1
|
Sastri KT, Gupta NV, Kannan A, Dutta S, Ali M Osmani R, V B, Ramkishan A, S S. The next frontier in multiple sclerosis therapies: Current advances and evolving targets. Eur J Pharmacol 2024; 985:177080. [PMID: 39491741 DOI: 10.1016/j.ejphar.2024.177080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 10/11/2024] [Accepted: 10/28/2024] [Indexed: 11/05/2024]
Abstract
Recent advancements in research have significantly enhanced our comprehension of the intricate immune components that contribute to multiple sclerosis (MS) pathogenesis. By conducting an in-depth analysis of complex molecular interactions involved in the immunological cascade of the disease, researchers have successfully identified novel therapeutic targets, leading to the development of innovative therapies. Leveraging pioneering technologies in proteomics, genomics, and the assessment of environmental factors has expedited our understanding of the vulnerability and impact of these factors on the progression of MS. Furthermore, these advances have facilitated the detection of significant biomarkers for evaluating disease activity. By integrating these findings, researchers can design novel molecules to identify new targets, paving the way for improved treatments and enhanced patient care. Our review presents recent discoveries regarding the pathogenesis of MS, highlights their genetic implications, and proposes an insightful approach for engaging with newer therapeutic targets in effectively managing this debilitating condition.
Collapse
Affiliation(s)
- K Trideva Sastri
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Shivarathreeshwara Nagara, Bannimantap, Mysuru, India.
| | - N Vishal Gupta
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Shivarathreeshwara Nagara, Bannimantap, Mysuru, India.
| | - Anbarasu Kannan
- Department of Biochemistry, CSIR-Central Food Technological Research Institute, Mysuru, India
| | - Suman Dutta
- Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DU, UK
| | - Riyaz Ali M Osmani
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Shivarathreeshwara Nagara, Bannimantap, Mysuru, India
| | - Balamuralidhara V
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Shivarathreeshwara Nagara, Bannimantap, Mysuru, India
| | - A Ramkishan
- Deputy Drugs Controller (India), Central Drugs Standard Control Organization, Directorate General of Health Services, Ministry of Health & Family Welfare, Government of India, India
| | | |
Collapse
|
2
|
Wang D, Zhang Y, Li Q, Li Y, Li W, Zhang A, Xu J, Meng J, Tang L, Lyu S. Epigenetics: Mechanisms, potential roles, and therapeutic strategies in cancer progression. Genes Dis 2024; 11:101020. [PMID: 38988323 PMCID: PMC11233905 DOI: 10.1016/j.gendis.2023.04.040] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 02/20/2023] [Accepted: 04/14/2023] [Indexed: 07/12/2024] Open
Abstract
Mutations or abnormal expression of oncogenes and tumor suppressor genes are known to cause cancer. Recent studies have shown that epigenetic modifications are key drivers of cancer development and progression. Nevertheless, the mechanistic role of epigenetic dysregulation in the tumor microenvironment is not fully understood. Here, we reviewed the role of epigenetic modifications of cancer cells and non-cancer cells in the tumor microenvironment and recent research advances in cancer epigenetic drugs. In addition, we discussed the great potential of epigenetic combination therapies in the clinical treatment of cancer. However, there are still some challenges in the field of cancer epigenetics, such as epigenetic tumor heterogeneity, epigenetic drug heterogeneity, and crosstalk between epigenetics, proteomics, metabolomics, and other omics, which may be the focus and difficulty of cancer treatment in the future. In conclusion, epigenetic modifications in the tumor microenvironment are essential for future epigenetic drug development and the comprehensive treatment of cancer. Epigenetic combination therapy may be a novel strategy for the future clinical treatment of cancer.
Collapse
Affiliation(s)
- Dong Wang
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yan Zhang
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Qingbo Li
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yu Li
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Wen Li
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Ao Zhang
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Jingxuan Xu
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Jingyan Meng
- College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Lin Tang
- College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Shuhua Lyu
- Department of Pathology, Tianjin Union Medical Center, Tianjin 300121, China
| |
Collapse
|
3
|
Griñán-Ferré C, Bellver-Sanchis A, Guerrero A, Pallàs M. Advancing personalized medicine in neurodegenerative diseases: The role of epigenetics and pharmacoepigenomics in pharmacotherapy. Pharmacol Res 2024; 205:107247. [PMID: 38834164 DOI: 10.1016/j.phrs.2024.107247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/23/2024] [Accepted: 05/30/2024] [Indexed: 06/06/2024]
Abstract
About 80 % of brain disorders have a genetic basis. The pathogenesis of most neurodegenerative diseases is associated with a myriad of genetic defects, epigenetic alterations (DNA methylation, histone/chromatin remodeling, miRNA dysregulation), and environmental factors. The emergence of new sequencing technologies and tools to study the epigenome has led to identifying predictive biomarkers for earlier diagnosis, opening up the possibility of prophylactical interventions. As a result, advances in pharmacogenetics and pharmacoepigenomics now allow for personalized treatments based on the profile of each patient and the specific genetic and epigenetic mechanisms involved. This Review highlights the complexity of neurodegenerative diseases and the variability in patient responses to pharmacotherapy, emphasizing the influence of genetic polymorphisms on the pharmacokinetics and pharmacodynamics of drugs used to treat those conditions. We specifically discuss the potential modulatory effect of several genetic polymorphisms associated with an increased risk of developing different neurodegenerative diseases. We explore genetic and genomic technologies and the potential of analyzing individual-specific drug metabolism to predict and influence drug response and associated clinical outcomes. We also provide insights into the mechanism of action of the drugs under investigation and their potential impact on disease-modifying pathways. Finally, the Review underscores the great potential of this field to enhance the effectiveness and safety of drug treatments through personalized medicine.
Collapse
Affiliation(s)
- Christian Griñán-Ferré
- Department of Pharmacology and Therapeutic Chemistry, Institut de Neurociències-Universitat de Barcelona, Avda. Joan XXIII, 27, Barcelona 08028, Spain; Centro de Investigación en Red, Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain.
| | - Aina Bellver-Sanchis
- Department of Pharmacology and Therapeutic Chemistry, Institut de Neurociències-Universitat de Barcelona, Avda. Joan XXIII, 27, Barcelona 08028, Spain
| | - Ana Guerrero
- Department of Pharmacology and Therapeutic Chemistry, Institut de Neurociències-Universitat de Barcelona, Avda. Joan XXIII, 27, Barcelona 08028, Spain
| | - Mercè Pallàs
- Department of Pharmacology and Therapeutic Chemistry, Institut de Neurociències-Universitat de Barcelona, Avda. Joan XXIII, 27, Barcelona 08028, Spain; Centro de Investigación en Red, Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
4
|
Castillo-Ordoñez WO, Cajas-Salazar N, Velasco-Reyes MA. Genetic and epigenetic targets of natural dietary compounds as anti-Alzheimer's agents. Neural Regen Res 2024; 19:846-854. [PMID: 37843220 PMCID: PMC10664119 DOI: 10.4103/1673-5374.382232] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 06/15/2023] [Accepted: 07/18/2023] [Indexed: 10/17/2023] Open
Abstract
Alzheimer's disease is a progressive neurodegenerative disorder and the most common cause of dementia that principally affects older adults. Pathogenic factors, such as oxidative stress, an increase in acetylcholinesterase activity, mitochondrial dysfunction, genotoxicity, and neuroinflammation are present in this syndrome, which leads to neurodegeneration. Neurodegenerative pathologies such as Alzheimer's disease are considered late-onset diseases caused by the complex combination of genetic, epigenetic, and environmental factors. There are two main types of Alzheimer's disease, known as familial Alzheimer's disease (onset < 65 years) and late-onset or sporadic Alzheimer's disease (onset ≥ 65 years). Patients with familial Alzheimer's disease inherit the disease due to rare mutations on the amyloid precursor protein (APP), presenilin 1 and 2 (PSEN1 and PSEN2) genes in an autosomal-dominantly fashion with closely 100% penetrance. In contrast, a different picture seems to emerge for sporadic Alzheimer's disease, which exhibits numerous non-Mendelian anomalies suggesting an epigenetic component in its etiology. Importantly, the fundamental pathophysiological mechanisms driving Alzheimer's disease are interfaced with epigenetic dysregulation. However, the dynamic nature of epigenetics seems to open up new avenues and hope in regenerative neurogenesis to improve brain repair in Alzheimer's disease or following injury or stroke in humans. In recent years, there has been an increase in interest in using natural products for the treatment of neurodegenerative illnesses such as Alzheimer's disease. Through epigenetic mechanisms, such as DNA methylation, non-coding RNAs, histone modification, and chromatin conformation regulation, natural compounds appear to exert neuroprotective effects. While we do not purport to cover every in this work, we do attempt to illustrate how various phytochemical compounds regulate the epigenetic effects of a few Alzheimer's disease-related genes.
Collapse
Affiliation(s)
- Willian Orlando Castillo-Ordoñez
- Facultad de Ciencias Naturales-Exactas y de la Educación, Departamento de Biología. Universidad del Cauca, Popayán-Cauca, Colombia
- Departamento de Estudios Psicológicos, Universidad Icesi, Cali, Colombia
| | - Nohelia Cajas-Salazar
- Facultad de Ciencias Naturales-Exactas y de la Educación, Departamento de Biología. Universidad del Cauca, Popayán-Cauca, Colombia
| | - Mayra Alejandra Velasco-Reyes
- Facultad de Ciencias Naturales-Exactas y de la Educación, Departamento de Biología. Universidad del Cauca, Popayán-Cauca, Colombia
| |
Collapse
|
5
|
Ba H, Zhang L, Peng H, He X, Wang Y. Causal links between sedentary behavior, physical activity, and psychiatric disorders: a Mendelian randomization study. Ann Gen Psychiatry 2024; 23:9. [PMID: 38424581 PMCID: PMC10905777 DOI: 10.1186/s12991-024-00495-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 02/20/2024] [Indexed: 03/02/2024] Open
Abstract
BACKGROUND Studies suggest a correlation between excessive sedentary behavior, insufficient physical activity, and an elevated likelihood of experiencing psychiatric disorder. Nonetheless, the precise influence of sedentary behavior and physical activity on psychiatric disorder remains uncertain. Hence, the objective of this research was to investigate the possible causal relationship between sedentary behavior, physical activity, and the susceptibility to psychiatric disorder (depression, schizophrenia and bipolar disorder), utilizing a two-sample Mendelian randomization (MR) approach. METHODS Potential genetic instruments related to sedentary leisure behaviors were identified from the UK Biobank database, specifically a summary-level genome-wide association study (GWAS) involving 422,218 individuals of European descent. The UK Biobank database also provided the GWAS data for physical activity. Primary analysis was performed using inverse variance weighting (IVW) to assess the causal relationship between sedentary behavior, physical activity, and the risk of psychiatric disorder (depression, schizophrenia and bipolar disorder). Sensitivity analysis was conducted using Cochran's Q test, the MR-Egger intercept test, the MR-pleiotropy RESidual sum and outlier test, leave-one-out analysis, and funnel plot analysis. RESULTS According to the IVW analysis, there was a significant association between genetically predicted leisure television watching and an increased risk of depression (odds ratio [OR] = 1.027, 95% confidence interval [CI]: 1.001-1.053; P = 0.04). The IVW analysis also indicated that there was a decreased risk of depression associated with fraction accelerations of > 425 milligravities, as measured by accelerometers (OR = 0.951, 95%CI: 0.914-0.989; P = 0.013). The other MR methods obtained consistent but non-significant results in the same direction. However, there was no evidence of a causal association between genetic liability for moderate-to-vigorous physical activity, accelerometer-assessed physical activity, computer use, or driving and the risk of depression. Furthermore, IVW analysis has also found that driving has a slight effect in reducing the risk of schizophrenia (OR = 0.092, 95%CI: 0.010-0.827; P = 0.033), while leisure television viewing has a significant protective effect against the onset of bipolar disorder (OR = 0.719, 95%CI: 0.567-0.912; P = 0.006). CONCLUSION The study provides compelling evidence of a link between depression, bipolar disorder, and excessive TV watching. Furthermore, it suggests that higher accelerometer-assessed fraction accelerations of > 425 milligravities can serve as a genetic protective factor against depression. To mitigate the risk of developing depression, it is advisable to reduce sedentary activities, particularly television watching, and prioritize engaging in vigorous physical exercise.
Collapse
Affiliation(s)
- Hongjun Ba
- Department of Pediatric Cardiology, Heart Center, First Affiliated Hospital of Sun Yat-sen University, 58# Zhongshan Road 2, Guangzhou, 510080, China
- Key Laboratory on Assisted Circulation, Ministry of Health, 58# Zhongshan Road 2, Guangzhou, 510080, China
| | - Lili Zhang
- Department of Pediatric Cardiology, Heart Center, First Affiliated Hospital of Sun Yat-sen University, 58# Zhongshan Road 2, Guangzhou, 510080, China
| | - Huimin Peng
- Department of Pediatric Cardiology, Heart Center, First Affiliated Hospital of Sun Yat-sen University, 58# Zhongshan Road 2, Guangzhou, 510080, China
| | - Xiufang He
- Department of Pediatric Cardiology, Heart Center, First Affiliated Hospital of Sun Yat-sen University, 58# Zhongshan Road 2, Guangzhou, 510080, China
| | - Yao Wang
- Cancer Hospital, Guangzhou Medical University, Guangzhou, 510095, China.
| |
Collapse
|
6
|
Gupta MK, Peng H, Li Y, Xu CJ. The role of DNA methylation in personalized medicine for immune-related diseases. Pharmacol Ther 2023; 250:108508. [PMID: 37567513 DOI: 10.1016/j.pharmthera.2023.108508] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 08/03/2023] [Accepted: 08/08/2023] [Indexed: 08/13/2023]
Abstract
Epigenetics functions as a bridge between host genetic & environmental factors, aiding in human health and diseases. Many immune-related diseases, including infectious and allergic diseases, have been linked to epigenetic mechanisms, particularly DNA methylation. In this review, we summarized an updated overview of DNA methylation and its importance in personalized medicine, and demonstrated that DNA methylation has excellent potential for disease prevention, diagnosis, and treatment in a personalized manner. The future implications and limitations of the DNA methylation study have also been well-discussed.
Collapse
Affiliation(s)
- Manoj Kumar Gupta
- Centre for Individualised Infection Medicine (CiiM), a joint venture between the Helmholtz Centre for Infection Research (HZI) and the Hannover Medical School (MHH), Hannover, Germany; TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany
| | - He Peng
- Centre for Individualised Infection Medicine (CiiM), a joint venture between the Helmholtz Centre for Infection Research (HZI) and the Hannover Medical School (MHH), Hannover, Germany; TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany
| | - Yang Li
- Centre for Individualised Infection Medicine (CiiM), a joint venture between the Helmholtz Centre for Infection Research (HZI) and the Hannover Medical School (MHH), Hannover, Germany; TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany; Department of Internal Medicine and Radboud Institute for Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Cheng-Jian Xu
- Centre for Individualised Infection Medicine (CiiM), a joint venture between the Helmholtz Centre for Infection Research (HZI) and the Hannover Medical School (MHH), Hannover, Germany; TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany; Department of Internal Medicine and Radboud Institute for Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands.
| |
Collapse
|
7
|
McMahon‑Cole H, Johnson A, Sadat Aghamiri S, Helikar T, Crawford LB. Modeling and Remodeling the Cell: How Digital Twins and HCMV Can Elucidate the Complex Interactions of Viral Latency, Epigenetic Regulation, and Immune Responses. CURRENT CLINICAL MICROBIOLOGY REPORTS 2023; 10:141-151. [PMID: 37901689 PMCID: PMC10601359 DOI: 10.1007/s40588-023-00201-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/12/2023] [Indexed: 10/31/2023]
Abstract
Purpose of Review Human cytomegalovirus (HCMV), while asymptomatic in most, causes significant complications during fetal development, following transplant or in immunosuppressed individuals. The host-virus interactions regulating viral latency and reactivation and viral control of the cellular environment (immune regulation, differentiation, epigenetics) are highly complex. Understanding these processes is essential to controlling infection and can be leveraged as a novel approach for understanding basic cell biology. Recent Findings Immune digital twins (IDTs) are digital simulations integrating knowledge of human immunology, physiology, and patient-specific clinical data to predict individualized immune responses and targeted treatments. Recent studies used IDTs to elucidate mechanisms of T cells, dendritic cells, and epigenetic control-all key to HCMV biology. Summary Here, we discuss how leveraging the unique biology of HCMV and IDTs will clarify immune response dynamics, host-virus interactions, and viral latency and reactivation and serve as a powerful IDT-validation platform for individualized and holistic health management.
Collapse
Affiliation(s)
- Hana McMahon‑Cole
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Alicia Johnson
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Sara Sadat Aghamiri
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Tomáš Helikar
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Lindsey B. Crawford
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, USA
- Nebraska Center for Virology, Lincoln, NE, USA
- Nebraska Center for Integrated Biomolecular Communication, Lincoln, NE, USA
| |
Collapse
|
8
|
Farani MR, Sarlak M, Gholami A, Azaraian M, Binabaj MM, Kakavandi S, Tambuwala MM, Taheriazam A, Hashemi M, Ghasemi S. Epigenetic drugs as new emerging therapeutics: What is the scale's orientation of application and challenges? Pathol Res Pract 2023; 248:154688. [PMID: 37494800 DOI: 10.1016/j.prp.2023.154688] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/13/2023] [Accepted: 07/13/2023] [Indexed: 07/28/2023]
Abstract
Epigenetics is the study of heritable changes in gene expression or function without altering the DNA sequence. Important factors are part of epigenetic events, such as methylation, DNA histone rearrangements, nucleosome transposition, and non-coding RNAs. Dysregulated epigenetic mechanics are associated with various cancers' initiation, development, and metastasis. It is known that the occurrence and development of cancer can be controlled by regulating unexpected epigenetic events. Epi-drugs are used singly or in combination with chemotherapy and enhance antitumor activity, reduce drug resistance, and stimulate the host immune response. Despite these benefits, epigenetic therapy as a single therapy or in combination with other drugs leads to adverse effects. This review article introduces and compares the advantages, disadvantages, and side effects of using these drugs for the first time since their introduction. Also, this article describes the mechanism of action of various epigenetic drugs. Recommendations for future use of epigenetic drugs as cancer therapeutics are suggested as an overall conclusion.
Collapse
Affiliation(s)
- Marzieh Ramezani Farani
- Toxicology and Diseases Group (TDG), Pharmaceutical Sciences Research Center (PSRC), the Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, 1417614411 Tehran, Iran
| | - Maryam Sarlak
- Department of Chemistry, Portland State University, Portland, OR, USA
| | - Amir Gholami
- Student Research Committee, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Maryam Azaraian
- Department of Radiology, Charité - Universitätsmedizin Berlin, Berlin 10117, Germany; Department of Bioanalytical Ecotoxicology, UFZ - Helmholtz Centre for Environmental Research, Leipzig, Germany
| | - Maryam Moradi Binabaj
- Clinical Biochemistry, Department of Biochemistry and Nutrition, School of Medicine, Sabzevar University of Medical Science, Sabzevar, Iran; Cellular and Molecular Research Center, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Sareh Kakavandi
- Department of Bacteriology and Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Murtaza M Tambuwala
- Lincoln Medical School, University of Lincoln, Brayford Pool, Lincoln, LN6 7TS, 0United Kingdom
| | - Afshin Taheriazam
- Department of Orthopedics, Faculty of medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Sorayya Ghasemi
- Cancer Research Center, Shahrekord University of Medical Sciences, Shahrekord, Iran.
| |
Collapse
|
9
|
Williams AS, Wilk EJ, Fisher JL, Lasseigne BN. Evaluating cancer cell line and patient-derived xenograft recapitulation of tumor and non-diseased tissue gene expression profiles in silico. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.11.536431. [PMID: 37090499 PMCID: PMC10120639 DOI: 10.1101/2023.04.11.536431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
Preclinical models like cancer cell lines and patient-derived xenografts (PDXs) are vital for studying disease mechanisms and evaluating treatment options. It is essential that they accurately recapitulate the disease state of interest to generate results that will translate in the clinic. Prior studies have demonstrated that preclinical models do not recapitulate all biological aspects of human tissues, particularly with respect to the tissue of origin gene expression signatures. Therefore, it is critical to assess how well preclinical model gene expression profiles correlate with human cancer tissues to inform preclinical model selection and data analysis decisions. Here we evaluated how well preclinical models recapitulate human cancer and non-diseased tissue gene expression patterns in silico with respect to the full gene expression profile as well as subsetting by the most variable genes, genes significantly correlated with tumor purity, and tissue-specific genes by using publicly available gene expression profiles across multiple sources. We found that using the full gene set improves correlations between preclinical model and tissue global gene expression profiles, confirmed that GBM PDX global gene expression correlation to GBM tumor global gene expression outperforms GBM cell line to GBM tumor global gene expression correlations, and demonstrated that preclinical models in our study often failed to reproduce tissue-specific expression. While including additional genes for global gene expression comparison between cell lines and tissues decreases the overall correlation, it improves the relative rank between a cell line and its tissue of origin compared to other tissues. Our findings underscore the importance of using the full gene expression set measured when comparing preclinical models and tissues and confirm that tissue-specific patterns are better preserved in GBM PDX models than in GBM cell lines. Future studies can build on these findings to determine the specific pathways and gene sets recapitulated by particular preclinical models to facilitate model selection for a given study design or goal.
Collapse
Affiliation(s)
- Avery S. Williams
- The Department of Cell, Developmental and Integrative Biology, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Elizabeth J. Wilk
- The Department of Cell, Developmental and Integrative Biology, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Jennifer L. Fisher
- The Department of Cell, Developmental and Integrative Biology, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Brittany N. Lasseigne
- The Department of Cell, Developmental and Integrative Biology, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
10
|
Effendi WI, Nagano T. Epigenetics Approaches toward Precision Medicine for Idiopathic Pulmonary Fibrosis: Focus on DNA Methylation. Biomedicines 2023; 11:biomedicines11041047. [PMID: 37189665 DOI: 10.3390/biomedicines11041047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/22/2023] [Accepted: 03/23/2023] [Indexed: 03/31/2023] Open
Abstract
Genetic information is not transmitted solely by DNA but by the epigenetics process. Epigenetics describes molecular missing link pathways that could bridge the gap between the genetic background and environmental risk factors that contribute to the pathogenesis of pulmonary fibrosis. Specific epigenetic patterns, especially DNA methylation, histone modifications, long non-coding, and microRNA (miRNAs), affect the endophenotypes underlying the development of idiopathic pulmonary fibrosis (IPF). Among all the epigenetic marks, DNA methylation modifications have been the most widely studied in IPF. This review summarizes the current knowledge concerning DNA methylation changes in pulmonary fibrosis and demonstrates a promising novel epigenetics-based precision medicine.
Collapse
|
11
|
Gazerani P. Human Brain Organoids in Migraine Research: Pathogenesis and Drug Development. Int J Mol Sci 2023; 24:3113. [PMID: 36834522 PMCID: PMC9961184 DOI: 10.3390/ijms24043113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 02/01/2023] [Accepted: 02/02/2023] [Indexed: 02/08/2023] Open
Abstract
Human organoids are small, self-organized, three-dimensional (3D) tissue cultures that have started to revolutionize medical science in terms of understanding disease, testing pharmacologically active compounds, and offering novel ways to treat disease. Organoids of the liver, kidney, intestine, lung, and brain have been developed in recent years. Human brain organoids are used for understanding pathogenesis and investigating therapeutic options for neurodevelopmental, neuropsychiatric, neurodegenerative, and neurological disorders. Theoretically, several brain disorders can be modeled with the aid of human brain organoids, and hence the potential exists for understanding migraine pathogenesis and its treatment with the aid of brain organoids. Migraine is considered a brain disorder with neurological and non-neurological abnormalities and symptoms. Both genetic and environmental factors play essential roles in migraine pathogenesis and its clinical manifestations. Several types of migraines are classified, for example, migraines with and without aura, and human brain organoids can be developed from patients with these types of migraines to study genetic factors (e.g., channelopathy in calcium channels) and environmental stressors (e.g., chemical and mechanical). In these models, drug candidates for therapeutic purposes can also be tested. Here, the potential and limitations of human brain organoids for studying migraine pathogenesis and its treatment are communicated to generate motivation and stimulate curiosity for further research. This must, however, be considered alongside the complexity of the concept of brain organoids and the neuroethical aspects of the topic. Interested researchers are invited to join the network for protocol development and testing the hypothesis presented here.
Collapse
Affiliation(s)
- Parisa Gazerani
- Department of Life Sciences and Health, Faculty of Health Sciences, Oslo Metropolitan University, 0130 Oslo, Norway; or
- Centre for Intelligent Musculoskeletal Health (CIM), Faculty of Health Sciences, Oslo Metropolitan University, 0130 Oslo, Norway
- Department of Health Science and Technology, Faculty of Medicine, Aalborg University, 9220 Aalborg East, Denmark
| |
Collapse
|
12
|
Bupp CP, English BK, Rajasekaran S, Prokop JW. Introduction to Personalized Medicine in Pediatrics. Pediatr Ann 2022; 51:e381-e386. [PMID: 36215089 DOI: 10.3928/19382359-20220803-03] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Exciting new developments in biomedical and computational sciences provide an extraordinary and unparalleled opportunity to compile, connect, and analyze multiple types of "big data," driving the development of personalized medicine. These insights must begin in early life (ie, pregnancy, neonatal, and infancy) and focus on early prevention, diagnosis, and intervention-areas of medicine where pediatricians are poised to lead the way to a personalized medicine future. The rapid growth of genomics (including pharmacogenomics), transcriptomics, and related "omics" has revolutionized the diagnosis of rare monogenic disorders. It is now clarifying the pathogenesis of complex conditions ranging from autism spectrum disorder to asthma. Collaborations between clinicians and basic scientists integrating multiomics approaches in evaluating children with severe illness are transforming the fields of perinatal, neonatal, and pediatric critical care medicine. Improvements in rapid diagnostic and prognostic information suggest that pediatric personalized medicine is under way and has an exciting future. [Pediatr Ann. 2022;51(10):e381-e386.].
Collapse
|
13
|
Maldonato BJ, Vergara AG, Yadav J, Glass SM, Paragas EM, Li D, Lazarus P, McClay JL, Ning B, Daly AK, Russell LE. Epigenetics in drug disposition & drug therapy: symposium report of the 24 th North American meeting of the International Society for the Study of Xenobiotics (ISSX). Drug Metab Rev 2022; 54:318-330. [PMID: 35876105 PMCID: PMC9970013 DOI: 10.1080/03602532.2022.2101662] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 07/10/2022] [Indexed: 11/03/2022]
Abstract
The 24th North American International Society for the Study of Xenobiotics (ISSX) meeting, held virtually from September 13 to 17, 2021, embraced the theme of "Broadening Our Horizons." This reinforces a key mission of ISSX: striving to share innovative science related to drug discovery and development. Session speakers and the ISSX New Investigators Group, which supports the scientific and professional development of student and early career ISSX members, elected to highlight the scientific content presented during the captivating session titled, "Epigenetics in Drug Disposition & Drug Therapy." The impact genetic variation has on drug response is well established; however, this session underscored the importance of investigating the role of epigenetics in drug disposition and drug discovery. Session speakers, Drs. Ning, McClay, and Lazarus, detailed mechanisms by which epigenetic players including long non-coding RNA (lncRNAs), microRNA (miRNAs), DNA methylation, and histone acetylation can alter the expression of genes involved in pharmacokinetics, pharmacodynamics, and toxicity. Dr. Ning detailed current knowledge about miRNAs and lncRNAs and the mechanisms by which they can affect the expression of drug metabolizing enzymes (DMEs) and nuclear receptors. Dr. Lazarus discussed the potential role of miRNAs on UDP-glucuronosyltransferase (UGT) expression and activity. Dr. McClay provided evidence that aging alters methylation and acetylation of DMEs in the liver, affecting gene expression and activity. These topics, compiled by the symposium organizers, presenters, and the ISSX New Investigators Group, are herein discussed, along with exciting future perspectives for epigenetics in drug disposition and drug discovery research.
Collapse
Affiliation(s)
- Benjamin J Maldonato
- Department of Nonclinical Development and Clinical Pharmacology, Revolution Medicines, Inc, Redwood City, CA, United States
| | - Ana G Vergara
- Department of ADME & Discovery Toxicology, Merck & Co., Inc, Rahway, NJ, United States
| | - Jaydeep Yadav
- Department of ADME & Discovery Toxicology, Merck & Co., Inc, Rahway, NJ, United States
| | - Sarah M Glass
- Janssen Research & Development, San Diego, CA, United States
| | | | - Dongying Li
- National Center for Toxicological Research (NCTR), U.S. Food and Drug Administration (FDA), Jefferson, AR, United States
| | - Philip Lazarus
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA, United States
| | - Joseph L McClay
- Department of Pharmacotherapy and Outcomes Science, School of Pharmacy, Virginia Commonwealth University, Richmond, VA, United States
| | - Baitang Ning
- National Center for Toxicological Research (NCTR), U.S. Food and Drug Administration (FDA), Jefferson, AR, United States
| | - Ann K Daly
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Laura E Russell
- Drug Metabolism and Pharmacokinetics, AbbVie Inc, North Chicago, Illinois, United States
| |
Collapse
|
14
|
Multi-omics strategies for personalized and predictive medicine: past, current, and future translational opportunities. Emerg Top Life Sci 2022; 6:215-225. [PMID: 35234253 DOI: 10.1042/etls20210244] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 02/13/2022] [Accepted: 02/21/2022] [Indexed: 12/12/2022]
Abstract
Precision medicine is driven by the paradigm shift of empowering clinicians to predict the most appropriate course of action for patients with complex diseases and improve routine medical and public health practice. It promotes integrating collective and individualized clinical data with patient specific multi-omics data to develop therapeutic strategies, and knowledgebase for predictive and personalized medicine in diverse populations. This study is based on the hypothesis that understanding patient's metabolomics and genetic make-up in conjunction with clinical data will significantly lead to determining predisposition, diagnostic, prognostic and predictive biomarkers and optimal paths providing personalized care for diverse and targeted chronic, acute, and infectious diseases. This study briefs emerging significant, and recently reported multi-omics and translational approaches aimed to facilitate implementation of precision medicine. Furthermore, it discusses current grand challenges, and the future need of Findable, Accessible, Intelligent, and Reproducible (FAIR) approach to accelerate diagnostic and preventive care delivery strategies beyond traditional symptom-driven, disease-causal medical practice.
Collapse
|
15
|
Verhelst S, Van Puyvelde B, Willems S, Daled S, Cornelis S, Corveleyn L, Willems E, Deforce D, De Clerck L, Dhaenens M. A large scale mass spectrometry-based histone screening for assessing epigenetic developmental toxicity. Sci Rep 2022; 12:1256. [PMID: 35075221 PMCID: PMC8786925 DOI: 10.1038/s41598-022-05268-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 01/07/2022] [Indexed: 12/23/2022] Open
Abstract
Toxicoepigenetics is an emerging field that studies the toxicological impact of compounds on protein expression through heritable, non-genetic mechanisms, such as histone post-translational modifications (hPTMs). Due to substantial progress in the large-scale study of hPTMs, integration into the field of toxicology is promising and offers the opportunity to gain novel insights into toxicological phenomena. Moreover, there is a growing demand for high-throughput human-based in vitro assays for toxicity testing, especially for developmental toxicity. Consequently, we developed a mass spectrometry-based proof-of-concept to assess a histone code screening assay capable of simultaneously detecting multiple hPTM-changes in human embryonic stem cells. We first validated the untargeted workflow with valproic acid (VPA), a histone deacetylase inhibitor. These results demonstrate the capability of mapping the hPTM-dynamics, with a general increase in acetylations as an internal control. To illustrate the scalability, a dose–response study was performed on a proof-of-concept library of ten compounds (1) with a known effect on the hPTMs (BIX-01294, 3-Deazaneplanocin A, Trichostatin A, and VPA), (2) classified as highly embryotoxic by the European Centre for the Validation of Alternative Methods (ECVAM) (Methotrexate, and All-trans retinoic acid), (3) classified as non-embryotoxic by ECVAM (Penicillin G), and (4) compounds of abuse with a presumed developmental toxicity (ethanol, caffeine, and nicotine).
Collapse
Affiliation(s)
- Sigrid Verhelst
- ProGenTomics, Laboratory of Pharmaceutical Biotechnology, Ghent University, Ghent, Belgium
| | - Bart Van Puyvelde
- ProGenTomics, Laboratory of Pharmaceutical Biotechnology, Ghent University, Ghent, Belgium
| | - Sander Willems
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, 82152, Martinsried, Germany
| | - Simon Daled
- ProGenTomics, Laboratory of Pharmaceutical Biotechnology, Ghent University, Ghent, Belgium
| | - Senne Cornelis
- ProGenTomics, Laboratory of Pharmaceutical Biotechnology, Ghent University, Ghent, Belgium
| | - Laura Corveleyn
- ProGenTomics, Laboratory of Pharmaceutical Biotechnology, Ghent University, Ghent, Belgium
| | - Ewoud Willems
- ProGenTomics, Laboratory of Pharmaceutical Biotechnology, Ghent University, Ghent, Belgium
| | - Dieter Deforce
- ProGenTomics, Laboratory of Pharmaceutical Biotechnology, Ghent University, Ghent, Belgium
| | - Laura De Clerck
- ProGenTomics, Laboratory of Pharmaceutical Biotechnology, Ghent University, Ghent, Belgium
| | - Maarten Dhaenens
- ProGenTomics, Laboratory of Pharmaceutical Biotechnology, Ghent University, Ghent, Belgium.
| |
Collapse
|
16
|
Ahmed Z. Precision medicine with multi-omics strategies, deep phenotyping, and predictive analysis. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2022; 190:101-125. [DOI: 10.1016/bs.pmbts.2022.02.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
17
|
Lee JS, Jaini PA, Papa F. An Epigenetic Perspective on Lifestyle Medicine for Depression: Implications for Primary Care Practice. Am J Lifestyle Med 2022; 16:76-88. [PMID: 35185430 PMCID: PMC8848122 DOI: 10.1177/1559827620954779] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 07/17/2020] [Accepted: 08/13/2020] [Indexed: 06/16/2024] Open
Abstract
Depression is the most common presenting mental health disorder in primary care. It is also a major contributor to somatic complaints, worsening of chronic medical conditions, poor quality of life, and suicide. Current pharmacologic and psychotherapeutic approaches avert less than half of depression's cumulative burden on society. However, there is a growing body of research describing both how maladaptive lifestyle choices contribute to the development and worsening of depression and how lifestyle-oriented medical interventions can reduce the incidence and severity of depression. This research, largely derived from an emerging field called epigenetics, elucidates the interactions between our lifestyle choices and those epigenetic factors which mediate our tendencies toward either health, or the onset, if not worsening of disease. The present review highlights how lifestyle choices involving diet, physical activity, sleep, social relationships, and stress influence epigenetic processes positively or negatively, and thereby play a significant role in determining whether one does or does not suffer from depression. The authors propose that medical training programs consider and adopt lifestyle medicine oriented instructional initiatives that will enable tomorrow's primary care providers to more effectively identify and therapeutically intervene in the maladaptive choices contributing to their patients' depression.
Collapse
Affiliation(s)
- Jenny Sunghyun Lee
- Jenny Sunghyun Lee, Department of Preventive Medicine, Loma Linda University Medical School, 24785 Stewart Street, Loma Linda, CA 92350; e-mail:
| | - Paresh Atu Jaini
- Department of Preventive Medicine, Loma Linda University Medical School, Loma Linda, California (JSL)
- Department of Psychiatry, John Peter Smith Hospital, Fort Worth, Texas (PAJ)
- Department of Medical Education, University of North Texas Health Science Center, Fort Worth, Texas (FP)
| | - Frank Papa
- Department of Preventive Medicine, Loma Linda University Medical School, Loma Linda, California (JSL)
- Department of Psychiatry, John Peter Smith Hospital, Fort Worth, Texas (PAJ)
- Department of Medical Education, University of North Texas Health Science Center, Fort Worth, Texas (FP)
| |
Collapse
|
18
|
Kanapeckaitė A, Burokienė N, Mažeikienė A, Cottrell GS, Widera D. Biophysics is reshaping our perception of the epigenome: from DNA-level to high-throughput studies. BIOPHYSICAL REPORTS 2021; 1:100028. [PMID: 36425454 PMCID: PMC9680810 DOI: 10.1016/j.bpr.2021.100028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 09/24/2021] [Indexed: 06/16/2023]
Abstract
Epigenetic research holds great promise to advance our understanding of biomarkers and regulatory processes in health and disease. An increasing number of new approaches, ranging from molecular to biophysical analyses, enable identifying epigenetic changes on the level of a single gene or the whole epigenome. The aim of this review is to highlight how the field is shifting from completely molecular-biology-driven solutions to multidisciplinary strategies including more reliance on biophysical analysis tools. Biophysics not only offers technical advancements in imaging or structure analysis but also helps to explore regulatory interactions. New computational methods are also being developed to meet the demand of growing data volumes and their processing. Therefore, it is important to capture these new directions in epigenetics from a biophysical perspective and discuss current challenges as well as multiple applications of biophysical methods and tools. Specifically, we gradually introduce different biophysical research methods by first considering the DNA-level information and eventually higher-order chromatin structures. Moreover, we aim to highlight that the incorporation of bioinformatics, machine learning, and artificial intelligence into biophysical analysis allows gaining new insights into complex epigenetic processes. The gained understanding has already proven useful in translational and clinical research providing better patient stratification options or new therapeutic insights. Together, this offers a better readiness to transform bench-top experiments into industrial high-throughput applications with a possibility to employ developed methods in clinical practice and diagnostics.
Collapse
Affiliation(s)
- Austė Kanapeckaitė
- Algorithm379, Laisvės g. 7, LT 12007, Vilnius, Lithuania
- Reading School of Pharmacy, Whiteknights, Reading, UK, RG6 6UB
| | - Neringa Burokienė
- Clinics of Internal Diseases, Family Medicine and Oncology, Institute of Clinical Medicine, Faculty of Medicine, Vilnius University, M. K. Čiurlionio str. 21/27, LT-03101 Vilnius, Lithuania
| | - Asta Mažeikienė
- Department of Physiology, Biochemistry, Microbiology and Laboratory Medicine, Institute of Biomedical Sciences, Faculty of Medicine, M. K. Čiurlionio str. 21/27, LT-03101 Vilnius, Lithuania
| | | | - Darius Widera
- Reading School of Pharmacy, Whiteknights, Reading, UK, RG6 6UB
| |
Collapse
|
19
|
Dhar GA, Saha S, Mitra P, Nag Chaudhuri R. DNA methylation and regulation of gene expression: Guardian of our health. THE NUCLEUS 2021; 64:259-270. [PMID: 34421129 PMCID: PMC8366481 DOI: 10.1007/s13237-021-00367-y] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 07/30/2021] [Indexed: 02/07/2023] Open
Abstract
One of the most critical epigenetic signatures present in the genome of higher eukaryotes is the methylation of DNA at the C-5 position of the cytosine ring. Based on the sites of DNA methylation in a locus, it can serve as a repressive or activation mark for gene expression. In a crosstalk with histone modifiers, DNA methylation can consequently either inhibit binding of the transcription machinery or generate a landscape conducive for transcription. During developmental phases, the DNA methylation pattern in the genome undergoes alterations as a result of regulated balance between de novo DNA methylation and demethylation. Resultantly, differentiated cells inherit a unique DNA methylation pattern that fine tunes tissue-specific gene expression. Although apparently a stable epigenetic mark, DNA methylation is actually labile and is a complex reflection of interaction between epigenome, genome and environmental factors prior to birth and during progression of life. Recent findings indicate that levels of DNA methylation in an individual is a dynamic outcome, strongly influenced by the dietary environment during germ cell formation, embryogenesis and post birth exposures. Loss of balances in DNA methylation during developmental stages may result in imprinting disorders, while at any later stage may lead to increased predisposition to various diseases and abnormalities. This review aims to provide an outline of how our epigenome is uniquely guided by our lifetime of experiences beginning in the womb and how understanding it better holds future possibilities of improvised clinical applications.
Collapse
Affiliation(s)
- Gaurab Aditya Dhar
- grid.59056.3f0000 0001 0664 9773Department of Biotechnology, St. Xavier’s College, 30 Mother Teresa Sarani, Kolkata, 700016 India
| | - Shagnik Saha
- grid.59056.3f0000 0001 0664 9773Department of Biotechnology, St. Xavier’s College, 30 Mother Teresa Sarani, Kolkata, 700016 India
| | - Parama Mitra
- grid.59056.3f0000 0001 0664 9773Department of Biotechnology, St. Xavier’s College, 30 Mother Teresa Sarani, Kolkata, 700016 India
| | - Ronita Nag Chaudhuri
- grid.59056.3f0000 0001 0664 9773Department of Biotechnology, St. Xavier’s College, 30 Mother Teresa Sarani, Kolkata, 700016 India
| |
Collapse
|
20
|
Maas MN, Hintzen JCJ, Porzberg MRB, Mecinović J. Trimethyllysine: From Carnitine Biosynthesis to Epigenetics. Int J Mol Sci 2020; 21:E9451. [PMID: 33322546 PMCID: PMC7764450 DOI: 10.3390/ijms21249451] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/09/2020] [Accepted: 12/09/2020] [Indexed: 12/14/2022] Open
Abstract
Trimethyllysine is an important post-translationally modified amino acid with functions in the carnitine biosynthesis and regulation of key epigenetic processes. Protein lysine methyltransferases and demethylases dynamically control protein lysine methylation, with each state of methylation changing the biophysical properties of lysine and the subsequent effect on protein function, in particular histone proteins and their central role in epigenetics. Epigenetic reader domain proteins can distinguish between different lysine methylation states and initiate downstream cellular processes upon recognition. Dysregulation of protein methylation is linked to various diseases, including cancer, inflammation, and genetic disorders. In this review, we cover biomolecular studies on the role of trimethyllysine in carnitine biosynthesis, different enzymatic reactions involved in the synthesis and removal of trimethyllysine, trimethyllysine recognition by reader proteins, and the role of trimethyllysine on the nucleosome assembly.
Collapse
Affiliation(s)
| | | | | | - Jasmin Mecinović
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense, Denmark; (M.N.M.); (J.C.J.H.); (M.R.B.P.)
| |
Collapse
|
21
|
Pulya S, Amin SA, Adhikari N, Biswas S, Jha T, Ghosh B. HDAC6 as privileged target in drug discovery: A perspective. Pharmacol Res 2020; 163:105274. [PMID: 33171304 DOI: 10.1016/j.phrs.2020.105274] [Citation(s) in RCA: 139] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 10/15/2020] [Accepted: 10/25/2020] [Indexed: 12/25/2022]
Abstract
HDAC6, a class IIB HDAC isoenzyme, stands unique in its structural and physiological functions. Besides histone modification, largely due to its cytoplasmic localization, HDAC6 also targets several non-histone proteins including Hsp90, α-tubulin, cortactin, HSF1, etc. Thus, it is one of the key regulators of different physiological and pathological disease conditions. HDAC6 is involved in different signaling pathways associated with several neurological disorders, various cancers at early and advanced stage, rare diseases and immunological conditions. Therefore, targeting HDAC6 has been found to be effective for various therapeutic purposes in recent years. Though several HDAC6 inhibitors (HDAC6is) have been developed till date, only two ACY-1215 (ricolinostat) and ACY-241 (citarinostat) are in the clinical trials. A lot of work is still needed to pinpoint strictly selective as well as potent HDAC6i. Considering the recent crystal structure of HDAC6, novel HDAC6is of significant therapeutic value can be designed. Notably, the canonical pharmacophore features of HDAC6is consist of a zinc binding group (ZBG), a linker function and a cap group. Significant modifications of cap function may lead to achieve better selectivity of the inhibitors. This review details the study about the structural biology of HDAC6, the physiological and pathological role of HDAC6 in several disease states and the detailed structure-activity relationships (SARs) of the known HDAC6is. This detailed review will provide key insights to design novel and highly effective HDAC6i in the future.
Collapse
Affiliation(s)
- Sravani Pulya
- Epigenetic Research Laboratory, Department of Pharmacy, BITS-Pilani, Hyderabad Campus, Shamirpet, Hyderabad 500078, India
| | - Sk Abdul Amin
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, P. O. Box 17020, Jadavpur University, Kolkata 700032, India
| | - Nilanjan Adhikari
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, P. O. Box 17020, Jadavpur University, Kolkata 700032, India
| | - Swati Biswas
- Epigenetic Research Laboratory, Department of Pharmacy, BITS-Pilani, Hyderabad Campus, Shamirpet, Hyderabad 500078, India
| | - Tarun Jha
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, P. O. Box 17020, Jadavpur University, Kolkata 700032, India.
| | - Balaram Ghosh
- Epigenetic Research Laboratory, Department of Pharmacy, BITS-Pilani, Hyderabad Campus, Shamirpet, Hyderabad 500078, India.
| |
Collapse
|
22
|
Leite ML, Oliveira KBS, Cunha VA, Dias SC, da Cunha NB, Costa FF. Epigenetic Therapies in the Precision Medicine Era. ADVANCED THERAPEUTICS 2020. [DOI: 10.1002/adtp.201900184] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Michel Lopes Leite
- Genomic Sciences and Biotechnology Program UCB ‐ Brasilia, SgAN 916, Modulo B, Bloco C, 70790‐160 Brasília DF Brazil
| | | | - Victor Albuquerque Cunha
- Genomic Sciences and Biotechnology Program UCB ‐ Brasilia, SgAN 916, Modulo B, Bloco C, 70790‐160 Brasília DF Brazil
| | - Simoni Campos Dias
- Genomic Sciences and Biotechnology Program UCB ‐ Brasilia, SgAN 916, Modulo B, Bloco C, 70790‐160 Brasília DF Brazil
- Animal Biology DepartmentUniversidade de Brasília UnB, Campus Darcy Ribeiro. Brasilia DF 70910‐900 Brazil
| | - Nicolau Brito da Cunha
- Genomic Sciences and Biotechnology Program UCB ‐ Brasilia, SgAN 916, Modulo B, Bloco C, 70790‐160 Brasília DF Brazil
| | - Fabricio F. Costa
- Cancer Biology and Epigenomics ProgramAnn & Robert H Lurie Children's Hospital of Chicago Research Center, Northwestern University's Feinberg School of Medicine 2430 N. Halsted St., Box 220 Chicago IL 60611 USA
- Northwestern University's Feinberg School of Medicine 2430 N. Halsted St., Box 220 Chicago IL 60611 USA
- MATTER Chicago 222 W. Merchandise Mart Plaza, Suite 12th Floor Chicago IL 60654 USA
- Genomic Enterprise (www.genomicenterprise.com) San Diego, CA 92008 and New York NY 11581 USA
| |
Collapse
|
23
|
Current Concepts in Pharmacometabolomics, Biomarker Discovery, and Precision Medicine. Metabolites 2020; 10:metabo10040129. [PMID: 32230776 PMCID: PMC7241083 DOI: 10.3390/metabo10040129] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 03/19/2020] [Accepted: 03/20/2020] [Indexed: 02/07/2023] Open
Abstract
Pharmacometabolomics (PMx) studies use information contained in metabolic profiles (or metabolome) to inform about how a subject will respond to drug treatment. Genome, gut microbiome, sex, nutrition, age, stress, health status, and other factors can impact the metabolic profile of an individual. Some of these factors are known to influence the individual response to pharmaceutical compounds. An individual’s metabolic profile has been referred to as his or her “metabotype.” As such, metabolomic profiles obtained prior to, during, or after drug treatment could provide insights about drug mechanism of action and variation of response to treatment. Furthermore, there are several types of PMx studies that are used to discover and inform patterns associated with varied drug responses (i.e., responders vs. non-responders; slow or fast metabolizers). The PMx efforts could simultaneously provide information related to an individual’s pharmacokinetic response during clinical trials and be used to predict patient response to drugs making pharmacometabolomic clinical research valuable for precision medicine. PMx biomarkers can also be discovered and validated during FDA clinical trials. Using biomarkers during medical development is described in US Law under the 21st Century Cures Act. Information on how to submit biomarkers to the FDA and their context of use is defined herein.
Collapse
|
24
|
Gardini ES, Fiacco S, Mernone L, Ehlert U. Sleep and Methylation of Estrogen Receptor Genes, ESR1 and GPER, in Healthy Middle-Aged and Older Women: Findings from the Women 40+ Healthy Aging Study. Nat Sci Sleep 2020; 12:525-536. [PMID: 32801978 PMCID: PMC7394583 DOI: 10.2147/nss.s256102] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 07/06/2020] [Indexed: 12/18/2022] Open
Abstract
PURPOSE Sleep problems in middle-aged and older women are very common and have been associated with menopause-related changes in estrogen levels. However, not all women experience sleep problems as they enter perimenopause, and epigenetic mechanisms might contribute to the differences in sleep quality within this population. In this study, we hypothesized that increased methylation of two estrogen receptor (ER) genes (ESR1 and GPER) would be associated with increased sleep problems in healthy pre-, peri-, and postmenopausal women, either directly or indirectly through the experience of vasomotor symptoms (VMS). MATERIALS AND METHODS In 130 healthy women aged 40-73 years, we assessed DNA methylation from dried blood spots (DBS). Women rated their sleep quality using the Pittsburgh Sleep Quality Index (PSQI), and VMS using the Menopause Rating Scale (MRS). RESULTS Higher percentage methylation of ESR1 was associated with increased sleep problems, mediated by VMS, even after controlling for age, menopausal status, body mass index, estradiol levels, depressive symptoms, and caffeine consumption. There was no significant association between GPER methylation and either sleep problems or VMS. CONCLUSION The study findings support an association between increased ESR1 methylation and sleep problems through increased VMS among healthy women aged 40-73 years.
Collapse
Affiliation(s)
- Elena S Gardini
- Clinical Psychology and Psychotherapy, University of Zurich, Zurich, Switzerland.,University Research Priority Program (URPP) Dynamics of Healthy Aging, University of Zurich, Zurich, Switzerland
| | - Serena Fiacco
- Clinical Psychology and Psychotherapy, University of Zurich, Zurich, Switzerland.,University Research Priority Program (URPP) Dynamics of Healthy Aging, University of Zurich, Zurich, Switzerland
| | - Laura Mernone
- Clinical Psychology and Psychotherapy, University of Zurich, Zurich, Switzerland.,University Research Priority Program (URPP) Dynamics of Healthy Aging, University of Zurich, Zurich, Switzerland
| | - Ulrike Ehlert
- Clinical Psychology and Psychotherapy, University of Zurich, Zurich, Switzerland.,University Research Priority Program (URPP) Dynamics of Healthy Aging, University of Zurich, Zurich, Switzerland
| |
Collapse
|
25
|
Samec M, Liskova A, Koklesova L, Mestanova V, Franekova M, Kassayova M, Bojkova B, Uramova S, Zubor P, Janikova K, Danko J, Samuel SM, Büsselberg D, Kubatka P. Fluctuations of Histone Chemical Modifications in Breast, Prostate, and Colorectal Cancer: An Implication of Phytochemicals as Defenders of Chromatin Equilibrium. Biomolecules 2019; 9:E829. [PMID: 31817446 PMCID: PMC6995638 DOI: 10.3390/biom9120829] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 11/29/2019] [Accepted: 12/02/2019] [Indexed: 02/07/2023] Open
Abstract
Natural substances of plant origin exert health beneficiary efficacy due to the content of various phytochemicals. Significant anticancer abilities of natural compounds are mediated via various processes such as regulation of a cell's epigenome. The potential antineoplastic activity of plant natural substances mediated by their action on posttranslational histone modifications (PHMs) is currently a highly evaluated area of cancer research. PHMs play an important role in maintaining chromatin structure and regulating gene expression. Aberrations in PHMs are directly linked to the process of carcinogenesis in cancer such as breast (BC), prostate (PC), and colorectal (CRC) cancer, common malignant diseases in terms of incidence and mortality among both men and women. This review summarizes the effects of plant phytochemicals (isolated or mixtures) on cancer-associated PHMs (mainly modulation of acetylation and methylation) resulting in alterations of chromatin structure that are related to the regulation of transcription activity of specific oncogenes, which are crucial in the development of BC, PC, and CRC. Significant effectiveness of natural compounds in the modulation of aberrant PHMs were confirmed by a number of in vitro or in vivo studies in preclinical cancer research. However, evidence concerning PHMs-modulating abilities of plant-based natural substances in clinical trials is insufficient.
Collapse
Affiliation(s)
- Marek Samec
- Clinic of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia; (M.S.); (A.L.); (L.K.); (J.D.)
| | - Alena Liskova
- Clinic of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia; (M.S.); (A.L.); (L.K.); (J.D.)
| | - Lenka Koklesova
- Clinic of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia; (M.S.); (A.L.); (L.K.); (J.D.)
| | - Veronika Mestanova
- Department of Histology and Embryology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia;
| | - Maria Franekova
- Department of Medical Biology and Biomedical Center Martin, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia;
| | - Monika Kassayova
- Department of Animal Physiology, Institute of Biology and Ecology, Faculty of Science, Pavol Jozef Safarik University, 04001 Kosice, Slovakia; (M.K.); (B.B.)
| | - Bianka Bojkova
- Department of Animal Physiology, Institute of Biology and Ecology, Faculty of Science, Pavol Jozef Safarik University, 04001 Kosice, Slovakia; (M.K.); (B.B.)
| | - Sona Uramova
- Biomedical Center Martin, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia;
| | - Pavol Zubor
- OBGY Health & Care, Ltd., 01026 Zilina, Slovakia;
| | - Katarina Janikova
- Department of Pathological Anatomy, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia
| | - Jan Danko
- Clinic of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia; (M.S.); (A.L.); (L.K.); (J.D.)
| | - Samson Mathews Samuel
- Department of Physiology and Biophysics, Weill Cornell Medicine in Qatar, Education City, Qatar Foundation, Doha 24144, Qatar;
| | - Dietrich Büsselberg
- Department of Physiology and Biophysics, Weill Cornell Medicine in Qatar, Education City, Qatar Foundation, Doha 24144, Qatar;
| | - Peter Kubatka
- Department of Medical Biology and Biomedical Center Martin, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia;
| |
Collapse
|
26
|
Nayak B, Balachander GM, Manjunath S, Rangarajan A, Chatterjee K. Tissue mimetic 3D scaffold for breast tumor-derived organoid culture toward personalized chemotherapy. Colloids Surf B Biointerfaces 2019; 180:334-343. [DOI: 10.1016/j.colsurfb.2019.04.056] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 04/26/2019] [Accepted: 04/27/2019] [Indexed: 01/10/2023]
|
27
|
Davis JD, Kumbale CM, Zhang Q, Voit EO. Dynamical systems approaches to personalized medicine. Curr Opin Biotechnol 2019; 58:168-174. [PMID: 30978644 PMCID: PMC7050596 DOI: 10.1016/j.copbio.2019.03.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 02/19/2019] [Accepted: 03/01/2019] [Indexed: 12/29/2022]
Abstract
The complexity of the human body is a major roadblock to diagnosis and treatment of disease. Individuals may be diagnosed with the same disease but exhibit different biomarker profiles or physiological changes and, importantly, they may respond differently to the same risk factors and the same treatment. There is no doubt that computational methods of data analysis and interpretation must be developed for medicine to evolve from the traditional population-based approaches to personalized treatment strategies. We discuss how computational systems biology is contributing to this current evolution.
Collapse
Affiliation(s)
- Jacob D Davis
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 950 Atlantic Drive, Atlanta, GA 30332, United States
| | - Carla M Kumbale
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 950 Atlantic Drive, Atlanta, GA 30332, United States; Department of Environmental Health, Rollins School of Public Health, Emory University, 1518 Clifton Rd, NE, Atlanta, GA 30322, United States
| | - Qiang Zhang
- Department of Environmental Health, Rollins School of Public Health, Emory University, 1518 Clifton Rd, NE, Atlanta, GA 30322, United States.
| | - Eberhard O Voit
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 950 Atlantic Drive, Atlanta, GA 30332, United States.
| |
Collapse
|
28
|
Gervasini G. Pharmacogenetics and personalized medicine. Are expectations being met? Med Clin (Barc) 2019; 152:368-371. [PMID: 30611536 DOI: 10.1016/j.medcli.2018.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 12/04/2018] [Accepted: 12/04/2018] [Indexed: 10/27/2022]
Affiliation(s)
- Guillermo Gervasini
- Departamento de Terapéutica Médico-Quirúrgica, Facultad de Medicina, Universidad de Extremadura, Badajoz, España.
| |
Collapse
|
29
|
Fuso A, Lucarelli M. CpG and Non-CpG Methylation in the Diet–Epigenetics–Neurodegeneration Connection. Curr Nutr Rep 2019; 8:74-82. [DOI: 10.1007/s13668-019-0266-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
30
|
Rahul DR, Ponniah RJ. Decoding the biology of language and its implications in language acquisition. J Biosci 2019; 44:25. [PMID: 30837376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Associating human genetic makeup with the faculty of language has long been a goal for biolinguistics. This stimulated the idea that language is attributed to genes and language disabilities are caused by genetic mutations. However, application of genetic knowledge on language intervention is still a gap in the existing literature. In an effort to bridge this gap, this article presents an account of genetic and neural associations of language and synthesizes the genetic, neural, epigenetic and environmental facets involved in language. In addition to describing the association of genes with language, the neural and epigenetic aspects of language are also explored. Further, the environmental aspects of language such as language input, emotion and cognition are also traced back to gene expressions. Therefore, effective language intervention for language learning difficulties must offer genetics-informed solutions, both linguistic and medical.
Collapse
Affiliation(s)
- D R Rahul
- National Institute of Technology, Tiruchirappalli, Tamil Nadu, India
| | | |
Collapse
|
31
|
|
32
|
Costello KR, Schones DE. Chromatin modifications in metabolic disease: Potential mediators of long-term disease risk. WILEY INTERDISCIPLINARY REVIEWS. SYSTEMS BIOLOGY AND MEDICINE 2018; 10:e1416. [PMID: 29369528 PMCID: PMC6002879 DOI: 10.1002/wsbm.1416] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 11/30/2017] [Accepted: 12/08/2017] [Indexed: 12/29/2022]
Abstract
Metabolic diseases such as obesity and diabetes are complex diseases resulting from multiple genetic and environmental factors, such as diet and activity levels. These factors are well known contributors to the development of metabolic diseases. One manner by which environmental factors can influence metabolic disease progression is through modifications to chromatin. These modifications can lead to altered gene regulatory programs, which alters disease risk. Furthermore, there is evidence that parents exposed to environmental factors can influence the metabolic health of offspring, especially if exposures are during intrauterine growth periods. In this review, we outline the evidence that chromatin modifications are associated with metabolic diseases, including diabetes and obesity. We also consider evidence that these chromatin modifications can lead to long-term disease risk and contribute to disease risk for future generations. This article is categorized under: Biological Mechanisms > Metabolism Developmental Biology > Developmental Processes in Health and Disease Physiology > Organismal Responses to Environment.
Collapse
Affiliation(s)
- Kevin R. Costello
- Department of Diabetes Complications and MetabolismIrell & Manella Graduate School, City of HopeDuarteCalifornia
| | - Dustin E. Schones
- Department of Diabetes Complications and MetabolismIrell & Manella Graduate School, City of HopeDuarteCalifornia
| |
Collapse
|
33
|
Turrini E, Catanzaro E, Muraro MG, Governa V, Trella E, Mele V, Calcabrini C, Morroni F, Sita G, Hrelia P, Tacchini M, Fimognari C. Hemidesmus indicus induces immunogenic death in human colorectal cancer cells. Oncotarget 2018; 9:24443-24456. [PMID: 29849952 PMCID: PMC5966270 DOI: 10.18632/oncotarget.25325] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Accepted: 04/16/2018] [Indexed: 12/13/2022] Open
Abstract
The ability of anticancer treatments to promote the activation of tumor-reactive adaptive immune responses is emerging as a critical requirement underlying their clinical effectiveness. We investigated the ability of Hemidesmus indicus, a promising anticancer botanical drug, to stimulate immunogenic cell death in a human colorectal cancer cell line (DLD1). Here we show that Hemidesmus treatment induces tumor cell cytotoxicity characterized by surface expression of calreticulin, increased HSP70 expression and release of ATP and HMGB1. Remarkably, the exposure to released ICD-inducer factors from Hemidesmus-treated DLD1 cells caused a modest induction of CD14-derived dendritic cells maturation, as demonstrated by the increased expression of CD83. Moreover, at sub-toxic concentrations, H.i. treatment of monocytes and dendritic cells induced their mild activation, suggesting its additional direct immunostimulatory activity. These data indicate that Hemidesmus indicus induces immunogenic cell death in human tumor cells and suggest its potential relevance in innovative cancer immunotherapy protocols.
Collapse
Affiliation(s)
- Eleonora Turrini
- Department for Life Quality Studies, Alma Mater Studiorum-University of Bologna, Rimini, Italy
| | - Elena Catanzaro
- Department for Life Quality Studies, Alma Mater Studiorum-University of Bologna, Rimini, Italy
| | - Manuele G Muraro
- Oncology Surgery, Department of Biomedicine, University Hospital of Basel and University of Basel, ZLF, Basel-Switzerland
| | - Valeria Governa
- Cancer Immunotherapy, Department of Biomedicine, University Hospital of Basel and University of Basel, ZLF, Basel-Switzerland
| | - Emanuele Trella
- Oncology Surgery, Department of Biomedicine, University Hospital of Basel and University of Basel, ZLF, Basel-Switzerland
| | - Valentina Mele
- Cancer Immunotherapy, Department of Biomedicine, University Hospital of Basel and University of Basel, ZLF, Basel-Switzerland
| | - Cinzia Calcabrini
- Department for Life Quality Studies, Alma Mater Studiorum-University of Bologna, Rimini, Italy
| | - Fabiana Morroni
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Bologna, Italy
| | - Giulia Sita
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Bologna, Italy
| | - Patrizia Hrelia
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Bologna, Italy
| | - Massimo Tacchini
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Carmela Fimognari
- Department for Life Quality Studies, Alma Mater Studiorum-University of Bologna, Rimini, Italy
| |
Collapse
|
34
|
Huang SSC, Ecker JR. Piecing together cis-regulatory networks: insights from epigenomics studies in plants. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2017; 10:e1411. [PMID: 29194997 DOI: 10.1002/wsbm.1411] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 10/11/2017] [Accepted: 10/12/2017] [Indexed: 12/20/2022]
Abstract
5-Methylcytosine, a chemical modification of DNA, is a covalent modification found in the genomes of both plants and animals. Epigenetic inheritance of phenotypes mediated by DNA methylation is well established in plants. Most of the known mechanisms of establishing, maintaining and modifying DNA methylation have been worked out in the reference plant Arabidopsis thaliana. Major functions of DNA methylation in plants include regulation of gene expression and silencing of transposable elements (TEs) and repetitive sequences, both of which have parallels in mammalian biology, involve interaction with the transcriptional machinery, and may have profound effects on the regulatory networks in the cell. Methylome and transcriptome dynamics have been investigated in development and environmental responses in Arabidopsis and agriculturally and ecologically important plants, revealing the interdependent relationship among genomic context, methylation patterns, and expression of TE and protein coding genes. Analyses of methylome variation among plant natural populations and species have begun to quantify the extent of genetic control of methylome variation vs. true epimutation, and model the evolutionary forces driving methylome evolution in both short and long time scales. The ability of DNA methylation to positively or negatively modulate binding affinity of transcription factors (TFs) provides a natural link from genome sequence and methylation changes to transcription. Technologies that allow systematic determination of methylation sensitivities of TFs, in native genomic and methylation context without confounding factors such as histone modifications, will provide baseline datasets for building cell-type- and individual-specific regulatory networks that underlie the establishment and inheritance of complex traits. This article is categorized under: Laboratory Methods and Technologies > Genetic/Genomic Methods Biological Mechanisms > Regulatory Biology.
Collapse
Affiliation(s)
- Shao-Shan C Huang
- Genomic Analysis Laboratory and Plant Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Joseph R Ecker
- Genomic Analysis Laboratory and Plant Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA.,Howard Hughes Medical Institute, The Salk Institute for Biological Studies, La Jolla, CA, USA
| |
Collapse
|
35
|
Xia B, Gerstin E, Schones DE, Huang W, Steven de Belle J. Transgenerational programming of longevity through E(z)-mediated histone H3K27 trimethylation in Drosophila. Aging (Albany NY) 2017; 8:2988-3008. [PMID: 27889707 PMCID: PMC5191882 DOI: 10.18632/aging.101107] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2016] [Accepted: 11/05/2016] [Indexed: 12/19/2022]
Abstract
Transgenerational effects on health and development of early-life nutrition have gained increased attention recently. However, the underlying mechanisms of transgenerational transmission are only starting to emerge, with epigenetics as perhaps the most important mechanism. We recently reported the first animal model to study transgenerational programming of longevity after early-life dietary manipulations, enabling investigations to identify underlying epigenetic mechanisms. We report here that post-eclosion dietary manipulation (PDM) with a low-protein (LP) diet upregulates the protein level of E(z), an H3K27 specific methyltransferase, leading to higher levels of H3K27 trimethylation (H3K27me3). This PDM-mediated change in H3K27me3 corresponded with a shortened longevity of F0 flies as well as their F2 offspring. Specific RNAi-mediated post-eclosion knockdown of E(z) or pharmacological inhibition of its enzymatic function with EPZ-6438 in the F0 parents improved longevity while rendering H3K27me3 low across generations. Importantly, addition of EPZ-6438 to the LP diet fully alleviated the longevity-reducing effect of the LP PDM, supporting the increased level of E(z)-dependent H3K27me3 as the primary cause and immediate early-life period as the critical time to program longevity through epigenetic regulation. These observations establish E(z)-mediated H3K27me3 as one epigenetic mechanism underlying nutritional programming of longevity and support the use of EPZ-6438 to extend lifespan.
Collapse
Affiliation(s)
- Brian Xia
- Canyon Crest Academy, San Diego, CA 92130, USA.,Department of Diabetes Complications and Metabolism, City of Hope, Duarte, CA 91010, USA.,Department of Biology, Dart Neuroscience LLC, San Diego, CA 92131, USA
| | - Ed Gerstin
- Canyon Crest Academy, San Diego, CA 92130, USA
| | - Dustin E Schones
- Department of Diabetes Complications and Metabolism, City of Hope, Duarte, CA 91010, USA
| | - Wendong Huang
- Department of Diabetes Complications and Metabolism, City of Hope, Duarte, CA 91010, USA
| | - J Steven de Belle
- Department of Biology, Dart Neuroscience LLC, San Diego, CA 92131, USA
| |
Collapse
|
36
|
Lorincz AT. Virtues and Weaknesses of DNA Methylation as a Test for Cervical Cancer Prevention. Acta Cytol 2016; 60:501-512. [PMID: 27806357 DOI: 10.1159/000450595] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Accepted: 09/06/2016] [Indexed: 12/21/2022]
Abstract
Epigenetics is the study of heritable and non-heritable genetic coding that is additive to information contained within classical DNA base pair sequences. Differential methylation has a fundamental role in the development and outcome of malignancies, chronic and degenerative diseases and aging. DNA methylation can be measured accurately and easily via various molecular methods and has become a key technology for research and healthcare delivery, with immediate roles in the elucidation of disease natural history, diagnostics and drug discovery. This review focuses on cancers of the lower genital tract, for which the most epigenetic information exists. DNA methylation has been proposed as a triage for women infected with human papillomavirus (HPV) and may eventually directly complement or replace HPV screening as a one-step molecular diagnostic and prognostic test. Methylation of human genes is strongly associated with cervical intraepithelial neoplasia (CIN) and cancer. Of the more than 100 human methylation biomarker genes tested so far in cervical tissue, close to 20 have been reported in different studies, and approximately 10 have been repeatedly shown to have elevated methylation in cervical cancers and high-grade CIN (CIN2 and CIN3), most prominently CADM1, EPB41L3, FAM19A4, MAL, miR-124, PAX1 and SOX1. Obtaining consistent performance data from the literature is quite difficult because most methylation studies used a variety of different assay methodologies and had incomplete and/or biased clinical specimen sets, varying assay thresholds and disparate target gene regions. There have been relatively few validation studies of DNA methylation biomarkers in large population-based screening studies, but an encouraging development more recently is the execution of well-designed studies to test the true performance of the markers in real-world settings. Methylation of HPV genes, especially HPV16, HPV18, HPV31, HPV33 and HPV45, in disease progression has been a major focus of research. Elevated methylation of the HPV16 L1 and L2 open reading frames, in particular, is associated with CIN2, CIN3 and invasive cancer. Essentially all cancers have high levels of methylation for human genes and for driver HPV types, which suggests that quantitative methylation tests may have utility in predicting CIN2 and CIN3 that are likely to progress. It is still early in the process of development of methylation biomarkers, but already they are showing strong promise as a universal and systematic approach to molecular triage, applicable to all cancers, not just cancer of the cervix. DNA methylation testing is better than HPV genotyping triage and is competitive with or complementary to other approaches such as cytology and p16 staining. Genome-wide studies are underway to systematically expand methylation classifier panels and find the best combinations of biomarkers. Methylation testing is likely to show big improvements in performance in the next 5 years.
Collapse
Affiliation(s)
- Attila T Lorincz
- Centre for Cancer Prevention, Wolfson Institute of Preventive Medicine, Queen Mary University of London, London, UK
| |
Collapse
|
37
|
Athauda D, Foltynie T. Challenges in detecting disease modification in Parkinson's disease clinical trials. Parkinsonism Relat Disord 2016; 32:1-11. [DOI: 10.1016/j.parkreldis.2016.07.019] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 06/29/2016] [Accepted: 07/29/2016] [Indexed: 01/06/2023]
|
38
|
Increased expression of SET domain-containing proteins and decreased expression of Rad51 in different classes of renal cell carcinoma. Biosci Rep 2016; 36:BSR20160122. [PMID: 27170370 PMCID: PMC5293581 DOI: 10.1042/bsr20160122] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 05/11/2016] [Indexed: 01/10/2023] Open
Abstract
Because of scant availability of tissue samples, we did not perform elaborate examination of chromatin immunoprecipitation and specific binding of SET domain-containing proteins to the promoters of Rad51. These remain avenues for future investigations. In the present study, we aimed to examine whether SET domain-containing methyltransferases are up-regulated in different classes of renal cell carcinoma. We immunoblotted against SET domain and quantified the expression of these modular domains. Furthermore, we examined the expression of Rad51, the key protein that confers genomic stability. There was enhanced expression of SET domain-containing histone methyltransferases in whole lysates of all classes of renal carcinoma. In metastatic high grade clear cell carcinoma, this expression was more pronounced. Though we could not demonstrate direct correlation, we showed that epigenetic modification by methylation is associated with decreased genomic translation of Rad51.
Collapse
|
39
|
Zhang X, Kuivenhoven JA, Groen AK. Forward Individualized Medicine from Personal Genomes to Interactomes. Front Physiol 2015; 6:364. [PMID: 26696898 PMCID: PMC4673427 DOI: 10.3389/fphys.2015.00364] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2015] [Accepted: 11/16/2015] [Indexed: 12/23/2022] Open
Abstract
When considering the variation in the genome, transcriptome, proteome and metabolome, and their interaction with the environment, every individual can be rightfully considered as a unique biological entity. Individualized medicine promises to take this uniqueness into account to optimize disease treatment and thereby improve health benefits for every patient. The success of individualized medicine relies on a precise understanding of the genotype-phenotype relationship. Although omics technologies advance rapidly, there are several challenges that need to be overcome: Next generation sequencing can efficiently decipher genomic sequences, epigenetic changes, and transcriptomic variation in patients, but it does not automatically indicate how or whether the identified variation will cause pathological changes. This is likely due to the inability to account for (1) the consequences of gene-gene and gene-environment interactions, and (2) (post)transcriptional as well as (post)translational processes that eventually determine the concentration of key metabolites. The technologies to accurately measure changes in these latter layers are still under development, and such measurements in humans are also mainly restricted to blood and circulating cells. Despite these challenges, it is already possible to track dynamic changes in the human interactome in healthy and diseased states by using the integration of multi-omics data. In this review, we evaluate the potential value of current major bioinformatics and systems biology-based approaches, including genome wide association studies, epigenetics, gene regulatory and protein-protein interaction networks, and genome-scale metabolic modeling. Moreover, we address the question whether integrative analysis of personal multi-omics data will help understanding of personal genotype-phenotype relationships.
Collapse
Affiliation(s)
- Xiang Zhang
- Department of Pediatrics, Center for Liver Digestive and Metabolic Diseases, University of Groningen, University Medical Center Groningen Groningen, Netherlands
| | - Jan A Kuivenhoven
- Section Molecular Genetics, Department of Pediatrics, University of Groningen, University Medical Center Groningen Groningen, Netherlands
| | - Albert K Groen
- Department of Pediatrics, Center for Liver Digestive and Metabolic Diseases, University of Groningen, University Medical Center Groningen Groningen, Netherlands ; Department of Laboratory Medicine, Center for Liver Digestive and Metabolic Diseases, University of Groningen, University Medical Center Groningen Groningen, Netherlands
| |
Collapse
|