F.J.P., M.A.K., M.F., A.L., N.F., G.P., A.C.D., H.L.T.); the Department of Pediatric Oncology, Hematology and Hemostaseology, Leipzig University Hospital, Leipzig, Germany (J.-S.K.); and the Division of Pediatric Transplant and Cellular Therapy, Duke University School of Medicine, Durham, NC (V.K.P.)
| | - Ankit Lodaya
- From Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Harvard Medical School (C.N.D., D.A.W.), the Department of Pathology, Boston Children's Hospital (J.R.B., M.H.H.), and Massachusetts General Hospital and Harvard Medical School (F.S.E.) - all in Boston; the Department of Laboratory Medicine and Pathology, University of Minnesota Medical Center (B.G., A.B.), and the Division of Blood and Marrow Transplantation, Department of Pediatrics, University of Minnesota (A.O.G., P.J.O.) - both in Minneapolis; Bluebird Bio, Somerville, MA (M.B., S.S., R.A.C., V.K.P., G.F.D., F.J.P., M.A.K., M.F., A.L., N.F., G.P., A.C.D., H.L.T.); the Department of Pediatric Oncology, Hematology and Hemostaseology, Leipzig University Hospital, Leipzig, Germany (J.-S.K.); and the Division of Pediatric Transplant and Cellular Therapy, Duke University School of Medicine, Durham, NC (V.K.P.)
| | - Nicole Floro
- From Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Harvard Medical School (C.N.D., D.A.W.), the Department of Pathology, Boston Children's Hospital (J.R.B., M.H.H.), and Massachusetts General Hospital and Harvard Medical School (F.S.E.) - all in Boston; the Department of Laboratory Medicine and Pathology, University of Minnesota Medical Center (B.G., A.B.), and the Division of Blood and Marrow Transplantation, Department of Pediatrics, University of Minnesota (A.O.G., P.J.O.) - both in Minneapolis; Bluebird Bio, Somerville, MA (M.B., S.S., R.A.C., V.K.P., G.F.D., F.J.P., M.A.K., M.F., A.L., N.F., G.P., A.C.D., H.L.T.); the Department of Pediatric Oncology, Hematology and Hemostaseology, Leipzig University Hospital, Leipzig, Germany (J.-S.K.); and the Division of Pediatric Transplant and Cellular Therapy, Duke University School of Medicine, Durham, NC (V.K.P.)
| | - Geoffrey Parsons
- From Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Harvard Medical School (C.N.D., D.A.W.), the Department of Pathology, Boston Children's Hospital (J.R.B., M.H.H.), and Massachusetts General Hospital and Harvard Medical School (F.S.E.) - all in Boston; the Department of Laboratory Medicine and Pathology, University of Minnesota Medical Center (B.G., A.B.), and the Division of Blood and Marrow Transplantation, Department of Pediatrics, University of Minnesota (A.O.G., P.J.O.) - both in Minneapolis; Bluebird Bio, Somerville, MA (M.B., S.S., R.A.C., V.K.P., G.F.D., F.J.P., M.A.K., M.F., A.L., N.F., G.P., A.C.D., H.L.T.); the Department of Pediatric Oncology, Hematology and Hemostaseology, Leipzig University Hospital, Leipzig, Germany (J.-S.K.); and the Division of Pediatric Transplant and Cellular Therapy, Duke University School of Medicine, Durham, NC (V.K.P.)
| | - Andrew C Dietz
- From Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Harvard Medical School (C.N.D., D.A.W.), the Department of Pathology, Boston Children's Hospital (J.R.B., M.H.H.), and Massachusetts General Hospital and Harvard Medical School (F.S.E.) - all in Boston; the Department of Laboratory Medicine and Pathology, University of Minnesota Medical Center (B.G., A.B.), and the Division of Blood and Marrow Transplantation, Department of Pediatrics, University of Minnesota (A.O.G., P.J.O.) - both in Minneapolis; Bluebird Bio, Somerville, MA (M.B., S.S., R.A.C., V.K.P., G.F.D., F.J.P., M.A.K., M.F., A.L., N.F., G.P., A.C.D., H.L.T.); the Department of Pediatric Oncology, Hematology and Hemostaseology, Leipzig University Hospital, Leipzig, Germany (J.-S.K.); and the Division of Pediatric Transplant and Cellular Therapy, Duke University School of Medicine, Durham, NC (V.K.P.)
| | - Ashish O Gupta
- From Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Harvard Medical School (C.N.D., D.A.W.), the Department of Pathology, Boston Children's Hospital (J.R.B., M.H.H.), and Massachusetts General Hospital and Harvard Medical School (F.S.E.) - all in Boston; the Department of Laboratory Medicine and Pathology, University of Minnesota Medical Center (B.G., A.B.), and the Division of Blood and Marrow Transplantation, Department of Pediatrics, University of Minnesota (A.O.G., P.J.O.) - both in Minneapolis; Bluebird Bio, Somerville, MA (M.B., S.S., R.A.C., V.K.P., G.F.D., F.J.P., M.A.K., M.F., A.L., N.F., G.P., A.C.D., H.L.T.); the Department of Pediatric Oncology, Hematology and Hemostaseology, Leipzig University Hospital, Leipzig, Germany (J.-S.K.); and the Division of Pediatric Transplant and Cellular Therapy, Duke University School of Medicine, Durham, NC (V.K.P.)
| | - Paul J Orchard
- From Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Harvard Medical School (C.N.D., D.A.W.), the Department of Pathology, Boston Children's Hospital (J.R.B., M.H.H.), and Massachusetts General Hospital and Harvard Medical School (F.S.E.) - all in Boston; the Department of Laboratory Medicine and Pathology, University of Minnesota Medical Center (B.G., A.B.), and the Division of Blood and Marrow Transplantation, Department of Pediatrics, University of Minnesota (A.O.G., P.J.O.) - both in Minneapolis; Bluebird Bio, Somerville, MA (M.B., S.S., R.A.C., V.K.P., G.F.D., F.J.P., M.A.K., M.F., A.L., N.F., G.P., A.C.D., H.L.T.); the Department of Pediatric Oncology, Hematology and Hemostaseology, Leipzig University Hospital, Leipzig, Germany (J.-S.K.); and the Division of Pediatric Transplant and Cellular Therapy, Duke University School of Medicine, Durham, NC (V.K.P.)
| | - Himal L Thakar
- From Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Harvard Medical School (C.N.D., D.A.W.), the Department of Pathology, Boston Children's Hospital (J.R.B., M.H.H.), and Massachusetts General Hospital and Harvard Medical School (F.S.E.) - all in Boston; the Department of Laboratory Medicine and Pathology, University of Minnesota Medical Center (B.G., A.B.), and the Division of Blood and Marrow Transplantation, Department of Pediatrics, University of Minnesota (A.O.G., P.J.O.) - both in Minneapolis; Bluebird Bio, Somerville, MA (M.B., S.S., R.A.C., V.K.P., G.F.D., F.J.P., M.A.K., M.F., A.L., N.F., G.P., A.C.D., H.L.T.); the Department of Pediatric Oncology, Hematology and Hemostaseology, Leipzig University Hospital, Leipzig, Germany (J.-S.K.); and the Division of Pediatric Transplant and Cellular Therapy, Duke University School of Medicine, Durham, NC (V.K.P.)
| | - David A Williams
- From Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Harvard Medical School (C.N.D., D.A.W.), the Department of Pathology, Boston Children's Hospital (J.R.B., M.H.H.), and Massachusetts General Hospital and Harvard Medical School (F.S.E.) - all in Boston; the Department of Laboratory Medicine and Pathology, University of Minnesota Medical Center (B.G., A.B.), and the Division of Blood and Marrow Transplantation, Department of Pediatrics, University of Minnesota (A.O.G., P.J.O.) - both in Minneapolis; Bluebird Bio, Somerville, MA (M.B., S.S., R.A.C., V.K.P., G.F.D., F.J.P., M.A.K., M.F., A.L., N.F., G.P., A.C.D., H.L.T.); the Department of Pediatric Oncology, Hematology and Hemostaseology, Leipzig University Hospital, Leipzig, Germany (J.-S.K.); and the Division of Pediatric Transplant and Cellular Therapy, Duke University School of Medicine, Durham, NC (V.K.P.)
| |
Collapse
|
4
|
Eichler F, Duncan CN, Musolino PL, Lund TC, Gupta AO, De Oliveira S, Thrasher AJ, Aubourg P, Kühl JS, Loes DJ, Amartino H, Smith N, Folloni Fernandes J, Sevin C, Sankar R, Hussain SA, Gissen P, Dalle JH, Platzbecker U, Downey GF, McNeil E, Demopoulos L, Dietz AC, Thakar HL, Orchard PJ, Williams DA. Lentiviral Gene Therapy for Cerebral Adrenoleukodystrophy. N Engl J Med 2024; 391:1302-1312. [PMID: 39383459 DOI: 10.1056/nejmoa2400442] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/11/2024]
Abstract
BACKGROUND Cerebral adrenoleukodystrophy is a severe form of X-linked adrenoleukodystrophy characterized by white-matter disease, loss of neurologic function, and early death. Elivaldogene autotemcel (eli-cel) gene therapy, which consists of autologous CD34+ cells transduced with Lenti-D lentiviral vector containing ABCD1 complementary DNA, is being tested in persons with cerebral adrenoleukodystrophy. METHODS In a phase 2-3 study, we evaluated the efficacy and safety of eli-cel therapy in boys with early-stage cerebral adrenoleukodystrophy and evidence of active inflammation on magnetic resonance imaging (MRI). The primary efficacy end point was survival without any of six major functional disabilities at month 24. The secondary end points included overall survival at month 24 and the change from baseline to month 24 in the total neurologic function score. RESULTS A total of 32 patients received eli-cel; 29 patients (91%) completed the 24-month study and are being monitored in the long-term follow-up study. At month 24, none of these 29 patients had major functional disabilities; overall survival was 94%. At the most recent assessment (median follow-up, 6 years), the neurologic function score was stable as compared with the baseline score in 30 of 32 patients (94%); 26 patients (81%) had no major functional disabilities. Four patients had adverse events that were directly related to eli-cel. Myelodysplastic syndrome (MDS) with excess blasts developed in 1 patient at month 92; the patient underwent allogeneic hematopoietic stem-cell transplantation and did not have MDS at the most recent follow-up. CONCLUSIONS At a median follow-up of 6 years after lentiviral gene therapy, most patients with early cerebral adrenoleukodystrophy and MRI abnormalities had no major functional disabilities. However, insertional oncogenesis is an ongoing risk associated with the integration of viral vectors. (Funded by Bluebird Bio; ALD-102 and LTF-304 ClinicalTrials.gov numbers NCT01896102 and NCT02698579, respectively.).
Collapse
Affiliation(s)
- Florian Eichler
- From Massachusetts General Hospital and Harvard Medical School (F.E., P.L.M.) and Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Harvard Medical School (C.N.D., D.A.W.), Boston, Bluebird Bio, Somerville (G.F.D., L.D., A.C.D., H.L.T.), and McNeil Pediatrics Consultancy, Sudbury (E.M.) - all in Massachusetts; the Division of Blood and Marrow Transplantation, Department of Pediatrics, University of Minnesota (T.C.L., A.O.G., P.J.O.), and Midwest Radiology (D.J.L.) - both in Minneapolis; David Geffen School of Medicine, University of California, Los Angeles, Los Angeles (S.D.O., R.S., S.A.H.); University College London Great Ormond Street Hospital Institute of Child Health and Great Ormond Street Hospital NHS Trust, London (A.J.T., P.G.); INSERM, Université Paris-Saclay, Hôpital Kremlin-Bicêtre (P.A.), the Reference Center for Leukodystrophies, Hôpital Kremlin-Bicêtre, Assistance Publique-Hôpitaux de Paris, Université Paris-Saclay (C.S.), and Robert-Debre Hospital, GHU Nord-Université de Paris (J.-H.D.) - all in Paris; the Departments of Pediatric Oncology/Hematology/Hemostaseology (J.-S.K.) and Hematology, Cellular Therapy, Hemostaseology and Infectious Diseases (U.P.), University Hospital Leipzig, Leipzig, Germany; Instituto Neurogenia and Hospital Universitario Austral - both in Buenos Aires (H.A.); Women's and Children's Health Network and the University of Adelaide - both in Adelaide, SA, Australia (N.S.); ITACI/Instituto da Criança-Hospital das Clínicas da Universidade de São Paulo, Sao Paulo (J.F.F.); and Shape Therapeutics, Seattle (A.C.D.)
| | - Christine N Duncan
- From Massachusetts General Hospital and Harvard Medical School (F.E., P.L.M.) and Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Harvard Medical School (C.N.D., D.A.W.), Boston, Bluebird Bio, Somerville (G.F.D., L.D., A.C.D., H.L.T.), and McNeil Pediatrics Consultancy, Sudbury (E.M.) - all in Massachusetts; the Division of Blood and Marrow Transplantation, Department of Pediatrics, University of Minnesota (T.C.L., A.O.G., P.J.O.), and Midwest Radiology (D.J.L.) - both in Minneapolis; David Geffen School of Medicine, University of California, Los Angeles, Los Angeles (S.D.O., R.S., S.A.H.); University College London Great Ormond Street Hospital Institute of Child Health and Great Ormond Street Hospital NHS Trust, London (A.J.T., P.G.); INSERM, Université Paris-Saclay, Hôpital Kremlin-Bicêtre (P.A.), the Reference Center for Leukodystrophies, Hôpital Kremlin-Bicêtre, Assistance Publique-Hôpitaux de Paris, Université Paris-Saclay (C.S.), and Robert-Debre Hospital, GHU Nord-Université de Paris (J.-H.D.) - all in Paris; the Departments of Pediatric Oncology/Hematology/Hemostaseology (J.-S.K.) and Hematology, Cellular Therapy, Hemostaseology and Infectious Diseases (U.P.), University Hospital Leipzig, Leipzig, Germany; Instituto Neurogenia and Hospital Universitario Austral - both in Buenos Aires (H.A.); Women's and Children's Health Network and the University of Adelaide - both in Adelaide, SA, Australia (N.S.); ITACI/Instituto da Criança-Hospital das Clínicas da Universidade de São Paulo, Sao Paulo (J.F.F.); and Shape Therapeutics, Seattle (A.C.D.)
| | - Patricia L Musolino
- From Massachusetts General Hospital and Harvard Medical School (F.E., P.L.M.) and Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Harvard Medical School (C.N.D., D.A.W.), Boston, Bluebird Bio, Somerville (G.F.D., L.D., A.C.D., H.L.T.), and McNeil Pediatrics Consultancy, Sudbury (E.M.) - all in Massachusetts; the Division of Blood and Marrow Transplantation, Department of Pediatrics, University of Minnesota (T.C.L., A.O.G., P.J.O.), and Midwest Radiology (D.J.L.) - both in Minneapolis; David Geffen School of Medicine, University of California, Los Angeles, Los Angeles (S.D.O., R.S., S.A.H.); University College London Great Ormond Street Hospital Institute of Child Health and Great Ormond Street Hospital NHS Trust, London (A.J.T., P.G.); INSERM, Université Paris-Saclay, Hôpital Kremlin-Bicêtre (P.A.), the Reference Center for Leukodystrophies, Hôpital Kremlin-Bicêtre, Assistance Publique-Hôpitaux de Paris, Université Paris-Saclay (C.S.), and Robert-Debre Hospital, GHU Nord-Université de Paris (J.-H.D.) - all in Paris; the Departments of Pediatric Oncology/Hematology/Hemostaseology (J.-S.K.) and Hematology, Cellular Therapy, Hemostaseology and Infectious Diseases (U.P.), University Hospital Leipzig, Leipzig, Germany; Instituto Neurogenia and Hospital Universitario Austral - both in Buenos Aires (H.A.); Women's and Children's Health Network and the University of Adelaide - both in Adelaide, SA, Australia (N.S.); ITACI/Instituto da Criança-Hospital das Clínicas da Universidade de São Paulo, Sao Paulo (J.F.F.); and Shape Therapeutics, Seattle (A.C.D.)
| | - Troy C Lund
- From Massachusetts General Hospital and Harvard Medical School (F.E., P.L.M.) and Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Harvard Medical School (C.N.D., D.A.W.), Boston, Bluebird Bio, Somerville (G.F.D., L.D., A.C.D., H.L.T.), and McNeil Pediatrics Consultancy, Sudbury (E.M.) - all in Massachusetts; the Division of Blood and Marrow Transplantation, Department of Pediatrics, University of Minnesota (T.C.L., A.O.G., P.J.O.), and Midwest Radiology (D.J.L.) - both in Minneapolis; David Geffen School of Medicine, University of California, Los Angeles, Los Angeles (S.D.O., R.S., S.A.H.); University College London Great Ormond Street Hospital Institute of Child Health and Great Ormond Street Hospital NHS Trust, London (A.J.T., P.G.); INSERM, Université Paris-Saclay, Hôpital Kremlin-Bicêtre (P.A.), the Reference Center for Leukodystrophies, Hôpital Kremlin-Bicêtre, Assistance Publique-Hôpitaux de Paris, Université Paris-Saclay (C.S.), and Robert-Debre Hospital, GHU Nord-Université de Paris (J.-H.D.) - all in Paris; the Departments of Pediatric Oncology/Hematology/Hemostaseology (J.-S.K.) and Hematology, Cellular Therapy, Hemostaseology and Infectious Diseases (U.P.), University Hospital Leipzig, Leipzig, Germany; Instituto Neurogenia and Hospital Universitario Austral - both in Buenos Aires (H.A.); Women's and Children's Health Network and the University of Adelaide - both in Adelaide, SA, Australia (N.S.); ITACI/Instituto da Criança-Hospital das Clínicas da Universidade de São Paulo, Sao Paulo (J.F.F.); and Shape Therapeutics, Seattle (A.C.D.)
| | - Ashish O Gupta
- From Massachusetts General Hospital and Harvard Medical School (F.E., P.L.M.) and Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Harvard Medical School (C.N.D., D.A.W.), Boston, Bluebird Bio, Somerville (G.F.D., L.D., A.C.D., H.L.T.), and McNeil Pediatrics Consultancy, Sudbury (E.M.) - all in Massachusetts; the Division of Blood and Marrow Transplantation, Department of Pediatrics, University of Minnesota (T.C.L., A.O.G., P.J.O.), and Midwest Radiology (D.J.L.) - both in Minneapolis; David Geffen School of Medicine, University of California, Los Angeles, Los Angeles (S.D.O., R.S., S.A.H.); University College London Great Ormond Street Hospital Institute of Child Health and Great Ormond Street Hospital NHS Trust, London (A.J.T., P.G.); INSERM, Université Paris-Saclay, Hôpital Kremlin-Bicêtre (P.A.), the Reference Center for Leukodystrophies, Hôpital Kremlin-Bicêtre, Assistance Publique-Hôpitaux de Paris, Université Paris-Saclay (C.S.), and Robert-Debre Hospital, GHU Nord-Université de Paris (J.-H.D.) - all in Paris; the Departments of Pediatric Oncology/Hematology/Hemostaseology (J.-S.K.) and Hematology, Cellular Therapy, Hemostaseology and Infectious Diseases (U.P.), University Hospital Leipzig, Leipzig, Germany; Instituto Neurogenia and Hospital Universitario Austral - both in Buenos Aires (H.A.); Women's and Children's Health Network and the University of Adelaide - both in Adelaide, SA, Australia (N.S.); ITACI/Instituto da Criança-Hospital das Clínicas da Universidade de São Paulo, Sao Paulo (J.F.F.); and Shape Therapeutics, Seattle (A.C.D.)
| | - Satiro De Oliveira
- From Massachusetts General Hospital and Harvard Medical School (F.E., P.L.M.) and Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Harvard Medical School (C.N.D., D.A.W.), Boston, Bluebird Bio, Somerville (G.F.D., L.D., A.C.D., H.L.T.), and McNeil Pediatrics Consultancy, Sudbury (E.M.) - all in Massachusetts; the Division of Blood and Marrow Transplantation, Department of Pediatrics, University of Minnesota (T.C.L., A.O.G., P.J.O.), and Midwest Radiology (D.J.L.) - both in Minneapolis; David Geffen School of Medicine, University of California, Los Angeles, Los Angeles (S.D.O., R.S., S.A.H.); University College London Great Ormond Street Hospital Institute of Child Health and Great Ormond Street Hospital NHS Trust, London (A.J.T., P.G.); INSERM, Université Paris-Saclay, Hôpital Kremlin-Bicêtre (P.A.), the Reference Center for Leukodystrophies, Hôpital Kremlin-Bicêtre, Assistance Publique-Hôpitaux de Paris, Université Paris-Saclay (C.S.), and Robert-Debre Hospital, GHU Nord-Université de Paris (J.-H.D.) - all in Paris; the Departments of Pediatric Oncology/Hematology/Hemostaseology (J.-S.K.) and Hematology, Cellular Therapy, Hemostaseology and Infectious Diseases (U.P.), University Hospital Leipzig, Leipzig, Germany; Instituto Neurogenia and Hospital Universitario Austral - both in Buenos Aires (H.A.); Women's and Children's Health Network and the University of Adelaide - both in Adelaide, SA, Australia (N.S.); ITACI/Instituto da Criança-Hospital das Clínicas da Universidade de São Paulo, Sao Paulo (J.F.F.); and Shape Therapeutics, Seattle (A.C.D.)
| | - Adrian J Thrasher
- From Massachusetts General Hospital and Harvard Medical School (F.E., P.L.M.) and Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Harvard Medical School (C.N.D., D.A.W.), Boston, Bluebird Bio, Somerville (G.F.D., L.D., A.C.D., H.L.T.), and McNeil Pediatrics Consultancy, Sudbury (E.M.) - all in Massachusetts; the Division of Blood and Marrow Transplantation, Department of Pediatrics, University of Minnesota (T.C.L., A.O.G., P.J.O.), and Midwest Radiology (D.J.L.) - both in Minneapolis; David Geffen School of Medicine, University of California, Los Angeles, Los Angeles (S.D.O., R.S., S.A.H.); University College London Great Ormond Street Hospital Institute of Child Health and Great Ormond Street Hospital NHS Trust, London (A.J.T., P.G.); INSERM, Université Paris-Saclay, Hôpital Kremlin-Bicêtre (P.A.), the Reference Center for Leukodystrophies, Hôpital Kremlin-Bicêtre, Assistance Publique-Hôpitaux de Paris, Université Paris-Saclay (C.S.), and Robert-Debre Hospital, GHU Nord-Université de Paris (J.-H.D.) - all in Paris; the Departments of Pediatric Oncology/Hematology/Hemostaseology (J.-S.K.) and Hematology, Cellular Therapy, Hemostaseology and Infectious Diseases (U.P.), University Hospital Leipzig, Leipzig, Germany; Instituto Neurogenia and Hospital Universitario Austral - both in Buenos Aires (H.A.); Women's and Children's Health Network and the University of Adelaide - both in Adelaide, SA, Australia (N.S.); ITACI/Instituto da Criança-Hospital das Clínicas da Universidade de São Paulo, Sao Paulo (J.F.F.); and Shape Therapeutics, Seattle (A.C.D.)
| | - Patrick Aubourg
- From Massachusetts General Hospital and Harvard Medical School (F.E., P.L.M.) and Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Harvard Medical School (C.N.D., D.A.W.), Boston, Bluebird Bio, Somerville (G.F.D., L.D., A.C.D., H.L.T.), and McNeil Pediatrics Consultancy, Sudbury (E.M.) - all in Massachusetts; the Division of Blood and Marrow Transplantation, Department of Pediatrics, University of Minnesota (T.C.L., A.O.G., P.J.O.), and Midwest Radiology (D.J.L.) - both in Minneapolis; David Geffen School of Medicine, University of California, Los Angeles, Los Angeles (S.D.O., R.S., S.A.H.); University College London Great Ormond Street Hospital Institute of Child Health and Great Ormond Street Hospital NHS Trust, London (A.J.T., P.G.); INSERM, Université Paris-Saclay, Hôpital Kremlin-Bicêtre (P.A.), the Reference Center for Leukodystrophies, Hôpital Kremlin-Bicêtre, Assistance Publique-Hôpitaux de Paris, Université Paris-Saclay (C.S.), and Robert-Debre Hospital, GHU Nord-Université de Paris (J.-H.D.) - all in Paris; the Departments of Pediatric Oncology/Hematology/Hemostaseology (J.-S.K.) and Hematology, Cellular Therapy, Hemostaseology and Infectious Diseases (U.P.), University Hospital Leipzig, Leipzig, Germany; Instituto Neurogenia and Hospital Universitario Austral - both in Buenos Aires (H.A.); Women's and Children's Health Network and the University of Adelaide - both in Adelaide, SA, Australia (N.S.); ITACI/Instituto da Criança-Hospital das Clínicas da Universidade de São Paulo, Sao Paulo (J.F.F.); and Shape Therapeutics, Seattle (A.C.D.)
| | - Jörn-Sven Kühl
- From Massachusetts General Hospital and Harvard Medical School (F.E., P.L.M.) and Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Harvard Medical School (C.N.D., D.A.W.), Boston, Bluebird Bio, Somerville (G.F.D., L.D., A.C.D., H.L.T.), and McNeil Pediatrics Consultancy, Sudbury (E.M.) - all in Massachusetts; the Division of Blood and Marrow Transplantation, Department of Pediatrics, University of Minnesota (T.C.L., A.O.G., P.J.O.), and Midwest Radiology (D.J.L.) - both in Minneapolis; David Geffen School of Medicine, University of California, Los Angeles, Los Angeles (S.D.O., R.S., S.A.H.); University College London Great Ormond Street Hospital Institute of Child Health and Great Ormond Street Hospital NHS Trust, London (A.J.T., P.G.); INSERM, Université Paris-Saclay, Hôpital Kremlin-Bicêtre (P.A.), the Reference Center for Leukodystrophies, Hôpital Kremlin-Bicêtre, Assistance Publique-Hôpitaux de Paris, Université Paris-Saclay (C.S.), and Robert-Debre Hospital, GHU Nord-Université de Paris (J.-H.D.) - all in Paris; the Departments of Pediatric Oncology/Hematology/Hemostaseology (J.-S.K.) and Hematology, Cellular Therapy, Hemostaseology and Infectious Diseases (U.P.), University Hospital Leipzig, Leipzig, Germany; Instituto Neurogenia and Hospital Universitario Austral - both in Buenos Aires (H.A.); Women's and Children's Health Network and the University of Adelaide - both in Adelaide, SA, Australia (N.S.); ITACI/Instituto da Criança-Hospital das Clínicas da Universidade de São Paulo, Sao Paulo (J.F.F.); and Shape Therapeutics, Seattle (A.C.D.)
| | - Daniel J Loes
- From Massachusetts General Hospital and Harvard Medical School (F.E., P.L.M.) and Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Harvard Medical School (C.N.D., D.A.W.), Boston, Bluebird Bio, Somerville (G.F.D., L.D., A.C.D., H.L.T.), and McNeil Pediatrics Consultancy, Sudbury (E.M.) - all in Massachusetts; the Division of Blood and Marrow Transplantation, Department of Pediatrics, University of Minnesota (T.C.L., A.O.G., P.J.O.), and Midwest Radiology (D.J.L.) - both in Minneapolis; David Geffen School of Medicine, University of California, Los Angeles, Los Angeles (S.D.O., R.S., S.A.H.); University College London Great Ormond Street Hospital Institute of Child Health and Great Ormond Street Hospital NHS Trust, London (A.J.T., P.G.); INSERM, Université Paris-Saclay, Hôpital Kremlin-Bicêtre (P.A.), the Reference Center for Leukodystrophies, Hôpital Kremlin-Bicêtre, Assistance Publique-Hôpitaux de Paris, Université Paris-Saclay (C.S.), and Robert-Debre Hospital, GHU Nord-Université de Paris (J.-H.D.) - all in Paris; the Departments of Pediatric Oncology/Hematology/Hemostaseology (J.-S.K.) and Hematology, Cellular Therapy, Hemostaseology and Infectious Diseases (U.P.), University Hospital Leipzig, Leipzig, Germany; Instituto Neurogenia and Hospital Universitario Austral - both in Buenos Aires (H.A.); Women's and Children's Health Network and the University of Adelaide - both in Adelaide, SA, Australia (N.S.); ITACI/Instituto da Criança-Hospital das Clínicas da Universidade de São Paulo, Sao Paulo (J.F.F.); and Shape Therapeutics, Seattle (A.C.D.)
| | - Hernan Amartino
- From Massachusetts General Hospital and Harvard Medical School (F.E., P.L.M.) and Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Harvard Medical School (C.N.D., D.A.W.), Boston, Bluebird Bio, Somerville (G.F.D., L.D., A.C.D., H.L.T.), and McNeil Pediatrics Consultancy, Sudbury (E.M.) - all in Massachusetts; the Division of Blood and Marrow Transplantation, Department of Pediatrics, University of Minnesota (T.C.L., A.O.G., P.J.O.), and Midwest Radiology (D.J.L.) - both in Minneapolis; David Geffen School of Medicine, University of California, Los Angeles, Los Angeles (S.D.O., R.S., S.A.H.); University College London Great Ormond Street Hospital Institute of Child Health and Great Ormond Street Hospital NHS Trust, London (A.J.T., P.G.); INSERM, Université Paris-Saclay, Hôpital Kremlin-Bicêtre (P.A.), the Reference Center for Leukodystrophies, Hôpital Kremlin-Bicêtre, Assistance Publique-Hôpitaux de Paris, Université Paris-Saclay (C.S.), and Robert-Debre Hospital, GHU Nord-Université de Paris (J.-H.D.) - all in Paris; the Departments of Pediatric Oncology/Hematology/Hemostaseology (J.-S.K.) and Hematology, Cellular Therapy, Hemostaseology and Infectious Diseases (U.P.), University Hospital Leipzig, Leipzig, Germany; Instituto Neurogenia and Hospital Universitario Austral - both in Buenos Aires (H.A.); Women's and Children's Health Network and the University of Adelaide - both in Adelaide, SA, Australia (N.S.); ITACI/Instituto da Criança-Hospital das Clínicas da Universidade de São Paulo, Sao Paulo (J.F.F.); and Shape Therapeutics, Seattle (A.C.D.)
| | - Nicholas Smith
- From Massachusetts General Hospital and Harvard Medical School (F.E., P.L.M.) and Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Harvard Medical School (C.N.D., D.A.W.), Boston, Bluebird Bio, Somerville (G.F.D., L.D., A.C.D., H.L.T.), and McNeil Pediatrics Consultancy, Sudbury (E.M.) - all in Massachusetts; the Division of Blood and Marrow Transplantation, Department of Pediatrics, University of Minnesota (T.C.L., A.O.G., P.J.O.), and Midwest Radiology (D.J.L.) - both in Minneapolis; David Geffen School of Medicine, University of California, Los Angeles, Los Angeles (S.D.O., R.S., S.A.H.); University College London Great Ormond Street Hospital Institute of Child Health and Great Ormond Street Hospital NHS Trust, London (A.J.T., P.G.); INSERM, Université Paris-Saclay, Hôpital Kremlin-Bicêtre (P.A.), the Reference Center for Leukodystrophies, Hôpital Kremlin-Bicêtre, Assistance Publique-Hôpitaux de Paris, Université Paris-Saclay (C.S.), and Robert-Debre Hospital, GHU Nord-Université de Paris (J.-H.D.) - all in Paris; the Departments of Pediatric Oncology/Hematology/Hemostaseology (J.-S.K.) and Hematology, Cellular Therapy, Hemostaseology and Infectious Diseases (U.P.), University Hospital Leipzig, Leipzig, Germany; Instituto Neurogenia and Hospital Universitario Austral - both in Buenos Aires (H.A.); Women's and Children's Health Network and the University of Adelaide - both in Adelaide, SA, Australia (N.S.); ITACI/Instituto da Criança-Hospital das Clínicas da Universidade de São Paulo, Sao Paulo (J.F.F.); and Shape Therapeutics, Seattle (A.C.D.)
| | - Juliana Folloni Fernandes
- From Massachusetts General Hospital and Harvard Medical School (F.E., P.L.M.) and Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Harvard Medical School (C.N.D., D.A.W.), Boston, Bluebird Bio, Somerville (G.F.D., L.D., A.C.D., H.L.T.), and McNeil Pediatrics Consultancy, Sudbury (E.M.) - all in Massachusetts; the Division of Blood and Marrow Transplantation, Department of Pediatrics, University of Minnesota (T.C.L., A.O.G., P.J.O.), and Midwest Radiology (D.J.L.) - both in Minneapolis; David Geffen School of Medicine, University of California, Los Angeles, Los Angeles (S.D.O., R.S., S.A.H.); University College London Great Ormond Street Hospital Institute of Child Health and Great Ormond Street Hospital NHS Trust, London (A.J.T., P.G.); INSERM, Université Paris-Saclay, Hôpital Kremlin-Bicêtre (P.A.), the Reference Center for Leukodystrophies, Hôpital Kremlin-Bicêtre, Assistance Publique-Hôpitaux de Paris, Université Paris-Saclay (C.S.), and Robert-Debre Hospital, GHU Nord-Université de Paris (J.-H.D.) - all in Paris; the Departments of Pediatric Oncology/Hematology/Hemostaseology (J.-S.K.) and Hematology, Cellular Therapy, Hemostaseology and Infectious Diseases (U.P.), University Hospital Leipzig, Leipzig, Germany; Instituto Neurogenia and Hospital Universitario Austral - both in Buenos Aires (H.A.); Women's and Children's Health Network and the University of Adelaide - both in Adelaide, SA, Australia (N.S.); ITACI/Instituto da Criança-Hospital das Clínicas da Universidade de São Paulo, Sao Paulo (J.F.F.); and Shape Therapeutics, Seattle (A.C.D.)
| | - Caroline Sevin
- From Massachusetts General Hospital and Harvard Medical School (F.E., P.L.M.) and Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Harvard Medical School (C.N.D., D.A.W.), Boston, Bluebird Bio, Somerville (G.F.D., L.D., A.C.D., H.L.T.), and McNeil Pediatrics Consultancy, Sudbury (E.M.) - all in Massachusetts; the Division of Blood and Marrow Transplantation, Department of Pediatrics, University of Minnesota (T.C.L., A.O.G., P.J.O.), and Midwest Radiology (D.J.L.) - both in Minneapolis; David Geffen School of Medicine, University of California, Los Angeles, Los Angeles (S.D.O., R.S., S.A.H.); University College London Great Ormond Street Hospital Institute of Child Health and Great Ormond Street Hospital NHS Trust, London (A.J.T., P.G.); INSERM, Université Paris-Saclay, Hôpital Kremlin-Bicêtre (P.A.), the Reference Center for Leukodystrophies, Hôpital Kremlin-Bicêtre, Assistance Publique-Hôpitaux de Paris, Université Paris-Saclay (C.S.), and Robert-Debre Hospital, GHU Nord-Université de Paris (J.-H.D.) - all in Paris; the Departments of Pediatric Oncology/Hematology/Hemostaseology (J.-S.K.) and Hematology, Cellular Therapy, Hemostaseology and Infectious Diseases (U.P.), University Hospital Leipzig, Leipzig, Germany; Instituto Neurogenia and Hospital Universitario Austral - both in Buenos Aires (H.A.); Women's and Children's Health Network and the University of Adelaide - both in Adelaide, SA, Australia (N.S.); ITACI/Instituto da Criança-Hospital das Clínicas da Universidade de São Paulo, Sao Paulo (J.F.F.); and Shape Therapeutics, Seattle (A.C.D.)
| | - Raman Sankar
- From Massachusetts General Hospital and Harvard Medical School (F.E., P.L.M.) and Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Harvard Medical School (C.N.D., D.A.W.), Boston, Bluebird Bio, Somerville (G.F.D., L.D., A.C.D., H.L.T.), and McNeil Pediatrics Consultancy, Sudbury (E.M.) - all in Massachusetts; the Division of Blood and Marrow Transplantation, Department of Pediatrics, University of Minnesota (T.C.L., A.O.G., P.J.O.), and Midwest Radiology (D.J.L.) - both in Minneapolis; David Geffen School of Medicine, University of California, Los Angeles, Los Angeles (S.D.O., R.S., S.A.H.); University College London Great Ormond Street Hospital Institute of Child Health and Great Ormond Street Hospital NHS Trust, London (A.J.T., P.G.); INSERM, Université Paris-Saclay, Hôpital Kremlin-Bicêtre (P.A.), the Reference Center for Leukodystrophies, Hôpital Kremlin-Bicêtre, Assistance Publique-Hôpitaux de Paris, Université Paris-Saclay (C.S.), and Robert-Debre Hospital, GHU Nord-Université de Paris (J.-H.D.) - all in Paris; the Departments of Pediatric Oncology/Hematology/Hemostaseology (J.-S.K.) and Hematology, Cellular Therapy, Hemostaseology and Infectious Diseases (U.P.), University Hospital Leipzig, Leipzig, Germany; Instituto Neurogenia and Hospital Universitario Austral - both in Buenos Aires (H.A.); Women's and Children's Health Network and the University of Adelaide - both in Adelaide, SA, Australia (N.S.); ITACI/Instituto da Criança-Hospital das Clínicas da Universidade de São Paulo, Sao Paulo (J.F.F.); and Shape Therapeutics, Seattle (A.C.D.)
| | - Shaun A Hussain
- From Massachusetts General Hospital and Harvard Medical School (F.E., P.L.M.) and Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Harvard Medical School (C.N.D., D.A.W.), Boston, Bluebird Bio, Somerville (G.F.D., L.D., A.C.D., H.L.T.), and McNeil Pediatrics Consultancy, Sudbury (E.M.) - all in Massachusetts; the Division of Blood and Marrow Transplantation, Department of Pediatrics, University of Minnesota (T.C.L., A.O.G., P.J.O.), and Midwest Radiology (D.J.L.) - both in Minneapolis; David Geffen School of Medicine, University of California, Los Angeles, Los Angeles (S.D.O., R.S., S.A.H.); University College London Great Ormond Street Hospital Institute of Child Health and Great Ormond Street Hospital NHS Trust, London (A.J.T., P.G.); INSERM, Université Paris-Saclay, Hôpital Kremlin-Bicêtre (P.A.), the Reference Center for Leukodystrophies, Hôpital Kremlin-Bicêtre, Assistance Publique-Hôpitaux de Paris, Université Paris-Saclay (C.S.), and Robert-Debre Hospital, GHU Nord-Université de Paris (J.-H.D.) - all in Paris; the Departments of Pediatric Oncology/Hematology/Hemostaseology (J.-S.K.) and Hematology, Cellular Therapy, Hemostaseology and Infectious Diseases (U.P.), University Hospital Leipzig, Leipzig, Germany; Instituto Neurogenia and Hospital Universitario Austral - both in Buenos Aires (H.A.); Women's and Children's Health Network and the University of Adelaide - both in Adelaide, SA, Australia (N.S.); ITACI/Instituto da Criança-Hospital das Clínicas da Universidade de São Paulo, Sao Paulo (J.F.F.); and Shape Therapeutics, Seattle (A.C.D.)
| | - Paul Gissen
- From Massachusetts General Hospital and Harvard Medical School (F.E., P.L.M.) and Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Harvard Medical School (C.N.D., D.A.W.), Boston, Bluebird Bio, Somerville (G.F.D., L.D., A.C.D., H.L.T.), and McNeil Pediatrics Consultancy, Sudbury (E.M.) - all in Massachusetts; the Division of Blood and Marrow Transplantation, Department of Pediatrics, University of Minnesota (T.C.L., A.O.G., P.J.O.), and Midwest Radiology (D.J.L.) - both in Minneapolis; David Geffen School of Medicine, University of California, Los Angeles, Los Angeles (S.D.O., R.S., S.A.H.); University College London Great Ormond Street Hospital Institute of Child Health and Great Ormond Street Hospital NHS Trust, London (A.J.T., P.G.); INSERM, Université Paris-Saclay, Hôpital Kremlin-Bicêtre (P.A.), the Reference Center for Leukodystrophies, Hôpital Kremlin-Bicêtre, Assistance Publique-Hôpitaux de Paris, Université Paris-Saclay (C.S.), and Robert-Debre Hospital, GHU Nord-Université de Paris (J.-H.D.) - all in Paris; the Departments of Pediatric Oncology/Hematology/Hemostaseology (J.-S.K.) and Hematology, Cellular Therapy, Hemostaseology and Infectious Diseases (U.P.), University Hospital Leipzig, Leipzig, Germany; Instituto Neurogenia and Hospital Universitario Austral - both in Buenos Aires (H.A.); Women's and Children's Health Network and the University of Adelaide - both in Adelaide, SA, Australia (N.S.); ITACI/Instituto da Criança-Hospital das Clínicas da Universidade de São Paulo, Sao Paulo (J.F.F.); and Shape Therapeutics, Seattle (A.C.D.)
| | - Jean-Hugues Dalle
- From Massachusetts General Hospital and Harvard Medical School (F.E., P.L.M.) and Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Harvard Medical School (C.N.D., D.A.W.), Boston, Bluebird Bio, Somerville (G.F.D., L.D., A.C.D., H.L.T.), and McNeil Pediatrics Consultancy, Sudbury (E.M.) - all in Massachusetts; the Division of Blood and Marrow Transplantation, Department of Pediatrics, University of Minnesota (T.C.L., A.O.G., P.J.O.), and Midwest Radiology (D.J.L.) - both in Minneapolis; David Geffen School of Medicine, University of California, Los Angeles, Los Angeles (S.D.O., R.S., S.A.H.); University College London Great Ormond Street Hospital Institute of Child Health and Great Ormond Street Hospital NHS Trust, London (A.J.T., P.G.); INSERM, Université Paris-Saclay, Hôpital Kremlin-Bicêtre (P.A.), the Reference Center for Leukodystrophies, Hôpital Kremlin-Bicêtre, Assistance Publique-Hôpitaux de Paris, Université Paris-Saclay (C.S.), and Robert-Debre Hospital, GHU Nord-Université de Paris (J.-H.D.) - all in Paris; the Departments of Pediatric Oncology/Hematology/Hemostaseology (J.-S.K.) and Hematology, Cellular Therapy, Hemostaseology and Infectious Diseases (U.P.), University Hospital Leipzig, Leipzig, Germany; Instituto Neurogenia and Hospital Universitario Austral - both in Buenos Aires (H.A.); Women's and Children's Health Network and the University of Adelaide - both in Adelaide, SA, Australia (N.S.); ITACI/Instituto da Criança-Hospital das Clínicas da Universidade de São Paulo, Sao Paulo (J.F.F.); and Shape Therapeutics, Seattle (A.C.D.)
| | - Uwe Platzbecker
- From Massachusetts General Hospital and Harvard Medical School (F.E., P.L.M.) and Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Harvard Medical School (C.N.D., D.A.W.), Boston, Bluebird Bio, Somerville (G.F.D., L.D., A.C.D., H.L.T.), and McNeil Pediatrics Consultancy, Sudbury (E.M.) - all in Massachusetts; the Division of Blood and Marrow Transplantation, Department of Pediatrics, University of Minnesota (T.C.L., A.O.G., P.J.O.), and Midwest Radiology (D.J.L.) - both in Minneapolis; David Geffen School of Medicine, University of California, Los Angeles, Los Angeles (S.D.O., R.S., S.A.H.); University College London Great Ormond Street Hospital Institute of Child Health and Great Ormond Street Hospital NHS Trust, London (A.J.T., P.G.); INSERM, Université Paris-Saclay, Hôpital Kremlin-Bicêtre (P.A.), the Reference Center for Leukodystrophies, Hôpital Kremlin-Bicêtre, Assistance Publique-Hôpitaux de Paris, Université Paris-Saclay (C.S.), and Robert-Debre Hospital, GHU Nord-Université de Paris (J.-H.D.) - all in Paris; the Departments of Pediatric Oncology/Hematology/Hemostaseology (J.-S.K.) and Hematology, Cellular Therapy, Hemostaseology and Infectious Diseases (U.P.), University Hospital Leipzig, Leipzig, Germany; Instituto Neurogenia and Hospital Universitario Austral - both in Buenos Aires (H.A.); Women's and Children's Health Network and the University of Adelaide - both in Adelaide, SA, Australia (N.S.); ITACI/Instituto da Criança-Hospital das Clínicas da Universidade de São Paulo, Sao Paulo (J.F.F.); and Shape Therapeutics, Seattle (A.C.D.)
| | - Gerald F Downey
- From Massachusetts General Hospital and Harvard Medical School (F.E., P.L.M.) and Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Harvard Medical School (C.N.D., D.A.W.), Boston, Bluebird Bio, Somerville (G.F.D., L.D., A.C.D., H.L.T.), and McNeil Pediatrics Consultancy, Sudbury (E.M.) - all in Massachusetts; the Division of Blood and Marrow Transplantation, Department of Pediatrics, University of Minnesota (T.C.L., A.O.G., P.J.O.), and Midwest Radiology (D.J.L.) - both in Minneapolis; David Geffen School of Medicine, University of California, Los Angeles, Los Angeles (S.D.O., R.S., S.A.H.); University College London Great Ormond Street Hospital Institute of Child Health and Great Ormond Street Hospital NHS Trust, London (A.J.T., P.G.); INSERM, Université Paris-Saclay, Hôpital Kremlin-Bicêtre (P.A.), the Reference Center for Leukodystrophies, Hôpital Kremlin-Bicêtre, Assistance Publique-Hôpitaux de Paris, Université Paris-Saclay (C.S.), and Robert-Debre Hospital, GHU Nord-Université de Paris (J.-H.D.) - all in Paris; the Departments of Pediatric Oncology/Hematology/Hemostaseology (J.-S.K.) and Hematology, Cellular Therapy, Hemostaseology and Infectious Diseases (U.P.), University Hospital Leipzig, Leipzig, Germany; Instituto Neurogenia and Hospital Universitario Austral - both in Buenos Aires (H.A.); Women's and Children's Health Network and the University of Adelaide - both in Adelaide, SA, Australia (N.S.); ITACI/Instituto da Criança-Hospital das Clínicas da Universidade de São Paulo, Sao Paulo (J.F.F.); and Shape Therapeutics, Seattle (A.C.D.)
| | - Elizabeth McNeil
- From Massachusetts General Hospital and Harvard Medical School (F.E., P.L.M.) and Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Harvard Medical School (C.N.D., D.A.W.), Boston, Bluebird Bio, Somerville (G.F.D., L.D., A.C.D., H.L.T.), and McNeil Pediatrics Consultancy, Sudbury (E.M.) - all in Massachusetts; the Division of Blood and Marrow Transplantation, Department of Pediatrics, University of Minnesota (T.C.L., A.O.G., P.J.O.), and Midwest Radiology (D.J.L.) - both in Minneapolis; David Geffen School of Medicine, University of California, Los Angeles, Los Angeles (S.D.O., R.S., S.A.H.); University College London Great Ormond Street Hospital Institute of Child Health and Great Ormond Street Hospital NHS Trust, London (A.J.T., P.G.); INSERM, Université Paris-Saclay, Hôpital Kremlin-Bicêtre (P.A.), the Reference Center for Leukodystrophies, Hôpital Kremlin-Bicêtre, Assistance Publique-Hôpitaux de Paris, Université Paris-Saclay (C.S.), and Robert-Debre Hospital, GHU Nord-Université de Paris (J.-H.D.) - all in Paris; the Departments of Pediatric Oncology/Hematology/Hemostaseology (J.-S.K.) and Hematology, Cellular Therapy, Hemostaseology and Infectious Diseases (U.P.), University Hospital Leipzig, Leipzig, Germany; Instituto Neurogenia and Hospital Universitario Austral - both in Buenos Aires (H.A.); Women's and Children's Health Network and the University of Adelaide - both in Adelaide, SA, Australia (N.S.); ITACI/Instituto da Criança-Hospital das Clínicas da Universidade de São Paulo, Sao Paulo (J.F.F.); and Shape Therapeutics, Seattle (A.C.D.)
| | - Laura Demopoulos
- From Massachusetts General Hospital and Harvard Medical School (F.E., P.L.M.) and Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Harvard Medical School (C.N.D., D.A.W.), Boston, Bluebird Bio, Somerville (G.F.D., L.D., A.C.D., H.L.T.), and McNeil Pediatrics Consultancy, Sudbury (E.M.) - all in Massachusetts; the Division of Blood and Marrow Transplantation, Department of Pediatrics, University of Minnesota (T.C.L., A.O.G., P.J.O.), and Midwest Radiology (D.J.L.) - both in Minneapolis; David Geffen School of Medicine, University of California, Los Angeles, Los Angeles (S.D.O., R.S., S.A.H.); University College London Great Ormond Street Hospital Institute of Child Health and Great Ormond Street Hospital NHS Trust, London (A.J.T., P.G.); INSERM, Université Paris-Saclay, Hôpital Kremlin-Bicêtre (P.A.), the Reference Center for Leukodystrophies, Hôpital Kremlin-Bicêtre, Assistance Publique-Hôpitaux de Paris, Université Paris-Saclay (C.S.), and Robert-Debre Hospital, GHU Nord-Université de Paris (J.-H.D.) - all in Paris; the Departments of Pediatric Oncology/Hematology/Hemostaseology (J.-S.K.) and Hematology, Cellular Therapy, Hemostaseology and Infectious Diseases (U.P.), University Hospital Leipzig, Leipzig, Germany; Instituto Neurogenia and Hospital Universitario Austral - both in Buenos Aires (H.A.); Women's and Children's Health Network and the University of Adelaide - both in Adelaide, SA, Australia (N.S.); ITACI/Instituto da Criança-Hospital das Clínicas da Universidade de São Paulo, Sao Paulo (J.F.F.); and Shape Therapeutics, Seattle (A.C.D.)
| | - Andrew C Dietz
- From Massachusetts General Hospital and Harvard Medical School (F.E., P.L.M.) and Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Harvard Medical School (C.N.D., D.A.W.), Boston, Bluebird Bio, Somerville (G.F.D., L.D., A.C.D., H.L.T.), and McNeil Pediatrics Consultancy, Sudbury (E.M.) - all in Massachusetts; the Division of Blood and Marrow Transplantation, Department of Pediatrics, University of Minnesota (T.C.L., A.O.G., P.J.O.), and Midwest Radiology (D.J.L.) - both in Minneapolis; David Geffen School of Medicine, University of California, Los Angeles, Los Angeles (S.D.O., R.S., S.A.H.); University College London Great Ormond Street Hospital Institute of Child Health and Great Ormond Street Hospital NHS Trust, London (A.J.T., P.G.); INSERM, Université Paris-Saclay, Hôpital Kremlin-Bicêtre (P.A.), the Reference Center for Leukodystrophies, Hôpital Kremlin-Bicêtre, Assistance Publique-Hôpitaux de Paris, Université Paris-Saclay (C.S.), and Robert-Debre Hospital, GHU Nord-Université de Paris (J.-H.D.) - all in Paris; the Departments of Pediatric Oncology/Hematology/Hemostaseology (J.-S.K.) and Hematology, Cellular Therapy, Hemostaseology and Infectious Diseases (U.P.), University Hospital Leipzig, Leipzig, Germany; Instituto Neurogenia and Hospital Universitario Austral - both in Buenos Aires (H.A.); Women's and Children's Health Network and the University of Adelaide - both in Adelaide, SA, Australia (N.S.); ITACI/Instituto da Criança-Hospital das Clínicas da Universidade de São Paulo, Sao Paulo (J.F.F.); and Shape Therapeutics, Seattle (A.C.D.)
| | - Himal L Thakar
- From Massachusetts General Hospital and Harvard Medical School (F.E., P.L.M.) and Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Harvard Medical School (C.N.D., D.A.W.), Boston, Bluebird Bio, Somerville (G.F.D., L.D., A.C.D., H.L.T.), and McNeil Pediatrics Consultancy, Sudbury (E.M.) - all in Massachusetts; the Division of Blood and Marrow Transplantation, Department of Pediatrics, University of Minnesota (T.C.L., A.O.G., P.J.O.), and Midwest Radiology (D.J.L.) - both in Minneapolis; David Geffen School of Medicine, University of California, Los Angeles, Los Angeles (S.D.O., R.S., S.A.H.); University College London Great Ormond Street Hospital Institute of Child Health and Great Ormond Street Hospital NHS Trust, London (A.J.T., P.G.); INSERM, Université Paris-Saclay, Hôpital Kremlin-Bicêtre (P.A.), the Reference Center for Leukodystrophies, Hôpital Kremlin-Bicêtre, Assistance Publique-Hôpitaux de Paris, Université Paris-Saclay (C.S.), and Robert-Debre Hospital, GHU Nord-Université de Paris (J.-H.D.) - all in Paris; the Departments of Pediatric Oncology/Hematology/Hemostaseology (J.-S.K.) and Hematology, Cellular Therapy, Hemostaseology and Infectious Diseases (U.P.), University Hospital Leipzig, Leipzig, Germany; Instituto Neurogenia and Hospital Universitario Austral - both in Buenos Aires (H.A.); Women's and Children's Health Network and the University of Adelaide - both in Adelaide, SA, Australia (N.S.); ITACI/Instituto da Criança-Hospital das Clínicas da Universidade de São Paulo, Sao Paulo (J.F.F.); and Shape Therapeutics, Seattle (A.C.D.)
| | - Paul J Orchard
- From Massachusetts General Hospital and Harvard Medical School (F.E., P.L.M.) and Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Harvard Medical School (C.N.D., D.A.W.), Boston, Bluebird Bio, Somerville (G.F.D., L.D., A.C.D., H.L.T.), and McNeil Pediatrics Consultancy, Sudbury (E.M.) - all in Massachusetts; the Division of Blood and Marrow Transplantation, Department of Pediatrics, University of Minnesota (T.C.L., A.O.G., P.J.O.), and Midwest Radiology (D.J.L.) - both in Minneapolis; David Geffen School of Medicine, University of California, Los Angeles, Los Angeles (S.D.O., R.S., S.A.H.); University College London Great Ormond Street Hospital Institute of Child Health and Great Ormond Street Hospital NHS Trust, London (A.J.T., P.G.); INSERM, Université Paris-Saclay, Hôpital Kremlin-Bicêtre (P.A.), the Reference Center for Leukodystrophies, Hôpital Kremlin-Bicêtre, Assistance Publique-Hôpitaux de Paris, Université Paris-Saclay (C.S.), and Robert-Debre Hospital, GHU Nord-Université de Paris (J.-H.D.) - all in Paris; the Departments of Pediatric Oncology/Hematology/Hemostaseology (J.-S.K.) and Hematology, Cellular Therapy, Hemostaseology and Infectious Diseases (U.P.), University Hospital Leipzig, Leipzig, Germany; Instituto Neurogenia and Hospital Universitario Austral - both in Buenos Aires (H.A.); Women's and Children's Health Network and the University of Adelaide - both in Adelaide, SA, Australia (N.S.); ITACI/Instituto da Criança-Hospital das Clínicas da Universidade de São Paulo, Sao Paulo (J.F.F.); and Shape Therapeutics, Seattle (A.C.D.)
| | - David A Williams
- From Massachusetts General Hospital and Harvard Medical School (F.E., P.L.M.) and Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Harvard Medical School (C.N.D., D.A.W.), Boston, Bluebird Bio, Somerville (G.F.D., L.D., A.C.D., H.L.T.), and McNeil Pediatrics Consultancy, Sudbury (E.M.) - all in Massachusetts; the Division of Blood and Marrow Transplantation, Department of Pediatrics, University of Minnesota (T.C.L., A.O.G., P.J.O.), and Midwest Radiology (D.J.L.) - both in Minneapolis; David Geffen School of Medicine, University of California, Los Angeles, Los Angeles (S.D.O., R.S., S.A.H.); University College London Great Ormond Street Hospital Institute of Child Health and Great Ormond Street Hospital NHS Trust, London (A.J.T., P.G.); INSERM, Université Paris-Saclay, Hôpital Kremlin-Bicêtre (P.A.), the Reference Center for Leukodystrophies, Hôpital Kremlin-Bicêtre, Assistance Publique-Hôpitaux de Paris, Université Paris-Saclay (C.S.), and Robert-Debre Hospital, GHU Nord-Université de Paris (J.-H.D.) - all in Paris; the Departments of Pediatric Oncology/Hematology/Hemostaseology (J.-S.K.) and Hematology, Cellular Therapy, Hemostaseology and Infectious Diseases (U.P.), University Hospital Leipzig, Leipzig, Germany; Instituto Neurogenia and Hospital Universitario Austral - both in Buenos Aires (H.A.); Women's and Children's Health Network and the University of Adelaide - both in Adelaide, SA, Australia (N.S.); ITACI/Instituto da Criança-Hospital das Clínicas da Universidade de São Paulo, Sao Paulo (J.F.F.); and Shape Therapeutics, Seattle (A.C.D.)
| |
Collapse
|
5
|
Spreghini MR, Gianni N, Todisco T, Rizzo C, Cappa M, Manco M. Nutritional Counseling and Mediterranean Diet in Adrenoleukodystrophy: A Real-Life Experience. Nutrients 2024; 16:3341. [PMID: 39408308 PMCID: PMC11478612 DOI: 10.3390/nu16193341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/12/2024] [Accepted: 09/17/2024] [Indexed: 10/20/2024] Open
Abstract
Background/Objectives: Adrenoleukodystrophy (X-ALD) is a metabolic disorder caused by dysfunctional peroxisomal beta-oxidation of very-long-chain fatty acids (VLCFAs). A VLCFA-restricted Mediterranean diet has been proposed for patients and carriers to reduce daily VLCFA intake. Methods: We retrospectively evaluated plasma VLCFAs in a cohort of 36 patients and 20 carriers at baseline and after 1 year of restricted diet. Results: At T1, compliant adult patients had significantly lower C26:0 levels [1.7 (1.2) vs. 2.5 µmol/L (1.7), p < 0.05], C26:0/C22:0 ratio [0.04 (0.02) vs. 0.06 (0.03), p < 0.05], and triglycerides [93 (56.5) vs. 128 mg/dL (109.5), p < 0.05] than non-compliant ones. C26:0 [2.4 (1.7) vs. 1.7 (1.2) µmol/L, p < 0.05], the C26:0/C22:0 ratio [0.06 (0.04) vs. 0.04 (0.02), p < 0.05], and cholesterol [173.5 (68.3) mg/dL vs. 157 (54) mg/dL, p < 0.05] were significantly reduced in compliant adult patients at T1 vs. baseline. As for carriers, the C26:0/C22:0 ratio was lower [0.02 (0.01) vs. 0.04 (0.009), p < 0.05] at T1 in compliant carriers, as compared to non-compliant ones. The C26:0/C22:0 [0.03 (0.02) vs. 0.02 (0.01) p < 0.05] and C24:0/C22:0 [1.0 (0.2) vs. 0.9 (0.3), p < 0.05] ratios were significantly decreased at T1 vs. T0. Conclusions: A VLCFA-restricted diet is effective in reducing plasma VLCFA levels and their ratios and must be strongly encouraged as support to therapy.
Collapse
Affiliation(s)
- Maria Rita Spreghini
- UOC of Endocrinology and Diabetology, Bambino Gesù Children’s Hospital, Istituti di Ricovero e Cura a Carattere Scientifico, IRCCS, 00165 Rome, Italy; (M.R.S.); (T.T.)
| | - Nicoletta Gianni
- Research Unit for Predictive and Preventive Medicine, Bambino Gesù Children’s Hospital, Istituti di Ricovero e Cura a Carattere Scientifico, IRCCS, 00165 Rome, Italy;
| | - Tommaso Todisco
- UOC of Endocrinology and Diabetology, Bambino Gesù Children’s Hospital, Istituti di Ricovero e Cura a Carattere Scientifico, IRCCS, 00165 Rome, Italy; (M.R.S.); (T.T.)
- Service of Endocrinology, Diabetology and Metabolism, Lausanne University Hospital, 1011 Lausanne, Switzerland
| | - Cristiano Rizzo
- UOC of Metabolic Diseases, Bambino Gesù Children’s Hospital, Istituti di Ricovero e Cura a Carattere Scientifico, IRCCS, 00165 Rome, Italy;
| | - Marco Cappa
- Research Unit for Innovative Therapies for Endocrinopathies, Bambino Gesù Children’s Hospital, Istituti di Ricovero e Cura a Carattere Scientifico, IRCCS, 00165 Rome, Italy;
| | - Melania Manco
- Research Unit for Predictive and Preventive Medicine, Bambino Gesù Children’s Hospital, Istituti di Ricovero e Cura a Carattere Scientifico, IRCCS, 00165 Rome, Italy;
| |
Collapse
|
6
|
Kornbluh AB, Baldwin A, Fatemi A, Vanderver A, Adang LA, Van Haren K, Sampson J, Eichler FS, Sadjadi R, Engelen M, Orthmann-Murphy JL. Practical Approach to Longitudinal Neurologic Care of Adults With X-Linked Adrenoleukodystrophy and Adrenomyeloneuropathy. Neurol Genet 2024; 10:e200192. [PMID: 39372123 PMCID: PMC11450743 DOI: 10.1212/nxg.0000000000200192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 08/26/2024] [Indexed: 10/08/2024]
Abstract
Although X-linked adrenoleukodystrophy (ALD) has historically been considered a childhood disease managed by pediatric neurologists, it is one of the most common leukodystrophies diagnosed in adulthood. An increase in both male and female adults reaching diagnosis due to familial cases identified by state newborn screening panels and more widespread use of genetic testing results in a large cohort of presymptomatic or early symptomatic adults. This population is in urgent need of standardized assessments and follow-up care. Adults with ALD/adrenomyeloneuropathy (AMN) may be diagnosed in a variety of ways, including after another family member is identified via genetic testing or newborn screening, presenting for symptomatic evaluation, or following diagnosis with primary adrenal insufficiency. Significant provider, patient, and systems-based barriers prevent adult patients with ALD/AMN from receiving appropriate care, including lack of awareness of the importance of longitudinal neurologic management. Confirmation of and education about the diagnosis should be coordinated in conjunction with a genetic counselor. Routine surveillance for adrenal insufficiency and onset of cerebral ALD (CALD) in men should be performed systematically to avoid preventable morbidity and mortality. While women with ALD do not usually develop cerebral demyelination or adrenal insufficiency, they remain at risk for myeloneuropathy and are no longer considered "carriers." After diagnosis, patients should be connected to the robust support networks, foundations, and research organizations available for ALD/AMN. Core principles of neurologic symptom management parallel those for patients with other etiologies of progressive spastic paraplegia. Appropriate patient candidates for hematopoietic stem cell transplant (HSCT) and other investigational disease-modifying strategies require early identification to achieve optimal outcomes. All patients with ALD/AMN, regardless of sex, age, or symptom severity, benefit from a multidisciplinary approach to longitudinal care spearheaded by the neurologist. This review proposes key strategies for diagnostic confirmation, laboratory and imaging surveillance, approach to symptom management, and guidance for identification of appropriate candidates for HSCT and investigational treatments.
Collapse
Affiliation(s)
- Alexandra B Kornbluh
- From the Division of Neurology (A.B.K.), Children's National Hospital, George Washington University Medical School, Washington DC; Division of Neurology (A.B.), Neurogenetics Translational Center of Excellence, University of Pennsylvania, Philadelphia; Kennedy Krieger Institute and The Johns Hopkins University School of Medicine (A.F.), Baltimore, MD; Division of Neurology (A.V., L.A.A.), Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania; Department of Neurology and Pediatrics (K.V.H., J.S.), Lucile Packard Children's Hospital, Stanford University School of Medicine, Palo Alto, CA; Department of Neurology (F.S.E., R.S.), Harvard Medical School, Massachusetts General Hospital, Boston; Department of Pediatric Neurology (M.E.), Amsterdam UMC location, University of Amsterdam, Amsterdam Leukodystrophy Center, Emma Children's Hospital, Amsterdam Neuroscience, the Netherlands; and Department of Neurology (J.L.O.-M.), University of Pennsylvania, Philadelphia
| | - Aaron Baldwin
- From the Division of Neurology (A.B.K.), Children's National Hospital, George Washington University Medical School, Washington DC; Division of Neurology (A.B.), Neurogenetics Translational Center of Excellence, University of Pennsylvania, Philadelphia; Kennedy Krieger Institute and The Johns Hopkins University School of Medicine (A.F.), Baltimore, MD; Division of Neurology (A.V., L.A.A.), Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania; Department of Neurology and Pediatrics (K.V.H., J.S.), Lucile Packard Children's Hospital, Stanford University School of Medicine, Palo Alto, CA; Department of Neurology (F.S.E., R.S.), Harvard Medical School, Massachusetts General Hospital, Boston; Department of Pediatric Neurology (M.E.), Amsterdam UMC location, University of Amsterdam, Amsterdam Leukodystrophy Center, Emma Children's Hospital, Amsterdam Neuroscience, the Netherlands; and Department of Neurology (J.L.O.-M.), University of Pennsylvania, Philadelphia
| | - Ali Fatemi
- From the Division of Neurology (A.B.K.), Children's National Hospital, George Washington University Medical School, Washington DC; Division of Neurology (A.B.), Neurogenetics Translational Center of Excellence, University of Pennsylvania, Philadelphia; Kennedy Krieger Institute and The Johns Hopkins University School of Medicine (A.F.), Baltimore, MD; Division of Neurology (A.V., L.A.A.), Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania; Department of Neurology and Pediatrics (K.V.H., J.S.), Lucile Packard Children's Hospital, Stanford University School of Medicine, Palo Alto, CA; Department of Neurology (F.S.E., R.S.), Harvard Medical School, Massachusetts General Hospital, Boston; Department of Pediatric Neurology (M.E.), Amsterdam UMC location, University of Amsterdam, Amsterdam Leukodystrophy Center, Emma Children's Hospital, Amsterdam Neuroscience, the Netherlands; and Department of Neurology (J.L.O.-M.), University of Pennsylvania, Philadelphia
| | - Adeline Vanderver
- From the Division of Neurology (A.B.K.), Children's National Hospital, George Washington University Medical School, Washington DC; Division of Neurology (A.B.), Neurogenetics Translational Center of Excellence, University of Pennsylvania, Philadelphia; Kennedy Krieger Institute and The Johns Hopkins University School of Medicine (A.F.), Baltimore, MD; Division of Neurology (A.V., L.A.A.), Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania; Department of Neurology and Pediatrics (K.V.H., J.S.), Lucile Packard Children's Hospital, Stanford University School of Medicine, Palo Alto, CA; Department of Neurology (F.S.E., R.S.), Harvard Medical School, Massachusetts General Hospital, Boston; Department of Pediatric Neurology (M.E.), Amsterdam UMC location, University of Amsterdam, Amsterdam Leukodystrophy Center, Emma Children's Hospital, Amsterdam Neuroscience, the Netherlands; and Department of Neurology (J.L.O.-M.), University of Pennsylvania, Philadelphia
| | - Laura A Adang
- From the Division of Neurology (A.B.K.), Children's National Hospital, George Washington University Medical School, Washington DC; Division of Neurology (A.B.), Neurogenetics Translational Center of Excellence, University of Pennsylvania, Philadelphia; Kennedy Krieger Institute and The Johns Hopkins University School of Medicine (A.F.), Baltimore, MD; Division of Neurology (A.V., L.A.A.), Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania; Department of Neurology and Pediatrics (K.V.H., J.S.), Lucile Packard Children's Hospital, Stanford University School of Medicine, Palo Alto, CA; Department of Neurology (F.S.E., R.S.), Harvard Medical School, Massachusetts General Hospital, Boston; Department of Pediatric Neurology (M.E.), Amsterdam UMC location, University of Amsterdam, Amsterdam Leukodystrophy Center, Emma Children's Hospital, Amsterdam Neuroscience, the Netherlands; and Department of Neurology (J.L.O.-M.), University of Pennsylvania, Philadelphia
| | - Keith Van Haren
- From the Division of Neurology (A.B.K.), Children's National Hospital, George Washington University Medical School, Washington DC; Division of Neurology (A.B.), Neurogenetics Translational Center of Excellence, University of Pennsylvania, Philadelphia; Kennedy Krieger Institute and The Johns Hopkins University School of Medicine (A.F.), Baltimore, MD; Division of Neurology (A.V., L.A.A.), Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania; Department of Neurology and Pediatrics (K.V.H., J.S.), Lucile Packard Children's Hospital, Stanford University School of Medicine, Palo Alto, CA; Department of Neurology (F.S.E., R.S.), Harvard Medical School, Massachusetts General Hospital, Boston; Department of Pediatric Neurology (M.E.), Amsterdam UMC location, University of Amsterdam, Amsterdam Leukodystrophy Center, Emma Children's Hospital, Amsterdam Neuroscience, the Netherlands; and Department of Neurology (J.L.O.-M.), University of Pennsylvania, Philadelphia
| | - Jacinda Sampson
- From the Division of Neurology (A.B.K.), Children's National Hospital, George Washington University Medical School, Washington DC; Division of Neurology (A.B.), Neurogenetics Translational Center of Excellence, University of Pennsylvania, Philadelphia; Kennedy Krieger Institute and The Johns Hopkins University School of Medicine (A.F.), Baltimore, MD; Division of Neurology (A.V., L.A.A.), Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania; Department of Neurology and Pediatrics (K.V.H., J.S.), Lucile Packard Children's Hospital, Stanford University School of Medicine, Palo Alto, CA; Department of Neurology (F.S.E., R.S.), Harvard Medical School, Massachusetts General Hospital, Boston; Department of Pediatric Neurology (M.E.), Amsterdam UMC location, University of Amsterdam, Amsterdam Leukodystrophy Center, Emma Children's Hospital, Amsterdam Neuroscience, the Netherlands; and Department of Neurology (J.L.O.-M.), University of Pennsylvania, Philadelphia
| | - Florian S Eichler
- From the Division of Neurology (A.B.K.), Children's National Hospital, George Washington University Medical School, Washington DC; Division of Neurology (A.B.), Neurogenetics Translational Center of Excellence, University of Pennsylvania, Philadelphia; Kennedy Krieger Institute and The Johns Hopkins University School of Medicine (A.F.), Baltimore, MD; Division of Neurology (A.V., L.A.A.), Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania; Department of Neurology and Pediatrics (K.V.H., J.S.), Lucile Packard Children's Hospital, Stanford University School of Medicine, Palo Alto, CA; Department of Neurology (F.S.E., R.S.), Harvard Medical School, Massachusetts General Hospital, Boston; Department of Pediatric Neurology (M.E.), Amsterdam UMC location, University of Amsterdam, Amsterdam Leukodystrophy Center, Emma Children's Hospital, Amsterdam Neuroscience, the Netherlands; and Department of Neurology (J.L.O.-M.), University of Pennsylvania, Philadelphia
| | - Reza Sadjadi
- From the Division of Neurology (A.B.K.), Children's National Hospital, George Washington University Medical School, Washington DC; Division of Neurology (A.B.), Neurogenetics Translational Center of Excellence, University of Pennsylvania, Philadelphia; Kennedy Krieger Institute and The Johns Hopkins University School of Medicine (A.F.), Baltimore, MD; Division of Neurology (A.V., L.A.A.), Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania; Department of Neurology and Pediatrics (K.V.H., J.S.), Lucile Packard Children's Hospital, Stanford University School of Medicine, Palo Alto, CA; Department of Neurology (F.S.E., R.S.), Harvard Medical School, Massachusetts General Hospital, Boston; Department of Pediatric Neurology (M.E.), Amsterdam UMC location, University of Amsterdam, Amsterdam Leukodystrophy Center, Emma Children's Hospital, Amsterdam Neuroscience, the Netherlands; and Department of Neurology (J.L.O.-M.), University of Pennsylvania, Philadelphia
| | - Marc Engelen
- From the Division of Neurology (A.B.K.), Children's National Hospital, George Washington University Medical School, Washington DC; Division of Neurology (A.B.), Neurogenetics Translational Center of Excellence, University of Pennsylvania, Philadelphia; Kennedy Krieger Institute and The Johns Hopkins University School of Medicine (A.F.), Baltimore, MD; Division of Neurology (A.V., L.A.A.), Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania; Department of Neurology and Pediatrics (K.V.H., J.S.), Lucile Packard Children's Hospital, Stanford University School of Medicine, Palo Alto, CA; Department of Neurology (F.S.E., R.S.), Harvard Medical School, Massachusetts General Hospital, Boston; Department of Pediatric Neurology (M.E.), Amsterdam UMC location, University of Amsterdam, Amsterdam Leukodystrophy Center, Emma Children's Hospital, Amsterdam Neuroscience, the Netherlands; and Department of Neurology (J.L.O.-M.), University of Pennsylvania, Philadelphia
| | - Jennifer L Orthmann-Murphy
- From the Division of Neurology (A.B.K.), Children's National Hospital, George Washington University Medical School, Washington DC; Division of Neurology (A.B.), Neurogenetics Translational Center of Excellence, University of Pennsylvania, Philadelphia; Kennedy Krieger Institute and The Johns Hopkins University School of Medicine (A.F.), Baltimore, MD; Division of Neurology (A.V., L.A.A.), Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania; Department of Neurology and Pediatrics (K.V.H., J.S.), Lucile Packard Children's Hospital, Stanford University School of Medicine, Palo Alto, CA; Department of Neurology (F.S.E., R.S.), Harvard Medical School, Massachusetts General Hospital, Boston; Department of Pediatric Neurology (M.E.), Amsterdam UMC location, University of Amsterdam, Amsterdam Leukodystrophy Center, Emma Children's Hospital, Amsterdam Neuroscience, the Netherlands; and Department of Neurology (J.L.O.-M.), University of Pennsylvania, Philadelphia
| |
Collapse
|
7
|
Rudaks LI, Yeow D, Ng K, Deveson IW, Kennerson ML, Kumar KR. An Update on the Adult-Onset Hereditary Cerebellar Ataxias: Novel Genetic Causes and New Diagnostic Approaches. CEREBELLUM (LONDON, ENGLAND) 2024; 23:2152-2168. [PMID: 38760634 PMCID: PMC11489183 DOI: 10.1007/s12311-024-01703-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/07/2024] [Indexed: 05/19/2024]
Abstract
The hereditary cerebellar ataxias (HCAs) are rare, progressive neurologic disorders caused by variants in many different genes. Inheritance may follow autosomal dominant, autosomal recessive, X-linked or mitochondrial patterns. The list of genes associated with adult-onset cerebellar ataxia is continuously growing, with several new genes discovered in the last few years. This includes short-tandem repeat (STR) expansions in RFC1, causing cerebellar ataxia, neuropathy, vestibular areflexia syndrome (CANVAS), FGF14-GAA causing spinocerebellar ataxia type 27B (SCA27B), and THAP11. In addition, the genetic basis for SCA4, has recently been identified as a STR expansion in ZFHX3. Given the large and growing number of genes, and different gene variant types, the approach to diagnostic testing for adult-onset HCA can be complex. Testing methods include targeted evaluation of STR expansions (e.g. SCAs, Friedreich ataxia, fragile X-associated tremor/ataxia syndrome, dentatorubral-pallidoluysian atrophy), next generation sequencing for conventional variants, which may include targeted gene panels, whole exome, or whole genome sequencing, followed by various potential additional tests. This review proposes a diagnostic approach for clinical testing, highlights the challenges with current testing technologies, and discusses future advances which may overcome these limitations. Implementing long-read sequencing has the potential to transform the diagnostic approach in HCA, with the overall aim to improve the diagnostic yield.
Collapse
Affiliation(s)
- Laura Ivete Rudaks
- Molecular Medicine Laboratory and Neurology Department, Concord Repatriation General Hospital, Sydney, Australia.
- Faculty of Medicine and Health, The University of Sydney, Sydney, Australia.
- Genomics and Inherited Disease Program, The Garvan Institute of Medical Research, Sydney, Australia.
- Clinical Genetics Unit, Royal North Shore Hospital, Sydney, Australia.
| | - Dennis Yeow
- Molecular Medicine Laboratory and Neurology Department, Concord Repatriation General Hospital, Sydney, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
- Genomics and Inherited Disease Program, The Garvan Institute of Medical Research, Sydney, Australia
- Neurodegenerative Service, Prince of Wales Hospital, Sydney, Australia
- Neuroscience Research Australia, Sydney, Australia
| | - Karl Ng
- Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
- Neurology Department, Royal North Shore Hospital, Sydney, Australia
| | - Ira W Deveson
- Genomics and Inherited Disease Program, The Garvan Institute of Medical Research, Sydney, Australia
- Faculty of Medicine, University of New South Wales, Sydney, Australia
| | - Marina L Kennerson
- Molecular Medicine Laboratory and Neurology Department, Concord Repatriation General Hospital, Sydney, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
- The Northcott Neuroscience Laboratory, ANZAC Research Institute, Sydney Local Health District, Sydney, Australia
| | - Kishore Raj Kumar
- Molecular Medicine Laboratory and Neurology Department, Concord Repatriation General Hospital, Sydney, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
- Genomics and Inherited Disease Program, The Garvan Institute of Medical Research, Sydney, Australia
- Faculty of Medicine, University of New South Wales, Sydney, Australia
- Faculty of Medicine, St Vincent's Healthcare Campus, UNSW Sydney, Sydney, Australia
| |
Collapse
|
8
|
Chaudhary R, Rehman M, Agarwal V, Kumar A, Kaushik AS, Srivastava S, Srivastava S, Verma R, Rajinikanth PS, Mishra V. Terra incognita of glial cell dynamics in the etiology of leukodystrophies: Broadening disease and therapeutic perspectives. Life Sci 2024; 354:122953. [PMID: 39122110 DOI: 10.1016/j.lfs.2024.122953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 07/09/2024] [Accepted: 08/05/2024] [Indexed: 08/12/2024]
Abstract
Neuroglial cells, also known as glia, are primarily characterized as auxiliary cells within the central nervous system (CNS). The recent findings have shed light on their significance in numerous physiological processes and their involvement in various neurological disorders. Leukodystrophies encompass an array of rare and hereditary neurodegenerative conditions that were initially characterized by the deficiency, aberration, or degradation of myelin sheath within CNS. The primary cellular populations that experience significant alterations are astrocytes, oligodendrocytes and microglia. These glial cells are either structurally or metabolically impaired due to inherent cellular dysfunction. Alternatively, they may fall victim to the accumulation of harmful by-products resulting from metabolic disturbances. In either situation, the possible replacement of glial cells through the utilization of implanted tissue or stem cell-derived human neural or glial progenitor cells hold great promise as a therapeutic strategy for both the restoration of structural integrity through remyelination and the amelioration of metabolic deficiencies. Various emerging treatment strategies like stem cell therapy, ex-vivo gene therapy, infusion of adeno-associated virus vectors, emerging RNA-based therapies as well as long-term therapies have demonstrated success in pre-clinical studies and show promise for rapid clinical translation. Here, we addressed various leukodystrophies in a comprehensive and detailed manner as well as provide prospective therapeutic interventions that are being considered for clinical trials. Further, we aim to emphasize the crucial role of different glial cells in the pathogenesis of leukodystrophies. By doing so, we hope to advance our understanding of the disease, elucidate underlying mechanisms, and facilitate the development of potential treatment interventions.
Collapse
Affiliation(s)
- Rishabh Chaudhary
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow 226025, U.P., India
| | - Mujeeba Rehman
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow 226025, U.P., India
| | - Vipul Agarwal
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow 226025, U.P., India
| | - Anand Kumar
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow 226025, U.P., India
| | - Arjun Singh Kaushik
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow 226025, U.P., India
| | - Siddhi Srivastava
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow 226025, U.P., India
| | - Sukriti Srivastava
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow 226025, U.P., India
| | - Rajkumar Verma
- University of Connecticut School of Medicine, 200 Academic Way, Farmington, CT 06032, USA
| | - P S Rajinikanth
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow 226025, U.P., India
| | - Vikas Mishra
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow 226025, U.P., India.
| |
Collapse
|
9
|
Manor J, Jangam SV, Chung HL, Bhagwat P, Andrews J, Chester H, Kondo S, Srivastav S, Botas J, Moser AB, Huguenin SM, Wangler MF. Genetic analysis of the X-linked Adrenoleukodystrophy ABCD1 gene in Drosophila uncovers a role in Peroxisomal dynamics. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.23.614586. [PMID: 39386423 PMCID: PMC11463603 DOI: 10.1101/2024.09.23.614586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
X-linked adrenoleukodystrophy (X-ALD) is a progressive neurodegenerative disorder caused by a loss-of-function (LOF) mutation in the ATP-binding cassette subfamily D member 1 (ABCD1) gene, leading to the accumulation of very long-chain fatty acids (VLCFAs). This disorder exhibits striking heterogeneity; some male patients develop an early childhood neuroinflammatory demyelination disorder, while other patients, including adult males and most affected female carriers, experience a chronic progressive myelopathy. Adrenocortical failure is observed in almost all male patients, with age of onset varying sometimes being the first diagnostic finding. The gene underlying this spectrum of disease encodes an ATP-binding cassette (ABC) transporter that localizes to peroxisomes and facilitates VLCFA transport. X-ALD is considered a single peroxisomal component defect and does not play a direct role in peroxisome assembly. Drosophila models of other peroxisomal genes have provided mechanistic insight into some of the neurodegenerative mechanisms with reduced lifespan, retinal degeneration, and VLCFA accumulation. Here, we perform a genetic analysis of the fly ABCD1 ortholog Abcd1 (CG2316). Knockdown or deficiency of Abcd1 leads to VLCFA accumulation, salivary gland defects, locomotor impairment and retinal lipid abnormalities. Interestingly, there is also evidence of reduced peroxisomal numbers. Flies overexpressing the human cDNA for ABCD1 display a wing crumpling phenotype characteristic of the pex2 loss-of-function. Surprisingly, overexpression of human ABCD1 appears to inhibit or overwhelm peroxisomal biogenesis to levels similar to null mutations in fly pex2, pex16 and pex3. Drosophila Abcd1 is therefore implicated in peroxisomal number, and overexpression of the human ABCD1 gene acts a potent inhibitor of peroxisomal biogenesis in flies.
Collapse
Affiliation(s)
- Joshua Manor
- Metabolic Disease Unit, Edmond and Lily Safra Children’s Hospital, Sheba Medical Center, Ramat Gan, Israel
| | - Sharayu V Jangam
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, Texas, USA
| | - Hyung-lok Chung
- Department of Neurology, Houston Methodist Research Institute, Houston, TX, USA
- Department of Neurology, Weill Cornell Medical College, New York, NY, USA
| | - Pranjali Bhagwat
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, Texas, USA
| | - Jonathan Andrews
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, Texas, USA
| | - Hillary Chester
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, Texas, USA
| | - Shu Kondo
- Tokyo University of Science, Faculty of Advanced Engineering, Department of Biological Science and Technology, Tokyo, Japan
| | - Saurabh Srivastav
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, Texas, USA
| | - Juan Botas
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, Texas, USA
| | - Ann B. Moser
- Hugo W Moser Research Institute, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Suzette M. Huguenin
- Hugo W Moser Research Institute, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Michael F Wangler
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, Texas, USA
| |
Collapse
|
10
|
Mukherjee D, Sarkar P, Pandit A, Ray BK, Das G, Dubey S. A spectrum of cognitive-behavioral-movement disorders in adrenoleukodystrophy: A case series from a tertiary care centre in the eastern part of India. Qatar Med J 2024; 2024:43. [PMID: 39376208 PMCID: PMC11456738 DOI: 10.5339/qmj.2024.43] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 07/22/2024] [Indexed: 10/09/2024] Open
Abstract
Background Adrenoleukodystrophy (ALD) is an intriguing disease with a heterogeneous clinico-radiological profile. Behavioral and cognitive impairments are often the initial and predominant manifestations, yet their patterns are frequently overlooked. This study aims to elaborate on the patterns of cognitive dysfunction, behavioral changes, and movement disorders in ALD to facilitate its earlier diagnosis. Methods In this case series, 12 cases of ALD were assessed and evaluated for cognitive, behavioral, and movement abnormalities to identify patterns of involvement. Results All patients were male, with an age range of 5-46 years. 75% presented with cerebral ALD (CALD), and 25% had an adrenomyeloneuropathy phenotype. Cognitive dysfunction, behavioral changes, and seizures were observed in 75%, 66.7%, and 33.3% of ALD patients. An initial posterior to anterior pattern of progression of cognitive impairment dominated by higher-order visual dysfunction and language regression was observed in 66.7% of CALD patients, while a frontal pattern was noted in 22.2% of CALD patients. While cognitive impairment typically indicated dysfunction of occipito-parieto-temporal networks, behavioral changes predominantly suggested dysfunctional fronto-temporal-subcortical connections. A novel observation was the occurrence of tics and stereotypies in 33.3% of ALD patients. Conclusion This study describes the patterns of cognitive, behavioral, and movement abnormalities in ALD and highlights the contributory role of dysfunctional white matter networks. Cognitive patterns predominantly reflect a posterior-to-anterior gradient of impairment of white matter connections, while behavioral markers indicate involvement of fronto-temporal-subcortical networks. Adding to this spectrum, the occurrence of tics and stereotypies is a unique observation in ALD.
Collapse
Affiliation(s)
- Debaleena Mukherjee
- Bangur Institute of Neurosciences, Institute of Post Graduate Medical Education & Research, SSKM Hospital, Kolkata, India *
| | - Peyalee Sarkar
- Bangur Institute of Neurosciences, Institute of Post Graduate Medical Education & Research, SSKM Hospital, Kolkata, India *
| | - Alak Pandit
- Bangur Institute of Neurosciences, Institute of Post Graduate Medical Education & Research, SSKM Hospital, Kolkata, India *
| | - Biman Kanti Ray
- Bangur Institute of Neurosciences, Institute of Post Graduate Medical Education & Research, SSKM Hospital, Kolkata, India *
| | - Gautam Das
- Bangur Institute of Neurosciences, Institute of Post Graduate Medical Education & Research, SSKM Hospital, Kolkata, India *
| | - Souvik Dubey
- Bangur Institute of Neurosciences, Institute of Post Graduate Medical Education & Research, SSKM Hospital, Kolkata, India *
| |
Collapse
|
11
|
Zekarias KL, Salim M, Tessier KM, Radulescu A. Adrenal insufficiency and the use of mineralocorticoid treatment in male patients with adrenoleukodystrophy; a retrospective analysis of an institutional database. BMC Endocr Disord 2024; 24:181. [PMID: 39252037 PMCID: PMC11382501 DOI: 10.1186/s12902-024-01712-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 08/30/2024] [Indexed: 09/11/2024] Open
Abstract
INTRODUCTION Adrenoleukodystrophy (ALD) patients exhibit three primary clinical phenotypes: primary adrenal insufficiency, adrenomyeloneuropathy, and cerebral demyelination due to the accumulation of saturated very long-chain fatty acids in the adrenal cortex and central nervous system white matter and axons. We investigated the diagnosis of adrenal insufficiency (AI) and the use of mineralocorticoid treatment in male ALD patients. METHODS A retrospective chart review of electronic medical records was conducted for all ALD patients at a single institution between January 1, 2011, and December 6, 2021. RESULTS Among the 437 ALD patients, 82% were male and 18% were female. Of the male ALD patients, 60% (213 out of 358) had a diagnosis of AI, and 39% (84 out of 213) of those with AI were prescribed mineralocorticoid replacement therapy. CONCLUSION AI is highly prevalent among ALD patients, with approximately 40% of those with a diagnosis of AI undergoing mineralocorticoid replacement therapy. Further research is warranted to delineate the characteristics of patients predisposed to developing mineralocorticoid deficiency within the context of ALD and AI.
Collapse
Affiliation(s)
- Kidmealem L Zekarias
- Department of Medicine, Division of Diabetes, Endocrinology and Metabolism, University of Minnesota, 420 Delaware St SE, MMC 101, Minneapolis, MN, 55455, USA.
| | - Michael Salim
- Department of Medicine, Division of Diabetes, Endocrinology and Metabolism, University of Minnesota, 420 Delaware St SE, MMC 101, Minneapolis, MN, 55455, USA
| | - Katelyn M Tessier
- Biostatistics Core, Masonic Cancer Center, University of Minnesota, Minneapolis, USA
| | - Angela Radulescu
- Department of Medicine, Division of Diabetes, Endocrinology and Metabolism, University of Minnesota, 420 Delaware St SE, MMC 101, Minneapolis, MN, 55455, USA
| |
Collapse
|
12
|
Li Y, Chen ZP, Xu D, Wang L, Cheng MT, Zhou CZ, Chen Y, Hou WT. Structural insights into human ABCD3-mediated peroxisomal acyl-CoA translocation. Cell Discov 2024; 10:92. [PMID: 39223112 PMCID: PMC11369193 DOI: 10.1038/s41421-024-00722-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 07/30/2024] [Indexed: 09/04/2024] Open
Abstract
Human ABC transporters ABCD1-3 are all localized on the peroxisomal membrane and participate in the β-oxidation of fatty acyl-CoAs, but they differ from each other in substrate specificity. The transport of branched-chain fatty acids from cytosol to peroxisome is specifically driven by ABCD3, dysfunction of which causes severe liver diseases such as hepatosplenomegaly. Here we report two cryogenic electron microscopy (cryo-EM) structures of ABCD3 bound to phytanoyl-CoA and ATP at resolutions of 2.9 Å and 3.2 Å, respectively. A pair of phytanoyl-CoA molecules were observed in ABCD3, each binding to one transmembrane domain (TMD), which is distinct from our previously reported structure of ABCD1, where each fatty acyl-CoA molecule strongly crosslinks two TMDs. Upon ATP binding, ABCD3 exhibits a conformation that is open towards the peroxisomal matrix, leaving two extra densities corresponding to two CoA molecules deeply embedded in the translocation cavity. Structural analysis combined with substrate-stimulated ATPase activity assays indicated that the present structures might represent two states of ABCD3 in the transport cycle. These findings advance our understanding of fatty acid oxidation and the molecular pathology of related diseases.
Collapse
Affiliation(s)
- Yang Li
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, and Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, Anhui, China
| | - Zhi-Peng Chen
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, and Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Da Xu
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, and Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, Anhui, China
| | - Liang Wang
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, and Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, Anhui, China
| | - Meng-Ting Cheng
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, and Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, Anhui, China
| | - Cong-Zhao Zhou
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, and Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, Anhui, China
| | - Yuxing Chen
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, and Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China.
- Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, Anhui, China.
| | - Wen-Tao Hou
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, and Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China.
- Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, Anhui, China.
| |
Collapse
|
13
|
Wang QH, Wang J, Ling ZP, Cui ZQ, Gong J, Zhang R, Li SJ, Wang YY, Yang R, Huang DH, He W, Gao J, Feng C, Hu PL, Liu LY, Chang LJ, Zou LP. Phase I clinical trial of intracerebral injection of lentiviral-ABCD1 for the treatment of cerebral adrenoleukodystrophy. Sci Bull (Beijing) 2024; 69:2596-2603. [PMID: 39025777 DOI: 10.1016/j.scib.2024.04.072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 03/29/2024] [Accepted: 04/05/2024] [Indexed: 07/20/2024]
Abstract
This was a single-arm, multicenter, open-label phase I trial. Lentiviral vectors (LV) carrying the ABCD1 gene (LV-ABCD1) was directly injected into the brain of patients with childhood cerebral adrenoleukodystrophy (CCALD), and multi-site injection was performed. The injection dose increased from 200 to 1600 μL (vector titer: 1×109 transduction units per mL (TU/mL)), and the average dose per kilogram body weight ranges from 8 to 63.6 μL/kg. The primary endpoint was safety, dose-exploration and immunogenicity and the secondary endpoint was initial evaluation of efficacy and the expression of ABCD1 protein. A total of 7 patients participated in this phase I study and were followed for 1 year. No injection-related serious adverse event or death occurred. Common adverse events associated with the injection were irritability (71%, 5/7) and fever (37.2-38.5 ℃, 57%, 4/7). Adverse events were mild and self-limited, or resolved within 3 d of symptomatic treatment. The maximal tolerable dose is 1600 μL. In 5 cases (83.3%, 5/6), no lentivirus associated antibodies were detected. The overall survival at 1-year was 100%. The ABCD1 protein expression was detected in neutrophils, monocytes and lymphocytes. This study suggests that the intracerebral injection of LV-ABCD1 for CCALD is safe and can achieve successful LV transduction in vivo; even the maximal dose did not increase the risk of adverse events. Furthermore, the direct LV-ABCD1 injection displayed low immunogenicity. In addition, the effectiveness of intracerebral LV-ABCD1 injection has been preliminarily demonstrated while further investigation is needed. This study has been registered in the Chinese Clinical Trial Registry (https://www.chictr.org.cn/, registration number: ChiCTR1900026649).
Collapse
Affiliation(s)
- Qiu-Hong Wang
- Senior Department of Pediatrics, Chinese PLA General Hospital, Beijing 100853, China; Medical School of Chinese PLA, Beijing 100853, China
| | - Jing Wang
- Senior Department of Pediatrics, Chinese PLA General Hospital, Beijing 100853, China
| | - Zhi-Pei Ling
- Department of Neurosurgery, Hainan Hospital of PLA General Hospital, Sanya 572013, China
| | - Zhi-Qiang Cui
- Department of Neurosurgery, The First Medical Center of Chinese PLA General Hospital, Beijing 100853, China
| | - Jie Gong
- Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 611731, China; School of Medicine, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Rui Zhang
- Beijing Meikang Biotechnology Co., LTD., Beijing 100085, China
| | - Shi-Jun Li
- Department of Radiology, The First Medical Center of Chinese PLA General Hospital, Beijing 100853, China
| | - Yang-Yang Wang
- Senior Department of Pediatrics, Chinese PLA General Hospital, Beijing 100853, China
| | - Rui Yang
- School of Medicine, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - De-Hui Huang
- Department of Neurology, The First Medical Center of Chinese PLA General Hospital, Beijing 100853, China
| | - Wen He
- Senior Department of Pediatrics, Chinese PLA General Hospital, Beijing 100853, China
| | - Jing Gao
- Senior Department of Pediatrics, Chinese PLA General Hospital, Beijing 100853, China
| | - Chen Feng
- Senior Department of Pediatrics, Chinese PLA General Hospital, Beijing 100853, China
| | - Pei-Li Hu
- Senior Department of Pediatrics, Chinese PLA General Hospital, Beijing 100853, China
| | - Li-Ying Liu
- Department of Pediatrics, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Lung-Ji Chang
- School of Medicine, University of Electronic Science and Technology of China, Chengdu 610054, China; Shenzhen Geno-Immune Medical Institute, Shenzhen 518057, China.
| | - Li-Ping Zou
- Senior Department of Pediatrics, Chinese PLA General Hospital, Beijing 100853, China; Medical School of Chinese PLA, Beijing 100853, China; Beijing Institute for Brain Disorders, Center for Brain Disorders Research, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
14
|
Bonkowsky JL, Healey B, Sacks NC, McLin R, Cyr PL, Sawyer EK, Stephen CD, Eichler F. Burden of illness and mortality in men with Adrenomyeloneuropathy: a retrospective cohort study. Orphanet J Rare Dis 2024; 19:270. [PMID: 39020416 PMCID: PMC11253437 DOI: 10.1186/s13023-024-03276-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 07/01/2024] [Indexed: 07/19/2024] Open
Abstract
BACKGROUND Adrenomyeloneuropathy (AMN) is a neurodegenerative disease phenotype of X-linked adrenoleukodystrophy (ALD), resulting in progressive myeloneuropathy causing spastic paraparesis, sensory ataxia, and bowel/bladder symptoms. We conducted a retrospective cohort study using two large administrative databases to characterize mortality and the burden of illness in adult men with AMN in the US. RESULTS Healthcare resource use was assessed using a national commercial insurance claims database (2006-2021). Males with AMN ages 18-64 years and no evidence of cerebral ALD or other peroxisomal disorders were included and 1:4 matched on demographic characteristics to individuals without AMN. All study participants were followed for as long as observable. Patients with AMN were also identified in the Medicare Limited Dataset (2017-2022); mortality and age at death were compared with all Medicare enrollees. We identified 303 commercially insured men with AMN. Compared with non-AMN, individuals with AMN had significantly more inpatient hospital admissions (0.44 vs. 0.04 admissions/patient/year), outpatient clinic (8.88 vs. 4.1 visits/patient/year), outpatient hospital (5.33 vs. 0.99 visits/patient/year), and home healthcare visits (4.66 vs. 0.2 visits/patient/year), durable medical equipment claims (0.7 vs. 0.1 claims/patient/year), and prescription medication fills (18.1 vs. 5.4 fills/patient/year) (all p < 0.001). Average length-of-stay per hospitalization was also longer in AMN (8.88 vs. 4.3 days; p < 0.001). Rates of comorbidities were significantly more common in AMN compared to controls, including peripheral vascular disease (4.6% vs. 0.99%), chronic pulmonary disease (6.3% vs. 2.6%), and liver disease (5.6% vs. 0.88%), all p < 0.001. Among individuals age < 65 with Medicare disability coverage, mortality rates were 5.3x higher for adult AMN males (39.3% vs. 7.4%) and the age at death significantly younger (47.0 ± 11.3 vs. 56.5 ± 7.8 years), both p < 0.001. Among Medicare beneficiaries ages ≥ 65 mortality rates were 2.2x higher for men with AMN vs. those without AMN (48.6% vs. 22.4%), p < 0.001. CONCLUSION AMN imposes a substantial and underrecognized health burden on men, with higher healthcare utilization, greater medical comorbidity, higher mortality rates, and younger age at death.
Collapse
Affiliation(s)
- Joshua L Bonkowsky
- Primary Children's Hospital, Intermountain Healthcare, Salt Lake City, UT, USA
- Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Bridget Healey
- PRECISION AQ, 133 Federal St.,10th Floor, Boston, MA, 02110, USA
- Ontada, Boston, MA, USA
| | - Naomi C Sacks
- PRECISION AQ, 133 Federal St.,10th Floor, Boston, MA, 02110, USA
- HEORStrategies, A Division of ToxStrategies Inc, Boston, MA, USA
| | - Ronaé McLin
- PRECISION AQ, 133 Federal St.,10th Floor, Boston, MA, 02110, USA
| | - Philip L Cyr
- PRECISION AQ, 133 Federal St.,10th Floor, Boston, MA, 02110, USA.
| | | | - Christopher D Stephen
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Florian Eichler
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
15
|
Gopalappa R, Lee M, Kim G, Jung ES, Lee H, Hwang HY, Lee JG, Kim SJ, Yoo HJ, Sung YH, Kim D, Baek IJ, Kim HH. In vivo adenine base editing rescues adrenoleukodystrophy in a humanized mouse model. Mol Ther 2024; 32:2190-2206. [PMID: 38796705 PMCID: PMC11286820 DOI: 10.1016/j.ymthe.2024.05.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 03/14/2024] [Accepted: 05/23/2024] [Indexed: 05/28/2024] Open
Abstract
X-linked adrenoleukodystrophy (ALD), an inherited neurometabolic disorder caused by mutations in ABCD1, which encodes the peroxisomal ABC transporter, mainly affects the brain, spinal cord, adrenal glands, and testes. In ALD patients, very-long-chain fatty acids (VLCFAs) fail to enter the peroxisome and undergo subsequent β-oxidation, resulting in their accumulation in the body. It has not been tested whether in vivo base editing or prime editing can be harnessed to ameliorate ALD. We developed a humanized mouse model of ALD by inserting a human cDNA containing the pathogenic variant into the mouse Abcd1 locus. The humanized ALD model showed increased levels of VLCFAs. To correct the mutation, we tested both base editing and prime editing and found that base editing using ABE8e(V106W) could correct the mutation in patient-derived fibroblasts at an efficiency of 7.4%. Adeno-associated virus (AAV)-mediated systemic delivery of NG-ABE8e(V106W) enabled robust correction of the pathogenic variant in the mouse brain (correction efficiency: ∼5.5%), spinal cord (∼5.1%), and adrenal gland (∼2%), leading to a significant reduction in the plasma levels of C26:0/C22:0. This established humanized mouse model and the successful correction of the pathogenic variant using a base editor serve as a significant step toward treating human ALD disease.
Collapse
Affiliation(s)
- Ramu Gopalappa
- Department of Pharmacology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - MinYoung Lee
- Department of Pharmacology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; Brain Korea 21 Plus Project for Medical Sciences, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Globinna Kim
- ConveRgence mEDIcine research cenTer (CREDIT), ASAN Institute for Life Sciences, ASAN Medical Center, Seoul 05505, Republic of Korea; Department of Cell and Genetic Engineering, ASAN Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| | - Eul Sik Jung
- Department of Pharmacology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; JES Clinic, Incheon 21550, Republic of Korea
| | - Hanahrae Lee
- Department of Pharmacology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; Brain Korea 21 Plus Project for Medical Sciences, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Hye-Yeon Hwang
- Department of Precision Medicine, Sungkyunkwan University School of Medicine, Suwon 16419, Republic of Korea
| | - Jong Geol Lee
- ConveRgence mEDIcine research cenTer (CREDIT), ASAN Institute for Life Sciences, ASAN Medical Center, Seoul 05505, Republic of Korea
| | - Su Jung Kim
- ConveRgence mEDIcine research cenTer (CREDIT), ASAN Institute for Life Sciences, ASAN Medical Center, Seoul 05505, Republic of Korea
| | - Hyun Ju Yoo
- ConveRgence mEDIcine research cenTer (CREDIT), ASAN Institute for Life Sciences, ASAN Medical Center, Seoul 05505, Republic of Korea
| | - Young Hoon Sung
- ConveRgence mEDIcine research cenTer (CREDIT), ASAN Institute for Life Sciences, ASAN Medical Center, Seoul 05505, Republic of Korea; Department of Cell and Genetic Engineering, ASAN Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| | - Daesik Kim
- Department of Precision Medicine, Sungkyunkwan University School of Medicine, Suwon 16419, Republic of Korea
| | - In-Jeoung Baek
- ConveRgence mEDIcine research cenTer (CREDIT), ASAN Institute for Life Sciences, ASAN Medical Center, Seoul 05505, Republic of Korea; Department of Cell and Genetic Engineering, ASAN Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea.
| | - Hyongbum Henry Kim
- Department of Pharmacology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; Brain Korea 21 Plus Project for Medical Sciences, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; Center for Nanomedicine, Institute for Basic Science, Seoul 03722, Republic of Korea; Graduate Program of Nano Biomedical Engineering, Advanced Science Institute, Yonsei University, Seoul 03722, Republic of Korea; Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; Woo Choo Lee Institute for Precision Drug Development, Yonsei University College of Medicine, Seoul 03722, Republic of Korea.
| |
Collapse
|
16
|
Wang QH, Wang YY, Wang J, Liu LY, Gao J, Hao GZ, Chen C, Lu Q, Dun S, Zhang Q, Zou LP. Easily misdiagnosed X-linked adrenoleukodystrophy. Ital J Pediatr 2024; 50:124. [PMID: 38956688 PMCID: PMC11218101 DOI: 10.1186/s13052-024-01669-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 04/28/2024] [Indexed: 07/04/2024] Open
Abstract
BACKGROUND Addison's disease and X-linked adrenoleukodystrophy (X-ALD) (Addison's-only) are two diseases that need to be identified. Addison's disease is easy to diagnose clinically when only skin and mucosal pigmentation symptoms are present. However, X-ALD (Addison's-only) caused by ABCD1 gene variation is ignored, thus losing the opportunity for early treatment. This study described two patients with initial clinical diagnosis of Addison's disease. However, they rapidly developed neurological symptoms triggered by infection. After further genetic testing, the two patients were diagnosed with X-ALD. METHODS We retrospectively analyzed X-ALD patients admitted to our hospital. Clinical features, laboratory test results, and imaging data were collected. Whole-exome sequencing was used in molecular genetics. RESULTS Two patients were included in this study. Both of them had significantly increased adrenocorticotropic hormone level and skin and mucosal pigmentation. They were initially clinically diagnosed with Addison's disease and received hydrocortisone treatment. However, both patients developed progressive neurological symptoms following infectious disease. Further brain magnetic resonance imaging was completed, and the results suggested demyelinating lesions. Molecular genetics suggested variations in the ABCD1 gene, which were c.109_110insGCCA (p.C39Pfs*156), c.1394-2 A > C (NM_000033), respectively. Therefore, the two patients were finally diagnosed with X-ALD, whose classification had progressed from X-ALD (Addison's-only) to childhood cerebral adrenoleukodystrophy (CCALD). Moreover, the infection exacerbates the demyelinating lesions and accelerates the onset of neurological symptoms. Neither the two variation sites in this study had been previously reported, which extends the ABCD1 variation spectrum. CONCLUSIONS Patients with only symptoms of adrenal insufficiency cannot be simply clinically diagnosed with Addison's disease. Being alert to the possibility of ABCD1 variation is necessary, and complete genetic testing is needed as soon as possible to identify X-ALD (Addison's-only) early to achieve regular monitoring of the disease and receive treatment early. In addition, infection, as a hit factor, may aggravate demyelinating lesions of CCALD. Thus, patients should be protected from external environmental factors to delay the progression of cerebral adrenoleukodystrophy.
Collapse
Affiliation(s)
- Qiu-Hong Wang
- Senior Department of Pediatrics, the Seventh Medical Center of Chinese PLA General Hospital, Beijing, 100010, China
- Medical School of Chinese PLA, Beijing, 100853, China
| | - Yang-Yang Wang
- Senior Department of Pediatrics, the Seventh Medical Center of Chinese PLA General Hospital, Beijing, 100010, China
| | - Jing Wang
- Senior Department of Pediatrics, the Seventh Medical Center of Chinese PLA General Hospital, Beijing, 100010, China
| | - Li-Ying Liu
- Xuanwu Hospital Capital Medical University, Beijing, 100053, China
| | - Jing Gao
- Senior Department of Pediatrics, the Seventh Medical Center of Chinese PLA General Hospital, Beijing, 100010, China
| | - Guo-Zhen Hao
- Senior Department of Pediatrics, the Seventh Medical Center of Chinese PLA General Hospital, Beijing, 100010, China
| | - Chen Chen
- Senior Department of Pediatrics, the Seventh Medical Center of Chinese PLA General Hospital, Beijing, 100010, China
| | - Qian Lu
- Senior Department of Pediatrics, the Seventh Medical Center of Chinese PLA General Hospital, Beijing, 100010, China
- Medical School of Chinese PLA, Beijing, 100853, China
| | - Shuo Dun
- Senior Department of Pediatrics, the Seventh Medical Center of Chinese PLA General Hospital, Beijing, 100010, China
- Medical School of Chinese PLA, Beijing, 100853, China
| | - Qi Zhang
- Senior Department of Pediatrics, the Seventh Medical Center of Chinese PLA General Hospital, Beijing, 100010, China
- Medical School of Chinese PLA, Beijing, 100853, China
| | - Li-Ping Zou
- Senior Department of Pediatrics, the Seventh Medical Center of Chinese PLA General Hospital, Beijing, 100010, China.
- Medical School of Chinese PLA, Beijing, 100853, China.
- Beijing Institute for Brain Disorders, Center for Brain Disorders Research, Capital Medical University, Beijing, 100069, China.
| |
Collapse
|
17
|
Koto Y, Ueki S, Yamakawa M, Sakai N. Experiences of patients with metachromatic leukodystrophy, adrenoleukodystrophy, or Krabbe disease and the experiences of their family members: a qualitative systematic review. JBI Evid Synth 2024; 22:1262-1302. [PMID: 38533650 PMCID: PMC11230659 DOI: 10.11124/jbies-23-00303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
OBJECTIVE This review aimed to synthesize the experiences of patients with metachromatic leukodystrophy, adrenoleukodystrophy, or Krabbe disease and the experiences of their families. INTRODUCTION Leukodystrophies are metabolic diseases caused by genetic mutations. There are multiple forms of the disease, varying in age of onset and symptoms. The progression of leukodystrophies worsens central nervous system symptoms and significantly affects the lives of patients and their families. INCLUSION CRITERIA Qualitative studies on the experiences of patients with leukodystrophies and their family members were included. These experiences included treatments such as enzyme replacement therapy and hematopoietic stem cell transplantation; effects of tracheostomy and gastrostomy; burdens on the family, coordinating care within the health care system, and family planning due to genetic disorders. This review considered studies in any setting. METHODS MEDLINE (Ovid), CINAHL Plus (EBSCOhost), APA PsycINFO (EBSCOhost), Scopus, and MedNar databases were searched on November 18, 2022. Study selection, critical appraisal, data extraction, and data synthesis were conducted in accordance with the JBI methodology for systematic reviews of qualitative evidence, and synthesized findings were evaluated according to the ConQual approach. RESULTS Eleven studies were eligible for synthesis, and 45 findings were extracted corresponding with participants' voices. Of these findings, 40 were unequivocal and 5 were credible. The diseases in the included studies were metachromatic leukodystrophy and adrenoleukodystrophy; no studies were identified for patients with Krabbe disease and their families. These findings were grouped into 11 categories and integrated into 3 synthesized findings, including i) providing care by family members and health care providers as physical symptoms progress, which relates to the effects of the characteristics of progressive leukodystrophies; ii) building medical teamwork to provide appropriate support services, comprising categories related to the challenges experienced with the health care system for patients with leukodystrophy and their families; and iii) coordinating family functions to accept and cope with the disease, which included categories related to family psychological difficulties and role divisions within the family. According to the ConQual criteria, the second synthesized finding had a low confidence level, and the first and third synthesized findings had a very low confidence level. CONCLUSIONS The synthesized findings of this review provide evidence on the experiences of patients with metachromatic leukodystrophy or adrenoleukodystrophy and their families. These findings indicate that there are challenges in managing a patient's physical condition and coordinating the health care system and family functions. REVIEW REGISTRATION PROSPERO CRD42022318805. SUPPLEMENTAL DIGITAL CONTENT A Japanese-language version of the abstract of this review is available [ http://links.lww.com/SRX/A49 ].
Collapse
Affiliation(s)
- Yuta Koto
- Faculty of Nursing, Graduate School of Nursing, Kansai Medical University, Osaka, Japan
- The Japan Centre for Evidence Based Practice: A JBI Centre of Excellence, Osaka, Japan
| | - Shingo Ueki
- The Japan Centre for Evidence Based Practice: A JBI Centre of Excellence, Osaka, Japan
- Faculty of Medical Sciences, Department of Health Sciences, Kyushu University, Fukuoka, Japan
| | - Miyae Yamakawa
- The Japan Centre for Evidence Based Practice: A JBI Centre of Excellence, Osaka, Japan
- Department of Evidence-Based Clinical Nursing, Division of Health Sciences, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Norio Sakai
- Child Healthcare and Genetic Science Laboratory, Division of Health Science, Osaka University Graduate School of Medicine, Osaka, Japan
| |
Collapse
|
18
|
Kang Y, Guo L, Min Z, Zhang L, Zhang L, Tang C. Brainstem dominant form of X-linked adrenoleukodystrophy with a novel ABCD1 missense variant: A case report and literature review. Mol Genet Genomic Med 2024; 12:e2499. [PMID: 39051462 PMCID: PMC11270050 DOI: 10.1002/mgg3.2499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/15/2024] [Accepted: 07/18/2024] [Indexed: 07/27/2024] Open
Abstract
BACKGROUND X-linked adrenoleukodystrophy (X-ALD) is the most common peroxisomal disorder attributed to ABCD1 mutations. Case reports with predominant brainstem involvement are rare. CASE PRESENTATION In this study, we reported a plateau male worker of X-ALD characterized by progressive weakness accompanied by gait instability, mild nystagmus, and constipation. After 2 years of onset, a brain Magnetic Resonance Image (MRI) scan showed no abnormality but genetic analysis revealed a heterozygous mutation (c.1534G>A) in the ABCD1 gene. After 7 years of onset, although the patient was given aggressive dietary and symptomatic treatment in the course of the disease, a brain MRI scan showed predominantly brainstem damage, but serum concentrations of very long-chain fatty acids were normal, and he had been bedridden for almost 2 years with severe bladder dysfunction, forcing him to undergo cystostomy. The patient was discharged with improved urinary retention and renal function. CONCLUSIONS We reported an X-ALD patient with a novel ABCD1 variation characterized by brainstem damage and retrospectively summarized the clinical manifestation, MRI features, and genetic features of X-ALD patients with brainstem damage.
Collapse
Affiliation(s)
- Yulai Kang
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Army Medical Centre of PLAArmy Medical UniversityChongqingChina
| | - Lu Guo
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Army Medical Centre of PLAArmy Medical UniversityChongqingChina
| | - Zhuo Min
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Army Medical Centre of PLAArmy Medical UniversityChongqingChina
| | - Lei Zhang
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Army Medical Centre of PLAArmy Medical UniversityChongqingChina
| | - Lili Zhang
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Army Medical Centre of PLAArmy Medical UniversityChongqingChina
| | - Chunhua Tang
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Army Medical Centre of PLAArmy Medical UniversityChongqingChina
| |
Collapse
|
19
|
Rajakumar HK, Coimbatore Sathyabal V, Nachiappan R, Krishnaswamy Vijayaramanujam S. Childhood Cerebral Adrenoleukodystrophy: Case Report and Literature Review Advocating for Newborn Screening. Degener Neurol Neuromuscul Dis 2024; 14:75-83. [PMID: 38912366 PMCID: PMC11192191 DOI: 10.2147/dnnd.s442985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 06/12/2024] [Indexed: 06/24/2024] Open
Abstract
Background X-linked adrenoleukodystrophy (ALD) is a rare genetic disorder caused by a pathogenic variant of the ABCD1 gene, leading to impaired peroxisomal function and the accumulation of very long-chain fatty acids (VLCFAs). ALD presents a wide range of neurological and adrenal symptoms, ranging from childhood cerebral adrenoleukodystrophy to adrenomyeloneuropathy and adrenal insufficiency. Newborn screening (NBS) for ALD is available in some regions but remains lacking in others, such as India. Case Presentation We present a case of a 10-year-old boy with ALD who presented with seizures, progressive weakness, visual impairment, and adrenal insufficiency. Despite symptomatic management and dietary adjustments, the disease progressed rapidly, leading to respiratory failure and eventual demise. The diagnosis was confirmed through molecular analysis and elevated VLCFA levels. Neuroimaging revealed characteristic white matter changes consistent with ALD. Conclusion ALD is a devastating disease with no cure, emphasizing the importance of early detection through newborn screening and genetic testing. Management strategies include adrenal hormone therapy, gene therapy, and allogenic stem cell transplantation, as well as investigational treatments such as VLCFA normalization. Our case advocates the need for worldwide NBS and pediatric neurologic follow-up to enable early intervention and improve patient outcomes. Additionally, the association between ALD, recurrent febrile seizures, and unexplained developmental delay warrants further investigation to better understand disease progression and potential therapeutic targets.
Collapse
Affiliation(s)
- Hamrish Kumar Rajakumar
- Department of Pediatrics, Government Medical College, Omandurar, Government Estate, Chennai, Tamilnadu, India
| | - Varsha Coimbatore Sathyabal
- Department of Pediatrics, Government Medical College, Omandurar, Government Estate, Chennai, Tamilnadu, India
| | - Revathi Nachiappan
- Department of Pediatrics, Government Medical College, Omandurar, Government Estate, Chennai, Tamilnadu, India
| | | |
Collapse
|
20
|
Liu J, Wang X, Huang D, Qi Y, Xu L, Shao Y. A novel ABCD1 gene mutation causes adrenomyeloneuropathy presenting with spastic paraplegia: A case report. Medicine (Baltimore) 2024; 103:e37874. [PMID: 38640304 PMCID: PMC11029984 DOI: 10.1097/md.0000000000037874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/29/2024] [Accepted: 03/21/2024] [Indexed: 04/21/2024] Open
Abstract
RATIONALE X-linked adrenoleukodystrophy (X-ALD) is caused by mutations in the ABCD1 gene leading to very long chain fatty acid (VLCFA) accumulation. The disease demonstrates a spectrum of phenotypes including adrenomyeloneuropathy (AMN). We aimed to identify the genetic basis of disease in a patient presenting with AMN features in order to confirm the diagnosis, expand genetic knowledge of ABCD1 mutations, and elucidate potential genotype-phenotype associations to inform management. PATIENT CONCERNS A 29-year-old male presented with a 4-year history of progressive spastic paraplegia, weakness of lower limbs, fecal incontinence, sexual dysfunction, hyperreflexia, and positive Babinski and Chaddock signs. DIAGNOSES Neuroimaging revealed brain white matter changes and spinal cord thinning. Significantly elevated levels of hexacosanoic acid (C26:0) and tetracosanoic acid (C24:0) suggested very long chain fatty acids (VLCFA) metabolism disruption. Genetic testing identified a novel hemizygous ABCD1 mutation c.249dupC (p.F83fs). These findings confirmed a diagnosis of X-linked ALD with an AMN phenotype. INTERVENTIONS The patient received dietary counseling to limit VLCFA intake. Monitoring for adrenal insufficiency and consideration of Lorenzo's oil were advised. Genetic counseling and testing were offered to at-risk relatives. OUTCOMES At present, the patient continues to experience progressive paraplegia. Adrenal function remains normal thus far without steroid replacement. Family members have undergone predictive testing. LESSONS This case expands the known mutation spectrum of ABCD1-linked X-ALD, providing insight into potential genotype-phenotype correlations. A thoughtful diagnostic approach integrating clinical, biochemical and genetic data facilitated diagnosis. Findings enabled genetic counseling for at-risk relatives regarding this X-linked disorder.
Collapse
Affiliation(s)
- Jinxin Liu
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Xin Wang
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Di Huang
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Yuna Qi
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Lei Xu
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Yankun Shao
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, China
| |
Collapse
|
21
|
Zhao C, Zhu H, Wang J, Liu W, Xue Y, Hu Y. Central precocious puberty in a boy with X-linked adrenoleukodystrophy caused by a novel ABCD1 mutation. Heliyon 2024; 10:e28987. [PMID: 38596053 PMCID: PMC11002235 DOI: 10.1016/j.heliyon.2024.e28987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 03/26/2024] [Accepted: 03/27/2024] [Indexed: 04/11/2024] Open
Abstract
X-linked adrenoleukodystrophy (X-ALD) is a rare genetic disorder caused by pathogenic variants in the ABCD1 gene. The symptoms include primary adrenal insufficiency (PAI), progressive spinal cord disease, inflammatory demyelinating cerebral disease, and primary hypogonadism. It is exceptionally rare that pediatric PAI is accompanied by central precocious puberty (CPP). The purpose of this study was to better understand the diversity of clinical manifestations of X-ALD and to identify the ABCD1 gene mutation in a case of a boy with X-ALD accompanied by CPP. We collected clinical, laboratory and imaging data, and used whole-exome sequencing (WES) analysis to evaluate the pathogenicity of the variant. We also predicted the potential deleterious effects of the novel mutation using Mutation Taster and generated three-dimensional protein structures using Swiss-Model and PyMOL Viewer software. The patient presented with PAI accompanied by CPP. Adrenal gland CT revealed adrenal hypoplasia. Gonadotropin-releasing hormone stimulation tests revealed CPP. WES revealed a novel variant (c.1376dup) in the ABCD1 gene, which resulted in a reading frameshift and a premature termination codon (p.Leu461ProfsTer95). Sanger sequencing confirmed that the variant was inherited from his heterozygous mother. Mutation Taster predicted that the variant could be harmful. The overall three-dimensional structures of the mutant wild-type proteins were visually distinct. Our results shed light on additional aspects of X-ALD. The premature activation of the hypothalamic-pituitary-gonadal axis may possibly be related to the pathogenic ABCD1 gene mutation.
Collapse
Affiliation(s)
- Chaoyue Zhao
- Department of Pediatrics, Linyi People's Hospital, Postgrad Training Base Jinzhou Medical University, Linyi, Shandong Province, 276000, China
- Department of Pediatrics, Feixian People's Hospital, Linyi, Shandong Province, 276000, China
| | - Hanhong Zhu
- Department of Gynaecology and Obstetrics, Linyi People's Hospital, Linyi, Shandong Province, 276000, China
| | - Jie Wang
- Department of Pediatrics, Linyi People's Hospital, Postgrad Training Base Jinzhou Medical University, Linyi, Shandong Province, 276000, China
| | - Wenlong Liu
- Department of Pediatrics, Linyi People's Hospital, Linyi, Shandong Province, 276000, China
| | - Yongzhen Xue
- Department of Pediatrics, Linyi People's Hospital, Linyi, Shandong Province, 276000, China
| | - Yanyan Hu
- Department of Pediatrics, Linyi People's Hospital, Linyi, Shandong Province, 276000, China
| |
Collapse
|
22
|
Yska HAF, Engelen M, Bugiani M. The pathology of X-linked adrenoleukodystrophy: tissue specific changes as a clue to pathophysiology. Orphanet J Rare Dis 2024; 19:138. [PMID: 38549180 PMCID: PMC10976706 DOI: 10.1186/s13023-024-03105-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 02/23/2024] [Indexed: 04/02/2024] Open
Abstract
Although the pathology of X-linked adrenoleukodystrophy (ALD) is well described, it represents the end-stage of neurodegeneration. It is still unclear what cell types are initially involved and what their role is in the disease process. Revisiting the seminal post-mortem studies from the 1970s can generate new hypotheses on pathophysiology. This review describes (histo)pathological changes of the brain and spinal cord in ALD. It aims at integrating older works with current insights and at providing an overarching theory on the pathophysiology of ALD. The data point to an important role for axons and glia in the pathology of both the myelopathy and leukodystrophy of ALD. In-depth pathological analyses with new techniques could help further unravel the sequence of events behind the pathology of ALD.
Collapse
Affiliation(s)
- Hemmo A F Yska
- Department of Child Neurology, Amsterdam Leukodystrophy Center, Emma Children's Hospital, Amsterdam UMC location University of Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands.
| | - Marc Engelen
- Department of Child Neurology, Amsterdam Leukodystrophy Center, Emma Children's Hospital, Amsterdam UMC location University of Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Marianna Bugiani
- Department of Pediatrics/Child Neurology, VU University Medical Centre, Amsterdam Neuroscience, Amsterdam, The Netherlands
- Department of Pathology, VU University Medical Centre, Amsterdam Neuroscience, Amsterdam, The Netherlands
| |
Collapse
|
23
|
Varma A, Weinstein J, Seabury J, Rosero S, Dilek N, Heatwole J, Engebrecht C, Khosa S, Chung K, Paker A, Woo A, Brooks G, Beals C, Gandhi R, Heatwole C. Patient-reported impact of symptoms in adrenoleukodystrophy (PRISM-ALD). Orphanet J Rare Dis 2024; 19:127. [PMID: 38504253 PMCID: PMC10953228 DOI: 10.1186/s13023-024-03129-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 03/03/2024] [Indexed: 03/21/2024] Open
Abstract
BACKGROUND Adrenoleukodystrophy (ALD) is a multifaceted, X-linked, neurodegenerative disorder that comprises several clinical phenotypes. ALD affects patients through a variety of physical, emotional, social, and other disease-specific factors that collectively contribute to disease burden. To facilitate clinical care and research, it is important to identify which symptoms are most common and relevant to individuals with any subtype of ALD. METHODS We conducted semi-structured qualitative interviews and an international cross-sectional study to determine the most prevalent and important symptoms of ALD. Our study included adult participants with a diagnosis of ALD who were recruited from national and international patient registries. Responses were categorized by age, sex, disease phenotype, functional status, and other demographic and clinical features. RESULTS Seventeen individuals with ALD participated in qualitative interviews, providing 1709 direct quotes regarding their symptomatic burden. One hundred and nine individuals participated in the cross-sectional survey study, which inquired about 182 unique symptoms representing 24 distinct symptomatic themes. The symptomatic themes with the highest prevalence in the overall ALD sample cohort were problems with balance (90.9%), limitations with mobility or walking (87.3%), fatigue (86.4%), and leg weakness (86.4%). The symptomatic themes with the highest impact scores (on a 0-4 scale with 4 being the most severe) were trouble getting around (2.35), leg weakness (2.25), and problems with balance (2.21). A higher prevalence of symptomatic themes was associated with functional disability, employment disruption, and speech impairment. CONCLUSIONS There are many patient-relevant symptoms and themes that contribute to disease burden in individuals with ALD. These symptoms, identified by those having ALD, present key targets for further research and therapeutic development.
Collapse
Affiliation(s)
- Anika Varma
- Center for Health + Technology, University of Rochester, 265 Crittenden Blvd, CU 420694, Rochester, NY, 14642, USA.
| | - Jennifer Weinstein
- Center for Health + Technology, University of Rochester, 265 Crittenden Blvd, CU 420694, Rochester, NY, 14642, USA
| | - Jamison Seabury
- Center for Health + Technology, University of Rochester, 265 Crittenden Blvd, CU 420694, Rochester, NY, 14642, USA
| | - Spencer Rosero
- Center for Health + Technology, University of Rochester, 265 Crittenden Blvd, CU 420694, Rochester, NY, 14642, USA
| | - Nuran Dilek
- Department of Neurology, University of Rochester, 601 Elmwood Ave, Box 673, Rochester, NY, 14642, USA
| | | | - Charlotte Engebrecht
- Center for Health + Technology, University of Rochester, 265 Crittenden Blvd, CU 420694, Rochester, NY, 14642, USA
| | - Shaweta Khosa
- Center for Health + Technology, University of Rochester, 265 Crittenden Blvd, CU 420694, Rochester, NY, 14642, USA
| | - Kaitlin Chung
- Center for Health + Technology, University of Rochester, 265 Crittenden Blvd, CU 420694, Rochester, NY, 14642, USA
| | - Asif Paker
- SwanBio Therapeutics, 150 Monument Rd, Bala Cynwyd, PA, 19004, USA
| | - Amy Woo
- Autobahn Therapeutics, 9880 Campus Point Drive, San Diego, CA, 92121, USA
| | - Gregory Brooks
- Autobahn Therapeutics, 9880 Campus Point Drive, San Diego, CA, 92121, USA
| | - Chan Beals
- Autobahn Therapeutics, 9880 Campus Point Drive, San Diego, CA, 92121, USA
| | - Rohan Gandhi
- Autobahn Therapeutics, 9880 Campus Point Drive, San Diego, CA, 92121, USA
| | - Chad Heatwole
- Center for Health + Technology, University of Rochester, 265 Crittenden Blvd, CU 420694, Rochester, NY, 14642, USA
- Department of Neurology, University of Rochester, 601 Elmwood Ave, Box 673, Rochester, NY, 14642, USA
| |
Collapse
|
24
|
Gong Y, Laheji F, Berenson A, Li Y, Moser A, Qian A, Frosch M, Sadjadi R, Hahn R, Maguire CA, Eichler F. Role of Basal Forebrain Neurons in Adrenomyeloneuropathy in Mice and Humans. Ann Neurol 2024; 95:442-458. [PMID: 38062617 PMCID: PMC10949091 DOI: 10.1002/ana.26849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 11/28/2023] [Accepted: 12/05/2023] [Indexed: 12/27/2023]
Abstract
OBJECTIVE X-linked adrenoleukodystrophy is caused by mutations in the peroxisomal half-transporter ABCD1. The most common manifestation is adrenomyeloneuropathy, a hereditary spastic paraplegia of adulthood. The present study set out to understand the role of neuronal ABCD1 in mice and humans with adrenomyeloneuropathy. METHODS Neuronal expression of ABCD1 during development was assessed in mice and humans. ABCD1-deficient mice and human brain tissues were examined for corresponding pathology. Next, we silenced ABCD1 in cholinergic Sh-sy5y neurons to investigate its impact on neuronal function. Finally, we tested adeno-associated virus vector-mediated ABCD1 delivery to the brain in mice with adrenomyeloneuropathy. RESULTS ABCD1 is highly expressed in neurons located in the periaqueductal gray matter, basal forebrain and hypothalamus. In ABCD1-deficient mice (Abcd1-/y), these structures showed mild accumulations of α-synuclein. Similarly, healthy human controls had high expression of ABCD1 in deep gray nuclei, whereas X-ALD patients showed increased levels of phosphorylated tau, gliosis, and complement activation in those same regions, albeit not to the degree seen in neurodegenerative tauopathies. Silencing ABCD1 in Sh-sy5y neurons impaired expression of functional proteins and decreased acetylcholine levels, similar to observations in plasma of Abcd1-/y mice. Notably, hind limb clasping in Abcd1-/y mice was corrected through transduction of ABCD1 in basal forebrain neurons following intracerebroventricular gene delivery. INTERPRETATION Our study suggests that the basal forebrain-cortical cholinergic pathway may contribute to dysfunction in adrenomyeloneuropathy. Rescuing peroxisomal transport activity in basal forebrain neurons and supporting glial cells might represent a viable therapeutic strategy. ANN NEUROL 2024;95:442-458.
Collapse
Affiliation(s)
- Yi Gong
- Massachusetts General Hospital, Department of Neurology, Harvard Medical School, Boston
| | - Fiza Laheji
- Massachusetts General Hospital, Department of Neurology, Harvard Medical School, Boston
| | - Anna Berenson
- Massachusetts General Hospital, Department of Neurology, Harvard Medical School, Boston
| | - Yedda Li
- Massachusetts General Hospital, Department of Neurology, Harvard Medical School, Boston
| | - Ann Moser
- Peroxisome Disease Lab, Hugo W Moser Research Institute, Baltimore, MD, USA
| | - April Qian
- Massachusetts General Hospital, Department of Neurology, Harvard Medical School, Boston
| | - Matthew Frosch
- Massachusetts General Hospital, Department of Neuropathology, Harvard Medical School, Boston
| | - Reza Sadjadi
- Massachusetts General Hospital, Department of Neurology, Harvard Medical School, Boston
| | - Ryan Hahn
- Massachusetts General Hospital, Department of Neurology, Harvard Medical School, Boston
| | - Casey A. Maguire
- Massachusetts General Hospital, Department of Neurology, Harvard Medical School, Boston
| | - Florian Eichler
- Massachusetts General Hospital, Department of Neurology, Harvard Medical School, Boston
| |
Collapse
|
25
|
Wang QH, Wang J, Wang YY, He W, Feng C, Gao J, Lu Q, Wang Y, Dun S, Zhang Q, Zou LP. Accelerated Course of Cerebral Adrenoleukodystrophy After Coronavirus Disease 2019 Infection. Pediatr Neurol 2024; 152:87-92. [PMID: 38237318 DOI: 10.1016/j.pediatrneurol.2023.12.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 12/18/2023] [Accepted: 12/23/2023] [Indexed: 02/20/2024]
Abstract
BACKGROUND Coronavirus disease 2019 (COVID-19) can not only infect the respiratory system but also affect the nervous system through the release of inflammatory factors. Our study aimed to investigate the effect of COVID-19 infection on cerebral adrenoleukodystrophy (ALD). METHODS Changes in the neurological symptoms of cerebral ALD after infection with COVID-19 from January 2022 to February 2023 were retrospectively analyzed. The primary assessment indicator was the Neurologic Function Scale (NFS) score. RESULTS A total of 17 male patients with cerebral ALD were enrolled, with a median age of 101 months (80 to 151 months). Among them, 11 (11 of 17, 64.7%) developed an exacerbation of neurological symptoms after COVID-19 infection. Two patients with NFS = 0 started presenting with neurological symptoms after infection. Fifteen patients were in the advanced stage (NFS >1 and/or Loes score >9), of which nine did not progress to major functional disabilities (MFDs). Seven of the nine patients (77.8%) experienced an increase in NFS scores, ranging from 1 to 9 points, within two weeks of COVID-19 infection, with four of them experiencing MFDs. For the other six patients who had progressed to MFDs, there was not much room for further degeneration, so the NFS score did not increase after COVID-19 infection. No deaths related to COVID-19 infection occurred. CONCLUSIONS COVID-19 infection may aggravate neurological symptoms of cerebral ALD, particularly among patients who have not yet progressed to MFDs. Therefore, COVID-19 may accelerate the course of cerebral ALD, so protecting patients from infection is essential for maintaining the stability of the disease.
Collapse
Affiliation(s)
- Qiu-Hong Wang
- Medical School of Chinese PLA, Department of Pediatrics, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Jing Wang
- Medical School of Chinese PLA, Department of Pediatrics, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Yang-Yang Wang
- Medical School of Chinese PLA, Department of Pediatrics, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Wen He
- Medical School of Chinese PLA, Department of Pediatrics, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Chen Feng
- Medical School of Chinese PLA, Department of Pediatrics, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Jing Gao
- Medical School of Chinese PLA, Department of Pediatrics, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Qian Lu
- Medical School of Chinese PLA, Department of Pediatrics, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Yi Wang
- Medical School of Chinese PLA, Department of Pediatrics, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Shuo Dun
- Medical School of Chinese PLA, Department of Pediatrics, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Qi Zhang
- Medical School of Chinese PLA, Department of Pediatrics, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Li-Ping Zou
- Medical School of Chinese PLA, Department of Pediatrics, The First Medical Center, Chinese PLA General Hospital, Beijing, China; Beijing Institute for Brain Disorders, Center for Brain Disorders Research, Capital Medical University, Beijing, China.
| |
Collapse
|
26
|
Zhu TT, Wu J, Sun XM. A patient with X-linked adrenoleukodystrophy presenting with central precocious puberty: a case report. Endocrine 2024; 83:353-356. [PMID: 37845577 PMCID: PMC10850194 DOI: 10.1007/s12020-023-03562-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 10/02/2023] [Indexed: 10/18/2023]
Abstract
X-linked adrenoleukodystrophy (X-ALD) is a peroxisomal disorder caused by the variations in the ATP-binding cassette sub-family D member 1 (ABCD1) gene. This study is the first to report central precocious puberty (CPP) in individuals with X-ALD. A 6-year-old boy exhibited mucocutaneous pigmentation, increased plasma adrenocorticotropic hormone levels, and elevated very long-chain fatty acids (VLCFA). We identified a variant, c.1826A>G (p. Glu609Gly), in exon 8 of the ABCD1 gene in the proband. Additionally, he displayed rapid growth, testicular volume of 5-6 mL, the onset of pubic hair, and pubertal levels of luteinizing hormone (LH), all meeting the diagnostic criteria for CPP.
Collapse
Affiliation(s)
- Ting Ting Zhu
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, Sichuan University, Chengdu, Sichuan, China
| | - Jin Wu
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, Sichuan University, Chengdu, Sichuan, China
| | - Xiao Mei Sun
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China.
- Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
27
|
Kumar R, Islinger M, Worthy H, Carmichael R, Schrader M. The peroxisome: an update on mysteries 3.0. Histochem Cell Biol 2024; 161:99-132. [PMID: 38244103 PMCID: PMC10822820 DOI: 10.1007/s00418-023-02259-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/09/2023] [Indexed: 01/22/2024]
Abstract
Peroxisomes are highly dynamic, oxidative organelles with key metabolic functions in cellular lipid metabolism, such as the β-oxidation of fatty acids and the synthesis of myelin sheath lipids, as well as the regulation of cellular redox balance. Loss of peroxisomal functions causes severe metabolic disorders in humans. Furthermore, peroxisomes also fulfil protective roles in pathogen and viral defence and immunity, highlighting their wider significance in human health and disease. This has sparked increasing interest in peroxisome biology and their physiological functions. This review presents an update and a continuation of three previous review articles addressing the unsolved mysteries of this remarkable organelle. We continue to highlight recent discoveries, advancements, and trends in peroxisome research, and address novel findings on the metabolic functions of peroxisomes, their biogenesis, protein import, membrane dynamics and division, as well as on peroxisome-organelle membrane contact sites and organelle cooperation. Furthermore, recent insights into peroxisome organisation through super-resolution microscopy are discussed. Finally, we address new roles for peroxisomes in immune and defence mechanisms and in human disorders, and for peroxisomal functions in different cell/tissue types, in particular their contribution to organ-specific pathologies.
Collapse
Grants
- BB/W015420/1, BB/V018167/1, BB/T002255/1, BB/R016844/1 Biotechnology and Biological Sciences Research Council
- BB/W015420/1, BB/V018167/1, BB/T002255/1, BB/R016844/1 Biotechnology and Biological Sciences Research Council
- BB/W015420/1, BB/V018167/1, BB/T002255/1, BB/R016844/1 Biotechnology and Biological Sciences Research Council
- European Union’s Horizon 2020 research and innovation programme
- Deutsches Zentrum für Herz-Kreislaufforschung
- German Research Foundation
- Medical Faculty Mannheim, University of Heidelberg
Collapse
Affiliation(s)
- Rechal Kumar
- Faculty of Health and Life Sciences, Department of Biosciences, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter, EX4 4QD, UK
| | - Markus Islinger
- Institute of Neuroanatomy, Medical Faculty Mannheim, Mannheim Centre for Translational Neuroscience, University of Heidelberg, 68167, Mannheim, Germany
| | - Harley Worthy
- Faculty of Health and Life Sciences, Department of Biosciences, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter, EX4 4QD, UK
| | - Ruth Carmichael
- Faculty of Health and Life Sciences, Department of Biosciences, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter, EX4 4QD, UK.
| | - Michael Schrader
- Faculty of Health and Life Sciences, Department of Biosciences, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter, EX4 4QD, UK.
| |
Collapse
|
28
|
Thakkar RN, Patel D, Kioutchoukova IP, Al-Bahou R, Reddy P, Foster DT, Lucke-Wold B. Leukodystrophy Imaging: Insights for Diagnostic Dilemmas. Med Sci (Basel) 2024; 12:7. [PMID: 38390857 PMCID: PMC10885080 DOI: 10.3390/medsci12010007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/09/2023] [Accepted: 12/13/2023] [Indexed: 02/24/2024] Open
Abstract
Leukodystrophies, a group of rare demyelinating disorders, mainly affect the CNS. Clinical presentation of different types of leukodystrophies can be nonspecific, and thus, imaging techniques like MRI can be used for a more definitive diagnosis. These diseases are characterized as cerebral lesions with characteristic demyelinating patterns which can be used as differentiating tools. In this review, we talk about these MRI study findings for each leukodystrophy, associated genetics, blood work that can help in differentiation, emerging diagnostics, and a follow-up imaging strategy. The leukodystrophies discussed in this paper include X-linked adrenoleukodystrophy, metachromatic leukodystrophy, Krabbe's disease, Pelizaeus-Merzbacher disease, Alexander's disease, Canavan disease, and Aicardi-Goutières Syndrome.
Collapse
Affiliation(s)
- Rajvi N. Thakkar
- College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Drashti Patel
- College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | | | - Raja Al-Bahou
- College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Pranith Reddy
- College of Medicine, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - Devon T. Foster
- College of Medicine, Florida International University, Miami, FL 33199, USA
| | - Brandon Lucke-Wold
- Department of Neurosurgery, University of Florida, 1600 SW Archer Rd., Gainesville, FL 32610, USA
| |
Collapse
|
29
|
Sevin C, Mochel F. Hematopoietic stem cell transplantation in leukodystrophies. HANDBOOK OF CLINICAL NEUROLOGY 2024; 204:355-366. [PMID: 39322389 DOI: 10.1016/b978-0-323-99209-1.00017-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
More than 50 leukodystrophies have been described. This group of inherited disorders affects myelin development and/or maintenance and can manifest from birth to adulthood. Neuroinflammation is a hallmark of some leukodystrophies, explaining in part the therapeutic benefit of hematopoietic stem cell transplantation (HSCT). Indeed, in addition to supplying the CNS with myelomonocyte donor cells expressing the deficient protein or enzyme, HSCT allows the restoration of normal microglia function, which may act on neuroinflammation. In this chapter, we explore the rationale, indication, and outcome of HSCT in Cerebral Adrenoleukodystrophy (CALD), Metachromatic Leukodystrophy (MLD), Krabbe Disease (KD), and Adult-onset Leukoencephalopathy with Axonal Spheroids and Pigmented Glia (ALSP), which are among the most frequent leukodystrophies. For these leukodystrophies, HSCT may modify notably the natural history and improve CNS-related deficits, provided that the procedure is performed early into the disease course. In addition, we discuss the recent development of ex vivo gene therapy for CALD and MLD as a promising alternative to allograft.
Collapse
Affiliation(s)
- Caroline Sevin
- AP-HP, Kremlin-Bicêtre University Hospital, Department of Neuropediatrics, Reference Center for Pediatric Leukodystrophies, Paris, France; INSERM U 1127, CNRS UMR 7225, Sorbonne Université, UPMC Univ Paris 06 UMR S 1127, Institut du Cerveau, ICM, Paris, France
| | - Fanny Mochel
- INSERM U 1127, CNRS UMR 7225, Sorbonne Université, UPMC Univ Paris 06 UMR S 1127, Institut du Cerveau, ICM, Paris, France; AP-HP, Pitié-Salpêtrière University Hospital, Department of Medical Genetics, Reference Centers for Adult Neurometabolic Diseases and Adult Leukodystrophies, Paris, France.
| |
Collapse
|
30
|
Miller D, Walsh L, Smith L, Supakul N, Ho C, Onishi T. Magnetic resonance imaging enhancement of spinal nerve roots in a boy with X-linked adrenoleukodystrophy before diagnosis of chronic inflammatory demyelinating polyneuropathy. Radiol Case Rep 2024; 19:493-498. [PMID: 38046924 PMCID: PMC10692474 DOI: 10.1016/j.radcr.2023.10.065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/22/2023] [Accepted: 10/26/2023] [Indexed: 12/05/2023] Open
Abstract
We present a boy with X-linked adrenoleukodystrophy (X-ALD) who was found to have lumbar nerve root enhancement on a screening MRI of the spine. The MRI was performed for lower extremity predominant symptoms. Several weeks after this MRI, he developed leg pain and was averse to walking long distances. He was diagnosed with Chronic Inflammatory Demyelinating Polyneuropathy (CIDP) with electromyography, nerve conduction studies, and serial imaging. His case is consistent with CIDP in association with X-ALD based on improvement with intravenous immunoglobulin (IVIG) with continued contrast enhancement and lower extremity symptoms 8 weeks after his initial scans. Contrast enhancement of nerve roots has not been previously described in X-ALD. Nerve root enhancement has been seen in other leukodystrophies such as globoid cell leukodystrophy and metachromatic leukodystrophy. This case also demonstrates comorbid X-ALD with CIDP and highlights possible mechanisms from the literature for this association. We also review the broad differential of cauda equina nerve root enhancement.
Collapse
Affiliation(s)
- Derryl Miller
- Department of Clinical Neurology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Laurence Walsh
- Department of Clinical Neurology, Genetics, and Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Lisa Smith
- Department of Clinical Neurology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Nucharin Supakul
- Department of Clinical Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Chang Ho
- Department of Clinical Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Toshihiro Onishi
- Department of Pediatrics Hematology/Oncology, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
31
|
Ceravolo G, Zhelcheska K, Squadrito V, Pellerin D, Gitto E, Hartley L, Houlden H. Update on leukodystrophies and developing trials. J Neurol 2024; 271:593-605. [PMID: 37755460 PMCID: PMC10770198 DOI: 10.1007/s00415-023-11996-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/08/2023] [Accepted: 09/10/2023] [Indexed: 09/28/2023]
Abstract
Leukodystrophies are a heterogeneous group of rare genetic disorders primarily affecting the white matter of the central nervous system. These conditions can present a diagnostic challenge, requiring a comprehensive approach that combines clinical evaluation, neuroimaging, metabolic testing, and genetic testing. While MRI is the main tool for diagnosis, advances in molecular diagnostics, particularly whole-exome sequencing, have significantly improved the diagnostic yield. Timely and accurate diagnosis is crucial to guide symptomatic treatment and assess eligibility to participate in clinical trials. Despite no specific cure being available for most leukodystrophies, gene therapy is emerging as a potential treatment avenue, rapidly advancing the therapeutic prospects in leukodystrophies. This review will explore diagnostic and therapeutic strategies for leukodystrophies, with particular emphasis on new trials.
Collapse
Affiliation(s)
- Giorgia Ceravolo
- Department of Neuromuscular Disorders, Institute of Neurology, University College London (UCL), London, UK.
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy.
| | - Kristina Zhelcheska
- Department of Neuromuscular Disorders, Institute of Neurology, University College London (UCL), London, UK
| | - Violetta Squadrito
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - David Pellerin
- Department of Neuromuscular Disorders, Institute of Neurology, University College London (UCL), London, UK
| | - Eloisa Gitto
- Neonatal and Paediatric Intensive Care Unit, Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | | | - Henry Houlden
- Department of Neuromuscular Disorders, Institute of Neurology, University College London (UCL), London, UK
| |
Collapse
|
32
|
Engelen M, Kemp S, Eichler F. Adrenoleukodystrophy. HANDBOOK OF CLINICAL NEUROLOGY 2024; 204:133-138. [PMID: 39322375 DOI: 10.1016/b978-0-323-99209-1.00022-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
X-linked adrenoleukodystrophy (ALD) is a peroxisomal disorder caused by mutations in the ABCD1 gene and characterized by impaired very long-chain fatty acid beta-oxidation. Clinically, male patients develop adrenal failure and progressive myelopathy in adulthood, although the age of onset and rate of progression are highly variable. In addition, 40% of male patients develop a leukodystrophy (cerebral ALD) before the age of 18 years. Women with ALD also develop myelopathy, but generally at a later age than men and with slower progression. Adrenal failure and leukodystrophy are exceedingly rare in women. Allogeneic hematopoietic cell transplantation (HCT), or more recently autologous HCT with ex vivo lentivirally transfected bone marrow, halts the leukodystrophy. Unfortunately, there is no curative treatment for the myelopathy. In this chapter, clinical spectrum of ALD is discussed in detail.
Collapse
Affiliation(s)
- Marc Engelen
- Department of Child Neurology, Amsterdam Leukodystrophy Center, Emma Children's Hospital, Amsterdam UMC, Vrije Universiteit, Amsterdam, The Netherlands; Amsterdam Neuroscience, Cellular & Molecular Mechanisms, Vrije Universiteit, Amsterdam, The Netherlands
| | - Stephan Kemp
- Laboratory for Genetic Metabolic Diseases, Department of Clinical Chemistry, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Florian Eichler
- Department of Neurology, Harvard Medical School, Massachusetts General Hospital, Boston, MA, United States.
| |
Collapse
|
33
|
Menezes C, Losa A, Mosca S, de Carvalho Vaz A, Figueiredo CM, Garrido C, Borges T, Borges Correia J. The Clinical Spectrum of Adrenoleukodystrophy at a Portuguese Tertiary Hospital: Case Series and Review of Literature. Cureus 2024; 16:e52496. [PMID: 38370996 PMCID: PMC10874197 DOI: 10.7759/cureus.52496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/18/2024] [Indexed: 02/20/2024] Open
Abstract
Adrenoleukodystrophy, a rare genetic disease associated with the X chromosome (X-ALD - X-linked adrenoleukodystrophy), predominantly affects males and stems from mutations in the ABCD1 gene, responsible for transporting very long chain fatty acids (VLCFA) into peroxisomes. It leads to adrenal insufficiency (AI) and axonal demyelination. In males, the phenotype varies from isolated adrenocortical insufficiency and progressive myelopathy to cerebral adrenoleukodystrophy (CALD). The aim of this case series is to characterize patients with different clinical presentations of X-ALD with follow-up at a tertiary Portuguese hospital. All four patients were males, and the median age at the diagnosis was 5 years. Three patients were diagnosed through family screening, with the oldest already displaying hyperpigmentation. Two distinct forms were identified: adolescent CALD (25%) and isolated primary adrenal insufficiency (75%). Analytical studies revealed elevated plasma VLCFA levels in all cases, and genetic analysis demonstrated two different mutations in the ABCD1 gene. This disorder requires early diagnosis for improved prognosis. Screening male children with primary AIfor X-ALD using a VLCFA panel should be considered, particularly after ruling out the most common causes or when learning difficulties are evident. Genetic confirmation of the diagnosis is essential, enabling genetic counseling, family planning, and preimplantation genetic diagnosis.
Collapse
Affiliation(s)
- Catarina Menezes
- Pediatrics, Centro Materno Infantil do Norte - Centro Hospitalar Universitário de Santo António, Porto, PRT
| | - Ana Losa
- Pediatrics, Centro Materno Infantil do Norte - Centro Hospitalar Universitário de Santo António, Porto, PRT
| | - Sara Mosca
- Pediatrics, Centro Materno Infantil do Norte - Centro Hospitalar Universitário de Santo António, Porto, PRT
| | - Ana de Carvalho Vaz
- Pediatrics, Centro Materno Infantil do Norte - Centro Hospitalar Universitário de Santo António, Porto, PRT
| | - Catarina M Figueiredo
- Pediatric Endocrinology, Centro Hospitalar Entre Douro e Vouga, Santa Maria da Feira, PRT
| | - Cristina Garrido
- Pediatric Neurology, Centro Materno Infantil do Norte - Centro Hospitalar Universitário de Santo António, Porto, PRT
| | - Teresa Borges
- Pediatric Endocrinology, Centro Materno Infantil do Norte - Centro Hospitalar Universitário de Santo António, Porto, PRT
| | - Joana Borges Correia
- Pediatrics, Reference Centre for Metabolic Disorders, Centro Materno Infantil do Norte - Centro Hospitalar Universitário de Santo António, Porto, PRT
| |
Collapse
|
34
|
Morito K, Ali H, Kishino S, Tanaka T. Fatty Acid Metabolism in Peroxisomes and Related Disorders. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1470:31-55. [PMID: 38811487 DOI: 10.1007/5584_2024_802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
One of the functions of peroxisomes is the oxidation of fatty acids (FAs). The importance of this function in our lives is evidenced by the presence of peroxisomal disorders caused by the genetic deletion of proteins involved in these processes. Unlike mitochondrial oxidation, peroxisomal oxidation is not directly linked to ATP production. What is the role of FA oxidation in peroxisomes? Recent studies have revealed that peroxisomes supply the building blocks for lipid synthesis in the endoplasmic reticulum and facilitate intracellular carbon recycling for membrane quality control. Accumulation of very long-chain fatty acids (VLCFAs), which are peroxisomal substrates, is a diagnostic marker in many types of peroxisomal disorders. However, the relationship between VLCFA accumulation and various symptoms of these disorders remains unclear. Recently, we developed a method for solubilizing VLCFAs in aqueous media and found that VLCFA toxicity could be mitigated by oleic acid replenishment. In this chapter, we present the physiological role of peroxisomal FA oxidation and the knowledge obtained from VLCFA-accumulating peroxisome-deficient cells.
Collapse
Affiliation(s)
- Katsuya Morito
- Laboratory of Environmental Biochemistry, Division of Biological Sciences, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Hanif Ali
- Graduate School of Technology, Industrial and Social Sciences, Tokushima University, Tokushima, Japan
| | | | - Tamotsu Tanaka
- Graduate School of Technology, Industrial and Social Sciences, Tokushima University, Tokushima, Japan.
| |
Collapse
|
35
|
Duan Y, Zheng W, Xia Y, Zhang H, Liang L, Wang R, Yang Y, Zhang K, Lu D, Sun Y, Han L, Yu Y, Gu X, Sun Y, Xiao B, Qiu W. Genetic and phenotypic spectrum of non-21-hydroxylase-deficiency primary adrenal insufficiency in childhood: data from 111 Chinese patients. J Med Genet 2023; 61:27-35. [PMID: 37586839 DOI: 10.1136/jmg-2022-108952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 07/04/2023] [Indexed: 08/18/2023]
Abstract
BACKGROUND Primary adrenal insufficiency (PAI) is a rare but life-threatening condition. Differential diagnosis of numerous causes of PAI requires a thorough understanding of the condition. METHODS To describe the genetic composition and presentations of PAI. The following data were collected retrospectively from 111 patients with non-21OHD with defined genetic diagnoses: demographic information, onset age, clinical manifestations, laboratory findings and genetic results. Patients were divided into four groups based on the underlying pathogenesis: (1) impaired steroidogenesis, (2) adrenal hypoplasia, (3) resistance to adrenocorticotropic hormone (ACTH) and (4) adrenal destruction. The age of onset was compared within the groups. RESULTS Mutations in the following genes were identified: NR0B1 (n=39), STAR (n=33), CYP11B1 (n=12), ABCD1 (n=8), CYP17A1 (n=5), HSD3B2 (n=4), POR (n=4), MRAP (n=2), MC2R (n=1), CYP11A1 (n=1), LIPA (n=1) and SAMD9 (n=1). Frequent clinical manifestations included hyperpigmentation (73.0%), dehydration (49.5%), vomiting (37.8%) and abnormal external genitalia (23.4%). Patients with adrenal hypoplasia typically presented manifestations earlier than those with adrenal destruction but later than those with impaired steroidogenesis (both p<0.01). The elevated ACTH (92.6%) and decreased cortisol (73.5%) were the most common laboratory findings. We generated a differential diagnosis flowchart for PAI using the following clinical features: 17-hydroxyprogesterone, very-long-chain fatty acid, external genitalia, hypertension and skeletal malformation. This flowchart identified 84.8% of patients with PAI before next-generation DNA sequencing. CONCLUSIONS STAR and NR0B1 were the most frequently mutated genes in patients with non-21OHD PAI. Age of onset and clinical characteristics were dependent on aetiology. Combining clinical features and molecular tests facilitates accurate diagnosis.
Collapse
Affiliation(s)
- Ying Duan
- Department of Pediatric Endocrinology and Genetic Metabolism, Shanghai Institute for Pediatric Research, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Yangpu, Shanghai, China
| | - Wanqi Zheng
- Department of Pediatric Endocrinology and Genetic Metabolism, Shanghai Institute for Pediatric Research, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Yangpu, Shanghai, China
| | - Yu Xia
- Department of Pediatric Endocrinology and Genetic Metabolism, Shanghai Institute for Pediatric Research, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Yangpu, Shanghai, China
| | - Huiwen Zhang
- Department of Pediatric Endocrinology and Genetic Metabolism, Shanghai Institute for Pediatric Research, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Yangpu, Shanghai, China
| | - Lili Liang
- Department of Pediatric Endocrinology and Genetic Metabolism, Shanghai Institute for Pediatric Research, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Yangpu, Shanghai, China
| | - Ruifang Wang
- Department of Pediatric Endocrinology and Genetic Metabolism, Shanghai Institute for Pediatric Research, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Yangpu, Shanghai, China
| | - Yi Yang
- Department of Pediatric Endocrinology and Genetic Metabolism, Shanghai Institute for Pediatric Research, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Yangpu, Shanghai, China
| | - Kaichuang Zhang
- Department of Pediatric Endocrinology and Genetic Metabolism, Shanghai Institute for Pediatric Research, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Yangpu, Shanghai, China
| | - Deyun Lu
- Department of Pediatric Endocrinology and Genetic Metabolism, Shanghai Institute for Pediatric Research, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Yangpu, Shanghai, China
| | - Yuning Sun
- Department of Pediatric Endocrinology and Genetic Metabolism, Shanghai Institute for Pediatric Research, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Yangpu, Shanghai, China
| | - Lianshu Han
- Department of Pediatric Endocrinology and Genetic Metabolism, Shanghai Institute for Pediatric Research, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Yangpu, Shanghai, China
| | - Yongguo Yu
- Department of Pediatric Endocrinology and Genetic Metabolism, Clinical Genetics Center, Shanghai Institute for Pediatric Research, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Yangpu, Shanghai, China
| | - Xuefan Gu
- Department of Pediatric Endocrinology and Genetic Metabolism, Shanghai Institute for Pediatric Research, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Yangpu, Shanghai, China
| | - Yu Sun
- Department of Pediatric Endocrinology and Genetic Metabolism, Clinical Genetics Center, Shanghai Institute for Pediatric Research, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Yangpu, Shanghai, China
| | - Bing Xiao
- Department of Pediatric Endocrinology and Genetic Metabolism, Clinical Genetics Center, Shanghai Institute for Pediatric Research, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Yangpu, Shanghai, China
| | - Wenjuan Qiu
- Department of Pediatric Endocrinology and Genetic Metabolism, Shanghai Institute for Pediatric Research, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Yangpu, Shanghai, China
| |
Collapse
|
36
|
Videbæk C, Melgaard L, Lund AM, Grønborg SW. Newborn screening for adrenoleukodystrophy: International experiences and challenges. Mol Genet Metab 2023; 140:107734. [PMID: 37979237 DOI: 10.1016/j.ymgme.2023.107734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 11/08/2023] [Accepted: 11/09/2023] [Indexed: 11/20/2023]
Abstract
X-linked adrenoleukodystrophy (XALD) is the most common leukodystrophy. It has an estimated incidence of around 1/17.000, and a variable phenotype. Following the passage of Aidens Law, New York became the first state to implement a newborn screening for XALD in 2013. Since then, 38 American states, Taiwan, and the Netherlands have included XALD in their NBS program, and Japan and Italy have ongoing pilot studies. Screening for XALD allows for early, potentially lifesaving treatment of adrenal insufficiency and cerebral demyelination but is also a complex subject, due to our limited understanding of the natural history and lack of prognostic biomarkers. Screening protocols and algorithms vary between countries and states, and results and experiences gained so far are important for the future implementation of XALD NBS in other countries. In this review, we have examined the algorithms, methodologies, and outcomes used, as well as how common challenges are addressed in countries/states that have experience using NBS for XALD. We identified 14 peer-reviewed reports on NBS for XALD. All studies presented methods for detecting XALD at birth by NBS using a combination of mass spectrometry and ABCD1 gene sequencing. This has allowed for early surveillance of presymptomatic XALD patients, and the possibility for early detection and timely treatment of XALD manifestations. Obstacles to NBS for XALD include how to deal with variants of unknown significance, whether to screen females, and the ethical concerns of an NBS for a disease where we have limited understanding of natural history and phenotype/genotype correlation.
Collapse
Affiliation(s)
- Cecilie Videbæk
- Centre for Inherited Metabolic Diseases, Departments of Clinical Genetics and Paediatrics, Copenhagen University Hospital, Rigshospitalet, Denmark.
| | - Lars Melgaard
- Danish Center for Neonatal Screening, Clinical Mass Spectrometry, Statens Serum Institut, Denmark
| | - Allan M Lund
- Centre for Inherited Metabolic Diseases, Departments of Clinical Genetics and Paediatrics, Copenhagen University Hospital, Rigshospitalet, Denmark
| | - Sabine Weller Grønborg
- Centre for Inherited Metabolic Diseases, Departments of Clinical Genetics and Paediatrics, Copenhagen University Hospital, Rigshospitalet, Denmark
| |
Collapse
|
37
|
Cappa M, Todisco T, Bizzarri C. X-linked adrenoleukodystrophy and primary adrenal insufficiency. Front Endocrinol (Lausanne) 2023; 14:1309053. [PMID: 38034003 PMCID: PMC10687143 DOI: 10.3389/fendo.2023.1309053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 10/31/2023] [Indexed: 12/02/2023] Open
Abstract
X-linked adrenoleukodystrophy (X-ALD; OMIM:300100) is a progressive neurodegenerative disorder caused by a congenital defect in the ATP-binding cassette transporters sub-family D member 1 gene (ABCD1) producing adrenoleukodystrophy protein (ALDP). According to population studies, X-ALD has an estimated birth prevalence of 1 in 17.000 subjects (considering both hemizygous males and heterozygous females), and there is no evidence that this prevalence varies among regions or ethnic groups. ALDP deficiency results in a defective peroxisomal β-oxidation of very long chain fatty acids (VLCFA). As a consequence of this metabolic abnormality, VLCFAs accumulate in nervous system (brain white matter and spinal cord), testis and adrenal cortex. All X-ALD affected patients carry a mutation on the ABCD1 gene. Nevertheless, patients with a defect on the ABCD1 gene can have a dramatic difference in the clinical presentation of the disease. In fact, X-ALD can vary from the most severe cerebral paediatric form (CerALD), to adult adrenomyeloneuropathy (AMN), Addison-only and asymptomatic forms. Primary adrenal insufficiency (PAI) is one of the main features of X-ALD, with a prevalence of 70% in ALD/AMN patients and 5% in female carriers. The pathogenesis of X-ALD related PAI is still unclear, even if a few published data suggests a defective adrenal response to ACTH, related to VLCFA accumulation with progressive disruption of adrenal cell membrane function and ACTH receptor activity. The reason why PAI develops only in a proportion of ALD/AMN patients remains incompletely understood. A growing consensus supports VLCFA assessment in all male children presenting with PAI, as early diagnosis and start of therapy may be essential for X-ALD patients. Children and adults with PAI require individualized glucocorticoid replacement therapy, while mineralocorticoid therapy is needed only in a few cases after consideration of hormonal and electrolytes status. Novel approaches, such as prolonged release glucocorticoids, offer potential benefit in optimizing hormonal replacement for X-ALD-related PAI. Although the association between PAI and X-ALD has been observed in clinical practice, the underlying mechanisms remain poorly understood. This paper aims to explore the multifaceted relationship between PAI and X-ALD, shedding light on shared pathophysiology, clinical manifestations, and potential therapeutic interventions.
Collapse
Affiliation(s)
- Marco Cappa
- Research Area for Innovative Therapies in Endocrinopathies, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Tommaso Todisco
- Research Area for Innovative Therapies in Endocrinopathies, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Carla Bizzarri
- Unit of Paediatric Endocrinology, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| |
Collapse
|
38
|
Prinzi J, Pasquali M, Hobert JA, Palmquist R, Wong KN, Francis S, De Biase I. Diagnosing X-Linked Adrenoleukodystrophy after Implementation of Newborn Screening: A Reference Laboratory Perspective. Int J Neonatal Screen 2023; 9:64. [PMID: 37987477 PMCID: PMC10660695 DOI: 10.3390/ijns9040064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 10/27/2023] [Accepted: 10/30/2023] [Indexed: 11/22/2023] Open
Abstract
Adrenoleukodystrophy (ALD) is caused by pathogenic variants in the ABCD1 gene, encoding for the adrenoleukodystrophy protein (ALDP), leading to defective peroxisomal β-oxidation of very long-chain and branched-chain fatty acids (VLCFA). ALD manifests in both sexes with a spectrum of phenotypes, but approximately 35% of affected males develop childhood cerebral adrenoleukodystrophy (CCALD), which is lethal without hematopoietic stem cell transplant performed before symptoms start. Hence, ALD was added to the Recommended Uniform Screening Panel after the successful implementation in New York State (2013-2016). To date, thirty-five states have implemented newborn screening (NBS) for ALD, and a few programs have reported on the successes and challenges experienced. However, the overall impact of NBS on early detection of ALD has yet to be fully determined. Here, we conducted a retrospective analysis of VLCFA testing performed by our reference laboratory (ARUP Laboratories, Salt Lake City, UT, USA) over 10 years. Rate of detection, age at diagnosis, and male-to-female ratio were evaluated in patients with abnormal results before and after NBS implementation. After NBS inclusion, a significant increase in abnormal results was observed (471/6930, 6.8% vs. 384/11,670, 3.3%; p < 0.0001). Patients with ALDP deficiency identified via NBS were significantly younger (median age: 30 days vs. 21 years; p < 0.0001), and males and females were equally represented. ALD inclusion in NBS programs has increased pre-symptomatic detection of this disease, which is critical in preventing adrenal crisis as well as the severe cerebral form.
Collapse
Affiliation(s)
- Julia Prinzi
- Department of Human Genetics, Graduate Program in Genetic Counseling, University of Utah, Salt Lake City, UT 84112, USA
| | - Marzia Pasquali
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
- ARUP Laboratories, Salt Lake City, UT 84108, USA
- Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, UT 84112, USA (K.N.W.)
| | - Judith A. Hobert
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
- ARUP Laboratories, Salt Lake City, UT 84108, USA
| | - Rachel Palmquist
- Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, UT 84112, USA (K.N.W.)
| | - Kristen N. Wong
- Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, UT 84112, USA (K.N.W.)
| | | | - Irene De Biase
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
- ARUP Laboratories, Salt Lake City, UT 84108, USA
| |
Collapse
|
39
|
Aerts-Kaya F, van Til NP. Gene and Cellular Therapies for Leukodystrophies. Pharmaceutics 2023; 15:2522. [PMID: 38004502 PMCID: PMC10675548 DOI: 10.3390/pharmaceutics15112522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 10/13/2023] [Accepted: 10/20/2023] [Indexed: 11/26/2023] Open
Abstract
Leukodystrophies are a heterogenous group of inherited, degenerative encephalopathies, that if left untreated, are often lethal at an early age. Although some of the leukodystrophies can be treated with allogeneic hematopoietic stem cell transplantation, not all patients have suitable donors, and new treatment strategies, such as gene therapy, are rapidly being developed. Recent developments in the field of gene therapy for severe combined immune deficiencies, Leber's amaurosis, epidermolysis bullosa, Duchenne's muscular dystrophy and spinal muscular atrophy, have paved the way for the treatment of leukodystrophies, revealing some of the pitfalls, but overall showing promising results. Gene therapy offers the possibility for overexpression of secretable enzymes that can be released and through uptake, allow cross-correction of affected cells. Here, we discuss some of the leukodystrophies that have demonstrated strong potential for gene therapy interventions, such as X-linked adrenoleukodystrophy (X-ALD), and metachromatic leukodystrophy (MLD), which have reached clinical application. We further discuss the advantages and disadvantages of ex vivo lentiviral hematopoietic stem cell gene therapy, an approach for targeting microglia-like cells or rendering cross-correction. In addition, we summarize ongoing developments in the field of in vivo administration of recombinant adeno-associated viral (rAAV) vectors, which can be used for direct targeting of affected cells, and other recently developed molecular technologies that may be applicable to treating leukodystrophies in the future.
Collapse
Affiliation(s)
- Fatima Aerts-Kaya
- Department of Stem Cell Sciences, Graduate School of Health Sciences, Center for Stem Cell Research and Development, Hacettepe University, 06100 Ankara, Turkey;
- Advanced Technologies Application and Research Center, Hacettepe University, 06800 Ankara, Turkey
| | - Niek P. van Til
- Amsterdam Leukodystrophy Center, Emma Children’s Hospital, Amsterdam University Medical Centers, Amsterdam Neuroscience, 1081 HV Amsterdam, The Netherlands
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| |
Collapse
|
40
|
Ramirez Alcantara J, Grant NR, Sethuram S, Nagy A, Becker C, Sahai I, Stanley T, Halper A, Eichler FS. Early Detection of Adrenal Insufficiency: The Impact of Newborn Screening for Adrenoleukodystrophy. J Clin Endocrinol Metab 2023; 108:e1306-e1315. [PMID: 37220095 PMCID: PMC11009790 DOI: 10.1210/clinem/dgad286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 05/16/2023] [Accepted: 05/17/2023] [Indexed: 05/25/2023]
Abstract
CONTEXT Males with adrenoleukodystrophy (ALD) have an 80% lifetime risk of developing adrenal insufficiency (AI), which can be life-threatening when undetected. Newborn screening (NBS) for ALD has been implemented in 29 states, yet the impact of NBS upon clinical management has not been reported. OBJECTIVE To investigate whether the implementation of NBS has altered the time to diagnosis of AI in children with ALD. DESIGN We conducted a retrospective medical chart review of pediatric patients with ALD. SETTING All patients were seen in a leukodystrophy clinic in an academic medical center. PATIENTS We included all pediatric patients with ALD who were seen between May 2006 and January 2022. We identified 116 patients (94% boys). MAIN OUTCOME MEASURES We extracted information about ALD diagnosis in all patients and AI surveillance, diagnosis, and treatment in boys with ALD. RESULTS Thirty-one (27%) patients were diagnosed with ALD by NBS, and 85 (73%) were diagnosed outside the newborn period. The prevalence of AI among boys in our patient population was 74%. AI diagnosis was made significantly earlier in boys diagnosed with ALD by NBS than in boys diagnosed outside the newborn period (median [IQR] age of diagnosis = 6.7 [3.9, 12.12] months vs 6.05 [3.74, 8.35] years) (P < .001). When maintenance dose of glucocorticoids were initiated, there were significant differences in ACTH and peak cortisol levels in patients diagnosed by NBS and outside the newborn period. CONCLUSIONS Our results suggest that implementing NBS for ALD leads to significantly earlier detection of AI and earlier initiation of glucocorticoid supplementation in boys affected by ALD.
Collapse
Affiliation(s)
- Jonanlis Ramirez Alcantara
- Department of Pediatric Endocrinology, Massachusetts General Hospital, Boston, MA 02114, USA
- Harvard Medical School, Boston, MA 02114, USA
| | - Natalie R Grant
- Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Swathi Sethuram
- Department of Pediatric Endocrinology, Massachusetts General Hospital, Boston, MA 02114, USA
- Harvard Medical School, Boston, MA 02114, USA
| | - Amanda Nagy
- Harvard Medical School, Boston, MA 02114, USA
- Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Catherine Becker
- Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Inderneel Sahai
- Harvard Medical School, Boston, MA 02114, USA
- Department of Genetics, Massachusetts General Hospital, Boston MA, 02114, USA
| | - Takara Stanley
- Department of Pediatric Endocrinology, Massachusetts General Hospital, Boston, MA 02114, USA
- Harvard Medical School, Boston, MA 02114, USA
| | - Alyssa Halper
- Department of Pediatric Endocrinology, Massachusetts General Hospital, Boston, MA 02114, USA
- Harvard Medical School, Boston, MA 02114, USA
| | - Florian S Eichler
- Harvard Medical School, Boston, MA 02114, USA
- Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, USA
| |
Collapse
|
41
|
Szrok-Jurga S, Czumaj A, Turyn J, Hebanowska A, Swierczynski J, Sledzinski T, Stelmanska E. The Physiological and Pathological Role of Acyl-CoA Oxidation. Int J Mol Sci 2023; 24:14857. [PMID: 37834305 PMCID: PMC10573383 DOI: 10.3390/ijms241914857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 09/27/2023] [Accepted: 09/30/2023] [Indexed: 10/15/2023] Open
Abstract
Fatty acid metabolism, including β-oxidation (βOX), plays an important role in human physiology and pathology. βOX is an essential process in the energy metabolism of most human cells. Moreover, βOX is also the source of acetyl-CoA, the substrate for (a) ketone bodies synthesis, (b) cholesterol synthesis, (c) phase II detoxication, (d) protein acetylation, and (d) the synthesis of many other compounds, including N-acetylglutamate-an important regulator of urea synthesis. This review describes the current knowledge on the importance of the mitochondrial and peroxisomal βOX in various organs, including the liver, heart, kidney, lung, gastrointestinal tract, peripheral white blood cells, and other cells. In addition, the diseases associated with a disturbance of fatty acid oxidation (FAO) in the liver, heart, kidney, lung, alimentary tract, and other organs or cells are presented. Special attention was paid to abnormalities of FAO in cancer cells and the diseases caused by mutations in gene-encoding enzymes involved in FAO. Finally, issues related to α- and ω- fatty acid oxidation are discussed.
Collapse
Affiliation(s)
- Sylwia Szrok-Jurga
- Department of Biochemistry, Faculty of Medicine, Medical University of Gdansk, 80-211 Gdansk, Poland; (S.S.-J.); (J.T.); (A.H.)
| | - Aleksandra Czumaj
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Medical University of Gdansk, 80-211 Gdansk, Poland;
| | - Jacek Turyn
- Department of Biochemistry, Faculty of Medicine, Medical University of Gdansk, 80-211 Gdansk, Poland; (S.S.-J.); (J.T.); (A.H.)
| | - Areta Hebanowska
- Department of Biochemistry, Faculty of Medicine, Medical University of Gdansk, 80-211 Gdansk, Poland; (S.S.-J.); (J.T.); (A.H.)
| | - Julian Swierczynski
- Institue of Nursing and Medical Rescue, State University of Applied Sciences in Koszalin, 75-582 Koszalin, Poland;
| | - Tomasz Sledzinski
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Medical University of Gdansk, 80-211 Gdansk, Poland;
| | - Ewa Stelmanska
- Department of Biochemistry, Faculty of Medicine, Medical University of Gdansk, 80-211 Gdansk, Poland; (S.S.-J.); (J.T.); (A.H.)
| |
Collapse
|
42
|
Moscatelli M, Benzoni C, Doniselli FM, Verri M, Pascuzzo R, Aquino D, Mazzi F, Erbetta A, Salsano E. Interval between contrast administration and T1-weighted MRI for cerebral adrenoleukodystrophy: a single-case observation. Eur Radiol Exp 2023; 7:57. [PMID: 37782421 PMCID: PMC10545606 DOI: 10.1186/s41747-023-00373-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 08/02/2023] [Indexed: 10/03/2023] Open
Abstract
In adrenoleukodystrophy (ALD), contrast enhancement (CE) is a disease activity marker, but there is uncertainty about the optimal delay, if any, between contrast injection and magnetic resonance imaging (MRI) acquisition to avoid false-negative results. We acquired axial two-dimensional (2D) and three-dimensional (3D) T1-weighted gradient-echo every 6 min from 0 to 36 min after contrast administration (gadobutrol 0.1 mmol/kg) in an ALD patient with enlarging white matter lesions and progressive neuropsychological symptoms, using a 3-T magnet. The image signal over time was qualitatively assessed and measured in two regions of interest. On 3D sequences, no definite CE was appreciated, whereas on 2D sequences, CE was noticed after 6 min and definitely evident after 12 min, when 73% of the maximum signal intensity was measured. In ALD subjects, contrast-enhanced 2D T1-weighted gradient-echo sequences acquired at least 10 min after contrast injection may be considered to reduce false negative results.Relevance statementOur report is the first attempt to find an optimal delay between contrast administration and T1-weighted acquisition in cALD patients in order to correctly detect disease activity and avoid false negative results.Key points• The optimal time between contrast injection and image acquisition for MRI of adrenoleukodystrophy is unknown.• Contrast enhancement predicts adrenoleukodystrophy progression and could help patient's selection for the therapy.• We acquired two post-contrast T1-GRE-2D/3D sequences several times to find the best injection-time.• T1-weighted 2D GRE resulted more sensitive than T1-weighted 3D GRE even after long intervals from injection.• A delay of about 10 min may minimize false negatives.
Collapse
Affiliation(s)
- Marco Moscatelli
- Neuroradiology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Celoria 11, 20133, Milan, Italy
- Department of Biomedical Sciences for Health, University of Milan, Via Mangiagalli 31, 20122, Milan, Italy
| | - Chiara Benzoni
- Unit of Rare Neurological Diseases, Fondazione IRCCS Istituto Neurologico Carlo Besta, via Celoria 11, 20133, Milan, Italy
| | - Fabio M Doniselli
- Neuroradiology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Celoria 11, 20133, Milan, Italy
| | - Mattia Verri
- Neuroradiology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Celoria 11, 20133, Milan, Italy
| | - Riccardo Pascuzzo
- Neuroradiology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Celoria 11, 20133, Milan, Italy
| | - Domenico Aquino
- Neuroradiology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Celoria 11, 20133, Milan, Italy.
| | - Federica Mazzi
- Neuroradiology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Celoria 11, 20133, Milan, Italy
| | - Alessandra Erbetta
- Neuroradiology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Celoria 11, 20133, Milan, Italy
| | - Ettore Salsano
- Unit of Rare Neurological Diseases, Fondazione IRCCS Istituto Neurologico Carlo Besta, via Celoria 11, 20133, Milan, Italy
| |
Collapse
|
43
|
Yska HAF, Henneman L, Barendsen RW, Engelen M, Kemp S. Attitudes of Patients with Adrenoleukodystrophy towards Sex-Specific Newborn Screening. Int J Neonatal Screen 2023; 9:51. [PMID: 37754777 PMCID: PMC10531683 DOI: 10.3390/ijns9030051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/29/2023] [Accepted: 09/01/2023] [Indexed: 09/28/2023] Open
Abstract
Newborn screening (NBS) for X-linked adrenoleukodystrophy (ALD) can identify affected individuals before the onset of life-threatening manifestations. Some countries have decided to only screen boys (sex-specific screening). This study investigates the attitudes of individuals with ALD towards sex-specific NBS for ALD. A questionnaire was sent to all patients in the Dutch ALD cohort. Invitees were asked who they thought should be screened for ALD: only boys, both boys and girls or neither. The motives and background characteristics of respondents were compared between screening preferences. Out of 108 invitees, 66 participants (61%), 38 men and 28 women, participated in this study. The majority (n = 53, 80%) favored screening both newborn boys and girls for ALD, while 20% preferred boys only. None of the respondents felt that newborns should not be screened for ALD. There were no differences in the background characteristics of the respondents between screening preferences. Our study revealed a diverse range of motivations underlying respondents' screening preferences. This study is one of the first to investigate the attitudes of patients towards sex-specific screening for ALD. The outcomes of this study can offer insights to stakeholders engaged in the implementation of NBS programs. ALD patients are important stakeholders who can provide valuable input in this process.
Collapse
Affiliation(s)
- Hemmo A. F. Yska
- Department of Child Neurology, Amsterdam Leukodystrophy Center, Emma Children’s Hospital, Amsterdam UMC Location University of Amsterdam, Amsterdam Neuroscience, 1105 AZ Amsterdam, The Netherlands; (H.A.F.Y.); (M.E.)
| | - Lidewij Henneman
- Department of Human Genetics, Amsterdam Reproduction and Development Research Institute, Amsterdam UMC Location Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands;
| | - Rinse W. Barendsen
- Laboratory Genetic Metabolic Diseases, Department of Clinical Chemistry, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam UMC Location University of Amsterdam, 1105 AZ Amsterdam, The Netherlands;
| | - Marc Engelen
- Department of Child Neurology, Amsterdam Leukodystrophy Center, Emma Children’s Hospital, Amsterdam UMC Location University of Amsterdam, Amsterdam Neuroscience, 1105 AZ Amsterdam, The Netherlands; (H.A.F.Y.); (M.E.)
| | - Stephan Kemp
- Laboratory Genetic Metabolic Diseases, Department of Clinical Chemistry, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam UMC Location University of Amsterdam, 1105 AZ Amsterdam, The Netherlands;
| |
Collapse
|
44
|
Buda A, Forss-Petter S, Hua R, Jaspers Y, Lassnig M, Waidhofer-Söllner P, Kemp S, Kim P, Weinhofer I, Berger J. ABCD1 Transporter Deficiency Results in Altered Cholesterol Homeostasis. Biomolecules 2023; 13:1333. [PMID: 37759733 PMCID: PMC10526550 DOI: 10.3390/biom13091333] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 08/25/2023] [Accepted: 08/29/2023] [Indexed: 09/29/2023] Open
Abstract
X-linked adrenoleukodystrophy (X-ALD), the most common peroxisomal disorder, is caused by mutations in the peroxisomal transporter ABCD1, resulting in the accumulation of very long-chain fatty acids (VLCFA). Strongly affected cell types, such as oligodendrocytes, adrenocortical cells and macrophages, exhibit high cholesterol turnover. Here, we investigated how ABCD1 deficiency affects cholesterol metabolism in human X-ALD patient-derived fibroblasts and CNS tissues of Abcd1-deficient mice. Lipidome analyses revealed increased levels of cholesterol esters (CE), containing both saturated VLCFA and mono/polyunsaturated (V)LCFA. The elevated CE(26:0) and CE(26:1) levels remained unchanged in LXR agonist-treated Abcd1 KO mice despite reduced total C26:0. Under high-cholesterol loading, gene expression of SOAT1, converting cholesterol to CE and lipid droplet formation were increased in human X-ALD fibroblasts versus healthy control fibroblasts. However, the expression of NCEH1, catalysing CE hydrolysis and the cholesterol transporter ABCA1 and cholesterol efflux were also upregulated. Elevated Soat1 and Abca1 expression and lipid droplet content were confirmed in the spinal cord of X-ALD mice, where expression of the CNS cholesterol transporter Apoe was also elevated. The extent of peroxisome-lipid droplet co-localisation appeared low and was not impaired by ABCD1-deficiency in cholesterol-loaded primary fibroblasts. Finally, addressing steroidogenesis, progesterone-induced cortisol release was amplified in X-ALD fibroblasts. These results link VLCFA to cholesterol homeostasis and justify further consideration of therapeutic approaches towards reducing VLCFA and cholesterol levels in X-ALD.
Collapse
Affiliation(s)
- Agnieszka Buda
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, 1090 Vienna, Austria
| | - Sonja Forss-Petter
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, 1090 Vienna, Austria
| | - Rong Hua
- Program in Cell Biology, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON M5G 1A8, Canada
| | - Yorrick Jaspers
- Laboratory Genetic Metabolic Diseases, Department of Clinical Chemistry, Amsterdam University Medical Centers, Amsterdam Neuroscience, Amsterdam Gastroenterology Endocrinology Metabolism, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Mark Lassnig
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, 1090 Vienna, Austria
| | - Petra Waidhofer-Söllner
- Division of Immune Receptors and T Cell Activation, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria
| | - Stephan Kemp
- Laboratory Genetic Metabolic Diseases, Department of Clinical Chemistry, Amsterdam University Medical Centers, Amsterdam Neuroscience, Amsterdam Gastroenterology Endocrinology Metabolism, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Peter Kim
- Program in Cell Biology, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON M5G 1A8, Canada
| | - Isabelle Weinhofer
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, 1090 Vienna, Austria
| | - Johannes Berger
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
45
|
Sevin C, Hatteb S, Clément A, Bignami F, Chillotti L, Bugnard F, Bénard S, Boespflug-Tanguy O. Childhood cerebral adrenoleukodystrophy (CCALD) in France: epidemiology, natural history, and burden of disease - A population-based study. Orphanet J Rare Dis 2023; 18:238. [PMID: 37563635 PMCID: PMC10416383 DOI: 10.1186/s13023-023-02843-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 07/23/2023] [Indexed: 08/12/2023] Open
Abstract
BACKGROUND X-linked adrenoleukodystrophy (ALD) is a rare metabolic and neurodegenerative disorder belonging to the group of leukodystrophies, with an estimated incidence around 1:25 000 newborns worldwide, mostly among men. Childhood Cerebral ALD (CCALD) is the most severe form with a poor prognosis if not properly treated during the first years of life. Currently, only allogeneic hematopoietic stem cell transplantation (allo-HSCT) is widely available for CCALD treatment. To date, there is a lack of data regarding CCALD epidemiology, natural history, and current management in France. This knowledge is crucial for the development of new therapies such as gene therapies. In this context, the French National Health Data System (SNDS) is a particularly indicated database to collect information meeting these needs. A non-interventional, national, real-life, retrospective study was performed using secondary data from the national ALD registry (LEUKOFRANCE) and SNDS. CCALD patients detected between 2009 and 2018 and successfully matched between LEUKOFRANCE and SNDS were included in this study. Index date was defined as the first CCALD event detected during study period. Subgroups of patients with sufficient follow-up (6 months) and history (1 year) available around index date were analyzed to assess CCALD burden and natural history. RESULTS 52 patients were included into the matched cohort. Median annual incidence of CCALD was estimated at 4 patients. Median age at CCALD diagnosis was 7.0 years. Among patients without allo-HSCT, five-year overall survival was 66.6%, with 93.3% of them presenting at least one CCALD symptom and 62.1% presenting a least one major functional disability (MFD). Among patients with allo-HSCT, five-year overall survival was 94.4%, with only 11.1% of patients presenting CCALD symptoms, and 16.7% of presenting a MFD. Mean annualized costs were almost twice as important among patients without allo-HSCT, with 49,211€, 23,117€, respectively. Costs were almost exclusively represented by hospitalizations. CONCLUSIONS To the best of our knowledge, this is the most up to date study analyzing CCALD epidemiology, clinical and economic burden in France. The necessity of a precocious management with HSCT highlight the potential benefits of including an expanded screening program among newborns, coupled with family screenings when a mutation is detected.
Collapse
Affiliation(s)
- Caroline Sevin
- Center of Reference for Leukodystrophies, Bicêtre Hospital - APHP, Le Kremlin Bicêtre, France
| | - Samira Hatteb
- Center of Reference for Leukodystrophies, Bicêtre Hospital - APHP, Le Kremlin Bicêtre, France
| | | | | | | | | | | | | |
Collapse
|
46
|
Dong L, Xiao J, Liu S, Deng G, Liao Y, Chu B, Zhao X, Song BL, Luo J. Lysosomal cholesterol accumulation is commonly found in most peroxisomal disorders and reversed by 2-hydroxypropyl-β-cyclodextrin. SCIENCE CHINA. LIFE SCIENCES 2023; 66:1786-1799. [PMID: 36971991 DOI: 10.1007/s11427-022-2260-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 12/10/2022] [Indexed: 03/29/2023]
Abstract
Peroxisomal disorders (PDs) are a heterogenous group of diseases caused by defects in peroxisome biogenesis or functions. X-linked adrenoleukodystrophy is the most prevalent form of PDs and results from mutations in the ABCD1 gene, which encodes a transporter mediating the uptake of very long-chain fatty acids (VLCFAs). The curative approaches for PDs are very limited. Here, we investigated whether cholesterol accumulation in the lysosomes is a biochemical feature shared by a broad spectrum of PDs. We individually knocked down fifteen PD-associated genes in cultured cells and found ten induced cholesterol accumulation in the lysosome. 2-Hydroxypropyl-β-cyclodextrin (HPCD) effectively alleviated the cholesterol accumulation phenotype in PD-mimicking cells through reducing intracellular cholesterol content as well as promoting cholesterol redistribution to other cellular membranes. In ABCD1 knockdown cells, HPCD treatment lowered reactive oxygen species and VLCFA to normal levels. In Abcd1 knockout mice, HPCD injections reduced cholesterol and VLCFA sequestration in the brain and adrenal cortex. The plasma levels of adrenocortical hormones were increased and the behavioral abnormalities were greatly ameliorated upon HPCD administration. Together, our results suggest that defective cholesterol transport underlies most, if not all, PDs, and that HPCD can serve as a novel and effective strategy for the treatment of PDs.
Collapse
Affiliation(s)
- Lewei Dong
- College of Life Sciences, Taikang Center for Life and Medical Sciences, Hubei Key Laboratory of Cell Homeostasis, Wuhan University, Wuhan, 430072, China
| | - Jian Xiao
- College of Life Sciences, Taikang Center for Life and Medical Sciences, Hubei Key Laboratory of Cell Homeostasis, Wuhan University, Wuhan, 430072, China
| | - Shuai Liu
- College of Life Sciences, Taikang Center for Life and Medical Sciences, Hubei Key Laboratory of Cell Homeostasis, Wuhan University, Wuhan, 430072, China
| | - Gang Deng
- College of Life Sciences, Taikang Center for Life and Medical Sciences, Hubei Key Laboratory of Cell Homeostasis, Wuhan University, Wuhan, 430072, China
| | - Yacheng Liao
- College of Life Sciences, Taikang Center for Life and Medical Sciences, Hubei Key Laboratory of Cell Homeostasis, Wuhan University, Wuhan, 430072, China
| | - Beibei Chu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China
| | - Xiaolu Zhao
- College of Life Sciences, Taikang Center for Life and Medical Sciences, Hubei Key Laboratory of Cell Homeostasis, Wuhan University, Wuhan, 430072, China
| | - Bao-Liang Song
- College of Life Sciences, Taikang Center for Life and Medical Sciences, Hubei Key Laboratory of Cell Homeostasis, Wuhan University, Wuhan, 430072, China
| | - Jie Luo
- College of Life Sciences, Taikang Center for Life and Medical Sciences, Hubei Key Laboratory of Cell Homeostasis, Wuhan University, Wuhan, 430072, China.
| |
Collapse
|
47
|
Muthusamy K, Sivadasan A, Dixon L, Sudhakar S, Thomas M, Danda S, Wszolek ZK, Wierenga K, Dhamija R, Gavrilova R. Adult-onset leukodystrophies: a practical guide, recent treatment updates, and future directions. Front Neurol 2023; 14:1219324. [PMID: 37564735 PMCID: PMC10410460 DOI: 10.3389/fneur.2023.1219324] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 06/19/2023] [Indexed: 08/12/2023] Open
Abstract
Adult-onset leukodystrophies though individually rare are not uncommon. This group includes several disorders with isolated adult presentations, as well as several childhood leukodystrophies with attenuated phenotypes that present at a later age. Misdiagnoses often occur due to the clinical and radiological overlap with common acquired disorders such as infectious, immune, inflammatory, vascular, metabolic, and toxic etiologies. Increased prevalence of non-specific white matter changes in adult population poses challenges during diagnostic considerations. Clinico-radiological spectrum and molecular landscape of adult-onset leukodystrophies have not been completely elucidated at this time. Diagnostic approach is less well-standardized when compared to the childhood counterpart. Absence of family history and reduced penetrance in certain disorders frequently create a dilemma. Comprehensive evaluation and molecular confirmation when available helps in prognostication, early initiation of treatment in certain disorders, enrollment in clinical trials, and provides valuable information for the family for reproductive counseling. In this review article, we aimed to formulate an approach to adult-onset leukodystrophies that will be useful in routine practice, discuss common adult-onset leukodystrophies with usual and unusual presentations, neuroimaging findings, recent advances in treatment, acquired mimics, and provide an algorithm for comprehensive clinical, radiological, and genetic evaluation that will facilitate early diagnosis and consider active treatment options when available. A high index of suspicion, awareness of the clinico-radiological presentations, and comprehensive genetic evaluation are paramount because treatment options are available for several disorders when diagnosed early in the disease course.
Collapse
Affiliation(s)
- Karthik Muthusamy
- Department of Clinical Genomics, Mayo Clinic, Jacksonville, FL, United States
| | - Ajith Sivadasan
- Department of Neurological Sciences, Christian Medical College, Tamil Nadu, Vellore, India
| | - Luke Dixon
- Department of Radiology, Imperial College, NHS Trust, London, United Kingdom
| | - Sniya Sudhakar
- Department of Radiology, Great Ormond Street Hospital, London, United Kingdom
| | - Maya Thomas
- Department of Neurological Sciences, Christian Medical College, Tamil Nadu, Vellore, India
| | - Sumita Danda
- Department of Medical Genetics, Christian Medical College, Vellore, Tamil Nadu, India
| | | | - Klaas Wierenga
- Department of Clinical Genomics, Mayo Clinic, Jacksonville, FL, United States
| | - Radhika Dhamija
- Department of Clinical Genomics and Neurology, Mayo Clinic, Phoenix, AZ, United States
| | - Ralitza Gavrilova
- Department of Clinical Genomics and Neurology, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
48
|
Zhao MY, Dahlen A, Ramirez NJ, Moseley M, Van Haren K, Zaharchuk G. Effect of vitamin D supplementation on cerebral blood flow in male patients with adrenoleukodystrophy. J Neurosci Res 2023; 101:1086-1097. [PMID: 36967233 DOI: 10.1002/jnr.25187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 02/20/2023] [Accepted: 02/28/2023] [Indexed: 03/29/2023]
Abstract
One-third of boys with X-linked adrenoleukodystrophy (ALD) develop inflammatory demyelinating lesions, typically at the splenium. These lesions share similarities with multiple sclerosis, including cerebral hypoperfusion and links to vitamin D insufficiency. We hypothesized that increasing vitamin D levels would increase cerebral blood flow (CBF) in ALD boys. We conducted an exploratory analysis of vitamin D supplementation and CBF using all available data from participants enrolled in a recent single-arm interventional study of vitamin D supplementation in boys with ALD. We measured whole brain and splenium CBF using arterial spin labeling (ASL) from three study time points (baseline, 6 months, and 12 months). We used linear generalized estimating equations to evaluate CBF changes between time points and to test for an association between CBF and vitamin D. ASL data were available for 16 participants, aged 2-22 years. Mean vitamin D levels increased by 72.7% (p < .001) after 6 months and 88.6% (p < .01) after 12 months. Relative to baseline measures, mean CBF of the whole brain (6 months: +2.5%, p = .57; 12 months: +6.1%, p = .18) and splenium (6 months: +1.2%, p = .80; 12 months: +7.4%, p = .058) were not significantly changed. Vitamin D levels were positively correlated with CBF in the splenium (slope = .59, p < .001). In this exploratory analysis, we observed a correlation between vitamin D levels and splenial CBF in ALD boys. We confirm the feasibility of measuring CBF in this brain region and population, but further work is needed to establish a causal role for vitamin D in modulating CBF.
Collapse
Affiliation(s)
- Moss Y Zhao
- Department of Radiology, Stanford University, California, Stanford, USA
| | - Alex Dahlen
- Quantitative Sciences Unit, Stanford University School of Medicine, California, Stanford, USA
| | | | - Michael Moseley
- Department of Radiology, Stanford University, California, Stanford, USA
| | - Keith Van Haren
- Department of Neurology and Neurological Sciences, Stanford University, California, Stanford, USA
| | - Greg Zaharchuk
- Department of Radiology, Stanford University, California, Stanford, USA
| |
Collapse
|
49
|
Luo XM, Liu LY, Wang QH, Wang YY, Wang J, Yang XY, Li SJ, Zou LP. Exploratory study of autophagy inducer sirolimus for childhood cerebral adrenoleukodystrophy. Front Pediatr 2023; 11:1187078. [PMID: 37360358 PMCID: PMC10289280 DOI: 10.3389/fped.2023.1187078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 05/05/2023] [Indexed: 06/28/2023] Open
Abstract
Objectives X-linked adrenoleukodystrophy (ALD) is a peroxisomal disease caused by mutations in the ABCD1 gene. Childhood cerebral ALD (CCALD) is characterized by inflammatory demyelination, rapidly progressing, often fatal. Hematopoietic stem cell transplant only delays disease progression in patients with early-stage cerebral ALD. Based on emergency humanitarianism, this study aims to investigate the safety and efficacy of sirolimus in the treatment of patients with CCALD. Methods This was a prospective, single-center, one-arm clinical trial. We enrolled patients with CCALD, and all enrolled patients received sirolimus treatment for three months. Adverse events were monitored and recorded to evaluate the safety. The efficacy was evaluated using the neurologic function scale (NFS), Loes score, and white matter hyperintensities. Results A total of 12 patients were included and all presented with CCALD. Four patients dropped out and a total of eight patients in the advanced stage completed a 3-month follow-up. There were no serious adverse events, and the common adverse events were hypertonia and oral ulcers. After sirolimus treatment, three of the four patients with an initial NFS > 10 showed improvements in their clinical symptoms. Loes scores decreased by 0.5-1 point in two of eight patients and remained unchanged in one patient. Analysis of white matter hyperintensities revealed a significant decrease in signal intensity (n = 7, p = 0.0156). Conclusions Our study suggested that autophagy inducer sirolimus is safe for CCALD. Sirolimus did not improve clinical symptoms of patients with advanced CCALD significantly. Further study with larger sample size and longer follow-up is needed to confirm the drug efficacy.Clinical Trial registration: https://www.chictr.org.cn/historyversionpuben.aspx, identifier ChiCTR1900021288.
Collapse
Affiliation(s)
- Xiao-Mei Luo
- Senior Department of Pediatrics, Medical School of Chinese PLA, Chinese PLA General Hospital, Beijing, China
- Department of Pediatrics, Guangzhou Women and Children's Medical Center, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, China
| | - Li-Ying Liu
- Department of Pediatrics, Xuanwu Hospital Capital Medical University, Beijing, China
- Department of Neurology, Beijing Jingdu Children's Hospital, Beijing, China
| | - Qiu-Hong Wang
- Senior Department of Pediatrics, Medical School of Chinese PLA, Chinese PLA General Hospital, Beijing, China
| | - Yang-Yang Wang
- Senior Department of Pediatrics, Medical School of Chinese PLA, Chinese PLA General Hospital, Beijing, China
| | - Jing Wang
- Senior Department of Pediatrics, Medical School of Chinese PLA, Chinese PLA General Hospital, Beijing, China
| | - Xiao-Yan Yang
- Senior Department of Pediatrics, Medical School of Chinese PLA, Chinese PLA General Hospital, Beijing, China
| | - Shi-Jun Li
- Department of Radiology, First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Li-Ping Zou
- Senior Department of Pediatrics, Medical School of Chinese PLA, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
50
|
Matos T, Costa C, Araújo AN, do Vale S. Clinical course and endocrine dysfunction in X-linked adrenoleukodystrophy: A case series. ENDOCRINOL DIAB NUTR 2023; 70:421-428. [PMID: 37356877 DOI: 10.1016/j.endien.2022.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 01/14/2022] [Indexed: 06/27/2023]
Abstract
BACKGROUND AND PURPOSE X-linked adrenoleukodystrophy (X-ALD) is a peroxisomal disorder affecting particularly the nervous tissue and adrenal cortex. Adrenomyeloneuropathy (AMN) is the most frequent phenotype, although adrenal insufficiency is usually the first manifestation in male patients. We set out to describe the clinical and biochemical features, together with the clinical course of X-ALD patients, focusing particularly on endocrine dysfunction. PATIENTS AND METHODS A retrospective study of 10 male X-ALD patients followed up at the Endocrinology Department. Epidemiologic data, phenotype evolution, endocrine and neurological findings and family history were analysed. RESULTS All the patients presented with adrenal insufficiency, 4 of them during adulthood, with a mean age of 19.6±17.1 years (6-64 years). Six patients had mineralocorticoid deficiency. At diagnosis, 8 patients had Addison-only phenotype and 2 AMN phenotype. In the course of follow-up (24.9±16.1 years), 4 patients developed AMN about 25.0±7.4 years after the initial diagnosis and 2 patients presented the cerebral adult form 11 and 17 years after the initial diagnosis. Testosterone levels were within the normal range in all patients. There were 7 families, and age of onset and clinical course were similar in 3 of them. CONCLUSIONS The presentation of X-ALD varied widely, 40% of the patients presented with adrenal insufficiency in adulthood, 60% had mineralocorticoid deficiency, and the onset and progression of neurological manifestations showed no pattern. Nevertheless, some similarities in the clinical course were found in some families. Our findings reinforce the need for screening for X-ALD at any age when approaching adrenal insufficiency and the importance of a multidisciplinary approach between endocrinologists and neurologists.
Collapse
Affiliation(s)
- Tânia Matos
- Endocrinology Department, Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte, EPE, Lisbon, Portugal.
| | - Cristiana Costa
- Endocrinology Department, Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte, EPE, Lisbon, Portugal
| | - Alexandra Novais Araújo
- Endocrinology Department, Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte, EPE, Lisbon, Portugal
| | - Sónia do Vale
- Endocrinology Department, Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte, EPE, Lisbon, Portugal; Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|