1
|
Saha TR, Kang NK, Lee EY. Advanced metabolic Engineering strategies for the sustainable production of free fatty acids and their derivatives using yeast. J Biol Eng 2024; 18:73. [PMID: 39731138 DOI: 10.1186/s13036-024-00473-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 12/18/2024] [Indexed: 12/29/2024] Open
Abstract
The biological production of lipids presents a sustainable method for generating fuels and chemicals. Recognized as safe and enhanced by advanced synthetic biology and metabolic engineering tools, yeasts are becoming versatile hosts for industrial applications. However, lipids accumulate predominantly as triacylglycerides in yeasts, which are suboptimal for industrial uses. Thus, there have been efforts to directly produce free fatty acids and their derivatives in yeast, such as fatty alcohols, fatty aldehydes, and fatty acid ethyl esters. This review offers a comprehensive overview of yeast metabolic engineering strategies to produce free fatty acids and their derivatives. This study also explores current challenges and future perspectives for sustainable industrial lipid production, particularly focusing on engineering strategies that enable yeast to utilize alternative carbon sources such as CO2, methanol, and acetate, moving beyond traditional sugars. This review will guide further advancements in employing yeasts for environmentally friendly and economically viable lipid production technologies.
Collapse
Affiliation(s)
- Tisa Rani Saha
- Department of Chemical Engineering (BK21 FOUR Integrated Engineering), Kyung Hee University, Yongin-si, Gyeonggi-do, 17104, Republic of Korea
| | - Nam Kyu Kang
- Department of Chemical Engineering, College of Engineering, Kyung Hee University, Yongin- si, Gyeonggi-do, 17104, Republic of Korea.
| | - Eun Yeol Lee
- Department of Chemical Engineering (BK21 FOUR Integrated Engineering), Kyung Hee University, Yongin-si, Gyeonggi-do, 17104, Republic of Korea.
| |
Collapse
|
2
|
Zhang Y, Yu H, Ye L. From β-Carotene to Retinoids: A Review of Microbial Production of Vitamin A. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:20752-20762. [PMID: 39285668 DOI: 10.1021/acs.jafc.4c06851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
Vitamin A (retinoids) is crucial for human health, with significant demand across the food, pharmaceutical, and animal feed industries. Currently, the market primarily relies on chemical synthesis and natural extraction methods, which face challenges such as low synthesis efficiency and complex extraction processes. Advances in synthetic biology have enabled vitamin A biosynthesis using microbial cell factories, offering a promising and sustainable solution to meet the increasing market demands. This review introduces the key enzymes involved in the biosynthesis of vitamin A from β-carotene, evaluates achievements in vitamin A production using various microbial hosts, and summarizes strategies for optimizing vitamin A biosynthesis. Additionally, we outline the remaining challenges and propose future directions for the biotechnological production of vitamin A.
Collapse
Affiliation(s)
- Yijun Zhang
- Key Laboratory of Biomass Chemical Engineering (Education Ministry), College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
| | - Hongwei Yu
- Key Laboratory of Biomass Chemical Engineering (Education Ministry), College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
| | - Lidan Ye
- Key Laboratory of Biomass Chemical Engineering (Education Ministry), College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
3
|
Wang L, Liu B, Meng Q, Yang C, Hu Y, Wang C, Wu P, Ruan C, Li W, Cheng S, Guo S. Saccharomyces cerevisiae cellular engineering for the production of FAME biodiesel. AMB Express 2024; 14:42. [PMID: 38658521 PMCID: PMC11043267 DOI: 10.1186/s13568-024-01702-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 04/08/2024] [Indexed: 04/26/2024] Open
Abstract
The unsustainable and widespread utilization of fossil fuels continues to drive the rapid depletion of global supplies. Biodiesel has emerged as one of the most promising alternatives to conventional diesel, leading to growing research interest in its production. Microbes can facilitate the de novo synthesis of a type of biodiesel in the form of fatty acid methyl esters (FAMEs). In this study, Saccharomyces cerevisiae metabolic activity was engineered to facilitate enhanced FAME production. Initially, free fatty acid concentrations were increased by deleting two acetyl-CoA synthetase genes (FAA1, FAA4) and an acyl-CoA oxidase gene (POX1). Intracellular S-adenosylmethionine (SAM) levels were then enhanced via the deletion of an adenosine kinase gene (ADO1) and the overexpression of a SAM synthetase gene (SAM2). Lastly, the S. cerevisiae strain overproducing free fatty acids and SAM were manipulated to express a plasmid encoding the Drosophila melanogaster Juvenile Hormone Acid O-Methyltransferase (DmJHAMT). Using this combination of engineering approaches, a FAME concentration of 5.79 ± 0.56 mg/L was achieved using these cells in the context of shaking flask fermentation. To the best of our knowledge, this is the first detailed study of FAME production in S. cerevisiae. These results will provide a valuable basis for future efforts to engineer S. cerevisiae strains for highly efficient production of biodiesel.
Collapse
Affiliation(s)
- Laiyou Wang
- Henan Key Laboratory of Industrial Microbial Resources and Fermentation Technology, Nanyang Institute of Technology, 473004, Nanyang, China
| | - Bingbing Liu
- Henan Key Laboratory of Industrial Microbial Resources and Fermentation Technology, Nanyang Institute of Technology, 473004, Nanyang, China
| | - Qingshan Meng
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Chunchun Yang
- Henan Key Laboratory of Industrial Microbial Resources and Fermentation Technology, Nanyang Institute of Technology, 473004, Nanyang, China
| | - Yiyi Hu
- Henan Key Laboratory of Industrial Microbial Resources and Fermentation Technology, Nanyang Institute of Technology, 473004, Nanyang, China
| | - Chunyan Wang
- Henan Key Laboratory of Industrial Microbial Resources and Fermentation Technology, Nanyang Institute of Technology, 473004, Nanyang, China
| | - Pengyu Wu
- Henan Key Laboratory of Industrial Microbial Resources and Fermentation Technology, Nanyang Institute of Technology, 473004, Nanyang, China
| | - Chen Ruan
- Henan Key Laboratory of Industrial Microbial Resources and Fermentation Technology, Nanyang Institute of Technology, 473004, Nanyang, China
| | - Wenhuan Li
- Henan Key Laboratory of Industrial Microbial Resources and Fermentation Technology, Nanyang Institute of Technology, 473004, Nanyang, China
| | - Shuang Cheng
- Henan Key Laboratory of Industrial Microbial Resources and Fermentation Technology, Nanyang Institute of Technology, 473004, Nanyang, China.
| | - Shuxian Guo
- Henan Key Laboratory of Industrial Microbial Resources and Fermentation Technology, Nanyang Institute of Technology, 473004, Nanyang, China.
| |
Collapse
|
4
|
Casolari F, Alrashdi S, Carr R, Deng H. Exploring a Streptomyces wax synthase using acyl-SNACs as donor substrates. RSC Chem Biol 2023; 4:742-747. [PMID: 37799584 PMCID: PMC10549239 DOI: 10.1039/d3cb00107e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 08/09/2023] [Indexed: 10/07/2023] Open
Abstract
The demand of fragrance and food industries for short/branched wax esters is increasing due to their rich scent and low toxicity. Wax synthase and acyl-CoA:diacylglycerol O-acyltransferase (WS/DGAT) are a family of bacterial enzymes capable of catalysing the production of wax esters. Here, we report that a WS/DGAT from Streptomyces coelicolor is able to mediate the reactions between alcohol acceptors and synthetic acyl-donor mimics, acyl-SNACs. The enzyme displayed considerable substrate tolerance towards acyl-donors with structural diversity. Structural modelling-guided site directed mutagenesis resulted in a variant, L25F, the catalytic efficiency of which was improved toward aromatic, short-linear, and branched acyl-donors compared to the wild type.
Collapse
Affiliation(s)
- Federica Casolari
- Department of Chemistry, University of Aberdeen Aberdeen AB24 3UE UK
| | - Saad Alrashdi
- Department of Chemistry, University of Aberdeen Aberdeen AB24 3UE UK
- College of Science and Arts in Gurayat, Jouf University King Khaled Road Saudi Arabia
| | | | - Hai Deng
- Department of Chemistry, University of Aberdeen Aberdeen AB24 3UE UK
| |
Collapse
|
5
|
Liu G, Huang L, Lian J. Alcohol acyltransferases for the biosynthesis of esters. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2023; 16:93. [PMID: 37264424 DOI: 10.1186/s13068-023-02343-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 05/18/2023] [Indexed: 06/03/2023]
Abstract
Esters are widely used in food, energy, spices, chemical industry, etc., becoming an indispensable part of life. However, their production heavily relies on the fossil energy industry, which presents significant challenges associated with energy shortages and environmental pollution. Consequently, there is an urgent need to identify alternative green methods for ester production. One promising solution is biosynthesis, which offers sustainable and environmentally friendly processes. In ester biosynthesis, alcohol acyltransferases (AATs) catalyze the condensation of acyl-CoAs and alcohols to form esters, enabling the biosynthesis of nearly 100 different kinds of esters, such as ethyl acetate, hexyl acetate, ethyl crotonate, isoamyl acetate, and butyl butyrate. However, low catalytic efficiency and low selectivity of AATs represent the major bottlenecks for the biosynthesis of certain specific esters, which should be addressed with protein molecular engineering approaches before practical biotechnological applications. This review provides an overview of AAT enzymes, including their sequences, structures, active sites, catalytic mechanisms, and metabolic engineering applications. Furthermore, considering the critical role of AATs in determining the final ester products, the current research progresses of AAT modification using protein molecular engineering are also discussed. This review summarized the major challenges and prospects of AAT enzymes in ester biosynthesis.
Collapse
Affiliation(s)
- Gaofei Liu
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, China
| | - Lei Huang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, China
| | - Jiazhang Lian
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China.
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, China.
- Zhejiang Key Laboratory of Smart Biomaterials, Zhejiang University, Hangzhou, 310027, China.
| |
Collapse
|
6
|
Valle-Rodríguez JO, Siewers V, Nielsen J, Shi S. Directed evolution of a wax ester synthase for production of fatty acid ethyl esters in Saccharomyces cerevisiae. Appl Microbiol Biotechnol 2023; 107:2921-2932. [PMID: 36976306 DOI: 10.1007/s00253-023-12466-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 02/21/2023] [Accepted: 02/24/2023] [Indexed: 03/29/2023]
Abstract
Wax ester synthases (WSs) utilize a fatty alcohol and a fatty acyl-coenzyme A (activated fatty acid) to synthesize the corresponding wax ester. There is much interest in developing novel cell factories that can produce shorter esters, e.g., fatty acid ethyl esters (FAEEs), with properties similar to biodiesel in order to use these as transportation fuels. However, ethanol is a poor substrate for WSs, and this may limit the biosynthesis of FAEEs. Here, we implemented a random mutagenesis approach to enhance the catalytic efficiency of a WS from Marinobacter hydrocarbonoclasticus (MhWS2, encoded by the ws2 gene). Our selection system was based on FAEE formation serving as a detoxification mechanism for excessive oleate, where high WS activity was essential for a storage-lipid free yeast to survive. A random mutagenesis library of ws2 was used to transform the storage-lipid free yeast, and mutants could be selected by plating the transformants on oleate containing plates. The variants encoding WS with improved activity were sequenced, and an identified point mutation translated into the residue substitution at position A344 was discovered to substantially increase the selectivity of MhWS2 toward ethanol and other shorter alcohols. Structural modeling indicated that an A344T substitution might affect the alcohol selectivity due to change of both steric effects and polarity changes near the active site. This work not only provides a new WS variant with altered selectivity to shorter alcohols but also presents a new high-throughput selection system to isolate WSs with a desired selectivity. KEY POINTS: • The work provides WS variants with altered substrate preference for shorter alcohols • A novel method was developed for directed evolution of WS of desired selectivity.
Collapse
Affiliation(s)
| | - Verena Siewers
- Department of Biology and Biological Engineering, Chalmers University of Technology, 412 96, Gothenburg, Sweden
- Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, 412 96, Gothenburg, Sweden
| | - Jens Nielsen
- Department of Biology and Biological Engineering, Chalmers University of Technology, 412 96, Gothenburg, Sweden.
- Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, 412 96, Gothenburg, Sweden.
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2970, Hørsholm, Denmark.
| | - Shuobo Shi
- Department of Biology and Biological Engineering, Chalmers University of Technology, 412 96, Gothenburg, Sweden.
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China.
| |
Collapse
|
7
|
Maurya R, Gohil N, Nixon S, Kumar N, Noronha SB, Dhali D, Trabelsi H, Alzahrani KJ, Reshamwala SMS, Awasthi MK, Ramakrishna S, Singh V. Rewiring of metabolic pathways in yeasts for sustainable production of biofuels. BIORESOURCE TECHNOLOGY 2023; 372:128668. [PMID: 36693507 DOI: 10.1016/j.biortech.2023.128668] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/19/2023] [Accepted: 01/20/2023] [Indexed: 06/17/2023]
Abstract
The ever-increasing global energy demand has led world towards negative repercussions such as depletion of fossil fuels, pollution, global warming and climate change. Designing microbial cell factories for the sustainable production of biofuels is therefore an active area of research. Different yeast cells have been successfully engineered using synthetic biology and metabolic engineering approaches for the production of various biofuels. In the present article, recent advancements in genetic engineering strategies for production of bioalcohols, isoprenoid-based biofuels and biodiesels in different yeast chassis designs are reviewed, along with challenges that must be overcome for efficient and high titre production of biofuels.
Collapse
Affiliation(s)
- Rupesh Maurya
- Department of Biosciences, School of Science, Indrashil University, Rajpur, Mehsana 382715, Gujarat, India
| | - Nisarg Gohil
- Department of Biosciences, School of Science, Indrashil University, Rajpur, Mehsana 382715, Gujarat, India
| | - Snovia Nixon
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Nilesh Kumar
- M.Tech. Programme in Bioprocess Engineering, Institute of Chemical Technology, Mumbai, India; DBT-ICT Centre for Energy Biosciences, Institute of Chemical Technology, Mumbai, India
| | - Santosh B Noronha
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Debarun Dhali
- EV Biotech BV, Zernikelaan 8, 9747 AA Groningen, The Netherlands
| | - Heykel Trabelsi
- Carbocode GmbH, Byk-Gulden-Strasse 2, 78467 Konstanz, Germany
| | - Khalid J Alzahrani
- Department of Clinical Laboratories Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | | | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Suresh Ramakrishna
- College of Medicine, Hanyang University, Seoul, South Korea; Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, South Korea
| | - Vijai Singh
- Department of Biosciences, School of Science, Indrashil University, Rajpur, Mehsana 382715, Gujarat, India.
| |
Collapse
|
8
|
Dierickx S, Souvereyns M, Roelants SLKW, De Graeve M, Van Meulebroek L, De Maeseneire SL, Soetaert WKG, Vanhaecke L. Comprehensive metabolomics reveals correlation between sophorolipid biosynthesis and autophagy. N Biotechnol 2023; 75:1-12. [PMID: 36805132 DOI: 10.1016/j.nbt.2023.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 02/15/2023] [Accepted: 02/16/2023] [Indexed: 02/19/2023]
Abstract
Sophorolipids are biobased and biodegradable glycolipid surface-active agents contributing to the shift from petroleum to biobased surfactants, associated with clear environmental benefits. However, their production cost is currently too high to allow commercialisation. Therefore, a continuous sophorolipid production process was evaluated, i.e., a retentostat with an external filtration unit. Despite an initial increase in volumetric productivity, productivity eventually declined to almost 0 g L-1 h-1. Following comprehensive metabolomics on supernatant obtained from a standardised retentostat, we hypothesised exhaustion of the N-starvation-induced autophagy as the main mechanism responsible for the decline in bolaform sophorolipid productivity. Thirty-six metabolites that correlate with RNA/protein autophagy and high sophorolipid productivity were putatively identified. In conclusion, our results unveil a plausible cause of this bola sophorolipid productivity decline in an industrially relevant bioreactor set-up, which may thus impact majorly on future yeast biosurfactant regulation studies and the finetuning of bola sophorolipid production processes.
Collapse
Affiliation(s)
- Sven Dierickx
- Centre for Industrial Biotechnology and Biocatalysis (InBio.be), Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium; Laboratory of Integrative Metabolomics (LIMET), Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| | - Maximilien Souvereyns
- Centre for Industrial Biotechnology and Biocatalysis (InBio.be), Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Sophie L K W Roelants
- Centre for Industrial Biotechnology and Biocatalysis (InBio.be), Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium; Bio Base Europe Pilot Plant (BBEPP), Rodenhuizekaai 1, 9042 Ghent, Belgium
| | - Marilyn De Graeve
- Laboratory of Integrative Metabolomics (LIMET), Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| | - Lieven Van Meulebroek
- Laboratory of Integrative Metabolomics (LIMET), Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| | - Sofie L De Maeseneire
- Centre for Industrial Biotechnology and Biocatalysis (InBio.be), Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Wim K G Soetaert
- Centre for Industrial Biotechnology and Biocatalysis (InBio.be), Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium; Bio Base Europe Pilot Plant (BBEPP), Rodenhuizekaai 1, 9042 Ghent, Belgium
| | - Lynn Vanhaecke
- Laboratory of Integrative Metabolomics (LIMET), Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium; Institute for Global Food Security, School of Biological Sciences, Queen's University, University Road, Belfast BT7 1NN, United Kingdom.
| |
Collapse
|
9
|
Vollheyde K, Kühnel K, Lambrecht F, Kawelke S, Herrfurth C, Feussner I. Crystal Structure of the Bifunctional Wax Synthase 1 from Acinetobacter baylyi Suggests a Conformational Change upon Substrate Binding and Formation of Additional Substrate Binding Sites. ACS Catal 2022. [DOI: 10.1021/acscatal.2c01712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Katharina Vollheyde
- Department for Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences, University of Goettingen, D-37077 Goettingen, Germany
| | - Karin Kühnel
- Department of Neurobiology, Max Planck Institute for Biophysical Chemistry, D-37077 Goettingen, Germany
| | - Felix Lambrecht
- Department for Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences, University of Goettingen, D-37077 Goettingen, Germany
| | - Steffen Kawelke
- Department for Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences, University of Goettingen, D-37077 Goettingen, Germany
| | - Cornelia Herrfurth
- Department for Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences, University of Goettingen, D-37077 Goettingen, Germany
- Service Unit for Metabolomics and Lipidomics, Goettingen Center for Molecular Biosciences (GZMB), University of Goettingen, D-37077 Goettingen, Germany
| | - Ivo Feussner
- Department for Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences, University of Goettingen, D-37077 Goettingen, Germany
- Service Unit for Metabolomics and Lipidomics, Goettingen Center for Molecular Biosciences (GZMB), University of Goettingen, D-37077 Goettingen, Germany
- International Center for Advanced Studies of Energy Conversion (ICASEC), University of Goettingen, D-37077 Goettingen, Germany
- Goettingen Center for Molecular Biosciences (GZMB), University of Goettingen, D-37077 Goettingen, Germany
| |
Collapse
|
10
|
Chen G, Harwood JL, Lemieux MJ, Stone SJ, Weselake RJ. Acyl-CoA:diacylglycerol acyltransferase: Properties, physiological roles, metabolic engineering and intentional control. Prog Lipid Res 2022; 88:101181. [PMID: 35820474 DOI: 10.1016/j.plipres.2022.101181] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 05/31/2022] [Accepted: 07/04/2022] [Indexed: 12/15/2022]
Abstract
Acyl-CoA:diacylglycerol acyltransferase (DGAT, EC 2.3.1.20) catalyzes the last reaction in the acyl-CoA-dependent biosynthesis of triacylglycerol (TAG). DGAT activity resides mainly in membrane-bound DGAT1 and DGAT2 in eukaryotes and bifunctional wax ester synthase-diacylglycerol acyltransferase (WSD) in bacteria, which are all membrane-bound proteins but exhibit no sequence homology to each other. Recent studies also identified other DGAT enzymes such as the soluble DGAT3 and diacylglycerol acetyltransferase (EaDAcT), as well as enzymes with DGAT activities including defective in cuticular ridges (DCR) and steryl and phytyl ester synthases (PESs). This review comprehensively discusses research advances on DGATs in prokaryotes and eukaryotes with a focus on their biochemical properties, physiological roles, and biotechnological and therapeutic applications. The review begins with a discussion of DGAT assay methods, followed by a systematic discussion of TAG biosynthesis and the properties and physiological role of DGATs. Thereafter, the review discusses the three-dimensional structure and insights into mechanism of action of human DGAT1, and the modeled DGAT1 from Brassica napus. The review then examines metabolic engineering strategies involving manipulation of DGAT, followed by a discussion of its therapeutic applications. DGAT in relation to improvement of livestock traits is also discussed along with DGATs in various other eukaryotic organisms.
Collapse
Affiliation(s)
- Guanqun Chen
- Department of Agricultural, Food, and Nutritional Science, University of Alberta, Edmonton, Alberta T6H 2P5, Canada.
| | - John L Harwood
- School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK
| | - M Joanne Lemieux
- Department of Biochemistry, University of Alberta, Membrane Protein Disease Research Group, Edmonton T6G 2H7, Canada
| | - Scot J Stone
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada.
| | - Randall J Weselake
- Department of Agricultural, Food, and Nutritional Science, University of Alberta, Edmonton, Alberta T6H 2P5, Canada
| |
Collapse
|
11
|
Domergue F, Miklaszewska M. The production of wax esters in transgenic plants:
towards a sustainable source of bio-lubricants. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:2817-2834. [PMID: 35560197 PMCID: PMC9113324 DOI: 10.1093/jxb/erac046] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 02/03/2022] [Indexed: 05/08/2023]
Abstract
Wax esters are high-value compounds used as feedstocks for the production of lubricants, pharmaceuticals, and cosmetics. Currently, they are produced mostly from fossil reserves using chemical synthesis, but this cannot meet increasing demand and has a negative environmental impact. Natural wax esters are also obtained from Simmondsia chinensis (jojoba) but comparably in very low amounts and expensively. Therefore, metabolic engineering of plants, especially of the seed storage lipid metabolism of oil crops, represents an attractive strategy for renewable, sustainable, and environmentally friendly production of wax esters tailored to industrial applications. Utilization of wax ester-synthesizing enzymes with defined specificities and modulation of the acyl-CoA pools by various genetic engineering approaches can lead to obtaining wax esters with desired compositions and properties. However, obtaining high amounts of wax esters is still challenging due to their negative impact on seed germination and yield. In this review, we describe recent progress in establishing non-food-plant platforms for wax ester production and discuss their advantages and limitations as well as future prospects.
Collapse
Affiliation(s)
- Frédéric Domergue
- Univ. Bordeaux, CNRS, LBM, UMR 5200, F-33140 Villenave d’Ornon, France
| | - Magdalena Miklaszewska
- Department of Functional and Evolutionary Ecology, Division of Molecular Systems Biology (MOSYS), Faculty of Life Sciences, University of Vienna, Djerassiplatz 1, 1030, Vienna, Austria
- Department of Plant Physiology and Biotechnology, University of Gdańsk, Wita Stwosza 59, 80-308, Gdańsk, Poland
| |
Collapse
|
12
|
Zhang Y, Guo X, Yang H, Shi S. The Studies in Constructing Yeast Cell Factories for the Production of Fatty Acid Alkyl Esters. Front Bioeng Biotechnol 2022; 9:799032. [PMID: 35087801 PMCID: PMC8787340 DOI: 10.3389/fbioe.2021.799032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 11/19/2021] [Indexed: 12/25/2022] Open
Abstract
Fatty acid alkyl esters have broad applications in biofuels, lubricant formulas, paints, coatings, and cosmetics. Traditionally, these esters are mostly produced through unsustainable and energy-intensive processes. In contrast, microbial production of esters from renewable and sustainable feedstocks may provide a promising alternative and has attracted widespread attention in recent years. At present, yeasts are used as ideal hosts for producing such esters, due to their availability for high-density fermentation, resistance to phage infection, and tolerance against toxic inhibitors. Here, we summarize recent development on the biosynthesis of alkyl esters, including fatty acid ethyl esters (FAEEs), fatty acid short-branched chain alkyl esters (FASBEs), and wax esters (WEs) by various yeast cell factories. We focus mainly on the enzyme engineering strategies of critical wax ester synthases, and the pathway engineering strategies employed for the biosynthesis of various ester products. The bottlenecks that limit productivity and their potential solutions are also discussed in this review.
Collapse
Affiliation(s)
- Yang Zhang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China.,CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Xiao Guo
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Huaiyi Yang
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Shuobo Shi
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| |
Collapse
|
13
|
Bracalente F, Sabatini M, Arabolaza A, Gramajo H. Escherichia coli coculture for de novo production of esters derived of methyl-branched alcohols and multi-methyl branched fatty acids. Microb Cell Fact 2022; 21:10. [PMID: 35033081 PMCID: PMC8760833 DOI: 10.1186/s12934-022-01737-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 12/31/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND A broad diversity of natural and non-natural esters have now been made in bacteria, and in other microorganisms, as a result of original metabolic engineering approaches. However, the fact that the properties of these molecules, and therefore their applications, are largely defined by the structural features of the fatty acid and alcohol moieties, has driven a persistent interest in generating novel structures of these chemicals. RESULTS In this research, we engineered Escherichia coli to synthesize de novo esters composed of multi-methyl-branched-chain fatty acids and short branched-chain alcohols (BCA), from glucose and propionate. A coculture engineering strategy was developed to avoid metabolic burden generated by the reconstitution of long heterologous biosynthetic pathways. The cocultures were composed of two independently optimized E. coli strains, one dedicated to efficiently achieve the biosynthesis and release of the BCA, and the other to synthesize the multi methyl-branched fatty acid and the corresponding multi-methyl-branched esters (MBE) as the final products. Response surface methodology, a cost-efficient multivariate statistical technique, was used to empirical model the BCA-derived MBE production landscape of the coculture and to optimize its productivity. Compared with the monoculture strategy, the utilization of the designed coculture improved the BCA-derived MBE production in 45%. Finally, the coculture was scaled up in a high-cell density fed-batch fermentation in a 2 L bioreactor by fine-tuning the inoculation ratio between the two engineered E. coli strains. CONCLUSION Previous work revealed that esters containing multiple methyl branches in their molecule present favorable physicochemical properties which are superior to those of linear esters. Here, we have successfully engineered an E. coli strain to broaden the diversity of these molecules by incorporating methyl branches also in the alcohol moiety. The limited production of these esters by a monoculture was considerable improved by a design of a coculture system and its optimization using response surface methodology. The possibility to scale-up this process was confirmed in high-cell density fed-batch fermentations.
Collapse
Affiliation(s)
- Fernando Bracalente
- Microbiology Division, Facultad de Ciencias Bioquímicas Y Farmacéuticas, IBR (Instituto de Biología Molecular Y Celular de Rosario), Consejo Nacional de Investigaciones Científicas Y Técnicas, Universidad Nacional de Rosario, Ocampo y Esmeralda, 2000, Rosario, Argentina
| | - Martín Sabatini
- Microbiology Division, Facultad de Ciencias Bioquímicas Y Farmacéuticas, IBR (Instituto de Biología Molecular Y Celular de Rosario), Consejo Nacional de Investigaciones Científicas Y Técnicas, Universidad Nacional de Rosario, Ocampo y Esmeralda, 2000, Rosario, Argentina
| | - Ana Arabolaza
- Microbiology Division, Facultad de Ciencias Bioquímicas Y Farmacéuticas, IBR (Instituto de Biología Molecular Y Celular de Rosario), Consejo Nacional de Investigaciones Científicas Y Técnicas, Universidad Nacional de Rosario, Ocampo y Esmeralda, 2000, Rosario, Argentina.
| | - Hugo Gramajo
- Microbiology Division, Facultad de Ciencias Bioquímicas Y Farmacéuticas, IBR (Instituto de Biología Molecular Y Celular de Rosario), Consejo Nacional de Investigaciones Científicas Y Técnicas, Universidad Nacional de Rosario, Ocampo y Esmeralda, 2000, Rosario, Argentina.
| |
Collapse
|
14
|
Wei LJ, Ma YY, Cheng BQ, Gao Q, Hua Q. Metabolic engineering Yarrowia lipolytica for a dual biocatalytic system to produce fatty acid ethyl esters from renewable feedstock in situ and in one pot. Appl Microbiol Biotechnol 2021; 105:8561-8573. [PMID: 34661706 DOI: 10.1007/s00253-021-11415-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 05/22/2021] [Accepted: 06/12/2021] [Indexed: 11/28/2022]
Abstract
Given the grave concerns over increasing consumption of petroleum resources and dramatic environmental changes arising from carbon dioxide emissions worldwide, microbial biosynthesis of fatty acid ethyl ester (FAEE) biofuels as renewable and sustainable replacements for petroleum-based fuels has attracted much attention. As one of the most important microbial chassis, the nonconventional oleaginous yeast Yarrowia lipolytica has emerged as a paradigm organism for the production of several advanced biofuels and chemicals. Here, we report the engineering of Y. lipolytica for use as an efficient dual biocatalytic system for in situ and one-pot production of FAEEs from renewable feedstock. Compared to glucose with 5.7% (w/w) conversion rate to FAEEs, sunflower seed oil in the culture medium was efficiently used to generate FAEEs with 84% (w/w) conversion rate to FAEEs by the engineered Y. lipolytica strain GQY20 that demonstrates an optimized intercellular heterologous FAEE synthesis pathway. In particular, the titer of extracellular FAEEs from sunflower seed oil reached 9.9 g/L, 10.9-fold higher than that with glucose as a carbon source. An efficient dual biocatalytic system combining ex vivo and strengthened in vitro FAEE production routes was constructed by overexpression of a lipase (Lip2) variant in the background strain GQY20, which further increased FAEEs levels to 13.5 g/L. Notably, deleting the ethanol metabolism pathway had minimal impact on FAEE production. Finally, waste cooking oil, a low-cost oil-based substance, was used as a carbon source for FAEE production in the Y. lipolytica dual biocatalytic system, resulting in production of 12.5 g/L FAEEs. Thus, the developed system represents a promising green and sustainable process for efficient biodiesel production. KEY POINTS: • FAEEs were produced by engineered Yarrowia lipolytica. • A Lip2 variant was overexpressed in the yeast to create a dual biocatalytic system. • Waste cooking oil as a substrate resulted in a high titer of 12.5 g/L FAEEs.
Collapse
Affiliation(s)
- Liu-Jing Wei
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, People's Republic of China.
| | - Yu-Yue Ma
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, People's Republic of China
| | - Bo-Qian Cheng
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, People's Republic of China
| | - Qi Gao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, People's Republic of China
| | - Qiang Hua
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, People's Republic of China. .,Shanghai Collaborative Innovation Center for Biomanufacturing Technology, 130 Meilong Road, Shanghai, 200237, China.
| |
Collapse
|
15
|
Homayoonfar M, Roosta Azad R, Sardari S. Analytical methods in fatty acid analysis for microbial applications: the recent trends. Prep Biochem Biotechnol 2021; 51:937-952. [PMID: 34506247 DOI: 10.1080/10826068.2021.1881910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Fatty acids are among the most important components of many biological systems and have been highlighted in many research fields in recent decades. In the food industry, it is important to check the amount and types of fatty acids in edible oils, beverages and other foods products, and checking the fatty acids parameters are among the quality control parameters for those products. In medical applications, investigation of fatty acids in biological samples and comparing imbalances in them can help to diagnose some diseases. On the other hand, the development of cell factories for the production of biofuels and other valuable chemicals requires the accurate analysis of fatty acids, which serve as precursors in development of those products. As a result, given all these different applications of fatty acids, rapid and accurate methods for characterization and quantification of fatty acids are essential. In recent years, various methods for the analysis of fatty acids have been proposed, which according to the specific purpose of the analysis, some of them can be used with consideration of speed, accuracy and cost. In this article, the available methods for the analysis of fatty acids are reviewed with a special emphasis on the analysis of microbial samples to pave the way for more widespread metabolic engineering research.
Collapse
Affiliation(s)
- Mohammad Homayoonfar
- Chemical and Petroleum Engineering Department, Sharif University of Technology, Tahran, Iran.,Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Reza Roosta Azad
- Chemical and Petroleum Engineering Department, Sharif University of Technology, Tahran, Iran
| | - Soroush Sardari
- Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
16
|
Soong YHV, Zhao L, Liu N, Yu P, Lopez C, Olson A, Wong HW, Shao Z, Xie D. Microbial synthesis of wax esters. Metab Eng 2021; 67:428-442. [PMID: 34391890 DOI: 10.1016/j.ymben.2021.08.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 03/27/2021] [Accepted: 08/10/2021] [Indexed: 01/10/2023]
Abstract
Microbial synthesis of wax esters (WE) from low-cost renewable and sustainable feedstocks is a promising path to achieve cost-effectiveness in biomanufacturing. WE are industrially high-value molecules, which are widely used for applications in chemical, pharmaceutical, and food industries. Since the natural WE resources are limited, the WE production mostly rely on chemical synthesis from rather expensive starting materials, and therefore solution are sought from development of efficient microbial cell factories. Here we report to engineer the yeast Yarrowia lipolytica and bacterium Escherichia coli to produce WE at the highest level up to date. First, the key genes encoding fatty acyl-CoA reductases and wax ester synthase from different sources were investigated, and the expression system for two different Y. lipolytica hosts were compared and optimized for enhanced WE production and the strain stability. To improve the metabolic pathway efficiency, different carbon sources including glucose, free fatty acid, soybean oil, and waste cooking oil (WCO) were compared, and the corresponding pathway engineering strategies were optimized. It was found that using a lipid substrate such as WCO to replace glucose led to a 60-fold increase in WE production. The engineered yeast was able to produce 7.6 g/L WE with a yield of 0.31 (g/g) from WCO within 120 h and the produced WE contributed to 57% of the yeast DCW. After that, E. coli BL21(DE3), with a faster growth rate than the yeast, was engineered to significantly improve the WE production rate. Optimization of the expression system and the substrate feeding strategies led to production of 3.7-4.0 g/L WE within 40 h in a 1-L bioreactor. The predominant intracellular WE produced by both Y. lipolytica and E. coli in the presence of hydrophobic substrates as sole carbon sources were C36, C34 and C32, in an order of decreasing abundance and with a large proportion being unsaturated. This work paved the way for the biomanufacturing of WE at a large scale.
Collapse
Affiliation(s)
- Ya-Hue Valerie Soong
- Department of Chemical Engineering, University of Massachusetts Lowell, Lowell, MA, 01854, USA
| | - Le Zhao
- Department of Chemical and Biological Engineering, NSF Engineering Research Center for Biorenewable Chemicals, Iowa State University, Ames, IA, 50011, USA
| | - Na Liu
- Department of Chemical Engineering, University of Massachusetts Lowell, Lowell, MA, 01854, USA
| | - Peng Yu
- Department of Chemical Engineering, University of Massachusetts Lowell, Lowell, MA, 01854, USA
| | - Carmen Lopez
- Department of Chemical and Biological Engineering, NSF Engineering Research Center for Biorenewable Chemicals, Iowa State University, Ames, IA, 50011, USA
| | - Andrew Olson
- Department of Chemical Engineering, University of Massachusetts Lowell, Lowell, MA, 01854, USA
| | - Hsi-Wu Wong
- Department of Chemical Engineering, University of Massachusetts Lowell, Lowell, MA, 01854, USA
| | - Zengyi Shao
- Department of Chemical and Biological Engineering, NSF Engineering Research Center for Biorenewable Chemicals, Iowa State University, Ames, IA, 50011, USA.
| | - Dongming Xie
- Department of Chemical Engineering, University of Massachusetts Lowell, Lowell, MA, 01854, USA.
| |
Collapse
|
17
|
Szczepańska P, Hapeta P, Lazar Z. Advances in production of high-value lipids by oleaginous yeasts. Crit Rev Biotechnol 2021; 42:1-22. [PMID: 34000935 DOI: 10.1080/07388551.2021.1922353] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The global market for high-value fatty acids production, mainly omega-3/6, hydroxy fatty-acids, waxes and their derivatives, has seen strong development in the last decade. The reason for this growth was the increasing utilization of these lipids as significant ingredients for cosmetics, food and the oleochemical industries. The large demand for these compounds resulted in a greater scientific interest in research focused on alternative sources of oil production - among which microorganisms attracted the most attention. Microbial oil production offers the possibility to engineer the pathways and store lipids enriched with the desired fatty acids. Moreover, costly chemical steps are avoided and direct commercial use of these fatty acids is available. Among all microorganisms, the oleaginous yeasts have become the most promising hosts for lipid production - their efficient lipogenesis, ability to use various (often highly affordable) carbon sources, feasible large-scale cultivations and wide range of available genetic engineering tools turns them into powerful micro-factories. This review is an in-depth description of the recent developments in the engineering of the lipid biosynthetic pathway with oleaginous yeasts. The different classes of valuable lipid compounds with their derivatives are described and their importance for human health and industry is presented. The emphasis is also placed on the optimization of culture conditions in order to improve the yield and titer of these valuable compounds. Furthermore, the important economic aspects of the current microbial oil production are discussed.
Collapse
Affiliation(s)
- Patrycja Szczepańska
- Department of Biotechnology and Food Microbiology, Wroclaw University of Environmental and Life Sciences, Wroclaw, Poland
| | - Piotr Hapeta
- Department of Biotechnology and Food Microbiology, Wroclaw University of Environmental and Life Sciences, Wroclaw, Poland
| | - Zbigniew Lazar
- Department of Biotechnology and Food Microbiology, Wroclaw University of Environmental and Life Sciences, Wroclaw, Poland
| |
Collapse
|
18
|
Zhang Y, Peng J, Zhao H, Shi S. Engineering oleaginous yeast Rhodotorula toruloides for overproduction of fatty acid ethyl esters. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:115. [PMID: 33964988 PMCID: PMC8106135 DOI: 10.1186/s13068-021-01965-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 03/01/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Production of biofuels and green chemicals by microbes is currently of great interest due to the increasingly limited reserves of fossil fuels. Biodiesel, especially fatty acid ethyl esters (FAEEs), is considered as an attractive alternative because of its similarity with petrodiesel and compatibility with existing infrastructures. Cost-efficient bio-production of FAEEs requires a highly lipogenic production host that is suitable for large-scale fermentation. As a non-model oleaginous yeast that can be cultured to an extremely high cell density and accumulate over 70% cell mass as lipids, Rhodotorula toruloides represents an attractive host for FAEEs production. RESULTS We first constructed the FAEE biosynthetic pathways in R. toruloides by introducing various wax ester synthase genes from different sources, and the bifunctional wax ester synthase/acyl-CoA-diacyglycerol acyltransferase (WS/DGAT) gene from Acinetobacter baylyi was successfully expressed, leading to a production of 826 mg/L FAEEs through shake-flask cultivation. We then mutated this bifunctional enzyme to abolish the DGAT activity, and further improved the titer to 1.02 g/L. Finally, to elevate the performance of Δku70-AbWS* in a bioreactor, both batch and fed-batch cultivation strategies were performed. The FAEEs titer, productivity and yield were 4.03 g/L, 69.5 mg/L/h and 57.9 mg/g (mg FAEEs/g glucose) under batch cultivation, and 9.97 g/L, 90.6 mg/L/h, and 86.1 mg/g under fed-batch cultivation. It is worth mentioning that most of the produced FAEEs were secreted out of the cell, which should greatly reduce the cost of downstream processing. CONCLUSION We achieved the highest FAEEs production in yeast with a final titer of 9.97 g/L and demonstrated that the engineered R. toruloides has the potential to serve as a platform strain for efficient production of fatty acid-derived molecules.
Collapse
Affiliation(s)
- Yang Zhang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Jie Peng
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Huimin Zhao
- Department of Chemical and Biomolecular Engineering, University of Illinois At Urbana-Champaign, Urbana, IL, 61801, USA.
| | - Shuobo Shi
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China.
| |
Collapse
|
19
|
Li S, Zhang Q, Wang J, Liu Y, Zhao Y, Deng Y. Recent progress in metabolic engineering of Saccharomyces cerevisiae for the production of malonyl-CoA derivatives. J Biotechnol 2020; 325:83-90. [PMID: 33278463 DOI: 10.1016/j.jbiotec.2020.11.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 11/10/2020] [Accepted: 11/10/2020] [Indexed: 02/08/2023]
Abstract
To reduce dependence on petroleum, the biosynthesis of important chemicals from simple substrates using industrial microorganisms has attracted increased attention. Metabolic engineering of Saccharomyces cerevisiae offers a sustainable and flexible alternative for the production of various chemicals. As a key metabolic intermediate, malonyl-CoA is a precursor for many useful compounds. However, the productivity of malonyl-CoA derivatives is restricted by the low cellular level of malonyl-CoA and enzymatic performance. In this review, we focused on how to increase the intracellular malonyl-CoA level and summarize the recent advances in different metabolic engineering strategies for directing intracellular malonyl-CoA to the desired malonyl-CoA derivatives, including strengthening the malonyl-CoA supply, reducing malonyl-CoA consumption, and precisely controlling the intracellular malonyl-CoA level. These strategies provided new insights for further improving the synthesis of malonyl-CoA derivatives in microorganisms.
Collapse
Affiliation(s)
- Shiyun Li
- National Engineering Laboratory for Cereal Fermentation Technology (NELCF), School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Qiyue Zhang
- National Engineering Laboratory for Cereal Fermentation Technology (NELCF), School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Jing Wang
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Technology & Business University, Beijing 100048, China
| | - Yingli Liu
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Technology & Business University, Beijing 100048, China
| | - Yunying Zhao
- National Engineering Laboratory for Cereal Fermentation Technology (NELCF), School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China.
| | - Yu Deng
- National Engineering Laboratory for Cereal Fermentation Technology (NELCF), School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
20
|
Yu A, Zhao Y, Li J, Li S, Pang Y, Zhao Y, Zhang C, Xiao D. Sustainable production of FAEE biodiesel using the oleaginous yeast Yarrowia lipolytica. Microbiologyopen 2020; 9:e1051. [PMID: 32342649 PMCID: PMC7349176 DOI: 10.1002/mbo3.1051] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 03/27/2020] [Accepted: 03/31/2020] [Indexed: 11/26/2022] Open
Abstract
Fatty acid ethyl esters (FAEEs) are fatty acid‐derived molecules and serve as an important form of biodiesel. The oleaginous yeast Yarrowia lipolytica is considered an ideal host platform for the production of fatty acid‐derived products due to its excellent lipid accumulation capacity. In this proof‐of‐principle study, several metabolic engineering strategies were applied for the overproduction of FAEE biodiesel in Y. lipolytica. Here, chromosome‐based co‐overexpression of two heterologous genes, namely, PDC1 (encoding pyruvate decarboxylase) and ADH1 (encoding alcohol dehydrogenase) from Saccharomyces cerevisiae, and the endogenous GAPDH (encoding glyceraldehyde‐3‐phosphate dehydrogenase) gene of Y. lipolytica resulted in successful biosynthesis of ethanol at 70.8 mg/L in Y. lipolytica. The engineered Y. lipolytica strain expressing the ethanol synthetic pathway together with a heterologous wax ester synthase (MhWS) exhibited the highest FAEE titer of 360.8 mg/L, which is 3.8‐fold higher than that of the control strain when 2% exogenous ethanol was added to the culture medium of Y. lipolytica. Furthermore, a synthetic microbial consortium comprising an engineered Y. lipolytica strain that heterologously expressed MhWS and a S. cerevisiae strain that could provide ethanol as a substrate for the production of the final product in the final engineered Y. lipolytica strain was created in this study. Finally, this synthetic consortium produced FAEE biodiesel at a titer of 4.8 mg/L under the optimum coculture conditions.
Collapse
Affiliation(s)
- Aiqun Yu
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Yu Zhao
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Jian Li
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Shenglong Li
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Yaru Pang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Yakun Zhao
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Cuiying Zhang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Dongguang Xiao
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| |
Collapse
|
21
|
Hu Y, Zhu Z, Nielsen J, Siewers V. Engineering Saccharomyces cerevisiae cells for production of fatty acid-derived biofuels and chemicals. Open Biol 2020; 9:190049. [PMID: 31088249 PMCID: PMC6544985 DOI: 10.1098/rsob.190049] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The yeast Saccharomyces cerevisiae is a widely used cell factory for the production of fuels and chemicals, in particular ethanol, a biofuel produced in large quantities. With a need for high-energy-density fuels for jets and heavy trucks, there is, however, much interest in the biobased production of hydrocarbons that can be derived from fatty acids. Fatty acids also serve as precursors to a number of oleochemicals and hence provide interesting platform chemicals. Here, we review the recent strategies applied to metabolic engineering of S. cerevisiae for the production of fatty acid-derived biofuels and for improvement of the titre, rate and yield (TRY). This includes, for instance, redirection of the flux towards fatty acids through engineering of the central carbon metabolism, balancing the redox power and varying the chain length of fatty acids by enzyme engineering. We also discuss the challenges that currently hinder further TRY improvements and the potential solutions in order to meet the requirements for commercial application.
Collapse
Affiliation(s)
- Yating Hu
- 1 Department of Biology and Biological Engineering, Chalmers University of Technology , 41296 Gothenburg , Sweden.,2 Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology , 41296 Gothenburg , Sweden
| | - Zhiwei Zhu
- 1 Department of Biology and Biological Engineering, Chalmers University of Technology , 41296 Gothenburg , Sweden.,2 Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology , 41296 Gothenburg , Sweden
| | - Jens Nielsen
- 1 Department of Biology and Biological Engineering, Chalmers University of Technology , 41296 Gothenburg , Sweden.,2 Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology , 41296 Gothenburg , Sweden.,3 Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark , 2800 Kgs Lyngby , Denmark.,4 BioInnovation Institute , Ole Måløes Vej, 2200 Copenhagen N , Denmark
| | - Verena Siewers
- 1 Department of Biology and Biological Engineering, Chalmers University of Technology , 41296 Gothenburg , Sweden.,2 Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology , 41296 Gothenburg , Sweden
| |
Collapse
|
22
|
Engineering Yarrowia lipolytica towards food waste bioremediation: Production of fatty acid ethyl esters from vegetable cooking oil. J Biosci Bioeng 2020; 129:31-40. [DOI: 10.1016/j.jbiosc.2019.06.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 06/06/2019] [Accepted: 06/12/2019] [Indexed: 11/22/2022]
|
23
|
Kruis AJ, Bohnenkamp AC, Patinios C, van Nuland YM, Levisson M, Mars AE, van den Berg C, Kengen SW, Weusthuis RA. Microbial production of short and medium chain esters: Enzymes, pathways, and applications. Biotechnol Adv 2019; 37:107407. [DOI: 10.1016/j.biotechadv.2019.06.006] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 05/24/2019] [Accepted: 06/09/2019] [Indexed: 12/12/2022]
|
24
|
Chacón MG, Kendrick EG, Leak DJ. Engineering Escherichia coli for the production of butyl octanoate from endogenous octanoyl-CoA. PeerJ 2019; 7:e6971. [PMID: 31304053 PMCID: PMC6610577 DOI: 10.7717/peerj.6971] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 04/18/2019] [Indexed: 11/20/2022] Open
Abstract
Medium chain esters produced from fruits and flowering plants have a number of commercial applications including use as flavour and fragrance ingredients, biofuels, and in pharmaceutical formulations. These esters are typically made via the activity of an alcohol acyl transferase (AAT) enzyme which catalyses the condensation of an alcohol and an acyl-CoA. Developing a microbial platform for medium chain ester production using AAT activity presents several obstacles, including the low product specificity of these enzymes for the desired ester and/or low endogenous substrate availability. In this study, we engineered Escherichia coli for the production of butyl octanoate from endogenously produced octanoyl-CoA. This was achieved through rational protein engineering of an AAT enzyme from Actinidia chinensis for improved octanoyl-CoA substrate specificity and metabolic engineering of E. coli fatty acid metabolism for increased endogenous octanoyl-CoA availability. This resulted in accumulation of 3.3 + 0.1 mg/L butyl octanoate as the sole product from E. coli after 48 h. This study represents a preliminary examination of the feasibility of developing E. coli platforms for the synthesis single medium chain esters from endogenous fatty acids.
Collapse
Affiliation(s)
- Micaela G Chacón
- Department of Biology and Biochemistry, University of Bath, Bath, England
| | | | - David J Leak
- Department of Biology and Biochemistry, University of Bath, Bath, England
| |
Collapse
|
25
|
Soong YHV, Liu N, Yoon S, Lawton C, Xie D. Cellular and metabolic engineering of oleaginous yeast Yarrowia lipolytica for bioconversion of hydrophobic substrates into high-value products. Eng Life Sci 2019; 19:423-443. [PMID: 32625020 DOI: 10.1002/elsc.201800147] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 12/12/2018] [Accepted: 02/07/2019] [Indexed: 12/17/2022] Open
Abstract
The non-conventional oleaginous yeast Yarrowia lipolytica is able to utilize both hydrophilic and hydrophobic carbon sources as substrates and convert them into value-added bioproducts such as organic acids, extracellular proteins, wax esters, long-chain diacids, fatty acid ethyl esters, carotenoids and omega-3 fatty acids. Metabolic pathway analysis and previous research results show that hydrophobic substrates are potentially more preferred by Y. lipolytica than hydrophilic substrates to make high-value products at higher productivity, titer, rate, and yield. Hence, Y. lipolytica is becoming an efficient and promising biomanufacturing platform due to its capabilities in biosynthesis of extracellular lipases and directly converting the extracellular triacylglycerol oils and fats into high-value products. It is believed that the cell size and morphology of the Y. lipolytica is related to the cell growth, nutrient uptake, and product formation. Dimorphic Y. lipolytica demonstrates the yeast-to-hypha transition in response to the extracellular environments and genetic background. Yeast-to-hyphal transition regulating genes, such as YlBEM1, YlMHY1 and YlZNC1 and so forth, have been identified to involve as major transcriptional factors that control morphology transition in Y. lipolytica. The connection of the cell polarization including cell cycle and the dimorphic transition with the cell size and morphology in Y. lipolytica adapting to new growth are reviewed and discussed. This review also summarizes the general and advanced genetic tools that are used to build a Y. lipolytica biomanufacturing platform.
Collapse
Affiliation(s)
- Ya-Hue Valerie Soong
- Massachusetts Biomanufacturing Center Department of Chemical Engineering University of Massachusetts Lowell Lowell MA USA
| | - Na Liu
- Massachusetts Biomanufacturing Center Department of Chemical Engineering University of Massachusetts Lowell Lowell MA USA
| | - Seongkyu Yoon
- Massachusetts Biomanufacturing Center Department of Chemical Engineering University of Massachusetts Lowell Lowell MA USA
| | - Carl Lawton
- Massachusetts Biomanufacturing Center Department of Chemical Engineering University of Massachusetts Lowell Lowell MA USA
| | - Dongming Xie
- Massachusetts Biomanufacturing Center Department of Chemical Engineering University of Massachusetts Lowell Lowell MA USA
| |
Collapse
|
26
|
Petronikolou N, Nair SK. Structural and Biochemical Studies of a Biocatalyst for the Enzymatic Production of Wax Esters. ACS Catal 2018; 8:6334-6344. [PMID: 31559109 DOI: 10.1021/acscatal.8b00787] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Wax esters are high-value products whose enzymatic synthesis is of increasing biotechnological interest. The fabrication of cell factories that mass-produce wax esters may provide a facile route towards a sustainable, and environment-friendly approach to a large-scale process for this commodity chemical. An expedient route for wax-ester biocatalysis may be facilitated by the action of enzymes termed wax ester synthases/diacylglycerol acyltransferases (WS/DGAT), which produce wax esters using fatty acids and alcohols as a precursor. In this work, we report the structure for a member of the WS/DGAT superfamily. The structural data in conjunction with bioinformatics and mutational analyses allowed us to identify the substrate binding pockets, and residues that may be important for catalysis. Using this information as a guide, we generated a mutant with preference towards shorter acyl-substrates. This study demonstrates the efficacy of a structure-guided engineering effort towards a WS/DGAT variant with preference towards wax esters of desired lengths.
Collapse
|
27
|
Shi S, Zhao H. Metabolic Engineering of Oleaginous Yeasts for Production of Fuels and Chemicals. Front Microbiol 2017; 8:2185. [PMID: 29167664 PMCID: PMC5682390 DOI: 10.3389/fmicb.2017.02185] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2017] [Accepted: 10/25/2017] [Indexed: 01/23/2023] Open
Abstract
Oleaginous yeasts have been increasingly explored for production of chemicals and fuels via metabolic engineering. Particularly, there is a growing interest in using oleaginous yeasts for the synthesis of lipid-related products due to their high lipogenesis capability, robustness, and ability to utilize a variety of substrates. Most of the metabolic engineering studies in oleaginous yeasts focused on Yarrowia that already has plenty of genetic engineering tools. However, recent advances in systems biology and synthetic biology have provided new strategies and tools to engineer those oleaginous yeasts that have naturally high lipid accumulation but lack genetic tools, such as Rhodosporidium, Trichosporon, and Lipomyces. This review highlights recent accomplishments in metabolic engineering of oleaginous yeasts and recent advances in the development of genetic engineering tools in oleaginous yeasts within the last 3 years.
Collapse
Affiliation(s)
- Shuobo Shi
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, China
- Metabolic Engineering Research Laboratory, Science and Engineering Institutes, Agency for Science, Technology and Research, Singapore, Singapore
| | - Huimin Zhao
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, China
- Metabolic Engineering Research Laboratory, Science and Engineering Institutes, Agency for Science, Technology and Research, Singapore, Singapore
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| |
Collapse
|
28
|
Duan L, Ding W, Liu X, Cheng X, Cai J, Hua E, Jiang H. Biosynthesis and engineering of kaempferol in Saccharomyces cerevisiae. Microb Cell Fact 2017; 16:165. [PMID: 28950867 PMCID: PMC5615808 DOI: 10.1186/s12934-017-0774-x] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 09/18/2017] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Kaempferol is a flavonol with broad bioactivity of anti-oxidant, anti-cancer, anti-diabetic, anti-microbial, cardio-protective and anti-asthma. Microbial synthesis of kaempferol is a promising strategy because of the low content in primary plant source. METHODS In this study, the biosynthesis pathway of kaempferol was constructed in the budding yeast Saccharomyces cerevisiae to produce kaempferol de novo, and several biological measures were taken for high production. RESULTS Firstly, a high efficient flavonol synthases (FLS) from Populus deltoides was introduced into the biosynthetic pathway of kaempferol. Secondly, a S. cerevisiae recombinant was constructed for de novo synthesis of kaempferol, which generated about 6.97 mg/L kaempferol from glucose. To further promote kaempferol production, the acetyl-CoA biosynthetic pathway was overexpressed and p-coumarate was supplied as substrate, which improved kaempferol titer by about 23 and 120%, respectively. Finally, a fed-batch process was developed for better kaempferol fermentation performance, and the production reached 66.29 mg/L in 40 h. CONCLUSIONS The titer of kaempferol in our engineered yeast is 2.5 times of the highest reported titer. Our study provides a possible strategy to produce kaempferol using microbial cell factory.
Collapse
Affiliation(s)
- Lijin Duan
- Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, China.,Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Wentao Ding
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Xiaonan Liu
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Xiaozhi Cheng
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Jing Cai
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Erbing Hua
- Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, China.
| | - Huifeng Jiang
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China.
| |
Collapse
|
29
|
Biobased production of alkanes and alkenes through metabolic engineering of microorganisms. J Ind Microbiol Biotechnol 2016; 44:613-622. [PMID: 27565672 PMCID: PMC5408033 DOI: 10.1007/s10295-016-1814-y] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 07/30/2016] [Indexed: 12/02/2022]
Abstract
Advancement in metabolic engineering of microorganisms has enabled bio-based production of a range of chemicals, and such engineered microorganism can be used for sustainable production leading to reduced carbon dioxide emission there. One area that has attained much interest is microbial hydrocarbon biosynthesis, and in particular, alkanes and alkenes are important high-value chemicals as they can be utilized for a broad range of industrial purposes as well as ‘drop-in’ biofuels. Some microorganisms have the ability to biosynthesize alkanes and alkenes naturally, but their production level is extremely low. Therefore, there have been various attempts to recruit other microbial cell factories for production of alkanes and alkenes by applying metabolic engineering strategies. Here we review different pathways and involved enzymes for alkane and alkene production and discuss bottlenecks and possible solutions to accomplish industrial level production of these chemicals by microbial fermentation.
Collapse
|
30
|
Expanded metabolite coverage of Saccharomyces cerevisiae extract through improved chloroform/methanol extraction and tert-butyldimethylsilyl derivatization. ACTA ACUST UNITED AC 2015. [DOI: 10.1016/j.ancr.2015.10.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
31
|
Synthetic biology for microbial production of lipid-based biofuels. Curr Opin Chem Biol 2015; 29:58-65. [PMID: 26479184 DOI: 10.1016/j.cbpa.2015.09.009] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 09/15/2015] [Accepted: 09/15/2015] [Indexed: 11/22/2022]
Abstract
The risks of maintaining current CO2 emission trends have led to interest in producing biofuels using engineered microbes. Microbial biofuels reduce emissions because CO2 produced by fuel combustion is offset by CO2 captured by growing biomass, which is later used as feedstock for biofuel fermentation. Hydrocarbons found in petroleum fuels share striking similarity with biological lipids. Here we review synthetic metabolic pathways based on fatty acid and isoprenoid metabolism to produce alkanes and other molecules suitable as biofuels. We further discuss engineering strategies to optimize engineered biosynthetic routes, as well as the potential of synthetic biology for sustainable manufacturing.
Collapse
|
32
|
Tang X, Lee J, Chen WN. Engineering the fatty acid metabolic pathway in Saccharomyces cerevisiae for advanced biofuel production. Metab Eng Commun 2015; 2:58-66. [PMID: 34150509 PMCID: PMC8193251 DOI: 10.1016/j.meteno.2015.06.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Revised: 06/22/2015] [Accepted: 06/22/2015] [Indexed: 11/30/2022] Open
Abstract
Fatty acid-derived fuels and chemicals have attracted a great deal of attention in recent decades, due to their following properties of high compatibility to gasoline-based fuels and existing infrastructure for their direct utilization, storage and distribution. The yeast Saccharomyces cerevisiae is the ideal biofuel producing candidate, based on the wealth of available genetic information and versatile tools designed to manipulate its metabolic pathways. Engineering the fatty acid metabolic pathways in S. cerevisiae is an effective strategy to increase its fatty acid biosynthesis and provide more pathway precursors for production of targeted products. This review summarizes the recent progress in metabolic engineering of yeast cells for fatty acids and fatty acid derivatives production, including the regulation of acetyl-CoA biosynthesis, NADPH production, fatty acid elongation, and the accumulation of activated precursors of fatty acids for converting enzymes. By introducing specific enzymes in the engineered strains, a powerful platform with a scalable, controllable and economic route for advanced biofuel production has been established. Recent progress in metabolic engineering for enhanced fatty acid production. Regulation of acetyl-CoA, NADPH pathway for fatty acid synthesis. Regulation of elongation and catabolic pathway to strength fatty acid synthesis. Enhanced production of activated precursors for fatty acid derivatives production.
Collapse
Affiliation(s)
- Xiaoling Tang
- School of Chemical and Biomedical Engineering, College of Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459, Singapore
| | - Jaslyn Lee
- School of Chemical and Biomedical Engineering, College of Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459, Singapore
| | - Wei Ning Chen
- School of Chemical and Biomedical Engineering, College of Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459, Singapore
| |
Collapse
|
33
|
Dynamics of the lipid droplet proteome of the Oleaginous yeast rhodosporidium toruloides. EUKARYOTIC CELL 2015; 14:252-64. [PMID: 25576482 DOI: 10.1128/ec.00141-14] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Lipid droplets (LDs) are ubiquitous organelles that serve as a neutral lipid reservoir and a hub for lipid metabolism. Manipulating LD formation, evolution, and mobilization in oleaginous species may lead to the production of fatty acid-derived biofuels and chemicals. However, key factors regulating LD dynamics remain poorly characterized. Here we purified the LDs and identified LD-associated proteins from cells of the lipid-producing yeast Rhodosporidium toruloides cultured under nutrient-rich, nitrogen-limited, and phosphorus-limited conditions. The LD proteome consisted of 226 proteins, many of which are involved in lipid metabolism and LD formation and evolution. Further analysis of our previous comparative transcriptome and proteome data sets indicated that the transcription level of 85 genes and protein abundance of 77 proteins changed under nutrient-limited conditions. Such changes were highly relevant to lipid accumulation and partially confirmed by reverse transcription-quantitative PCR. We demonstrated that the major LD structure protein Ldp1 is an LD marker protein being upregulated in lipid-rich cells. When overexpressed in Saccharomyces cerevisiae, Ldp1 localized on the LD surface and facilitated giant LD formation, suggesting that Ldp1 plays an important role in controlling LD dynamics. Our results significantly advance the understanding of the molecular basis of lipid overproduction and storage in oleaginous yeasts and will be valuable for the development of superior lipid producers.
Collapse
|
34
|
Yu AQ, Pratomo Juwono NK, Leong SSJ, Chang MW. Production of Fatty Acid-derived valuable chemicals in synthetic microbes. Front Bioeng Biotechnol 2014; 2:78. [PMID: 25566540 PMCID: PMC4275033 DOI: 10.3389/fbioe.2014.00078] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Accepted: 12/10/2014] [Indexed: 12/18/2022] Open
Abstract
Fatty acid derivatives, such as hydroxy fatty acids, fatty alcohols, fatty acid methyl/ethyl esters, and fatty alka(e)nes, have a wide range of industrial applications including plastics, lubricants, and fuels. Currently, these chemicals are obtained mainly through chemical synthesis, which is complex and costly, and their availability from natural biological sources is extremely limited. Metabolic engineering of microorganisms has provided a platform for effective production of these valuable biochemicals. Notably, synthetic biology-based metabolic engineering strategies have been extensively applied to refactor microorganisms for improved biochemical production. Here, we reviewed: (i) the current status of metabolic engineering of microbes that produce fatty acid-derived valuable chemicals, and (ii) the recent progress of synthetic biology approaches that assist metabolic engineering, such as mRNA secondary structure engineering, sensor-regulator system, regulatable expression system, ultrasensitive input/output control system, and computer science-based design of complex gene circuits. Furthermore, key challenges and strategies were discussed. Finally, we concluded that synthetic biology provides useful metabolic engineering strategies for economically viable production of fatty acid-derived valuable chemicals in engineered microbes.
Collapse
Affiliation(s)
- Ai-Qun Yu
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore , Singapore , Singapore ; Synthetic Biology Research Program, National University of Singapore , Singapore , Singapore
| | - Nina Kurniasih Pratomo Juwono
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore , Singapore , Singapore ; Synthetic Biology Research Program, National University of Singapore , Singapore , Singapore
| | - Susanna Su Jan Leong
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore , Singapore , Singapore ; Synthetic Biology Research Program, National University of Singapore , Singapore , Singapore ; Singapore Institute of Technology , Singapore , Singapore
| | - Matthew Wook Chang
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore , Singapore , Singapore ; Synthetic Biology Research Program, National University of Singapore , Singapore , Singapore
| |
Collapse
|
35
|
The effects of putative lipase and wax ester synthase/acyl-CoA:diacylglycerol acyltransferase gene knockouts on triacylglycerol accumulation in Gordonia sp. KTR9. J Ind Microbiol Biotechnol 2014; 42:219-27. [PMID: 25487758 DOI: 10.1007/s10295-014-1552-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Accepted: 11/19/2014] [Indexed: 10/24/2022]
Abstract
Previously, we demonstrated triacylglycerol (TAG) accumulation and the in vivo ability to catalyze esters from exogenous short chain alcohol sources in Gordonia sp. strain KTR9. In this study, we investigated the effects that putative lipase (KTR9_0186) and wax ester synthase/acyl-CoA:diacylglycerol acyltransferase (WS/DGAT; KTR9_3844) gene knockouts had on TAG accumulation. Gene disruption of KTR9_0186 resulted in a twofold increase in TAG content in nitrogen starved cells. Lipase mutants subjected to carbon starvation, following nitrogen starvation, retained 75 % more TAGs and retained pigmentation. Transcriptome expression data confirmed the deletion of KTR9_0186 and identified the up-regulation of key genes involved in fatty acid degradation, a likely compensatory mechanism for reduced TAG mobilization. In vitro assays with purified KTR9_3844 demonstrated WS/DGAT activity with short chain alcohols and C16 and C18 fatty acid Co-As. Collectively, these results indicate that Gordonia sp. KTR9 has a suitable tractable genetic background for TAG production as well as the enzymatic capacity to catalyze fatty acid esters from short chain alcohols.
Collapse
|
36
|
Metabolic pathway engineering for fatty acid ethyl ester production in Saccharomyces cerevisiae using stable chromosomal integration. J Ind Microbiol Biotechnol 2014; 42:477-86. [PMID: 25422103 DOI: 10.1007/s10295-014-1540-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Accepted: 11/06/2014] [Indexed: 12/11/2022]
Abstract
Fatty acid ethyl esters are fatty acid derived molecules similar to first generation biodiesel (fatty acid methyl esters; FAMEs) which can be produced in a microbial cell factory. Saccharomyces cerevisiae is a suitable candidate for microbial large scale and long term cultivations, which is the typical industrial production setting for biofuels. It is crucial to conserve the metabolic design of the cell factory during industrial cultivation conditions that require extensive propagation. Genetic modifications therefore have to be introduced in a stable manner. Here, several metabolic engineering strategies for improved production of fatty acid ethyl esters in S. cerevisiae were combined and the genes were stably expressed from the organisms' chromosomes. A wax ester synthase (ws2) was expressed in different yeast strains with an engineered acetyl-CoA and fatty acid metabolism. Thus, we compared expression of ws2 with and without overexpression of alcohol dehydrogenase (ADH2), acetaldehyde dehydrogenase (ALD6) and acetyl-CoA synthetase (acs SE (L641P) ) and further evaluated additional overexpression of a mutant version of acetyl-CoA decarboxylase (ACC1 (S1157A,S659A) ) and the acyl-CoA binding protein (ACB1). The combined engineering efforts of the implementation of ws2, ADH2, ALD6 and acs SE (L641P) , ACC1 (S1157A,S659A) and ACB1 in a S. cerevisiae strain lacking storage lipid formation (are1Δ, are2Δ, dga1Δ and lro1Δ) and β-oxidation (pox1Δ) resulted in a 4.1-fold improvement compared with sole expression of ws2 in S. cerevisiae.
Collapse
|
37
|
Knight MJ, Bull ID, Curnow P. The yeast enzyme Eht1 is an octanoyl-CoA:ethanol acyltransferase that also functions as a thioesterase. Yeast 2014; 31:463-74. [PMID: 25308280 PMCID: PMC4282330 DOI: 10.1002/yea.3046] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Revised: 09/18/2014] [Accepted: 10/04/2014] [Indexed: 11/17/2022] Open
Abstract
Fatty acid ethyl esters are secondary metabolites that are produced during microbial fermentation, in fruiting plants and in higher organisms during ethanol stress. In particular, volatile medium-chain fatty acid ethyl esters are important flavour compounds that impart desirable fruit aromas to fermented beverages, including beer and wine. The biochemical synthesis of medium-chain fatty acid ethyl esters is poorly understood but likely involves acyl-CoA:ethanol O-acyltransferases. Here, we characterize the enzyme ethanol hexanoyl transferase 1 (Eht1) from the brewer's yeast Saccharomyces cerevisiae. Full-length Eht1 was successfully overexpressed from a recombinant yeast plasmid and purified at the milligram scale after detergent solubilization of sedimenting membranes. Recombinant Eht1 was functional as an acyltransferase and, unexpectedly, was optimally active toward octanoyl-CoA, with kcat = 0.28 ± 0.02/s and KM = 1.9 ± 0.6 μm. Eht1 was also revealed to be active as a thioesterase but was not able to hydrolyse p-nitrophenyl acyl esters, in contrast to the findings of a previous study. Low-resolution structural data and site-directed mutagenesis provide experimental support for a predicted α/β-hydrolase domain featuring a Ser–Asp–His catalytic triad. The S. cerevisiae gene YBR177C/EHT1 should thus be reannotated as coding for an octanoyl-CoA:ethanol acyltransferase that can also function as a thioesterase. © 2014 The Authors. Yeast published by John Wiley & Sons, Ltd.
Collapse
|
38
|
Recent advances in biosynthesis of fatty acids derived products in Saccharomyces cerevisiae via enhanced supply of precursor metabolites. J Ind Microbiol Biotechnol 2014; 42:437-51. [PMID: 25306882 DOI: 10.1007/s10295-014-1518-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Accepted: 09/24/2014] [Indexed: 12/31/2022]
Abstract
Fatty acids or their activated forms, fatty acyl-CoAs and fatty acyl-ACPs, are important precursors to synthesize a wide variety of fuels and chemicals, including but not limited to free fatty acids (FFAs), fatty alcohols (FALs), fatty acid ethyl esters (FAEEs), and alkanes. However, Saccharomyces cerevisiae, an important cell factory, does not naturally accumulate fatty acids in large quantities. Therefore, metabolic engineering strategies were carried out to increase the glycolytic fluxes to fatty acid biosynthesis in yeast, specifically to enhance the supply of precursors, eliminate competing pathways, and bypass the host regulatory network. This review will focus on the genetic manipulation of both structural and regulatory genes in each step for fatty acids overproduction in S. cerevisiae, including from sugar to acetyl-CoA, from acetyl-CoA to malonyl-CoA, and from malonyl-CoA to fatty acyl-CoAs. The downstream pathways for the conversion of fatty acyl-CoAs to the desired products will also be discussed.
Collapse
|
39
|
Zhou YJ, Buijs NA, Siewers V, Nielsen J. Fatty Acid-Derived Biofuels and Chemicals Production in Saccharomyces cerevisiae. Front Bioeng Biotechnol 2014; 2:32. [PMID: 25225637 PMCID: PMC4150446 DOI: 10.3389/fbioe.2014.00032] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2014] [Accepted: 08/18/2014] [Indexed: 11/28/2022] Open
Abstract
Volatile energy costs and environmental concerns have spurred interest in the development of alternative, renewable, sustainable, and cost-effective energy resources. Environment-friendly processes involving microbes can be used to synthesize advanced biofuels. These fuels have the potential to replace fossil fuels in supporting high-power demanding machinery such as aircrafts and trucks. From an engineering perspective, the pathway for fatty acid biosynthesis is an attractive route for the production of advanced fuels such as fatty acid ethyl esters, fatty alcohols, and alkanes. The robustness and excellent accessibility to molecular genetics make the yeast Saccharomyces cerevisiae a suitable host for the purpose of bio-manufacturing. Recent advances in metabolic engineering, as well as systems and synthetic biology, have now provided the opportunity to engineer yeast metabolism for the production of fatty acid-derived fuels and chemicals.
Collapse
Affiliation(s)
- Yongjin J. Zhou
- Department of Chemical and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Nicolaas A. Buijs
- Department of Chemical and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Verena Siewers
- Department of Chemical and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Jens Nielsen
- Department of Chemical and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| |
Collapse
|
40
|
Improving production of malonyl coenzyme A-derived metabolites by abolishing Snf1-dependent regulation of Acc1. mBio 2014; 5:e01130-14. [PMID: 24803522 PMCID: PMC4010835 DOI: 10.1128/mbio.01130-14] [Citation(s) in RCA: 164] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Acetyl coenzyme A (acetyl-CoA) carboxylase (ACCase) plays a central role in carbon metabolism and has been the site of action for the development of therapeutics or herbicides, as its product, malonyl-CoA, is a precursor for production of fatty acids and other compounds. Control of Acc1 activity in the yeast Saccharomyces cerevisiae occurs mainly at two levels, i.e., regulation of transcription and repression by Snf1 protein kinase at the protein level. Here, we demonstrate a strategy for improving the activity of ACCase in S. cerevisiae by abolishing posttranslational regulation of Acc1 via site-directed mutagenesis. It was found that introduction of two site mutations in Acc1, Ser659 and Ser1157, resulted in an enhanced activity of Acc1 and increased total fatty acid content. As Snf1 regulation of Acc1 is particularly active under glucose-limited conditions, we evaluated the effect of the two site mutations in chemostat cultures. Finally, we showed that our modifications of Acc1 could enhance the supply of malonyl-CoA and therefore successfully increase the production of two industrially important products derived from malonyl-CoA, fatty acid ethyl esters and 3-hydroxypropionic acid. ACCase is responsible for carboxylation of acetyl-CoA to produce malonyl-CoA, which is a crucial step in the control of fatty acid metabolism. ACCase opened the door for pharmaceutical treatments of obesity and diabetes as well as the development of new herbicides. ACCase is also recognized as a promising target for developing cell factories, as its malonyl-CoA product serves as a universal precursor for a variety of high-value compounds in white biotechnology. Yeast ACCase is a good model in understanding the enzyme’s catalysis, regulation, and inhibition. The present study describes the importance of protein phosphorylation in regulation of yeast ACCase and identifies potential regulation sites. This study led to the generation of a more efficient ACCase, which was applied in the production of two high-value compounds derived from malonyl-CoA, i.e., fatty acid ethyl esters that can be used as biodiesel and 3-hydroxypropionic acid that is considered an important platform chemical.
Collapse
|
41
|
|
42
|
de Jong BW, Shi S, Siewers V, Nielsen J. Improved production of fatty acid ethyl esters in Saccharomyces cerevisiae through up-regulation of the ethanol degradation pathway and expression of the heterologous phosphoketolase pathway. Microb Cell Fact 2014; 13:39. [PMID: 24618091 PMCID: PMC3995654 DOI: 10.1186/1475-2859-13-39] [Citation(s) in RCA: 106] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Accepted: 03/05/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Due to an increasing demand of transportation fuels, a lower availability of cheap crude oil and a lack of sustainability of fossil fuels, a gradual shift from petroleum based fuels towards alternative and renewable fuel resources will be required in the near future. Fatty acid ethyl esters (FAEEs) have properties similar to current crude diesel and could therefore form an important contribution to the development of sustainable transportation fuels in future. It is important to develop novel cell factories for efficient production of FAEEs and their precursors. RESULTS Here, a Saccharomyces cerevisiae cell factory expressing a heterologous wax ester synthase (ws2) from Marinobacter hydrocarbonoclasticus was used to produce FAEEs from ethanol and acyl-coenzyme A (acyl-CoA). The production of acyl-CoA requires large amounts of NADPH and acetyl-CoA. Therefore, two metabolic engineering strategies for improved provision of NADPH and acetyl-CoA were evaluated. First, the ethanol degradation pathway was employed to re-channel carbon flow towards the synthesis of acetyl-CoA. Therefore, ADH2 and ALD6 encoding, respectively, alcohol dehydrogenase and acetaldehyde dehydrogenase were overexpressed together with the heterologous gene acsSEL641P encoding acetyl-CoA synthetase. The co-overexpression of ADH2, ALD6 and acsSEL641P with ws2 resulted in 408 ± 270 μg FAEE gCDW-1, a 3-fold improvement. Secondly, for the expression of the PHK pathway two genes, xpkA and ack, both descending from Aspergillus nidulans, were co-expressed together with ws2 to catalyze, respectively, the conversion of xylulose-5-phosphate to acetyl phosphate and glyceraldehyde-3-phosphate and acetyl phosphate to acetate. Alternatively, ack was substituted with pta from Bacillus subtilis, encoding phosphotransacetylase for the conversion of acetyl phosphate to acetyl-CoA. Both PHK pathways were additionally expressed in a strain with multiple chromosomally integrated ws2 gene, which resulted in respectively 5100 ± 509 and 4670 ± 379 μg FAEE gCDW-1, an up to 1.7-fold improvement. CONCLUSION Two different strategies for engineering of the central carbon metabolism for efficient provision of acetyl-CoA and NADPH required for fatty acid biosynthesis and hence FAEE production were evaluated and it was found that both the ethanol degradation pathway as well as the phosphoketolase pathway improve the yield of FAEEs.
Collapse
Affiliation(s)
| | | | | | - Jens Nielsen
- Department of Chemical and Biological Engineering, Chalmers University of Technology, Kemivägen 10, Göteborg SE-412 96, Sweden.
| |
Collapse
|
43
|
Nielsen J, Larsson C, van Maris A, Pronk J. Metabolic engineering of yeast for production of fuels and chemicals. Curr Opin Biotechnol 2013; 24:398-404. [DOI: 10.1016/j.copbio.2013.03.023] [Citation(s) in RCA: 235] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Revised: 03/18/2013] [Accepted: 03/27/2013] [Indexed: 01/01/2023]
|
44
|
Abstract
Long-chain-length hydrophobic acyl residues play a vital role in a multitude of essential biological structures and processes. They build the inner hydrophobic layers of biological membranes, are converted to intracellular storage compounds, and are used to modify protein properties or function as membrane anchors, to name only a few functions. Acyl thioesters are transferred by acyltransferases or transacylases to a variety of different substrates or are polymerized to lipophilic storage compounds. Lipases represent another important enzyme class dealing with fatty acyl chains; however, they cannot be regarded as acyltransferases in the strict sense. This review provides a detailed survey of the wide spectrum of bacterial acyltransferases and compares different enzyme families in regard to their catalytic mechanisms. On the basis of their studied or assumed mechanisms, most of the acyl-transferring enzymes can be divided into two groups. The majority of enzymes discussed in this review employ a conserved acyltransferase motif with an invariant histidine residue, followed by an acidic amino acid residue, and their catalytic mechanism is characterized by a noncovalent transition state. In contrast to that, lipases rely on completely different mechanism which employs a catalytic triad and functions via the formation of covalent intermediates. This is, for example, similar to the mechanism which has been suggested for polyester synthases. Consequently, although the presented enzyme types neither share homology nor have a common three-dimensional structure, and although they deal with greatly varying molecule structures, this variety is not reflected in their mechanisms, all of which rely on a catalytically active histidine residue.
Collapse
Affiliation(s)
- Annika Röttig
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität, Münster, Germany
| | - Alexander Steinbüchel
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität, Münster, Germany
- Environmental Sciences Department, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
45
|
Lennen RM, Pfleger BF. Microbial production of fatty acid-derived fuels and chemicals. Curr Opin Biotechnol 2013; 24:1044-53. [PMID: 23541503 DOI: 10.1016/j.copbio.2013.02.028] [Citation(s) in RCA: 122] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Revised: 02/27/2013] [Accepted: 02/28/2013] [Indexed: 12/21/2022]
Abstract
Fatty acid metabolism is an attractive route to produce liquid transportation fuels and commodity oleochemicals from renewable feedstocks. Recently, genes and enzymes, which comprise metabolic pathways for producing fatty acid-derived compounds (e.g. esters, alkanes, olefins, ketones, alcohols, polyesters) have been elucidated and used in engineered microbial hosts. The resulting strains often generate products at low percentages of maximum theoretical yields, leaving significant room for metabolic engineering. Economically viable processes will require strains to approach theoretical yields, particularly for replacement of petroleum-derived fuels. This review will describe recent progress toward this goal, highlighting the scientific discoveries of each pathway, ongoing biochemical studies to understand each enzyme, and metabolic engineering strategies that are being used to improve strain performance.
Collapse
Affiliation(s)
- Rebecca M Lennen
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, 1415 Engineering Drive, Room 3629, Madison, WI 53706, United States; U.S. Department of Energy Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, 1550 Linden Drive, Madison, WI 53706, United States
| | | |
Collapse
|
46
|
De novo production of the flavonoid naringenin in engineered Saccharomyces cerevisiae. Microb Cell Fact 2012; 11:155. [PMID: 23216753 PMCID: PMC3539886 DOI: 10.1186/1475-2859-11-155] [Citation(s) in RCA: 243] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Accepted: 11/15/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Flavonoids comprise a large family of secondary plant metabolic intermediates that exhibit a wide variety of antioxidant and human health-related properties. Plant production of flavonoids is limited by the low productivity and the complexity of the recovered flavonoids. Thus to overcome these limitations, metabolic engineering of specific pathway in microbial systems have been envisaged to produce high quantity of a single molecules. RESULT Saccharomyces cerevisiae was engineered to produce the key intermediate flavonoid, naringenin, solely from glucose. For this, specific naringenin biosynthesis genes from Arabidopsis thaliana were selected by comparative expression profiling and introduced in S. cerevisiae. The sole expression of these A. thaliana genes yielded low extracellular naringenin concentrations (<5.5 μM). To optimize naringenin titers, a yeast chassis strain was developed. Synthesis of aromatic amino acids was deregulated by alleviating feedback inhibition of 3-deoxy-d-arabinose-heptulosonate-7-phosphate synthase (Aro3, Aro4) and byproduct formation was reduced by eliminating phenylpyruvate decarboxylase (Aro10, Pdc5, Pdc6). Together with an increased copy number of the chalcone synthase gene and expression of a heterologous tyrosine ammonia lyase, these modifications resulted in a 40-fold increase of extracellular naringenin titers (to approximately 200 μM) in glucose-grown shake-flask cultures. In aerated, pH controlled batch reactors, extracellular naringenin concentrations of over 400 μM were reached. CONCLUSION The results reported in this study demonstrate that S. cerevisiae is capable of de novo production of naringenin by coexpressing the naringenin production genes from A. thaliana and optimization of the flux towards the naringenin pathway. The engineered yeast naringenin production host provides a metabolic chassis for production of a wide range of flavonoids and exploration of their biological functions.
Collapse
|
47
|
Lin H, Wang Q, Shen Q, Zhan J, Zhao Y. Genetic engineering of microorganisms for biodiesel production. Bioengineered 2012; 4:292-304. [PMID: 23222170 DOI: 10.4161/bioe.23114] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Biodiesel, as one type of renewable energy, is an ideal substitute for petroleum-based diesel fuel and is usually made from triacylglycerides by transesterification with alcohols. Biodiesel production based on microbial fermentation aiming to establish more efficient, less-cost and sustainable biodiesel production strategies is under current investigation by various start-up biotechnology companies and research centers. Genetic engineering plays a key role in the transformation of microbes into the desired cell factories with high efficiency of biodiesel production. Here, we present an overview of principal microorganisms used in the microbial biodiesel production and recent advances in metabolic engineering for the modification required. Overexpression or deletion of the related enzymes for de novo synthesis of biodiesel is highlighted with relevant examples.
Collapse
Affiliation(s)
- Hui Lin
- Institute of Microbiology; College of Life Sciences; Zhejiang University; Hangzhou, China; Institute of Plant Science; College of Life Sciences; Zhejiang University; Hangzhou, China
| | | | | | | | | |
Collapse
|
48
|
Eberly JO, Ringelberg DB, Indest KJ. Physiological characterization of lipid accumulation and in vivo ester formation in Gordonia sp. KTR9. J Ind Microbiol Biotechnol 2012. [PMID: 23207981 DOI: 10.1007/s10295-012-1218-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Previous work has demonstrated the feasibility of in vivo biodiesel synthesis in Escherichia coli, however, ethyl ester formation was dependent on an external fatty acid feedstock. In contrast to E. coli, actinomycetes may be ideal organisms for direct biodiesel synthesis because of their capacity to synthesize high levels of triacylglcerides (TAGs). In this study, we investigated the physiology and associated TAG accumulation along with the in vivo ability to catalyze ester formation from exogenous short chain alcohol sources in Gordonia sp. KTR9, a strain that possesses a large number of genes dedicated to fatty acid and lipid biosynthesis. Total lipid fatty acids content increased by 75 % and TAG content increased by 50 % under nitrogen starvation conditions in strain KTR9. Strain KTR9 tolerated the exogenous addition of up to 4 % methanol, 4 % ethanol and 2 % propanol in the media. Increasing alcohol concentrations resulted in a decrease in the degree of saturation of recovered fatty acid alcohol esters and a slight increase in the fatty acid chain length. A linear dose dependency in fatty alcohol ester synthesis was observed in the presence of 0.5-2 % methanol and ethanol compared to control KTR9 strains grown in the absence of alcohols. An inspection of the KTR9 genome revealed the presence of several putative wax ester synthase/acyl-coenzyme A : diacylglycerol acyltransferase (WS/DGAT) enzymes, encoded by atf gene homologs, that may catalyze the in vivo synthesis of fatty acid esters from short chain alcohols. Collectively, these results indicate that Gordonia sp. KTR9 may be a suitable actinomycete host strain for in vivo biodiesel synthesis.
Collapse
Affiliation(s)
- Jed O Eberly
- Environmental Laboratory, CEERD EP-P, U.S. Army Engineer Research and Development Center, 3909 Halls Ferry Road, Vicksburg, MS 39180, USA
| | | | | |
Collapse
|
49
|
Identification of a residue affecting fatty alcohol selectivity in wax ester synthase. Appl Environ Microbiol 2012; 79:396-9. [PMID: 23087036 DOI: 10.1128/aem.02523-12] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The terminal enzyme in the bacterial wax ester biosynthetic pathway is the bifunctional wax ester synthase/acyl-coenzyme A:diacylglycerol acyltransferase (WS/DGAT), which utilizes a fatty alcohol and a fatty acyl-coenzyme A (CoA) to synthesize the corresponding wax ester. In this report, we identify a specific residue in WS/DGAT enzymes obtained from Marinobacter aquaeolei VT8 and Acinetobacter baylyi that alters fatty alcohol selectivity and kinetic parameters when modified to alternative residues.
Collapse
|
50
|
Biosynthesis of cis,cis-muconic acid and its aromatic precursors, catechol and protocatechuic acid, from renewable feedstocks by Saccharomyces cerevisiae. Appl Environ Microbiol 2012; 78:8421-30. [PMID: 23001678 DOI: 10.1128/aem.01983-12] [Citation(s) in RCA: 122] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Adipic acid is a high-value compound used primarily as a precursor for the synthesis of nylon, coatings, and plastics. Today it is produced mainly in chemical processes from petrochemicals like benzene. Because of the strong environmental impact of the production processes and the dependence on fossil resources, biotechnological production processes would provide an interesting alternative. Here we describe the first engineered Saccharomyces cerevisiae strain expressing a heterologous biosynthetic pathway converting the intermediate 3-dehydroshikimate of the aromatic amino acid biosynthesis pathway via protocatechuic acid and catechol into cis,cis-muconic acid, which can be chemically dehydrogenated to adipic acid. The pathway consists of three heterologous microbial enzymes, 3-dehydroshikimate dehydratase, protocatechuic acid decarboxylase composed of three different subunits, and catechol 1,2-dioxygenase. For each heterologous reaction step, we analyzed several potential candidates for their expression and activity in yeast to compose a functional cis,cis-muconic acid synthesis pathway. Carbon flow into the heterologous pathway was optimized by increasing the flux through selected steps of the common aromatic amino acid biosynthesis pathway and by blocking the conversion of 3-dehydroshikimate into shikimate. The recombinant yeast cells finally produced about 1.56 mg/liter cis,cis-muconic acid.
Collapse
|