1
|
Colín-Martínez E, Espino-de-la-Fuente C, Arias C. Age- and Sex-Associated Wnt Signaling Dysregulation is Exacerbated from the Early Stages of Neuropathology in an Alzheimer's Disease Model. Neurochem Res 2024; 49:3094-3104. [PMID: 39167347 PMCID: PMC11449975 DOI: 10.1007/s11064-024-04224-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 07/09/2024] [Accepted: 07/29/2024] [Indexed: 08/23/2024]
Abstract
Emerging studies suggest that Wnt signaling is dysregulated in the brains of AD patients, suggesting that this pathway may also contribute to disease progression. However, it remains to be determined whether alterations in the Wnt pathway are the cause or consequence of this disease and which elements of Wnt signaling mainly contribute to the appearance of AD histopathological markers early in disease compared to what occurs during normal aging. The present study aimed to describe the status of several canonical Wnt pathway components and the expression of the AD marker p-tau in the hippocampi of female and male 3xTg-AD mice during disease progression compared to those during normal aging. We analyzed the levels of the canonical Wnt components Wnt7a, Dkk-1, LRP6 and GSK3β as well as the levels of p-tau and BDNF at 3, 6, 9-12 and 18 months of age. We found a gradual increase in Dkk-1 levels during aging prior to Wnt7a and LRP5/6 depletion, which was strongly exacerbated in 3xTg-AD mice even at young ages and correlated with GSK3β activation and p-tau-S202/Thr205 expression. Dkk-1 upregulation, as well as the level of p-tau, was significantly greater in females than in males. Our results suggest that Dkk-1 upregulation is involved in the expression of several features of AD at early stages, which supports the possibility of positively modulating the canonical Wnt pathway as a therapeutic tool to delay this disease at early stages.
Collapse
Affiliation(s)
- Elizabeth Colín-Martínez
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, 04510, México
| | - César Espino-de-la-Fuente
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, 04510, México
| | - Clorinda Arias
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, 04510, México.
| |
Collapse
|
2
|
Shinada T, Kokubun K, Takano Y, Iki H, Kobayashi K, Hamasaki T, Taki Y. Effects of natural reduced water on cognitive functions in older adults: A RCT study. Heliyon 2024; 10:e38505. [PMID: 39397929 PMCID: PMC11471180 DOI: 10.1016/j.heliyon.2024.e38505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/25/2024] [Accepted: 09/25/2024] [Indexed: 10/15/2024] Open
Abstract
Oxidative stress and diabetes increase the risk of cognitive decline and dementia. Natural reduced water contains active hydrogen (hydrogen radicals), eliminates reactive oxygen species, and has antidiabetic effects. However, whether natural reduced water affects human cognitive function is unknown. Therefore, we implemented a double-blind intervention experiment in which participants consumed 1 L of natural reduced water or tap water daily for 6 months. The participants were healthy older adults living in Japan. The intervention group showed significant improvements in cognitive functions of attention function (p < 0.01) and short-term memory (p < 0.05). These results indicate that the continuous intake of natural reduced water improves several cognitive functions.
Collapse
Affiliation(s)
- Takamitsu Shinada
- Smart-Aging Research Center, Tohoku University, Sendai, 980-8575, Japan
| | - Keisuke Kokubun
- Smart-Aging Research Center, Tohoku University, Sendai, 980-8575, Japan
- Graduate School of Management, Kyoto University, Kyoto, 606-8501, Japan
| | - Yuji Takano
- Smart-Aging Research Center, Tohoku University, Sendai, 980-8575, Japan
- Department of Psychology, University of Human Environments, Matsuyama, 790-0825, Japan
| | - Hikari Iki
- Department of Aging Research and Geriatric Medicine, Institute of Development, Aging and Cancer, Tohoku University, Sendai, 980-8575, Japan
| | - Koki Kobayashi
- Department of Aging Research and Geriatric Medicine, Institute of Development, Aging and Cancer, Tohoku University, Sendai, 980-8575, Japan
| | - Takeki Hamasaki
- Laboratory of Functional Water, Food and Energy, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka, 812-8581, Japan
| | - Yasuyuki Taki
- Smart-Aging Research Center, Tohoku University, Sendai, 980-8575, Japan
- Department of Aging Research and Geriatric Medicine, Institute of Development, Aging and Cancer, Tohoku University, Sendai, 980-8575, Japan
| |
Collapse
|
3
|
Taha HB, Birnbaum A, Matthews I, Aceituno K, Leon J, Thorwald M, Godoy-Lugo J, Cortes CJ. Activation of the muscle-to-brain axis ameliorates neurocognitive deficits in an Alzheimer's disease mouse model via enhancing neurotrophic and synaptic signaling. GeroScience 2024:10.1007/s11357-024-01345-3. [PMID: 39269584 DOI: 10.1007/s11357-024-01345-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 09/05/2024] [Indexed: 09/15/2024] Open
Abstract
Skeletal muscle regulates central nervous system (CNS) function and health, activating the muscle-to-brain axis through the secretion of skeletal muscle-originating factors ("myokines") with neuroprotective properties. However, the precise mechanisms underlying these benefits in the context of Alzheimer's disease (AD) remain poorly understood. To investigate muscle-to-brain axis signaling in response to amyloid β (Aβ)-induced toxicity, we generated 5xFAD transgenic female mice with enhanced skeletal muscle function (5xFAD;cTFEB;HSACre) at prodromal (4-months old) and late (8-months old) symptomatic stages. Skeletal muscle TFEB overexpression reduced Aβ plaque accumulation in the cortex and hippocampus at both ages and rescued behavioral neurocognitive deficits in 8-month-old 5xFAD mice. These changes were associated with transcriptional and protein remodeling of neurotrophic signaling and synaptic integrity, partially due to the CNS-targeting myokine prosaposin (PSAP). Our findings implicate the muscle-to-brain axis as a novel neuroprotective pathway against amyloid pathogenesis in AD.
Collapse
Affiliation(s)
- Hash Brown Taha
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, 90007, USA
| | - Allison Birnbaum
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA, USA
| | - Ian Matthews
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, 90007, USA
| | - Karel Aceituno
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, 90007, USA
| | - Jocelyne Leon
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, 90007, USA
| | - Max Thorwald
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, 90007, USA
| | - Jose Godoy-Lugo
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, 90007, USA
| | - Constanza J Cortes
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, 90007, USA.
| |
Collapse
|
4
|
Pramotton FM, Spitz S, Kamm RD. Challenges and Future Perspectives in Modeling Neurodegenerative Diseases Using Organ-on-a-Chip Technology. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2403892. [PMID: 38922799 PMCID: PMC11348103 DOI: 10.1002/advs.202403892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/01/2024] [Indexed: 06/28/2024]
Abstract
Neurodegenerative diseases (NDDs) affect more than 50 million people worldwide, posing a significant global health challenge as well as a high socioeconomic burden. With aging constituting one of the main risk factors for some NDDs such as Alzheimer's disease (AD) and Parkinson's disease (PD), this societal toll is expected to rise considering the predicted increase in the aging population as well as the limited progress in the development of effective therapeutics. To address the high failure rates in clinical trials, legislative changes permitting the use of alternatives to traditional pre-clinical in vivo models are implemented. In this regard, microphysiological systems (MPS) such as organ-on-a-chip (OoC) platforms constitute a promising tool, due to their ability to mimic complex and human-specific tissue niches in vitro. This review summarizes the current progress in modeling NDDs using OoC technology and discusses five critical aspects still insufficiently addressed in OoC models to date. Taking these aspects into consideration in the future MPS will advance the modeling of NDDs in vitro and increase their translational value in the clinical setting.
Collapse
Affiliation(s)
- Francesca Michela Pramotton
- Department of Mechanical Engineering and Biological EngineeringMassachusetts Institute of TechnologyCambridgeMA02139USA
| | - Sarah Spitz
- Department of Mechanical Engineering and Biological EngineeringMassachusetts Institute of TechnologyCambridgeMA02139USA
| | - Roger D. Kamm
- Department of Mechanical Engineering and Biological EngineeringMassachusetts Institute of TechnologyCambridgeMA02139USA
| |
Collapse
|
5
|
Kawahara K, Hasegawa T, Hasegawa N, Izumi T, Sato K, Sakamaki T, Ando M, Maeda T. Truncated GPNMB, a microglial transmembrane protein, serves as a scavenger receptor for oligomeric β-amyloid peptide 1-42 in primary type 1 microglia. J Neurochem 2024; 168:1317-1339. [PMID: 38361142 DOI: 10.1111/jnc.16078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/27/2024] [Accepted: 01/31/2024] [Indexed: 02/17/2024]
Abstract
Glycoprotein non-metastatic melanoma protein B (GPNMB) is up-regulated in one subtype of microglia (MG) surrounding senile plaque depositions of amyloid-beta (Aβ) peptides. However, whether the microglial GPNMB can recognize the fibrous Aβ peptides as ligands remains unknown. In this study, we report that the truncated form of GPNMB, the antigen for 9F5, serves as a scavenger receptor for oligomeric Aβ1-42 (o-Aβ1-42) in rat primary type 1 MG. 125I-labeled o-Aβ1-42 exhibited specific and saturable endosomal/lysosomal degradation in primary-cultured type 1 MG from GPNMB-expressing wild-type mice, whereas the degradation activity was markedly reduced in cells from Gpnmb-knockout mice. The Gpnmb-siRNA significantly inhibits the degradation of 125I-o-Aβ1-42 by murine microglial MG5 cells. Therefore, GPNMB contributes to mouse MG's o-Aβ1-42 clearance. In rat primary type 1 MG, the cell surface expression of truncated GPNMB was confirmed by a flow cytometric analysis using a previously established 9F5 antibody. 125I-labeled o-Aβ1-42 underwent endosomal/lysosomal degradation by rat primary type 1 MG in a dose-dependent fashion, while the 9F5 antibody inhibited the degradation. The binding of 125I-o-Aβ1-42 to the rat primary type 1 MG was inhibited by 42% by excess unlabeled o-Aβ1-42, and by 52% by the 9F5 antibody. Interestingly, the 125I-o-Aβ1-42 degradations by MG-like cells from human-induced pluripotent stem cells was inhibited by the 9F5 antibody, suggesting that truncated GPNMB also serve as a scavenger receptor for o-Aβ1-42 in human MG. Our study demonstrates that the truncated GPNMB (the antigen for 9F5) binds to oligomeric form of Aβ1-42 and functions as a scavenger receptor on MG, and 9F5 antibody can act as a blocking antibody for the truncated GPNMB.
Collapse
Affiliation(s)
- Kohichi Kawahara
- Department of Pharmacology, Niigata University of Pharmacy and Medical and Life Sciences, Niigata, Japan
- Department of Bio-analytical Chemistry, Niigata University of Pharmacy and Medical and Life Sciences, Niigata, Japan
| | - Takuya Hasegawa
- Department of Pharmacology, Niigata University of Pharmacy and Medical and Life Sciences, Niigata, Japan
| | - Noa Hasegawa
- Department of Pharmacology, Niigata University of Pharmacy and Medical and Life Sciences, Niigata, Japan
| | - Taisei Izumi
- Department of Pharmacology, Niigata University of Pharmacy and Medical and Life Sciences, Niigata, Japan
| | - Koji Sato
- Laboratory of Health Chemistry, Niigata University of Pharmacy and Medical and Life Sciences, Niigata, Japan
| | - Toshiyuki Sakamaki
- Laboratory of Health Chemistry, Niigata University of Pharmacy and Medical and Life Sciences, Niigata, Japan
| | - Masayuki Ando
- Education Center for Pharmacy, Faculty of Pharmacy, Niigata University of Pharmacy and Medical and Life Sciences, Niigata, Japan
| | - Takehiko Maeda
- Department of Pharmacology, Niigata University of Pharmacy and Medical and Life Sciences, Niigata, Japan
| |
Collapse
|
6
|
Pan AL, Audrain M, Sakakibara E, Joshi R, Zhu X, Wang Q, Wang M, Beckmann ND, Schadt EE, Gandy S, Zhang B, Ehrlich ME, Salton SR. Dual-specificity protein phosphatase 6 (DUSP6) overexpression reduces amyloid load and improves memory deficits in male 5xFAD mice. Front Aging Neurosci 2024; 16:1400447. [PMID: 39006222 PMCID: PMC11239576 DOI: 10.3389/fnagi.2024.1400447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 06/14/2024] [Indexed: 07/16/2024] Open
Abstract
Introduction Dual specificity protein phosphatase 6 (DUSP6) was recently identified as a key hub gene in a causal VGF gene network that regulates late-onset Alzheimer's disease (AD). Importantly, decreased DUSP6 levels are correlated with an increased clinical dementia rating (CDR) in human subjects, and DUSP6 levels are additionally decreased in the 5xFAD amyloidopathy mouse model. Methods To investigate the role of DUSP6 in AD, we stereotactically injected AAV5-DUSP6 or AAV5-GFP (control) into the dorsal hippocampus (dHc) of both female and male 5xFAD or wild type mice, to induce overexpression of DUSP6 or GFP. Results Barnes maze testing indicated that DUSP6 overexpression in the dHc of 5xFAD mice improved memory deficits and was associated with reduced amyloid plaque load, Aß1-40 and Aß1-42 levels, and amyloid precursor protein processing enzyme BACE1, in male but not in female mice. Microglial activation, which was increased in 5xFAD mice, was significantly reduced by dHc DUSP6 overexpression in both males and females, as was the number of "microglial clusters," which correlated with reduced amyloid plaque size. Transcriptomic profiling of female 5xFAD hippocampus revealed upregulation of inflammatory and extracellular signal-regulated kinase pathways, while dHc DUSP6 overexpression in female 5xFAD mice downregulated a subset of genes in these pathways. Gene ontology analysis of DEGs (p < 0.05) identified a greater number of synaptic pathways that were regulated by DUSP6 overexpression in male compared to female 5xFAD. Discussion In summary, DUSP6 overexpression in dHc reduced amyloid deposition and memory deficits in male but not female 5xFAD mice, whereas reduced neuroinflammation and microglial activation were observed in both males and females, suggesting that DUSP6-induced reduction of microglial activation did not contribute to sex-dependent improvement in memory deficits. The sex-dependent regulation of synaptic pathways by DUSP6 overexpression, however, correlated with the improvement of spatial memory deficits in male but not female 5xFAD.
Collapse
Affiliation(s)
- Allen L. Pan
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Mickael Audrain
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Emmy Sakakibara
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Rajeev Joshi
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Xiaodong Zhu
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Qian Wang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Minghui Wang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Noam D. Beckmann
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Eric E. Schadt
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Sam Gandy
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Department of Psychiatry and Alzheimer’s Disease Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Bin Zhang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Michelle E. Ehrlich
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Stephen R. Salton
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Brookdale Department of Geriatrics and Palliative Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
7
|
Kim B, Dabin LC, Tate MD, Karahan H, Sharify AD, Acri DJ, Al-Amin MM, Philtjens S, Smith DC, Wijeratne HRS, Park JH, Jucker M, Kim J. Effects of SPI1-mediated transcriptome remodeling on Alzheimer's disease-related phenotypes in mouse models of Aβ amyloidosis. Nat Commun 2024; 15:3996. [PMID: 38734693 PMCID: PMC11088624 DOI: 10.1038/s41467-024-48484-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 04/29/2024] [Indexed: 05/13/2024] Open
Abstract
SPI1 was recently reported as a genetic risk factor for Alzheimer's disease (AD) in large-scale genome-wide association studies. However, it is unknown whether SPI1 should be downregulated or increased to have therapeutic benefits. To investigate the effect of modulating SPI1 levels on AD pathogenesis, we performed extensive biochemical, histological, and transcriptomic analyses using both Spi1-knockdown and Spi1-overexpression mouse models. Here, we show that the knockdown of Spi1 expression significantly exacerbates insoluble amyloid-β (Aβ) levels, amyloid plaque deposition, and gliosis. Conversely, overexpression of Spi1 significantly ameliorates these phenotypes and dystrophic neurites. Further mechanistic studies using targeted and single-cell transcriptomics approaches demonstrate that altered Spi1 expression modulates several pathways, such as immune response pathways and complement system. Our data suggest that transcriptional reprogramming by targeting transcription factors, like Spi1, might hold promise as a therapeutic strategy. This approach could potentially expand the current landscape of druggable targets for AD.
Collapse
Affiliation(s)
- Byungwook Kim
- Department of Medical & Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Luke Child Dabin
- Department of Medical & Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Mason Douglas Tate
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Medical Neuroscience Graduate Program, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Hande Karahan
- Department of Medical & Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Ahmad Daniel Sharify
- Department of Medical & Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Dominic J Acri
- Department of Medical & Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Medical Neuroscience Graduate Program, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Md Mamun Al-Amin
- Department of Medical & Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Stéphanie Philtjens
- Department of Medical & Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Daniel Curtis Smith
- Department of Medical & Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Medical Neuroscience Graduate Program, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - H R Sagara Wijeratne
- Department of Medical & Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Jung Hyun Park
- Department of Medical & Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, 47405, USA
- Program in Neuroscience, Indiana University, Bloomington, IN, 47405, USA
| | - Mathias Jucker
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
- Department of Cellular Neurology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Jungsu Kim
- Department of Medical & Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
- Medical Neuroscience Graduate Program, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
| |
Collapse
|
8
|
Lopez-Lee C, Torres ERS, Carling G, Gan L. Mechanisms of sex differences in Alzheimer's disease. Neuron 2024; 112:1208-1221. [PMID: 38402606 PMCID: PMC11076015 DOI: 10.1016/j.neuron.2024.01.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/01/2023] [Accepted: 01/23/2024] [Indexed: 02/27/2024]
Abstract
Alzheimer's disease (AD) and the mechanisms underlying its etiology and progression are complex and multifactorial. The higher AD risk in women may serve as a clue to better understand these complicated processes. In this review, we examine aspects of AD that demonstrate sex-dependent effects and delve into the potential biological mechanisms responsible, compiling findings from advanced technologies such as single-cell RNA sequencing, metabolomics, and multi-omics analyses. We review evidence that sex hormones and sex chromosomes interact with various disease mechanisms during aging, encompassing inflammation, metabolism, and autophagy, leading to unique characteristics in disease progression between men and women.
Collapse
Affiliation(s)
- Chloe Lopez-Lee
- Helen and Robert Appel Alzheimer's Disease Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA; Neuroscience Graduate Program, Weill Cornell Medicine, New York, NY, USA
| | - Eileen Ruth S Torres
- Helen and Robert Appel Alzheimer's Disease Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Gillian Carling
- Helen and Robert Appel Alzheimer's Disease Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA; Neuroscience Graduate Program, Weill Cornell Medicine, New York, NY, USA
| | - Li Gan
- Helen and Robert Appel Alzheimer's Disease Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA; Neuroscience Graduate Program, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
9
|
Ono M, Ito T, Yamaki S, Hori Y, Zhou Q, Zhao X, Muramoto S, Yamamoto R, Furuyama T, Sakata-Haga H, Hatta T, Hamaguchi T, Kato N. Spatiotemporal development of the neuronal accumulation of amyloid precursor protein and the amyloid plaque formation in the brain of 3xTg-AD mice. Heliyon 2024; 10:e28821. [PMID: 38596059 PMCID: PMC11002285 DOI: 10.1016/j.heliyon.2024.e28821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 03/25/2024] [Accepted: 03/25/2024] [Indexed: 04/11/2024] Open
Abstract
The amyloid plaque is a hallmark of Alzheimer's disease. The accumulation of the amyloid precursor protein (APP) in the neuronal structure is assumed to lead to amyloid plaque formation through the excessive production of β-amyloid protein. To study the relationship between the neuronal accumulation of APP and amyloid plaque formation, we histologically analyzed their development in the different brain regions in 3xTg-AD mice, which express Swedish mutated APP (APPSWE) in the neurons. Observation throughout the brain revealed APPSWE-positive somata in the broad regions. Quantitative model analysis showed that the somatic accumulation of APPSWE developed firstly in the hippocampus from a very early age (<1 month) and proceeded slower in the isocortex. In line with this, the hippocampus was the first region to form amyloid plaques at the age of 9-12 months, while amyloid plaques were rarely observed in the isocortex. Females had more APPSWE-positive somata and plaques than males. Furthermore, amyloid plaques were observed in the lateral septum and pontine grey, which did not contain APPSWE-positive somata but only the APPSWE-positive fibers. These results suggested that neuronal accumulation of APPSWE, both in somatodendritic and axonal domains, is closely related to the formation of amyloid plaques.
Collapse
Affiliation(s)
- Munenori Ono
- Department of Physiology, Kanazawa Medical University, Ishikawa, 920-0293, Japan
| | - Tetsufumi Ito
- Systems Function and Morphology, University of Toyama, Toyama, 930-0194, Japan
| | - Sachiko Yamaki
- Department of Physiology, Kanazawa Medical University, Ishikawa, 920-0293, Japan
| | - Yoshie Hori
- Department of Physiology, Kanazawa Medical University, Ishikawa, 920-0293, Japan
| | - Qing Zhou
- Department of Physiology, Kanazawa Medical University, Ishikawa, 920-0293, Japan
| | - Xirun Zhao
- Department of Physiology, Kanazawa Medical University, Ishikawa, 920-0293, Japan
| | - Shinji Muramoto
- Department of Physiology, Kanazawa Medical University, Ishikawa, 920-0293, Japan
| | - Ryo Yamamoto
- Department of Physiology, Kanazawa Medical University, Ishikawa, 920-0293, Japan
| | - Takafumi Furuyama
- Department of Physiology, Kanazawa Medical University, Ishikawa, 920-0293, Japan
| | - Hiromi Sakata-Haga
- Department of Anatomy, Kanazawa Medical University, Ishikawa, 920-0293, Japan
| | - Toshihisa Hatta
- Department of Anatomy, Kanazawa Medical University, Ishikawa, 920-0293, Japan
| | - Tsuyoshi Hamaguchi
- Department of Neurology, Kanazawa Medical University, Ishikawa, 920-0293, Japan
| | - Nobuo Kato
- Department of Physiology, Kanazawa Medical University, Ishikawa, 920-0293, Japan
| |
Collapse
|
10
|
Abdallah AE. Review on anti-alzheimer drug development: approaches, challenges and perspectives. RSC Adv 2024; 14:11057-11088. [PMID: 38586442 PMCID: PMC10995770 DOI: 10.1039/d3ra08333k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 03/22/2024] [Indexed: 04/09/2024] Open
Abstract
Alzheimer is an irreversible progressive neurodegenerative disease that causes failure of cerebral neurons and disability of the affected person to practice normal daily life activities. There is no concrete evidence to identify the exact reason behind the disease, so several relevant hypotheses emerged, highlighting many possible therapeutic targets, such as acetylcholinesterase, cholinergic receptors, N-methyl d-aspartate receptors, phosphodiesterase, amyloid β protein, protein phosphatase 2A, glycogen synthase kinase-3 beta, β-secretase, γ-secretase, α-secretase, serotonergic receptors, glutaminyl cyclase, tumor necrosis factor-α, γ-aminobutyric acid receptors, and mitochondria. All of these targets have been involved in the design of new potential drugs. An extensive number of these drugs have been studied in clinical trials. However, only galantamine, donepezil, and rivastigmine (ChEIs), memantine (NMDA antagonist), and aducanumab and lecanemab (selective anti-Aβ monoclonal antibodies) have been approved for AD treatment. Many drugs failed in the clinical trials to such an extent that questions have been posed about the significance of some of the aforementioned targets. On the contrary, the data of other drugs were promising and shed light on the significance of their targets for the development of new potent anti-alzheimer drugs.
Collapse
Affiliation(s)
- Abdallah E Abdallah
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University 11884 Cairo Egypt
| |
Collapse
|
11
|
Nehra G, Promsan S, Yubolphan R, Chumboatong W, Vivithanaporn P, Maloney BJ, Lungkaphin A, Bauer B, Hartz AMS. Cognitive decline, Aβ pathology, and blood-brain barrier function in aged 5xFAD mice. Fluids Barriers CNS 2024; 21:29. [PMID: 38532486 PMCID: PMC10967049 DOI: 10.1186/s12987-024-00531-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 03/18/2024] [Indexed: 03/28/2024] Open
Abstract
BACKGROUND Patients with Alzheimer's disease (AD) develop blood-brain barrier dysfunction to varying degrees. How aging impacts Aβ pathology, blood-brain barrier function, and cognitive decline in AD remains largely unknown. In this study, we used 5xFAD mice to investigate changes in Aβ levels, barrier function, and cognitive decline over time. METHODS 5xFAD and wild-type (WT) mice were aged between 9.5 and 15.5 months and tested for spatial learning and reference memory with the Morris Water Maze (MWM). After behavior testing, mice were implanted with acute cranial windows and intravenously injected with fluorescent-labeled dextrans to assess their in vivo distribution in the brain by two-photon microscopy. Images were processed and segmented to obtain intravascular intensity, extravascular intensity, and vessel diameters as a measure of barrier integrity. Mice were sacrificed after in vivo imaging to isolate brain and plasma for measuring Aβ levels. The effect of age and genotype were evaluated for each assay using generalized or cumulative-linked logistic mixed-level modeling and model selection by Akaike Information Criterion (AICc). Pairwise comparisons were used to identify outcome differences between the two groups. RESULTS 5xFAD mice displayed spatial memory deficits compared to age-matched WT mice in the MWM assay, which worsened with age. Memory impairment was evident in 5xFAD mice by 2-threefold higher escape latencies, twofold greater cumulative distances until they reach the platform, and twice as frequent use of repetitive search strategies in the pool when compared with age-matched WT mice. Presence of the rd1 allele worsened MWM performance in 5xFAD mice at all ages but did not alter the rate of learning or probe trial outcomes. 9.5-month-old 15.5-month-old 5xFAD mice had twofold higher brain Aβ40 and Aβ42 levels (p < 0.001) and 2.5-fold higher (p = 0.007) plasma Aβ40 levels compared to 9.5-month-old 5xFAD mice. Image analysis showed that vessel diameters and intra- and extravascular dextran intensities were not significantly different in 9.5- and 15.5-month-old 5xFAD mice compared to age-matched WT mice. CONCLUSION 5xFAD mice continue to develop spatial memory deficits and increased Aβ brain levels while aging. Given in vivo MP imaging limitations, further investigation with smaller molecular weight markers combined with advanced imaging techniques would be needed to reliably assess subtle differences in barrier integrity in aged mice.
Collapse
Affiliation(s)
- Geetika Nehra
- Sanders-Brown Center On Aging, University of Kentucky, 760 Press Ave, 124 HKRB, Lexington, KY, 40536-0679, USA
| | - Sasivimon Promsan
- Sanders-Brown Center On Aging, University of Kentucky, 760 Press Ave, 124 HKRB, Lexington, KY, 40536-0679, USA
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Ruedeemars Yubolphan
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Faculty of Medicine Ramathibodi Hospital, Chakri Naruebodindra Medical Institute, Mahidol University, Nakhon Pathom, Thailand
| | - Wijitra Chumboatong
- Sanders-Brown Center On Aging, University of Kentucky, 760 Press Ave, 124 HKRB, Lexington, KY, 40536-0679, USA
| | - Pornpun Vivithanaporn
- Faculty of Medicine Ramathibodi Hospital, Chakri Naruebodindra Medical Institute, Mahidol University, Nakhon Pathom, Thailand
| | - Bryan J Maloney
- Sanders-Brown Center On Aging, University of Kentucky, 760 Press Ave, 124 HKRB, Lexington, KY, 40536-0679, USA
| | - Anusorn Lungkaphin
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Bjoern Bauer
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, USA
| | - Anika M S Hartz
- Sanders-Brown Center On Aging, University of Kentucky, 760 Press Ave, 124 HKRB, Lexington, KY, 40536-0679, USA.
- Department of Pharmacology and Nutritional Sciences, College of Medicine, University of Kentucky, Lexington, USA.
| |
Collapse
|
12
|
Zhong MZ, Peng T, Duarte ML, Wang M, Cai D. Updates on mouse models of Alzheimer's disease. Mol Neurodegener 2024; 19:23. [PMID: 38462606 PMCID: PMC10926682 DOI: 10.1186/s13024-024-00712-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 02/14/2024] [Indexed: 03/12/2024] Open
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disease in the United States (US). Animal models, specifically mouse models have been developed to better elucidate disease mechanisms and test therapeutic strategies for AD. A large portion of effort in the field was focused on developing transgenic (Tg) mouse models through over-expression of genetic mutations associated with familial AD (FAD) patients. Newer generations of mouse models through knock-in (KI)/knock-out (KO) or CRISPR gene editing technologies, have been developed for both familial and sporadic AD risk genes with the hope to more accurately model proteinopathies without over-expression of human AD genes in mouse brains. In this review, we summarized the phenotypes of a few commonly used as well as newly developed mouse models in translational research laboratories including the presence or absence of key pathological features of AD such as amyloid and tau pathology, synaptic and neuronal degeneration as well as cognitive and behavior deficits. In addition, advantages and limitations of these AD mouse models have been elaborated along with discussions of any sex-specific features. More importantly, the omics data from available AD mouse models have been analyzed to categorize molecular signatures of each model reminiscent of human AD brain changes, with the hope to guide future selection of most suitable models for specific research questions to be addressed in the AD field.
Collapse
Affiliation(s)
- Michael Z Zhong
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Biology, College of Arts and Science, Boston University, Boston, MA, 02215, USA
| | - Thomas Peng
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Science Research Program, Scarsdale High School, New York, NY, 10583, USA
| | - Mariana Lemos Duarte
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- Research & Development, James J Peters VA Medical Center, Bronx, NY, 10468, USA.
| | - Minghui Wang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA.
- Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA.
| | - Dongming Cai
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- Research & Development, James J Peters VA Medical Center, Bronx, NY, 10468, USA.
- Alzheimer's Disease Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- Department of Neurology, N. Bud Grossman Center for Memory Research and Care, The University of Minnesota, Minneapolis, MN, 55455, USA.
- Geriatric Research Education & Clinical Center (GRECC), The Minneapolis VA Health Care System, Minneapolis, MN, 55417, USA.
| |
Collapse
|
13
|
Marshall J, Huynh K, Lancaster G, Ng J, Collins J, Pernes G, Liang A, Featherby T, Mellet N, Drew B, Calkin A, King A, Meikle P, Febbraio M, Adlard P, Henstridge D. Behavioral, metabolic, and lipidomic characterization of the 5xFADxTg30 mouse model of Alzheimer's disease. iScience 2024; 27:108800. [PMID: 38292430 PMCID: PMC10826307 DOI: 10.1016/j.isci.2024.108800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 10/23/2023] [Accepted: 01/02/2024] [Indexed: 02/01/2024] Open
Abstract
Alzheimer's disease (AD) is associated with both extracellular amyloid-β (Aβ) plaques and intracellular tau-containing neurofibrillary tangles (NFT). We characterized the behavioral, metabolic and lipidomic phenotype of the 5xFADxTg30 mouse model which contains overexpression of both Aβ and tau. Our results independently reproduce several phenotypic traits described previously for this model, while providing additional characterization. This model develops many aspects associated with AD including frailty, decreased survival, initiation of aspects of cognitive decline and alterations to specific lipid classes and molecular lipid species in the plasma and brain. Notably, some sex-specific differences exist in this model and motor impairment with aging in this model does compromise the utility of the model for some movement-based behavioral assessments of cognitive function. These findings provide a reference for individuals interested in using this model to understand the pathology associated with elevated Aβ and tau or for testing potential therapeutics for the treatment of AD.
Collapse
Affiliation(s)
- J.P.S. Marshall
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
- School of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, VIC, Australia
- The Florey Institute of Neuroscience and Mental Health, Melbourne, VIC, Australia
| | - K. Huynh
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
- Baker Department of Cardiometabolic Health, University of Melbourne, Parkville, VIC, Australia
- Baker Department of Cardiovascular Research Translation and Implementation, La Trobe University, Bundoora, VIC, Australia
| | - G.I. Lancaster
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
- Department of Immunology, Monash University, Melbourne, VIC, Australia
| | - J. Ng
- School of Health Sciences, The University of Tasmania, Launceston, TAS, Australia
| | - J.M. Collins
- Wicking Dementia Research and Education Centre, College of Health and Medicine, University of Tasmania, Hobart, TAS, Australia
| | - G. Pernes
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - A. Liang
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - T. Featherby
- The Florey Institute of Neuroscience and Mental Health, Melbourne, VIC, Australia
| | - N.A. Mellet
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - B.G. Drew
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
- Baker Department of Cardiometabolic Health, University of Melbourne, Parkville, VIC, Australia
- Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - A.C. Calkin
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
- Baker Department of Cardiometabolic Health, University of Melbourne, Parkville, VIC, Australia
- Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - A.E. King
- Wicking Dementia Research and Education Centre, College of Health and Medicine, University of Tasmania, Hobart, TAS, Australia
| | - P.J. Meikle
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
- Baker Department of Cardiometabolic Health, University of Melbourne, Parkville, VIC, Australia
- Baker Department of Cardiovascular Research Translation and Implementation, La Trobe University, Bundoora, VIC, Australia
| | - M.A. Febbraio
- Monash Institute of Pharmaceutical Sciences, Melbourne, VIC, Australia
| | - P.A. Adlard
- The Florey Institute of Neuroscience and Mental Health, Melbourne, VIC, Australia
| | - D.C. Henstridge
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
- School of Health Sciences, The University of Tasmania, Launceston, TAS, Australia
| |
Collapse
|
14
|
Quan Q, Ma X, Li M, Li X, Yuan H. Ginsenoside Rg1 promotes β‑amyloid peptide degradation through inhibition of the ERK/PPARγ phosphorylation pathway in an Alzheimer's disease neuronal model. Exp Ther Med 2024; 27:31. [PMID: 38125359 PMCID: PMC10731411 DOI: 10.3892/etm.2023.12319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 10/27/2023] [Indexed: 12/23/2023] Open
Abstract
β-Amyloid peptide (Aβ) deposition in the brain is an important pathological change in Alzheimer's disease (AD). Insulin-degrading enzyme (IDE), which is regulated transcriptionally by peroxisome proliferator-activated receptor γ (PPARγ), is able to proteolyze Aβ. One of the members of the MAPK family, ERK, is able to mediate the phosphorylation of PPARγ at Ser112, thereby inhibiting its transcriptional activity. Ginsenoside Rg1 is one of the active ingredients in the natural medicine ginseng and has inhibitory effects on Aβ production. The present study was designed to investigate whether ginsenoside Rg1 is able to affect the regulation of PPARγ based on the expression of its target gene, IDE, and whether it is able to promote Aβ degradation via inhibition of the ERK/PPARγ phosphorylation pathway. In the present study, primary cultured rat hippocampal neurons were treated with Aβ1-42, ginsenoside Rg1 and the ERK inhibitor PD98059, and subsequently TUNEL staining was used to detect the level of neuronal apoptosis. ELISA was subsequently employed to detect the intra- and extracellular Aβ1-42 levels, immunofluorescence staining and western blotting were used to detect the translocation of ERK from the cytoplasm to the nucleus, immunofluorescence double staining was used to detect the co-expression of ERK and PPARγ, and finally, western blotting was used to detect the phosphorylation of PPARγ at Ser112 and IDE expression. The results demonstrated that ginsenoside Rg1 or PD98059 were able to inhibit primary cultured hippocampal neuron apoptosis induced by Aβ1-42 treatment, reduce the levels of intra- and extraneuronal Aβ1-42 and inhibit the translocation of ERK from the cytoplasm to the nucleus. Furthermore, administration of ginsenoside Rg1 or PD98059 resulted in attenuated co-expression of ERK and PPARγ, inhibition of phosphorylation of PPARγ at Ser112 mediated by ERK and an increase in IDE expression. In addition, the effects when PD98059 to inhibit ERK followed by treatment with ginsenoside Rg1 were found to be more pronounced than those when using PD98059 alone. In conclusion, ginsenoside Rg1 was demonstrated to exert neuroprotective effects on AD via inhibition of the ERK/PPARγ phosphorylation pathway, which led to an increase in IDE expression, the promotion of Aβ degradation and the decrease of neuronal apoptosis. These results could provide a theoretical basis for the clinical application of ginsenoside Rg1 in AD.
Collapse
Affiliation(s)
- Qiankun Quan
- Department of Geriatrics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Xinxin Ma
- Department of Psychology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Ming Li
- Department of Geriatrics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Xi Li
- Department of Geriatrics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Haifeng Yuan
- Department of Rehabilitation, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| |
Collapse
|
15
|
Lee J, Lee H, Lee H, Shin M, Shin MG, Seo J, Lee EJ, Park SA, Park S. ANKS1A regulates LDL receptor-related protein 1 (LRP1)-mediated cerebrovascular clearance in brain endothelial cells. Nat Commun 2023; 14:8463. [PMID: 38123547 PMCID: PMC10733300 DOI: 10.1038/s41467-023-44319-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 12/08/2023] [Indexed: 12/23/2023] Open
Abstract
Brain endothelial LDL receptor-related protein 1 (LRP1) is involved in the clearance of Aβ peptides across the blood-brain barrier (BBB). Here we show that endothelial deficiency of ankyrin repeat and SAM domain containing 1 A (ANKS1A) reduces both the cell surface levels of LRP1 and the Aβ clearance across the BBB. Association of ANKS1A with the NPXY motifs of LRP1 facilitates the transport of LRP1 from the endoplasmic reticulum toward the cell surface. ANKS1A deficiency in an Alzheimer's disease mouse model results in exacerbated Aβ pathology followed by cognitive impairments. These deficits are reversible by gene therapy with brain endothelial-specific ANKS1A. In addition, human induced pluripotent stem cell-derived BBBs (iBBBs) were generated from endothelial cells lacking ANKS1A or carrying the rs6930932 variant. Those iBBBs exhibit both reduced cell surface LRP1 and impaired Aβ clearance. Thus, our findings demonstrate that ANKS1A regulates LRP1-mediated Aβ clearance across the BBB.
Collapse
Affiliation(s)
- Jiyeon Lee
- Department of Biological Sciences, Sookmyung Women's University, Seoul, 04310, Korea
| | - Haeryung Lee
- Department of Biological Sciences, Sookmyung Women's University, Seoul, 04310, Korea
| | - Hyein Lee
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science & Technology (DGIST), Daegu, 42988, Korea
| | - Miram Shin
- Department of Biological Sciences, Sookmyung Women's University, Seoul, 04310, Korea
| | - Min-Gi Shin
- Department of Brain Science, Ajou University School of Medicine, Suwon, 16499, Korea
| | - Jinsoo Seo
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science & Technology (DGIST), Daegu, 42988, Korea
| | - Eun Jeong Lee
- Department of Brain Science, Ajou University School of Medicine, Suwon, 16499, Korea
| | - Sun Ah Park
- Lab for Neurodegenerative Dementia, Department of Anatomy, and Department of Neurology, Ajou University School of Medicine, Suwon, 16499, Korea
| | - Soochul Park
- Department of Biological Sciences, Sookmyung Women's University, Seoul, 04310, Korea.
| |
Collapse
|
16
|
Reed EG, Keller-Norrell PR. Minding the Gap: Exploring Neuroinflammatory and Microglial Sex Differences in Alzheimer's Disease. Int J Mol Sci 2023; 24:17377. [PMID: 38139206 PMCID: PMC10743742 DOI: 10.3390/ijms242417377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/04/2023] [Accepted: 12/09/2023] [Indexed: 12/24/2023] Open
Abstract
Research into Alzheimer's Disease (AD) describes a link between AD and the resident immune cells of the brain, the microglia. Further, this suspected link is thought to have underlying sex effects, although the mechanisms of these effects are only just beginning to be understood. Many of these insights are the result of policies put in place by funding agencies such as the National Institutes of Health (NIH) to consider sex as a biological variable (SABV) and the move towards precision medicine due to continued lackluster therapeutic options. The purpose of this review is to provide an updated assessment of the current research that summarizes sex differences and the research pertaining to microglia and their varied responses in AD.
Collapse
Affiliation(s)
- Erin G. Reed
- Department of Pharmaceutical Sciences, Northeast Ohio Medical University, Rootstown, OH 44242, USA
| | | |
Collapse
|
17
|
Piyarungsri K, Chuammitri P, Pringproa K, Pila P, Srivorakul S, Sornpet B, Pusoonthornthum R. Decreased circulating transforming growth factor-beta (TGF-β) and kidney TGF-β immunoreactivity predict renal disease in cats with naturally occurring chronic kidney disease. J Feline Med Surg 2023; 25:1098612X231208937. [PMID: 38131312 PMCID: PMC10811765 DOI: 10.1177/1098612x231208937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
OBJECTIVES The aim of the present study was to compare the circulating transforming growth factor-beta (TGF-β) of clinically normal age-matched and naturally occurring chronic kidney disease (CKD) cats and to determine the correlation between the TGF-β expression and histopathological changes in cats with CKD. METHODS A total of 11 clinically normal age-matched and 27 cats with naturally occurring CKD were included in this study. Circulating TGF-β was quantified by immunoassays. Kaplan-Meier analysis was used to calculate the association between survival time and the concentration of circulating TGF-β. A general linear model was used to compare the circulating TGF-β between groups. Immunohistochemical analyses revealed TGF-β expression in renal tissues from cats with CKD that died during the study (n = 7) and in available archived renal tissue specimens taken at necropsy from cats that had previous CKD with renal lesions (n = 10). Correlations of the TGF-β expression and clinical parameters (n = 7) and histopathological changes (n = 17) were analysed using Spearman's rank correlation. RESULTS The median survival time of cats with a lower concentration of circulating TGF-β was shorter than that of cats with a higher concentration. The area under the curve of circulating TGF-β for predicting CKD was 0.781, indicating good differentiation. The study indicated a significant difference in circulating TGF-β concentrations between clinically normal cats and those with CKD and demonstrated that TGF-β expression is correlated with tubular atrophy. CONCLUSIONS AND RELEVANCE The study findings suggest that decreased serum TGF-β and tubular atrophy with TGF-β immunoreactivity may be significant in cats with CKD.
Collapse
Affiliation(s)
- Kakanang Piyarungsri
- Department of Companion Animal and Wildlife Clinic, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand
- Research Center of Producing and Development of Products and Innovations for Animal Health and Production, Chiang Mai University, Chiang Mai, Thailand
| | - Phongsakorn Chuammitri
- Research Center of Producing and Development of Products and Innovations for Animal Health and Production, Chiang Mai University, Chiang Mai, Thailand
- Department of Veterinary Bioscience and Veterinary Public Health, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Kidsadagon Pringproa
- Department of Veterinary Bioscience and Veterinary Public Health, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Pattiya Pila
- Small Animal Hospital, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Saralee Srivorakul
- Veterinary Diagnostic Laboratory, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Benjaporn Sornpet
- Veterinary Diagnostic Laboratory, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Rosama Pusoonthornthum
- Department of Veterinary Medicine, Faculty of Veterinary Science, Chulalongkorn University, Patumwan Bangkok, Thailand
- Feline Health and Infectious Disease Research Unit Excellence, Chulalongkorn University
| |
Collapse
|
18
|
Boyanova ST, Lloyd-Morris E, Corpe C, Rahman KM, Farag DB, Page LK, Wang H, Fleckney AL, Gatt A, Troakes C, Vizcay-Barrena G, Fleck R, Reeves SJ, Thomas SA. Interaction of amisulpride with GLUT1 at the blood-brain barrier. Relevance to Alzheimer's disease. PLoS One 2023; 18:e0286278. [PMID: 37874822 PMCID: PMC10597500 DOI: 10.1371/journal.pone.0286278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 09/27/2023] [Indexed: 10/26/2023] Open
Abstract
Blood-brain barrier (BBB) dysfunction may be involved in the increased sensitivity of Alzheimer's disease (AD) patients to antipsychotics, including amisulpride. Studies indicate that antipsychotics interact with facilitated glucose transporters (GLUT), including GLUT1, and that GLUT1 BBB expression decreases in AD. We tested the hypotheses that amisulpride (charge: +1) interacts with GLUT1, and that BBB transport of amisulpride is compromised in AD. GLUT1 substrates, GLUT1 inhibitors and GLUT-interacting antipsychotics were identified by literature review and their physicochemical characteristics summarised. Interactions between amisulpride and GLUT1 were studied using in silico approaches and the human cerebral endothelial cell line, hCMEC/D3. Brain distribution of [3H]amisulpride was determined using in situ perfusion in wild type (WT) and 5xFamilial AD (5xFAD) mice. With transmission electron microscopy (TEM) we investigated brain capillary degeneration in WT mice, 5xFAD mice and human samples. Western blots determined BBB transporter expression in mouse and human. Literature review revealed that, although D-glucose has no charge, charged molecules can interact with GLUT1. GLUT1 substrates are smaller (184.95±6.45g/mol) than inhibitors (325.50±14.40g/mol) and GLUT-interacting antipsychotics (369.38±16.04). Molecular docking showed beta-D-glucose (free energy binding: -15.39kcal/mol) and amisulpride (-29.04kcal/mol) interact with GLUT1. Amisulpride did not affect [14C]D-glucose hCMEC/D3 accumulation. [3H]amisulpride uptake into the brain (except supernatant) of 5xFAD mice compared to WT remained unchanged. TEM revealed brain capillary degeneration in human AD. There was no difference in GLUT1 or P-glycoprotein BBB expression between WT and 5xFAD mice. In contrast, caudate P-glycoprotein, but not GLUT1, expression was decreased in human AD capillaries versus controls. This study provides new details about the BBB transport of amisulpride, evidence that amisulpride interacts with GLUT1 and that BBB transporter expression is altered in AD. This suggests that antipsychotics could potentially exacerbate the cerebral hypometabolism in AD. Further research into the mechanism of amisulpride transport by GLUT1 is important for improving antipsychotics safety.
Collapse
Affiliation(s)
- Sevda T. Boyanova
- King’s College London, Institute of Pharmaceutical Science, London, United Kingdom
| | - Ethlyn Lloyd-Morris
- King’s College London, Institute of Pharmaceutical Science, London, United Kingdom
| | - Christopher Corpe
- King’s College London, Department of Nutritional Sciences, School of Life Course Sciences, Faculty of Life Sciences and Medicine, London, United Kingdom
| | | | - Doaa B. Farag
- Faculty of Pharmacy, Misr International University, Cairo, Egypt
| | - Lee K. Page
- King’s College London, Institute of Pharmaceutical Science, London, United Kingdom
| | - Hao Wang
- King’s College London, Institute of Pharmaceutical Science, London, United Kingdom
| | - Alice L. Fleckney
- King’s College London, Institute of Pharmaceutical Science, London, United Kingdom
| | - Ariana Gatt
- King’s College London, Wolfson Centre for Age Related Disease, London, United Kingdom
| | - Claire Troakes
- King’s College London, London Neurodegenerative Diseases Brain Bank, IoPPN, London, United Kingdom
| | - Gema Vizcay-Barrena
- King’s College London, Centre for Ultrastructural Imaging, London, United Kingdom
| | - Roland Fleck
- King’s College London, Centre for Ultrastructural Imaging, London, United Kingdom
| | - Suzanne J. Reeves
- Faculty of Brain Sciences, University College London, London, United Kingdom
| | - Sarah A. Thomas
- King’s College London, Department of Physiology, London, United Kingdom
| |
Collapse
|
19
|
Pan AL, Audrain M, Sakakibara E, Joshi R, Zhu X, Wang Q, Wang M, Beckmann ND, Schadt EE, Gandy S, Zhang B, Ehrlich ME, Salton SR. Dual-specificity protein phosphatase 6 (DUSP6) overexpression reduces amyloid load and improves memory deficits in male 5xFAD mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.24.554335. [PMID: 37662269 PMCID: PMC10473733 DOI: 10.1101/2023.08.24.554335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Background Dual specificity protein phosphatase 6 (DUSP6) was recently identified as a key hub gene in a causal network that regulates late-onset Alzheimer's disease. Importantly, decreased DUSP6 levels are correlated with an increased clinical dementia rating in human subjects, and DUSP6 levels are additionally decreased in the 5xFAD amyloidopathy mouse model. Methods AAV5-DUSP6 or AAV5-GFP (control) were stereotactically injected into the dorsal hippocampus (dHc) of female and male 5xFAD or wild type mice to overexpress DUSP6 or GFP. Spatial learning memory of these mice was assessed in the Barnes maze, after which hippocampal tissues were isolated for downstream analysis. Results Barnes maze testing indicated that DUSP6 overexpression in the dHc of 5xFAD mice improved memory deficits and was associated with reduced amyloid plaque load, Aß 1-40 and Aß 1-42 levels, and amyloid precursor protein processing enzyme BACE1, in male but not in female mice. Microglial activation and microgliosis, which are increased in 5xFAD mice, were significantly reduced by dHc DUSP6 overexpression in both males and females. Transcriptomic profiling of female 5xFAD hippocampus revealed upregulated expression of genes involved in inflammatory and extracellular signal-regulated kinase (ERK) pathways, while dHc DUSP6 overexpression in female 5xFAD mice downregulated a subset of genes in these pathways. A limited number of differentially expressed genes (DEGs) (FDR<0.05) were identified in male mice; gene ontology analysis of DEGs (p<0.05) identified a greater number of synaptic pathways that were regulated by DUSP6 overexpression in male compared to female 5xFAD. Notably, the msh homeobox 3 gene, Msx3 , previously shown to regulate microglial M1/M2 polarization and reduce neuroinflammation, was one of the most robustly upregulated genes in female and male wild type and 5xFAD mice overexpressing DUSP6. Conclusions In summary, our data indicate that DUSP6 overexpression in dHc reduced amyloid deposition and memory deficits in male but not female 5xFAD mice, whereas reduced neuroinflammation and microglial activation were observed in both males and females. The sex-dependent regulation of synaptic pathways by DUSP6 overexpression, however, correlated with the improvement of spatial memory deficits in male but not female 5xFAD.
Collapse
|
20
|
Beatriz M, Rodrigues RJ, Vilaça R, Egas C, Pinheiro PS, Daley GQ, Schlaeger TM, Raimundo N, Rego AC, Lopes C. Extracellular vesicles improve GABAergic transmission in Huntington's disease iPSC-derived neurons. Theranostics 2023; 13:3707-3724. [PMID: 37441602 PMCID: PMC10334823 DOI: 10.7150/thno.81981] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 05/22/2023] [Indexed: 07/15/2023] Open
Abstract
Background: Extracellular vesicles (EVs) carry bioactive molecules associated with various biological processes, including miRNAs. In both Huntington's disease (HD) models and human samples, altered expression of miRNAs involved in synapse regulation was reported. Recently, the use of EV cargo to reverse phenotypic alterations in disease models with synaptopathy as the end result of the pathophysiological cascade has become an interesting possibility. Methods: Here, we assessed the contribution of EVs to GABAergic synaptic alterations using a human HD model and studied the miRNA content of isolated EVs. Results: After differentiating human induced pluripotent stem cells into electrophysiologically active striatal-like GABAergic neurons, we found that HD-derived neurons displayed reduced density of inhibitory synapse markers and GABA receptor-mediated ionotropic signaling. Treatment with EVs secreted by control (CTR) fibroblasts reversed the deficits in GABAergic synaptic transmission and increased the density of inhibitory synapses in HD-derived neuron cultures, while EVs from HD-derived fibroblasts had the opposite effects on CTR-derived neurons. Moreover, analysis of miRNAs from purified EVs identified a set of differentially expressed miRNAs between manifest HD, premanifest, and CTR lines with predicted synaptic targets. Conclusion: The EV-mediated reversal of the abnormal GABAergic phenotype in HD-derived neurons reinforces the potential role of EV-miRNAs on synapse regulation.
Collapse
Affiliation(s)
- Margarida Beatriz
- CNC - Center for Neuroscience and Cell Biology, CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
- IIIUC - Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - Ricardo J. Rodrigues
- CNC - Center for Neuroscience and Cell Biology, CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
- IIIUC - Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - Rita Vilaça
- CNC - Center for Neuroscience and Cell Biology, CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
- IIIUC - Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - Conceição Egas
- CNC - Center for Neuroscience and Cell Biology, CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
- IIIUC - Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
- Biocant- Transfer Technology Association, Biocant Park, Cantanhede, Portugal
| | - Paulo S. Pinheiro
- CNC - Center for Neuroscience and Cell Biology, CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
- Faculty of Sciences and Technology, Department of Life Sciences, University of Coimbra, 3000-456 Coimbra, Portugal
| | - George Q. Daley
- Division of Pediatric Hematology/Oncology, Children's Hospital Boston, Boston, MA USA
- Harvard Stem Cell Institute, Boston, MA USA
| | - Thorsten M. Schlaeger
- Division of Pediatric Hematology/Oncology, Children's Hospital Boston, Boston, MA USA
- Harvard Stem Cell Institute, Boston, MA USA
| | - Nuno Raimundo
- MIA - Multidisciplinary Institute of Ageing, University of Coimbra, Coimbra, Portugal
| | - A. Cristina Rego
- CNC - Center for Neuroscience and Cell Biology, CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
- FMUC - Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Carla Lopes
- CNC - Center for Neuroscience and Cell Biology, CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
- IIIUC - Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
- MIA - Multidisciplinary Institute of Ageing, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
21
|
Keszycki R, Rodriguez G, Dunn JT, Locci A, Orellana H, Haupfear I, Dominguez S, Fisher DW, Dong H. Characterization of apathy-like behaviors in the 5xFAD mouse model of Alzheimer's disease. Neurobiol Aging 2023; 126:113-122. [PMID: 36989547 PMCID: PMC10106415 DOI: 10.1016/j.neurobiolaging.2023.02.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 02/20/2023] [Accepted: 02/25/2023] [Indexed: 03/06/2023]
Abstract
Most patients with Alzheimer's disease (AD) develop neuropsychiatric symptoms (NPS) alongside cognitive decline, and apathy is one of the most common symptoms. Few preclinical studies have investigated the biological substrates underlying NPS in AD. In this study, we used a cross-sectional design to characterize apathy-like behaviors and assess memory in 5xFAD and wildtype control mice at 6, 12, and 16 months of age. Nest building, burrowing, and marble burying were used to test representative behaviors of apathy, and a composite score of apathy-like behavior was generated from these assays. Soluble Aβ42 and plaques were quantified in the prefrontal cortex and hippocampus of the 5xFAD mice with the highest and lowest composite scores using ELISA and histology. Results suggest that 5xFAD mice develop significant apathy-like behaviors starting at 6 months of age that worsen with aging and are positively correlated with soluble Aβ42 and plaques in the prefrontal cortex and hippocampus. Our findings highlight the utility of studying NPS in mouse models of AD to uncover important relationships with underlying neuropathology.
Collapse
Affiliation(s)
- Rachel Keszycki
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, USA; Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Guadalupe Rodriguez
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Jeffrey T Dunn
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Andrea Locci
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Hector Orellana
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Isabel Haupfear
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Sky Dominguez
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Daniel W Fisher
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, USA; Department of Psychiatry and Behavioral Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Hongxin Dong
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, USA; Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| |
Collapse
|
22
|
Savva K, Zachariou M, Kynigopoulos D, Fella E, Vitali MI, Kosofidou X, Spyrou M, Sargiannidou I, Panayiotou E, Dietis N, Spyrou GM. Preliminary In Vitro and In Vivo Insights of In Silico Candidate Repurposed Drugs for Alzheimer's Disease. Life (Basel) 2023; 13:life13051095. [PMID: 37240740 DOI: 10.3390/life13051095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/04/2023] [Accepted: 04/24/2023] [Indexed: 05/28/2023] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease and is the most common type of dementia. Although a considerably large amount of money has been invested in drug development for AD, no disease modifying treatment has been detected so far. In our previous work, we developed a computational method to highlight stage-specific candidate repurposed drugs against AD. In this study, we tested the effect of the top 13 candidate repurposed drugs that we proposed in our previous work in a severity stage-specific manner using an in vitro BACE1 assay and the effect of a top-ranked drug from the list of our previous work, tetrabenazine (TBZ), in the 5XFAD as an AD mouse model. From our in vitro screening, we detected 2 compounds (clomiphene citrate and Pik-90) that showed statistically significant inhibition against the activity of the BACE1 enzyme. The administration of TBZ at the selected dose and therapeutic regimen in 5XFAD in male and female mice showed no significant effect in behavioral tests using the Y-maze and the ELISA immunoassay of Aβ40. To our knowledge, this is the first time the drug tetrabenazine has been tested in the 5XFAD mouse model of AD in a sex-stratified manner. Our results highlight 2 drugs (clomiphene citrate and Pik-90) from our previous computational work for further investigation.
Collapse
Affiliation(s)
- Kyriaki Savva
- Bioinformatics Department, The Cyprus Institute of Neurology and Genetics, 2371 Nicosia, Cyprus
| | - Margarita Zachariou
- Bioinformatics Department, The Cyprus Institute of Neurology and Genetics, 2371 Nicosia, Cyprus
| | - Demos Kynigopoulos
- Department of Neuropathology, The Cyprus Institute of Neurology and Genetics, 2371 Nicosia, Cyprus
| | - Eleni Fella
- Department of Neuropathology, The Cyprus Institute of Neurology and Genetics, 2371 Nicosia, Cyprus
| | - Maria-Ioanna Vitali
- Experimental Pharmacology Laboratory, Medical School, University of Cyprus, 2109 Nicosia, Cyprus
| | - Xeni Kosofidou
- Experimental Pharmacology Laboratory, Medical School, University of Cyprus, 2109 Nicosia, Cyprus
| | - Michail Spyrou
- Experimental Pharmacology Laboratory, Medical School, University of Cyprus, 2109 Nicosia, Cyprus
| | - Irene Sargiannidou
- Neuroscience Department, The Cyprus Institute of Neurology and Genetics, 2371 Nicosia, Cyprus
| | - Elena Panayiotou
- Department of Neuropathology, The Cyprus Institute of Neurology and Genetics, 2371 Nicosia, Cyprus
| | - Nikolas Dietis
- Experimental Pharmacology Laboratory, Medical School, University of Cyprus, 2109 Nicosia, Cyprus
| | - George M Spyrou
- Bioinformatics Department, The Cyprus Institute of Neurology and Genetics, 2371 Nicosia, Cyprus
| |
Collapse
|
23
|
Song DH, Song CW, Chung J, Jang EH, Kim H, Hur Y, Hur EM, Kim D, Chang JB. In situ silver nanoparticle development for molecular-specific biological imaging via highly accessible microscopies. NANOSCALE ADVANCES 2023; 5:1636-1650. [PMID: 36926569 PMCID: PMC10012848 DOI: 10.1039/d2na00449f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 12/19/2022] [Indexed: 06/18/2023]
Abstract
In biological studies and diagnoses, brightfield (BF), fluorescence, and electron microscopy (EM) are used to image biomolecules inside cells. When compared, their relative advantages and disadvantages are obvious. BF microscopy is the most accessible of the three, but its resolution is limited to a few microns. EM provides a nanoscale resolution, but sample preparation is time-consuming. In this study, we present a new imaging technique, which we termed decoration microscopy (DecoM), and quantitative investigations to address the aforementioned issues in EM and BF microscopy. For molecular-specific EM imaging, DecoM labels proteins inside cells using antibodies bearing 1.4 nm gold nanoparticles (AuNPs) and grows silver layers on the AuNPs' surfaces. The cells are then dried without buffer exchange and imaged using scanning electron microscopy (SEM). Structures labeled with silver-grown AuNPs are clearly visible on SEM, even they are covered with lipid membranes. Using stochastic optical reconstruction microscopy, we show that the drying process causes negligible distortion of structures and that less structural deformation could be achieved through simple buffer exchange to hexamethyldisilazane. Using DecoM, we visualize the nanoscale alterations in microtubules by microtubule-severing proteins that cannot be observed with diffraction-limited fluorescence microscopy. We then combine DecoM with expansion microscopy to enable sub-micron resolution BF microscopy imaging. We first show that silver-grown AuNPs strongly absorb white light, and the structures labeled with them are clearly visible on BF microscopy. We then show that the application of AuNPs and silver development must follow expansion to visualize the labeled proteins clearly with sub-micron resolution.
Collapse
Affiliation(s)
- Dae-Hyeon Song
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology Daejeon Korea
| | - Chang Woo Song
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology Daejeon Korea
| | | | - Eun-Hae Jang
- Laboratory of Neuroscience, Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University Seoul Korea
| | - Hyunwoo Kim
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology Daejeon Korea
| | - Yongsuk Hur
- BioMedical Research Center, Korea Advanced Institute of Science and Technology Daejeon Korea
| | - Eun-Mi Hur
- Laboratory of Neuroscience, Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University Seoul Korea
- BK21 Four Future Veterinary Medicine Leading Education & Research Center, Seoul National University Seoul Korea
| | - Doory Kim
- Department of Chemistry, Hanyang University Seoul Korea
| | - Jae-Byum Chang
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology Daejeon Korea
| |
Collapse
|
24
|
Greve HJ, Dunbar AL, Lombo CG, Ahmed C, Thang M, Messenger EJ, Mumaw CL, Johnson JA, Kodavanti UP, Oblak AL, Block ML. The bidirectional lung brain-axis of amyloid-β pathology: ozone dysregulates the peri-plaque microenvironment. Brain 2023; 146:991-1005. [PMID: 35348636 PMCID: PMC10169526 DOI: 10.1093/brain/awac113] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 02/07/2022] [Accepted: 02/27/2022] [Indexed: 11/14/2022] Open
Abstract
The mechanisms underlying how urban air pollution affects Alzheimer's disease (AD) are largely unknown. Ozone (O3) is a reactive gas component of air pollution linked to increased AD risk, but is confined to the respiratory tract after inhalation, implicating the peripheral immune response to air pollution in AD neuropathology. Here, we demonstrate that O3 exposure impaired the ability of microglia, the brain's parenchymal immune cells, to associate with and form a protective barrier around Aβ plaques, leading to augmented dystrophic neurites and increased Aβ plaque load. Spatial proteomic profiling analysis of peri-plaque proteins revealed a microenvironment-specific signature of dysregulated disease-associated microglia protein expression and increased pathogenic molecule levels with O3 exposure. Unexpectedly, 5xFAD mice exhibited an augmented pulmonary cell and humoral immune response to O3, supporting that ongoing neuropathology may regulate the peripheral O3 response. Circulating HMGB1 was one factor upregulated in only 5xFAD mice, and peripheral HMGB1 was separately shown to regulate brain Trem2 mRNA expression. These findings demonstrate a bidirectional lung-brain axis regulating the central and peripheral AD immune response and highlight this interaction as a potential novel therapeutic target in AD.
Collapse
Affiliation(s)
- Hendrik J Greve
- Department of Pharmacology and Toxicology, The Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
| | - August L Dunbar
- Department of Pharmacology and Toxicology, The Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Carla Garza Lombo
- Department of Pharmacology and Toxicology, The Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Chandrama Ahmed
- Department of Pharmacology and Toxicology, The Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Morrent Thang
- Department of Pharmacology and Toxicology, The Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Evan J Messenger
- Department of Pharmacology and Toxicology, The Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Christen L Mumaw
- Department of Pharmacology and Toxicology, The Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
| | - James A Johnson
- Department of Pharmacology and Toxicology, The Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Urmila P Kodavanti
- Cardiopulmonary and Immunotoxicology Branch, Public Health and Integrated Toxicology Division, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Adrian L Oblak
- Department of Radiology and Imaging Sciences, The Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Michelle L Block
- Department of Pharmacology and Toxicology, The Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
- Roudebush Veterans Affairs Medical Center, Indianapolis, IN, USA
| |
Collapse
|
25
|
Poon CH, Wong STN, Roy J, Wang Y, Chan HWH, Steinbusch H, Blokland A, Temel Y, Aquili L, Lim LW. Sex Differences between Neuronal Loss and the Early Onset of Amyloid Deposits and Behavioral Consequences in 5xFAD Transgenic Mouse as a Model for Alzheimer's Disease. Cells 2023; 12:cells12050780. [PMID: 36899916 PMCID: PMC10000751 DOI: 10.3390/cells12050780] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/19/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023] Open
Abstract
A promising direction in the research on Alzheimer's Disease (AD) is the identification of biomarkers that better inform the disease progression of AD. However, the performance of amyloid-based biomarkers in predicting cognitive performance has been shown to be suboptimal. We hypothesise that neuronal loss could better inform cognitive impairment. We have utilised the 5xFAD transgenic mouse model that displays AD pathology at an early phase, already fully manifested after 6 months. We have evaluated the relationships between cognitive impairment, amyloid deposition, and neuronal loss in the hippocampus in both male and female mice. We observed the onset of disease characterized by the emergence of cognitive impairment in 6-month-old 5xFAD mice coinciding with the emergence of neuronal loss in the subiculum, but not amyloid pathology. We also showed that female mice exhibited significantly increased amyloid deposition in the hippocampus and entorhinal cortex, highlighting sex-related differences in the amyloid pathology of this model. Therefore, parameters based on neuronal loss might more accurately reflect disease onset and progression compared to amyloid-based biomarkers in AD patients. Moreover, sex-related differences should be considered in studies involving 5xFAD mouse models.
Collapse
Affiliation(s)
- Chi Him Poon
- Neuromodulation Laboratory, School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - San Tung Nicholas Wong
- Neuromodulation Laboratory, School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Jaydeep Roy
- Neuromodulation Laboratory, School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Yingyi Wang
- Neuromodulation Laboratory, School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Hui Wang Hujo Chan
- Neuromodulation Laboratory, School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Harry Steinbusch
- Department of Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, 6211 LK Maastricht, The Netherlands
- Department of Brain & Cognitive Sciences, Daegu Gyeongbuk Institute Science and Technology (DGIST), Daegu 42988, Republic of Korea
| | - Arjan Blokland
- Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, 6211 LK Maastricht, The Netherlands
| | - Yasin Temel
- Department of Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, 6211 LK Maastricht, The Netherlands
- Department of Neurosurgery, Maastricht University Medical Centre, Maastricht University, 6211 LK Maastricht, The Netherlands
| | - Luca Aquili
- Neuromodulation Laboratory, School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- College of Health and Education, Discipline of Psychology, Murdoch University, Perth 6150, Australia
| | - Lee Wei Lim
- Neuromodulation Laboratory, School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- Correspondence:
| |
Collapse
|
26
|
Witucki Ł, Jakubowski H. Depletion of Paraoxonase 1 (Pon1) Dysregulates mTOR, Autophagy, and Accelerates Amyloid Beta Accumulation in Mice. Cells 2023; 12:746. [PMID: 36899882 PMCID: PMC10001133 DOI: 10.3390/cells12050746] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/16/2023] [Accepted: 02/22/2023] [Indexed: 03/02/2023] Open
Abstract
Paraoxonase 1 (PON1), a homocysteine (Hcy)-thiolactone detoxifying enzyme, has been associated with Alzheimer's disease (AD), suggesting that PON1 plays an important protective role in the brain. To study the involvement of PON1 in the development of AD and to elucidate the mechanism involved, we generated a new mouse model of AD, the Pon1-/-xFAD mouse, and examined how Pon1 depletion affects mTOR signaling, autophagy, and amyloid beta (Aβ) accumulation. To elucidate the mechanism involved, we examined these processes in N2a-APPswe cells. We found that Pon1 depletion significantly downregulated Phf8 and upregulated H4K20me1; mTOR, phospho-mTOR, and App were upregulated while autophagy markers Bcln1, Atg5, and Atg7 were downregulated at the protein and mRNA levels in the brains of Pon1─/─5xFAD vs. Pon1+/+5xFAD mice. Pon1 depletion in N2a-APPswe cells by RNA interference led to downregulation of Phf8 and upregulation of mTOR due to increased H4K20me1-mTOR promoter binding. This led to autophagy downregulation and significantly increased APP and Aβ levels. Phf8 depletion by RNA interference or treatments with Hcy-thiolactone or N-Hcy-protein metabolites similarly increased Aβ levels in N2a-APPswe cells. Taken together, our findings define a neuroprotective mechanism by which Pon1 prevents Aβ generation.
Collapse
Affiliation(s)
- Łukasz Witucki
- Department of Biochemistry and Biotechnology, Poznań University of Life Sciences, 60-637 Poznań, Poland
- Department of Microbiology, Biochemistry and Molecular Genetics, International Center for Public Health, New Jersey Medical School, Rutgers University, Newark, NJ 07103, USA
| | - Hieronim Jakubowski
- Department of Biochemistry and Biotechnology, Poznań University of Life Sciences, 60-637 Poznań, Poland
- Department of Microbiology, Biochemistry and Molecular Genetics, International Center for Public Health, New Jersey Medical School, Rutgers University, Newark, NJ 07103, USA
| |
Collapse
|
27
|
Sánchez CQ, Schmitt FW, Curdt N, Westhoff AC, Bänfer IWH, Bayer TA, Bouter Y. Search Strategy Analysis of 5xFAD Alzheimer Mice in the Morris Water Maze Reveals Sex- and Age-Specific Spatial Navigation Deficits. Biomedicines 2023; 11:biomedicines11020599. [PMID: 36831135 PMCID: PMC9953202 DOI: 10.3390/biomedicines11020599] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/03/2023] [Accepted: 02/14/2023] [Indexed: 02/22/2023] Open
Abstract
Spatial disorientation and navigational impairments are not only some of the first memory deficits in Alzheimer's disease, but are also very disease-specific. In rodents, the Morris Water Maze is used to investigate spatial navigation and memory. Here, we examined the spatial memory in the commonly used 5xFAD Alzheimer mouse model in a sex- and age-dependent manner. Our findings show first spatial learning deficits in 7-month-old female 5xFAD and 12-month-old male 5xFAD mice, respectively. While the assessment of spatial working memory using escape latencies provides a global picture of memory performance, it does not explain how an animal solves a spatial task. Therefore, a detailed analysis of swimming strategies was performed to better understand the behavioral differences between 5xFAD and WT mice. 5xFAD mice used a qualitatively and quantitatively different search strategy pattern than wildtype animals that used more non-spatial strategies and showed allocentric-specific memory deficits. Furthermore, a detailed analysis of swimming strategies revealed allocentric memory deficits in the probe trial in female 3-month-old and male 7-month-old 5xFAD animals before the onset of severe reference memory deficits. Overall, we could demonstrate that spatial navigation deficits in 5xFAD mice are age- and sex-dependent, with female mice being more severely affected. In addition, the implementation of a search strategy classification system allowed an earlier detection of behavioral differences and therefore could be a powerful tool for preclinical drug testing in the 5xFAD model.
Collapse
Affiliation(s)
- Carolina Quintanilla Sánchez
- Department of Psychiatry and Psychotherapy, Division of Molecular Psychiatry, University Medical Center (UMG), Georg-August-University, 37075 Goettingen, Germany
| | - Franziska W. Schmitt
- Department of Psychiatry and Psychotherapy, Division of Molecular Psychiatry, University Medical Center (UMG), Georg-August-University, 37075 Goettingen, Germany
| | - Nadine Curdt
- Department of Psychiatry and Psychotherapy, Division of Molecular Psychiatry, University Medical Center (UMG), Georg-August-University, 37075 Goettingen, Germany
| | - Anna Celine Westhoff
- Department of Psychiatry and Psychotherapy, Division of Molecular Psychiatry, University Medical Center (UMG), Georg-August-University, 37075 Goettingen, Germany
| | - Irina Wanda Helene Bänfer
- Department of Psychiatry and Psychotherapy, Division of Molecular Psychiatry, University Medical Center (UMG), Georg-August-University, 37075 Goettingen, Germany
| | - Thomas A. Bayer
- Department of Psychiatry and Psychotherapy, Division of Molecular Psychiatry, University Medical Center (UMG), Georg-August-University, 37075 Goettingen, Germany
| | - Yvonne Bouter
- Department of Psychiatry and Psychotherapy, Division of Molecular Psychiatry, University Medical Center (UMG), Georg-August-University, 37075 Goettingen, Germany
- Department of Nuclear Medicine, University Medical Center Göttingen (UMG), 37075 Goettingen, Germany
- Correspondence:
| |
Collapse
|
28
|
Pan AL, Audrain M, Sakakibara E, Joshi R, Zhu X, Wang Q, Wang M, Beckmann ND, Schadt EE, Gandy S, Zhang B, Ehrlich ME, Salton SR. Dual-Specificity Protein Phosphatase 4 (DUSP4) Overexpression Improves Learning Behavior Selectively in Female 5xFAD Mice, and Reduces β-Amyloid Load in Males and Females. Cells 2022; 11:3880. [PMID: 36497141 PMCID: PMC9737364 DOI: 10.3390/cells11233880] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 11/28/2022] [Accepted: 11/29/2022] [Indexed: 12/05/2022] Open
Abstract
Recent multiscale network analyses of banked brains from subjects who died of late-onset sporadic Alzheimer's disease converged on VGF (non-acronymic) as a key hub or driver. Within this computational VGF network, we identified the dual-specificity protein phosphatase 4 (DUSP4) [also known as mitogen-activated protein kinase (MAPK) phosphatase 2] as an important node. Importantly, DUSP4 gene expression, like that of VGF, is downregulated in postmortem Alzheimer's disease (AD) brains. We investigated the roles that this VGF/DUSP4 network plays in the development of learning behavior impairment and neuropathology in the 5xFAD amyloidopathy mouse model. We found reductions in DUSP4 expression in the hippocampi of male AD subjects, correlating with increased CDR scores, and in 4-month-old female and 12-18-month-old male 5xFAD hippocampi. Adeno-associated virus (AAV5)-mediated overexpression of DUSP4 in 5xFAD mouse dorsal hippocampi (dHc) rescued impaired Barnes maze performance in females but not in males, while amyloid loads were reduced in both females and males. Bulk RNA sequencing of the dHc from 5-month-old mice overexpressing DUSP4, and Ingenuity Pathway and Enrichr analyses of differentially expressed genes (DEGs), revealed that DUSP4 reduced gene expression in female 5xFAD mice in neuroinflammatory, interferon-gamma (IFNγ), programmed cell death protein-ligand 1/programmed cell death protein 1 (PD-L1/PD-1), and extracellular signal-regulated kinase (ERK)/MAPK pathways, via which DUSP4 may modulate AD phenotype with gender-specificity.
Collapse
Affiliation(s)
- Allen L. Pan
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Mickael Audrain
- Department of Neurology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Emmy Sakakibara
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Rajeev Joshi
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Xiaodong Zhu
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Qian Wang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Minghui Wang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Noam D. Beckmann
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Eric E. Schadt
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Sam Gandy
- Department of Neurology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Department of Psychiatry and Alzheimer’s Disease Research Center, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Bin Zhang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Michelle E. Ehrlich
- Department of Neurology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Stephen R. Salton
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Brookdale Department of Geriatrics and Palliative Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
29
|
Borgstedt L, Bratke S, Blobner M, Pötzl C, Ulm B, Jungwirth B, Schmid S. Isoflurane has no effect on cognitive or behavioral performance in a mouse model of early-stage Alzheimer’s disease. Front Neurosci 2022; 16:1033729. [DOI: 10.3389/fnins.2022.1033729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundPatients with Alzheimer’s disease show a sex-dependent decline of cognitive and behavioral performance. It is controversially discussed whether general anesthesia itself can aggravate or even cause this neurocognitive decline. Therefore, we investigated the effect of general anesthesia on neurocognitive and behavioral function and amyloidopathy in a mouse model of early-stage Alzheimer’s disease with respect to sex.MethodsAfter governmental approval 10 months old Tg2576 mice and wild type (total 85 mice) either underwent general anesthesia with 1.0 minimal alveolar concentration of isoflurane for 2 h or were not exposed to isoflurane (controls). Following cognitive and behavioral testing using the modified hole board test (mHBT), brains were investigated regarding amyloidopathy, inflammation, and apoptosis. Data were analyzed using repeated measure analysis of variance (ANOVA) and univariate analysis of variance (UNIANOVA).ResultsTg2576 mice showed a decline in memory function (p < 0.001), less anxiety (p = 0.022 and p = 0.024), increased locomotor activity (p = 0.025), and impaired fine motor skills (p < 0.001). Amyloid precursor protein (p < 0.001), soluble amyloid-beta (p < 0.001) and insoluble amyloid deposits (p < 0.001) were increased in Tg2576 animals. Neither sex nor exposure to isoflurane had an effect on cognitive or behavioral testing or expression of amyloid-related biomarkers.Discussion and conclusionWe found that 10 months old Tg2576 showed typical signs of early-stage Alzheimer’s disease and corresponding histopathological alterations. Relevant sex-specific differences or an effect of isoflurane anesthesia could not be detected at this early stage of the disease.
Collapse
|
30
|
Yılmaz H, Şengelen A, Demirgan S, Paşaoğlu HE, Çağatay M, Erman İE, Bay M, Güneyli HC, Önay-Uçar E. Acutely increased aquaporin-4 exhibits more potent protective effects in the cortex against single and repeated isoflurane-induced neurotoxicity in the developing rat brain. Toxicol Mech Methods 2022; 33:279-292. [PMID: 36127839 DOI: 10.1080/15376516.2022.2127389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
Damage to hippocampus, cerebellum, and cortex associated with cognitive functions due to anesthetic-induced toxicity early in life may cause cognitive decline later. Aquaporin 4 (AQP4), a key protein in waste clearance pathway of brain, is involved in synaptic plasticity and neurocognition. We investigated the effects of single and repeated isoflurane (Iso) anesthesia on AQP4 levels and brain damage. Postnatal-day (P)7 Wistar albino rats were randomly assigned to Iso or Control (C) groups. For single-exposure, pups were exposed to 1.5% Iso in 30% oxygenated-air for 3-h at P7 (Iso1). For repeated-exposure, pups were exposed to Iso for 3 days, 3-h each day, at 1-day intervals (P7 + 9+11) starting at P7 (Iso3). C1 and C3 groups received only 30% oxygenated-air. Based on HE-staining and immunoblotting (Bax/Bcl-2, cleaved-caspase3 and PARP1) analyses, Iso exposures caused a higher degree of apoptosis in hippocampus. Anesthesia increased 4HNE, oxidative stress marker; the highest ROS accumulation was determined in cerebellum. Increased inflammation (TNF-α, NF-κB) was detected. Multiple Iso-exposures caused more significant damage than single exposure. Moreover, 4HNE and TNF-α contributed synergistically to Iso-induced neurotoxicity. After anesthesia, higher expression of AQP4 was detected in cortex than hippocampus and cerebellum. There was an inverse correlation between increased AQP4 levels and apoptosis/ROS/inflammation. Correlation analysis indicated that AQP4 had a more substantial protective profile against oxidative stress than apoptosis. Remarkably, acutely increased AQP4 against Iso exhibited a more potent neuroprotective effect in cortex, especially frontal cortex. These findings promote further research to understand better the mechanisms underlying anesthesia-induced toxicity in the developing brain.
Collapse
Affiliation(s)
- Habip Yılmaz
- Department of Public Hospital Services, Istanbul Health Directorate, Istanbul, Turkey
| | - Aslıhan Şengelen
- Department of Molecular Biology and Genetics, Institute of Graduate Studies in Sciences, Istanbul University, Istanbul, Turkey
| | - Serdar Demirgan
- Department of Molecular Biology and Genetics, Institute of Graduate Studies in Sciences, Istanbul University, Istanbul, Turkey.,Clinic of Anesthesiology and Reanimation, University of Health Sciences, Bağcılar Training and Research Hospital, Istanbul, Turkey
| | - Hüsniye Esra Paşaoğlu
- Department of Pathology, University of Health Sciences, Bağcılar Training and Research Hospital, Istanbul, Turkey
| | - Melike Çağatay
- Clinic of Anesthesiology and Reanimation, University of Health Sciences, Bağcılar Training and Research Hospital, Istanbul, Turkey
| | - İbrahim Emre Erman
- Clinic of Anesthesiology and Reanimation, University of Health Sciences, Bağcılar Training and Research Hospital, Istanbul, Turkey
| | - Mehmet Bay
- Clinic of Anesthesiology and Reanimation, University of Health Sciences, Bağcılar Training and Research Hospital, Istanbul, Turkey
| | - Hasan Cem Güneyli
- Clinic of Anesthesiology and Reanimation, University of Health Sciences, Bağcılar Training and Research Hospital, Istanbul, Turkey
| | - Evren Önay-Uçar
- Department of Molecular Biology and Genetics, Faculty of Science, Istanbul University, Istanbul, Turkey
| |
Collapse
|
31
|
Cuddy LK, Alia AO, Salvo MA, Chandra S, Grammatopoulos TN, Justman CJ, Lansbury PT, Mazzulli JR, Vassar R. Farnesyltransferase inhibitor LNK-754 attenuates axonal dystrophy and reduces amyloid pathology in mice. Mol Neurodegener 2022; 17:54. [PMID: 35987691 PMCID: PMC9392365 DOI: 10.1186/s13024-022-00561-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 08/11/2022] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Amyloid plaque deposition and axonal degeneration are early events in AD pathogenesis. Aβ disrupts microtubules in presynaptic dystrophic neurites, resulting in the accumulation of impaired endolysosomal and autophagic organelles transporting β-site amyloid precursor protein cleaving enzyme (BACE1). Consequently, dystrophic neurites generate Aβ42 and significantly contribute to plaque deposition. Farnesyltransferase inhibitors (FTIs) have recently been investigated for repositioning toward the treatment of neurodegenerative disorders and block the action of farnesyltransferase (FTase) to catalyze farnesylation, a post-translational modification that regulates proteins involved in lysosome function and microtubule stability. In postmortem AD brains, FTase and its downstream signaling are upregulated. However, the impact of FTIs on amyloid pathology and dystrophic neurites is unknown. METHODS We tested the effects of the FTIs LNK-754 and lonafarnib in the 5XFAD mouse model of amyloid pathology. RESULTS In 2-month-old 5XFAD mice treated chronically for 3 months, LNK-754 reduced amyloid plaque burden, tau hyperphosphorylation, and attenuated the accumulation of BACE1 and LAMP1 in dystrophic neurites. In 5-month-old 5XFAD mice treated acutely for 3 weeks, LNK-754 reduced dystrophic neurite size and LysoTracker-Green accumulation in the absence of effects on Aβ deposits. Acute treatment with LNK-754 improved memory and learning deficits in hAPP/PS1 amyloid mice. In contrast to LNK-754, lonafarnib treatment was less effective at reducing plaques, tau hyperphosphorylation and dystrophic neurites, which could have resulted from reduced potency against FTase compared to LNK-754. We investigated the effects of FTIs on axonal trafficking of endolysosomal organelles and found that lonafarnib and LNK-754 enhanced retrograde axonal transport in primary neurons, indicating FTIs could support the maturation of axonal late endosomes into lysosomes. Furthermore, FTI treatment increased levels of LAMP1 in mouse primary neurons and in the brains of 5XFAD mice, demonstrating that FTIs stimulated the biogenesis of endolysosomal organelles. CONCLUSIONS We show new data to suggest that LNK-754 promoted the axonal trafficking and function of endolysosomal compartments, which we hypothesize decreased axonal dystrophy, reduced BACE1 accumulation and inhibited amyloid deposition in 5XFAD mice. Our results agree with previous work identifying FTase as a therapeutic target for treating proteinopathies and could have important therapeutic implications in treating AD.
Collapse
Affiliation(s)
- Leah K. Cuddy
- The Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611 USA
| | - Alia O. Alia
- The Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611 USA
| | - Miranda A. Salvo
- The Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611 USA
| | - Sidhanth Chandra
- The Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611 USA
| | | | | | - Peter T. Lansbury
- Bial Biotech, Cambridge, MA 02139 USA
- Department of Neurology, Harvard Medical School, Cambridge, MA 02139 USA
| | - Joseph R. Mazzulli
- The Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611 USA
| | - Robert Vassar
- The Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611 USA
- Mesulam Center for Cognitive Neurology and Alzheimer’s Disease, Northwestern University Feinberg School of Medicine, Chicago, IL 60611 USA
| |
Collapse
|
32
|
Yu WS, Aquili L, Wong KH, Lo ACY, Chan LLH, Chan YS, Lim LW. Transcorneal electrical stimulation enhances cognitive functions in aged and 5XFAD mouse models. Ann N Y Acad Sci 2022; 1515:249-265. [PMID: 35751874 DOI: 10.1111/nyas.14850] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Dementia is a major burden on global health for which there are no effective treatments. The use of noninvasive visual stimulation to ameliorate cognitive deficits is a novel concept that may be applicable for treating dementia. In this study, we investigated the effects of transcorneal electrical stimulation (TES) on memory enhancement using two mouse models, in aged mice and in the 5XFAD model of Alzheimer's disease. After 3 weeks of TES treatment, mice were subjected to Y-maze and Morris water maze tests to assess hippocampal-dependent learning and memory. Immunostaining of the hippocampus of 5XFAD mice was also performed to examine the effects of TES on amyloid plaque pathology. The results showed that TES improved the performance of both aged and 5XFAD mice in memory tests. TES also reduced hippocampal plaque deposition in male, but not female, 5XFAD mice. Moreover, TES significantly reversed the downregulated level of postsynaptic protein 95 in the hippocampus of male 5XFAD mice, suggesting the effects of TES involve a postsynaptic mechanism. Overall, these findings support further investigation of TES as a potential treatment for cognitive dysfunction and mechanistic studies of TES effects in other dementia models.
Collapse
Affiliation(s)
- Wing Shan Yu
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Luca Aquili
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China.,Discipline of Psychology, College of Science, Health, Engineering and Education, Murdoch University, Perth, Western Australia, Australia
| | - Kah Hui Wong
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China.,Faculty of Medicine, Department of Anatomy, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Amy Cheuk Yin Lo
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Leanne Lai Hang Chan
- Department of Electrical Engineering, City University of Hong Kong, Hong Kong SAR, China
| | - Ying-Shing Chan
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Lee Wei Lim
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
33
|
Shojaei Baghini S, Gardanova ZR, Abadi SAH, Zaman BA, İlhan A, Shomali N, Adili A, Moghaddar R, Yaseri AF. CRISPR/Cas9 application in cancer therapy: a pioneering genome editing tool. Cell Mol Biol Lett 2022; 27:35. [PMID: 35508982 PMCID: PMC9066929 DOI: 10.1186/s11658-022-00336-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 04/13/2022] [Indexed: 12/20/2022] Open
Abstract
The progress of genetic engineering in the 1970s brought about a paradigm shift in genome editing technology. The clustered regularly interspaced short palindromic repeats/CRISPR associated protein 9 (CRISPR/Cas9) system is a flexible means to target and modify particular DNA sequences in the genome. Several applications of CRISPR/Cas9 are presently being studied in cancer biology and oncology to provide vigorous site-specific gene editing to enhance its biological and clinical uses. CRISPR's flexibility and ease of use have enabled the prompt achievement of almost any preferred alteration with greater efficiency and lower cost than preceding modalities. Also, CRISPR/Cas9 technology has recently been applied to improve the safety and efficacy of chimeric antigen receptor (CAR)-T cell therapies and defeat tumor cell resistance to conventional treatments such as chemotherapy and radiotherapy. The current review summarizes the application of CRISPR/Cas9 in cancer therapy. We also discuss the present obstacles and contemplate future possibilities in this context.
Collapse
Affiliation(s)
- Sadegh Shojaei Baghini
- Plant Biotechnology Department, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Zhanna R. Gardanova
- Department of Psychotherapy, Pirogov Russian National Research Medical University, 1 Ostrovityanova St., 117997 Moscow, Russia
| | - Saeme Azizi Hassan Abadi
- Department of Nursery and Midwifery, Faculty of Laboratory Science, Islamic Azad University of Chalous, Mazandaran, Iran
| | - Burhan Abdullah Zaman
- Basic Sciences Department, College of Pharmacy, University of Duhok, Kurdistan Region, Iraq
| | - Ahmet İlhan
- Department of Medical Biochemistry, Faculty of Medicine, Cukurova University, Adana, Turkey
| | - Navid Shomali
- Immunology Research Center (IRC), Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Adili
- Department of Oncology, Tabriz University of Medical Sciences, Tabriz, Iran
- Senior Adult Oncology Department, Moffitt Cancer Center, University of South Florida, Tampa, USA
| | - Roozbeh Moghaddar
- Department of Pediatric Hematology and Oncology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | | |
Collapse
|
34
|
Greenfield SA, Cole GM, Coen CW, Frautschy S, Singh RP, Mekkittikul M, Garcia‐Ratés S, Morrill P, Hollings O, Passmore M, Hasan S, Carty N, Bison S, Piccoli L, Carletti R, Tacconi S, Chalidou A, Pedercini M, Kroecher T, Astner H, Gerrard PA. A novel process driving Alzheimer's disease validated in a mouse model: Therapeutic potential. ALZHEIMER'S & DEMENTIA (NEW YORK, N. Y.) 2022; 8:e12274. [PMID: 35415206 PMCID: PMC8983808 DOI: 10.1002/trc2.12274] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 01/24/2022] [Accepted: 01/25/2022] [Indexed: 12/27/2022]
Abstract
Introduction The neuronal mechanism driving Alzheimer's disease (AD) is incompletely understood. Methods Immunohistochemistry, pharmacology, biochemistry, and behavioral testing are employed in two pathological contexts-AD and a transgenic mouse model-to investigate T14, a 14mer peptide, as a key signaling molecule in the neuropathology. Results T14 increases in AD brains as the disease progresses and is conspicuous in 5XFAD mice, where its immunoreactivity corresponds to that seen in AD: neurons immunoreactive for T14 in proximity to T14-immunoreactive plaques. NBP14 is a cyclized version of T14, which dose-dependently displaces binding of its linear counterpart to alpha-7 nicotinic receptors in AD brains. In 5XFAD mice, intranasal NBP14 for 14 weeks decreases brain amyloid and restores novel object recognition to that in wild-types. Discussion These findings indicate that the T14 system, for which the signaling pathway is described here, contributes to the neuropathological process and that NBP14 warrants consideration for its therapeutic potential.
Collapse
Affiliation(s)
| | - Gregory M. Cole
- Department of Neurology & MedicineUSA and Veterans Affairs Healthcare SystemDavid Geffen School of Medicine at UCLALos AngelesUSA
| | - Clive W. Coen
- Faculty of Life Sciences & MedicineKing's College LondonLondonUK
| | - Sally Frautschy
- Department of Neurology & MedicineUSA and Veterans Affairs Healthcare SystemDavid Geffen School of Medicine at UCLALos AngelesUSA
| | - Ram P. Singh
- Department of Neurology & MedicineUSA and Veterans Affairs Healthcare SystemDavid Geffen School of Medicine at UCLALos AngelesUSA
| | - Marisa Mekkittikul
- Department of Neurology & MedicineUSA and Veterans Affairs Healthcare SystemDavid Geffen School of Medicine at UCLALos AngelesUSA
| | | | | | | | | | - Sibah Hasan
- Culham Science CentreNeuro‐Bio LtdAbingdonUK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Plucińska K, Mody N, Dekeryte R, Shearer K, Mcilroy GD, Delibegovic M, Platt B. High-fat diet exacerbates cognitive and metabolic abnormalities in neuronal BACE1 knock-in mice - partial prevention by Fenretinide. Nutr Neurosci 2022; 25:719-736. [PMID: 32862802 DOI: 10.1080/1028415x.2020.1806190] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Objective: The β-site APP-cleaving enzyme 1 (BACE1) is a rate-limiting step in β-amyloid (Aβ) production in Alzheimer's disease (AD) brains, but recent evidence suggests that BACE1 is also involved in metabolic regulation. Here, we aimed to assess the effects of highfat diet (HFD) on metabolic and cognitive phenotypes in the diabetic BACE1 knock-in mice (PLB4) and WT controls; we additionally examined whether these phenotypes can be normalized with a synthetic retinoid (Fenretinide, Fen) targeting weight loss.Methods: Five-month old male WT and PLB4 mice were fed either (1) control chow diet, (2) 45%-saturated fat diet (HFD), (3) HFD with 0.04% Fen (HFD + Fen) or (4) control chow diet with 0.04% Fen (Fen) for 10 weeks. We assessed basic metabolic parameters, circadian rhythmicity, spatial habituation (Phenotyper) and working memory (Y-maze). Hypothalami, forebrain and liver tissues were assessed using Western blots, qPCR and ELISAs.Results: HFD feeding drastically worsened metabolism and induced early mortality (-40%) in otherwise viable PLB4 mice. This was ameliorated by Fen, despite no effects on glucose intolerance. In HFD-fed WT mice, Fen reduced weight gain, glucose intolerance and hepatic steatosis. The physiological changes induced in WT and PLB4 mice by HFD (+/-Fen) were accompanied by enhanced cerebral astrogliosis, elevated PTP1B, phopsho-eIF2α and altered hypothalamic transcription of Bace1, Pomc and Mc4r. Behaviourally, HFD feeding exacerbated spatial memory deficits in PLB4 mice, which was prevented by Fen and linked with increased full-length APP, normalized brain Aβ*56 oligomerization and astrogliosis.Conclusions: HFD induces early mortality and worsened cognition in the Alzheimer's-like BACE1 mice- partial prevention was achieved with Fenretinide, without improvements in glucose homeostasis.
Collapse
Affiliation(s)
- Kaja Plucińska
- Institute of Medical Sciences, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, UK
- The Novo Nordisk Foundation Center for Basic Metabolic Research (CBMR), Integrative Physiology and Environmental Influences, University of Copenhagen, Copenhagen, Denmark
| | - Nimesh Mody
- Institute of Medical Sciences, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, UK
| | - Ruta Dekeryte
- Institute of Medical Sciences, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, UK
| | - Kirsty Shearer
- Institute of Medical Sciences, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, UK
| | - George D Mcilroy
- Institute of Medical Sciences, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, UK
- The Rowett Institute, University of Aberdeen, Aberdeen, UK
| | - Mirela Delibegovic
- Institute of Medical Sciences, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, UK
| | - Bettina Platt
- Institute of Medical Sciences, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, UK
| |
Collapse
|
36
|
O'Leary TP, Brown RE. Visuo-spatial learning and memory impairments in the 5xFAD mouse model of Alzheimer's disease: Effects of age, sex, albinism, and motor impairments. GENES, BRAIN, AND BEHAVIOR 2022; 21:e12794. [PMID: 35238473 PMCID: PMC9744519 DOI: 10.1111/gbb.12794] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 12/19/2021] [Indexed: 12/17/2022]
Abstract
The 5xFAD mouse model of Alzheimer's disease (AD) rapidly develops AD-related neuro-behavioral pathology. Learning and memory impairments in 5xFAD mice, however, are not always replicated and the size of impairments varies considerably across studies. To examine possible sources of this variability, we analyzed the effects of age, sex, albinism due to background genes (Tyrc , Oca2p ) and motor impairment on learning and memory performance of wild type and 5xFAD mice on the Morris water maze, from 3 to 15 months of age. The 5xFAD mice showed impaired learning at 6-9 months of age, but memory impairments were not detected with the test procedure used in this study. Performance of 5xFAD mice was profoundly impaired at 12-15 months of age, but was accompanied by slower swim speeds than wild-type mice and a frequent failure to locate the escape platform. Overall female mice performed worse than males, and reversal learning impairments in 5xFAD mice were more pronounced in females than males. Albino mice performed worse than pigmented mice, confirming that albinism can impair performance of 5xFAD mice independently of AD-related transgenes. Overall, these results show that 5xFAD mice have impaired learning performance at 6-9 months of age, but learning and memory performance at 12-15 months is confounded with motor impairments. Furthermore, sex and albinism should be controlled to provide an accurate assessment of AD-related transgenes on learning and memory. These results will help reduce variability across pre-clinical experiments with 5xFAD mice, and thus enhance the reliability of studies developing new therapeutics for AD.
Collapse
Affiliation(s)
- Timothy P. O'Leary
- Department of Psychology and NeuroscienceDalhousie UniversityHalifaxNova ScotiaCanada
| | - Richard E. Brown
- Department of Psychology and NeuroscienceDalhousie UniversityHalifaxNova ScotiaCanada
| |
Collapse
|
37
|
Gourmaud S, Stewart DA, Irwin DJ, Roberts N, Barbour AJ, Eberwine G, O’Brien WT, Vassar R, Talos DM, Jensen FE. The role of mTORC1 activation in seizure-induced exacerbation of Alzheimer's disease. Brain 2022; 145:324-339. [PMID: 34264340 PMCID: PMC9126019 DOI: 10.1093/brain/awab268] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 06/04/2021] [Accepted: 06/21/2021] [Indexed: 11/13/2022] Open
Abstract
The risk of seizures is 10-fold higher in patients with Alzheimer's disease than the general population, yet the mechanisms underlying this susceptibility and the effects of these seizures are poorly understood. To elucidate the proposed bidirectional relationship between Alzheimer's disease and seizures, we studied human brain samples (n = 34) from patients with Alzheimer's disease and found that those with a history of seizures (n = 14) had increased amyloid-β and tau pathology, with upregulation of the mechanistic target of rapamycin (mTOR) pathway, compared with patients without a known history of seizures (n = 20). To establish whether seizures accelerate the progression of Alzheimer's disease, we induced chronic hyperexcitability in the five times familial Alzheimer's disease mouse model by kindling with the chemoconvulsant pentylenetetrazol and observed that the mouse model exhibited more severe seizures than the wild-type. Furthermore, kindled seizures exacerbated later cognitive impairment, Alzheimer's disease neuropathology and mTOR complex 1 activation. Finally, we demonstrated that the administration of the mTOR inhibitor rapamycin following kindled seizures rescued enhanced remote and long-term memory deficits associated with earlier kindling and prevented seizure-induced increases in Alzheimer's disease neuropathology. These data demonstrated an important link between chronic hyperexcitability and progressive Alzheimer's disease pathology and suggest a mechanism whereby rapamycin may serve as an adjunct therapy to attenuate progression of the disease.
Collapse
Affiliation(s)
- Sarah Gourmaud
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - David A Stewart
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Duke University School of Medicine, Durham, NC 27708, USA
| | - David J Irwin
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Penn Frontotemporal Degeneration Center, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Nicholas Roberts
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Aaron J Barbour
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Grace Eberwine
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - William T O’Brien
- Neurobehavior Testing Core, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Robert Vassar
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Delia M Talos
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Frances E Jensen
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
38
|
Chen L, Dar NJ, Na R, McLane KD, Yoo K, Han X, Ran Q. Enhanced defense against ferroptosis ameliorates cognitive impairment and reduces neurodegeneration in 5xFAD mice. Free Radic Biol Med 2022; 180:1-12. [PMID: 34998934 PMCID: PMC8840972 DOI: 10.1016/j.freeradbiomed.2022.01.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/01/2022] [Accepted: 01/03/2022] [Indexed: 12/11/2022]
Abstract
Oxidative damage including lipid peroxidation is widely reported in Alzheimer's disease (AD) with the peroxidation of phospholipids in membranes being the driver of ferroptosis, an iron-dependent oxidative form of cell death. However, the importance of ferroptosis in AD remains unclear. This study tested whether ferroptosis inhibition ameliorates AD. 5xFAD mice, a widely used AD mouse model with cognitive impairment and robust neurodegeneration, exhibit markers of ferroptosis including increased lipid peroxidation, elevated lyso-phospholipids, and reduced level of Gpx4, the master defender against ferroptosis. To determine if enhanced defense against ferroptosis retards disease development, we generated 5xFAD mice that overexpress Gpx4, i.e., 5xFAD/GPX4 mice. Consistent with enhanced defense against ferroptosis, neurons from 5xFAD/GPX4 mice showed an augmented capacity to reduce lipid reactive oxygen species. In addition, compared with control 5xFAD mice, 5xFAD/GPX4 mice showed significantly improved learning and memory abilities and had reduced neurodegeneration. Moreover, 5xFAD/GPX4 mice exhibited attenuated markers of ferroptosis. Our results indicate that enhanced defense against ferroptosis is effective in ameliorating cognitive impairment and decreasing neurodegeneration of 5xFAD mice. The findings support the notion that ferroptosis is a key contributor to AD pathogenesis.
Collapse
Affiliation(s)
- Liuji Chen
- Department of Cell Systems & Anatomy, USA.
| | | | - Ren Na
- Department of Cell Systems & Anatomy, USA.
| | | | | | - Xianlin Han
- Department of Medicine - Diabetes, USA; Barshop Institute on Longevity and Aging, University of Texas Health San Antonio, San Antonio, TX, USA.
| | - Qitao Ran
- Department of Cell Systems & Anatomy, USA; Research Service, South Texas Veterans Health Care System, San Antonio, TX, USA.
| |
Collapse
|
39
|
Sadleir KR, Popovic J, Khatri A, Vassar R. Oral nimodipine treatment has no effect on amyloid pathology or neuritic dystrophy in the 5XFAD mouse model of amyloidosis. PLoS One 2022; 17:e0263332. [PMID: 35108319 PMCID: PMC8809624 DOI: 10.1371/journal.pone.0263332] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 01/16/2022] [Indexed: 12/04/2022] Open
Abstract
Dysregulation of calcium homeostasis has been hypothesized to play a role in Alzheimer's disease (AD) pathogenesis. Increased calcium levels can impair axonal transport, disrupt synaptic transmission, and ultimately lead to cell death. Given the potential role of calcium dyshomeostasis in AD, there is interest in testing the ability of already approved drugs targeting various calcium channels to affect amyloid pathology and other aspects of disease. The objective of this study was to test the effects of FDA-approved L-type calcium channel antagonist nimodipine on amyloid accumulation and dystrophic neurite formation in 5XFAD mice, a mouse model of amyloid pathology. 5XFAD transgenic mice and non-transgenic littermates were treated with vehicle or nimodipine-containing chow from two to eight months of age, then brains were harvested and amyloid pathology assessed by immunoblot and immunofluorescence microscopy analyses. Nimodipine was well tolerated and crossed the blood brain barrier, as expected, but there was no effect on Aβ accumulation or on the relative amount of neuritic dystrophy, as assessed by either immunoblot, dot blot or immunofluorescence imaging of Aβ42 and dystrophic neurite marker LAMP1. While we conclude that nimodipine treatment is not likely to improve amyloid pathology or decrease neuritic dystrophy in AD, it is worth noting that nimodipine did not worsen the phenotype suggesting its use is safe in AD patients.
Collapse
Affiliation(s)
- Katherine R. Sadleir
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States of America
| | - Jelena Popovic
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States of America
| | - Ammaarah Khatri
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States of America
| | - Robert Vassar
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States of America
| |
Collapse
|
40
|
Javonillo DI, Tran KM, Phan J, Hingco E, Kramár EA, da Cunha C, Forner S, Kawauchi S, Milinkeviciute G, Gomez-Arboledas A, Neumann J, Banh CE, Huynh M, Matheos DP, Rezaie N, Alcantara JA, Mortazavi A, Wood MA, Tenner AJ, MacGregor GR, Green KN, LaFerla FM. Systematic Phenotyping and Characterization of the 3xTg-AD Mouse Model of Alzheimer’s Disease. Front Neurosci 2022; 15:785276. [PMID: 35140584 PMCID: PMC8818877 DOI: 10.3389/fnins.2021.785276] [Citation(s) in RCA: 65] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 12/14/2021] [Indexed: 11/13/2022] Open
Abstract
Animal models of disease are valuable resources for investigating pathogenic mechanisms and potential therapeutic interventions. However, for complex disorders such as Alzheimer’s disease (AD), the generation and availability of innumerous distinct animal models present unique challenges to AD researchers and hinder the success of useful therapies. Here, we conducted an in-depth analysis of the 3xTg-AD mouse model of AD across its lifespan to better inform the field of the various pathologies that appear at specific ages, and comment on drift that has occurred in the development of pathology in this line since its development 20 years ago. This modern characterization of the 3xTg-AD model includes an assessment of impairments in long-term potentiation followed by quantification of amyloid beta (Aβ) plaque burden and neurofibrillary tau tangles, biochemical levels of Aβ and tau protein, and neuropathological markers such as gliosis and accumulation of dystrophic neurites. We also present a novel comparison of the 3xTg-AD model with the 5xFAD model using the same deep-phenotyping characterization pipeline and show plasma NfL is strongly driven by plaque burden. The results from these analyses are freely available via the AD Knowledge Portal (https://modeladexplorer.org/). Our work demonstrates the utility of a characterization pipeline that generates robust and standardized information relevant to investigating and comparing disease etiologies of current and future models of AD.
Collapse
Affiliation(s)
- Dominic I. Javonillo
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA, United States
| | - Kristine M. Tran
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA, United States
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, United States
| | - Jimmy Phan
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA, United States
| | - Edna Hingco
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA, United States
| | - Enikö A. Kramár
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, United States
| | - Celia da Cunha
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA, United States
| | - Stefania Forner
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA, United States
| | - Shimako Kawauchi
- Transgenic Mouse Facility, University Laboratory Animal Resources, Office of Research, University of California, Irvine, Irvine, CA, United States
| | - Giedre Milinkeviciute
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA, United States
| | - Angela Gomez-Arboledas
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, United States
| | - Jonathan Neumann
- Transgenic Mouse Facility, University Laboratory Animal Resources, Office of Research, University of California, Irvine, Irvine, CA, United States
| | - Crystal E. Banh
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA, United States
| | - Michelle Huynh
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA, United States
| | - Dina P. Matheos
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, United States
| | - Narges Rezaie
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA, United States
- Center for Complex Biological Systems, University of California, Irvine, Irvine, CA, United States
| | - Joshua A. Alcantara
- Transgenic Mouse Facility, University Laboratory Animal Resources, Office of Research, University of California, Irvine, Irvine, CA, United States
| | - Ali Mortazavi
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA, United States
- Center for Complex Biological Systems, University of California, Irvine, Irvine, CA, United States
| | - Marcelo A. Wood
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, United States
| | - Andrea J. Tenner
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA, United States
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, United States
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, United States
- Department of Pathology and Laboratory Medicine, University of California, Irvine, Irvine, CA, United States
| | - Grant R. MacGregor
- Transgenic Mouse Facility, University Laboratory Animal Resources, Office of Research, University of California, Irvine, Irvine, CA, United States
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA, United States
| | - Kim N. Green
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA, United States
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, United States
- *Correspondence: Kim N. Green,
| | - Frank M. LaFerla
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA, United States
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, United States
- Frank M. LaFerla,
| |
Collapse
|
41
|
Speers AB, García-Jaramillo M, Feryn A, Matthews DG, Lichtenberg T, Caruso M, Wright KM, Quinn JF, Stevens JF, Maier CS, Soumyanath A, Gray NE. Centella asiatica Alters Metabolic Pathways Associated With Alzheimer's Disease in the 5xFAD Mouse Model of ß-Amyloid Accumulation. Front Pharmacol 2021; 12:788312. [PMID: 34975484 PMCID: PMC8717922 DOI: 10.3389/fphar.2021.788312] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 11/30/2021] [Indexed: 11/13/2022] Open
Abstract
Centella asiatica is an herb used in Ayurvedic and traditional Chinese medicine for its beneficial effects on brain health and cognition. Our group has previously shown that a water extract of Centella asiatica (CAW) elicits cognitive-enhancing effects in animal models of aging and Alzheimer's disease, including a dose-related effect of CAW on memory in the 5xFAD mouse model of ß-amyloid accumulation. Here, we endeavor to elucidate the mechanisms underlying the effects of CAW in the brain by conducting a metabolomic analysis of cortical tissue from 5xFAD mice treated with increasing concentrations of CAW. Tissue was collected from 8-month-old male and female 5xFAD mice and their wild-type littermates treated with CAW (0, 200, 500, or 1,000 mg/kg/d) dissolved in their drinking water for 5 weeks. High-performance liquid chromatography coupled to high-resolution mass spectrometry analysis was performed and relative levels of 120 annotated metabolites were assessed in the treatment groups. Metabolomic analysis revealed sex differences in the effect of the 5xFAD genotype on metabolite levels compared to wild-type mice, and variations in the metabolomic response to CAW depending on sex, genotype, and CAW dose. In at least three of the four treated groups (5xFAD or wild-type, male or female), CAW (500 mg/kg/d) significantly altered metabolic pathways related to purine metabolism, nicotinate and nicotinamide metabolism, and glycerophospholipid metabolism. The results are in line with some of our previous findings regarding specific mechanisms of action of CAW (e.g., improving mitochondrial function, reducing oxidative stress, and increasing synaptic density). Furthermore, these findings provide new information about additional, potential mechanisms for the cognitive-enhancing effect of CAW, including upregulation of nicotinamide adenine dinucleotide in the brain and modulation of brain-derived neurotrophic factor. These metabolic pathways have been implicated in the pathophysiology of Alzheimer's disease, highlighting the therapeutic potential of CAW in this neurodegenerative disease.
Collapse
Affiliation(s)
- Alex B. Speers
- Department of Neurology, Oregon Health & Science University, Portland, OR, United States
| | - Manuel García-Jaramillo
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR, United States
- Linus Pauling Institute, Oregon State University, Corvallis, OR, United States
- Department of Chemistry, Oregon State University, Corvallis, OR, United States
| | - Alicia Feryn
- OHSU-PSU School of Public Health, Oregon Health & Science University, Portland, OR, United States
| | - Donald G. Matthews
- Department of Neurology, Oregon Health & Science University, Portland, OR, United States
| | - Talia Lichtenberg
- Department of Neurology, Oregon Health & Science University, Portland, OR, United States
| | - Maya Caruso
- Department of Neurology, Oregon Health & Science University, Portland, OR, United States
| | - Kirsten M. Wright
- Department of Neurology, Oregon Health & Science University, Portland, OR, United States
| | - Joseph F. Quinn
- Department of Neurology, Oregon Health & Science University, Portland, OR, United States
- Parkinson’s Disease Research Education and Clinical Care Center, Veterans’ Administration Portland Health Care System, Portland, OR, United States
| | - Jan F. Stevens
- Linus Pauling Institute, Oregon State University, Corvallis, OR, United States
- Department of Pharmaceutical Sciences, Oregon State University, Corvallis, OR, United States
| | - Claudia S. Maier
- Linus Pauling Institute, Oregon State University, Corvallis, OR, United States
- Department of Chemistry, Oregon State University, Corvallis, OR, United States
| | - Amala Soumyanath
- Department of Neurology, Oregon Health & Science University, Portland, OR, United States
| | - Nora E. Gray
- Department of Neurology, Oregon Health & Science University, Portland, OR, United States
| |
Collapse
|
42
|
Bouter C, Irwin C, Franke TN, Beindorff N, Bouter Y. Quantitative Brain Positron Emission Tomography in Female 5XFAD Alzheimer Mice: Pathological Features and Sex-Specific Alterations. Front Med (Lausanne) 2021; 8:745064. [PMID: 34901060 PMCID: PMC8661108 DOI: 10.3389/fmed.2021.745064] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 10/04/2021] [Indexed: 11/13/2022] Open
Abstract
Successful back-translating clinical biomarkers and molecular imaging methods of Alzheimer's disease (AD), including positron emission tomography (PET), are very valuable for the evaluation of new therapeutic strategies and increase the quality of preclinical studies. 18F-Fluorodeoxyglucose (FDG)–PET and 18F-Florbetaben–PET are clinically established biomarkers capturing two key pathological features of AD. However, the suitability of 18F-FDG– and amyloid–PET in the widely used 5XFAD mouse model of AD is still unclear. Furthermore, only data on male 5XFAD mice have been published so far, whereas studies in female mice and possible sex differences in 18F-FDG and 18F-Florbetaben uptake are missing. The aim of this study was to evaluate the suitability of 18F-FDG– and 18F-Florbetaben–PET in 7-month-old female 5XFAD and to assess possible sex differences between male and female 5XFAD mice. We could demonstrate that female 5XFAD mice showed a significant reduction in brain glucose metabolism and increased cerebral amyloid deposition compared with wild type animals, in accordance with the pathology seen in AD patients. Furthermore, we showed for the first time that the hypometabolism in 5XFAD mice is gender-dependent and more pronounced in female mice. Therefore, these results support the feasibility of small animal PET imaging with 18F-FDG- and 18F-Florbetaben in 5XFAD mice in both, male and female animals. Moreover, our findings highlight the need to account for sex differences in studies working with 5XFAD mice.
Collapse
Affiliation(s)
- Caroline Bouter
- Department of Nuclear Medicine, University Medical Center Göttingen (UMG), Georg-August-University, Göttingen, Germany
| | - Caroline Irwin
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen (UMG), Georg-August-University, Göttingen, Germany
| | - Timon N Franke
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen (UMG), Georg-August-University, Göttingen, Germany
| | - Nicola Beindorff
- Berlin Experimental Radionuclide Imaging Center (BERIC), Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Yvonne Bouter
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen (UMG), Georg-August-University, Göttingen, Germany
| |
Collapse
|
43
|
Complement as a powerful "influencer" in the brain during development, adulthood and neurological disorders. Adv Immunol 2021; 152:157-222. [PMID: 34844709 DOI: 10.1016/bs.ai.2021.09.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The complement system was long considered as only a powerful effector arm of the immune system that, while critically protective, could lead to inflammation and cell death if overactivated, even in the central nervous system (CNS). However, in the past decade it has been recognized as playing critical roles in key physiological processes in the CNS, including neurogenesis and synaptic remodeling in the developing and adult brain. Inherent in these processes are the interactions with cells in the brain, and the cascade of interactions and functional consequences that ensue. As a result, investigations of therapeutic approaches for both suppressing excessive complement driven neurotoxicity and aberrant sculpting of neuronal circuits, require broad (and deep) knowledge of the functional activities of multiple components of this highly evolved and regulated system to avoid unintended negative consequences in the clinic. Advances in basic science are beginning to provide a roadmap for translation to therapeutics, with both small molecule and biologics. Here, we present examples of the critical roles of proper complement function in the development and sculpting of the nervous system, and in enabling rapid protection from infection and clearance of dying cells. Microglia are highlighted as important command centers that integrate signals from the complement system and other innate sensors that are programed to provide support and protection, but that direct detrimental responses to aberrant activation and/or regulation of the system. Finally, we present promising research areas that may lead to effective and precision strategies for complement targeted interventions to promote neurological health.
Collapse
|
44
|
Sil A, Erfani A, Lamb N, Copland R, Riedel G, Platt B. Sex Differences in Behavior and Molecular Pathology in the 5XFAD Model. J Alzheimers Dis 2021; 85:755-778. [PMID: 34864660 DOI: 10.3233/jad-210523] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
BACKGROUND The prevalence of Alzheimer's disease (AD) is greater in women compared to men, but the reasons for this remain unknown. This sex difference has been widely neglected in experimental studies using transgenic mouse models of AD. OBJECTIVE Here, we studied behavior and molecular pathology of 5-month-old 5XFAD mice, which express mutated human amyloid precursor protein and presenilin-1 on a C57BL/6J background, versus their wild-type littermate controls, to compared both sex- and genotype-dependent differences. METHODS A novel behavioral paradigm was utilized (OF-NO-SI), comprising activity measures (Open Field, OF) arena, followed by Novel Object exploration (NO) and Social Interaction (SI) of a sex-matched conspecific. Each segment consisted of two repeated trials to assess between-trial habituation. Subsequently, brain pathology (amyloid load, stress response and inflammation markers, synaptic integrity, trophic support) was assessed using qPCR and western blotting. RESULTS Female 5XFAD mice had higher levels of human APP and amyloid-β and heightened inflammation versus males. These markers correlated with hyperactivity observed in both sexes, yet only female 5XFAD mice presented with deficits in object and social exploration. Male animals had higher expression of stress markers and neurotrophic factors irrespective of genotype, this correlated with cognitive performance. CONCLUSION The impact of sex on AD-relevant phenotypes is in line with human data and emphasizes the necessity of appropriate study design and reporting. Differential molecular profiles observed in male versus female mice offer insights into possible protective mechanisms, and hence treatment strategies.
Collapse
Affiliation(s)
- Annesha Sil
- Institute of Medical Sciences, School of Medicine, Medical Sciences & Nutrition, Foresterhill, University of Aberdeen, Aberdeen, Scotland, UK
| | - Arina Erfani
- Institute of Medical Sciences, School of Medicine, Medical Sciences & Nutrition, Foresterhill, University of Aberdeen, Aberdeen, Scotland, UK
| | - Nicola Lamb
- Institute of Medical Sciences, School of Medicine, Medical Sciences & Nutrition, Foresterhill, University of Aberdeen, Aberdeen, Scotland, UK
| | - Rachel Copland
- Institute of Medical Sciences, School of Medicine, Medical Sciences & Nutrition, Foresterhill, University of Aberdeen, Aberdeen, Scotland, UK
| | - Gernot Riedel
- Institute of Medical Sciences, School of Medicine, Medical Sciences & Nutrition, Foresterhill, University of Aberdeen, Aberdeen, Scotland, UK
| | - Bettina Platt
- Institute of Medical Sciences, School of Medicine, Medical Sciences & Nutrition, Foresterhill, University of Aberdeen, Aberdeen, Scotland, UK
| |
Collapse
|
45
|
Karahan H, Smith DC, Kim B, Dabin LC, Al-Amin MM, Wijeratne HRS, Pennington T, Viana di Prisco G, McCord B, Lin PBC, Li Y, Peng J, Oblak AL, Chu S, Atwood BK, Kim J. Deletion of Abi3 gene locus exacerbates neuropathological features of Alzheimer's disease in a mouse model of Aβ amyloidosis. SCIENCE ADVANCES 2021; 7:eabe3954. [PMID: 34731000 PMCID: PMC8565913 DOI: 10.1126/sciadv.abe3954] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 09/16/2021] [Indexed: 05/02/2023]
Abstract
Recently, large-scale human genetics studies identified a rare coding variant in the ABI3 gene that is associated with an increased risk of Alzheimer’s disease (AD). However, pathways by which ABI3 contributes to the pathogenesis of AD are unknown. To address this question, we determined whether loss of ABI3 function affects pathological features of AD in the 5XFAD mouse model. We demonstrate that the deletion of Abi3 locus significantly increases amyloid β (Aβ) accumulation and decreases microglia clustering around the plaques. Furthermore, long-term potentiation is impaired in 5XFAD;Abi3 knockout (“Abi3−/−”) mice. Moreover, we identified marked changes in the proportion of microglia subpopulations in Abi3−/− mice using a single-cell RNA sequencing approach. Mechanistic studies demonstrate that Abi3 knockdown in microglia impairs migration and phagocytosis. Together, our study provides the first in vivo functional evidence that loss of ABI3 function may increase the risk of developing AD by affecting Aβ accumulation and neuroinflammation.
Collapse
Affiliation(s)
- Hande Karahan
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Daniel C. Smith
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Medical Neuroscience Graduate Program, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Byungwook Kim
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Luke C. Dabin
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Md Mamun Al-Amin
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - H. R. Sagara Wijeratne
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Taylor Pennington
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Gonzalo Viana di Prisco
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Brianne McCord
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Peter Bor-chian Lin
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Medical Neuroscience Graduate Program, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Yuxin Li
- Departments of Structural Biology and Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
- Center for Proteomics and Metabolomics, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Junmin Peng
- Departments of Structural Biology and Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
- Center for Proteomics and Metabolomics, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Adrian L. Oblak
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Medical Neuroscience Graduate Program, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Shaoyou Chu
- Division of Clinical Pharmacology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Brady K. Atwood
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Medical Neuroscience Graduate Program, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Jungsu Kim
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Medical Neuroscience Graduate Program, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
46
|
Armbrust F, Bickenbach K, Marengo L, Pietrzik C, Becker-Pauly C. The Swedish dilemma - the almost exclusive use of APPswe-based mouse models impedes adequate evaluation of alternative β-secretases. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2021; 1869:119164. [PMID: 34699873 DOI: 10.1016/j.bbamcr.2021.119164] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 09/30/2021] [Accepted: 10/11/2021] [Indexed: 02/07/2023]
Abstract
Alzheimer's disease (AD) is the most common form of dementia, however incurable so far. It is widely accepted that aggregated amyloid β (Aβ) peptides play a crucial role for the pathogenesis of AD, as they cause neurotoxicity and deposit as so-called Aβ plaques in AD patient brains. Aβ peptides derive from the amyloid precursor protein (APP) upon consecutive cleavage at the β- and γ-secretase site. Hence, mutations in the APP gene are often associated with autosomal dominant inherited AD. Almost thirty years ago, two mutations at the β-secretase site were observed in two Swedish families (termed Swedish APP (APPswe) mutations), which led to early-onset AD. Consequently, APPswe was established in almost every common AD mouse model, as it contributes to early Aβ plaque formation and cognitive impairments. Analyzing these APPswe-based mouse models, the aspartyl protease BACE1 has been evolving as the prominent β-secretase responsible for Aβ release in AD and as the most important therapeutic target for AD treatment. However, with respect to β-secretase processing, the very rare occurring APPswe variant substantially differs from wild-type APP. BACE1 dominates APPswe processing resulting in the release of Aβ1-x, whereas N-terminally truncated Aβ forms are scarcely generated. However, these N-terminally truncated Aβ species such as Aβ2-x, Aβ3-x and Aβ4-x are elevated in AD patient brains and exhibit an increased potential to aggregate compared to Aβ1-x peptides. Proteases such as meprin β, cathepsin B and ADAMTS4 were identified as alternative β-secretases being capable of generating these N-terminally truncated Aβ species from wild-type APP. However, neither meprin β nor cathepsin B are capable of generating N-terminally truncated Aβ peptides from APPswe. Hence, the role of BACE1 for the Aβ formation during AD might be overrepresented through the excessive use of APPswe mouse models. In this review we critically discuss the consideration of BACE1 as the most promising therapeutic target. Shifting the focus of AD research towards alternative β secretases might unveil promising alternatives to BACE1 inhibitors constantly failing in clinical trials due to ineffectiveness and harmful side effects.
Collapse
Affiliation(s)
- Fred Armbrust
- Biochemical Institute, Unit for Degradomics of the Protease Web, University of Kiel, Kiel, Germany
| | - Kira Bickenbach
- Biochemical Institute, Unit for Degradomics of the Protease Web, University of Kiel, Kiel, Germany
| | - Liana Marengo
- Institute for Pathobiochemistry, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Claus Pietrzik
- Institute for Pathobiochemistry, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany.
| | - Christoph Becker-Pauly
- Biochemical Institute, Unit for Degradomics of the Protease Web, University of Kiel, Kiel, Germany.
| |
Collapse
|
47
|
Forner S, Kawauchi S, Balderrama-Gutierrez G, Kramár EA, Matheos DP, Phan J, Javonillo DI, Tran KM, Hingco E, da Cunha C, Rezaie N, Alcantara JA, Baglietto-Vargas D, Jansen C, Neumann J, Wood MA, MacGregor GR, Mortazavi A, Tenner AJ, LaFerla FM, Green KN. Systematic phenotyping and characterization of the 5xFAD mouse model of Alzheimer's disease. Sci Data 2021; 8:270. [PMID: 34654824 PMCID: PMC8519958 DOI: 10.1038/s41597-021-01054-y] [Citation(s) in RCA: 162] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 09/02/2021] [Indexed: 12/13/2022] Open
Abstract
Mouse models of human diseases are invaluable tools for studying pathogenic mechanisms and testing interventions and therapeutics. For disorders such as Alzheimer's disease in which numerous models are being generated, a challenging first step is to identify the most appropriate model and age to effectively evaluate new therapeutic approaches. Here we conducted a detailed phenotypic characterization of the 5xFAD model on a congenic C57BL/6 J strain background, across its lifespan - including a seldomly analyzed 18-month old time point to provide temporally correlated phenotyping of this model and a template for characterization of new models of LOAD as they are generated. This comprehensive analysis included quantification of plaque burden, Aβ biochemical levels, and neuropathology, neurophysiological measurements and behavioral and cognitive assessments, and evaluation of microglia, astrocytes, and neurons. Analysis of transcriptional changes was conducted using bulk-tissue generated RNA-seq data from microdissected cortices and hippocampi as a function of aging, which can be explored at the MODEL-AD Explorer and AD Knowledge Portal. This deep-phenotyping pipeline identified novel aspects of age-related pathology in the 5xFAD model.
Collapse
Affiliation(s)
- Stefania Forner
- Institute for Memory Impairments and Neurological Disorders (UCI MIND), University of California, Irvine, CA, 92697, USA
| | - Shimako Kawauchi
- Transgenic Mouse Facility, University Laboratory Animal Resources, Office of Research, University of California, Irvine, CA, 92697, USA
| | - Gabriela Balderrama-Gutierrez
- Department of Developmental and Cell Biology, University of California, Irvine, CA, 92697, USA
- Center for Complex Biological Systems, University of California, Irvine, CA, 92697, USA
| | - Enikö A Kramár
- Department of Neurobiology and Behavior, University of California, Irvine, CA, 92697, USA
| | - Dina P Matheos
- Department of Neurobiology and Behavior, University of California, Irvine, CA, 92697, USA
| | - Jimmy Phan
- Institute for Memory Impairments and Neurological Disorders (UCI MIND), University of California, Irvine, CA, 92697, USA
| | - Dominic I Javonillo
- Institute for Memory Impairments and Neurological Disorders (UCI MIND), University of California, Irvine, CA, 92697, USA
| | - Kristine M Tran
- Institute for Memory Impairments and Neurological Disorders (UCI MIND), University of California, Irvine, CA, 92697, USA
| | - Edna Hingco
- Institute for Memory Impairments and Neurological Disorders (UCI MIND), University of California, Irvine, CA, 92697, USA
| | - Celia da Cunha
- Institute for Memory Impairments and Neurological Disorders (UCI MIND), University of California, Irvine, CA, 92697, USA
| | - Narges Rezaie
- Department of Developmental and Cell Biology, University of California, Irvine, CA, 92697, USA
- Center for Complex Biological Systems, University of California, Irvine, CA, 92697, USA
| | - Joshua A Alcantara
- Transgenic Mouse Facility, University Laboratory Animal Resources, Office of Research, University of California, Irvine, CA, 92697, USA
| | - David Baglietto-Vargas
- Institute for Memory Impairments and Neurological Disorders (UCI MIND), University of California, Irvine, CA, 92697, USA
| | - Camden Jansen
- Department of Developmental and Cell Biology, University of California, Irvine, CA, 92697, USA
- Center for Complex Biological Systems, University of California, Irvine, CA, 92697, USA
| | - Jonathan Neumann
- Transgenic Mouse Facility, University Laboratory Animal Resources, Office of Research, University of California, Irvine, CA, 92697, USA
| | - Marcelo A Wood
- Department of Neurobiology and Behavior, University of California, Irvine, CA, 92697, USA
| | - Grant R MacGregor
- Transgenic Mouse Facility, University Laboratory Animal Resources, Office of Research, University of California, Irvine, CA, 92697, USA
- Department of Developmental and Cell Biology, University of California, Irvine, CA, 92697, USA
| | - Ali Mortazavi
- Department of Developmental and Cell Biology, University of California, Irvine, CA, 92697, USA
- Center for Complex Biological Systems, University of California, Irvine, CA, 92697, USA
| | - Andrea J Tenner
- Institute for Memory Impairments and Neurological Disorders (UCI MIND), University of California, Irvine, CA, 92697, USA
- Department of Neurobiology and Behavior, University of California, Irvine, CA, 92697, USA
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, 92697, USA
- Department of Pathology and Laboratory Medicine, University of California, Irvine, CA, 92697, USA
| | - Frank M LaFerla
- Institute for Memory Impairments and Neurological Disorders (UCI MIND), University of California, Irvine, CA, 92697, USA
- Department of Neurobiology and Behavior, University of California, Irvine, CA, 92697, USA
| | - Kim N Green
- Institute for Memory Impairments and Neurological Disorders (UCI MIND), University of California, Irvine, CA, 92697, USA.
- Department of Neurobiology and Behavior, University of California, Irvine, CA, 92697, USA.
| |
Collapse
|
48
|
Jeong YJ, Son Y, Park HJ, Oh SJ, Choi JY, Ko YG, Lee HJ. Therapeutic Effects of Aripiprazole in the 5xFAD Alzheimer's Disease Mouse Model. Int J Mol Sci 2021; 22:9374. [PMID: 34502282 PMCID: PMC8431331 DOI: 10.3390/ijms22179374] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 08/19/2021] [Accepted: 08/25/2021] [Indexed: 12/30/2022] Open
Abstract
Global aging has led to growing health concerns posed by Alzheimer's disease (AD), the most common type of dementia. Aripiprazole is an atypical FDA-approved anti-psychotic drug with potential against AD. To investigate its therapeutic effects on AD pathology, we administered aripiprazole to 5xFAD AD model mice and examined beta-amyloid (βA)-induced AD-like phenotypes, including βA production, neuroinflammation, and cerebral glucose metabolism. Aripiprazole administration significantly decreased βA accumulation in the brains of 5xFAD AD mice. Aripiprazole significantly modified amyloid precursor protein processing, including carboxyl-terminal fragment β and βA, a disintegrin and metalloproteinase domain-containing protein 10, and beta-site APP cleaving enzyme 1, as determined by Western blotting. Neuroinflammation, as evidenced by ionized calcium binding adapter molecule 1 and glial fibrillary acidic protein upregulation was dramatically inhibited, and the neuron cell layer of the hippocampal CA1 region was preserved following aripiprazole administration. In 18F-fluorodeoxyglucose positron emission tomography, after receiving aripiprazole, 5xFAD mice showed a significant increase in glucose uptake in the striatum, thalamus, and hippocampus compared to vehicle-treated AD mice. Thus, aripiprazole effectively alleviated βA lesions and prevented the decline of cerebral glucose metabolism in 5xFAD AD mice, suggesting its potential for βA metabolic modification and highlighting its therapeutic effect over AD progression.
Collapse
Affiliation(s)
- Ye Ji Jeong
- Division of Radiation Bioscience, Korea Institute of Radiological & Medical Sciences, Seoul 01812, Korea; (Y.J.J.); (Y.S.); (H.-J.P.)
- Division of Life Sciences, Korea University, Seoul 02841, Korea;
| | - Yeonghoon Son
- Division of Radiation Bioscience, Korea Institute of Radiological & Medical Sciences, Seoul 01812, Korea; (Y.J.J.); (Y.S.); (H.-J.P.)
| | - Hye-Jin Park
- Division of Radiation Bioscience, Korea Institute of Radiological & Medical Sciences, Seoul 01812, Korea; (Y.J.J.); (Y.S.); (H.-J.P.)
| | - Se Jong Oh
- Division of Applied RI, Korea Institute of Radiological and Medical Sciences, Seoul 01812, Korea; (S.J.O.); (J.Y.C.)
| | - Jae Yong Choi
- Division of Applied RI, Korea Institute of Radiological and Medical Sciences, Seoul 01812, Korea; (S.J.O.); (J.Y.C.)
| | - Young-Gyu Ko
- Division of Life Sciences, Korea University, Seoul 02841, Korea;
| | - Hae-June Lee
- Division of Radiation Bioscience, Korea Institute of Radiological & Medical Sciences, Seoul 01812, Korea; (Y.J.J.); (Y.S.); (H.-J.P.)
| |
Collapse
|
49
|
Szu JI, Obenaus A. Cerebrovascular phenotypes in mouse models of Alzheimer's disease. J Cereb Blood Flow Metab 2021; 41:1821-1841. [PMID: 33557692 PMCID: PMC8327123 DOI: 10.1177/0271678x21992462] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 12/16/2020] [Accepted: 01/06/2021] [Indexed: 12/12/2022]
Abstract
Alzheimer's disease (AD) is a devastating neurological degenerative disorder and is the most common cause of dementia in the elderly. Clinically, AD manifests with memory and cognitive decline associated with deposition of hallmark amyloid beta (Aβ) plaques and neurofibrillary tangles (NFTs). Although the mechanisms underlying AD remains unclear, two hypotheses have been proposed. The established amyloid hypothesis states that Aβ accumulation is the basis of AD and leads to formation of NFTs. In contrast, the two-hit vascular hypothesis suggests that early vascular damage leads to increased accumulation of Aβ deposits in the brain. Multiple studies have reported significant morphological changes of the cerebrovasculature which can result in severe functional deficits. In this review, we delve into known structural and functional vascular alterations in various mouse models of AD and the cellular and molecular constituents that influence these changes to further disease progression. Many studies shed light on the direct impact of Aβ on the cerebrovasculature and how it is disrupted during the progression of AD. However, more research directed towards an improved understanding of how the cerebrovasculature is modified over the time course of AD is needed prior to developing future interventional strategies.
Collapse
Affiliation(s)
- Jenny I Szu
- Institute for Memory Impairments and Neurological Disorders, University of California Irvine, Irvine, CA, USA
| | - André Obenaus
- Department of Pediatrics, University of California Irvine, Irvine, CA, USA
| |
Collapse
|
50
|
Tams ALM, Sanz-Morello B, Westi EW, Mouhammad ZA, Andersen JV, Freude KK, Vohra R, Hannibal J, Aldana BI, Kolko M. Decreased Glucose Metabolism and Glutamine Synthesis in the Retina of a Transgenic Mouse Model of Alzheimer's Disease. Cell Mol Neurobiol 2021; 42:291-303. [PMID: 34259962 DOI: 10.1007/s10571-021-01126-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 07/05/2021] [Indexed: 12/17/2022]
Abstract
Visual changes are some of the earliest symptoms that patients with Alzheimer's disease (AD) experience. Pathophysiological processes such as amyloid-β plaque formation, vascular changes, neuroinflammation, and loss of retinal ganglion cells (RGCs) have been detected in the retina of AD patients and animal models. However, little is known about the molecular processes that underlie retinal neurodegeneration in AD. The cellular architecture and constant sensory activity of the retina impose high metabolic demands. We thus hypothesized that energy metabolism might be compromised in the AD retina similarly to what has been observed in the AD brain. To address this question, we explored cellular alterations and retinal metabolic activity in the 5 × FAD mouse model of AD. We used 8-month-old female 5 × FAD mice, in which the AD-related pathology has been shown to be apparent. We observed that RGC density is selectively affected in the retina of 5 × FAD mice. To map retinal metabolic activity, we incubated isolated retinal tissue with [U-13C] glucose and analyzed tissue extracts by gas chromatography-mass spectrometry. We found that the retinas of 5 × FAD mice exhibit glucose hypometabolism. Moreover, we detected decreased glutamine synthesis in 5 × FAD retinas but no changes in the expression of markers of Müller glia, the main glial cell type responsible for glutamate uptake and glutamine synthesis in the retina. These findings suggest that AD presents with metabolic alterations not only in the brain but also in the retina that may be detrimental to RGC activity and survival, potentially leading to the visual impairments that AD patients suffer.
Collapse
Affiliation(s)
- Anna Luna Mølgaard Tams
- Eye Translational Research Unit, Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Berta Sanz-Morello
- Eye Translational Research Unit, Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Emil Winther Westi
- Neurometabolism Research Unit, Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Zaynab Ahmad Mouhammad
- Eye Translational Research Unit, Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Jens Velde Andersen
- Neurometabolism Research Unit, Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Kristine Karla Freude
- Group of Stem Cells and Modeling of Neurodegeneration, Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Rupali Vohra
- Eye Translational Research Unit, Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark.,Group of Stem Cells and Modeling of Neurodegeneration, Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Jens Hannibal
- Department of Clinical Biochemistry, Bispebjerg Frederiksberg Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Blanca Irene Aldana
- Neurometabolism Research Unit, Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark.
| | - Miriam Kolko
- Eye Translational Research Unit, Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark. .,Department of Ophthalmology, Copenhagen University Hospital, Rigshospitalet-Glostrup, Glostrup, Denmark.
| |
Collapse
|