1
|
Zhang Z, Chen S, Jun S, Xu X, Hong Y, Yang X, Zou L, Song YQ, Chen Y, Tu J. MLKL-USP7-UBA52 signaling is indispensable for autophagy in brain through maintaining ubiquitin homeostasis. Autophagy 2024:1-23. [PMID: 39193909 DOI: 10.1080/15548627.2024.2395727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/15/2024] [Accepted: 08/19/2024] [Indexed: 08/29/2024] Open
Abstract
Individuals with genetic elimination of MLKL (mixed lineage kinase domain like pseudokinase) exhibit an increased susceptibility to neurodegenerative diseases like Alzheimer disease (AD). However, the mechanism is not yet fully understood. Here, we observed significant compromise in macroautophagy/autophagy in the brains of mlkl knockout (KO) mice, as evidenced by the downregulation of BECN1/Beclin1 and ULK1 (unc-51 like autophagy activating kinase 1). We identified UBA52 (ubiquitin A-52 residue ribosomal protein fusion product 1) as the binding partner of MLKL under physiological conditions. Loss of Mlkl induced a decrease in ubiquitin levels by preventing UBA52 cleavage. Furthermore, we demonstrated that the deubiquitinase (DUB) USP7 (ubiquitin specific peptidase 7) mediates the processing of UBA52, which is regulated by MLKL. Moreover, our results indicated that the reduction of BECN1 and ULK1 upon Mlkl loss is attributed to a decrease in their lysine 63 (K63)-linked polyubiquitination. Additionally, single-nucleus RNA sequencing revealed that the loss of Mlkl resulted in the disruption of multiple neurodegenerative disease-related pathways, including those associated with AD. These results were consistent with the observation of cognitive impairment in mlkl KO mice and exacerbation of AD pathologies in an AD mouse model with mlkl deletion. Taken together, our findings demonstrate that MLKL-USP7-UBA52 signaling is required for autophagy in brain through maintaining ubiquitin homeostasis, and highlight the contribution of Mlkl loss-induced ubiquitin deficits to the development of neurodegeneration. Thus, the maintenance of adequate levels of ubiquitin may provide a novel perspective to protect individuals from multiple neurodegenerative diseases through regulating autophagy.Abbreviations: 4HB: four-helix bundle; AAV: adeno-associated virus; AD: Alzheimer disease; AIF1: allograft inflammatory factor 1; APOE: apolipoprotein E; APP: amyloid beta precursor protein; Aβ: amyloid β; BECN1: beclin 1; co-IP: co-immunoprecipitation; DEGs: differentially expressed genes; DLG4: discs large MAGUK scaffold protein 4; DUB: deubiquitinase; EBSS: Earle's balanced salt solution; GFAP: glial fibrillary acidic protein; HRP: horseradish peroxidase; IL1B: interleukin 1 beta; IL6: interleukin 6; IPed: immunoprecipitated; KEGG: Kyoto Encyclopedia of Genes and Genomes; KO: knockout; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MLKL: mixed lineage kinase domain like pseudokinase; NSA: necrosulfonamide; OPCs: oligodendrocyte precursor cells; PFA: paraformaldehyde; PsKD: pseudo-kinase domain; SYP: synaptophysin; UB: ubiquitin; UBA52: ubiquitin A-52 residue ribosomal protein fusion product 1; UCHL3: ubiquitin C-terminal hydrolase L3; ULK1: unc-51 like autophagy activating kinase 1; UMAP: uniform manifold approximation and projection; UPS: ubiquitin-proteasome system; USP7: ubiquitin specific peptidase 7; USP9X: ubiquitin specific peptidase 9 X-linked.
Collapse
Affiliation(s)
- Zhigang Zhang
- Shenzhen Key Laboratory of Neuroimmunomodulation for Neurological Diseases, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Faculty of Life and Health Sciences, Shenzhen University of Advanced Technology, Shenzhen, Guangdong Province, China
| | - Shuai Chen
- Shenzhen Key Laboratory of Neuroimmunomodulation for Neurological Diseases, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Faculty of Life and Health Sciences, Shenzhen University of Advanced Technology, Shenzhen, Guangdong Province, China
- University of Chinese of Academy of Sciences, Beijing, China
| | - Shirui Jun
- Shenzhen Key Laboratory of Neuroimmunomodulation for Neurological Diseases, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Faculty of Life and Health Sciences, Shenzhen University of Advanced Technology, Shenzhen, Guangdong Province, China
| | - Xirong Xu
- Shenzhen Key Laboratory of Neuroimmunomodulation for Neurological Diseases, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- University of Chinese of Academy of Sciences, Beijing, China
| | - Yuchuan Hong
- Shenzhen Key Laboratory of Neuroimmunomodulation for Neurological Diseases, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- University of Chinese of Academy of Sciences, Beijing, China
| | - Xifei Yang
- Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Liangyu Zou
- Department of Neurology, Shenzhen People's Hospital (The First Affiliated Hospital of Southern University of Science and Technology, The Second Clinical College, Jinan University), Shenzhen, China
| | - You-Qiang Song
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong, China
| | - Yu Chen
- Shenzhen Key Laboratory of Neuroimmunomodulation for Neurological Diseases, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Faculty of Life and Health Sciences, Shenzhen University of Advanced Technology, Shenzhen, Guangdong Province, China
- University of Chinese of Academy of Sciences, Beijing, China
- CAS Key Laboratory of Brain Connectome and Manipulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- SIAT-HKUST Joint Laboratory for Brain Science, Chinese Academy of Sciences, Shenzhen, China
| | - Jie Tu
- Shenzhen Key Laboratory of Neuroimmunomodulation for Neurological Diseases, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Faculty of Life and Health Sciences, Shenzhen University of Advanced Technology, Shenzhen, Guangdong Province, China
- University of Chinese of Academy of Sciences, Beijing, China
- CAS Key Laboratory of Brain Connectome and Manipulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior,Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong Province, China
| |
Collapse
|
2
|
Armijo-Weingart L, San Martin L, Gallegos S, Araya A, Konar-Nie M, Fernandez-Pérez E, Aguayo LG. Loss of glycine receptors in the nucleus accumbens and ethanol reward in an Alzheimer´s Disease mouse model. Prog Neurobiol 2024; 237:102616. [PMID: 38723884 PMCID: PMC11163974 DOI: 10.1016/j.pneurobio.2024.102616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 03/21/2024] [Accepted: 05/01/2024] [Indexed: 05/12/2024]
Abstract
Alterations in cognitive and non-cognitive cerebral functions characterize Alzheimer's disease (AD). Cortical and hippocampal impairments related to extracellular accumulation of Aβ in AD animal models have been extensively investigated. However, recent reports have also implicated intracellular Aβ in limbic regions, such as the nucleus accumbens (nAc). Accumbal neurons express high levels of inhibitory glycine receptors (GlyRs) that are allosterically modulated by ethanol and have a role in controlling its intake. In the present study, we investigated how GlyRs in the 2xTg mice (AD model) affect nAc functions and ethanol intake behavior. Using transgenic and control aged-matched litter mates, we found that the GlyRα2 subunit was significantly decreased in AD mice (6-month-old). We also examined intracellular calcium dynamics using the fluorescent calcium protein reporter GCaMP in slice photometry. We also found that the calcium signal mediated by GlyRs, but not GABAAR, was also reduced in AD neurons. Additionally, ethanol potentiation was significantly decreased in accumbal neurons in the AD mice. Finally, we performed drinking in the dark (DID) experiments and found that 2xTg mice consumed less ethanol on the last day of DID, in agreement with a lower blood ethanol concentration. 2xTg mice also showed lower sucrose consumption, indicating that overall food reward was altered. In conclusion, the data support the role of GlyRs in nAc neuron excitability and a decreased glycinergic activity in the 2xTg mice that might lead to impairment in reward processing at an early stage of the disease.
Collapse
Affiliation(s)
- Lorena Armijo-Weingart
- Laboratory of Neurophysiology, Department of Physiology, Universidad de Concepción, Chile; Programa de Neurociencia, Psiquiatría y Salud Mental (NEPSAM), Universidad de Concepción, Chile
| | - Loreto San Martin
- Laboratory of Neurophysiology, Department of Physiology, Universidad de Concepción, Chile; Programa de Neurociencia, Psiquiatría y Salud Mental (NEPSAM), Universidad de Concepción, Chile
| | - Scarlet Gallegos
- Laboratory of Neurophysiology, Department of Physiology, Universidad de Concepción, Chile
| | - Anibal Araya
- Laboratory of Neurophysiology, Department of Physiology, Universidad de Concepción, Chile
| | - Macarena Konar-Nie
- Laboratory of Neurophysiology, Department of Physiology, Universidad de Concepción, Chile
| | - Eduardo Fernandez-Pérez
- Laboratory of Neurophysiology, Department of Physiology, Universidad de Concepción, Chile; Programa de Neurociencia, Psiquiatría y Salud Mental (NEPSAM), Universidad de Concepción, Chile
| | - Luis G Aguayo
- Laboratory of Neurophysiology, Department of Physiology, Universidad de Concepción, Chile.
| |
Collapse
|
3
|
O'Leary TP, Brown RE. Age-related changes in species-typical behaviours in the 5xFAD mouse model of Alzheimer's disease from 4 to 16 months of age. Behav Brain Res 2024; 465:114970. [PMID: 38531510 DOI: 10.1016/j.bbr.2024.114970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/12/2024] [Accepted: 03/23/2024] [Indexed: 03/28/2024]
Abstract
Alzheimer's disease (AD) patients show age-related decreases in the ability to perform activities of daily living and the decline in these activities is related to the severity of neurobiological deterioration underlying the disease. The 5xFAD mouse model of AD shows age-related impairments in sensory- motor and cognitive function, but little is known about changes in species-typical behaviours that may model activities of daily living in AD patients. Therefore, we examined species-typical behaviours used as indices of exploration (rearing) and compulsivity (grooming) across six tests of anxiety-like behaviour or motor function in female 5xFAD mice from 3 to 16 months of age. Robust decreases in rearing were found in 5xFAD mice across all tests after 9 months of age, although few differences were observed in grooming. A fine-scale analysis of grooming, however, revealed a previously unresolved and spatially restricted pattern of grooming in 5xFAD mice at 13-16 months of age. We then examined changes in species-typical behaviours in the home-cage, and show impaired nest building in 5xFAD mice at all ages tested. Lastly, we examined the relationship between reduced species typical behaviours in 5xFAD mice and the presentation of freezing behaviour, a commonly used measure of memory for conditioned fear. These results showed that along with cognitive and sensory-motor behaviour, 5xFAD mice have robust age-related impairments in species-typical behaviours. Therefore, species typical behaviours in 5xFAD mice may help to model the decline in activities of daily living observed in AD patients, and may provide useful behavioural phenotypes for evaluating the pre-clinical efficacy of novel therapeutics for AD.
Collapse
Affiliation(s)
- Timothy P O'Leary
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Richard E Brown
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, NS B3H 4R2, Canada.
| |
Collapse
|
4
|
Murai T, Bailey L, Schultz L, Mongeau L, DeSana A, Silva AC, Roberts AC, Sukoff Rizzo SJ. Improving preclinical to clinical translation of cognitive function for aging-related disorders: the utility of comprehensive touchscreen testing batteries in common marmosets. COGNITIVE, AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2024; 24:325-348. [PMID: 38200282 PMCID: PMC11039501 DOI: 10.3758/s13415-023-01144-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/04/2023] [Indexed: 01/12/2024]
Abstract
Concerns about poor animal to human translation have come increasingly to the fore, in particular with regards to cognitive improvements in rodent models, which have failed to translate to meaningful clinical benefit in humans. This problem has been widely acknowledged, most recently in the field of Alzheimer's disease, although this issue pervades the spectrum of central nervous system (CNS) disorders, including neurodevelopmental, neuropsychiatric, and neurodegenerative diseases. Consequently, recent efforts have focused on improving preclinical to clinical translation by incorporating more clinically analogous outcome measures of cognition, such as touchscreen-based assays, which can be employed across species, and have great potential to minimize the translational gap. For aging-related research, it also is important to incorporate model systems that facilitate the study of the long prodromal phase in which cognitive decline begins to emerge and which is a major limitation of short-lived species, such as laboratory rodents. We posit that to improve translation of cognitive function and dysfunction, nonhuman primate models, which have conserved anatomical and functional organization of the primate brain, are necessary to move the field of translational research forward and to bridge the translational gaps. The present studies describe the establishment of a comprehensive battery of touchscreen-based tasks that capture a spectrum of domains sensitive to detecting aging-related cognitive decline, which will provide the greatest benefit through longitudinal evaluation throughout the prolonged lifespan of the marmoset.
Collapse
Affiliation(s)
- Takeshi Murai
- Aging Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Lauren Bailey
- Aging Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Laura Schultz
- Aging Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Lauren Mongeau
- Aging Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Andrew DeSana
- Aging Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Afonso C Silva
- Department of Neurobiology, University of Pittsburgh School of Medicine, 514A Bridgeside Point 1, 100 Technology Drive, Pittsburgh, PA, 15219, USA
| | - Angela C Roberts
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Stacey J Sukoff Rizzo
- Aging Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
- Department of Neurobiology, University of Pittsburgh School of Medicine, 514A Bridgeside Point 1, 100 Technology Drive, Pittsburgh, PA, 15219, USA.
| |
Collapse
|
5
|
Harris BN, Yavari M, Ramalingam L, Mounce PL, Alers Maldonado K, Chavira AC, Thomas S, Scoggin S, Biltz C, Moustaid-Moussa N. Impact of Long-Term Dietary High Fat and Eicosapentaenoic Acid on Behavior and Hypothalamic-Pituitary-Adrenal Axis Activity in Amyloidogenic APPswe/PSEN1dE9 Mice. Neuroendocrinology 2024; 114:553-576. [PMID: 38301617 PMCID: PMC11153005 DOI: 10.1159/000536586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 01/30/2024] [Indexed: 02/03/2024]
Abstract
INTRODUCTION Alzheimer's disease (AD) alters neurocognitive and emotional function and causes dysregulation of multiple homeostatic processes. The leading AD framework pins amyloid beta plaques and tau tangles as primary drivers of dysfunction. However, many additional variables, including diet, stress, sex, age, and pain tolerance, interact in ways that are not fully understood to impact the onset and progression of AD pathophysiology. We asked: (1) does high-fat diet, compared to low-fat diet, exacerbate AD pathophysiology and behavioral decline? And, (2) can supplementation with eicosapentaenoic (EPA)-enriched fish oil prevent high-fat-diet-induced changes? METHODS Male and female APPswePSdE9 mice, and their non-transgenic littermates, were randomly assigned to a diet condition (low-fat, high-fat, high-fat with EPA) and followed from 2 to 10 months of age. We assessed baseline corticosterone concentration during aging, pain tolerance, cognitive function, stress coping, and corticosterone response to a stressor. RESULTS Transgenic mice were consistently more active than non-transgenic mice but did not perform worse on either cognitive task, even though we recently reported that these same transgenic mice exhibited metabolic changes and had increased amyloid beta. Mice fed high-fat diet had higher baseline and post-stressor corticosterone, but diet did not impact cognition or pain tolerance. Sex had the biggest influence, as female mice were consistently more active and had higher corticosterone than males. CONCLUSION Overall, diet, genotype, and sex did not have consistent impacts on outcomes. We found little support for predicted interactions and correlations, suggesting diet impacts metabolic function and amyloid beta levels, but these outcomes do not translate to changes in behaviors measured here.
Collapse
Affiliation(s)
- Breanna N. Harris
- Department of Biological Sciences, Texas Tech University, Lubbock, TX
- Obesity Research Institute, Office of Research & Innovation, Texas Tech University
| | - Mahsa Yavari
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX
- Obesity Research Institute, Office of Research & Innovation, Texas Tech University
- Current address: Department of Molecular Metabolism, School of Public Health, Harvard University, Boston, MA
| | - Latha Ramalingam
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX
- Obesity Research Institute, Office of Research & Innovation, Texas Tech University
- Current address: Department of Nutritional and Food Studies Syracuse University, Syracuse, NY
| | - P. Logan Mounce
- Department of Biological Sciences, Texas Tech University, Lubbock, TX
| | | | - Angela C. Chavira
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX
| | - Sarah Thomas
- Department of Biological Sciences, Texas Tech University, Lubbock, TX
| | - Shane Scoggin
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX
| | - Caroline Biltz
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX
| | - Naima Moustaid-Moussa
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX
- Obesity Research Institute, Office of Research & Innovation, Texas Tech University
| |
Collapse
|
6
|
Koller EJ, Wood CA, Lai Z, Borgenheimer E, Hoffman KL, Jankowsky JL. Doxycycline for transgene control disrupts gut microbiome diversity without compromising acute neuroinflammatory response. J Neuroinflammation 2024; 21:11. [PMID: 38178148 PMCID: PMC10765643 DOI: 10.1186/s12974-023-03004-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 12/21/2023] [Indexed: 01/06/2024] Open
Abstract
The tetracycline transactivator (tTA) system provides controllable transgene expression through oral administration of the broad-spectrum antibiotic doxycycline. Antibiotic treatment for transgene control in mouse models of disease might have undesirable systemic effects resulting from changes in the gut microbiome. Here we assessed the impact of doxycycline on gut microbiome diversity in a tTA-controlled model of Alzheimer's disease and then examined neuroimmune effects of these microbiome alterations following acute LPS challenge. We show that doxycycline decreased microbiome diversity in both transgenic and wild-type mice and that these changes persisted long after drug withdrawal. Despite the change in microbiome composition, doxycycline treatment had minimal effect on basal transcriptional signatures of inflammation the brain or on the neuroimmune response to LPS challenge. Our findings suggest that central neuroimmune responses may be less affected by doxycycline at doses needed for transgene control than by antibiotic cocktails at doses used for experimental microbiome disruption.
Collapse
Affiliation(s)
- Emily J Koller
- Department of Neuroscience, Baylor College of Medicine, One Baylor Plaza, Mail Stop BCM295, Houston, TX, 77030, USA
| | - Caleb A Wood
- Department of Neuroscience, Baylor College of Medicine, One Baylor Plaza, Mail Stop BCM295, Houston, TX, 77030, USA
| | - Zoe Lai
- Department of Neuroscience, Baylor College of Medicine, One Baylor Plaza, Mail Stop BCM295, Houston, TX, 77030, USA
| | - Ella Borgenheimer
- Department of Neuroscience, Baylor College of Medicine, One Baylor Plaza, Mail Stop BCM295, Houston, TX, 77030, USA
| | - Kristi L Hoffman
- Alkek Center for Metagenomics and Microbiome Research, Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Joanna L Jankowsky
- Department of Neuroscience, Baylor College of Medicine, One Baylor Plaza, Mail Stop BCM295, Houston, TX, 77030, USA.
- Departments of Neurology, Neurosurgery, and Molecular and Cellular Biology, Huffington Center On Aging, Baylor College of Medicine, Houston, TX, 77030, USA.
| |
Collapse
|
7
|
D'Adamio L. Transfixed by transgenics: how pathology assumptions are slowing progress in Alzheimer's disease and related dementia research. EMBO Mol Med 2023; 15:e18479. [PMID: 37750482 PMCID: PMC10630870 DOI: 10.15252/emmm.202318479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 08/31/2023] [Accepted: 09/08/2023] [Indexed: 09/27/2023] Open
Abstract
Model organisms of human diseases are invaluable tools for unraveling pathogenic mechanisms, identifying potential targets for drug development, and evaluating the therapeutic efficacy of candidates in preclinical trials. The utility of model organisms hinges upon their ability to faithfully replicate the underlying pathogenic mechanisms of the human disease. For rodent models of Alzheimer's disease (AD) and AD-related dementias (ADRD), the limited translatability to human disease raises concerns about their overall utility. What factors contribute to this limitation? Is AD inherently too complex to be accurately modeled in nonhumans? Is the divergence between rodent brains and the human brain so pronounced that rodents are unsuitable as model organisms for AD? Or is it plausible that the commonly used rodent models don't capture the genuine pathogenic mechanisms underlying these diseases? This editorial discusses the challenges associated with transgenic models of AD and ADRD and offers some alternative approaches.
Collapse
Affiliation(s)
- Luciano D'Adamio
- Department of Pharmacology, Physiology & Neuroscience New Jersey Medical School, Brain Health Institute, Jacqueline Krieger Klein Center in Alzheimer's Disease and Neurodegeneration Research, RutgersThe State University of New JerseyNewarkNJUSA
| |
Collapse
|
8
|
Leyder E, Suresh P, Jun R, Overbey K, Banerjee T, Melnikova T, Savonenko A. Depression-related phenotypes at early stages of Aβ and tau accumulation in inducible Alzheimer's disease mouse model: Task-oriented and concept-driven interpretations. Behav Brain Res 2023; 438:114187. [PMID: 36343696 DOI: 10.1016/j.bbr.2022.114187] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 10/16/2022] [Accepted: 10/30/2022] [Indexed: 11/06/2022]
Abstract
Depression is highly prevalent in Alzheimer Disease (AD); however, there is paucity of studies that focus specifically on the assessment of depression-relevant phenotypes in AD mouse models. Conditional doxycycline-dependent transgenic mouse models reproducing amyloidosis (TetOffAPPsi) and/or tau (TetOffTauP301L) pathology starting at middle age (6 months) were used in this study. As AD patients can experience depressive symptoms relatively early in disease, testing was conducted at early, pre-pathology stages of Aβ and/or tau accumulation (starting from 45 days of transgenes expression). Tau-related differences were detected in the Novelty Suppressed Feeding task (NSF), whereas APP-related differences were observed predominantly in measures of the Open Field (OF) and Forced Swim tasks (FST). Effects of combined production of Aβ and tau were detected in immobility during the 1st half of the Tail Suspension task (TST). These data demonstrate that results from different tasks are difficult to reconcile using task/variable-centered interpretations in which a single task/variable is assigned an ad-hoc meaning relevant to depression. An alternative, concept-oriented, approach is based on multiple variables/tests, with an understanding of their possible inter-dependence and utilization of statistical approaches that handle correlated data sets. The existence of strong correlations within and between some of the tasks supported utilization of factor analyses (FA). FA explained a similar amount of variability across the genotypes (∼80%) and identified two factors stable across genotypes and representing motor activity and anxiety measures in OF. In contrast, variables related to FST, TST, and NSFT did not demonstrate a structure of factor loadings that would support the existence of a single integral factor of "depressive state" measured by these tasks. In addition, factor loadings varied between genotypes, indicating that genotype-specific between-task correlations need to be considered for interpretations of findings in any single task. In general, this study demonstrates that utilization of multiple tasks to characterize behavioral phenotypes, an approach that is finally gaining more widespread adoption, requires a step of data integration across different behavioral tests for appropriate interpretations.
Collapse
Affiliation(s)
- Erica Leyder
- Department of Pathology, The Johns Hopkins University School of Medicine, 558 Ross Research Building, 720 Rutland Avenue, Baltimore, MD 21205, USA
| | - Prakul Suresh
- Department of Pathology, The Johns Hopkins University School of Medicine, 558 Ross Research Building, 720 Rutland Avenue, Baltimore, MD 21205, USA
| | - Rachel Jun
- Department of Pathology, The Johns Hopkins University School of Medicine, 558 Ross Research Building, 720 Rutland Avenue, Baltimore, MD 21205, USA
| | - Katherine Overbey
- Department of Pathology, The Johns Hopkins University School of Medicine, 558 Ross Research Building, 720 Rutland Avenue, Baltimore, MD 21205, USA
| | - Tirtho Banerjee
- Department of Pathology, The Johns Hopkins University School of Medicine, 558 Ross Research Building, 720 Rutland Avenue, Baltimore, MD 21205, USA
| | - Tatiana Melnikova
- Department of Pathology, The Johns Hopkins University School of Medicine, 558 Ross Research Building, 720 Rutland Avenue, Baltimore, MD 21205, USA.
| | - Alena Savonenko
- Department of Pathology, The Johns Hopkins University School of Medicine, 558 Ross Research Building, 720 Rutland Avenue, Baltimore, MD 21205, USA
| |
Collapse
|
9
|
Ben-Nejma IRH, Keliris AJ, Vanreusel V, Ponsaerts P, Van der Linden A, Keliris GA. Altered dynamics of glymphatic flow in a mature-onset Tet-off APP mouse model of amyloidosis. Alzheimers Res Ther 2023; 15:23. [PMID: 36707887 PMCID: PMC9883946 DOI: 10.1186/s13195-023-01175-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 01/18/2023] [Indexed: 01/29/2023]
Abstract
BACKGROUND Alzheimer's disease (AD) is an incurable neurodegenerative disorder characterised by the progressive buildup of toxic amyloid-beta (Aβ) and tau protein aggregates eventually leading to cognitive decline. Recent lines of evidence suggest that an impairment of the glymphatic system (GS), a brain waste clearance pathway, plays a key role in the pathology of AD. Moreover, a relationship between GS function and neuronal network integrity has been strongly implicated. Here, we sought to assess the efficacy of the GS in a transgenic Tet-Off APP mouse model of amyloidosis, in which the expression of mutant APP was delayed until maturity, mimicking features of late-onset AD-the most common form of dementia in humans. METHODS To evaluate GS function, we used dynamic contrast-enhanced MRI (DCE-MRI) in 14-month-old Tet-Off APP (AD) mice and aged-matched littermate controls. Brain-wide transport of the Gd-DOTA contrast agent was monitored over time after cisterna magna injection. Region-of-interest analysis and computational modelling were used to assess GS dynamics while characterisation of brain tissue abnormalities at the microscale was performed ex vivo by immunohistochemistry. RESULTS We observed reduced rostral glymphatic flow and higher accumulation of the contrast agent in areas proximal to the injection side in the AD group. Clustering and subsequent computational modelling of voxel time courses revealed significantly lower influx time constants in AD relative to the controls. Ex vivo evaluation showed abundant amyloid plaque burden in the AD group coinciding with extensive astrogliosis and microgliosis. The neuroinflammatory responses were also found in plaque-devoid regions, potentially impacting brain-fluid circulation. CONCLUSIONS In a context resembling late-onset AD in humans, we demonstrate the disruption of glymphatic function and particularly a reduction in brain-fluid influx in the AD group. We conjecture that the hindered circulation of cerebrospinal fluid is potentially caused by wide-spread astrogliosis and amyloid-related obstruction of the normal routes of glymphatic flow resulting in redirection towards caudal regions. In sum, our study highlights the translational potential of alternative approaches, such as targeting brain-fluid circulation as potential therapeutic strategies for AD.
Collapse
Affiliation(s)
- Inès R. H. Ben-Nejma
- grid.5284.b0000 0001 0790 3681Bio-Imaging Lab, University of Antwerp, Universiteitsplein 1, Wilrijk, 2610 Antwerp, Belgium
| | - Aneta J. Keliris
- grid.5284.b0000 0001 0790 3681Bio-Imaging Lab, University of Antwerp, Universiteitsplein 1, Wilrijk, 2610 Antwerp, Belgium
| | - Verdi Vanreusel
- grid.5284.b0000 0001 0790 3681Bio-Imaging Lab, University of Antwerp, Universiteitsplein 1, Wilrijk, 2610 Antwerp, Belgium ,Research in Dosimetric Applications, SCK CEN, Boeretang 200, Mol, 2400 Antwerp, Belgium
| | - Peter Ponsaerts
- grid.5284.b0000 0001 0790 3681Laboratory of Experimental Hematology, Vaccine and Infectious Disease Institute (Vaxinfectio), University of Antwerp, Universiteitsplein 1, Wilrijk, 2610 Antwerp, Belgium
| | - Annemie Van der Linden
- grid.5284.b0000 0001 0790 3681Bio-Imaging Lab, University of Antwerp, Universiteitsplein 1, Wilrijk, 2610 Antwerp, Belgium ,grid.5284.b0000 0001 0790 3681μNEURO Research Centre of Excellence, University of Antwerp, Antwerp, Belgium
| | - Georgios A. Keliris
- grid.5284.b0000 0001 0790 3681Bio-Imaging Lab, University of Antwerp, Universiteitsplein 1, Wilrijk, 2610 Antwerp, Belgium ,grid.5284.b0000 0001 0790 3681μNEURO Research Centre of Excellence, University of Antwerp, Antwerp, Belgium ,grid.4834.b0000 0004 0635 685XInstitute of Computer Science, Foundation for Research and Technology – Hellas (FORTH), Heraklion, Crete Greece
| |
Collapse
|
10
|
Grünblatt E, Homolak J, Babic Perhoc A, Davor V, Knezovic A, Osmanovic Barilar J, Riederer P, Walitza S, Tackenberg C, Salkovic-Petrisic M. From attention-deficit hyperactivity disorder to sporadic Alzheimer's disease-Wnt/mTOR pathways hypothesis. Front Neurosci 2023; 17:1104985. [PMID: 36875654 PMCID: PMC9978448 DOI: 10.3389/fnins.2023.1104985] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 01/31/2023] [Indexed: 02/18/2023] Open
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disorder with the majority of patients classified as sporadic AD (sAD), in which etiopathogenesis remains unresolved. Though sAD is argued to be a polygenic disorder, apolipoprotein E (APOE) ε4, was found three decades ago to pose the strongest genetic risk for sAD. Currently, the only clinically approved disease-modifying drugs for AD are aducanumab (Aduhelm) and lecanemab (Leqembi). All other AD treatment options are purely symptomatic with modest benefits. Similarly, attention-deficit hyperactivity disorder (ADHD), is one of the most common neurodevelopmental mental disorders in children and adolescents, acknowledged to persist in adulthood in over 60% of the patients. Moreover, for ADHD whose etiopathogenesis is not completely understood, a large proportion of patients respond well to treatment (first-line psychostimulants, e.g., methylphenidate/MPH), however, no disease-modifying therapy exists. Interestingly, cognitive impairments, executive, and memory deficits seem to be common in ADHD, but also in early stages of mild cognitive impairment (MCI), and dementia, including sAD. Therefore, one of many hypotheses is that ADHD and sAD might have similar origins or that they intercalate with one another, as shown recently that ADHD may be considered a risk factor for sAD. Intriguingly, several overlaps have been shown between the two disorders, e.g., inflammatory activation, oxidative stress, glucose and insulin pathways, wingless-INT/mammalian target of rapamycin (Wnt/mTOR) signaling, and altered lipid metabolism. Indeed, Wnt/mTOR activities were found to be modified by MPH in several ADHD studies. Wnt/mTOR was also found to play a role in sAD and in animal models of the disorder. Moreover, MPH treatment in the MCI phase was shown to be successful for apathy including some improvement in cognition, according to a recent meta-analysis. In several AD animal models, ADHD-like behavioral phenotypes have been observed indicating a possible interconnection between ADHD and AD. In this concept paper, we will discuss the various evidence in human and animal models supporting the hypothesis in which ADHD might increase the risk for sAD, with common involvement of the Wnt/mTOR-pathway leading to lifespan alteration at the neuronal levels.
Collapse
Affiliation(s)
- Edna Grünblatt
- Department of Child and Adolescent Psychiatry and Psychotherapy, Psychiatric University Hospital Zurich (PUK), University of Zurich, Zurich, Switzerland.,Neuroscience Center Zurich, University of Zurich and the Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland.,Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| | - Jan Homolak
- Department of Pharmacology and Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Ana Babic Perhoc
- Department of Pharmacology and Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Virag Davor
- Department of Pharmacology and Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Ana Knezovic
- Department of Pharmacology and Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Jelena Osmanovic Barilar
- Department of Pharmacology and Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Peter Riederer
- Department of Psychiatry, Psychosomatics and Psychotherapy, Center of Mental Health, University Hospital Würzburg, Würzburg, Germany.,Department and Research Unit of Psychiatry, Institute of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Susanne Walitza
- Department of Child and Adolescent Psychiatry and Psychotherapy, Psychiatric University Hospital Zurich (PUK), University of Zurich, Zurich, Switzerland.,Neuroscience Center Zurich, University of Zurich and the Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland.,Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| | - Christian Tackenberg
- Neuroscience Center Zurich, University of Zurich and the Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland.,Institute for Regenerative Medicine (IREM), University of Zurich, Schlieren, Switzerland
| | - Melita Salkovic-Petrisic
- Department of Pharmacology and Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
| |
Collapse
|
11
|
Martinez de Lagran M, Elizalde-Torrent A, Paredes R, Clotet B, Dierssen M. Lamivudine, a reverse transcriptase inhibitor, rescues cognitive deficits in a mouse model of down syndrome. J Cell Mol Med 2022; 26:4210-4215. [PMID: 35762509 PMCID: PMC9344819 DOI: 10.1111/jcmm.17411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/05/2022] [Accepted: 05/11/2022] [Indexed: 11/18/2022] Open
Abstract
An elevated activity of retrotransposons is increasingly recognized to be implicated in a wide range of neurodegenerative and neurodevelopmental diseases. Down syndrome (DS) is the most common genetic disorder associated with intellectual disability and a genetic form of Alzheimer's disease. For this reason, we hypothesized that treatment with reverse transcriptase inhibitors could ameliorate DS phenotypes. In this proof of concept study, we treated trisomic (Ts65Dn) mice, a model of DS, with lamivudine, a reverse transcriptase inhibitor. We detected a significant improvement of neurobehavioural phenotypes, and a complete rescue of the hippocampal‐dependent recognition memory upon treatment with lamivudine. Despite clinical studies in patients with DS are warranted, this study lays the groundwork for a novel and actionable therapeutic approach.
Collapse
Affiliation(s)
- Maria Martinez de Lagran
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | | | - Roger Paredes
- IrsiCaixa AIDS Research Institute, Badalona, Spain.,University of Vic-Central University of Catalonia (UVic-UCC), Vic, Spain
| | - Bonaventura Clotet
- IrsiCaixa AIDS Research Institute, Badalona, Spain.,University of Vic-Central University of Catalonia (UVic-UCC), Vic, Spain
| | - Mara Dierssen
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Barcelona, Spain
| |
Collapse
|
12
|
Olah VJ, Goettemoeller AM, Rayaprolu S, Dammer EB, Seyfried NT, Rangaraju S, Dimidschstein J, Rowan MJM. Biophysical Kv3 channel alterations dampen excitability of cortical PV interneurons and contribute to network hyperexcitability in early Alzheimer's. eLife 2022; 11:75316. [PMID: 35727131 PMCID: PMC9278953 DOI: 10.7554/elife.75316] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 05/19/2022] [Indexed: 11/13/2022] Open
Abstract
In Alzheimer’s disease (AD), a multitude of genetic risk factors and early biomarkers are known. Nevertheless, the causal factors responsible for initiating cognitive decline in AD remain controversial. Toxic plaques and tangles correlate with progressive neuropathology, yet disruptions in circuit activity emerge before their deposition in AD models and patients. Parvalbumin (PV) interneurons are potential candidates for dysregulating cortical excitability as they display altered action potential (AP) firing before neighboring excitatory neurons in prodromal AD. Here, we report a novel mechanism responsible for PV hypoexcitability in young adult familial AD mice. We found that biophysical modulation of Kv3 channels, but not changes in their mRNA or protein expression, were responsible for dampened excitability in young 5xFAD mice. These K+ conductances could efficiently regulate near-threshold AP firing, resulting in gamma-frequency-specific network hyperexcitability. Thus, biophysical ion channel alterations alone may reshape cortical network activity prior to changes in their expression levels. Our findings demonstrate an opportunity to design a novel class of targeted therapies to ameliorate cortical circuit hyperexcitability in early AD.
Collapse
Affiliation(s)
- Viktor J Olah
- Department of Cell Biology, Emory University, Atlanta, United States
| | | | - Sruti Rayaprolu
- Department of Neurology, Emory University, Atlanta, United States
| | - Eric B Dammer
- Department of Biochemistry, Emory University, Atlanta, United States
| | | | | | | | - Matthew J M Rowan
- Department of Cell Biology, Emory University, Atlanta, United States
| |
Collapse
|
13
|
Kim TA, Syty MD, Wu K, Ge S. Adult hippocampal neurogenesis and its impairment in Alzheimer's disease. Zool Res 2022; 43:481-496. [PMID: 35503338 PMCID: PMC9113964 DOI: 10.24272/j.issn.2095-8137.2021.479] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 04/25/2022] [Indexed: 11/07/2022] Open
Abstract
Adult neurogenesis is the creation of new neurons which integrate into the existing neural circuit of the adult brain. Recent evidence suggests that adult hippocampal neurogenesis (AHN) persists throughout life in mammals, including humans. These newborn neurons have been implicated to have a crucial role in brain functions such as learning and memory. Importantly, studies have also found that hippocampal neurogenesis is impaired in neurodegenerative and neuropsychiatric diseases. Alzheimer's disease (AD) is one of the most common forms of dementia affecting millions of people. Cognitive dysfunction is a common symptom of AD patients and progressive memory loss has been attributed to the degeneration of the hippocampus. Therefore, there has been growing interest in identifying how hippocampal neurogenesis is affected in AD. However, the link between cognitive decline and changes in hippocampal neurogenesis in AD is poorly understood. In this review, we summarized the recent literature on AHN and its impairments in AD.
Collapse
Affiliation(s)
- Thomas A Kim
- Department of Neurobiology & Behavior, SUNY at Stony Brook, Stony Brook, NY 11794, USA
- Medical Scientist Training Program (MSTP), Renaissance School of Medicine at SUNY, Stony Brook, Stony Brook, NY 11794, USA
| | - Michelle D Syty
- Department of Neurobiology & Behavior, SUNY at Stony Brook, Stony Brook, NY 11794, USA
| | - Kaitlyn Wu
- Department of Neurobiology & Behavior, SUNY at Stony Brook, Stony Brook, NY 11794, USA
| | - Shaoyu Ge
- Department of Neurobiology & Behavior, SUNY at Stony Brook, Stony Brook, NY 11794, USA. E-mail:
| |
Collapse
|
14
|
Koller EJ, Comstock M, Bean JC, Escobedo G, Park KW, Jankowsky JL. Temporal and spatially controlled APP transgene expression using Cre-dependent alleles. Dis Model Mech 2022; 15:dmm049330. [PMID: 35394029 PMCID: PMC9118045 DOI: 10.1242/dmm.049330] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 03/24/2022] [Indexed: 12/17/2022] Open
Abstract
Although a large number of mouse models have been made to study Alzheimer's disease, only a handful allow experimental control over the location or timing of the protein being used to drive pathology. Other fields have used the Cre and the tamoxifen-inducible CreER driver lines to achieve precise spatial and temporal control over gene deletion and transgene expression, yet these tools have not been widely used in studies of neurodegeneration. Here, we describe two strategies for harnessing the wide range of Cre and CreER driver lines to control expression of disease-associated amyloid precursor protein (APP) in modeling Alzheimer's amyloid pathology. We show that CreER-based spatial and temporal control over APP expression can be achieved with existing lines by combining a Cre driver with a tetracycline-transactivator (tTA)-dependent APP responder using a Cre-to-tTA converter line. We then describe a new mouse line that places APP expression under direct control of Cre recombinase using an intervening lox-stop-lox cassette. Mating this allele with a CreER driver allows both spatial and temporal control over APP expression, and with it, amyloid onset. This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Emily J. Koller
- Department of Neuroscience, Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030, USA
| | - Melissa Comstock
- Department of Neuroscience, Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jonathan C. Bean
- Department of Neuroscience, Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030, USA
| | - Gabriel Escobedo
- Department of Neuroscience, Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030, USA
| | - Kyung-Won Park
- Department of Neuroscience, Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030, USA
| | - Joanna L. Jankowsky
- Department of Neuroscience, Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030, USA
- Departments of Neurology, Neurosurgery and Molecular and Cellular Biology, Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
15
|
Xu G, Ulm BS, Howard J, Fromholt SE, Lu Q, Lee BB, Walker A, Borchelt DR, Lewis J. TAPPing into the potential of inducible tau/APP transgenic mice. Neuropathol Appl Neurobiol 2022; 48:e12791. [PMID: 35067965 DOI: 10.1111/nan.12791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 11/13/2021] [Indexed: 11/28/2022]
Abstract
AIMS Our understanding of the pathological interactions between amyloidosis and tauopathy in Alzheimer's disease is incomplete. We sought to determine if the relative timing of the amyloidosis and tauopathy is critical for amyloid-enhanced tauopathy. METHODS We crossed an inducible tauopathy model with two β-amyloid models utilising the doxycycline-repressible transgenic system to modulate timing and duration of human tau expression in the context of amyloidosis and then assessed tauopathy, amyloidosis and gliosis. RESULTS We combined inducible rTg4510 tau with APPswe/PS1dE9 [Line 85 (L85)] mice to examine the interactions between Aβ and tauopathy at different stages of amyloidosis. When we initially suppressed mutant human tau expression for 14-15 months and subsequently induced tau expression for 6 months, severe amyloidosis with robust tauopathy resulted in rTg4510/L85 but not rTg4510 mice. When we suppressed mutant tau for 7 months before inducing expression for a subsequent 6 months in another cohort of rTg4510/L85 and rTg4510 mice, only rTg4510/L85 mice displayed robust tauopathy. Lastly, we crossed rTg4510 mice to tet-regulated APPswe/ind [Line 107 (L107)] mice, using doxycycline to initially suppress both transgenes for 1 month before inducing expression for 5 months to model early amyloidosis. In contrast to rTg4510, rTg4510/L107 mice rapidly developed amyloidosis, accompanied by robust tauopathy. CONCLUSIONS These data suggest that tau misfolding is exacerbated by both newly forming Aβ deposits in younger brain and mature deposits in older brains. Refined use and repurposing of these models provide new tools to explore the intersection of ageing, amyloid and tauopathy and to test interventions to disrupt the amyloid cascade.
Collapse
Affiliation(s)
- Guilian Xu
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, USA
- Evelyn F. and William L. McKnight Brain Institute, University of Florida, Gainesville, FL, USA
- Department of Neuroscience, University of Florida, Gainesville, FL, USA
| | - Brittany S Ulm
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, USA
- Evelyn F. and William L. McKnight Brain Institute, University of Florida, Gainesville, FL, USA
- Department of Neuroscience, University of Florida, Gainesville, FL, USA
| | - John Howard
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, USA
| | - Susan E Fromholt
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, USA
| | - Qing Lu
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, USA
| | - Brian Benedict Lee
- Evelyn F. and William L. McKnight Brain Institute, University of Florida, Gainesville, FL, USA
- Department of Neuroscience, University of Florida, Gainesville, FL, USA
| | - Ariel Walker
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, USA
- Evelyn F. and William L. McKnight Brain Institute, University of Florida, Gainesville, FL, USA
- Department of Neuroscience, University of Florida, Gainesville, FL, USA
| | - David R Borchelt
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, USA
- Evelyn F. and William L. McKnight Brain Institute, University of Florida, Gainesville, FL, USA
- Department of Neuroscience, University of Florida, Gainesville, FL, USA
- SantaFe HealthCare Alzheimer's Disease Research Center, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Jada Lewis
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, USA
- Evelyn F. and William L. McKnight Brain Institute, University of Florida, Gainesville, FL, USA
- Department of Neuroscience, University of Florida, Gainesville, FL, USA
| |
Collapse
|
16
|
Sánchez-Hidalgo AC, Arias-Aragón F, Romero-Barragán MT, Martín-Cuevas C, Delgado-García JM, Martinez-Mir A, Scholl FG. Selective expression of the neurexin substrate for presenilin in the adult forebrain causes deficits in associative memory and presynaptic plasticity. Exp Neurol 2021; 347:113896. [PMID: 34662541 DOI: 10.1016/j.expneurol.2021.113896] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 09/27/2021] [Accepted: 10/10/2021] [Indexed: 01/25/2023]
Abstract
Presenilins (PS) form the active subunit of the gamma-secretase complex, which mediates the proteolytic clearance of a broad variety of type-I plasma membrane proteins. Loss-of-function mutations in PSEN1/2 genes are the leading cause of familial Alzheimer's disease (fAD). However, the PS/gamma-secretase substrates relevant for the neuronal deficits associated with a loss of PS function are not completely known. The members of the neurexin (Nrxn) family of presynaptic plasma membrane proteins are candidates to mediate aspects of the synaptic and memory deficits associated with a loss of PS function. Previous work has shown that fAD-linked PS mutants or inactivation of PS by genetic and pharmacological approaches failed to clear Nrxn C-terminal fragments (NrxnCTF), leading to its abnormal accumulation at presynaptic terminals. Here, we generated transgenic mice that selectively recreate the presynaptic accumulation of NrxnCTF in adult forebrain neurons, leaving unaltered the function of PS/gamma-secretase complex towards other substrates. Behavioral characterization identified selective impairments in NrxnCTF mice, including decreased fear-conditioning memory. Electrophysiological recordings in medial prefrontal cortex-basolateral amygdala (mPFC-BLA) of behaving mice showed normal synaptic transmission and uncovered specific defects in synaptic facilitation. These data functionally link the accumulation of NrxnCTF with defects in associative memory and short-term synaptic plasticity, pointing at impaired clearance of NrxnCTF as a new mediator in AD.
Collapse
Affiliation(s)
- Ana C Sánchez-Hidalgo
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Avda. Manuel Siurot s/n, Sevilla 41013, Spain; Departamento de Fisiología Médica y Biofísica, Facultad de Medicina, Universidad de Sevilla, Avda. Sánchez Pizjuán, 4, Sevilla 41009, Spain
| | - Francisco Arias-Aragón
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Avda. Manuel Siurot s/n, Sevilla 41013, Spain; Departamento de Fisiología Médica y Biofísica, Facultad de Medicina, Universidad de Sevilla, Avda. Sánchez Pizjuán, 4, Sevilla 41009, Spain
| | | | - Celia Martín-Cuevas
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Avda. Manuel Siurot s/n, Sevilla 41013, Spain; Departamento de Fisiología Médica y Biofísica, Facultad de Medicina, Universidad de Sevilla, Avda. Sánchez Pizjuán, 4, Sevilla 41009, Spain
| | | | - Amalia Martinez-Mir
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Avda. Manuel Siurot s/n, Sevilla 41013, Spain
| | - Francisco G Scholl
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Avda. Manuel Siurot s/n, Sevilla 41013, Spain; Departamento de Fisiología Médica y Biofísica, Facultad de Medicina, Universidad de Sevilla, Avda. Sánchez Pizjuán, 4, Sevilla 41009, Spain.
| |
Collapse
|
17
|
Chintapaludi SR, Uyar A, Jackson HM, Acklin CJ, Wang X, Sasner M, Carter GW, Howell GR. Staging Alzheimer's Disease in the Brain and Retina of B6.APP/PS1 Mice by Transcriptional Profiling. J Alzheimers Dis 2021; 73:1421-1434. [PMID: 31929156 DOI: 10.3233/jad-190793] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Alzheimer's disease (AD) is a common form of dementia characterized by amyloid plaque deposition, tau pathology, neuroinflammation, and neurodegeneration. Mouse models recapitulate some key features of AD. For instance, the B6.APP/PS1 model (carrying human transgenes for mutant forms of APP and PSEN1) shows plaque deposition and neuroinflammation involving both astrocytes and microglia beginning around 4-6 months of age. However, significant tau pathology and neurodegeneration are not apparent in this model even when assessed at old age. Therefore, this model is ideal for studying neuroinflammatory responses to amyloid deposition. Here, RNA sequencing of brain and retinal tissue, generalized linear modeling (GLM), functional annotation followed by validation by immunofluorescence was performed in B6.APP/PS1 mice to determine the earliest molecular changes prior to and around the onset of plaque deposition (2-6 months of age). Multiple pathways were shown to be activated in response to amyloid deposition including the JAK/STAT and NALFD pathways. Putative, cell-specific targets of STAT3, a central component of the JAK/STAT pathway, were identified that we propose provide more precise options for assessing the potential for targeting activation of the JAK/STAT pathway as a treatment for human AD. In the retina, GLM predicted activation of vascular-related pathways. However, many of the gene expression changes comparing B6 with B6.APP/PS1 retina samples occurred prior to plaque onset (2 months of age). This suggests retinal changes in B6.APP/PS1 mice may be an artefact of overexpression of mutant forms of APP and PSEN1 providing limited translatability to human AD. Therefore, caution should be taken when using this mouse model to assess the potential of using the eye as a window to the brain for AD.
Collapse
Affiliation(s)
| | - Asli Uyar
- The Jackson Laboratory, Farmington, CT, USA
| | | | | | | | | | - Gregory W Carter
- The Jackson Laboratory, Bar Harbor, ME, USA.,The Jackson Laboratory, Farmington, CT, USA.,Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, MA, USA.,Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, ME, USA
| | - Gareth R Howell
- The Jackson Laboratory, Bar Harbor, ME, USA.,Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, MA, USA.,Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, ME, USA
| |
Collapse
|
18
|
Natunen T, Martiskainen H, Marttinen M, Gabbouj S, Koivisto H, Kemppainen S, Kaipainen S, Takalo M, Svobodová H, Leppänen L, Kemiläinen B, Ryhänen S, Kuulasmaa T, Rahunen E, Juutinen S, Mäkinen P, Miettinen P, Rauramaa T, Pihlajamäki J, Haapasalo A, Leinonen V, Tanila H, Hiltunen M. Diabetic phenotype in mouse and humans reduces the number of microglia around β-amyloid plaques. Mol Neurodegener 2020; 15:66. [PMID: 33168021 PMCID: PMC7653710 DOI: 10.1186/s13024-020-00415-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 10/26/2020] [Indexed: 02/08/2023] Open
Abstract
Background Alzheimer’s disease (AD) is the most common neurodegenerative disease and type 2 diabetes (T2D) plays an important role in conferring the risk for AD. Although AD and T2D share common features, the common molecular mechanisms underlying these two diseases remain elusive. Methods Mice with different AD- and/or tauopathy-linked genetic backgrounds (APPswe/PS1dE9, Tau P301L and APPswe/PS1dE9/Tau P301L) were fed for 6 months with standard diet or typical Western diet (TWD). After behavioral and metabolic assessments of the mice, the effects of TWD on global gene expression as well as dystrophic neurite and microglia pathology were elucidated. Consequently, mechanistic aspects related to autophagy, cell survival, phagocytic uptake as well as Trem2/Dap12 signaling pathway, were assessed in microglia upon modulation of PI3K-Akt signaling. To evaluate whether the mouse model-derived results translate to human patients, the effects of diabetic phenotype on microglial pathology were assessed in cortical biopsies of idiopathic normal pressure hydrocephalus (iNPH) patients encompassing β-amyloid pathology. Results TWD led to obesity and diabetic phenotype in all mice regardless of the genetic background. TWD also exacerbated memory and learning impairment in APPswe/PS1dE9 and Tau P301L mice. Gene co-expression network analysis revealed impaired microglial responses to AD-related pathologies in APPswe/PS1dE9 and APPswe/PS1dE9/Tau P301L mice upon TWD, pointing specifically towards aberrant microglial functionality due to altered downstream signaling of Trem2 and PI3K-Akt. Accordingly, fewer microglia, which did not show morphological changes, and increased number of dystrophic neurites around β-amyloid plaques were discovered in the hippocampus of TWD mice. Mechanistic studies in mouse microglia revealed that interference of PI3K-Akt signaling significantly decreased phagocytic uptake and proinflammatory response. Moreover, increased activity of Syk-kinase upon ligand-induced activation of Trem2/Dap12 signaling was detected. Finally, characterization of microglial pathology in cortical biopsies of iNPH patients revealed a significant decrease in the number of microglia per β-amyloid plaque in obese individuals with concomitant T2D as compared to both normal weight and obese individuals without T2D. Conclusions Collectively, these results suggest that diabetic phenotype in mice and humans mechanistically associates with abnormally reduced microglial responses to β-amyloid pathology and further suggest that AD and T2D share overlapping pathomechanisms, likely involving altered immune function in the brain. Supplementary Information The online version contains supplementary material available at 10.1186/s13024-020-00415-2.
Collapse
Affiliation(s)
- Teemu Natunen
- Institute of Biomedicine, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland
| | - Henna Martiskainen
- Institute of Biomedicine, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland
| | - Mikael Marttinen
- Institute of Biomedicine, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland
| | - Sami Gabbouj
- Institute of Biomedicine, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland
| | - Hennariikka Koivisto
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Susanna Kemppainen
- Institute of Biomedicine, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland
| | - Satu Kaipainen
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Mari Takalo
- Institute of Biomedicine, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland
| | - Helena Svobodová
- Department of Simulation and Virtual Medical Education, Faculty of Medicine, Comenius University, Bratislava, Slovak Republic
| | - Luukas Leppänen
- Institute of Biomedicine, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland
| | - Benjam Kemiläinen
- Department of Neurosurgery, Kuopio University Hospital, and Institute of Clinical Medicine, Unit of Neurosurgery, University of Eastern Finland, Kuopio, Finland
| | - Simo Ryhänen
- Institute of Biomedicine, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland
| | - Teemu Kuulasmaa
- Institute of Biomedicine, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland
| | - Eija Rahunen
- Institute of Biomedicine, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland
| | - Sisko Juutinen
- Institute of Biomedicine, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland
| | - Petra Mäkinen
- Institute of Biomedicine, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland
| | - Pasi Miettinen
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Tuomas Rauramaa
- Department of Pathology, Kuopio University Hospital, and Institute of Clinical Medicine, Unit of Pathology, University of Eastern Finland, Kuopio, Finland
| | - Jussi Pihlajamäki
- Department of Clinical Nutrition, Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
| | - Annakaisa Haapasalo
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Ville Leinonen
- Department of Neurosurgery, Kuopio University Hospital, and Institute of Clinical Medicine, Unit of Neurosurgery, University of Eastern Finland, Kuopio, Finland
| | - Heikki Tanila
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Mikko Hiltunen
- Institute of Biomedicine, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland.
| |
Collapse
|
19
|
Johnson ECB, Ho K, Yu GQ, Das M, Sanchez PE, Djukic B, Lopez I, Yu X, Gill M, Zhang W, Paz JT, Palop JJ, Mucke L. Behavioral and neural network abnormalities in human APP transgenic mice resemble those of App knock-in mice and are modulated by familial Alzheimer's disease mutations but not by inhibition of BACE1. Mol Neurodegener 2020; 15:53. [PMID: 32921309 PMCID: PMC7489007 DOI: 10.1186/s13024-020-00393-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 07/08/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is the most frequent and costly neurodegenerative disorder. Although diverse lines of evidence suggest that the amyloid precursor protein (APP) is involved in its causation, the precise mechanisms remain unknown and no treatments are available to prevent or halt the disease. A favorite hypothesis has been that APP contributes to AD pathogenesis through the cerebral accumulation of the amyloid-β peptide (Aβ), which is derived from APP through sequential proteolytic cleavage by BACE1 and γ-secretase. However, inhibitors of these enzymes have failed in clinical trials despite clear evidence for target engagement. METHODS To further elucidate the roles of APP and its metabolites in AD pathogenesis, we analyzed transgenic mice overexpressing wildtype human APP (hAPP) or hAPP carrying mutations that cause autosomal dominant familial AD (FAD), as well as App knock-in mice that do not overexpress hAPP but have two mouse App alleles with FAD mutations and a humanized Aβ sequence. RESULTS Although these lines of mice had marked differences in cortical and hippocampal levels of APP, APP C-terminal fragments, soluble Aβ, Aβ oligomers and age-dependent amyloid deposition, they all developed cognitive deficits as well as non-convulsive epileptiform activity, a type of network dysfunction that also occurs in a substantive proportion of humans with AD. Pharmacological inhibition of BACE1 effectively reduced levels of amyloidogenic APP C-terminal fragments (C99), soluble Aβ, Aβ oligomers, and amyloid deposits in transgenic mice expressing FAD-mutant hAPP, but did not improve their network dysfunction and behavioral abnormalities, even when initiated at early stages before amyloid deposits were detectable. CONCLUSIONS hAPP transgenic and App knock-in mice develop similar pathophysiological alterations. APP and its metabolites contribute to AD-related functional alterations through complex combinatorial mechanisms that may be difficult to block with BACE inhibitors and, possibly, also with other anti-Aβ treatments.
Collapse
Affiliation(s)
- Erik C. B. Johnson
- Gladstone Institute of Neurological Disease, 1650 Owens Street, San Francisco, CA 94158 USA
- Department of Neurology and Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158 USA
| | - Kaitlyn Ho
- Gladstone Institute of Neurological Disease, 1650 Owens Street, San Francisco, CA 94158 USA
| | - Gui-Qiu Yu
- Gladstone Institute of Neurological Disease, 1650 Owens Street, San Francisco, CA 94158 USA
| | - Melanie Das
- Gladstone Institute of Neurological Disease, 1650 Owens Street, San Francisco, CA 94158 USA
| | - Pascal E. Sanchez
- Gladstone Institute of Neurological Disease, 1650 Owens Street, San Francisco, CA 94158 USA
| | - Biljana Djukic
- Gladstone Institute of Neurological Disease, 1650 Owens Street, San Francisco, CA 94158 USA
| | - Isabel Lopez
- Gladstone Institute of Neurological Disease, 1650 Owens Street, San Francisco, CA 94158 USA
| | - Xinxing Yu
- Gladstone Institute of Neurological Disease, 1650 Owens Street, San Francisco, CA 94158 USA
| | - Michael Gill
- Gladstone Institute of Neurological Disease, 1650 Owens Street, San Francisco, CA 94158 USA
| | - Weiping Zhang
- NHC Key Laboratory of Hormones and Development, Tianjin Institute of Endocrinology, Tianjin Medical University Metabolic Diseases Hospital, Tianjin, China
| | - Jeanne T. Paz
- Gladstone Institute of Neurological Disease, 1650 Owens Street, San Francisco, CA 94158 USA
- Department of Neurology and Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158 USA
| | - Jorge J. Palop
- Gladstone Institute of Neurological Disease, 1650 Owens Street, San Francisco, CA 94158 USA
- Department of Neurology and Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158 USA
| | - Lennart Mucke
- Gladstone Institute of Neurological Disease, 1650 Owens Street, San Francisco, CA 94158 USA
- Department of Neurology and Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158 USA
| |
Collapse
|
20
|
Banote RK, Chebli J, Şatır TM, Varshney GK, Camacho R, Ledin J, Burgess SM, Abramsson A, Zetterberg H. Amyloid precursor protein-b facilitates cell adhesion during early development in zebrafish. Sci Rep 2020; 10:10127. [PMID: 32576936 PMCID: PMC7311384 DOI: 10.1038/s41598-020-66584-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 05/21/2020] [Indexed: 01/05/2023] Open
Abstract
Understanding the biological function of amyloid beta (Aβ) precursor protein (APP) beyond its role in Alzheimer's disease is emerging. Yet, its function during embryonic development is poorly understood. The zebrafish APP orthologue, Appb, is strongly expressed during early development but thus far has only been studied via morpholino-mediated knockdown. Zebrafish enables analysis of cellular processes in an ontogenic context, which is limited in many other vertebrates. We characterized zebrafish carrying a homozygous mutation that introduces a premature stop in exon 2 of the appb gene. We report that appb mutants are significantly smaller until 2 dpf and display perturbed enveloping layer (EVL) integrity and cell protrusions at the blastula stage. Moreover, appb mutants surviving beyond 48 hpf exhibited no behavioral defects at 6 dpf and developed into healthy and fertile adults. The expression of the app family member, appa, was also found to be altered in appb mutants. Taken together, we show that appb is involved in the initial development of zebrafish by supporting the integrity of the EVL, likely by mediating cell adhesion properties. The loss of Appb might then be compensated for by other app family members to maintain normal development.
Collapse
Affiliation(s)
- Rakesh Kumar Banote
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy, University of Gothenburg, S-41345, Gothenburg, Sweden.,Cellectricon AB, Neongatan 4B, SE-431 53, Mölndal, Sweden
| | - Jasmine Chebli
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy, University of Gothenburg, S-41345, Gothenburg, Sweden
| | - Tuğçe Munise Şatır
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy, University of Gothenburg, S-41345, Gothenburg, Sweden
| | - Gaurav K Varshney
- Translational and Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, 20892, USA.,Genes & Human Disease Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA
| | - Rafael Camacho
- Centre for Cellular Imaging, Core Facilities, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Johan Ledin
- Translational and Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, 20892, USA.,Department of Organismal Biology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Shawn M Burgess
- Translational and Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, 20892, USA
| | - Alexandra Abramsson
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy, University of Gothenburg, S-41345, Gothenburg, Sweden.
| | - Henrik Zetterberg
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy, University of Gothenburg, S-41345, Gothenburg, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden.,Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, WC1N3BG, United Kingdom.,UK Dementia Research Institute, London, WC1N3BG, United Kingdom
| |
Collapse
|
21
|
Huichalaf CH, Al-Ramahi I, Park KW, Grunke SD, Lu N, de Haro M, El-Zein K, Gallego-Flores T, Perez AM, Jung SY, Botas J, Zoghbi HY, Jankowsky JL. Cross-species genetic screens to identify kinase targets for APP reduction in Alzheimer's disease. Hum Mol Genet 2020; 28:2014-2029. [PMID: 30753434 DOI: 10.1093/hmg/ddz034] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Revised: 01/07/2019] [Accepted: 02/01/2019] [Indexed: 12/12/2022] Open
Abstract
An early hallmark of Alzheimer's disease is the accumulation of amyloid-β (Aβ), inspiring numerous therapeutic strategies targeting this peptide. An alternative approach is to destabilize the amyloid beta precursor protein (APP) from which Aβ is derived. We interrogated innate pathways governing APP stability using a siRNA screen for modifiers whose own reduction diminished APP in human cell lines and transgenic Drosophila. As proof of principle, we validated PKCβ-a known modifier identified by the screen-in an APP transgenic mouse model. PKCβ was genetically targeted using a novel adeno-associated virus shuttle vector to deliver microRNA-adapted shRNA via intracranial injection. In vivo reduction of PKCβ initially diminished APP and delayed plaque formation. Despite persistent PKCβ suppression, the effect on APP and amyloid diminished over time. Our study advances this approach for mining druggable modifiers of disease-associated proteins, while cautioning that prolonged in vivo validation may be needed to reveal emergent limitations on efficacy.
Collapse
Affiliation(s)
| | - Ismael Al-Ramahi
- Department of Molecular and Human Genetics.,Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | | | | | - Nan Lu
- Department of Molecular and Human Genetics.,Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - Maria de Haro
- Department of Molecular and Human Genetics.,Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - Karla El-Zein
- Department of Molecular and Human Genetics.,Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - Tatiana Gallego-Flores
- Department of Molecular and Human Genetics.,Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - Alma M Perez
- Department of Molecular and Human Genetics.,Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | | | - Juan Botas
- Department of Molecular and Human Genetics.,Department of Molecular and Cellular Biology.,Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - Huda Y Zoghbi
- Department of Neuroscience.,Department of Molecular and Human Genetics.,Department of Pediatrics.,Department of Neurology.,Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA.,Howard Hughes Medical Institute, Baylor College of Medicine, Houston, TX, USA
| | - Joanna L Jankowsky
- Department of Neuroscience.,Department of Molecular and Cellular Biology.,Department of Neurology.,Department of Neurosurgery, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
22
|
Tambini MD, Norris KA, D'Adamio L. Opposite changes in APP processing and human Aβ levels in rats carrying either a protective or a pathogenic APP mutation. eLife 2020; 9:52612. [PMID: 32022689 PMCID: PMC7018507 DOI: 10.7554/elife.52612] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 02/03/2020] [Indexed: 12/13/2022] Open
Abstract
Cleavage of APP by BACE1/β-secretase initiates the amyloidogenic cascade leading to Amyloid-β (Aβ) production. α-Secretase initiates the non-amyloidogenic pathway preventing Aβ production. Several APP mutations cause familial Alzheimer's disease (AD), while the Icelandic APP mutation near the BACE1-cleavage site protects from sporadic dementia, emphasizing APP's role in dementia pathogenesis. To study APP protective/pathogenic mechanisms, we generated knock-in rats carrying either the protective (Appp) or the pathogenic Swedish mutation (Apps), also located near the BACE1-cleavage site. α-Cleavage is favored over β-processing in Appp rats. Consequently, non-amyloidogenic and amyloidogenic APP metabolites are increased and decreased, respectively. The reverse APP processing shift occurs in Apps rats. These opposite effects on APP β/α-processing suggest that protection from and pathogenesis of dementia depend upon combinatorial and opposite alterations in APP metabolism rather than simply on Aβ levels. The Icelandic mutation also protects from aging-dependent cognitive decline, suggesting that similar mechanisms underlie physiological cognitive aging.
Collapse
Affiliation(s)
- Marc D Tambini
- Department of Pharmacology Physiology & Neuroscience New Jersey Medical School, Brain Health Institute, Jacqueline Krieger Klein Center in Alzheimer's Disease and Neurodegeneration Research, Rutgers, The State University of New Jersey, Newark, United States
| | - Kelly A Norris
- Department of Pharmacology Physiology & Neuroscience New Jersey Medical School, Brain Health Institute, Jacqueline Krieger Klein Center in Alzheimer's Disease and Neurodegeneration Research, Rutgers, The State University of New Jersey, Newark, United States
| | - Luciano D'Adamio
- Department of Pharmacology Physiology & Neuroscience New Jersey Medical School, Brain Health Institute, Jacqueline Krieger Klein Center in Alzheimer's Disease and Neurodegeneration Research, Rutgers, The State University of New Jersey, Newark, United States
| |
Collapse
|
23
|
Krivinko JM, Koppel J, Savonenko A, Sweet RA. Animal Models of Psychosis in Alzheimer Disease. Am J Geriatr Psychiatry 2020; 28:1-19. [PMID: 31278012 PMCID: PMC6858948 DOI: 10.1016/j.jagp.2019.05.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 04/29/2019] [Accepted: 05/13/2019] [Indexed: 12/13/2022]
Abstract
Psychosis in Alzheimer Disease (AD) represents a distinct clinicopathologic variant associated with increased cognitive and functional morbidity and an accelerated disease course. To date, extant treatments offer modest benefits with significant risks. The development of new pharmacologic treatments for psychosis in AD would be facilitated by validated preclinical models with which to test candidate interventions. The current review provides a brief summary of the process of validating animal models of human disease together with a critical analysis of the challenges posed in attempting to apply those standards to AD-related behavioral models. An overview of phenotypic analogues of human cognitive and behavioral impairments, with an emphasis on those relevant to psychosis, in AD-related mouse models is provided, followed by an update on recent progress in efforts to translate findings in the pathophysiology of psychotic AD into novel models. Finally, some future directions are suggested to expand the catalogue of psychosis-relevant phenotypes that may provide a sturdier framework for model development and targets for preclinical treatment outcomes.
Collapse
Affiliation(s)
- Josh M. Krivinko
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Jeremy Koppel
- The Litwin-Zucker Research Center for the Study of Alzheimer’s Disease, The Feinstein Institute for Medical Research, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY
| | - Alena Savonenko
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD
| | - Robert A. Sweet
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA,Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA,Mental Illness Research, Education, and Clinical Center, VA Pittsburgh Healthcare System, Pittsburgh, PA
| |
Collapse
|
24
|
Ben-Nejma IRH, Keliris AJ, Daans J, Ponsaerts P, Verhoye M, Van der Linden A, Keliris GA. Increased soluble amyloid-beta causes early aberrant brain network hypersynchronisation in a mature-onset mouse model of amyloidosis. Acta Neuropathol Commun 2019; 7:180. [PMID: 31727182 PMCID: PMC6857138 DOI: 10.1186/s40478-019-0810-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 09/14/2019] [Indexed: 02/06/2023] Open
Abstract
Alzheimer's disease (AD) is the most common form of dementia in the elderly. According to the amyloid hypothesis, the accumulation and deposition of amyloid-beta (Aβ) peptides play a key role in AD. Soluble Aβ (sAβ) oligomers were shown to be involved in pathological hypersynchronisation of brain resting-state networks in different transgenic developmental-onset mouse models of amyloidosis. However, the impact of protein overexpression during brain postnatal development may cause additional phenotypes unrelated to AD. To address this concern, we investigated sAβ effects on functional resting-state networks in transgenic mature-onset amyloidosis Tet-Off APP (TG) mice. TG mice and control littermates were raised on doxycycline (DOX) diet from 3d up to 3 m of age to suppress transgenic Aβ production. Thereafter, longitudinal resting-state functional MRI was performed on a 9.4 T MR-system starting from week 0 (3 m old mice) up to 28w post DOX treatment. Ex-vivo immunohistochemistry and ELISA analysis was performed to assess the development of amyloid pathology. Functional Connectivity (FC) analysis demonstrated early abnormal hypersynchronisation in the TG mice compared to the controls at 8w post DOX treatment, particularly across regions of the default mode-like network, known to be affected in AD. Ex-vivo analyses performed at this time point confirmed a 20-fold increase in total sAβ levels preceding the apparition of Aβ plaques and inflammatory responses in the TG mice compared to the controls. On the contrary at week 28, TG mice showed an overall hypoconnectivity, coinciding with a widespread deposition of Aβ plaques in the brain. By preventing developmental influence of APP and/or sAβ during brain postnatal development, we demonstrated FC abnormalities potentially driven by sAβ neurotoxicity on resting-state neuronal networks in mature-induced TG mice. Thus, the Tet-Off APP mouse model could be a powerful tool while used as a mature-onset model to shed light into amyloidosis mechanisms in AD.
Collapse
|
25
|
Moderate protective effect of Kyotorphin against the late consequences of intracerebroventricular streptozotocin model of Alzheimer's disease. Amino Acids 2019; 51:1501-1513. [PMID: 31520285 DOI: 10.1007/s00726-019-02784-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 08/30/2019] [Indexed: 01/08/2023]
Abstract
The established decrease in the level of endogenous kyotorphin (KTP) into the cerebrospinal fluid of patients with an advanced stage of Alzheimer's disease (AD) and the found neuroprotective activity of KTP suggested its participation in the pathophysiology of the disease. We aimed to study the effects of subchronic intracerebroventricular (ICV) treatment (14 days) with KTP on the behavioral, biochemical and histological changes in rats with streptozotocin (STZ-ICV)-induced model of sporadic AD (sAD). Three months after the administration of STZ-ICV, rats developed increased locomotor activity, decreased level of anxiety, impaired spatial and working memory. Histological data from the STZ-ICV group demonstrated decreased number of neurons in the CA1 and CA3 subfields of the hippocampus. The STZ-ICV group was characterized with a decrease of total protein content in the hippocampus and the prefrontal cortex as well as increased levels of the carbonylated proteins in the hippocampus. KTP treatment of STZ-ICV rats normalized anxiety level and regained object recognition memory. KTP abolished the protein loss in prefrontal cortex and decrease the neuronal loss in the CA3 subfield of the hippocampus. STZ-ICV rats, treated with KTP, did not show significant changes in the levels of the carbonylated proteins in specific brain structures or in motor activity and spatial memory compared to the saline-treated STZ-ICV group. Our data show a moderate and selective protective effect of a subchronic ICV administration of the dipeptide KTP on the pathological changes induced by an experimental model of sAD in rats.
Collapse
|
26
|
Onos KD, Uyar A, Keezer KJ, Jackson HM, Preuss C, Acklin CJ, O’Rourke R, Buchanan R, Cossette TL, Sukoff Rizzo SJ, Soto I, Carter GW, Howell GR. Enhancing face validity of mouse models of Alzheimer's disease with natural genetic variation. PLoS Genet 2019; 15:e1008155. [PMID: 31150388 PMCID: PMC6576791 DOI: 10.1371/journal.pgen.1008155] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 06/17/2019] [Accepted: 04/24/2019] [Indexed: 01/01/2023] Open
Abstract
Classical laboratory strains show limited genetic diversity and do not harness natural genetic variation. Mouse models relevant to Alzheimer's disease (AD) have largely been developed using these classical laboratory strains, such as C57BL/6J (B6), and this has likely contributed to the failure of translation of findings from mice to the clinic. Therefore, here we test the potential for natural genetic variation to enhance the translatability of AD mouse models. Two widely used AD-relevant transgenes, APPswe and PS1de9 (APP/PS1), were backcrossed from B6 to three wild-derived strains CAST/EiJ, WSB/EiJ, PWK/PhJ, representative of three Mus musculus subspecies. These new AD strains were characterized using metabolic, functional, neuropathological and transcriptional assays. Strain-, sex- and genotype-specific differences were observed in cognitive ability, neurodegeneration, plaque load, cerebrovascular health and cerebral amyloid angiopathy. Analyses of brain transcriptional data showed strain was the greatest driver of variation. We identified significant variation in myeloid cell numbers in wild type mice of different strains as well as significant differences in plaque-associated myeloid responses in APP/PS1 mice between the strains. Collectively, these data support the use of wild-derived strains to better model the complexity of human AD.
Collapse
Affiliation(s)
- Kristen D. Onos
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
| | - Asli Uyar
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
| | - Kelly J. Keezer
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
| | | | - Christoph Preuss
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
| | - Casey J. Acklin
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
| | - Rita O’Rourke
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
| | - Rebecca Buchanan
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
| | | | | | - Ileana Soto
- Department of Biomedical and Translational Sciences, Rowan University, Glassboro, New Jersey, United States of America
| | - Gregory W. Carter
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
- Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts, United States of America
- Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, Maine, United States of America
| | - Gareth R. Howell
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
- Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts, United States of America
- Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, Maine, United States of America
| |
Collapse
|
27
|
Pan Y, Short JL, Newman SA, Choy KHC, Tiwari D, Yap C, Senyschyn D, Banks WA, Nicolazzo JA. Cognitive benefits of lithium chloride in APP/PS1 mice are associated with enhanced brain clearance of β-amyloid. Brain Behav Immun 2018; 70:36-47. [PMID: 29545118 DOI: 10.1016/j.bbi.2018.03.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 03/01/2018] [Accepted: 03/11/2018] [Indexed: 12/30/2022] Open
Abstract
Epidemiological evidence suggests that people with bipolar disorder prescribed lithium exhibit a lower risk of Alzheimer's disease (AD) relative to those prescribed other mood-stabilizing medicines. Lithium chloride (LiCl) reduces brain β-amyloid (Aβ) levels, and the brain clearance of Aβ is reduced in AD. Therefore, the purpose of this study was to assess whether the cognitive benefits of LiCl are associated with enhanced brain clearance of exogenously-administered Aβ. The brain clearance of intracerebroventricularly (icv) administered 125I-Aβ42 was assessed in male Swiss outbred mice administered daily oral NaCl or LiCl (300 mg/kg for 21 days). LiCl exhibited a 31% increase in the brain clearance of 125I-Aβ42 over 10 min, which was associated with a 1.6-fold increase in brain microvascular expression of the blood-brain barrier efflux transporter low density lipoprotein receptor-related protein 1 (LRP1) and increased cerebrospinal fluid (CSF) bulk-flow. 8-month-old female wild type (WT) and APP/PS1 mice were also administered daily NaCl or LiCl for 21 days, which was followed by cognitive assessment by novel object recognition and water maze, and measurement of soluble Aβ42, plaque-associated Aβ42, and brain efflux of 125I-Aβ42. LiCl treatment restored the long-term spatial memory deficit observed in APP/PS1 mice as assessed by the water maze (back to similar levels of escape latency as WT mice), but the short-term memory deficit remained unaffected by LiCl treatment. While LiCl did not affect plaque-associated Aβ42, soluble Aβ42 levels were reduced by 49.9% in APP/PS1 mice receiving LiCl. The brain clearance of 125I-Aβ42 decreased by 27.8% in APP/PS1 mice, relative to WT mice, however, LiCl treatment restored brain 125I-Aβ42 clearance in APP/PS1 mice to a rate similar to that observed in WT mice. These findings suggest that the cognitive benefits and brain Aβ42 lowering effects of LiCl are associated with enhanced brain clearance of Aβ42, possibly via brain microvascular LRP1 upregulation and increased CSF bulk-flow, identifying a novel mechanism of protection by LiCl for the treatment of AD.
Collapse
Affiliation(s)
- Yijun Pan
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Jennifer L Short
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Stephanie A Newman
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Kwok H C Choy
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Durgesh Tiwari
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Christopher Yap
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Danielle Senyschyn
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - William A Banks
- Geriatric Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA, USA; Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA
| | - Joseph A Nicolazzo
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia.
| |
Collapse
|
28
|
Chiang ACA, Fowler SW, Savjani RR, Hilsenbeck SG, Wallace CE, Cirrito JR, Das P, Jankowsky JL. Combination anti-Aβ treatment maximizes cognitive recovery and rebalances mTOR signaling in APP mice. J Exp Med 2018; 215:1349-1364. [PMID: 29626114 PMCID: PMC5940263 DOI: 10.1084/jem.20171484] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 01/03/2018] [Accepted: 03/07/2018] [Indexed: 01/01/2023] Open
Abstract
Chiang et al. show that combining two complementary approaches for Aβ reduction improved cognitive function in a mouse model of amyloidosis relative to either treatment alone. Efficacy corresponded with restoration of mTOR signaling, TFEB expression, and autophagic flux, suggesting additional targets for future polytherapy in AD. Drug development for Alzheimer’s disease has endeavored to lower amyloid β (Aβ) by either blocking production or promoting clearance. The benefit of combining these approaches has been examined in mouse models and shown to improve pathological measures of disease over single treatment; however, the impact on cellular and cognitive functions affected by Aβ has not been tested. We used a controllable APP transgenic mouse model to test whether combining genetic suppression of Aβ production with passive anti-Aβ immunization improved functional outcomes over either treatment alone. Compared with behavior before treatment, arresting further Aβ production (but not passive immunization) was sufficient to stop further decline in spatial learning, working memory, and associative memory, whereas combination treatment reversed each of these impairments. Cognitive improvement coincided with resolution of neuritic dystrophy, restoration of synaptic density surrounding deposits, and reduction of hyperactive mammalian target of rapamycin signaling. Computational modeling corroborated by in vivo microdialysis pointed to the reduction of soluble/exchangeable Aβ as the primary driver of cognitive recovery.
Collapse
Affiliation(s)
- Angie C A Chiang
- Department of Neuroscience, Baylor College of Medicine, Houston, TX
| | | | | | - Susan G Hilsenbeck
- Department of Medicine, Lester and Sue Smith Breast Center, Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX
| | - Clare E Wallace
- Department of Neurology, Knight Alzheimer's Disease Research Center, Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO
| | - John R Cirrito
- Department of Neurology, Knight Alzheimer's Disease Research Center, Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO
| | - Pritam Das
- Department of Neuroscience, Mayo Clinic Florida, Jacksonville, FL
| | - Joanna L Jankowsky
- Department of Neuroscience, Baylor College of Medicine, Houston, TX .,Departments of Neurology, Neurosurgery, and Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX
| |
Collapse
|
29
|
Hoeijmakers L, Amelianchik A, Verhaag F, Kotah J, Lucassen PJ, Korosi A. Early-Life Stress Does Not Aggravate Spatial Memory or the Process of Hippocampal Neurogenesis in Adult and Middle-Aged APP/PS1 Mice. Front Aging Neurosci 2018; 10:61. [PMID: 29563870 PMCID: PMC5845884 DOI: 10.3389/fnagi.2018.00061] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 02/20/2018] [Indexed: 01/13/2023] Open
Abstract
Life-time experiences are thought to influence the risk to develop the neurodegenerative disorder Alzheimer’s disease (AD). In particular, early-life stress (ES) may modulate the onset and progression of AD. There is recent evidence by our group and others that AD-related neuropathological progression and the associated neuroimmune responses are modulated by ES in the classic APPswe/PS1dE9 mouse model for AD. We here extend our previous study on ES mediated modulation of neuropathology and neuroinflammation and address in the same cohort of mice whether ES accelerates and/or aggravates AD-induced cognitive decline and alterations in the process of adult hippocampal neurogenesis (AHN), a form of brain plasticity. Chronic ES was induced by limiting bedding and nesting material during the first postnatal week and is known to induce cognitive deficits by 4 months in wild type (WT) mice. The onset of cognitive decline in APP/PS1 mice generally starts around 6 months of age. We here tested mice at ages 2–4 months to study acceleration and at ages 8–10 months for aggravation of the APP/PS1 phenotype. ES-exposed WT and APP/PS1 mice were able to perform the object recognition (ORT) and location tasks (OLT) at 2 months of age. Interestingly, at 3 months, ES induced impairments in the performance of the OLT in WT, but not in APP/PS1 mice. APP/PS1 mice exhibited alterations in hippocampal cell proliferation and differentiation, but ES exposure did not further change this. At 9 months, APP/PS1 mice exhibited impaired performance in the Morris Water Maze (MWM) task, as well as reductions in markers of the AHN process, which were not further modulated by ES exposure. In addition, we observed a so far unreported hyperactivity in ES-exposed mice at 8 months of age, which hampered assessment of cognitive functions in the ORT and OLT. In conclusion, while ES has been reported to modulate AD neuropathology and neuroinflammation before, it failed to accelerate or aggravate the decline in cognition or the process of AHN in APP/PS1 mice at ages 2–4 and 8–10 months. Future studies are needed to unravel how ES might affect the vulnerability to develop AD.
Collapse
Affiliation(s)
- Lianne Hoeijmakers
- Brain Plasticity Group, Center for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
| | - Anna Amelianchik
- Brain Plasticity Group, Center for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
| | - Fleur Verhaag
- Brain Plasticity Group, Center for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
| | - Janssen Kotah
- Brain Plasticity Group, Center for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
| | - Paul J Lucassen
- Brain Plasticity Group, Center for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
| | - A Korosi
- Brain Plasticity Group, Center for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
30
|
Chiang ACA, Fowler SW, Reddy R, Pletnikova O, Troncoso JC, Sherman MA, Lesne SE, Jankowsky JL. Discrete Pools of Oligomeric Amyloid-β Track with Spatial Learning Deficits in a Mouse Model of Alzheimer Amyloidosis. THE AMERICAN JOURNAL OF PATHOLOGY 2018; 188:739-756. [PMID: 29248459 PMCID: PMC5840490 DOI: 10.1016/j.ajpath.2017.11.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 10/24/2017] [Accepted: 11/02/2017] [Indexed: 01/08/2023]
Abstract
Despite increasing appreciation that oligomeric amyloid-β (Aβ) may contribute to cognitive decline of Alzheimer disease, defining the most critical forms has been thwarted by the changeable nature of these aggregates and the varying methods used for detection. Herein, using a broad approach, we quantified Aβ oligomers during the evolution of cognitive deficits in an aggressive model of Aβ amyloidosis. Amyloid precursor protein/tetracycline transactivator mice underwent behavioral testing at 3, 6, 9, and 12 months of age to evaluate spatial learning and memory, followed by histologic assessment of amyloid burden and biochemical characterization of oligomeric Aβ species. Transgenic mice displayed progressive impairments in acquisition and immediate recall of the trained platform location. Biochemical analysis of cortical extracts from behaviorally tested mice revealed distinct age-dependent patterns of accumulation in multiple oligomeric species. Dot blot analysis demonstrated that nonfibrillar Aβ oligomers were highly soluble and extracted into a fraction enriched for extracellular proteins, whereas prefibrillar species required high-detergent conditions to retrieve, consistent with membrane localization. Low-detergent extracts tested by 82E1 enzyme-linked immunosorbent assay confirmed the presence of bona fide Aβ oligomers, whereas immunoprecipitation-Western blotting using high-detergent extracts revealed a variety of SDS-stable low-n species. These findings show that different Aβ oligomers vary in solubility, consistent with distinct localization, and identify nonfibrillar Aβ oligomer-positive aggregates as tracking most closely with cognitive decline in this model.
Collapse
Affiliation(s)
- Angie C A Chiang
- Department of Neuroscience, Huffington Center on Aging, Baylor College of Medicine, Houston, Texas
| | - Stephanie W Fowler
- Department of Neuroscience, Huffington Center on Aging, Baylor College of Medicine, Houston, Texas
| | - Rohit Reddy
- Department of Neuroscience, Huffington Center on Aging, Baylor College of Medicine, Houston, Texas; Department of Cognitive Science, Rice University, Houston, Texas
| | - Olga Pletnikova
- Division of Neuropathology, Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Juan C Troncoso
- Division of Neuropathology, Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Mathew A Sherman
- Department of Neuroscience, N. Bud Grossman Center for Memory Research and Care, Institute for Translational Neuroscience, University of Minnesota, Minneapolis, Minnesota
| | - Sylvain E Lesne
- Department of Neuroscience, N. Bud Grossman Center for Memory Research and Care, Institute for Translational Neuroscience, University of Minnesota, Minneapolis, Minnesota
| | - Joanna L Jankowsky
- Department of Neuroscience, Huffington Center on Aging, Baylor College of Medicine, Houston, Texas; Department of Neurology and Neurosurgery, Huffington Center on Aging, Baylor College of Medicine, Houston, Texas.
| |
Collapse
|
31
|
Jankowsky JL, Zheng H. Practical considerations for choosing a mouse model of Alzheimer's disease. Mol Neurodegener 2017; 12:89. [PMID: 29273078 PMCID: PMC5741956 DOI: 10.1186/s13024-017-0231-7] [Citation(s) in RCA: 277] [Impact Index Per Article: 39.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Accepted: 12/07/2017] [Indexed: 01/06/2023] Open
Abstract
Alzheimer’s disease (AD) is behaviorally identified by progressive memory impairment and pathologically characterized by the triad of β-amyloid plaques, neurofibrillary tangles, and neurodegeneration. Genetic mutations and risk factors have been identified that are either causal or modify the disease progression. These genetic and pathological features serve as basis for the creation and validation of mouse models of AD. Efforts made in the past quarter-century have produced over 100 genetically engineered mouse lines that recapitulate some aspects of AD clinicopathology. These models have been valuable resources for understanding genetic interactions that contribute to disease and cellular reactions that are engaged in response. Here we focus on mouse models that have been widely used stalwarts of the field or that are recently developed bellwethers of the future. Rather than providing a summary of each model, we endeavor to compare and contrast the genetic approaches employed and to discuss their respective advantages and limitations. We offer a critical account of the variables which may contribute to inconsistent findings and the factors that should be considered when choosing a model and interpreting the results. We hope to present an insightful review of current AD mouse models and to provide a practical guide for selecting models best matched to the experimental question at hand.
Collapse
Affiliation(s)
- Joanna L Jankowsky
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, 77030, USA. .,Department of Neurology, Baylor College of Medicine, Houston, TX, 77030, USA. .,Department of Neurosurgery, Baylor College of Medicine, Houston, TX, 77030, USA. .,Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA. .,Huffington Center on Aging, Baylor College of Medicine, Houston, TX, 77030, USA.
| | - Hui Zheng
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, 77030, USA. .,Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA. .,Huffington Center on Aging, Baylor College of Medicine, Houston, TX, 77030, USA. .,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA.
| |
Collapse
|
32
|
Clayton KA, Van Enoo AA, Ikezu T. Alzheimer's Disease: The Role of Microglia in Brain Homeostasis and Proteopathy. Front Neurosci 2017; 11:680. [PMID: 29311768 PMCID: PMC5733046 DOI: 10.3389/fnins.2017.00680] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Accepted: 11/21/2017] [Indexed: 01/15/2023] Open
Abstract
Brain aging is central to late-onset Alzheimer's disease (LOAD), although the mechanisms by which it occurs at protein or cellular levels are not fully understood. Alzheimer's disease is the most common proteopathy and is characterized by two unique pathologies: senile plaques and neurofibrillary tangles, the former accumulating earlier than the latter. Aging alters the proteostasis of amyloid-β peptides and microtubule-associated protein tau, which are regulated in both autonomous and non-autonomous manners. Microglia, the resident phagocytes of the central nervous system, play a major role in the non-autonomous clearance of protein aggregates. Their function is significantly altered by aging and neurodegeneration. This is genetically supported by the association of microglia-specific genes, TREM2 and CD33, and late onset Alzheimer's disease. Here, we propose that the functional characterization of microglia, and their contribution to proteopathy, will lead to a new therapeutic direction in Alzheimer's disease research.
Collapse
Affiliation(s)
- Kevin A Clayton
- Department of Pharmacology and Experimental Therapeutics, Medical School, Boston University, Boston, MA, United States
| | - Alicia A Van Enoo
- Department of Pharmacology and Experimental Therapeutics, Medical School, Boston University, Boston, MA, United States
| | - Tsuneya Ikezu
- Department of Pharmacology and Experimental Therapeutics, Medical School, Boston University, Boston, MA, United States.,Department of Neurology, Medical School, Boston University, Boston, MA, United States
| |
Collapse
|
33
|
Sukoff Rizzo SJ, Crawley JN. Behavioral Phenotyping Assays for Genetic Mouse Models of Neurodevelopmental, Neurodegenerative, and Psychiatric Disorders. Annu Rev Anim Biosci 2017; 5:371-389. [PMID: 28199172 DOI: 10.1146/annurev-animal-022516-022754] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Animal models offer heuristic research tools to understand the causes of human diseases and to identify potential treatments. With rapidly evolving genetic engineering technologies, mutations identified in a human disorder can be generated in the mouse genome. Phenotypic outcomes of the mutation are then explicated to confirm hypotheses about causes and to discover effective therapeutics. Most neurodevelopmental, neurodegenerative, and psychiatric disorders are diagnosed primarily by their prominent behavioral symptoms. Mouse behavioral assays analogous to the human symptoms have been developed to analyze the consequences of mutations and to evaluate proposed therapeutics preclinically. Here we describe the range of mouse behavioral tests available in the established behavioral neuroscience literature, along with examples of their translational applications. Concepts presented have been successfully used in other species, including flies, worms, fish, rats, pigs, and nonhuman primates. Identical strategies can be employed to test hypotheses about environmental causes and gene × environment interactions.
Collapse
Affiliation(s)
| | - Jacqueline N Crawley
- MIND Institute, Department of Psychiatry and Behavioral Sciences, University of California, Davis School of Medicine, Sacramento, California 95817;
| |
Collapse
|
34
|
Conditional Deletion of Prnp Rescues Behavioral and Synaptic Deficits after Disease Onset in Transgenic Alzheimer's Disease. J Neurosci 2017; 37:9207-9221. [PMID: 28842420 PMCID: PMC5607466 DOI: 10.1523/jneurosci.0722-17.2017] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 07/17/2017] [Accepted: 08/11/2017] [Indexed: 01/09/2023] Open
Abstract
Biochemical and genetic evidence implicate soluble oligomeric amyloid-β (Aβo) in triggering Alzheimer's disease (AD) pathophysiology. Moreover, constitutive deletion of the Aβo-binding cellular prion protein (PrPC) prevents development of memory deficits in APPswe/PS1ΔE9 mice, a model of familial AD. Here, we define the role of PrPC to rescue or halt established AD endophenotypes in a therapeutic disease-modifying time window after symptom onset. Deletion of Prnp at either 12 or 16 months of age fully reverses hippocampal synapse loss and completely rescues preexisting behavioral deficits by 17 months. In contrast, but consistent with a neuronal function for Aβo/PrPC signaling, plaque density, microgliosis, and astrocytosis are not altered. Degeneration of catecholaminergic neurons remains unchanged by PrPC reduction after disease onset. These results define the potential of targeting PrPC as a disease-modifying therapy for certain AD-related phenotypes after disease onset.SIGNIFICANCE STATEMENT The study presented here further elucidates our understanding of the soluble oligomeric amyloid-β-Aβo-binding cellular prion protein (PrPC) signaling pathway in a familial form of Alzheimer's disease (AD) by implicating PrPC as a potential therapeutic target for AD. In particular, genetic deletion of Prnp rescued several familial AD (FAD)-associated phenotypes after disease onset in a mouse model of FAD. This study underscores the therapeutic potential of PrPC deletion given that patients already present symptoms at the time of diagnosis.
Collapse
|
35
|
Miedel CJ, Patton JM, Miedel AN, Miedel ES, Levenson JM. Assessment of Spontaneous Alternation, Novel Object Recognition and Limb Clasping in Transgenic Mouse Models of Amyloid-β and Tau Neuropathology. J Vis Exp 2017. [PMID: 28605382 PMCID: PMC5608159 DOI: 10.3791/55523] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Here we describe a staged, behavioral testing approach that can be used to screen for compounds that exhibit in vivo efficacy on cognitive and functional motor behaviors in transgenic mouse models of β-amyloidosis and tauopathy. The paradigm includes tests for spontaneous alternation in a Y-maze, novel object recognition, and limb clasping. These tests were selected because they: 1) interrogate function of cognitive or motor domains and the correlate neural circuitry relevant to the human disease state, 2) have clearly defined endpoints, 3) have easily implementable quality control checks, 4) can be run in a moderate throughput format, and 5) require little intervention by the investigator. These methods are designed for investigators looking to screen compounds for activity in short-term and working memory tasks, or functional motor behaviors associated with Alzheimer's disease mouse models. The methods described here use behavioral tests that engage a number of different brain regions including hippocampus and various cortical areas. Investigators that desire cognitive tests that specifically assess cognition mediated by a single brain region could use these techniques to supplement other behavioral tests.
Collapse
|
36
|
Melnikova T, Park D, Becker L, Lee D, Cho E, Sayyida N, Tian J, Bandeen-Roche K, Borchelt DR, Savonenko AV. Sex-related dimorphism in dentate gyrus atrophy and behavioral phenotypes in an inducible tTa:APPsi transgenic model of Alzheimer's disease. Neurobiol Dis 2016; 96:171-185. [PMID: 27569580 DOI: 10.1016/j.nbd.2016.08.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 07/07/2016] [Accepted: 08/16/2016] [Indexed: 02/07/2023] Open
Abstract
Sex differences are a well-known phenomenon in Alzheimer's disease (AD), with women having a higher risk for AD than men. Many AD mouse models display a similar sex-dependent pattern, with females showing earlier cognitive deficits and more severe neuropathology than males. However, whether those differences are relevant to human disease is unclear. Here we show that in AD mouse models that overexpress amyloid precursor protein (APP) under control of the prion protein promoter (PrP), female transgenic mice have higher APP expression than males, complicating interpretations of the role of sex-related factors in such models. By contrast, in a tTa:APPsi model, in which APP expression is driven by the tetracycline transactivator (tTa) from the CaMKIIα promoter, there are no sex-related differences in expression or processing of APP. In addition, the levels of Aβ dimers and tetramers, as well as Aβ peptide accumulation, are similar between sexes. Behavioral testing demonstrated that both male and female tTa:APPsi mice develop age-dependent deficits in spatial recognition memory and conditional freezing to context. These cognitive deficits were accompanied by habituation-associated hyperlocomotion and startle hyper-reactivity. Significant sex-related dimorphisms were observed, due to females showing earlier onsets of the deficits in conditioned freezing and hyperlocomotion. In addition, tTa:APPsi males but not females demonstrated a lack of novelty-induced activation. Both males and females showed atrophy of the dentate gyrus (DG) of the dorsal hippocampus, associated with widening of the pyramidal layer of the CA1 area in both sexes. Ventral DG was preserved. Sex-related differences were limited to the DG, with females showing more advanced degeneration than males. Collectively, our data show that the tTa:APPsi model is characterized by a lack of sex-related differences in APP expression, making this model useful in deciphering the mechanisms of sex differences in AD pathogenesis. Sex-related dimorphisms observed in this model under conditions of equal APP expression between sexes suggest a higher sensitivity of females to the effects of APP and/or Aβ production.
Collapse
Affiliation(s)
- Tatiana Melnikova
- Department of Pathology, The Johns Hopkins University School of Medicine, 720 Rutland Ave, Ross 558, Baltimore, MD 21205, USA.
| | - DaMin Park
- Department of Pathology, The Johns Hopkins University School of Medicine, 720 Rutland Ave, Ross 558, Baltimore, MD 21205, USA.
| | - Lauren Becker
- Department of Pathology, The Johns Hopkins University School of Medicine, 720 Rutland Ave, Ross 558, Baltimore, MD 21205, USA.
| | - Deidre Lee
- Department of Pathology, The Johns Hopkins University School of Medicine, 720 Rutland Ave, Ross 558, Baltimore, MD 21205, USA.
| | - Eugenia Cho
- Department of Pathology, The Johns Hopkins University School of Medicine, 720 Rutland Ave, Ross 558, Baltimore, MD 21205, USA.
| | - Nuzhat Sayyida
- Department of Pathology, The Johns Hopkins University School of Medicine, 720 Rutland Ave, Ross 558, Baltimore, MD 21205, USA.
| | - Jing Tian
- Department of Biostatistics, School of Public Health, The Johns Hopkins University, 615 N Wolfe St E3527, Baltimore, MD 21205, USA.
| | - Karen Bandeen-Roche
- Department of Biostatistics, School of Public Health, The Johns Hopkins University, 615 N Wolfe St E3527, Baltimore, MD 21205, USA.
| | - David R Borchelt
- Department of Neuroscience, Center for Translational Research in Neurodegenerative Disease, McKnight Brain Institute, University of Florida, 100 Newell Drive, Gainesville, FL 32610, USA.
| | - Alena V Savonenko
- Department of Pathology, The Johns Hopkins University School of Medicine, 720 Rutland Ave, Ross 558, Baltimore, MD 21205, USA.
| |
Collapse
|
37
|
Onos KD, Sukoff Rizzo SJ, Howell GR, Sasner M. Toward more predictive genetic mouse models of Alzheimer's disease. Brain Res Bull 2015; 122:1-11. [PMID: 26708939 DOI: 10.1016/j.brainresbull.2015.12.003] [Citation(s) in RCA: 114] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2015] [Revised: 12/09/2015] [Accepted: 12/14/2015] [Indexed: 01/14/2023]
Abstract
Genetic mouse models for Alzheimer's disease (AD) have been widely used to understand aspects of the biology of the disease, but have had limited success in translating these findings to the clinic. In this review, we discuss the benefits and limitations of existing genetic models and recent advances in technologies (including high throughput sequencing and genome editing) that promise more predictive models. We summarize widely used biomarkers and behavioral tests for mouse models of AD and highlight best practices that will maximize translatability of preclinical findings.
Collapse
Affiliation(s)
| | | | - Gareth R Howell
- The Jackson Laboratory, Bar Harbor, ME, United States; Graduate Program in Genetics, Sackler School of Graduate Biomedical Sciences, Tufts University, 136 Harrison Avenue, Boston, MA, United States.
| | | |
Collapse
|
38
|
Cayzac S, Mons N, Ginguay A, Allinquant B, Jeantet Y, Cho YH. Altered hippocampal information coding and network synchrony in APP-PS1 mice. Neurobiol Aging 2015; 36:3200-3213. [PMID: 26391642 DOI: 10.1016/j.neurobiolaging.2015.08.023] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Revised: 08/15/2015] [Accepted: 08/25/2015] [Indexed: 10/23/2022]
Abstract
β-amyloid is hypothesized to harm neural function and cognitive abilities by perturbing synaptic transmission and plasticity in Alzheimer's disease (AD). To assess the impact of this pathology on hippocampal neurons' ability to encode flexibly environmental information across learning, we performed electrophysiological recordings of CA1 hippocampal unit activity in AD transgenic mice as they acquired an action-reward association in a spatially defined environment; the behavioral task enabled the precise timing of discrete and intentional behaviors of the animal. We found that the proportion of behavioral task-sensitive cells in wild-type (WT) mice typically increased, whereas the proportion of place cells decreased with learning. In AD mice, this learning-dependent change of cell-discharge patterns was absent, and cells exhibited similar firings from the beginning to firings attained at the late learning stage in wild-type cells. These inflexible hippocampal representations of task and space throughout learning are accompanied by remarkable alterations of local oscillatory activity in the theta and ultra-fast ripple frequencies as well as learning abilities. The present data offer new insights into the in vivo cellular and network processes by which β-amyloid and other AD mutations may exert its harmful effects to produce cognitive and behavioral impairments in early stage of AD.
Collapse
Affiliation(s)
- Sebastien Cayzac
- Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, CNRS UMR 5287 Pessac Cedex, France; University of Bordeaux, Pessac Cedex, France
| | - Nicole Mons
- Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, CNRS UMR 5287 Pessac Cedex, France; University of Bordeaux, Pessac Cedex, France
| | - Antonin Ginguay
- Laboratoire INSERM, UMR 894-Université Paris Descartes, Sorbonne Paris Cité, Faculté de Médecine, Paris, France; Service de Biochimie, Hôpitaux Universitaires Paris-Centre, Hôpital Cochin, AP-HP, Paris, France
| | - Bernadette Allinquant
- Laboratoire INSERM, UMR 894-Université Paris Descartes, Sorbonne Paris Cité, Faculté de Médecine, Paris, France
| | - Yannick Jeantet
- Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, CNRS UMR 5287 Pessac Cedex, France; University of Bordeaux, Pessac Cedex, France
| | - Yoon H Cho
- Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, CNRS UMR 5287 Pessac Cedex, France; University of Bordeaux, Pessac Cedex, France.
| |
Collapse
|
39
|
Mably AJ, Liu W, Mc Donald JM, Dodart JC, Bard F, Lemere CA, O'Nuallain B, Walsh DM. Anti-Aβ antibodies incapable of reducing cerebral Aβ oligomers fail to attenuate spatial reference memory deficits in J20 mice. Neurobiol Dis 2015. [PMID: 26215784 DOI: 10.1016/j.nbd.2015.07.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Compelling genetic evidence links the amyloid precursor protein (APP) to Alzheimer's disease (AD). A leading hypothesis proposes that a small amphipathic fragment of APP, the amyloid β-protein (Aβ), self-associates to form soluble assemblies loosely referred to as "oligomers" and that these are primary mediators of synaptic dysfunction. As such, Aβ, and specifically Aβ oligomers, are targets for disease modifying therapies. Currently, the most advanced experimental treatment for AD relies on the use of anti-Aβ antibodies. In this study, we tested the ability of the monomer-preferring antibody, m266 and a novel aggregate-preferring antibody, 1C22, to attenuate spatial reference memory impairments in J20 mice. Chronic treatment with m266 resulted in a ~70-fold increase in Aβ detected in the bloodstream, and a ~50% increase in water-soluble brain Aβ--and in both cases Aβ was bound to m266. In contrast, 1C22 increased the levels of free Aβ in the bloodstream, and bound to amyloid deposits in J20 brain. However, neither 1C22 nor m266 attenuated the cognitive deficits evident in 12month old J20 mice. Moreover, both antibodies failed to alter the levels of soluble Aβ oligomers in J20 brain. These results suggest that Aβ oligomers may mediate the behavioral deficits seen in J20 mice and highlight the need for the development of aggregate-preferring antibodies that can reach the brain in sufficient levels to neutralize bioactive Aβ oligomers. Aside from the lack of positive effect of m266 and 1C22 on cognition, a substantial number of deaths occurred in m266- and 1C22-immunized J20 mice. These fatalities were specific to anti-Aβ antibodies and to the J20 mouse line since treatment of wild type or PDAPP mice with these antibodies did not cause any deaths. These and other recent results indicate that J20 mice are particularly susceptible to targeting of the APP/Aβ/tau axis. Notwithstanding the specificity of fatalities for J20 mice, it is worrying that the murine precursor (m266) of a lead experimental therapeutic, Solanezumab, did not engage with putatively pathogenic Aβ oligomers.
Collapse
Affiliation(s)
- Alexandra J Mably
- Laboratory for Neurodegenerative Research, Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Institutes of Medicine, 77 Avenue Louis Pasteur, Boston, MA 02115, United States
| | - Wen Liu
- Laboratory for Neurodegenerative Research, Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Institutes of Medicine, 77 Avenue Louis Pasteur, Boston, MA 02115, United States
| | - Jessica M Mc Donald
- Laboratory for Neurodegenerative Research, Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Institutes of Medicine, 77 Avenue Louis Pasteur, Boston, MA 02115, United States
| | - Jean-Cosme Dodart
- NeuroBehaviour Laboratory Core, Harvard NeuroDiscovery Center, 77 Avenue Louis Pasteur, Boston, MA 02115, United States
| | - Frédérique Bard
- Janssen Alzheimer Immunotherapy Research & Development 700 Gateway Boulevard, South San Francisco, CA 94080, United States
| | - Cynthia A Lemere
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Institutes of Medicine, 77 Avenue Louis Pasteur, Boston, MA 02115, United States
| | - Brian O'Nuallain
- Laboratory for Neurodegenerative Research, Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Institutes of Medicine, 77 Avenue Louis Pasteur, Boston, MA 02115, United States
| | - Dominic M Walsh
- Laboratory for Neurodegenerative Research, Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Institutes of Medicine, 77 Avenue Louis Pasteur, Boston, MA 02115, United States.
| |
Collapse
|
40
|
Salgado-Puga K, Prado-Alcalá RA, Peña-Ortega F. Amyloid β Enhances Typical Rodent Behavior While It Impairs Contextual Memory Consolidation. Behav Neurol 2015; 2015:526912. [PMID: 26229236 PMCID: PMC4502279 DOI: 10.1155/2015/526912] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 06/04/2015] [Indexed: 01/22/2023] Open
Abstract
Alzheimer's disease (AD) is associated with an early hippocampal dysfunction, which is likely induced by an increase in soluble amyloid beta peptide (Aβ). This hippocampal failure contributes to the initial memory deficits observed both in patients and in AD animal models and possibly to the deterioration in activities of daily living (ADL). One typical rodent behavior that has been proposed as a hippocampus-dependent assessment model of ADL in mice and rats is burrowing. Despite the fact that AD transgenic mice show some evidence of reduced burrowing, it has not been yet determined whether or not Aβ can affect this typical rodent behavior and whether this alteration correlates with the well-known Aβ-induced memory impairment. Thus, the purpose of this study was to test whether or not Aβ affects burrowing while inducing hippocampus-dependent memory impairment. Surprisingly, our results show that intrahippocampal application of Aβ increases burrowing while inducing memory impairment. We consider that this Aβ-induced increase in burrowing might be associated with a mild anxiety state, which was revealed by increased freezing behavior in the open field, and conclude that Aβ-induced hippocampal dysfunction is reflected in the impairment of ADL and memory, through mechanisms yet to be determined.
Collapse
Affiliation(s)
- Karla Salgado-Puga
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, 76230 Juriquilla, Querétaro, QRO, Mexico
| | - Roberto A. Prado-Alcalá
- Departamento de Neurobiología Conductual y Cognitiva, Instituto de Neurobiología, Universidad Nacional Autónoma de México, 76230 Juriquilla, Querétaro, QRO, Mexico
| | - Fernando Peña-Ortega
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, 76230 Juriquilla, Querétaro, QRO, Mexico
| |
Collapse
|
41
|
Lysenko LV, Kim J, Henry C, Tyrtyshnaia A, Kohnz RA, Madamba F, Simon GM, Kleschevnikova NE, Nomura DK, Ezekowitz R.AB, Kleschevnikov AM. Monoacylglycerol lipase inhibitor JZL184 improves behavior and neural properties in Ts65Dn mice, a model of down syndrome. PLoS One 2014; 9:e114521. [PMID: 25474204 PMCID: PMC4256450 DOI: 10.1371/journal.pone.0114521] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Accepted: 11/10/2014] [Indexed: 12/13/2022] Open
Abstract
Genetic alterations or pharmacological treatments affecting endocannabinoid signaling have profound effects on synaptic and neuronal properties and, under certain conditions, may improve higher brain functions. Down syndrome (DS), a developmental disorder caused by triplication of chromosome 21, is characterized by deficient cognition and inevitable development of the Alzheimer disease (AD) type pathology during aging. Here we used JZL184, a selective inhibitor of monoacylglycerol lipase (MAGL), to examine the effects of chronic MAGL inhibition on the behavioral, biochemical, and synaptic properties of aged Ts65Dn mice, a genetic model of DS. In both Ts65Dn mice and their normosomic (2N) controls, JZL184-treatment increased brain levels of 2-arachidonoylglycerol (2-AG) and decreased levels of its metabolites such as arachidonic acid, prostaglandins PGD2, PGE2, PGFα, and PGJ2. Enhanced spontaneous locomotor activity of Ts65Dn mice was reduced by the JZL184-treatement to the levels observed in 2N animals. Deficient long-term memory was also improved, while short-term and working types of memory were unaffected. Furthermore, reduced hippocampal long-term potentiation (LTP) was increased in the JZL184-treated Ts65Dn mice to the levels observed in 2N mice. Interestingly, changes in synaptic plasticity and behavior were not observed in the JZL184-treated 2N mice suggesting that the treatment specifically attenuated the defects in the trisomic animals. The JZL184-treatment also reduced the levels of Aβ40 and Aβ42, but had no effect on the levels of full length APP and BACE1 in both Ts65Dn and 2N mice. These data show that chronic MAGL inhibition improves the behavior and brain functions in a DS model suggesting that pharmacological targeting of MAGL may be considered as a perspective new approach for improving cognition in DS.
Collapse
Affiliation(s)
- Larisa V. Lysenko
- Department of Neurosciences, University of California San Diego, La Jolla, CA, United States of America
| | - Jeesun Kim
- Department of Neurosciences, University of California San Diego, La Jolla, CA, United States of America
| | - Cassandra Henry
- Abide Therapeutics, Inc., San Diego, CA, United States of America
| | - Anna Tyrtyshnaia
- School of Biomedicine, Far Eastern Federal University, Sukhanova 8, Vladivostok, Russian Federation
| | - Rebecca A. Kohnz
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, California, United States of America
| | - Francisco Madamba
- Department of Neurosciences, University of California San Diego, La Jolla, CA, United States of America
| | - Gabriel M. Simon
- Abide Therapeutics, Inc., San Diego, CA, United States of America
| | - Natalia E. Kleschevnikova
- Department of Neurosciences, University of California San Diego, La Jolla, CA, United States of America
| | - Daniel K. Nomura
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, California, United States of America
| | | | - Alexander M. Kleschevnikov
- Department of Neurosciences, University of California San Diego, La Jolla, CA, United States of America
- * E-mail:
| |
Collapse
|
42
|
Cerebral vascular leak in a mouse model of amyloid neuropathology. J Cereb Blood Flow Metab 2014; 34:1646-54. [PMID: 25052555 PMCID: PMC4269723 DOI: 10.1038/jcbfm.2014.125] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Revised: 05/28/2014] [Accepted: 06/15/2014] [Indexed: 11/08/2022]
Abstract
In Alzheimer's disease (AD), there is increasing evidence of blood-brain barrier (BBB) compromise, usually observed as 'microbleeds' correlated with amyloid plaque deposition and apoE-ɛ4 status, raising the possibility of nanotherapeutic delivery. Molecular probes have been used to study neurovascular leak, but this approach does not adequately estimate vascular permeability of nanoparticles. We therefore characterized cerebrovascular leaks in live APP+ transgenic animals using a long circulating ∼100 nm nanoparticle computed tomography (CT) contrast agent probe. Active leaks fell into four categories: (1) around the dorsomedial cerebellar artery (DMCA), (2) around other major vessels, (3) nodular leaks in the cerebral cortex, and (4) diffuse leaks. Cortical leaks were uniformly more frequent in the transgenic animals than in age-matched controls. Leaks around vessels other than the DMCA were more frequent in older transgenics compared with younger ones. All other leaks were equally prevalent across genotypes independent of age. Ten days after injection, 4 to 5 μg of the dose was estimated to be present in the brain, roughly a half of which was in locations other than the leaky choroid plexus, and associated with amyloid deposition in older animals. These results suggest that amyloid deposition and age increase delivery of nanoparticle-borne reagents to the brain, in therapeutically relevant amounts.
Collapse
|
43
|
Genetic modulation of soluble Aβ rescues cognitive and synaptic impairment in a mouse model of Alzheimer's disease. J Neurosci 2014; 34:7871-85. [PMID: 24899710 DOI: 10.1523/jneurosci.0572-14.2014] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
An unresolved debate in Alzheimer's disease (AD) is whether amyloid plaques are pathogenic, causing overt physical disruption of neural circuits, or protective, sequestering soluble forms of amyloid-β (Aβ) that initiate synaptic damage and cognitive decline. Few animal models of AD have been capable of isolating the relative contribution made by soluble and insoluble forms of Aβ to the behavioral symptoms and biochemical consequences of the disease. Here we use a controllable transgenic mouse model expressing a mutant form of amyloid precursor protein (APP) to distinguish the impact of soluble Aβ from that of deposited amyloid on cognitive function and synaptic structure. Rapid inhibition of transgenic APP modulated the production of Aβ without affecting pre-existing amyloid deposits and restored cognitive performance to the level of healthy controls in Morris water maze, radial arm water maze, and fear conditioning. Selective reduction of Aβ with a γ-secretase inhibitor provided similar improvement, suggesting that transgene suppression restored cognition, at least in part by lowering Aβ. Cognitive improvement coincided with reduced levels of synaptotoxic Aβ oligomers, greater synaptic density surrounding amyloid plaques, and increased expression of presynaptic and postsynaptic markers. Together these findings indicate that transient Aβ species underlie much of the cognitive and synaptic deficits observed in this model and demonstrate that significant functional and structural recovery can be attained without removing deposited amyloid.
Collapse
|
44
|
Hunsberger HC, Rudy CC, Weitzner DS, Zhang C, Tosto DE, Knowlan K, Xu Y, Reed MN. Effect size of memory deficits in mice with adult-onset P301L tau expression. Behav Brain Res 2014; 272:181-95. [PMID: 25004446 DOI: 10.1016/j.bbr.2014.06.057] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Revised: 06/24/2014] [Accepted: 06/28/2014] [Indexed: 11/29/2022]
Abstract
Transgenic mice expressing mutations in tau have yielded essential discoveries for Alzheimer's disease. One of the most commonly used tau mouse models is the tet-off Tg(tauP301L)4510 model that expresses P301L human tau driven by the calcium-calmodulin kinase IIα (CaMKIIα) promoter system. Tau expression in this model is regulatable, allowing for suppression of mutant tau expression until adulthood and prevention of possible developmental alterations resulting from P301L tau expression during development. Here, we compared the effect and sample sizes needed for three learning and memory tasks in mice with adult-onset P301L tau expression. Our findings indicate that the Incremental Repeated Acquisition (IRA) and trace fear conditioning tasks, neither of which have previously been published with these mice, were highly sensitive to P301L tau expression, whereas the Morris water maze, the most commonly used task with this model, was the least sensitive. Memory deficits were observed at a time when tau pathology was subtle and prior to readily detectable neuronal loss. Thus, we provide essential information (effect and sample sizes needed) for establishing experimental designs at a time point when memory deficits are likely to go undetected if inadequate sample sizes are used. Our work also suggests the tet-off Tg4510 model provides a way to avoid mutant tau expression during the perinatal and early postnatal stages, thereby preventing possible developmental alterations unrelated to Alzheimer's disease.
Collapse
Affiliation(s)
- Holly C Hunsberger
- Department of Psychology, Behavioral Neuroscience, West Virginia University, Morgantown, WV 26506, USA
| | - Carolyn C Rudy
- Department of Psychology, Behavioral Neuroscience, West Virginia University, Morgantown, WV 26506, USA
| | - Daniel S Weitzner
- Department of Pharmacology and Toxicology, School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY 14214, USA
| | - Chong Zhang
- Department of Pharmacology and Toxicology, School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY 14214, USA
| | - David E Tosto
- Department of Psychology, Behavioral Neuroscience, West Virginia University, Morgantown, WV 26506, USA
| | - Kevin Knowlan
- Department of Psychology, Behavioral Neuroscience, West Virginia University, Morgantown, WV 26506, USA
| | - Ying Xu
- Department of Pharmacology and Toxicology, School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY 14214, USA
| | - Miranda N Reed
- Department of Psychology, Behavioral Neuroscience, West Virginia University, Morgantown, WV 26506, USA; Center for Neuroscience, West Virginia University, Morgantown, WV 26506, USA; Center for Basic and Translational Stroke Research, West Virginia University, Morgantown, WV 26506, USA; Department of Neurology, University of Minnesota, Minneapolis, MN 55455, USA; N. Bud Grossman Center for Memory Research and Care, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
45
|
Genetic suppression of transgenic APP rescues Hypersynchronous network activity in a mouse model of Alzeimer's disease. J Neurosci 2014; 34:3826-40. [PMID: 24623762 DOI: 10.1523/jneurosci.5171-13.2014] [Citation(s) in RCA: 129] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Alzheimer's disease (AD) is associated with an elevated risk for seizures that may be fundamentally connected to cognitive dysfunction. Supporting this link, many mouse models for AD exhibit abnormal electroencephalogram (EEG) activity in addition to the expected neuropathology and cognitive deficits. Here, we used a controllable transgenic system to investigate how network changes develop and are maintained in a model characterized by amyloid β (Aβ) overproduction and progressive amyloid pathology. EEG recordings in tet-off mice overexpressing amyloid precursor protein (APP) from birth display frequent sharp wave discharges (SWDs). Unexpectedly, we found that withholding APP overexpression until adulthood substantially delayed the appearance of epileptiform activity. Together, these findings suggest that juvenile APP overexpression altered cortical development to favor synchronized firing. Regardless of the age at which EEG abnormalities appeared, the phenotype was dependent on continued APP overexpression and abated over several weeks once transgene expression was suppressed. Abnormal EEG discharges were independent of plaque load and could be extinguished without altering deposited amyloid. Selective reduction of Aβ with a γ-secretase inhibitor has no effect on the frequency of SWDs, indicating that another APP fragment or the full-length protein was likely responsible for maintaining EEG abnormalities. Moreover, transgene suppression normalized the ratio of excitatory to inhibitory innervation in the cortex, whereas secretase inhibition did not. Our results suggest that APP overexpression, and not Aβ overproduction, is responsible for EEG abnormalities in our transgenic mice and can be rescued independently of pathology.
Collapse
|
46
|
Zhao R, Fowler SW, Chiang ACA, Ji D, Jankowsky JL. Impairments in experience-dependent scaling and stability of hippocampal place fields limit spatial learning in a mouse model of Alzheimer's disease. Hippocampus 2014; 24:963-78. [PMID: 24752989 DOI: 10.1002/hipo.22283] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Accepted: 04/11/2014] [Indexed: 01/17/2023]
Abstract
Impaired spatial memory characterizes many mouse models for Alzheimer's disease, but we understand little about how this trait arises. Here, we use a transgenic model of amyloidosis to examine the relationship between behavioral performance in tests of spatial navigation and the function of hippocampal place cells. We find that amyloid precursor protein (APP) mice require considerably more training than controls to reach the same level of performance in a water maze task, and recall the trained location less well 24 h later. At a single cell level, place fields from control mice become more stable and spatially restricted with repeated exposure to a new environment, while those in APP mice improve less over time, ultimately producing a spatial code of lower resolution, accuracy, and reliability than controls. The limited refinement of place fields in APP mice likely contributes to their delayed water maze acquisition, and provides evidence for circuit dysfunction underlying cognitive impairment.
Collapse
Affiliation(s)
- Rong Zhao
- Department of Neuroscience, Baylor College of Medicine, Houston, TX
| | | | | | | | | |
Collapse
|
47
|
Wild-type neural progenitors divide and differentiate normally in an amyloid-rich environment. J Neurosci 2013; 33:17335-41. [PMID: 24174666 DOI: 10.1523/jneurosci.1917-13.2013] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Adult neurogenesis is modulated by a balance of extrinsic signals and intrinsic responses that maintain production of new granule cells in the hippocampus. Disorders that disrupt the proliferative niche can impair this process, and alterations in adult neurogenesis have been described in human autopsy tissue and transgenic mouse models of Alzheimer's disease. Because exogenous application of aggregated Aβ peptide is neurotoxic in vitro and extracellular Aβ deposits are the main pathological feature recapitulated by mouse models, cell-extrinsic effects of Aβ accumulation were thought to underlie the breakdown of hippocampal neurogenesis observed in Alzheimer's models. We tested this hypothesis using a bigenic mouse in which transgenic expression of APP was restricted to mature projection neurons. These mice allowed us to examine how wild-type neural progenitor cells responded to high levels of Aβ released from neighboring granule neurons. We find that the proliferation, determination, and survival of hippocampal adult-born granule neurons are unaffected in the APP bigenic mice, despite abundant amyloid pathology and robust neuroinflammation. Our findings suggest that Aβ accumulation is insufficient to impair adult hippocampal neurogenesis, and that factors other than amyloid pathology may account for the neurogenic deficits observed in transgenic models with more widespread APP expression.
Collapse
|
48
|
Hu Y, Hung AC, Cui H, Dawkins E, Bolós M, Foa L, Young KM, Small DH. Role of cystatin C in amyloid precursor protein-induced proliferation of neural stem/progenitor cells. J Biol Chem 2013; 288:18853-62. [PMID: 23671283 DOI: 10.1074/jbc.m112.443671] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The amyloid precursor protein (APP) is well studied for its role in Alzheimer disease. However, little is known about its normal function. In this study, we examined the role of APP in neural stem/progenitor cell (NSPC) proliferation. NSPCs derived from APP-overexpressing Tg2576 transgenic mice proliferated more rapidly than NSPCs from the corresponding background strain (C57Bl/6xSJL) wild-type mice. In contrast, NSPCs from APP knock-out (APP-KO) mice had reduced proliferation rates when compared with NSPCs from the corresponding background strain (C57Bl/6). A secreted factor, identified as cystatin C, was found to be responsible for this effect. Levels of cystatin C were higher in the Tg2576 conditioned medium and lower in the APP-KO conditioned medium. Furthermore, immunodepletion of cystatin C from the conditioned medium completely removed the ability of the conditioned medium to increase NSPC proliferation. The results demonstrate that APP expression stimulates NSPC proliferation and that this effect is mediated via an increase in cystatin C secretion.
Collapse
Affiliation(s)
- Yanling Hu
- Menzies Research Institute Tasmania, University of Tasmania, Hobart, Tasmania 7001, Australia
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Reversible pathologic and cognitive phenotypes in an inducible model of Alzheimer-amyloidosis. J Neurosci 2013; 33:3765-79. [PMID: 23447589 DOI: 10.1523/jneurosci.4251-12.2013] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Transgenic mice that express mutant amyloid precursor protein (APPsi) using tet-Off vector systems provide an alternative model for assessing short- and long-term effects of Aβ-targeting therapies on phenotypes related to the deposition of Alzheimer-type amyloid. Here we use such a model, termed APPsi:tTA, to determine what phenotypes persist in mice with high amyloid burden after new production of APP/Aβ has been suppressed. We find that 12- to 13-month-old APPsi:tTA mice are impaired in cognitive tasks that assess short- and long-term memories. Acutely suppressing new APPsi/Aβ production produced highly significant improvements in performing short-term spatial memory tasks, which upon continued suppression translated to superior performance in more demanding tasks that assess long-term spatial memory and working memory. Deficits in episodic-like memory and cognitive flexibility, however, were more persistent. Arresting mutant APPsi production caused a rapid decline in the brain levels of soluble APP ectodomains, full-length APP, and APP C-terminal fragments. As expected, amyloid deposits persisted after new APP/Aβ production was inhibited, whereas, unexpectedly, we detected persistent pools of solubilizable, relatively mobile, Aβ42. Additionally, we observed persistent levels of Aβ-immunoreactive entities that were of a size consistent with SDS-resistant oligomeric assemblies. Thus, in this model with significant amyloid pathology, a rapid amelioration of cognitive deficits was observed despite persistent levels of oligomeric Aβ assemblies and low, but detectable solubilizable Aβ42 peptides. These findings implicate complex relationships between accumulating Aβ and activities of APP, soluble APP ectodomains, and/or APP C-terminal fragments in mediating cognitive deficits in this model of amyloidosis.
Collapse
|
50
|
Strain background influences neurotoxicity and behavioral abnormalities in mice expressing the tetracycline transactivator. J Neurosci 2012; 32:10574-86. [PMID: 22855807 DOI: 10.1523/jneurosci.0893-12.2012] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The tet-off system has been widely used to create transgenic models of neurological disorders including Alzheimer's, Parkinson's, Huntington's, and prion disease. The utility of this system lies in the assumption that the tetracycline transactivator (TTA) acts as an inert control element and does not contribute to phenotypes under study. Here we report that neuronal expression of TTA can affect hippocampal cytoarchitecture and behavior in a strain-dependent manner. While studying neurodegeneration in two tet-off Alzheimer's disease models, we unexpectedly discovered neuronal loss within the dentate gyrus of single transgenic TTA controls. Granule neurons appeared most sensitive to TTA exposure during postnatal development, and doxycycline treatment during this period was neuroprotective. TTA-induced degeneration could be rescued by moving the transgene onto a congenic C57BL/6J background and recurred on reintroduction of either CBA or C3H/He backgrounds. Quantitative trait analysis of B6C3 F2 TTA mice identified a region on Chromosome 14 that contains a major modifier of the neurodegenerative phenotype. Although B6 mice were resistant to degeneration, they were not ideal for cognitive testing. F1 offspring of TTA C57BL/6J and 129X1/SvJ, FVB/NJ, or DBA/1J showed improved spatial learning, but TTA expression caused subtle differences in contextual fear conditioning on two of these backgrounds, indicating that strain and genotype can interact independently under different behavioral settings. All model systems have limitations that should be recognized and mitigated where possible; our findings stress the importance of mapping the effects caused by TTA alone when working with tet-off models.
Collapse
|