1
|
Inami Y, Fukushima M, Kume T, Uta D. Histamine enhances ATP-induced itching and responsiveness to ATP in keratinocytes. J Pharmacol Sci 2022; 148:255-261. [PMID: 35063141 DOI: 10.1016/j.jphs.2021.12.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/27/2021] [Accepted: 12/14/2021] [Indexed: 02/05/2023] Open
Abstract
Mechanical stimulation of cultured keratinocytes and a living epidermis increases intracellular calcium ion concentrations ([Ca2+]i) in stimulated cells. This action propagates a Ca2+ wave to neighboring keratinocytes via ATP/P2Y2 receptors. Recent behavioral, pharmacological studies revealed that exogenous ATP induces itching via P2X3 receptors in mice. We previously showed that alloknesis occurs when an external stimulus is applied to the skin with increased epidermal histamine in the absence of spontaneous pruritus. Based on these results, we investigated the effects of histamine at a concentration that does not cause itching on ATP-induced itching. The mean number of scratching events induced by the mixture of ATP and histamine increased by 28% over the sum of that induced by histamine alone or ATP alone. A317491, a P2X3 receptor antagonist, suppressed the mixture-induced scratching more often than the ATP-induced scratching. Next, we examined the ATP-induced [Ca2+]i change before and after histamine stimulation using normal human epidermal keratinocytes. Some cells did not respond to ATP before histamine stimulation but responded to ATP afterward, the phenomenon suppressed by chlorpheniramine maleate. These findings suggest that histamine enhances ATP-induced itching and that a potential mechanism could involve increased responsiveness to ATP in keratinocytes.
Collapse
Affiliation(s)
- Yoshihiro Inami
- Department of Applied Pharmacology, Faculty of Pharmaceutical Sciences University of Toyama, Toyama, Japan; Advanced Research Laboratory, Hoyu Co., Ltd., Nagakute, Aichi, Japan
| | - Miki Fukushima
- Advanced Research Laboratory, Hoyu Co., Ltd., Nagakute, Aichi, Japan
| | - Toshiaki Kume
- Department of Applied Pharmacology, Faculty of Pharmaceutical Sciences University of Toyama, Toyama, Japan
| | - Daisuke Uta
- Department of Applied Pharmacology, Faculty of Pharmaceutical Sciences University of Toyama, Toyama, Japan.
| |
Collapse
|
2
|
Shimokawa T, Nakagawa T, Hayashi K, Yamagata M, Yoneda K. Subcellular distribution of α2-adrenoceptor subtypes in the rodent kidney. Cell Tissue Res 2021; 387:303-314. [PMID: 34837110 DOI: 10.1007/s00441-021-03558-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 11/12/2021] [Indexed: 10/19/2022]
Abstract
Renal α2-adrenoceptors have been reported to play a role in the regulation of urinary output, renin secretion, and water and sodium excretion in the kidneys. However, the distribution of α2-adrenoceptor subtypes in the kidneys remains unclear. In this study, we aimed to investigate the localization of α2-adrenoceptor subtypes in rat kidneys using 8-week-old Sprague-Dawley rats. Immunofluorescence imaging revealed that both α2A- and α2B-adrenoceptors were expressed in the basolateral, but not apical, membrane of the epithelial cells of the proximal tubules. We also found that α2A- and α2B-adrenoceptors were not expressed in the glomeruli, collecting ducts, or the descending limb of the loop of Henle and vasa recta. In contrast, α2C-adrenoceptors were found to be localized in the glomeruli and lumen of the cortical and medullary collecting ducts. These results suggest that noradrenaline may act on the basement membrane of the proximal tubules through α2A- and α2B-adrenoceptors. Moreover, noradrenaline may be involved in the regulation of glomerular filtration and proteinuria through the induction of morphological changes in mesangial cells and podocytes via α2C-adrenoceptors. In the collecting ducts, urinary noradrenaline may regulate morphological changes of the microvilli through α2C-adrenoceptors. Our findings provide an immunohistochemical basis for understanding the cellular targets of α2-adrenergic regulation in the kidneys. This may be used to devise therapeutic strategies targeting α2-adrenoceptors.
Collapse
Affiliation(s)
- Takaomi Shimokawa
- Laboratory of Clinical Pharmacology, Faculty of Pharmacy, Osaka Ohtani University, 3-11-1 Nishikiori-kita, Tondabayashi, Osaka, 584-8540, Japan
| | - Toshitaka Nakagawa
- Division of Research Instrument and Equipment, Life Science Research Center, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa, 761-0793, Japan
| | - Kohei Hayashi
- Laboratory of Clinical Pharmacology, Faculty of Pharmacy, Osaka Ohtani University, 3-11-1 Nishikiori-kita, Tondabayashi, Osaka, 584-8540, Japan
| | - Masayo Yamagata
- Laboratory of Clinical Pharmacology, Faculty of Pharmacy, Osaka Ohtani University, 3-11-1 Nishikiori-kita, Tondabayashi, Osaka, 584-8540, Japan
| | - Kozo Yoneda
- Laboratory of Clinical Pharmacology, Faculty of Pharmacy, Osaka Ohtani University, 3-11-1 Nishikiori-kita, Tondabayashi, Osaka, 584-8540, Japan.
| |
Collapse
|
3
|
Guo X, Li Q, Pi S, Xia Y, Mao L. G protein-coupled purinergic P2Y receptor oligomerization: Pharmacological changes and dynamic regulation. Biochem Pharmacol 2021; 192:114689. [PMID: 34274353 DOI: 10.1016/j.bcp.2021.114689] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 07/12/2021] [Accepted: 07/13/2021] [Indexed: 12/12/2022]
Abstract
P2Y receptors (P2YRs) are a δ group of rhodopsin-like G protein-coupled receptors (GPCRs) with many essential functions in physiology and pathology, such as platelet aggregation, immune responses, neuroprotective effects, inflammation, and cellular proliferation. Thus, they are among the most researched therapeutic targets used for the clinical treatment of diseases (e.g., the antithrombotic drug clopidogrel and the dry eye treatment drug diquafosol). GPCRs transmit signals as dimers to increase the diversity of signalling pathways and pharmacological activities. Many studies have frequently confirmed dimerization between P2YRs and other GPCRs due to their functions in cardiovascular and cerebrovascular processes in vivo and in vitro. Recently, some P2YR dimers that dynamically balance physiological functions in the body were shown to be involved in effective signal transduction and exert pathological responses. In this review, we summarize the types, pharmacological changes, and active regulators of P2YR-related dimerization, and delineate new functions and pharmacological activities of P2YR-related dimers, which may be a novel direction to improve the effectiveness of medications.
Collapse
Affiliation(s)
- Xiaoqing Guo
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Qin Li
- Department of Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Shulan Pi
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yuanpeng Xia
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Ling Mao
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
4
|
Developmental Role of Adenosine Kinase in the Cerebellum. eNeuro 2021; 8:ENEURO.0011-21.2021. [PMID: 33863781 PMCID: PMC8174006 DOI: 10.1523/eneuro.0011-21.2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 03/08/2021] [Accepted: 03/09/2021] [Indexed: 02/05/2023] Open
Abstract
Adenosine acts as a neuromodulator and metabolic regulator of the brain through receptor dependent and independent mechanisms. In the brain, adenosine is tightly controlled through its metabolic enzyme adenosine kinase (ADK), which exists in a cytoplasmic (ADK-S) and nuclear (ADK-L) isoform. We recently discovered that ADK-L contributes to adult hippocampal neurogenesis regulation. Although the cerebellum (CB) is a highly plastic brain area with a delayed developmental trajectory, little is known about the role of ADK. Here, we investigated the developmental profile of ADK expression in C57BL/6 mice CB and assessed its role in developmental and proliferative processes. We found high levels of ADK-L during cerebellar development, which was maintained into adulthood. This pattern contrasts with that of the cerebrum, in which ADK-L expression is gradually downregulated postnatally and largely restricted to astrocytes in adulthood. Supporting a functional role in cell proliferation, we found that the ADK inhibitor 5-iodotubericine (5-ITU) reduced DNA synthesis of granular neuron precursors in a concentration-dependent manner in vitro. In the developing CB, immunohistochemical studies indicated ADK-L is expressed in immature Purkinje cells and granular neuron precursors, whereas in adulthood, ADK is absent from Purkinje cells, but widely expressed in mature granule neurons and their molecular layer (ML) processes. Furthermore, ADK-L is expressed in developing and mature Bergmann glia in the Purkinje cell layer, and in astrocytes in major cerebellar cortical layers. Together, our data demonstrate an association between neuronal ADK expression and developmental processes of the CB, which supports a functional role of ADK-L in the plasticity of the CB.
Collapse
|
5
|
Dias L, Lopes CR, Gonçalves FQ, Nunes A, Pochmann D, Machado NJ, Tomé AR, Agostinho P, Cunha RA. Crosstalk Between ATP-P 2X7 and Adenosine A 2A Receptors Controlling Neuroinflammation in Rats Subject to Repeated Restraint Stress. Front Cell Neurosci 2021; 15:639322. [PMID: 33732112 PMCID: PMC7957057 DOI: 10.3389/fncel.2021.639322] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 02/08/2021] [Indexed: 01/02/2023] Open
Abstract
Depressive conditions precipitated by repeated stress are a major socio-economical burden in Western countries. Previous studies showed that ATP-P2X7 receptors (P2X7R) and adenosine A2A receptors (A2AR) antagonists attenuate behavioral modifications upon exposure to repeated stress. Since it is unknown if these two purinergic modulation systems work independently, we now investigated a putative interplay between P2X7R and A2AR. Adult rats exposed to restraint stress for 14 days displayed an anxious (thigmotaxis, elevated plus maze), depressive (anhedonia, increased immobility), and amnesic (modified Y maze, object displacement) profile, together with increased expression of Iba-1 (a marker of microglia “activation”) and interleukin-1β (IL1β) and tumor necrosis factor α (TNFα; proinflammatory cytokines) and an up-regulation of P2X7R (mRNA) and A2AR (receptor binding) in the hippocampus and prefrontal cortex. All these features were attenuated by the P2X7R-preferring antagonist brilliant blue G (BBG, 45 mg/kg, i.p.) or by caffeine (0.3 g/L, p.o.), which affords neuroprotection through A2AR blockade. Notably, BBG attenuated A2AR upregulation and caffeine attenuated P2X7R upregulation. In microglial N9 cells, the P2X7R agonist BzATP (100 μM) or the A2AR agonist CGS26180 (100 nM) increased calcium levels, which was abrogated by the P2X7R antagonist JNJ47965567 (1 μM) and by the A2AR antagonist SCH58261 (50 nM), respectively; notably JNJ47965567 prevented the effect of CGS21680 and the effect of BzATP was attenuated by SCH58261 and increased by CGS21680. These results provide the first demonstration of a functional interaction between P2X7R and A2AR controlling microglia reactivity likely involved in behavioral adaptive responses to stress and are illustrative of a cooperation between the two arms of the purinergic system in the control of brain function.
Collapse
Affiliation(s)
- Liliana Dias
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Cátia R Lopes
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Francisco Q Gonçalves
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Ana Nunes
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Daniela Pochmann
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Nuno J Machado
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Angelo R Tomé
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,Department of Life Sciences, Faculty of Sciences and Technology, University of Coimbra, Coimbra, Portugal
| | - Paula Agostinho
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Rodrigo A Cunha
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
6
|
Kennedy C. That was then, this is now: the development of our knowledge and understanding of P2 receptor subtypes. Purinergic Signal 2021; 17:9-23. [PMID: 33527235 PMCID: PMC7954963 DOI: 10.1007/s11302-021-09763-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 01/06/2021] [Indexed: 11/17/2022] Open
Abstract
P2 receptors are present in virtually all tissues and cell types in the human body, and they mediate the physiological and pharmacological actions of extracellular purine and pyrimidine nucleotides. They were first characterised and named by Geoff Burnstock in 1978, then subdivided into P2X and P2Y purinoceptors in 1985 on the basis of pharmacological criteria in functional studies on native receptors. Molecular cloning of receptors in the 1990s revealed P2X receptors to comprise seven different subunits that interact to produce functional homo- and heterotrimeric ligand-gated cation channels. A family of eight P2Y G protein-coupled receptors were also cloned, which can form homo- and heterodimers. Deep insight into the molecular mechanisms of agonist and antagonist action has been provided by more recent determination of the tertiary and quaternary structures of several P2X and P2Y receptor subtypes. Agonists and antagonists that are highly selective for individual subtypes are now available and some are in clinical use. This has all come about because of the intelligence, insight and drive of the force of nature that was Geoff Burnstock.
Collapse
Affiliation(s)
- Charles Kennedy
- Strathclyde Institute of Pharmacy & Biomedical Sciences, University of Strathclyde, John Arbuthnott Building, 161 Cathedral St, Glasgow, G4 0RE, Scotland, UK.
| |
Collapse
|
7
|
Kreft E, Sałaga-Zaleska K, Sakowicz-Burkiewicz M, Dąbkowski K, Szczepánska-Konkel M, Jankowski M. Diabetes Affects the A1 Adenosine Receptor-Dependent Action of Diadenosine Tetraphosphate (Ap4A) on Cortical and Medullary Renal Blood Flow. J Vasc Res 2020; 58:38-48. [PMID: 33207336 DOI: 10.1159/000511461] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 09/07/2020] [Indexed: 11/19/2022] Open
Abstract
Diabetes through adenosine A1 receptor (A1R) and P2 receptors (P2Rs) may lead to disturbances in renal microvasculature. We investigated the renal microvascular response to Ap4A, an agonist of P2Rs, in streptozotocin-induced diabetic rats. Using laser Doppler flowmetry, renal blood perfusion (RBP) was measured during infusion of Ap4A alone or in the presence of A1R antagonist, either DPCPX (8-cyclopentyl-1,3-dipropylxanthine) or 8-cyclopentyltheophylline (CPT). Ap4A induced a biphasic response in RBP: a phase of rapid decrease was followed by a rapid increase, which was transient in diabetic rats but extended for 30 min in nondiabetic rats. Phase of decreased RBP was not affected by DPCPX or CPT in either group. Early and extended increases in RBP were prevented by DPCPX and CPT in nondiabetic rats, while in diabetic rats, the early increase in RBP was not affected by these antagonists. A1R mRNA and protein levels were increased in isolated glomeruli of diabetic rats, but no changes were detected in P2Y1R and P2Y2R mRNA. Presence of unblocked A1R is a prerequisite for the P2R-mediated relaxing effect of Ap4A in nondiabetic conditions, but influence of A1R on P2R-mediated renal vasorelaxation is abolished under diabetic conditions.
Collapse
Affiliation(s)
- Ewelina Kreft
- Department of Clinical Chemistry, Medical University of Gdańsk, Gdańsk, Poland
| | | | | | - Kamil Dąbkowski
- Department of Clinical Chemistry, Medical University of Gdańsk, Gdańsk, Poland
| | | | - Maciej Jankowski
- Department of Clinical Chemistry, Medical University of Gdańsk, Gdańsk, Poland,
| |
Collapse
|
8
|
Vallon V, Unwin R, Inscho EW, Leipziger J, Kishore BK. Extracellular Nucleotides and P2 Receptors in Renal Function. Physiol Rev 2019; 100:211-269. [PMID: 31437091 DOI: 10.1152/physrev.00038.2018] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The understanding of the nucleotide/P2 receptor system in the regulation of renal hemodynamics and transport function has grown exponentially over the last 20 yr. This review attempts to integrate the available data while also identifying areas of missing information. First, the determinants of nucleotide concentrations in the interstitial and tubular fluids of the kidney are described, including mechanisms of cellular release of nucleotides and their extracellular breakdown. Then the renal cell membrane expression of P2X and P2Y receptors is discussed in the context of their effects on renal vascular and tubular functions. Attention is paid to effects on the cortical vasculature and intraglomerular structures, autoregulation of renal blood flow, tubuloglomerular feedback, and the control of medullary blood flow. The role of the nucleotide/P2 receptor system in the autocrine/paracrine regulation of sodium and fluid transport in the tubular and collecting duct system is outlined together with its role in integrative sodium and fluid homeostasis and blood pressure control. The final section summarizes the rapidly growing evidence indicating a prominent role of the extracellular nucleotide/P2 receptor system in the pathophysiology of the kidney and aims to identify potential therapeutic opportunities, including hypertension, lithium-induced nephropathy, polycystic kidney disease, and kidney inflammation. We are only beginning to unravel the distinct physiological and pathophysiological influences of the extracellular nucleotide/P2 receptor system and the associated therapeutic perspectives.
Collapse
Affiliation(s)
- Volker Vallon
- Departments of Medicine and Pharmacology, University of California San Diego & VA San Diego Healthcare System, San Diego, California; Centre for Nephrology, Division of Medicine, University College London, London, United Kingdom; IMED ECD CVRM R&D, AstraZeneca, Gothenburg, Sweden; Department of Medicine, Division of Nephrology, The University of Alabama at Birmingham, Birmingham, Alabama; Department of Biomedicine/Physiology, Aarhus University, Aarhus, Denmark; Departments of Internal Medicine and Nutrition and Integrative Physiology, and Center on Aging, University of Utah Health & Nephrology Research, VA Salt Lake City Healthcare System, Salt Lake City, Utah
| | - Robert Unwin
- Departments of Medicine and Pharmacology, University of California San Diego & VA San Diego Healthcare System, San Diego, California; Centre for Nephrology, Division of Medicine, University College London, London, United Kingdom; IMED ECD CVRM R&D, AstraZeneca, Gothenburg, Sweden; Department of Medicine, Division of Nephrology, The University of Alabama at Birmingham, Birmingham, Alabama; Department of Biomedicine/Physiology, Aarhus University, Aarhus, Denmark; Departments of Internal Medicine and Nutrition and Integrative Physiology, and Center on Aging, University of Utah Health & Nephrology Research, VA Salt Lake City Healthcare System, Salt Lake City, Utah
| | - Edward W Inscho
- Departments of Medicine and Pharmacology, University of California San Diego & VA San Diego Healthcare System, San Diego, California; Centre for Nephrology, Division of Medicine, University College London, London, United Kingdom; IMED ECD CVRM R&D, AstraZeneca, Gothenburg, Sweden; Department of Medicine, Division of Nephrology, The University of Alabama at Birmingham, Birmingham, Alabama; Department of Biomedicine/Physiology, Aarhus University, Aarhus, Denmark; Departments of Internal Medicine and Nutrition and Integrative Physiology, and Center on Aging, University of Utah Health & Nephrology Research, VA Salt Lake City Healthcare System, Salt Lake City, Utah
| | - Jens Leipziger
- Departments of Medicine and Pharmacology, University of California San Diego & VA San Diego Healthcare System, San Diego, California; Centre for Nephrology, Division of Medicine, University College London, London, United Kingdom; IMED ECD CVRM R&D, AstraZeneca, Gothenburg, Sweden; Department of Medicine, Division of Nephrology, The University of Alabama at Birmingham, Birmingham, Alabama; Department of Biomedicine/Physiology, Aarhus University, Aarhus, Denmark; Departments of Internal Medicine and Nutrition and Integrative Physiology, and Center on Aging, University of Utah Health & Nephrology Research, VA Salt Lake City Healthcare System, Salt Lake City, Utah
| | - Bellamkonda K Kishore
- Departments of Medicine and Pharmacology, University of California San Diego & VA San Diego Healthcare System, San Diego, California; Centre for Nephrology, Division of Medicine, University College London, London, United Kingdom; IMED ECD CVRM R&D, AstraZeneca, Gothenburg, Sweden; Department of Medicine, Division of Nephrology, The University of Alabama at Birmingham, Birmingham, Alabama; Department of Biomedicine/Physiology, Aarhus University, Aarhus, Denmark; Departments of Internal Medicine and Nutrition and Integrative Physiology, and Center on Aging, University of Utah Health & Nephrology Research, VA Salt Lake City Healthcare System, Salt Lake City, Utah
| |
Collapse
|
9
|
Moreno E, Canet J, Gracia E, Lluís C, Mallol J, Canela EI, Cortés A, Casadó V. Molecular Evidence of Adenosine Deaminase Linking Adenosine A 2A Receptor and CD26 Proteins. Front Pharmacol 2018; 9:106. [PMID: 29497379 PMCID: PMC5818423 DOI: 10.3389/fphar.2018.00106] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 01/30/2018] [Indexed: 01/05/2023] Open
Abstract
Adenosine is an endogenous purine nucleoside that acts in all living systems as a homeostatic network regulator through many pathways, which are adenosine receptor (AR)-dependent and -independent. From a metabolic point of view, adenosine deaminase (ADA) is an essential protein in the regulation of the total intracellular and extracellular adenosine in a tissue. In addition to its cytosolic localization, ADA is also expressed as an ecto-enzyme on the surface of different cells. Dipeptidyl peptidase IV (CD26) and some ARs act as binding proteins for extracellular ADA in humans. Since CD26 and ARs interact with ADA at opposite sites, we have investigated if ADA can function as a cell-to-cell communication molecule by bridging the anchoring molecules CD26 and A2AR present on the surfaces of the interacting cells. By combining site-directed mutagenesis of ADA amino acids involved in binding to A2AR and a modification of the bioluminescence resonance energy transfer (BRET) technique that allows detection of interactions between two proteins expressed in different cell populations with low steric hindrance (NanoBRET), we show direct evidence of the specific formation of trimeric complexes CD26-ADA-A2AR involving two cells. By dynamic mass redistribution assays and ligand binding experiments, we also demonstrate that A2AR-NanoLuc fusion proteins are functional. The existence of this ternary complex is in good agreement with the hypothesis that ADA could bridge T-cells (expressing CD26) and dendritic cells (expressing A2AR). This is a new metabolic function for ecto-ADA that, being a single chain protein, it has been considered as an example of moonlighting protein, because it performs more than one functional role (as a catalyst, a costimulator, an allosteric modulator and a cell-to-cell connector) without partitioning these functions in different subunits.
Collapse
Affiliation(s)
- Estefanía Moreno
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona, Barcelona, Spain
- Institute of Biomedicine of the University of Barcelona (IBUB), Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Madrid, Spain
| | - Júlia Canet
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona, Barcelona, Spain
- Institute of Biomedicine of the University of Barcelona (IBUB), Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Madrid, Spain
| | - Eduard Gracia
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona, Barcelona, Spain
- Institute of Biomedicine of the University of Barcelona (IBUB), Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Madrid, Spain
| | - Carme Lluís
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona, Barcelona, Spain
- Institute of Biomedicine of the University of Barcelona (IBUB), Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Madrid, Spain
| | - Josefa Mallol
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona, Barcelona, Spain
- Institute of Biomedicine of the University of Barcelona (IBUB), Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Madrid, Spain
| | - Enric I. Canela
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona, Barcelona, Spain
- Institute of Biomedicine of the University of Barcelona (IBUB), Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Madrid, Spain
| | - Antoni Cortés
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona, Barcelona, Spain
- Institute of Biomedicine of the University of Barcelona (IBUB), Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Madrid, Spain
| | - Vicent Casadó
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona, Barcelona, Spain
- Institute of Biomedicine of the University of Barcelona (IBUB), Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Madrid, Spain
| |
Collapse
|
10
|
Khayat MT, Nayeem MA. The Role of Adenosine A 2A Receptor, CYP450s, and PPARs in the Regulation of Vascular Tone. BIOMED RESEARCH INTERNATIONAL 2017; 2017:1720920. [PMID: 28884118 PMCID: PMC5572598 DOI: 10.1155/2017/1720920] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 06/22/2017] [Accepted: 07/12/2017] [Indexed: 01/06/2023]
Abstract
Adenosine is an endogenous mediator involved in a myriad of physiologic functions, including vascular tone regulation. It is also implicated in some pathologic conditions. Four distinct receptor subtypes mediate the effects of adenosine, such as its role in the regulation of the vascular tone. Vascular tone regulation is a complex and continuous process which involves many mechanisms and mediators that are not fully disclosed. The vascular endothelium plays a pivotal role in regulating blood flow to and from all body organs. Also, the vascular endothelium is not merely a physical barrier; it is a complex tissue with numerous functions. Among adenosine receptors, A2A receptor subtype (A2AAR) stands out as the primary receptor responsible for the vasodilatory effects of adenosine. This review focuses on important effectors of the vascular endothelium, including adenosine, adenosine receptors, EETs (epoxyeicosatrienoic acids), HETEs (hydroxyeicosatetraenoic acids), PPARs (peroxisome proliferator-activated receptors), and KATP channels. Given the impact of vascular tone regulation in cardiovascular physiology and pathophysiology, better understanding of the mechanisms affecting it could have a significant potential for developing therapeutic agents for cardiovascular diseases.
Collapse
Affiliation(s)
- Maan T. Khayat
- Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, WV 26506, USA
- Department of Pharmaceutical Chemistry, School of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohammed A. Nayeem
- Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, WV 26506, USA
| |
Collapse
|
11
|
Puchałowicz K, Baranowska-Bosiacka I, Dziedziejko V, Chlubek D. Purinergic signaling and the functioning of the nervous system cells. Cell Mol Biol Lett 2016; 20:867-918. [PMID: 26618572 DOI: 10.1515/cmble-2015-0050] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Accepted: 10/29/2015] [Indexed: 12/19/2022] Open
Abstract
Purinergic signaling in the nervous system has been the focus of a considerable number of studies since the 1970s. The P2X and P2Y receptors are involved in the initiation of purinergic signaling. They are very abundant in the central and peripheral nervous systems, where they are expressed on the surface of neurons and glial cells--microglia, astrocytes, oligodendrocytes and Schwann cells and the precursors of the latter two. Their ligands--extracellular nucleotides--are released in the physiological state by astrocytes and neurons forming synaptic connections, and are essential for the proper functioning of nervous system cells. Purinergic signaling plays a crucial role in neuromodulation, neurotransmission, myelination in the CNS and PNS, intercellular communication, the regulation of ramified microglia activity, the induction of the response to damaging agents, the modulation of synaptic activity and other glial cells by astrocytes, and the induction of astrogliosis. Understanding these mechanisms and the fact that P2 receptors and their ligands are involved in the pathogenesis of diseases of the nervous system may help in the design of drugs with different and more effective mechanisms of action.
Collapse
|
12
|
Suzuki T. [Hetero-oligomerization and Functional Interaction between Purinergic Receptors Expressed in Platelets to Regulate Platelet Shape Change]. YAKUGAKU ZASSHI 2016; 135:1335-40. [PMID: 26632148 DOI: 10.1248/yakushi.15-00178] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Adenosine and its precursors, ATP and ADP, exert various physiological effects via binding to purinergic receptors. We previously used co-immunoprecipitation, bioluminescence resonance energy transfer (BRET) and immunoelectron microscopy to demonstrate the hetero-oligomerization of purinergic receptor subtypes. Furthermore, pharmacological studies found significant changes in receptor-mediated signaling in human embryonic kidney (HEK) 293T cells co-transfected with these receptors. These findings suggest that heterodimers of purinergic receptors may have distinct pharmacological profiles, possibly due to dimerization-induced conformational changes, further suggesting that hetero-dimerization may be employed to "fine-tune" purinergic receptor signaling. Adenosine A(2A) receptor (A(2A)R), P2Y1 receptor (P2Y1R) and P2Y12 receptor (P2Y12R) are predominantly expressed on human platelets. ADP activates human platelets by stimulating both P2Y1R and P2Y12R, which act sequentially and in concert to achieve complete platelet aggregation. In contrast, adenosine stimulates Gs-coupled A(2A)R, followed by activativation of adenylate cyclase, leading to an increase in intracellular cAMP levels, which potently inhibits platelet activation. We examined the hetero-oligomerization and functional interactions of A(2A)R, P2Y1R, and P2Y12R. In HEK293T cells triply expressing all three receptors, hetero-oligomerization was observed among the three receptors. Additionally, P2Y1R agonist-evoked Ca(2+) signaling was significantly inhibited by co-treatment with an A(2A)R antagonist in HEK293T cells. In human platelets, we identified endogenous A(2A)R/P2Y1R and A(2A)R/P2Y12R heterodimers. We also observed functional Ca(2+)-signaling-related cross-talk similar to those found in HEK293T cells, and found that they appeared to affect platelet shape. These results collectively suggest that intermolecular signal transduction and specific conformational changes occur among components of the hetero-oligomers formed by these three receptors.
Collapse
Affiliation(s)
- Tokiko Suzuki
- Department of Cellular Signaling, Graduate School of Pharmaceutical Sciences, Tohoku University
| |
Collapse
|
13
|
Engidawork E, Aradska J, Lubec G. Neurotransmitter receptor complexes: methods for bioanalysis, their potentials and limitations. Rev Neurosci 2016; 27:111-33. [DOI: 10.1515/revneuro-2015-0034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 08/11/2015] [Indexed: 12/15/2022]
Abstract
AbstractNeurotransmitter receptors are key elements for brain function, but work so far has been focusing on the individual receptor subunits. It is, however, the receptor complexes that execute work rather than the subunits; of course, the multitude of possible combinations of the many receptors forming homomeric or heteromeric complexes is hampering studies. Moreover, not only receptors are observed in the complexes but also their corresponding protein kinases, phosphatases, and anchoring proteins, to name a few. Studying receptor complexes is still an analytical challenge. Thus far, no methods exist to unequivocally characterize or even quantify these assemblies. Major problems and limitations for the analysis exist, such as solubility, as the use of detergents is critical and may dissociate the receptor complexes as well as their separation in the native state. Gel-based techniques are able to separate and semiquantitatively quantify receptor complexes by subsequent immunochemical methods but do not allow the characterization of complex components. Immunoprecipitation methods are highly dependent on antibody availability and specificity, and the result of coimmunoprecipitation does not verify the direct physical interaction of proteins in the immunoprecipitate. Antibody shift assays are suitable to identify individual known proteins within a complex as are immunogold electron microscopic techniques and energy transfer technologies. Most techniques are simply showing the proximity of proteins rather than their physical interaction. Although fluorescence correlation spectroscopy is a promising technique, the use for quantification or comparing biological samples is limited. A lot of work remains to be done to provide tools for the characterization and quantification of receptor complexes in the brain.
Collapse
Affiliation(s)
| | - Jana Aradska
- 1Department of Pediatrics, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna, Austria
| | - Gert Lubec
- 3Department of Pharmaceutical Chemistry, University of Vienna, Althanstrasse 14, A-1090 Vienna, Austria
| |
Collapse
|
14
|
Yashima S, Shimazaki A, Mitoma J, Nakagawa T, Abe M, Yamada H, Higashi H. Close association of B2 bradykinin receptors with P2Y2 ATP receptors. J Biochem 2015; 158:155-63. [PMID: 25713410 DOI: 10.1093/jb/mvv022] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 02/10/2015] [Indexed: 11/12/2022] Open
Abstract
Two G-protein-coupled receptors (GPCRs) that couple with Gαq/11, B2 bradykinin (BK) receptor (B2R) and ATP/UTP receptor P2Y2 (P2Y2R), are ubiquitously expressed and responsible for vascular tone, inflammation, and pain. We analysed the cellular signalling of P2Y2Rs in cells that express B2Rs. B2R desensitization induced by BK or B2R internalization-inducing glycans cross-desensitized the P2Y2R response to ATP/UTP. Fluorescence resonance energy transfer from P2Y2R-AcGFP to B2R-DsRed was detected in the cells and on the cell surfaces, showing the close association of these GPCRs. BK- and ATP-induced cross-internalization of P2Y2R and B2R, respectively, was shown in a β-galactosidase complementation assay using P2Y2R or B2R fused to the H31R substituted α donor peptide of a β-galactosidase reporter enzyme (P2Y2R-α or B2R-α) with coexpression of the FYVE domain of endofin, an early endosome protein, fused to the M15 acceptor deletion mutant of β-galactosidase (the ω peptide, FYVE-ω). Arrestin recruitment to the GPCRs by cross-activation was also shown with the similar way. Coimmunoprecipitation showed that B2R and P2Y2R were closely associated in the cotransfected cells. These results indicate that B2R couples with P2Y2R and that these GPCRs act together to fine-tune cellular responsiveness. The collaboration between these receptors may permit rapid onset and turning off of biological events.
Collapse
Affiliation(s)
- Sayo Yashima
- Division of Glyco-Signal Research, Institute of Molecular Biomembrane and Glycobiology, Tohoku Pharmaceutical University, Sendai, Miyagi 981-8558, Japan
| | - Ayaka Shimazaki
- Division of Glyco-Signal Research, Institute of Molecular Biomembrane and Glycobiology, Tohoku Pharmaceutical University, Sendai, Miyagi 981-8558, Japan
| | - Junya Mitoma
- Division of Glyco-Signal Research, Institute of Molecular Biomembrane and Glycobiology, Tohoku Pharmaceutical University, Sendai, Miyagi 981-8558, Japan
| | - Tetsuto Nakagawa
- Division of Glyco-Signal Research, Institute of Molecular Biomembrane and Glycobiology, Tohoku Pharmaceutical University, Sendai, Miyagi 981-8558, Japan
| | - Maya Abe
- Division of Glyco-Signal Research, Institute of Molecular Biomembrane and Glycobiology, Tohoku Pharmaceutical University, Sendai, Miyagi 981-8558, Japan
| | - Hiroyuki Yamada
- Division of Glyco-Signal Research, Institute of Molecular Biomembrane and Glycobiology, Tohoku Pharmaceutical University, Sendai, Miyagi 981-8558, Japan
| | - Hideyoshi Higashi
- Division of Glyco-Signal Research, Institute of Molecular Biomembrane and Glycobiology, Tohoku Pharmaceutical University, Sendai, Miyagi 981-8558, Japan
| |
Collapse
|
15
|
Pani AK, Jiao Y, Sample KJ, Smeyne RJ. Neurochemical measurement of adenosine in discrete brain regions of five strains of inbred mice. PLoS One 2014; 9:e92422. [PMID: 24642754 PMCID: PMC3958516 DOI: 10.1371/journal.pone.0092422] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Accepted: 02/21/2014] [Indexed: 12/28/2022] Open
Abstract
Adenosine (ADO), a non-classical neurotransmitter and neuromodulator, and its metabolites adenosine triphosphate (ATP), adenosine diphosphate (ADP) and adenosine monophosphate (AMP), have been shown to play an important role in a number of biochemical processes. Although their signaling is well described, it has been difficult to directly, accurately and simultaneously quantitate these purines in tissue or fluids. Here, we describe a novel method for measuring adenosine (ADO) and its metabolites using high performance liquid chromatography with electrochemical detection (HPLC-ECD). Using this chromatographic technique, we examined baseline levels of ADO and ATP, ADP and AMP in 6 different brain regions of the C57BL/6J mouse: stratum, cortex, hippocampus, olfactory bulb, substantia nigra and cerebellum and compared ADO levels in 5 different strains of mice (C57BL/6J, Swiss-Webster, FVB/NJ, 129P/J, and BALB/c). These studies demonstrate that baseline levels of purines vary significantly among the brain regions as well as between different mouse strains. These dissimilarities in purine concentrations may explain the variable phenotypes among background strains described in neurological disease models.
Collapse
Affiliation(s)
- Amar K. Pani
- Department of Developmental Neurobiology, St Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Yun Jiao
- Department of Developmental Neurobiology, St Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Kenneth J. Sample
- Department of Developmental Neurobiology, St Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Richard J. Smeyne
- Department of Developmental Neurobiology, St Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| |
Collapse
|
16
|
Sheth S, Brito R, Mukherjea D, Rybak LP, Ramkumar V. Adenosine receptors: expression, function and regulation. Int J Mol Sci 2014; 15:2024-52. [PMID: 24477263 PMCID: PMC3958836 DOI: 10.3390/ijms15022024] [Citation(s) in RCA: 271] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 01/15/2014] [Accepted: 01/15/2014] [Indexed: 02/06/2023] Open
Abstract
Adenosine receptors (ARs) comprise a group of G protein-coupled receptors (GPCR) which mediate the physiological actions of adenosine. To date, four AR subtypes have been cloned and identified in different tissues. These receptors have distinct localization, signal transduction pathways and different means of regulation upon exposure to agonists. This review will describe the biochemical characteristics and signaling cascade associated with each receptor and provide insight into how these receptors are regulated in response to agonists. A key property of some of these receptors is their ability to serve as sensors of cellular oxidative stress, which is transmitted by transcription factors, such as nuclear factor (NF)-κB, to regulate the expression of ARs. Recent observations of oligomerization of these receptors into homo- and heterodimers will be discussed. In addition, the importance of these receptors in the regulation of normal and pathological processes such as sleep, the development of cancers and in protection against hearing loss will be examined.
Collapse
Affiliation(s)
- Sandeep Sheth
- Department of Pharmacology and Neuroscience, Southern Illinois University School of Medicine, Springfield, IL 62702, USA.
| | - Rafael Brito
- Department of Pharmacology and Neuroscience, Southern Illinois University School of Medicine, Springfield, IL 62702, USA.
| | - Debashree Mukherjea
- Department of Surgery (Otolaryngology), Southern Illinois University School of Medicine, Springfield, IL 62702, USA.
| | - Leonard P Rybak
- Department of Pharmacology and Neuroscience, Southern Illinois University School of Medicine, Springfield, IL 62702, USA.
| | - Vickram Ramkumar
- Department of Pharmacology and Neuroscience, Southern Illinois University School of Medicine, Springfield, IL 62702, USA.
| |
Collapse
|
17
|
Gadjanski I, Yodmuang S, Spiller K, Bhumiratana S, Vunjak-Novakovic G. Supplementation of exogenous adenosine 5'-triphosphate enhances mechanical properties of 3D cell-agarose constructs for cartilage tissue engineering. Tissue Eng Part A 2013; 19:2188-200. [PMID: 23651296 DOI: 10.1089/ten.tea.2012.0352] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Formation of tissue-engineered cartilage is greatly enhanced by mechanical stimulation. However, direct mechanical stimulation is not always a suitable method, and the utilization of mechanisms underlying mechanotransduction might allow for a highly effective and less aggressive alternate means of stimulation. In particular, the purinergic, adenosine 5'-triphosphate (ATP)-mediated signaling pathway is strongly implicated in mechanotransduction within the articular cartilage. We investigated the effects of transient and continuous exogenous ATP supplementation on mechanical properties of cartilaginous constructs engineered using bovine chondrocytes and human mesenchymal stem cells (hMSCs) encapsulated in an agarose hydrogel. For both cell types, we have observed significant increases in equilibrium and dynamic compressive moduli after transient ATP treatment applied in the fourth week of cultivation. Continuous ATP treatment over 4 weeks of culture only slightly improved the mechanical properties of the constructs, without major changes in the total glycosaminoglycan (GAG) and collagen content. Structure-function analyses showed that transiently ATP-treated constructs, and in particular those based on hMSCs, had the highest level of correlation between compositional and mechanical properties. Transiently treated groups showed intense staining of the territorial matrix for GAGs and collagen type II. These results indicate that transient ATP treatment can improve functional mechanical properties of cartilaginous constructs based on chondrogenic cells and agarose hydrogels, possibly by improving the structural organization of the bulk phase and territorial extracellular matrix (ECM), that is, by increasing correlation slopes between the content of the ECM components (GAG, collagen) and mechanical properties of the construct.
Collapse
Affiliation(s)
- Ivana Gadjanski
- Department of Biomedical Engineering, Columbia University, 622 West 168th Street, New York, NY 10032, USA
| | | | | | | | | |
Collapse
|
18
|
Nishi Y, Mifune H, Yabuki A, Tajiri Y, Hirata R, Tanaka E, Hosoda H, Kangawa K, Kojima M. Changes in Subcellular Distribution of n-Octanoyl or n-Decanoyl Ghrelin in Ghrelin-Producing Cells. Front Endocrinol (Lausanne) 2013; 4:84. [PMID: 23847595 PMCID: PMC3705199 DOI: 10.3389/fendo.2013.00084] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Accepted: 06/26/2013] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND The enzyme ghrelin O-acyltransferase (GOAT) catalyzes the acylation of ghrelin. The molecular form of GOAT, together with its reaction in vitro, has been reported previously. However, the subcellular processes governing the acylation of ghrelin remain to be elucidated. METHODS Double immunoelectron microscopy was used to examine changes in the relative proportions of secretory granules containing n-octanoyl ghrelin (C8-ghrelin) or n-decanoyl ghrelin (C10-ghrelin) in ghrelin-producing cells of mouse stomachs. The dynamics of C8-type (possessing C8-ghrelin exclusively), C10-type (possessing C10-ghrelin only), and mixed-type secretory granules (possessing both C8- and C10-ghrelin) were investigated after fasting for 48 h or after 2 weeks feeding with chow containing glyceryl-tri-octanoate (C8-MCT) or glyceryl-tri-decanoate (C10-MCT). The dynamics of C8- or C10-ghrelin-immunoreactivity (ir-C8- or ir-C10-ghrelin) within the mixed-type granules were also investigated. RESULTS Immunoelectron microscopic analysis revealed the co-existence of C8- and C10-ghrelin within the same secretory granules (mixed-type) in ghrelin-producing cells. Compared to control mice fed standard chow, the ratio of C10-type secretory granules increased significantly after ingestion of C10-MCT, whereas that of C8-type granules declined significantly under the same treatment. After ingestion of C8-MCT, the proportion of C8-type secretory granules increased significantly. Within the mixed-type granules the ratio of ir-C10-ghrelin increased significantly and that of ir-C8-ghrelin decreased significantly upon fasting. CONCLUSION These findings confirmed that C10-ghrelin, another acyl-form of active ghrelin, is stored within the same secretory granules as C8-ghrelin, and suggested that the types of medium-chain acyl-molecules surrounding and available to the ghrelin-GOAT system may affect the physiological processes of ghrelin acylation.
Collapse
Affiliation(s)
- Yoshihiro Nishi
- Department of Physiology, School of Medicine, Kurume University, Kurume, Japan
- *Correspondence: Yoshihiro Nishi, Department of Physiology, School of Medicine, Kurume University, 67 Asahi-machi, Kurume 830-0011, Japan e-mail: ; Hiroharu Mifune, Institute of Animal Experimentation, Asahi-machi, Kurume University, 67 Asahi-machi, Kurume 830-0011, Japan e-mail:
| | - Hiroharu Mifune
- Institute of Animal Experimentation, School of Medicine, Kurume University, Kurume, Fukuoka, Japan
- *Correspondence: Yoshihiro Nishi, Department of Physiology, School of Medicine, Kurume University, 67 Asahi-machi, Kurume 830-0011, Japan e-mail: ; Hiroharu Mifune, Institute of Animal Experimentation, Asahi-machi, Kurume University, 67 Asahi-machi, Kurume 830-0011, Japan e-mail:
| | - Akira Yabuki
- Laboratory of Veterinary Clinical Pathology, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan
| | - Yuji Tajiri
- Division of Endocrinology and Metabolism, School of Medicine, Kurume University, Kurume, Fukuoka, Japan
| | - Rumiko Hirata
- Department of Physiology, School of Medicine, Kurume University, Kurume, Japan
- Department of Pediatrics and Child Health, School of Medicine, Kurume University, Kurume, Fukuoka, Japan
| | - Eiichiro Tanaka
- Department of Physiology, School of Medicine, Kurume University, Kurume, Japan
| | - Hiroshi Hosoda
- Department of Biochemistry, National Cerebral and Cardiovascular Center Research Institute, Osaka, Japan
| | - Kenji Kangawa
- Department of Biochemistry, National Cerebral and Cardiovascular Center Research Institute, Osaka, Japan
| | - Masayasu Kojima
- Molecular Genetics, Institute of Life Science, Kurume University, Kurume, Fukuoka, Japan
| |
Collapse
|
19
|
Hetero-oligomerization and Specificity Changes of G Protein-Coupled Purinergic Receptors. Methods Enzymol 2013; 521:239-57. [DOI: 10.1016/b978-0-12-391862-8.00013-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
20
|
Abstract
Cellular release of nucleotides is of physiological importance to regulate and maintain cell function and integrity. Also in the tubular and collecting duct system of the kidney, nucleotides are released in response to changes in cell volume or luminal flow rate and act in a paracrine and autocrine way on basolateral and luminal P2Y receptors. Recent studies using gene knockout mice assigned a prominent role to G protein-coupled P2Y(2) receptors, which are activated by both ATP and UTP. The antidiuretic hormone, arginine-vasopressin (AVP), and possibly an increase in collecting duct cell volume induce ATP release. The subsequent activation of P2Y(2) receptors inhibits AVP-induced cAMP formation and water reabsorption, which stabilizes cell volume and facilitates water excretion. An increase in NaCl intake enhances luminal release of ATP and UTP in the aldosterone-sensitive distal nephron which by activating apical P2Y(2) receptors and phospholipase C lowers the open probability of the epithelial sodium channel ENaC, thereby facilitating sodium excretion. Thus, the renal ATP/UTP/P2Y(2) receptor system not only serves to preserve cell volume and integrity but is also regulated by stimuli that derive from body NaCl homeostasis. The system also inhibits ENaC activity during aldosterone escape, i.e. when sodium reabsorption via ENaC is inappropriately high. The P2Y(2) receptor tone inhibits the expression and activity of the Na-K-2Cl cotransporter NKCC2 in the thick ascending limb and mediates vasodilation. While the role of other P2Y receptors in the kidney is less clear, the ATP/UTP/P2Y(2) receptor system regulates NaCl and water homeostasis and blood pressure.
Collapse
Affiliation(s)
- Volker Vallon
- Department of Medicine, University of California San Diego, San Diego, CA 92161, USA; VA San Diego Healthcare System, San Diego California, San Diego, CA 92161, USA; Department of Pharmacology, University of California San Diego, La Jolla, CA 92093, USA
| | | | | |
Collapse
|
21
|
Vallon V, Rieg T. Regulation of renal NaCl and water transport by the ATP/UTP/P2Y2 receptor system. Am J Physiol Renal Physiol 2011; 301:F463-75. [PMID: 21715471 DOI: 10.1152/ajprenal.00236.2011] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Extracellular nucleotides (e.g., ATP) activate ionotropic P2X and metabotropic P2Y receptors in the plasma membrane to regulate and maintain cell function and integrity. This includes the renal tubular and collecting duct system, where the locally released nucleotides act in a paracrine and autocrine way to regulate transport of electrolytes and water and maintain cell volume. A prominent role has been assigned to Gq-coupled P2Y(2) receptors, which are typically activated by both ATP and UTP. Studies in gene knockout mice revealed an antihypertensive activity of P2Y(2) receptors that is linked to vasodilation and an inhibitory influence on renal salt reabsorption. Flow induces apical ATP release in the thick ascending limb, and first evidence indicates an inhibitory influence of P2Y(2) receptor tone on the expression and activity of the Na-K-2Cl cotransporter NKCC2 in this segment. The apical ATP/UTP/P2Y(2) receptor system in the connecting tubule/cortical collecting duct mediates the inhibitory effect of dietary salt on the open probability of the epithelial sodium channel ENaC and inhibits ENaC activity during aldosterone escape. Connexin 30 has been implicated in the luminal release of the ATP involved in the regulation of ENaC. An increase in collecting duct cell volume in response to manipulating water homeostasis increases ATP release. The subsequent activation of P2Y(2) receptors inhibits vasopressin-induced cAMP formation and water reabsorption, which facilitates water excretion and stabilizes cell volume. Thus recent studies have established the ATP/UTP/P2Y(2) receptor system as a relevant regulator of renal salt and water homeostasis and blood pressure regulation. The pathophysiological relevance and therapeutic potential remains to be determined, but dual effects of P2Y(2) receptor activation on both the vasculature and renal salt reabsorption implicate these receptors as potential therapeutic targets in hypertension.
Collapse
Affiliation(s)
- Volker Vallon
- Dept. of Medicine, Univ. of California San Diego, 92161, USA.
| | | |
Collapse
|