1
|
Asadpour Panbehchouleh F, Amani H, Saeedi M. Menadione Sodium Bisulfite Loaded Rhamnolipid Based Solid Lipid Nanoparticle as Skin Lightener Formulation: A Green Production Beside In Vitro/In Vivo Safety Index Evaluation. Adv Pharm Bull 2024; 14:623-633. [PMID: 39494253 PMCID: PMC11530874 DOI: 10.34172/apb.2024.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 05/13/2024] [Accepted: 06/19/2024] [Indexed: 11/05/2024] Open
Abstract
Purpose In the current investigation, an ultrasonic approach was performed to produce menadione sodium bisulfite-loaded solid lipid nanoparticles (MSB-SLNs) with rhamnolipid as bio-surfactant, which aimed to increase the dermal delivery and anti-pigmentation effect. Methods To achieve optimum delivery for MSB, the impact of the ratio of two surfactants (rhamnolipid: Tween) on nanoparticle attributes and the respective functions were evaluated. In vitro diffusion process, in vitro cytotoxicity assay, determination of melanin content of melanoma cells, L-DOPA auto-oxidation inhibitory test, and skin irritation studies carried out to investigate the suitability of MSB formulation in dermal application. Results The optimized nanoparticles showed an average particle size, zeta potential, polydispersity index (PDI), and drug entrapment efficiency of 117.26±1.12 nm, -6.28±0.33 mV, 0.262±0.002, 83.34±0.75% respectively in hydrophilic-lipophilic balance (HLB) of 12. The in vitro diffusion process demonstrated that MSB-SLN gel had a prolonged release pattern. The levels of MSB in the cutaneous layers (52.192±2.730% or 961.59±50.313 μg/cm2 ) and the receiver compartment (23.721±1.803 % or 437.049± 33.236 μg/cm2 ) for the MSB-SLN gel was higher than MSB simple and showed no cutaneous irritancy and toxicity in rats. MSB-SLN inhibited melanin formation and was remarkably higher than free MSB. MSB-SLN inhibited L-3,4- dihydroxyphenylalanine (L-DOPA) auto-oxidation to a greater extent (95.14±1.46%) than MSB solution (72.28±0.83%). Conclusion This study's observations revealed that the produced MSB-SLN might be used as a potential nano-vehicle for MSB dermal administration, thereby opening up innovative options for the management of hyper-melanogenesis problems.
Collapse
Affiliation(s)
| | - Hossein Amani
- Department of Biotechnology, Faculty of Chemical Engineering, Babol Noshirvani University of Technology, Babol, Iran
| | - Majid Saeedi
- Pharmaceutical Sciences Research Centre, Hemoglobinopathy Institute, Mazandaran University of Medical Sciences, Sari, Iran
- Department of Pharmaceutics, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
2
|
Kaşkatepe B, Erol HB, Sönmez VZ, Arikan M, Unal EM, Keskin E, Sivri N. Adapting nature's own solution: The effect of rhamnolipid and lytic bacteriophage cocktail on enteric pathogens that proliferate in mucilage. MARINE POLLUTION BULLETIN 2024; 206:116810. [PMID: 39116759 DOI: 10.1016/j.marpolbul.2024.116810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 07/30/2024] [Accepted: 08/02/2024] [Indexed: 08/10/2024]
Abstract
The mucilage event witnessed in the Sea of Marmara in 2021 has emerged as a prominent environmental concern, capturing public attention due to its detrimental effects on ecological, economic, and aesthetic dimensions. Addressing the multifaceted impacts of mucilage demands a nature-centric scientific approach, given its global ramifications spanning economy, public health, international relations, and tourism. Consequently, this study sought to explore alternative approaches for the removal of pathogenic enteric bacteria associated with mucilage occurrences, diverging from conventional methodologies. Specifically, the primary objective was to assess the efficacy of rhamnolipid and a bacteriophage cocktail in mitigating the proliferation of enteric pathogens within mucilaginous environments. During the study, 91 phage isolations were obtained from 45 water samples taken and 10 phages were selected for the broad host range and because of the efficacy tests, a phage cocktail was created with 5 phages. It was found that the mixture of rhamnolipid, phage cocktail and rhamnolipid-phage cocktail reduced bacterial load by 7-9 log10, 9-12 log10 and 9-11 log10 respectively under laboratory conditions. When the study was carried out in seawater, reductions of 4-5 log10, 3 log10 and 4 log10 were achieved. This study has shown that the combined use of rhamnolipid, phage cocktail and rhamnolipid-phage cocktail can be considered as the most effective natural solution proposal for reducing bacterial load, both in laboratory conditions and in sea surface water.
Collapse
Affiliation(s)
- Banu Kaşkatepe
- Department of Pharmaceutical Microbiology, Ankara University, Turkey.
| | - Hilal Başak Erol
- Department of Pharmaceutical Microbiology, Ankara University, Turkey
| | | | - Metehan Arikan
- Ankara University, Faculty of Agriculture, Department of Fisheries and Aquaculture, Evolutionary Genetics Laboratory (eGL), Ankara, Turkey; AgriGenomics Hub: Animal and PlantGenomics Research Innovation Center, Ankara, Turkey; Ankara University, Biotechnology Institute, Ankara, Turkey
| | - Esra Mine Unal
- Ankara University, Faculty of Agriculture, Department of Fisheries and Aquaculture, Evolutionary Genetics Laboratory (eGL), Ankara, Turkey; AgriGenomics Hub: Animal and PlantGenomics Research Innovation Center, Ankara, Turkey
| | - Emre Keskin
- Ankara University, Faculty of Agriculture, Department of Fisheries and Aquaculture, Evolutionary Genetics Laboratory (eGL), Ankara, Turkey; AgriGenomics Hub: Animal and PlantGenomics Research Innovation Center, Ankara, Turkey
| | - Nüket Sivri
- Department of Environmental Engineering, Istanbul University-Cerrahpasa, Istanbul, Turkey
| |
Collapse
|
3
|
Olsen BG, Falone MF, Buffon E, Yoshimura I, Vale RDS, Contiero J, Stradiotto NR. Alternative method for rhamnolipids quantification using an electrochemical platform based on reduced graphene oxide, manganese nanoparticles and molecularly imprinted Poly(L-Ser). Talanta 2024; 272:125778. [PMID: 38364566 DOI: 10.1016/j.talanta.2024.125778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 11/17/2023] [Accepted: 02/08/2024] [Indexed: 02/18/2024]
Abstract
Rhamnolipids (RHLs) are promising biosurfactants with important applications in several industrial segments. These compounds are produced through biotechnological processes using the bacteria Pseudomonas Aeruginosa. The main methods of analyzing this compound are based on chromatographic techniques. In this study, an electrochemical sensor based on a platform modified with reduced graphene oxide, manganese nanoparticles covered with a molecularly imprinted poly (L-Ser) film was used as an alternative method to quantify RHL through its hydrolysis product, acid 3-hydroxydecanoic acid (3-HDA). The proposed sensor was characterized microscopically, spectroscopically and electrochemically. Under optimized experimental conditions, an analytical curve was obtained in the linear concentration range from 2.0 × 10-12 mol L-1 to 1.0 × 10-10 mol L-1. The values estimated of LOD, LOQ and AS were 8.3 × 10-13 mol L-1, 2.7 × 10-12 mol L-1and 1.3 × 107 A L mol-1, respectively. GCE/rGO/MnNPs/L-Ser@MIP exhibits excellent selectivity, repeatability, and high stability for the detection of 3-HDA. Furthermore, the developed method was successfully applied to the recognition of the hydrolysis product (3-HDA) of RHLs obtained from guava agro-waste. Statistical comparison between GCE/rGO/MnNPs/L-Ser@MIP and HPLC method confirms the accuracy of the electrochemical sensor within a 95% confidence interval.
Collapse
Affiliation(s)
- Bruna Gabrielle Olsen
- Institute of Chemistry, São Paulo State University (UNESP), 14800-060, Araraquara, São Paulo, Brazil; Bioenergy Research Institute, São Paulo State University (UNESP), 14800-060, Araraquara, São Paulo, Brazil
| | - Max Fabrício Falone
- Institute of Chemistry, São Paulo State University (UNESP), 14800-060, Araraquara, São Paulo, Brazil; Bioenergy Research Institute, São Paulo State University (UNESP), 14800-060, Araraquara, São Paulo, Brazil.
| | - Edervaldo Buffon
- Institute of Chemistry, São Paulo State University (UNESP), 14800-060, Araraquara, São Paulo, Brazil; Bioenergy Research Institute, São Paulo State University (UNESP), 14800-060, Araraquara, São Paulo, Brazil
| | - Ingrid Yoshimura
- Institute of Biosciences, São Paulo State University (UNESP), 13506-900, Rio Claro, São Paulo, Brazil
| | - Rayane da Silva Vale
- Institute of Biosciences, São Paulo State University (UNESP), 13506-900, Rio Claro, São Paulo, Brazil
| | - Jonas Contiero
- Institute of Biosciences, São Paulo State University (UNESP), 13506-900, Rio Claro, São Paulo, Brazil; Bioenergy Research Institute, São Paulo State University (UNESP), 13500-230, Rio Claro, São Paulo, Brazil
| | - Nelson Ramos Stradiotto
- Institute of Chemistry, São Paulo State University (UNESP), 14800-060, Araraquara, São Paulo, Brazil; Bioenergy Research Institute, São Paulo State University (UNESP), 14800-060, Araraquara, São Paulo, Brazil
| |
Collapse
|
4
|
Astanina A, Koivisto JT, Hannula M, Salminen T, Kellomäki M, Massera J. Chemical interactions in composites of gellan gum and bioactive glass: self-crosslinking and in vitro dissolution. Front Chem 2023; 11:1133374. [PMID: 37252370 PMCID: PMC10213777 DOI: 10.3389/fchem.2023.1133374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 04/17/2023] [Indexed: 05/31/2023] Open
Abstract
We investigated the interactions between the organic-inorganic phases in composites and the impact on in vitro dissolution. The composite consists of a hydrogel-forming polysaccharide gellan gum (GG, organic phase) and a borosilicate bioactive glass (BAG, inorganic phase). The BAG loading in the gellan gum matrix varied from 10 to 50 wt%. While mixing GG and BAG, the ions released from BAG microparticles crosslinked with the carboxylate anions of GG. The nature of the crosslinking was assessed, and its impact on mechanical properties, swelling ratio, and enzymatic degradation profile upon immersion for up to 2 weeks was studied. Loading up to 30 wt% of BAG in GG caused an increase in mechanical properties associated with an increasing crosslinking density. At higher BAG loading, excess divalent ions and percolation of particles led to a decrease in the fracture strength and compressive modulus. Upon immersion, a decrease in the composite mechanical properties was attributed to the dissolution of the BAG and the loosening of the glass/matrix interface. The enzymatic degradation of the composites was inhibited at higher BAG loadings (40 and 50 wt%) even when the specimen was immersed for 48 h in PBS buffer with lysozyme. During in vitro dissolution in both SBF and PBS, the ions released from the glass led to the precipitation of hydroxyapatite already at day 7. In conclusion, we thoroughly discussed the in vitro stability of the GG/BAG composite and established the maximum BAG loading to enhance the GG crosslinking and mechanical properties. Based on this study, 30, 40, and 50 wt% of BAG in GG will be further investigated in an in vitro cell culture study.
Collapse
Affiliation(s)
- A. Astanina
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - J. T. Koivisto
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Division of Pathology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - M. Hannula
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - T. Salminen
- Tampere Microscopy Center, Faculty of Engineering and Natural Sciences, Tampere University, Tampere, Finland
| | - M. Kellomäki
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - J. Massera
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| |
Collapse
|
5
|
Christensen M, Chiciudean I, Jablonski P, Tanase AM, Shapaval V, Hansen H. Towards high-throughput screening (HTS) of polyhydroxyalkanoate (PHA) production via Fourier transform infrared (FTIR) spectroscopy of Halomonas sp. R5-57 and Pseudomonas sp. MR4-99. PLoS One 2023; 18:e0282623. [PMID: 36888636 PMCID: PMC9994712 DOI: 10.1371/journal.pone.0282623] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 02/20/2023] [Indexed: 03/09/2023] Open
Abstract
High-throughput screening (HTS) methods for characterization of microbial production of polyhydroxyalkanoates (PHA) are currently under investigated, despite the advent of such systems in related fields. In this study, phenotypic microarray by Biolog PM1 screening of Halomonas sp. R5-57 and Pseudomonas sp. MR4-99 identified 49 and 54 carbon substrates to be metabolized by these bacteria, respectively. Growth on 15 (Halomonas sp. R5-57) and 14 (Pseudomonas sp. MR4-99) carbon substrates was subsequently characterized in 96-well plates using medium with low nitrogen concentration. Bacterial cells were then harvested and analyzed for putative PHA production using two different Fourier transform infrared spectroscopy (FTIR) systems. The FTIR spectra obtained from both strains contained carbonyl-ester peaks indicative of PHA production. Strain specific differences in the carbonyl-ester peak wavenumber indicated that the PHA side chain configuration differed between the two strains. Confirmation of short chain length PHA (scl-PHA) accumulation in Halomonas sp. R5-57 and medium chain length PHA (mcl-PHA) in Pseudomonas sp. MR4-99 was done using Gas Chromatography-Flame Ionization Detector (GC-FID) analysis after upscaling to 50 mL cultures supplemented with glycerol and gluconate. The strain specific PHA side chain configurations were also found in FTIR spectra of the 50 mL cultures. This supports the hypothesis that PHA was also produced in the cells cultivated in 96-well plates, and that the HTS approach is suitable for analysis of PHA production in bacteria. However, the carbonyl-ester peaks detected by FTIR are only indicative of PHA production in the small-scale cultures, and appropriate calibration and prediction models based on combining FTIR and GC-FID data needs to be developed and optimized by performing more extensive screenings and multivariate analyses.
Collapse
Affiliation(s)
- Mikkel Christensen
- Department of Chemistry, UiT The Arctic University of Norway, Tromso, Norway
- * E-mail: (MC); (HH)
| | - Iulia Chiciudean
- Department of Genetics, Faculty of Biology, University of Bucharest, Bucharest, Romania
| | | | - Ana-Maria Tanase
- Department of Genetics, Faculty of Biology, University of Bucharest, Bucharest, Romania
| | - Volha Shapaval
- Faculty of Science and Technology, Norwegian University of Life Sciences, Aas, Norway
| | - Hilde Hansen
- Department of Chemistry, UiT The Arctic University of Norway, Tromso, Norway
- * E-mail: (MC); (HH)
| |
Collapse
|
6
|
Giro Maitam MV, Nicolini JV, de Araujo Kronemberger F. Anti‐fouling performance of polyamide microfiltration membrane modified with surfactants. J Appl Polym Sci 2022. [DOI: 10.1002/app.53015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
| | - João Victor Nicolini
- Departamento de Engenharia Química, Instituto de Tecnologia Universidade Federal Rural do Rio de Janeiro Rio de Janeiro Brazil
| | | |
Collapse
|
7
|
Czaplicka N, Konopacka-Łyskawa D, Nowotnik A, Mielewczyk-Gryń A, Łapiński M, Bray R. Precipitation of calcium carbonate in the presence of rhamnolipids in alginate hydrogels as a model of biomineralization. Colloids Surf B Biointerfaces 2022; 218:112749. [PMID: 35932556 DOI: 10.1016/j.colsurfb.2022.112749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 07/27/2022] [Accepted: 08/01/2022] [Indexed: 10/16/2022]
Abstract
This paper reports the effects of rhamnolipids presence in the alginate hydrogel and CO32- solution, on the precipitation of CaCO3 in the Ca2+ loaded alginate hydrogel. Characteristics of the formed particles are discussed. Model conditions containing alginate hydrogel and rhamnolipids were used in order to mimic the natural environment of biomineralization in biofilms. It has been shown that rhamnolipids affect the characteristics of precipitated calcium carbonate effect of using these biosurfactants depends on their concentration as well as whether they are directly present in the hydrogel matrix or the carbonate solution surrounding the hydrogel. The greatest effect compared to the control samples was found for the rhamnolipids in the form of micelles directly present in the hydrogel with the CaCl2 cross-linked solution at concentration of 0.05 M. These conditions result in the highest increase in vaterite content, specific surface area, and pore volume. The mechanism of CaCO3 precipitation in alginate hydrogel containing rhamnolipids has been proposed.
Collapse
Affiliation(s)
- Natalia Czaplicka
- Department of Process Engineering and Chemical Technology, Faculty of Chemistry, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland.
| | - Donata Konopacka-Łyskawa
- Department of Process Engineering and Chemical Technology, Faculty of Chemistry, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland
| | - Agata Nowotnik
- Department of Process Engineering and Chemical Technology, Faculty of Chemistry, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland
| | - Aleksandra Mielewczyk-Gryń
- Institute of Nanotechnology and Materials Engineering and Advanced Materials Center, Faculty of Applied Physics and Mathematics, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland
| | - Marcin Łapiński
- Institute of Nanotechnology and Materials Engineering and Advanced Materials Center, Faculty of Applied Physics and Mathematics, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland
| | - Rafał Bray
- Department of Water and Wastewater Technology, Faculty of Civil and Environmental Engineering, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland
| |
Collapse
|
8
|
Sharma J, Kapley A, Sundar D, Srivastava P. Characterization of a potent biosurfactant produced from Franconibacter sp. IITDAS19 and its application in enhanced oil recovery. Colloids Surf B Biointerfaces 2022; 214:112453. [PMID: 35305323 DOI: 10.1016/j.colsurfb.2022.112453] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 02/17/2022] [Accepted: 03/07/2022] [Indexed: 01/09/2023]
Abstract
Biosurfactants are surface-active molecules produced from microorganisms either on the cell surface or secreted extracellularly. Several biosurfactant producing microorganisms have been isolated to date, but they differ in their efficacy towards different types of hydrocarbons. Here, we report the isolation and characterization of a biosurfactant producing bacterium Franconibacter sp. IITDAS19 from crude oil contaminated soil. The biosurfactant was isolated, purified and characterized. It was identified as a glycolipid. It was found to be very stable at wide range of temperatures, pH and salt concentrations. It could reduce the surface tension of the water from 71 mN/m to 31 mN/m. IITDAS19 showed very high efficacy towards both aliphatic and aromatic hydrocarbons. It resulted in about 63% recovery of residual oil in a sand pack column. Our results suggested that the produced biosurfactant can be used for enhanced oil recovery. To our knowledge, this is the first report demonstrating the detailed characterization of a biosurfactant from Franconibacter spp.
Collapse
Affiliation(s)
- Jyoti Sharma
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, 110016, India
| | - Atya Kapley
- Council of Scientific and Industrial Research- National Environmental Engineering Research Institute (CSIR NEERI), Nehru Marg, Nagpur 440020, India
| | - Durai Sundar
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, 110016, India
| | - Preeti Srivastava
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, 110016, India.
| |
Collapse
|
9
|
Moura CC, Salazar-Bryam AM, Piazza RD, Carvalho dos Santos C, Jafelicci M, Marques RFC, Contiero J. Rhamnolipids as Green Stabilizers of nZVI and Application in the Removal of Nitrate From Simulated Groundwater. Front Bioeng Biotechnol 2022; 10:794460. [PMID: 35519607 PMCID: PMC9062033 DOI: 10.3389/fbioe.2022.794460] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 03/07/2022] [Indexed: 11/13/2022] Open
Abstract
Environmental contamination caused by inorganic compounds is a major problem affecting soils and surface water. Most remediation techniques are costly and generally lead to incomplete removal and production of secondary waste. Nanotechnology, in this scenario with the zero-valent iron nanoparticle, represents a new generation of environmental remediation technologies. It is non-toxic, abundant, cheap, easy to produce, and its production process is simple. However, in order to decrease the aggregation tendency, the zero-iron nanoparticle is frequently coated with chemical surfactants synthesized from petrochemical sources, which are persistent or partially biodegradable. Biosurfactants (rhamnolipids), extracellular compounds produced by microorganisms from hydrophilic and hydrophobic substrates can replace synthetic surfactants. This study investigated the efficiency of a rhamnolipid biosurfactant on the aggregation of nanoscale zer-valent iron (nZVI) and its efficiency in reducing nitrate in simulated groundwater at pH 4.0. Two methods were tested: 1) adding the rhamnolipid during chemical synthesis and 2) adding the rhamnolipid after chemical synthesis of nZVI. Scanning electron microscopy field emission, X-ray diffractometry, Fourier transform infrared spectroscopy, thermogravimetric analysis, Dynamic Light Scattering, and zeta potential measurements were used to characterize bare nZVI and rhamnolipid-coated nZVI. The effects of the type of nZVI and initial NO3 concentration were examined. Nanoscale zer-valent iron with the addition of the rhamnolipid after synthesis achieved the best removal rate of nitrate (about 78%), with an initial nitrate concentration of 25 mg L−1. The results suggest that nZVI functionalized with rhamnolipids is a promising strategy for the in situ remediations of groundwater contaminated by NO3, heavy metal, and inorganic carbon.
Collapse
Affiliation(s)
- Cinthia Cristine Moura
- Associate Laboratory of the Institute for Research in Bioenergy (IPBEN)-Unesp, São Paulo State University (Unesp), Institute for Research in Bioenergy, Rio Claro, Brazil
| | - Ana Maria Salazar-Bryam
- Industrial Microbiology Laboratory, General and Applied Biology, Institute of Biosciences, São Paulo State University (Unesp), Rio Claro, Brazil
| | - Rodolfo Debone Piazza
- Laboratory of Magnetic Materials and Colloids, Institute of Chemistry, São Paulo State University (Unesp), Araraquara, Brazil
| | - Caio Carvalho dos Santos
- Laboratory of Magnetic Materials and Colloids, Institute of Chemistry, São Paulo State University (Unesp), Araraquara, Brazil
| | - Miguel Jafelicci
- Laboratory of Magnetic Materials and Colloids, Institute of Chemistry, São Paulo State University (Unesp), Araraquara, Brazil
| | - Rodrigo Fernando Costa Marques
- Laboratory of Magnetic Materials and Colloids, Institute of Chemistry, São Paulo State University (Unesp), Araraquara, Brazil
- Monitoring and Research Center for the Quality of Fuels, Biofuels, Petroleum and Derivatives (CEMPEQC/IQ-Unesp), Araraquara, Brazil
| | - Jonas Contiero
- Associate Laboratory of the Institute for Research in Bioenergy (IPBEN)-Unesp, São Paulo State University (Unesp), Institute for Research in Bioenergy, Rio Claro, Brazil
- Industrial Microbiology Laboratory, General and Applied Biology, Institute of Biosciences, São Paulo State University (Unesp), Rio Claro, Brazil
- *Correspondence: Jonas Contiero,
| |
Collapse
|
10
|
Di- and Mono-Rhamnolipids Produced by the Pseudomonas putida PP021 Isolate Significantly Enhance the Degree of Recovery of Heavy Oil from the Romashkino Oil Field (Tatarstan, Russia). Processes (Basel) 2022. [DOI: 10.3390/pr10040779] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Around the globe, only 30–50% of the amount of oil estimated to be in reservoirs (“original oil in place”) can be obtained using primary and secondary oil recovery methods. Enhanced oil recovery methods are required in the oil processing industry, and the use of microbially produced amphiphilic molecules (biosurfactants) is considered a promising efficient and environmentally friendly method. In the present study, biosurfactants produced by the Pseudomonas putida PP021 isolate were extracted and characterized, and their potential to enhance oil recovery was demonstrated. It was found that the cell-free biosurfactant-containing supernatant decreased the air–water interface tension from 74 to 28 mN m−1. Using TLC and FTIR methods, the biosurfactants produced by the isolate were classified as mono- and di-rhamnolipid mixtures. In the isolates’ genome, the genes rhlB and rhlC, encoding enzymes involved in the synthesis of mono- and di-rhamnolipids, respectively, were revealed. Both genes were expressed when the strain was cultivated on glycerol nitrate medium. As follows from the sand-packed column and core flooding simulations, biosurfactants produced by P. putida PP021 significantly enhance the degree of recovery, resulting in additional 27% and 21%, respectively.
Collapse
|
11
|
Zhao F, Wu Y, Wang Q, Zheng M, Cui Q. Glycerol or crude glycerol as substrates make Pseudomonas aeruginosa achieve anaerobic production of rhamnolipids. Microb Cell Fact 2021; 20:185. [PMID: 34556134 PMCID: PMC8461908 DOI: 10.1186/s12934-021-01676-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 09/12/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The anaerobic production of rhamnolipids is significant in research and application, such as foamless fermentation and in situ production of rhamnolipids in the anoxic environments. Although a few studies reported that some rare Pseudomonas aeruginosa strains can produce rhamnolipids anaerobically, the decisive factors for anaerobic production of rhamnolipids were unknown. RESULTS Two possible hypotheses on the decisive factors for anaerobic production of rhamnolipids by P. aeruginosa were proposed, the strains specificity of rare P. aeruginosa (hypothesis 1) and the effect of specific substrates (hypothesis 2). This study assessed the anaerobic growth and rhamnolipids synthesis of three P. aeruginosa strains using different substrates. P. aeruginosa strains anaerobically grew well using all the tested substrates, but glycerol was the only carbon source that supported anaerobic production of rhamnolipids. Other carbon sources with different concentrations still failed for anaerobic production of rhamnolipids by P. aeruginosa. Nitrate was the excellent nitrogen source for anaerobic production of rhamnolipids. FTIR spectra analysis confirmed the anaerobically produced rhamnolipids by P. aeruginosa using glycerol. The anaerobically produced rhamnolipids decreased air-water surface tension to below 29.0 mN/m and emulsified crude oil with EI24 above 65%. Crude glycerol and 1, 2-propylene glycol also supported the anaerobic production of rhamnolipids by all P. aeruginosa strains. Prospects and bottlenecks to anaerobic production of rhamnolipids were also discussed. CONCLUSIONS Glycerol substrate was the decisive factor for anaerobic production of rhamnolipids by P. aeruginosa. Strain specificity resulted in the different anaerobic yield of rhamnolipids. Crude glycerol was one low cost substrate for anaerobic biosynthesis of rhamnolipids by P. aeruginosa. Results help advance the research on anaerobic production of rhamnolipids, deepen the biosynthesis theory of rhamnolipids and optimize the anaerobic production of rhamnolipids.
Collapse
Affiliation(s)
- Feng Zhao
- School of Life Sciences, Qufu Normal University, Qufu, 273165, Shandong, China.
| | - Yuting Wu
- School of Life Sciences, Qufu Normal University, Qufu, 273165, Shandong, China
| | - Qingzhi Wang
- School of Life Sciences, Qufu Normal University, Qufu, 273165, Shandong, China
| | - Mengyao Zheng
- School of Life Sciences, Qufu Normal University, Qufu, 273165, Shandong, China
| | - Qingfeng Cui
- Research Institute of Petroleum Exploration and Development (Langfang), Langfang, 065007, Hebei, China
| |
Collapse
|
12
|
Ibrahim S, Diab A, Abdulla H. Bio-cleaning Efficiency of Rhamnolipids Produced from Native Pseudomonas aeruginosa Grown on Agro-industrial By-products for Liquid Detergent Formulation. Appl Biochem Biotechnol 2021; 193:2616-2633. [PMID: 33826066 DOI: 10.1007/s12010-021-03555-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 03/22/2021] [Indexed: 02/07/2023]
Abstract
The cleaning activity of surface-active agents such as rhamnolipids (RLs) requires utmost effectiveness and is employed abundantly in various industries, particularly laundry cleaning, detergents, and cosmetics. In the current study, RLs were produced from Pseudomonas aeruginosa isolated from oil-contaminated soil using a minimal medium amended with agro-industrial by-products of refinery vegetable oil wastes (comprising of unsaturated types of fatty acids as determined by GC analysis) and dairy whey. The results showed that an amount of 5.72 g/L of RLs were obtained, while lower concentrations were obtained using chemically defined carbon sources. Ten congeners of mono- and di-RLs were detected by LC-MS, and they reduced the surface tension of water to 26 mN/m with a critical micelle concentration of 33 mg/L. Furthermore, the produced RLs showed promising cleaning and detergency properties in the removal of different stains on tested fabrics with a Stain Removal Index (SRI) of 17.45%. Moreover, an efficient cleaning was obtained when RLs were applied to a liquid detergent formulation model, and a cleaning power (∆E) of 245.95 and SRI of 36.28% were achieved. The present work showed that the produced RLs could be exploited as a powerful and alternative eco-friendly cleaning agent in many industries.
Collapse
Affiliation(s)
- Sami Ibrahim
- Botany Department, Faculty of Science, Suez Canal University, P.O. Box: 41522, Ismailia, Egypt.
| | - Atef Diab
- Botany Department, Faculty of Science, Suez Canal University, P.O. Box: 41522, Ismailia, Egypt
| | - Hesham Abdulla
- Botany Department, Faculty of Science, Suez Canal University, P.O. Box: 41522, Ismailia, Egypt
| |
Collapse
|
13
|
Chaida A, Chebbi A, Bensalah F, Franzetti A. Isolation and characterization of a novel rhamnolipid producer Pseudomonas sp. LGMS7 from a highly contaminated site in Ain El Arbaa region of Ain Temouchent, Algeria. 3 Biotech 2021; 11:200. [PMID: 33927990 DOI: 10.1007/s13205-021-02751-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 03/16/2021] [Indexed: 01/03/2023] Open
Abstract
This study aims to isolate and characterize a novel rhamnolipid producer within the recent bioremediation approaches for treating hydrocarbon-contaminated soils in Algeria. In this context, from a hydrocarbon-contaminated soil, a newly bacterium designated LGMS7 was screened and identified, belonged to the Pseudomonas genus, and was closely related to Pseudomonas mucidolens, with a 16S rRNA sequence similarity of 99.05%. This strain was found to use different hydrocarbons and oils as a sole carbon and energy source for growth. It showed a stable emulsification index E24 (%) of 66.66% ± 3.46 when growing in mineral salts medium (MSM) supplemented with 2% (v/v) glycerol after incubation for 6 days at 30 °C. Interestingly, it was also able to reduce the surface tension of the cell-free supernatant to around 30 ± 0.65 mN m-1 with a critical micelle concentration (CMC) of 800 mg l-1. It was found to be able to produce around 1260 ± 0.57 mg l-1 as the yield of rhamnolipid production. Its biosurfactant has demonstrated excellent stability against pH (pH 2.0-12.0), salinity (0-150 g l-1), and temperature (-20 to 121 °C). Based on various chromatographic and spectroscopic techniques (i.e., TLC, FTIR, 1H-NMR), it was found to belong to the glycolipid class (i.e., rhamnolipids). Taken altogether, the strain LGMS7 and its biosurfactant display interesting biotechnological capabilities for the bioremediation of hydrocarbon-contaminated sites. To the best of our knowledge, this is the first study that described the production of biosurfactants by Pseudomonas mucidolens species. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s13205-021-02751-6.
Collapse
Affiliation(s)
- Abdelkrim Chaida
- Laboratory of Microbial Genetics (LGM), Department of Biology, Faculty of Natural and Life Sciences, University Oran 1, 31000 Oran, Algeria
| | - Alif Chebbi
- Dept. of Earth and Environmental Sciences-DISAT, University of Milano-Bicocca, Piazza della Scienza 1, 20126 Milano, Italy
| | - Farid Bensalah
- Laboratory of Microbial Genetics (LGM), Department of Biology, Faculty of Natural and Life Sciences, University Oran 1, 31000 Oran, Algeria
| | - Andrea Franzetti
- Dept. of Earth and Environmental Sciences-DISAT, University of Milano-Bicocca, Piazza della Scienza 1, 20126 Milano, Italy
| |
Collapse
|
14
|
Arif M, Sharaf M, Samreen, Khan S, Chi Z, Liu CG. Chitosan-based nanoparticles as delivery-carrier for promising antimicrobial glycolipid biosurfactant to improve the eradication rate of Helicobacter pylori biofilm. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2021; 32:813-832. [PMID: 33428545 DOI: 10.1080/09205063.2020.1870323] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Driven by the need to find alternatives to control H. pylori infections, this work describes the development of chitosan-PMLA nanoparticulate systems as carriers for antimicrobial glycolipid. By using a simple ionic gelation method stable nanoparticle was obtained showing an encapsulation efficiency of 73.1 ± 1.3% and an average size of 217.0 ± 15.6 nm for rhamnolipids chitosan-PMLA nanoparticles (RL-CS-NPs). Glycolipid incorporation and particle size were correspondingly corroborated by FT-IR and TEM analysis. Rhamnolipids chitosan nanoparticles (RL-CS-NPs) presented the highest antimicrobial effect towards H. pylori (ATCC 26695) exhibiting a minimal inhibitory concentration of 132 µg/mL and a biofilm inhibition ability of 99%. Additionally, RL-CS-NPs did not interfere with human fibroblasts viability and proliferation under the tested conditions. The results revealed that the RL-CS-NPs were able to inhibit bacterial growth showing adequate cytocompatibility and might become, after additional studies, a valuable approach to fight H. pylori biofilm related-infections.
Collapse
Affiliation(s)
- Muhammad Arif
- College of Marine Life Science, Ocean University Of China, Qingdao, P.R. China
| | - Mohamed Sharaf
- College of Marine Life Science, Ocean University Of China, Qingdao, P.R. China.,Department of Biochemistry Faculty of Agriculture, Al-Azhar University, Cairo, Egypt
| | - Samreen
- College of Marine Life Science, Ocean University Of China, Qingdao, P.R. China
| | - Sohaib Khan
- College of Marine Life Science, Ocean University Of China, Qingdao, P.R. China
| | - Zhe Chi
- College of Marine Life Science, Ocean University Of China, Qingdao, P.R. China
| | - Chen-Guang Liu
- College of Marine Life Science, Ocean University Of China, Qingdao, P.R. China
| |
Collapse
|
15
|
Twigg MS, Baccile N, Banat IM, Déziel E, Marchant R, Roelants S, Van Bogaert INA. Microbial biosurfactant research: time to improve the rigour in the reporting of synthesis, functional characterization and process development. Microb Biotechnol 2021; 14:147-170. [PMID: 33249753 PMCID: PMC7888453 DOI: 10.1111/1751-7915.13704] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 10/16/2020] [Accepted: 10/23/2020] [Indexed: 01/01/2023] Open
Abstract
The demand for microbially produced surface-active compounds for use in industrial processes and products is increasing. As such, there has been a comparable increase in the number of publications relating to the characterization of novel surface-active compounds: novel producers of already characterized surface-active compounds and production processes for the generation of these compounds. Leading researchers in the field have identified that many of these studies utilize techniques are not precise and accurate enough, so some published conclusions might not be justified. Such studies lacking robust experimental evidence generated by validated techniques and standard operating procedures are detrimental to the field of microbially produced surface-active compound research. In this publication, we have critically reviewed a wide range of techniques utilized in the characterization of surface-active compounds from microbial sources: identification of surface-active compound producing microorganisms and functional testing of resultant surface-active compounds. We have also reviewed the experimental evidence required for process development to take these compounds out of the laboratory and into industrial application. We devised this review as a guide to both researchers and the peer-reviewed process to improve the stringency of future studies and publications within this field of science.
Collapse
Affiliation(s)
- Matthew Simon Twigg
- School of Biomedical SciencesUlster UniversityColeraine, Co. LondonderryBT52 1SAUK
| | - Niki Baccile
- Centre National de la Recherche ScientifiqueLaboratoire de Chimie de la Matière Condensée de ParisSorbonne UniversitéLCMCPParisF‐75005France
| | - Ibrahim M. Banat
- School of Biomedical SciencesUlster UniversityColeraine, Co. LondonderryBT52 1SAUK
| | - Eric Déziel
- Centre Armand‐Frappier Santé BiotechnologieInstitut National de la Recherche Scientifique (INRS)531, Boul. Des PrairiesLavalQCH7V 1B7Canada
| | - Roger Marchant
- School of Biomedical SciencesUlster UniversityColeraine, Co. LondonderryBT52 1SAUK
| | - Sophie Roelants
- Centre for Industrial Biotechnology and Biocatalysis (InBio.be)Faculty of Bioscience EngineeringGhent UniversityGhentBelgium
- Bio Base Europe Pilot PlantRodenhuizenkaai 1Ghent9042Belgium
| | - Inge N. A. Van Bogaert
- Centre for Synthetic BiologyDepartment of BiotechnologyGhent UniversityCoupure Links 653Ghent9000Belgium
| |
Collapse
|
16
|
Exploring the potential of chitosan-based particles as delivery-carriers for promising antimicrobial glycolipid biosurfactants. Carbohydr Polym 2020; 254:117433. [PMID: 33357906 DOI: 10.1016/j.carbpol.2020.117433] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 10/03/2020] [Accepted: 11/19/2020] [Indexed: 12/12/2022]
Abstract
Driven by the need to find alternatives to control Staphylococcus aureus infections, this work describes the development of chitosan-based particulate systems as carriers for antimicrobial glycolipids. By using a simple ionic gelation method stable nanoparticles were obtained showing an encapsulation efficiency of 41.1 ± 8.8 % and 74.2 ± 1.3 % and an average size of 210.0 ± 15.7 nm and 329.6 ± 8.0 nm for sophorolipids and rhamnolipids chitosan-nanoparticles, respectively. Glycolipids incorporation and particle size was correspondingly corroborated by FTIR-ATR and TEM analysis. Rhamnolipids chitosan nanoparticles (RLs-CSp) presented the highest antimicrobial effect towards S. aureus (ATCC 25923) exhibiting a minimal inhibitory concentration of 130 μg/mL and a biofilm inhibition ability of 99 %. Additionally, RLs-CSp did not interfere with human dermal fibroblasts (AG22719) viability and proliferation under the tested conditions. The results revealed that the RLs-CSp were able to inhibit bacterial growth showing adequate cytocompatibility and might become, after additional studies, a valuable approach to prevent S. aureus related infections.
Collapse
|
17
|
Mishra I, Fatima T, Egamberdieva D, Arora NK. Novel Bioformulations Developed from Pseudomonas putida BSP9 and its Biosurfactant for Growth Promotion of Brassica juncea (L.). PLANTS 2020; 9:plants9101349. [PMID: 33053904 PMCID: PMC7601481 DOI: 10.3390/plants9101349] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 10/08/2020] [Accepted: 10/09/2020] [Indexed: 12/17/2022]
Abstract
In this study, Pseudomonas putida BSP9 isolated from rhizosphere of Brassica juncea was investigated for its plant growth promoting and biosurfactant producing activities. The isolate showed the ability to produce indole acetic acid, siderophore, phosphate solubilization activity and was an efficient producer of biosurfactant. Purification (of the biosurfactant) by thin layer chromatography (TLC) and further characterization by Fourier transform infrared spectroscopy (FTIR) revealed that biosurfactant produced by the isolate belonged to the glycolipid category, which is largely produced by Pseudomonas sp. In addition, liquid chromatography-mass spectroscopy (LC-MS) analysis showed the presence of a mixture of six mono-rhamnolipidic and a di-rhamnolipidic congeners, confirming it as a rhamnolipid biosurfactant. Bioformulations were developed using BSP9 and its biosurfactant to check their impact on promoting plant growth in B. juncea. It was noted from the study that bioformulations amended with biosurfactant (singly or in combination with BSP9) resulted in enhancement in the growth parameters of B. juncea as compared to untreated control. Maximum increment was achieved by plants inoculated with bioformulation that had BSP9 plus biosurfactant. The study also suggested that growth promotion was significant up to a threshold level of biosurfactant and that further increasing the concentration did not further enhance the growth parameter values of the plant. The study proves that novel bioformulations can be developed by integrating plant growth promoting rhizobacteria (PGPR) and their biosurfactant, and they can be effectively used for increasing agricultural productivity while minimizing our dependence on agrochemicals.
Collapse
Affiliation(s)
- Isha Mishra
- Department of Microbiology, Babasaheb Bhimrao Ambedkar University, Vidya Vihar Raebareli Road, Lucknow 226025, India; (I.M.); (T.F.)
| | - Tahmish Fatima
- Department of Microbiology, Babasaheb Bhimrao Ambedkar University, Vidya Vihar Raebareli Road, Lucknow 226025, India; (I.M.); (T.F.)
| | - Dilfuza Egamberdieva
- Leibniz Centre for Agricultural Landscape Research (ZALF), 15374 Müncheberg, Germany
- Faculty of Biology, National University of Uzbekistan, Tashkent 100174, Uzbekistan
- Correspondence: (D.E.); (N.K.A.)
| | - Naveen Kumar Arora
- Department of Environmental Science, School for Environmental Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar Raebareli Road, Lucknow 226025, India
- Correspondence: (D.E.); (N.K.A.)
| |
Collapse
|
18
|
Recent progress and trends in the analysis and identification of rhamnolipids. Appl Microbiol Biotechnol 2020; 104:8171-8186. [PMID: 32845366 DOI: 10.1007/s00253-020-10841-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 08/06/2020] [Accepted: 08/14/2020] [Indexed: 10/23/2022]
Abstract
Rhamnolipids have extensive potential applications and are the most promising biosurfactants for commercialization. The efficient and accurate identification and analysis of these are important to their production, application and commercialization. Accordingly, significant efforts have been made to identify and analyse rhamnolipids during screening of producing strains, fermentation and application processes. Cationic cetyltrimethylammonium bromide-methylene blue (CTAB-MB) test combines a series of indirect assays to efficiently assist in the primary screening of rhamnolipids-producing strains, while the secretion of rhamnolipids by these strains can be identified through TLC, FTIR, NMR, electrospray ionization mass spectrometry (ESI-MS) and HPLC-MS analysis. Rhamnolipids can be quantified by colorimetric methods requiring the use of concentrated acid, and this approach has the advantages of reliability, simplicity, low-cost and excellent reproducibility with very low technological requirements. HPLC-MS can also be employed as required as a more accurate quantification method. In addition, HPLC-ELSD has been established as the internationally acceptable measure of rhamnolipids for commercial purposes. The preparation of well-accepted rhamnolipids standards and modifications of analysis operations are essential to further enhance the accuracy and improve the simplicity of rhamnolipid analysis.Key points• Current status of R&D works on determination of rhamnolipids is listed• Advantages and disadvantages of various types analysis are summarized• Limitations of current rhamnolipid quantification are discussed Graphical abstract.
Collapse
|
19
|
Gaur VK, Tripathi V, Gupta P, Dhiman N, Regar RK, Gautam K, Srivastava JK, Patnaik S, Patel DK, Manickam N. Rhamnolipids from Planococcus spp. and their mechanism of action against pathogenic bacteria. BIORESOURCE TECHNOLOGY 2020; 307:123206. [PMID: 32240926 DOI: 10.1016/j.biortech.2020.123206] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 03/12/2020] [Accepted: 03/14/2020] [Indexed: 06/11/2023]
Abstract
Two bacterial species with the ability to produce biosurfactants were isolated from a pesticide contaminated soil and identified as Planococcus rifietoensis IITR53 and Planococcus halotolerans IITR55. Formation of froth indicating the surfactant production was observed when grown in basal salt medium containing 2% glucose. The culture supernatant after 72 h showed reduction in surface tension from 72 N/m to 46 and 42 N/m for strain IITR53 and IITR55 with emulsification index of 51 and 54% respectively. The biosurfactant identified as rhamnolipid based on liquid chromatography-mass spectrometry analysis, was found to inhibit the growth of both gram- positive and negative pathogenic bacteria. Both the rhamnolipids at 40 mg/mL exhibited the release of extracellular DNA and protein content. Also at one third of the MIC, a significant generation of reactive oxygen species was recorded. These rhamnolipids effectively emulsified different vegetable oils suggesting their possible utilization as antimicrobial agent.
Collapse
Affiliation(s)
- Vivek Kumar Gaur
- Environmental Biotechnology Laboratory, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31 Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India; Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow Campus, Lucknow, India
| | - Varsha Tripathi
- Environmental Biotechnology Laboratory, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31 Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| | - Pallavi Gupta
- Environmental Biotechnology Laboratory, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31 Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India
| | - Nitesh Dhiman
- Water Analysis Laboratory, Nanomaterial Toxicology Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31 Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| | - Raj Kumar Regar
- Environmental Biotechnology Laboratory, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31 Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India
| | - Krishna Gautam
- Ecototoxicology Laboratotory, Regulatory Toxicology Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31 Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| | | | - Satyakam Patnaik
- Water Analysis Laboratory, Nanomaterial Toxicology Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31 Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India
| | - Devendra Kumar Patel
- Analytical Chemistry Laboratory, Regulatory Toxicology Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31 Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India
| | - Natesan Manickam
- Environmental Biotechnology Laboratory, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31 Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India.
| |
Collapse
|
20
|
Shi X, Chen Y, Zhang X, Long X, Qian J. Biomass rhamnolipid modified poly(vinylidene fluoride) membrane with significantly improved surface hydrophilicity and enhanced antifouling performance. Chem Eng Sci 2020. [DOI: 10.1016/j.ces.2019.115330] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
21
|
Pousti M, Lefèvre T, Amirdehi MA, Greener J. A surface spectroscopy study of a Pseudomonas fluorescens biofilm in the presence of an immobilized air bubble. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 222:117163. [PMID: 31177008 DOI: 10.1016/j.saa.2019.117163] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 05/15/2019] [Accepted: 05/26/2019] [Indexed: 06/09/2023]
Abstract
A linear spectral mapping technique was applied to monitor the growth of biomolecular absorption bands at the bio-interface of a nascent Pseudomonas fluorescens biofilm during and after interaction with a surface-adhered air bubble. Attenuated total reflection Fourier-transform infrared (ATR-FTIR) spectra were obtained in different locations in a microchannel with adequate spatial and temporal resolution to study the effect of a static bubble on the evolution of protein and lipid signals at the ATR crystal surface. The results reveal that the presence of a bubble during the lag phase modified levels of extracellular lipids and affected a surface restructuring process, many hours after the bubble's disappearance.
Collapse
Affiliation(s)
- M Pousti
- Département de Chimie, Faculté des sciences et de génie, Université Laval, Québec City, QC, Canada; Centre de recherche sur les matériaux avancés (CERMA), Canada; Centre québécois sur les matériaux fonctionnels (CQMF), Canada
| | - T Lefèvre
- Département de Chimie, Faculté des sciences et de génie, Université Laval, Québec City, QC, Canada; Centre de recherche sur les matériaux avancés (CERMA), Canada; Centre québécois sur les matériaux fonctionnels (CQMF), Canada
| | - M Abbaszadeh Amirdehi
- Département de Chimie, Faculté des sciences et de génie, Université Laval, Québec City, QC, Canada
| | - J Greener
- Département de Chimie, Faculté des sciences et de génie, Université Laval, Québec City, QC, Canada; CHU de Québec, centre de recherche, Université Laval, 10 rue de l'Espinay, Québec, QC, Canada; Centre de recherche sur les matériaux avancés (CERMA), Canada; Centre québécois sur les matériaux fonctionnels (CQMF), Canada.
| |
Collapse
|
22
|
Simultaneous Application of Biosurfactant and Bioaugmentation with Rhamnolipid-Producing Shewanella for Enhanced Bioremediation of Oil-Polluted Soil. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9183773] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In the present study, a combined treatment strategy involving the addition of rhamnolipid, rhamnolipid-producing bacteria (Shewanella sp. BS4) and a native soil microbial community for the remediation of hydrocarbon-contaminated soil under pilot-scale conditions was adopted. The isolate BS4 (rhl+), demonstrating the highest emulsification activity and surface tension reduction efficiency, was identified based on 16 S rDNA sequencing as Shewanella sp. strain. Growth conditions for rhamnolipid production were optimized based on Central Composite Design (CCD) as 2.9% crude oil, a 54 × 106 CFU g−1 inoculation load of soil, a temperature of 30.5 °C, and a pH of 6.7. In situ bioremediation experiments, conducted using hydrocarbon-contaminated soil treated with the combination of rhamnolipid and rhamnolipid-producing bacteria, showed that the inoculated Shewanella sp. BS4, along with the indigenous soil microbial community, supported the highest hydrocarbon-degrading bacterial population and soil respiration activity, and this treatment resulted in 75.8% hydrocarbon removal efficiency, which was higher compared to contaminated soil devoid of any treatment.
Collapse
|
23
|
Ram G, Melvin Joe M, Devraj S, Benson A. Rhamnolipid production using Shewanella seohaensis BS18 and evaluation of its efficiency along with phytoremediation and bioaugmentation for bioremediation of hydrocarbon contaminated soils. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2019; 21:1375-1383. [PMID: 31359777 DOI: 10.1080/15226514.2019.1633254] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
This study reports the combined use of a rhamnolipid type biosurfactant (BS) along with phytoremediation and bioaugmentation (BA) for bioremediation of hydrocarbon-contaminated soils. Bacterial isolates obtained from hydrocarbon contaminated soil were screened for rhamnolipid production and isolate BS18, identified as Shewanella seohaensis, was selected for bioremediation experiments. Growth of BS18 in mineral salt medium (MSM) with diesel oil as the carbon source showed a maximum biomass of 8.2 g L-1, rhamnolipid production of 2.2 mg g-1 cell dry weight, surface tension reduction of 28.6 mN/m and emulsification potential (EI24%) of 65.6. Characterization of rhamnolipid based on Fourier transmittance infrared (FTIR) analysis confirmed the presence of OH, CH2/CH3, C=O, and COO stretching vibrations, respectively, which are distinctive features of rhamnolipid type BSs. In bioremediation experiments, the lowest hydrocarbon concentration of 2.1 mg g-1 of soil for non-sterilized soil and 4.3 mg g-1 of soil for sterilized soil was recorded in the combined application of rhamnolipid, phytoremediation, and BA. This treatment also yielded the highest hydrocarbon degrading bacterial population (6.4 Log Cfu g-1 of soil), highest plant biomass (8.3 g dry weight plant-1), and the highest hydrocarbon uptake (512.3 mg Kg-1 of plant).
Collapse
Affiliation(s)
- Gomathi Ram
- Department of Microbiology, School of Life Sciences, VELS University, Chennai, India
| | - Manoharan Melvin Joe
- Department of Microbiology, School of Life Sciences, VELS University, Chennai, India
- Department of Industrial Microbiology, Sam Higginbottom University of Agriculture, Technology and Sciences, Allahabad, India
| | - Shalini Devraj
- Department of Microbiology, School of Life Sciences, VELS University, Chennai, India
| | - Abitha Benson
- School of Biosciences and Technology, VIT University, Vellore, India
| |
Collapse
|
24
|
Elsayed NS, Aboshanab KM, Yassien MA, Hassouna NA. Kinetic modeling, recovery, and molecular characterization of poly-beta-hydroxybutyrate polymer in Acinetobacter baumannii isolate P39. Bioprocess Biosyst Eng 2018; 41:1779-1791. [PMID: 30194493 DOI: 10.1007/s00449-018-2000-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 08/10/2018] [Indexed: 11/26/2022]
Abstract
To control the poly-β-hydroxybutyrate (PHB) biopolymer production by Acinetobacter baumannii isolate P39 kinetic modeling of the fermentation process, polymer downstream processing, enzymological analysis, and molecular characterization of PHA synthase, key biosynthetic enzyme, should be addressed. A. baumannii isolate P39 produced 0.15 g/L PHB after 24 h of incubation with a polymer content of 28% per dry weight. Logistic and Leudeking-Piret models were used for describing cell growth and PHB production, respectively. They showed good agreement with the experimental data describing both cell growth and PHB production (average regression coefficient r2:0.999). The growth-associated production of PHB biopolymer as an electron acceptor was confirmed using Leudeking-Piret model and victim substrate experiment. The best method of recovery of PHB biopolymer was chemical digestion using sodium hypochlorite, since it produced the largest amount of polymer and highest molecular weight (16,000 g/mole) in comparison to other recovery methods. DTNB assay showed high activity of PHA synthase enzyme, 600 U activity, and 153.8 U/mg specific activity. Molecular analysis of PHA synthase enzyme confirmed class III identity. Taken together, micelle model was proposed for polyhydroxybutyrate formation in A. baumannii isolate P39.
Collapse
Affiliation(s)
- Noha S Elsayed
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University, Organization of African Unity St, Abbassia, P.O. Box 11566, Cairo, Egypt
| | - Khaled M Aboshanab
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University, Organization of African Unity St, Abbassia, P.O. Box 11566, Cairo, Egypt
| | - Mahmoud A Yassien
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University, Organization of African Unity St, Abbassia, P.O. Box 11566, Cairo, Egypt.
| | - Nadia A Hassouna
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University, Organization of African Unity St, Abbassia, P.O. Box 11566, Cairo, Egypt
| |
Collapse
|
25
|
Yang Z, Shi W, Yang W, Liang L, Yao W, Chai L, Gao S, Liao Q. Combination of bioleaching by gross bacterial biosurfactants and flocculation: A potential remediation for the heavy metal contaminated soils. CHEMOSPHERE 2018; 206:83-91. [PMID: 29730568 DOI: 10.1016/j.chemosphere.2018.04.166] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 04/22/2018] [Accepted: 04/27/2018] [Indexed: 06/08/2023]
Abstract
Combining bioleaching by the gross biosurfactants of Burkholderia sp. Z-90 and flocculation by poly aluminium chloride (PAC) was proposed to develop a potential environment-friendly and cost-effective technique to remediate the severely contaminated soils by heavy metals. The factors affecting soil bioleaching by the gross biosurfactants of Burkholderia sp. Z-90 were optimized. The results showed the optimal removing efficiencies of Zn, Pb, Mn, Cd, Cu, and As by the Burkholderia sp. Z-90 leachate were 44.0, 32.5, 52.2, 37.7, 24.1 and 31.6%, respectively at soil liquid ratio of 1:20 (w/v) for 5 d, which were more efficient than that by 0.1% of rhamnolipid. The amounts of the bioleached heavy metals by the Burkholderia sp. Z-90 leachate were higher than that by other biosurfactants in the previous studies, although the removal efficiencies of the metals by the leachate were relatively lower. It was suggested that more heavy metals caused more competitive to chelate with function groups of the gross biosurfactants and the metal removal efficiencies by biosurfactants in natural soils were lower than in the artificially contaminated soils. Moreover, the Burkholderia sp. Z-90 leachate facilitated the metals to be transformed to the easily migrating speciation fractions. Additional, the results showed that PAC was efficient in the following flocculation to remove heavy metals in the waste bio-leachates. Our study will provide support for developing a bioleaching technique model to remediate the soils extremely contaminated by heavy metals.
Collapse
Affiliation(s)
- Zhihui Yang
- Institute of Environmental Science and Engineering, School of Metallurgy and Environment, Central South University, Changsha 410083, China; Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Changsha 410083, China
| | - Wei Shi
- Institute of Environmental Science and Engineering, School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Weichun Yang
- Institute of Environmental Science and Engineering, School of Metallurgy and Environment, Central South University, Changsha 410083, China; Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Changsha 410083, China
| | - Lifen Liang
- Institute of Environmental Science and Engineering, School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Wenbin Yao
- Institute of Environmental Science and Engineering, School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Liyuan Chai
- Institute of Environmental Science and Engineering, School of Metallurgy and Environment, Central South University, Changsha 410083, China; Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Changsha 410083, China
| | - Shikang Gao
- Institute of Environmental Science and Engineering, School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Qi Liao
- Institute of Environmental Science and Engineering, School of Metallurgy and Environment, Central South University, Changsha 410083, China; Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Changsha 410083, China.
| |
Collapse
|
26
|
Andreadou E, Pantazaki AA, Daniilidou M, Tsolaki M. Rhamnolipids, Microbial Virulence Factors, in Alzheimer's Disease. J Alzheimers Dis 2018; 59:209-222. [PMID: 28598837 DOI: 10.3233/jad-161020] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Alzheimer's disease (AD) has been attributed to chronic bacterial infections. The recognition of human microbiota as a substantial contributor to health and disease is relatively recent and growing. During evolution, mammals live in a symbiotic state with myriads of microorganisms that survive at a diversity of tissue micro-surroundings. Microbes produce a plethora of secretory products [amyloids, lipopolysaccharides, virulence factors rhamnolipids (RLs), toxins, and a great number of neuroactive compounds]. The contribution of infectious microbial components to the pathophysiology of the human central nervous system including AD is considered potentially substantial, but the involvement of the RLs has never been reported. Here, RLs were isolated from serum and identified through various conventional methods including the colorimetric orcinol method, thin-layer chromatography, attenuated total reflection Fourier transform infrared (ATR-FTIR), and dot blot using antibodies against RLs. Dot blot demonstrated elevated RL levels in sera of AD patients compared to controls (p = 0.014). Moreover, ELISA showed similarly elevated RL levels in cerebrospinal fluid of both AD (0.188 versus 0.080) (p = 0.04) and mild cognitive impairment (0.188 versus 0.129) (p = 0.088) patients compared to healthy, and are well-correlated with the AD stages severity assessed using the Mini-Mental State Examination. These results provide conclusive evidence for the newly-reported implication of RLs in AD, adding it to the list of bacterial components, opening new avenues for AD investigation. Moreover, they strengthen and vindicate the divergence of research toward the exploration of bacterial involvement in AD generation and progression.
Collapse
Affiliation(s)
- Eleni Andreadou
- Department of Chemistry, Laboratory of Biochemistry, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Anastasia A Pantazaki
- Department of Chemistry, Laboratory of Biochemistry, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Makrina Daniilidou
- Department of Chemistry, Laboratory of Biochemistry, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Magda Tsolaki
- 3rd Department of Neurology, "G. Papanikolaou" General Hospital of Thessaloniki, Aristotle University of Thessaloniki, Greece
| |
Collapse
|
27
|
Franco Marcelino PR, da Silva VL, Rodrigues Philippini R, Von Zuben CJ, Contiero J, dos Santos JC, da Silva SS. Biosurfactants produced by Scheffersomyces stipitis cultured in sugarcane bagasse hydrolysate as new green larvicides for the control of Aedes aegypti, a vector of neglected tropical diseases. PLoS One 2017; 12:e0187125. [PMID: 29125845 PMCID: PMC5695273 DOI: 10.1371/journal.pone.0187125] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 10/13/2017] [Indexed: 01/16/2023] Open
Abstract
Biosurfactants are microbial metabolites with possible applications in various industrial sectors that are considered ecofriendly molecules. In recent years, some studies identified these compounds as alternatives for the elimination of vectors of tropical diseases, such as Aedes aegypti. The major bottlenecks of biosurfactant industrial production have been the use of conventional raw materials that increase production costs as well as opportunistic or pathogenic bacteria, which restrict the application of these biomolecules. The present study shows the potential of hemicellulosic sugarcane bagasse hydrolysate as a raw material for the production of a crystalline glycolipidic BS by Scheffersomyces stipitis NRRL Y-7124, which resulted in an emulsifying index (EI24) of 70 ± 3.4% and a superficial tension of 52 ± 2.9 mN.m-1. Additionally, a possible new application of these compounds as biolarvicides, mainly against A. aegypti, was evaluated. At a concentration of 800 mg.L-1, the produced biosurfactant caused destruction to the larval exoskeletons 12 h after application and presented an letal concentration (LC50) of 660 mg.L-1. Thus, a new alternative for biosurfactant production using vegetal biomass as raw material within the concept of biorefineries was proposed, and the potential of the crystalline glycolipidic biosurfactant in larvicidal formulations against neglected tropical disease vectors was demonstrated.
Collapse
Affiliation(s)
| | - Vinícius Luiz da Silva
- Department of Biochemistry and Microbiology, Biosciences Institute, São Paulo State University (Campus Rio Claro), Rio Claro, Brazil
| | | | - Cláudio José Von Zuben
- Department of Zoology, Biosciences Institute, São Paulo State University (Campus Rio Claro), Rio Claro, Brazil
| | - Jonas Contiero
- Department of Biochemistry and Microbiology, Biosciences Institute, São Paulo State University (Campus Rio Claro), Rio Claro, Brazil
| | - Júlio César dos Santos
- Department of Biotechnology, Engineering School of Lorena, São Paulo University, Lorena, Brazil
| | | |
Collapse
|
28
|
Çakmak H, Güngörmedi G, Dikmen G, Çelik PA, Çabuk A. The true methodology for rhamnolipid: Various solvents affect rhamnolipid characteristics. EUR J LIPID SCI TECH 2017. [DOI: 10.1002/ejlt.201700002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Hakan Çakmak
- Department of Biotechnology and BiosafetyGraduate School of Natural and Applied ScienceEskisehir Osmangazi UniversityEskisehirTurkey
| | - Gökhan Güngörmedi
- Department of Biotechnology and BiosafetyGraduate School of Natural and Applied ScienceEskisehir Osmangazi UniversityEskisehirTurkey
| | - Gökhan Dikmen
- Central Research LaboratoryEskisehir Osmangazi UniversityEskisehirTurkey
| | - Pınar Aytar Çelik
- Department of Biotechnology and BiosafetyGraduate School of Natural and Applied ScienceEskisehir Osmangazi UniversityEskisehirTurkey
| | - Ahmet Çabuk
- Department of Biotechnology and BiosafetyGraduate School of Natural and Applied ScienceEskisehir Osmangazi UniversityEskisehirTurkey
- Department of BiologyFaculty of Arts and ScienceEskisehir Osmangazi UniversityEskisehirTurkey
| |
Collapse
|
29
|
Irorere VU, Tripathi L, Marchant R, McClean S, Banat IM. Microbial rhamnolipid production: a critical re-evaluation of published data and suggested future publication criteria. Appl Microbiol Biotechnol 2017; 101:3941-3951. [PMID: 28386631 PMCID: PMC5403872 DOI: 10.1007/s00253-017-8262-0] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 03/23/2017] [Accepted: 03/27/2017] [Indexed: 01/13/2023]
Abstract
High production cost and potential pathogenicity of Pseudomonas aeruginosa, commonly used for rhamnolipid synthesis, have led to extensive research for safer producing strains and cost-effective production methods. This has resulted in numerous research publications claiming new non-pathogenic producing strains and novel production techniques many of which are unfortunately without proper characterisation of product and/or producing strain/s. Genes responsible for rhamnolipid production have only been confirmed in P. aeruginosa, Burkholderia thailandensis and Burkholderia pseudomallei. Comparing yields in different publications is also generally unreliable especially when different methodologies were used for rhamnolipid quantification. After reviewing the literature in this area, we strongly feel that numerous research outputs have insufficient evidence to support claims of rhamnolipid-producing strains and/or yields. We therefore recommend that standards should be set for reporting new rhamnolipid-producing strains and production yields. These should include (1) molecular and bioinformatic tools to fully characterise new microbial isolates and confirm the presence of the rhamnolipid rhl genes for all bacterial strains, (2) using gravimetric methods to quantify crude yields and (3) use of a calibrated method (high-performance liquid chromatography or ultra-performance liquid chromatography) for absolute quantitative yield determination.
Collapse
Affiliation(s)
- Victor U. Irorere
- School of Biomedical Sciences, Faculty of Life and Health Sciences, Ulster University, Coleraine, Co. Londonderry BT52 1SA UK
| | - Lakshmi Tripathi
- School of Biomedical Sciences, Faculty of Life and Health Sciences, Ulster University, Coleraine, Co. Londonderry BT52 1SA UK
| | - Roger Marchant
- School of Biomedical Sciences, Faculty of Life and Health Sciences, Ulster University, Coleraine, Co. Londonderry BT52 1SA UK
| | - Stephen McClean
- School of Biomedical Sciences, Faculty of Life and Health Sciences, Ulster University, Coleraine, Co. Londonderry BT52 1SA UK
| | - Ibrahim M. Banat
- School of Biomedical Sciences, Faculty of Life and Health Sciences, Ulster University, Coleraine, Co. Londonderry BT52 1SA UK
| |
Collapse
|
30
|
Behrens B, Helmer PO, Tiso T, Blank LM, Hayen H. Rhamnolipid biosurfactant analysis using online turbulent flow chromatography-liquid chromatography-tandem mass spectrometry. J Chromatogr A 2016; 1465:90-7. [DOI: 10.1016/j.chroma.2016.08.044] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 08/18/2016] [Accepted: 08/19/2016] [Indexed: 10/21/2022]
|
31
|
El-Housseiny GS, Aboulwafa MM, Aboshanab KA, Hassouna NAH. Optimization of Rhamnolipid Production by P. aeruginosa Isolate P6. J SURFACTANTS DETERG 2016. [DOI: 10.1007/s11743-016-1845-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
32
|
Utilization of Crude Glycerol as a Substrate for the Production of Rhamnolipid by Pseudomonas aeruginosa. BIOTECHNOLOGY RESEARCH INTERNATIONAL 2016; 2016:3464509. [PMID: 26942014 PMCID: PMC4749778 DOI: 10.1155/2016/3464509] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 12/13/2015] [Accepted: 12/15/2015] [Indexed: 11/27/2022]
Abstract
Biosurfactants are produced by bacteria or yeast utilizing different substrates as sugars, glycerol, or oils. They have important applications in the detergent, oil, and pharmaceutical industries. Glycerol is the product of biodiesel industry and the existing glycerol market cannot accommodate the excess amounts generated; consequently, new markets for refined glycerol need to be developed. The aim of present work is to optimize the production of microbial rhamnolipid using waste glycerol. We have developed a process for the production of rhamnolipid biosurfactants using glycerol as the sole carbon source by a local Pseudomonas aeruginosa isolate that was obtained from an extensive screening program. A factorial design was applied with the goal of optimizing the rhamnolipid production. The highest production yield was obtained after 2 days when cells were grown in minimal salt media at pH 6, containing 1% (v/v) glycerol and 2% (w/v) sodium nitrate as nitrogen source, at 37°C and at 180 rpm, and reached 2.164 g/L after 54 hours (0.04 g/L h). Analysis of the produced rhamnolipids by TLC, HPLC, and FTIR confirmed the nature of the biosurfactant as monorhamnolipid. Glycerol can serve as a source for the production of rhamnolipid from microbial isolates providing a cheap and reliable substrate.
Collapse
|
33
|
Yang Z, Zhang Z, Chai L, Wang Y, Liu Y, Xiao R. Bioleaching remediation of heavy metal-contaminated soils using Burkholderia sp. Z-90. JOURNAL OF HAZARDOUS MATERIALS 2016; 301:145-152. [PMID: 26348147 DOI: 10.1016/j.jhazmat.2015.08.047] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 08/03/2015] [Accepted: 08/24/2015] [Indexed: 06/05/2023]
Abstract
Bioleaching is an environment-friendly and economical technology to remove heavy metals from contaminated soils. In this study, a biosurfactant-producing strain with capacity of alkaline production was isolated from cafeteria sewer sludge and its capability for removing Zn, Pb, Mn, Cd, Cu, and As was investigated. Phylogenetic analysis using 16S rDNA gene sequences confirmed that the strain belonged to Burkholderia sp. and named as Z-90. The biosurfactant was glycolipid confirmed by thin layer chromatography and Fourier-transform infrared spectroscopy. Z-90 broth was then used for bioleaching remediation of heavy metal-contaminated soils. The removal efficiency was 44.0% for Zn, 32.5% for Pb, 52.2% for Mn, 37.7% for Cd, 24.1% for Cu and 31.6% for As, respectively. Mn, Zn and Cd were more easily removed from soil than Cu, Pb and As, which was attributed to the presence of high acid-soluble fraction of Mn, Zn and Cd and high residual fraction of Cu, Pb and As. The heavy metal removal in soils was contributed to the adhesion of heavy metal-contaminated soil minerals with strain Z-90 and the formation of a metal complex with biosurfactant.
Collapse
Affiliation(s)
- Zhihui Yang
- School of Metallurgy and Environment, Central South University, Changsha 410083, China; Chinese National Engineering Research Center for Control and Treatment of Heavy Metal Pollution, Changsha 410083, China
| | - Zhi Zhang
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Liyuan Chai
- School of Metallurgy and Environment, Central South University, Changsha 410083, China; Chinese National Engineering Research Center for Control and Treatment of Heavy Metal Pollution, Changsha 410083, China
| | - Yong Wang
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Yi Liu
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Ruiyang Xiao
- School of Metallurgy and Environment, Central South University, Changsha 410083, China; Chinese National Engineering Research Center for Control and Treatment of Heavy Metal Pollution, Changsha 410083, China.
| |
Collapse
|
34
|
Zhao F, Zhang J, Shi R, Han S, Ma F, Zhang Y. Production of biosurfactant by a Pseudomonas aeruginosa isolate and its applicability to in situ microbial enhanced oil recovery under anoxic conditions. RSC Adv 2015. [DOI: 10.1039/c5ra03559g] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
An isolated strain SG can produce biosurfactant under anoxic conditions and has great potential forin situmicrobial enhanced oil recovery.
Collapse
Affiliation(s)
- Feng Zhao
- State Key Laboratory of Urban Water Resource and Environment
- School of Municipal and Environmental Engineering
- Harbin Institute of Technology
- Harbin 150090
- China
| | - Jie Zhang
- State Key Laboratory of Urban Water Resource and Environment
- School of Municipal and Environmental Engineering
- Harbin Institute of Technology
- Harbin 150090
- China
| | - Rongjiu Shi
- Key Laboratory of Pollution Ecology and Environmental Engineering
- Institute of Applied Ecology
- Chinese Academy of Sciences
- Shenyang 110016
- China
| | - Siqin Han
- Key Laboratory of Pollution Ecology and Environmental Engineering
- Institute of Applied Ecology
- Chinese Academy of Sciences
- Shenyang 110016
- China
| | - Fang Ma
- State Key Laboratory of Urban Water Resource and Environment
- School of Municipal and Environmental Engineering
- Harbin Institute of Technology
- Harbin 150090
- China
| | - Ying Zhang
- Key Laboratory of Pollution Ecology and Environmental Engineering
- Institute of Applied Ecology
- Chinese Academy of Sciences
- Shenyang 110016
- China
| |
Collapse
|
35
|
Zhao F, Shi R, Zhao J, Li G, Bai X, Han S, Zhang Y. Heterologous production of Pseudomonas aeruginosa
rhamnolipid under anaerobic conditions for microbial enhanced oil recovery. J Appl Microbiol 2014; 118:379-89. [DOI: 10.1111/jam.12698] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Revised: 10/05/2014] [Accepted: 11/11/2014] [Indexed: 01/02/2023]
Affiliation(s)
- F. Zhao
- Key Laboratory of Pollution Ecology and Environmental Engineering; Institute of Applied Ecology; Chinese Academy of Sciences; Shenyang Liaoning Province China
- University of Chinese Academy of Sciences; Beijing China
| | - R. Shi
- Key Laboratory of Pollution Ecology and Environmental Engineering; Institute of Applied Ecology; Chinese Academy of Sciences; Shenyang Liaoning Province China
| | - J. Zhao
- The Second Oil Production Factory; Daqing Oilfield Company Limited; Daqing Heilongjiang Province China
| | - G. Li
- The Second Oil Production Factory; Daqing Oilfield Company Limited; Daqing Heilongjiang Province China
| | - X. Bai
- Key Laboratory of Pollution Ecology and Environmental Engineering; Institute of Applied Ecology; Chinese Academy of Sciences; Shenyang Liaoning Province China
- University of Chinese Academy of Sciences; Beijing China
| | - S. Han
- Key Laboratory of Pollution Ecology and Environmental Engineering; Institute of Applied Ecology; Chinese Academy of Sciences; Shenyang Liaoning Province China
| | - Y. Zhang
- Key Laboratory of Pollution Ecology and Environmental Engineering; Institute of Applied Ecology; Chinese Academy of Sciences; Shenyang Liaoning Province China
| |
Collapse
|
36
|
Direct quantification of immobilized enzymes by means of FTIR ATR spectroscopy – A process analytics tool for biotransformations applying non-porous magnetic enzyme carriers. ACTA ACUST UNITED AC 2014. [DOI: 10.1016/j.molcatb.2014.05.018] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
37
|
Laabei M, Jamieson WD, Lewis SE, Diggle SP, Jenkins ATA. A new assay for rhamnolipid detection-important virulence factors of Pseudomonas aeruginosa. Appl Microbiol Biotechnol 2014; 98:7199-209. [PMID: 24974281 DOI: 10.1007/s00253-014-5904-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Revised: 06/17/2014] [Accepted: 06/18/2014] [Indexed: 10/25/2022]
Abstract
Rhamnolipids (RLs) are heterogeneous glycolipid molecules that are composed of one or two L-rhamnose sugars and one or two β-hydroxy fatty acids, which can vary in their length and branch size. They are biosurfactants, predominantly produced by Pseudomonas aeruginosa and are important virulence factors, playing a major role in P. aeruginosa pathogenesis. Therefore, a fast, accurate and high-throughput method of detecting such molecules is of real importance. Here, we illustrate the ability to detect RL-producing P. aeruginosa strains with high sensitivity, based on an assay involving phospholipid vesicles encapsulated with a fluorescent dye. This vesicle-lysis assay is confirmed to be solely sensitive to RLs. We illustrate a half maximum concentration for vesicle lysis (EC50) of 40 μM (23.2 μg/mL) using pure commercial RLs and highlight the ability to semi-quantify RLs directly from the culture supernatant, requiring no extra extraction or processing steps or technical expertise. We show that this method is consistent with results from thin-layer chromatography detection and dry weight analysis of RLs but find that the widely used orcinol colorimetric test significantly underestimated RL quantity. Finally, we apply this methodology to compare RL production among strains isolated from either chronic or acute infections. We confirm a positive association between RL production and acute infection isolates (p = 0.0008), highlighting the role of RLs in certain infections.
Collapse
Affiliation(s)
- Maisem Laabei
- Department of Chemistry, University of Bath, Claverton Down, Bath, BA2 7AY, UK
| | | | | | | | | |
Collapse
|
38
|
Pantazaki AA, Choli-Papadopoulou T. On the Thermus thermophilus HB8 potential pathogenicity triggered from rhamnolipids secretion: morphological alterations and cytotoxicity induced on fibroblastic cell line. Amino Acids 2011; 42:1913-26. [DOI: 10.1007/s00726-011-0917-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2011] [Accepted: 04/08/2011] [Indexed: 11/30/2022]
|
39
|
Dusane DH, Zinjarde SS, Venugopalan VP, McLean RJC, Weber MM, Rahman PKSM. Quorum sensing: implications on rhamnolipid biosurfactant production. Biotechnol Genet Eng Rev 2011; 27:159-84. [PMID: 21415897 DOI: 10.1080/02648725.2010.10648149] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Quorum sensing (QS) has received significant attention in the past few decades. QS describes population density dependent cell to cell communication in bacteria using diffusible signal molecules. These signal molecules produced by bacterial cells, regulate various physiological processes important for social behavior and pathogenesis. One such process regulated by quorum sensing molecules is the production of a biosurfactant, rhamnolipid. Rhamnolipids are important microbially derived surface active agents produced by Pseudomonas spp. under the control of two interrelated quorum sensing systems; namely las and rhl. Rhamnolipids possess antibacterial, antifungal and antiviral properties. They are important in motility, cell to cell interactions, cellular differentiation and formation of water channels that are characteristics of Pseudomonas biofilms. Rhamnolipids have biotechnological applications in the uptake of hydrophobic substrates, bioremediation of contaminated soils and polluted waters. Rhamnolipid biosurfactants are biodegradable as compared to chemical surfactants and hence are more preferred in environmental applications. In this review, we examine the biochemical and genetic mechanism of rhamnolipid production by P. aeruginosa and propose the application of QS signal molecules in enhancing the rhamnolipid production.
Collapse
Affiliation(s)
- Devendra H Dusane
- Institute of Bioinformatics and Biotechnology, University of Pune, India.
| | | | | | | | | | | |
Collapse
|
40
|
Pantazaki AA, Dimopoulou MI, Simou OM, Pritsa AA. Sunflower seed oil and oleic acid utilization for the production of rhamnolipids by Thermus thermophilus HB8. Appl Microbiol Biotechnol 2010; 88:939-51. [DOI: 10.1007/s00253-010-2802-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2010] [Revised: 07/27/2010] [Accepted: 07/28/2010] [Indexed: 11/25/2022]
|