1
|
Zhang M, She ML, Chen J, Zeng XQ, Xiong QQ, Cen YH, Ye JA, Qiu GB, Yang SY, Ren GH. Gilteritinib reverses ABCB1-mediated multidrug resistance: Preclinical in vitro and animal investigations. Biomed Pharmacother 2024; 180:117603. [PMID: 39471652 DOI: 10.1016/j.biopha.2024.117603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/15/2024] [Accepted: 10/21/2024] [Indexed: 11/01/2024] Open
Abstract
Multi-drug resistance (MDR) poses a significant challenge to cancer treatment. Targeting ATP-binding cassette subfamily B member 1 (ABCB1) is a viable strategy for overcoming MDR. This study examined the preclinical in vitro and animal studies that used gilteritinib, a FLT3 inhibitor that reverses ABCB1-mediated MDR. At nontoxic levels, gilteritinib significantly increased the susceptibility of cancer cells overexpressing ABCB1 to chemotherapeutic drugs. Furthermore, it impaired the development of drug-resistant cell colonies and 3D spheroids. Studies on the reversal mechanism have shown that gilteritinib can directly bind to the drug-binding site of ABCB1, inhibiting drug efflux activity. Consequently, the substrate's drug cytotoxicity increases in MDR cells. Furthermore, gilteritinib increased ATPase activity while leaving ABCB1 expression and subcellular distribution unchanged and inhibited AKT or ERK activation. Docking analysis indicated that Gilteritinib could interact with the drug-binding site of the ABCB1 transporter. In vivo studies have shown that gilteritinib improves the antitumor efficacy of paclitaxel in nude mice without obvious toxic effects. In conclusion, our preclinical investigations show that gilteritinib has the potential to successfully overcome ABCB1-mediated MDR in a clinical environment when combined with substrate medicines.
Collapse
Affiliation(s)
- Meng Zhang
- Department of Thyroid And Breast Surgery, Shenzhen Hospital of Southern Medical University, Shenzhen, Guangdong 510000, China
| | - Mei-Ling She
- Department of Gastroenterology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100020, China
| | - Jun Chen
- Department of Thyroid And Breast Surgery, Shenzhen Hospital of Southern Medical University, Shenzhen, Guangdong 510000, China
| | - Xiao-Qi Zeng
- Department of Thyroid And Breast Surgery, Shenzhen Hospital of Southern Medical University, Shenzhen, Guangdong 510000, China
| | - Qing-Quan Xiong
- Department of Thyroid And Breast Surgery, Shenzhen Hospital of Southern Medical University, Shenzhen, Guangdong 510000, China
| | - Ying-Huan Cen
- Department of Thyroid And Breast Surgery, Shenzhen Hospital of Southern Medical University, Shenzhen, Guangdong 510000, China
| | - Jia-An Ye
- Department of Thyroid And Breast Surgery, Shenzhen Hospital of Southern Medical University, Shenzhen, Guangdong 510000, China
| | - Guo-Bin Qiu
- Department of Thyroid And Breast Surgery, Shenzhen Hospital of Southern Medical University, Shenzhen, Guangdong 510000, China.
| | - Shu-Yi Yang
- Department of Thyroid And Breast Surgery, Shenzhen Hospital of Southern Medical University, Shenzhen, Guangdong 510000, China.
| | - Guang-Hui Ren
- Department of Thyroid And Breast Surgery, Shenzhen Hospital of Southern Medical University, Shenzhen, Guangdong 510000, China.
| |
Collapse
|
2
|
Rass A, Eksteen C, Engelbrecht AM. Paracrine signalling in breast cancer: Insights into the tumour endothelial phenotype. Acta Histochem 2024; 126:152191. [PMID: 39216306 DOI: 10.1016/j.acthis.2024.152191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 08/15/2024] [Accepted: 08/16/2024] [Indexed: 09/04/2024]
Abstract
Tumour endothelial cells (TECs) are genetically and phenotypically distinct from their normal, healthy counterparts and provide various pro-tumourigenic effects. This study aimed to investigate the impact of conditioned media (CM) from non-tumourigenic MCF-12A breast epithelial cells as well as from MCF-7 and MDA-MB-231 breast cancer cells on human umbilical vein endothelial cells (HUVECs). Significant increases in cell viability were observed across all breast CM groups compared to controls, with notable differences between the MCF-12A, MCF-7, and MDA-MB-231 groups. Despite increased viability, no significant differences in MCM2 expression, a marker of cell proliferation, were detected. Morphological changes in HUVECs, including elongation, lumen formation, and branching, were more pronounced in breast cancer CM groups, especially in the MDA-MB-231 CM group. qPCR and Western blot analyses showed increased expression of TEC markers such as MDR1, LOX, and TEM8 in HUVECs treated with MCF-12A CM. The MCF-7 CM group significantly enhanced HUVEC migratory activity compared to MCF-12A CM, as evidenced by a scratch assay. These findings underscore distinct angiogenic responses elicited by non-tumourigenic and tumourigenic breast epithelial cells, with tumourigenic cells inducing a hyperactivated angiogenic response. The study highlights the differential effects of breast cancer cell paracrine signalling on endothelial cells and suggests the need for further investigation into TEC markers' role in both physiological and tumour angiogenesis.
Collapse
Affiliation(s)
- Atarah Rass
- Department of Physiological Sciences, Stellenbosch University, 2nd floor, Mike De Vries Building, Cnr. Merriman Ave & Bosman Street, Stellenbosch, South Africa.
| | - Carla Eksteen
- Department of Physiological Sciences, Stellenbosch University, 2nd floor, Mike De Vries Building, Cnr. Merriman Ave & Bosman Street, Stellenbosch, South Africa
| | - Anna-Mart Engelbrecht
- Department of Physiological Sciences, Stellenbosch University, 2nd floor, Mike De Vries Building, Cnr. Merriman Ave & Bosman Street, Stellenbosch, South Africa; African Cancer Institute (ACI), Department of Global Health, Faculty of Medicine and Health Sciences, Stellenbosch University, Stellenbosch, South Africa
| |
Collapse
|
3
|
Jia S, Bode AM, Chen X, Luo X. Unlocking the potential: Targeting metabolic pathways in the tumor microenvironment for Cancer therapy. Biochim Biophys Acta Rev Cancer 2024; 1879:189166. [PMID: 39111710 DOI: 10.1016/j.bbcan.2024.189166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 07/27/2024] [Accepted: 07/31/2024] [Indexed: 08/13/2024]
Abstract
Cancer incidence and mortality are increasing and impacting global life expectancy. Metabolic reprogramming in the tumor microenvironment (TME) is intimately related to tumorigenesis, progression, metastasis and drug resistance. Tumor cells drive metabolic reprogramming of other cells in the TME through metabolic induction of cytokines and metabolites, and metabolic substrate competition. Consequently, this boosts tumor cell growth by providing metabolic support and facilitating immunosuppression and angiogenesis. The metabolic interplay in the TME presents potential therapeutic targets. Here, we focus on the metabolic reprogramming of four principal cell subsets in the TME: CAFs, TAMs, TILs and TECs, and their interaction with tumor cells. We also summarize medications and therapies targeting these cells' metabolic pathways, particularly in the context of immune checkpoint blockade therapy.
Collapse
Affiliation(s)
- Siyuan Jia
- Hunan Key Laboratory of Oncotarget Gene, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, PR China; Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Cancer Research Institute, School of Basic Medicine, Central South University, Changsha, Hunan 410078, PR China
| | - Ann M Bode
- The Hormel Institute, University of Minnesota, Austin, MN 55912, USA
| | - Xue Chen
- Early Clinical Trial Center, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, PR China.
| | - Xiangjian Luo
- Hunan Key Laboratory of Oncotarget Gene, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, PR China; Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Cancer Research Institute, School of Basic Medicine, Central South University, Changsha, Hunan 410078, PR China; Key Laboratory of Biological Nanotechnology of National Health Commission, Central South University, Changsha, Hunan 410078, China.
| |
Collapse
|
4
|
Sritharan S, Sivalingam N. Doxorubicin-induced chemoresistance in Duke's type B colon adenocarcinoma cell line is aggravated in the presence of TGF-β2 through non-apoptotic cell death. Clin Transl Oncol 2024; 26:1630-1638. [PMID: 38308764 DOI: 10.1007/s12094-023-03380-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 12/24/2023] [Indexed: 02/05/2024]
Abstract
BACKGROUND The current challenge in clinical cancer treatment is chemoresistance. Colon cells have inherently higher xenobiotic transporters expression and hence can attain resistance rapidly. Increased levels of TGF-β2 expression in patients have been attributed to cancer progression, aggressiveness, and resistance. To investigate resistance progression, we treated doxorubicin (dox) to HT-29 colon adenocarcinoma cells in the presence or absence of TGF-β2 ligand. METHODS After 1, 3-, and 7-day treatment, we investigated cell proliferation, viability, and cytotoxicity by MTT, trypan blue staining, and lactate dehydrogenase enzyme release. The mechanism of cell death was elucidated by hoechst33342 and propidium iodide dual staining and apoptosis assay. The development of resistance was detected by rhodamine123 efflux and P-glycoprotein (P-gp)/MDR1 antibody staining through fluorimetry and flow cytometry. The colony formation ability of the cells was also elucidated. RESULTS Inhibition of cell proliferation was noted after day 1, while a significant reduction in viability and a significant increase in lactate dehydrogenase release was detected after day 3. Reduction of intracellular rhodamine123 levels was detected after day 3 and was significantly lower in dox with TGF-β2 treatment compared to dox alone. Increased surface P-gp levels after days 3 and 7 were observed in the treated groups. Hoechst33342/propidium iodide staining and apoptosis assay indicated non-apoptotic cell death. The cells treated with TGF-β2 had higher colony formation ability. CONCLUSIONS TGF-β2 expression might play a significant role in the development of chemoresistance to doxorubicin in Duke's type B colon adenocarcinoma cell line, HT-29.
Collapse
Affiliation(s)
- Sruthi Sritharan
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, 603203, India
| | - Nageswaran Sivalingam
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, 603203, India.
| |
Collapse
|
5
|
Ji S, Wu W, Jiang Q. Crosstalk between Endothelial Cells and Tumor Cells: A New Era in Prostate Cancer Progression. Int J Mol Sci 2023; 24:16893. [PMID: 38069225 PMCID: PMC10707594 DOI: 10.3390/ijms242316893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 11/21/2023] [Accepted: 11/23/2023] [Indexed: 12/18/2023] Open
Abstract
Prostate cancer stands as one of the most prevalent malignancies afflicting men worldwide. The tumor microenvironment plays a pivotal role in tumor progression, comprising various cell types including endothelial cells, tumor-associated fibroblasts, and macrophages. Recent accumulating evidence underscores the indispensable contribution of endothelial cells to prostate cancer development. Both endothelial cells and tumor cells release a multitude of factors that instigate angiogenesis, metastasis, and even drug resistance in prostate cancer. These factors serve as regulators within the tumor microenvironment and represent potential therapeutic targets for managing prostate cancer. In this review, we provide an overview of the crucial functions of endothelial cells in angiogenesis, metastasis, and drug resistance, and their prospective therapeutic applications in combating this disease.
Collapse
Affiliation(s)
| | | | - Qi Jiang
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 100 Haining Road, Shanghai 200080, China; (S.J.); (W.W.)
| |
Collapse
|
6
|
Nayak D, Paul S, Das C, Bhal S, Kundu CN. Quinacrine and Curcumin in combination decreased the breast cancer angiogenesis by modulating ABCG2 via VEGF A. J Cell Commun Signal 2023; 17:609-626. [PMID: 36326988 PMCID: PMC10409692 DOI: 10.1007/s12079-022-00692-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 08/17/2022] [Indexed: 11/06/2022] Open
Abstract
Cancer stem cells (CSCs) cause drug resistance in cancer due to its extensive drug efflux, DNA repair and self-renewal capability. ATP binding cassette subfamily G member 2 (ABCG2) efflux pump afford protection to CSCs in tumors, shielding them from the adverse effects of chemotherapy. Although the role of ABCG2 in cancer progression, invasiveness, recurrence are known but its role in metastasis and angiogenesis are not clear. Here, using in vitro (CSCs enriched side population [SP] cells), ex vivo (patient derived primary cells), in ovo (fertilized egg embryo) and in vivo (patient derived primary tissue mediated xenograft (PDX)) system, we have systematically studied the role of ABCG2 in angiogenesis and the regulation of the process by Curcumin (Cur) and Quinacrine (QC). Cur + QC inhibited the proliferation, invasion, migration and expression of representative markers of metastasis and angiogenesis. Following hypoxia, ABCG2 enriched cells released angiogenic factor vascular endothelial growth factor A (VEGF A) and induced the angiogenesis via PI3K-Akt-eNOS cascade. Cur + QC inhibited the ABCG2 expression and thus reduced the angiogenesis. Interestingly, overexpression of ABCG2 in SP cells and incubation of purified ABCG2 protein in media induced the angiogenesis but knockdown of ABCG2 decreased the vascularization. In agreement with in vitro results, ex vivo data showed similar phenomena. An induction of vascularization was noticed in PDX mice but reduction of vascularization was also observed after treatment of Cur + QC. Thus, data suggested that in hypoxia, ABCG2 enhances the production of angiogenesis factor VEGF A which in turn induced angiogenesis and Cur + QC inhibited the process by inhibiting ABCG2 in breast cancer.
Collapse
Affiliation(s)
- Deepika Nayak
- Cancer Biology Division, KIIT School of Biotechnology, KIIT, Deemed to be University, Campus-11, 751024, Patia, Bhubaneswar, Odisha, India
| | - Subarno Paul
- Cancer Biology Division, KIIT School of Biotechnology, KIIT, Deemed to be University, Campus-11, 751024, Patia, Bhubaneswar, Odisha, India
| | - Chinmay Das
- Cancer Biology Division, KIIT School of Biotechnology, KIIT, Deemed to be University, Campus-11, 751024, Patia, Bhubaneswar, Odisha, India
| | - Subhasmita Bhal
- Cancer Biology Division, KIIT School of Biotechnology, KIIT, Deemed to be University, Campus-11, 751024, Patia, Bhubaneswar, Odisha, India
| | - Chanakya Nath Kundu
- Cancer Biology Division, KIIT School of Biotechnology, KIIT, Deemed to be University, Campus-11, 751024, Patia, Bhubaneswar, Odisha, India.
| |
Collapse
|
7
|
Zhou S, Ou H, Wu Y, Qi D, Pei X, Yu X, Hu X, Wu E. Targeting tumor endothelial cells with methyltransferase inhibitors: Mechanisms of action and the potential of combination therapy. Pharmacol Ther 2023:108434. [PMID: 37172786 DOI: 10.1016/j.pharmthera.2023.108434] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 04/30/2023] [Accepted: 05/02/2023] [Indexed: 05/15/2023]
Abstract
Tumor endothelial cells (TECs) reside in the inner lining of blood vessels and represent a promising target for targeted cancer therapy. DNA methylation is a chemical process that involves the transfer of a methyl group to a specific base in the DNA strand, catalyzed by DNA methyltransferase (DNMT). DNMT inhibitors (DNMTis) can inhibit the activity of DNMTs, thereby preventing the transfer of methyl groups from s-adenosyl methionine (SAM) to cytosine. Currently, the most viable therapy for TECs is the development of DNMTis to release cancer suppressor genes from their repressed state. In this review, we first outline the characteristics of TECs and describe the development of tumor blood vessels and TECs. Abnormal DNA methylation is closely linked to tumor initiation, progression, and cell carcinogenesis, as evidenced by numerous studies. Therefore, we summarize the role of DNA methylation and DNA methyltransferase and the therapeutic potential of four types of DNMTi in targeting TECs. Finally, we discuss the accomplishments, challenges, and opportunities associated with combination therapy with DNMTis for TECs.
Collapse
Affiliation(s)
- Shu Zhou
- State Key Laboratory of Biosensing, College of Biology, Hunan University, Changsha, Hunan 410082, China
| | - Hailong Ou
- State Key Laboratory of Biosensing, College of Biology, Hunan University, Changsha, Hunan 410082, China
| | - Yatao Wu
- State Key Laboratory of Biosensing, College of Biology, Hunan University, Changsha, Hunan 410082, China
| | - Dan Qi
- Texas A & M University Schools of Medicine and Pharmacy, College Station, TX 77843, USA
| | - Xiaming Pei
- Department of Urology, Department of Pathology, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Changsha, Hunan 410013, China
| | - Xiaohui Yu
- Department of Urology, Department of Pathology, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Changsha, Hunan 410013, China
| | - Xiaoxiao Hu
- State Key Laboratory of Biosensing, College of Biology, Hunan University, Changsha, Hunan 410082, China; Research Institute of Hunan University in Chongqing, Chongqing 401120, China.
| | - Erxi Wu
- Department of Neurosurgery, Neuroscience Institute, Baylor Scott & White Health, Temple, TX 78508, USA; Texas A & M University Schools of Medicine and Pharmacy, College Station, TX 77843, USA; LIVESTRONG Cancer Institutes, Department of Oncology, Dell Medical School, the University of Texas at Austin, Austin, TX 78712, USA.
| |
Collapse
|
8
|
Deb D, Zhu S, LeBlanc MJ, Danino T. Assessing chemotherapy dosing strategies in a spatial cell culture model. Front Oncol 2022; 12:980770. [PMID: 36505801 PMCID: PMC9729937 DOI: 10.3389/fonc.2022.980770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 11/07/2022] [Indexed: 11/25/2022] Open
Abstract
Predicting patient responses to chemotherapy regimens is a major challenge in cancer treatment. Experimental model systems coupled with quantitative mathematical models to calculate optimal dose and frequency of drugs can enable improved chemotherapy regimens. Here we developed a simple approach to track two-dimensional cell colonies composed of chemo-sensitive and resistant cell populations via fluorescence microscopy and coupled this to computational model predictions. Specifically, we first developed multiple 4T1 breast cancer cell lines resistant to varying concentrations of doxorubicin, and demonstrated how heterogeneous populations expand in a two-dimensional colony. We subjected cell populations to varied dose and frequency of chemotherapy and measured colony growth. We then built a mathematical model to describe the dynamics of both chemosensitive and chemoresistant populations, where we determined which number of doses can produce the smallest tumor size based on parameters in the system. Finally, using an in vitro model we demonstrated multiple doses can decrease overall colony growth as compared to a single dose at the same total dose. In the future, this system can be adapted to optimize dosing strategies in the setting of heterogeneous cell types or patient derived cells with varied chemoresistance.
Collapse
Affiliation(s)
- Dhruba Deb
- Department of Biomedical Engineering, Columbia University, New York, NY, United States
| | - Shu Zhu
- Department of Biomedical Engineering, Columbia University, New York, NY, United States
| | - Michael J LeBlanc
- Department of Biomedical Engineering, Columbia University, New York, NY, United States
| | - Tal Danino
- Department of Biomedical Engineering, Columbia University, New York, NY, United States
- Data Science Institute, Columbia University, New York, NY, United States
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, United States
| |
Collapse
|
9
|
Huang M, Lin Y, Wang C, Deng L, Chen M, Assaraf YG, Chen ZS, Ye W, Zhang D. New insights into antiangiogenic therapy resistance in cancer: Mechanisms and therapeutic aspects. Drug Resist Updat 2022; 64:100849. [PMID: 35842983 DOI: 10.1016/j.drup.2022.100849] [Citation(s) in RCA: 67] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Angiogenesis is a hallmark of cancer and is required for tumor growth and progression. Antiangiogenic therapy has been revolutionarily developing and was approved for the treatment of various types of cancer for nearly two decades, among which bevacizumab and sorafenib continue to be the two most frequently used antiangiogenic drugs. Although antiangiogenic therapy has brought substantial survival benefits to many cancer patients, resistance to antiangiogenic drugs frequently occurs during clinical treatment, leading to poor outcomes and treatment failure. Cumulative evidence has demonstrated that the intricate interplay among tumor cells, bone marrow-derived cells, and local stromal cells critically allows for tumor escape from antiangiogenic therapy. Currently, drug resistance has become the main challenge that hinders the therapeutic efficacies of antiangiogenic therapy. In this review, we describe and summarize the cellular and molecular mechanisms conferring tumor drug resistance to antiangiogenic therapy, which was predominantly associated with redundancy in angiogenic signaling molecules (e.g., VEGFs, GM-CSF, G-CSF, and IL17), alterations in biological processes of tumor cells (e.g., tumor invasiveness and metastasis, stemness, autophagy, metabolic reprogramming, vessel co-option, and vasculogenic mimicry), increased recruitment of bone marrow-derived cells (e.g., myeloid-derived suppressive cells, tumor-associated macrophages, and tumor-associated neutrophils), and changes in the biological functions and features of local stromal cells (e.g., pericytes, cancer-associated fibroblasts, and endothelial cells). We also review potential biomarkers to predict the response to antiangiogenic therapy in cancer patients, which mainly consist of imaging biomarkers, cellular and extracellular proteins, a certain type of bone marrow-derived cells, local stromal cell content (e.g., pericyte coverage) as well as serum or plasma biomarkers (e.g., non-coding RNAs). Finally, we highlight the recent advances in combination strategies with the aim of enhancing the response to antiangiogenic therapy in cancer patients and mouse models. This review introduces a comprehensive understanding of the mechanisms and biomarkers associated with the evasion of antiangiogenic therapy in cancer, providing an outlook for developing more effective approaches to promote the therapeutic efficacy of antiangiogenic therapy.
Collapse
Affiliation(s)
- Maohua Huang
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, China; Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou, 510632, China
| | - Yuning Lin
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Chenran Wang
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Lijuan Deng
- Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, 510632, China
| | - Minfeng Chen
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Yehuda G Assaraf
- The Fred Wyszkowski Cancer Research Laboratory, Department of Biology, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Institute for Biotechnology, St. John's University, NY 11439, USA.
| | - Wencai Ye
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, China.
| | - Dongmei Zhang
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
10
|
Young SAE, Muthami J, Pitcher M, Antovski P, Wamea P, Murphy RD, Haghniaz R, Schmidt A, Clark S, Khademhosseini A, Sheikhi A. Engineering hairy cellulose nanocrystals for chemotherapy drug capture. MATERIALS TODAY. CHEMISTRY 2022; 23:100711. [PMID: 35224320 PMCID: PMC8865441 DOI: 10.1016/j.mtchem.2021.100711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Cancer is one of the leading causes of death worldwide, affecting millions of people every year. While chemotherapy remains one of the most common cancer treatments in the world, the severe side effects of chemotherapy drugs impose serious concerns to cancer patients. In many cases, the chemotherapy can be localized to maximize the drug effects; however, the drug systemic circulation induces undesirable side effects. Here, we have developed a highly efficient cellulose-based nanoadsorbent that can capture more than 6000 mg of doxorubicin (DOX), one of the most widely used chemotherapy drugs, per gram of the adsorbent at physiological conditions. Such drug capture capacity is more than 3200% higher than other nanoadsorbents, such as DNA-based platforms. We show how anionic hairy cellulose nanocrystals, also known as electrosterically stabilized nanocrystalline cellulose (ENCC), bind to positively charged drugs in human serum and capture DOX immediately without imposing any cytotoxicity and hemolytic effects. We elucidate how ENCC provides a remarkable platform for biodetoxification at varying pH, ionic strength, ion type, and protein concentration. The outcome of this research may pave the way for developing the next generation in vitro and in vivo drug capture additives and devices.
Collapse
Affiliation(s)
- Sarah A. E. Young
- Department of Bioengineering, University of California, Los Angeles, 410 Westwood Plaza, Los Angeles, CA 90095, USA
- Center for Minimally Invasive Therapeutics (C-MIT), University of California, Los Angeles, 570 Westwood Plaza, Los Angeles, CA 90095, USA
- California NanoSystems Institute (CNSI), University of California, Los Angeles, 570 Westwood Plaza, Los Angeles, CA 90095, USA
| | - Joy Muthami
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| | - Mica Pitcher
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, USA
| | - Petar Antovski
- Department of Bioengineering, University of California, Los Angeles, 410 Westwood Plaza, Los Angeles, CA 90095, USA
- Center for Minimally Invasive Therapeutics (C-MIT), University of California, Los Angeles, 570 Westwood Plaza, Los Angeles, CA 90095, USA
- California NanoSystems Institute (CNSI), University of California, Los Angeles, 570 Westwood Plaza, Los Angeles, CA 90095, USA
| | - Patricia Wamea
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| | - Robert Denis Murphy
- Department of Bioengineering, University of California, Los Angeles, 410 Westwood Plaza, Los Angeles, CA 90095, USA
- Center for Minimally Invasive Therapeutics (C-MIT), University of California, Los Angeles, 570 Westwood Plaza, Los Angeles, CA 90095, USA
- California NanoSystems Institute (CNSI), University of California, Los Angeles, 570 Westwood Plaza, Los Angeles, CA 90095, USA
| | - Reihaneh Haghniaz
- Department of Bioengineering, University of California, Los Angeles, 410 Westwood Plaza, Los Angeles, CA 90095, USA
- Center for Minimally Invasive Therapeutics (C-MIT), University of California, Los Angeles, 570 Westwood Plaza, Los Angeles, CA 90095, USA
- California NanoSystems Institute (CNSI), University of California, Los Angeles, 570 Westwood Plaza, Los Angeles, CA 90095, USA
- Terasaki Institute for Biomedical Innovation, Los Angeles, California 90024, USA
| | - Andrew Schmidt
- Department of Bioengineering, University of California, Los Angeles, 410 Westwood Plaza, Los Angeles, CA 90095, USA
- Center for Minimally Invasive Therapeutics (C-MIT), University of California, Los Angeles, 570 Westwood Plaza, Los Angeles, CA 90095, USA
- California NanoSystems Institute (CNSI), University of California, Los Angeles, 570 Westwood Plaza, Los Angeles, CA 90095, USA
| | - Samuel Clark
- Department of Bioengineering, University of California, Los Angeles, 410 Westwood Plaza, Los Angeles, CA 90095, USA
- Center for Minimally Invasive Therapeutics (C-MIT), University of California, Los Angeles, 570 Westwood Plaza, Los Angeles, CA 90095, USA
- California NanoSystems Institute (CNSI), University of California, Los Angeles, 570 Westwood Plaza, Los Angeles, CA 90095, USA
| | - Ali Khademhosseini
- Department of Bioengineering, University of California, Los Angeles, 410 Westwood Plaza, Los Angeles, CA 90095, USA
- Center for Minimally Invasive Therapeutics (C-MIT), University of California, Los Angeles, 570 Westwood Plaza, Los Angeles, CA 90095, USA
- California NanoSystems Institute (CNSI), University of California, Los Angeles, 570 Westwood Plaza, Los Angeles, CA 90095, USA
- Jonsson Comprehensive Cancer Centre, University of California, Los Angeles, 10833 Le Conte Ave, Los Angeles, CA 90024, USA
- Department of Radiological Sciences, David Geffen School of Medicine, University of California, Los Angeles, 10833 Le Conte Ave, Los Angeles, CA 90095, USA
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, 5531 Boelter Hall, Los Angeles, CA 90095, USA
| | - Amir Sheikhi
- Department of Bioengineering, University of California, Los Angeles, 410 Westwood Plaza, Los Angeles, CA 90095, USA
- Center for Minimally Invasive Therapeutics (C-MIT), University of California, Los Angeles, 570 Westwood Plaza, Los Angeles, CA 90095, USA
- California NanoSystems Institute (CNSI), University of California, Los Angeles, 570 Westwood Plaza, Los Angeles, CA 90095, USA
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
11
|
Liang J, Wang S, Zhang G, He B, Bie Q, Zhang B. A New Antitumor Direction: Tumor-Specific Endothelial Cells. Front Oncol 2021; 11:756334. [PMID: 34988011 PMCID: PMC8721012 DOI: 10.3389/fonc.2021.756334] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 11/25/2021] [Indexed: 12/19/2022] Open
Abstract
Targeting tumor blood vessels is an important strategy for tumor therapies. At present, antiangiogenic drugs are known to have significant clinical effects, but severe drug resistance and side effects also occur. Therefore, new specific targets for tumor and new treatment methods must be developed. Tumor-specific endothelial cells (TECs) are the main targets of antiangiogenic therapy. This review summarizes the differences between TECs and normal endothelial cells, assesses the heterogeneity of TECs, compares tumorigenesis and development between TECs and normal endothelial cells, and explains the interaction between TECs and the tumor microenvironment. A full and in-depth understanding of TECs may provide new insights for specific antitumor angiogenesis therapies.
Collapse
Affiliation(s)
- Jing Liang
- Department of Laboratory Medicine, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, China
| | - Shouqi Wang
- Department of Gastrointestinal Surgery, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, China
| | - Guowei Zhang
- Department of Gastrointestinal Surgery, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, China
| | - Baoyu He
- Department of Laboratory Medicine, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, China
| | - Qingli Bie
- Department of Laboratory Medicine, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, China
- Institute of Forensic Medicine and Laboratory Medicine, Jining Medical University, Jining, China
| | - Bin Zhang
- Department of Laboratory Medicine, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, China
- Institute of Forensic Medicine and Laboratory Medicine, Jining Medical University, Jining, China
| |
Collapse
|
12
|
Sun T, Zhang D, Wang Z, Zhao B, Li Y, Sun X, Liu J, Wang X, Sheng J. Inhibition of the notch signaling pathway overcomes resistance of cervical cancer cells to paclitaxel through retardation of the epithelial-mesenchymal transition process. ENVIRONMENTAL TOXICOLOGY 2021; 36:1758-1764. [PMID: 34048126 DOI: 10.1002/tox.23296] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 05/06/2021] [Accepted: 05/11/2021] [Indexed: 06/12/2023]
Abstract
Use of paclitaxel as monotherapy or in combination with other therapeutic agents is a widely employed front-line chemotherapeutic strategy for cervical cancer. However, previous reports have shown that approximately 70% of the patients with cervical cancer develop resistance to paclitaxel. Epithelial-mesenchymal transition (EMT) contributes to the occurrence of chemoresistance in several types of cancer, including cervical cancer. Identification of the critical signaling pathway that regulates the EMT process may provide a novel strategy for avoiding or delaying the emergence of paclitaxel resistance during the treatment of cervical cancer. Herein, we established a paclitaxel-resistant cervical cancer cell line (HeLa-229PTR cells) by culturing parental HeLa-229 cells with increasing concentrations of paclitaxel. We observed elevated expression of Notch1 in HeLa-229PTR cells compared with their parental HeLa-229 cells, indicating its potential involvement in the EMT phenotype of the paclitaxel-resistant cells. Furthermore, silencing of the NOTCH1 gene, as well as treatment with a γ-secretase inhibitor (DAPT) partially reversed the EMT phenotype and significantly enhanced the sensitivity of HeLa-229PTR cells to paclitaxel. Moreover, we found that DAPT could significantly inhibit invasiveness, reduce colony formation activity, and promote apoptosis of HeLa-229PTR cells. Taken together, these results indicated that HeLa-229PTR cells develop the EMT phenotype partly through activation of Notch1 signaling. Thus, inhibition of Notch1 signaling can be a strategy for the reversal of the EMT phenotype and may increase the sensitivity of cervical cancer cells to treatment with paclitaxel.
Collapse
Affiliation(s)
- Tianzhu Sun
- Key Laboratory of Pu-erh Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, China
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Dengyang Zhang
- Key Laboratory of Pu-erh Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, China
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Zehao Wang
- Key Laboratory of Pu-erh Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, China
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Bingyu Zhao
- Key Laboratory of Pu-erh Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, China
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Yaping Li
- Key Laboratory of Pu-erh Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, China
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Xiuli Sun
- Key Laboratory of Pu-erh Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, China
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Jia Liu
- Key Laboratory of Pu-erh Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, China
- College of Science, Yunnan Agricultural University, Kunming, China
| | - Xuanjun Wang
- Key Laboratory of Pu-erh Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, China
- College of Science, Yunnan Agricultural University, Kunming, China
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
| | - Jun Sheng
- Key Laboratory of Pu-erh Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, China
- College of Science, Yunnan Agricultural University, Kunming, China
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
| |
Collapse
|
13
|
Lotze FP, Riess ML. Poloxamer 188 Exerts Direct Protective Effects on Mouse Brain Microvascular Endothelial Cells in an In Vitro Traumatic Brain Injury Model. Biomedicines 2021; 9:1043. [PMID: 34440247 PMCID: PMC8393826 DOI: 10.3390/biomedicines9081043] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 08/13/2021] [Accepted: 08/16/2021] [Indexed: 12/04/2022] Open
Abstract
Traumatic Brain Injury (TBI), the main contributor to morbidity and mortality worldwide, can disrupt the cell membrane integrity of the vascular endothelial system, endangering blood-brain barrier function and threatening cellular subsistence. Protection of the vascular endothelial system might enhance clinical outcomes after TBI. Poloxamer 188 (P188) has been shown to improve neuronal function after ischemia/reperfusion (I/R) injury as well as after TBI. We aimed to establish an in vitro compression-type TBI model, comparing mild-to-moderate and severe injury, to observe the direct effects of P188 on Mouse Brain Microvascular Endothelial Cells (MBEC). Confluent MBEC were exposed to normoxic or hypoxic conditions for either 5 or 15 h (hours). 1 h compression was added, and P188 was administered during 2 h reoxygenation. A direct effect of P188 on MBEC was tested by assessing cell number/viability, cytotoxicity/membrane damage, metabolic activity, and total nitric oxide production (tNOp). While P188 enhanced cell number/viability, metabolic activity, and tNOp, an increase in cytotoxicity/membrane damage after mild-to-moderate injury was prevented. In severely injured MBEC, P188 improved metabolic activity only. P188, present during reoxygenation, influenced MBEC function directly in simulated I/R and compression-type TBI.
Collapse
Affiliation(s)
- Felicia P. Lotze
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN 37232, USA;
- Department of Anesthesiology, University Medicine Greifswald, 17475 Greifswald, Germany
| | - Matthias L. Riess
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN 37232, USA;
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA
- Anesthesiology, TVHS VA Medical Center, Nashville, TN 37212, USA
| |
Collapse
|
14
|
Ni Y, Zhou X, Yang J, Shi H, Li H, Zhao X, Ma X. The Role of Tumor-Stroma Interactions in Drug Resistance Within Tumor Microenvironment. Front Cell Dev Biol 2021; 9:637675. [PMID: 34095111 PMCID: PMC8173135 DOI: 10.3389/fcell.2021.637675] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 04/19/2021] [Indexed: 02/05/2023] Open
Abstract
Cancer cells resistance to various therapies remains to be a key challenge nowadays. For a long time, scientists focused on tumor cells themselves for the mechanisms of acquired drug resistance. However, recent evidence showed that tumor microenvironment (TME) is essential for regulating immune escape, drug resistance, progression and metastasis of malignant cells. Reciprocal interactions between cancer cells and non-malignant cells within this milieu often reshape the TME and promote drug resistance. Therefore, advanced knowledge about these sophisticated interactions is significant for the design of effective therapeutic approaches. In this review, we highlight cancer-associated fibroblasts (CAFs), tumor-associated macrophages (TAMs), tumor-associated neutrophils (TANs), myeloid-derived suppressor cells (MDSCs), T-regulatory lymphocytes (Tregs), mesenchymal stem cells (MSCs), cancer-associated adipocytes (CAAs), and tumor endothelial cells (TECs) existing in TME, as well as their multiple cross-talk with tumor cells, which eventually endows tumor cells with therapeutic resistance.
Collapse
Affiliation(s)
- Yanghong Ni
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu, China.,Department of Gynecology and Obstetrics, Development and Related Disease of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, China
| | - Xiaoting Zhou
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu, China.,Department of Gynecology and Obstetrics, Development and Related Disease of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, China
| | - Jia Yang
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu, China.,Department of Gynecology and Obstetrics, Development and Related Disease of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, China
| | - Houhui Shi
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu, China.,Department of Gynecology and Obstetrics, Development and Related Disease of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, China
| | - Hongyi Li
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu, China.,Department of Gynecology and Obstetrics, Development and Related Disease of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, China
| | - Xia Zhao
- Department of Gynecology and Obstetrics, Development and Related Disease of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, China
| | - Xuelei Ma
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu, China
| |
Collapse
|
15
|
SOX2 promotes chemoresistance, cancer stem cells properties, and epithelial-mesenchymal transition by β-catenin and Beclin1/autophagy signaling in colorectal cancer. Cell Death Dis 2021; 12:449. [PMID: 33953166 PMCID: PMC8100126 DOI: 10.1038/s41419-021-03733-5] [Citation(s) in RCA: 85] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 04/19/2021] [Accepted: 04/19/2021] [Indexed: 12/21/2022]
Abstract
Sex-determining region Y-box2 (SOX2), a master regulator of embryonic and induced pluripotent stem cells, drives cancer stem cells (CSCs) properties, fuels tumor initiation, and contributes to tumor aggressiveness. Our previous study has demonstrated the oncogenic role of SOX2 in colorectal cancer (CRC). In this study, we sought to elucidate the underlying mechanisms. Cell function experiments were performed to detect chemoresistance, proliferation, stemness, migration, and invasion in vitro. Chromatin immunoprecipitation, co-immunoprecipitation, luciferase reporter assay, and immunofluorescence were performed to explore the regulation of ABCC2, β-catenin, and Beclin1 by SOX2. The carcinogenic role of SOX2-β-catenin/Beclin1-ABCC2 axis in vivo was analyzed by CRC tissues and xenograft models. Here, we reported that SOX2 sustained chemoresistance by transcriptional activation of ABCC2 expression. Suppressing either β-catenin or autophagy signaling curbed SOX2-driven chemoresistance, stemness, and epithelial-mesenchymal transition (EMT). Mechanistically, SOX2 combined with β-catenin and increased its nuclear expression and transcriptional activity. Transcriptional activation of Beclin1 expression by SOX2 consequently activating autophagy and inducing malignant phenotype. Furthermore, overexpression of β-catenin or Beclin1 facilitated ABCC2 expression. The clinical analyses showed that high expression of ABCC2 and Beclin1 were positively correlated with SOX2 and were associated with poor prognosis in CRC patients. Finally, xenograft models revealed that inhibition of SOX2 expression and autophagy restrained tumor growth and chemoresistance in vivo. Conclusively, we demonstrated a novel mechanism by which the SOX2-β-catenin/Beclin1/autophagy signaling axis regulates chemoresistance, stemness, and EMT in CRC. Our findings provide novel insights into CRC carcinogenesis and may help develop potential therapeutic candidates for CRC.
Collapse
|
16
|
Shafi S, Khan S, Hoda F, Fayaz F, Singh A, Khan MA, Ali R, Pottoo FH, Tariq S, Najmi AK. Decoding Novel Mechanisms and Emerging Therapeutic Strategies in Breast Cancer Resistance. Curr Drug Metab 2020; 21:199-210. [DOI: 10.2174/1389200221666200303124946] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 12/12/2019] [Accepted: 12/30/2019] [Indexed: 12/24/2022]
Abstract
Breast cancer (BC), an intricate and highly heterogeneous disorder, has presently afflicted 2.09 million females globally. Chemoresistance remains a paramount challenge in the treatment of BC. Owing to its assorted nature, the chemoresistant mechanisms of BC still need intensive research. Accumulating evidence suggests that abnormalities related to the biogenesis of cancer stem cells (CSCs) and microRNAs (miRNAs) are associated with BC progression and chemoresistance. The presently available interventions are inadequate to target chemoresistance, therefore more efficient alternatives are urgently needed to improvise existing therapeutic regimens. A myriad of strategies is being explored, such as immunotherapy, gene therapy, and combination treatment to surmount chemoresistance. Additionally, nanoparticles as chemotherapeutic carriers put forward the options to encapsulate numerous drugs, alone as well as in combination for cancer theranostics. This review summarizes the chemoresistance mechanisms of miRNAs and CSCs as well as the most recently documented therapeutic approaches for the treatment of chemoresistance in BC. By unraveling the underpinning mechanism of BC chemoresistance, researchers could possibly develop more efficient treatment strategies towards BC.
Collapse
Affiliation(s)
- Sadat Shafi
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Sana Khan
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Farazul Hoda
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Faizana Fayaz
- Department of Pharmaceutical Chemistry, Delhi Institute of Pharmaceutical Sciences and Research, Sector-3, MB Road, Pushp Vihar, New Delhi 110017, India
| | - Archu Singh
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Mohammad Ahmed Khan
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Ruhi Ali
- Department of Pharmaceutical Chemistry, Delhi Institute of Pharmaceutical Sciences and Research, Sector-3, MB Road, Pushp Vihar, New Delhi 110017, India
| | - Faheem Hyder Pottoo
- Department of Pharmacology, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Sana Tariq
- Department of Pharmaceutical Chemistry, Delhi Institute of Pharmaceutical Sciences and Research, Sector-3, MB Road, Pushp Vihar, New Delhi 110017, India
| | - Abul Kalam Najmi
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| |
Collapse
|
17
|
Wu S, Huang L, Shen R, Bernard-Cacciarella M, Zhou P, Hu C, Di Benedetto M, Janin A, Bousquet G, Li H, He Z, Lu H. Drug resistance‑related sunitinib sequestration in autophagolysosomes of endothelial cells. Int J Oncol 2019; 56:113-122. [PMID: 31789391 PMCID: PMC6910192 DOI: 10.3892/ijo.2019.4924] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 10/03/2019] [Indexed: 12/20/2022] Open
Abstract
Our previous study demonstrated that the tyrosine kinase receptor inhibitor sunitinib induces acquired drug resistance in endothelial cells. The present study explored the role of lysosomal sequestration of sunitinib in the acquisition of drug resistance in human microcapillary endothelial HMEC-1 cells. Resistance was induced by escalating concentrations of sunitinib and a shift in IC50 from 12.8 to >20 µM was detected. The results of time-lapse fluorescence microscopy illustrated an instantaneous emergence of fluorescent vesicles in living cells once sunitinib was added. Most of these vesicles emerged in the juxtanuclear area, and exhibited the characteristics of growing autophagosomes and lysosomes. The vesicles were identified as autophagosomes and lysosomes because they co-located with the lysosomal tracers Lyso-ER and Lyso-NIR, and the protein markers lysosomal-associated membrane protein 1 (LAMP-1) and microtubule-associated protein 1A/1B-light chain 3 (LC3). The results of western blotting demonstrated that sunitinib induced upregulation of LAMP-1 and LC3-II, and downregulation of sequestosome 1/p62, indicating the activation of autophagy. Bafilomycin A1, which suppresses lysosomal acidification, completely blocked sunitinib sequestration; however, chloroquine, which blocks lysosomal fusion with autophagosomes, exhibited no effect. Notably, bafilomycin A1 and chloroquine significantly counterbalanced HMEC-1 drug-resistance. These results provided evidence for autophagy-flux-associated sunitinib lysosomal sequestration in endothelial cells, leading to isolation of the drug from the cytoplasm; a key process involved in the development of drug resistance during antiangiogenic therapy. These data supported the notion that inhibiting autophagy may be a potential strategy to prevent drug sequestration and resistance to antiangiogenic therapy.
Collapse
Affiliation(s)
- Shuang Wu
- West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610065, P.R. China
| | - Limin Huang
- National Institute of Health and Medical Research, Medical Research Unit 942/Paris University 7 and 13, Avicenne Hospital, 93000 Bobigny, France
| | - Rong Shen
- National Institute of Health and Medical Research, Medical Research Unit 942/Paris University 7 and 13, Avicenne Hospital, 93000 Bobigny, France
| | - Melanie Bernard-Cacciarella
- National Institute of Health and Medical Research, Medical Research Unit 942/Paris University 7 and 13, Avicenne Hospital, 93000 Bobigny, France
| | - Pei Zhou
- National Institute of Health and Medical Research, Medical Research Unit 942/Paris University 7 and 13, Avicenne Hospital, 93000 Bobigny, France
| | - Chaoquan Hu
- National Institute of Health and Medical Research, Medical Research Unit 942/Paris University 7 and 13, Avicenne Hospital, 93000 Bobigny, France
| | - Melanie Di Benedetto
- National Institute of Health and Medical Research, Medical Research Unit 942/Paris University 7 and 13, Avicenne Hospital, 93000 Bobigny, France
| | - Anne Janin
- National Institute of Health and Medical Research, Medical Research Unit 942/Paris University 7 and 13, Avicenne Hospital, 93000 Bobigny, France
| | - Guilhem Bousquet
- National Institute of Health and Medical Research, Medical Research Unit 942/Paris University 7 and 13, Avicenne Hospital, 93000 Bobigny, France
| | - Hong Li
- INSERM U1234/Rouen University, Faculty of Medicine and Pharmacy, 76000 Rouen, France
| | - Zhixu He
- West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610065, P.R. China
| | - He Lu
- National Institute of Health and Medical Research, Medical Research Unit 942/Paris University 7 and 13, Avicenne Hospital, 93000 Bobigny, France
| |
Collapse
|
18
|
Huang L, Hu C, Chao H, Zhang Y, Li Y, Hou J, Xu Z, Lu H, Li H, Chen H. Drug-resistant endothelial cells facilitate progression, EMT and chemoresistance in nasopharyngeal carcinoma via exosomes. Cell Signal 2019; 63:109385. [PMID: 31394194 DOI: 10.1016/j.cellsig.2019.109385] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 07/29/2019] [Accepted: 08/03/2019] [Indexed: 12/21/2022]
Abstract
Recent antitumor drug development has included investigation of a wide variety of anti-angiogenesis therapies. Because cancer cells in tumors require new blood vessels to grow and spread, they stimulate capillary proliferation from existing vessels as well as new vessel formation from endothelial precursor cells. Our previous findings suggested that drug resistance in mouse endothelial cells supported tumor growth, but the relationship between endothelial cells (ECs) and nasopharyngeal carcinoma (NPC) cells remained unclear. Exosomes are small membrane vesicles that are released by several cell types, including human microvascular ECs (HMECs). Exosomes carrying membrane and cytoplasmic constituents have been described as participants in a novel mechanism of cell-to-cell communication. In the present study, we investigated the mechanisms underlying the interactions between HMECs and NPC cells. We found that drug-resistant HMECs secreted small heterogeneous 40-100 nm vesicles, defined as exosomes. Co-incubation of NPC cells with doxorubicin-resistant (R-DOX) HMEC-derived exosomes resulted in promotion of their proliferation, migration, and chemoresistance, as well as changes in the expression of epithelial-mesenchymal transition (EMT) markers. These effects were significantly inhibited by treatment with GW4869 (an exosome inhibitor). We also found that GW4869 inhibited the stimulation of drug-resistant HMECs on NPC progression by modulating EMT in vivo. These data suggest that exosomes participate in a novel mechanism by which drug-resistant ECs enhance NPC progression.
Collapse
Affiliation(s)
- Limin Huang
- Department of Oncology, Guizhou Provincial People's Hospital, Guizhou Cancer Center, Guiyang, Guizhou, China.
| | - Chaoquan Hu
- Department of Surgery, Affiliated Hospital, GuiZhou Medical University, Guiyang 550004, China.
| | - Hui Chao
- Department of Oncology, Guizhou Provincial People's Hospital, Guizhou Cancer Center, Guiyang, Guizhou, China
| | - Yu Zhang
- Department of Oncology, Guizhou Provincial People's Hospital, Guizhou Cancer Center, Guiyang, Guizhou, China
| | - Yong Li
- Department of Oncology, Guizhou Provincial People's Hospital, Guizhou Cancer Center, Guiyang, Guizhou, China
| | - Jing Hou
- Department of Oncology, Guizhou Provincial People's Hospital, Guizhou Cancer Center, Guiyang, Guizhou, China
| | - Zhong Xu
- Department of Oncology, Guizhou Provincial People's Hospital, Guizhou Cancer Center, Guiyang, Guizhou, China
| | - He Lu
- INSERM UMR_S 1165/Paris 7, Hôpital Saint Louis, Paris, France
| | - Hong Li
- INSERM UMR_S 1165/Paris 7, Hôpital Saint Louis, Paris, France
| | - Hui Chen
- Department of Oncology, Guizhou Provincial People's Hospital, Guizhou Cancer Center, Guiyang, Guizhou, China.
| |
Collapse
|
19
|
Nunes T, Hamdan D, Leboeuf C, El Bouchtaoui M, Gapihan G, Nguyen TT, Meles S, Angeli E, Ratajczak P, Lu H, Di Benedetto M, Bousquet G, Janin A. Targeting Cancer Stem Cells to Overcome Chemoresistance. Int J Mol Sci 2018; 19:E4036. [PMID: 30551640 PMCID: PMC6321478 DOI: 10.3390/ijms19124036] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 12/08/2018] [Accepted: 12/10/2018] [Indexed: 12/18/2022] Open
Abstract
Cancers are heterogeneous at the cell level, and the mechanisms leading to cancer heterogeneity could be clonal evolution or cancer stem cells. Cancer stem cells are resistant to most anti-cancer treatments and could be preferential targets to reverse this resistance, either targeting stemness pathways or cancer stem cell surface markers. Gold nanoparticles have emerged as innovative tools, particularly for photo-thermal therapy since they can be excited by laser to induce hyperthermia. Gold nanoparticles can be functionalized with antibodies to specifically target cancer stem cells. Preclinical studies using photo-thermal therapy have demonstrated the feasibility of targeting chemo-resistant cancer cells to reverse clinical chemoresistance. Here, we review the data linking cancer stem cells and chemoresistance and discuss the way to target them to reverse resistance. We particularly focus on the use of functionalized gold nanoparticles in the treatment of chemo-resistant metastatic cancers.
Collapse
Affiliation(s)
- Toni Nunes
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1165, F-75010 Paris, France.
- Laboratoire de Pathologie, Université Paris Diderot, Sorbonne Paris Cité, UMR_S1165, F-75010 Paris, France.
| | - Diaddin Hamdan
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1165, F-75010 Paris, France.
- Hôpital de La Porte Verte, F-78004 Versailles, France.
| | - Christophe Leboeuf
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1165, F-75010 Paris, France.
- Laboratoire de Pathologie, Université Paris Diderot, Sorbonne Paris Cité, UMR_S1165, F-75010 Paris, France.
| | - Morad El Bouchtaoui
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1165, F-75010 Paris, France.
- Laboratoire de Pathologie, Université Paris Diderot, Sorbonne Paris Cité, UMR_S1165, F-75010 Paris, France.
| | - Guillaume Gapihan
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1165, F-75010 Paris, France.
- Laboratoire de Pathologie, Université Paris Diderot, Sorbonne Paris Cité, UMR_S1165, F-75010 Paris, France.
| | - Thi Thuy Nguyen
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1165, F-75010 Paris, France.
| | - Solveig Meles
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1165, F-75010 Paris, France.
| | - Eurydice Angeli
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1165, F-75010 Paris, France.
| | - Philippe Ratajczak
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1165, F-75010 Paris, France.
- Laboratoire de Pathologie, Université Paris Diderot, Sorbonne Paris Cité, UMR_S1165, F-75010 Paris, France.
| | - He Lu
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1165, F-75010 Paris, France.
- Laboratoire de Pathologie, Université Paris Diderot, Sorbonne Paris Cité, UMR_S1165, F-75010 Paris, France.
| | - Mélanie Di Benedetto
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1165, F-75010 Paris, France.
- Laboratoire de Pathologie, Université Paris Diderot, Sorbonne Paris Cité, UMR_S1165, F-75010 Paris, France.
- Université Paris 13, F-93430 Villetaneuse, France.
| | - Guilhem Bousquet
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1165, F-75010 Paris, France.
- Laboratoire de Pathologie, Université Paris Diderot, Sorbonne Paris Cité, UMR_S1165, F-75010 Paris, France.
- Université Paris 13, F-93430 Villetaneuse, France.
- Service d'Oncologie Médicale, AP-HP-Hôpital Avicenne, F-93008 Bobigny, France.
| | - Anne Janin
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1165, F-75010 Paris, France.
- Laboratoire de Pathologie, Université Paris Diderot, Sorbonne Paris Cité, UMR_S1165, F-75010 Paris, France.
- Service de Pathologie, AP-HP-Hôpital Saint-Louis, F-75010 Paris, France.
| |
Collapse
|
20
|
Fang Y, Wang H, Dou HJ, Fan X, Fei XC, Wang L, Cheng S, Janin A, Wang L, Zhao WL. Doxorubicin-loaded dextran-based nano-carriers for highly efficient inhibition of lymphoma cell growth and synchronous reduction of cardiac toxicity. Int J Nanomedicine 2018; 13:5673-5683. [PMID: 30288040 PMCID: PMC6161723 DOI: 10.2147/ijn.s161203] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Purpose Cardiac side effects of doxorubicin (Dox) have limited its clinical application. The aim of this study was to explore new Dox-loaded dextran-based nano-carriers (NCs) in efficiently targeting tumor growth with less cardiac toxicity. Methods Inspired by recent reports that polymeric NCs could function as sustained, controlled and targeted drug delivery systems, we developed Dox-loaded NCs which displayed a 2-fold release ratio of Dox in the mimic tumor site condition (pH 5.0 with 10 mM glutathione, GSH) as much as that in systemic circulation condition (pH 7.4). Results Lymphoma cells treated with Dox-NCs had significantly higher intracellular Dox concentrations and more apoptotic induction, with lower P-gp expression, when compared with those treated with Dox alone. The identified mechanism of action, apoptosis, was triggered through survivin reduction and caspase-3 activation. Even in the Dox-resistant cells, Dox-NCs could significantly inhibit cell growth and induce apoptosis. In murine lymphoma xenograft models, Dox-NCs also remarkably significantly retarded tumor growth, assessed by murine weight, and demonstrated less cytotoxicity. Noticeably, apoptotic myocardial cells were decreased in the Dox-NCs-treated group, when compared with the control group, which was consistent with low intracellular Dox concentration in the cardiac cell line H9C2. Conclusion Dox-NCs showed an anti-lymphoma effect with reduced cardiac toxicity in both in vivo and in vitro models and, therefore, could be a potential therapeutic agent in the treatment of lymphoma.
Collapse
Affiliation(s)
- Ying Fang
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Shanghai Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China, ;
| | - Hao Wang
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Hong-Jing Dou
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Xing Fan
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Shanghai Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China, ;
| | - Xiao-Chun Fei
- Department of Pathology, Shanghai Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lei Wang
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Shu Cheng
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Shanghai Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China, ;
| | - Anne Janin
- Sino-French Research Center of Life Science and Genomics, Laboratory of Molecular Pathology, Shanghai, China, ; .,Joint Research Unit 1165, Inserm, University Paris VII, Saint-Louis Hospital, Paris, France
| | - Li Wang
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Shanghai Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China, ; .,Sino-French Research Center of Life Science and Genomics, Laboratory of Molecular Pathology, Shanghai, China, ;
| | - Wei-Li Zhao
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Shanghai Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China, ; .,Sino-French Research Center of Life Science and Genomics, Laboratory of Molecular Pathology, Shanghai, China, ;
| |
Collapse
|
21
|
Nowak-Sliwinska P, Alitalo K, Allen E, Anisimov A, Aplin AC, Auerbach R, Augustin HG, Bates DO, van Beijnum JR, Bender RHF, Bergers G, Bikfalvi A, Bischoff J, Böck BC, Brooks PC, Bussolino F, Cakir B, Carmeliet P, Castranova D, Cimpean AM, Cleaver O, Coukos G, Davis GE, De Palma M, Dimberg A, Dings RPM, Djonov V, Dudley AC, Dufton NP, Fendt SM, Ferrara N, Fruttiger M, Fukumura D, Ghesquière B, Gong Y, Griffin RJ, Harris AL, Hughes CCW, Hultgren NW, Iruela-Arispe ML, Irving M, Jain RK, Kalluri R, Kalucka J, Kerbel RS, Kitajewski J, Klaassen I, Kleinmann HK, Koolwijk P, Kuczynski E, Kwak BR, Marien K, Melero-Martin JM, Munn LL, Nicosia RF, Noel A, Nurro J, Olsson AK, Petrova TV, Pietras K, Pili R, Pollard JW, Post MJ, Quax PHA, Rabinovich GA, Raica M, Randi AM, Ribatti D, Ruegg C, Schlingemann RO, Schulte-Merker S, Smith LEH, Song JW, Stacker SA, Stalin J, Stratman AN, Van de Velde M, van Hinsbergh VWM, Vermeulen PB, Waltenberger J, Weinstein BM, Xin H, Yetkin-Arik B, Yla-Herttuala S, Yoder MC, Griffioen AW. Consensus guidelines for the use and interpretation of angiogenesis assays. Angiogenesis 2018; 21:425-532. [PMID: 29766399 PMCID: PMC6237663 DOI: 10.1007/s10456-018-9613-x] [Citation(s) in RCA: 419] [Impact Index Per Article: 69.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The formation of new blood vessels, or angiogenesis, is a complex process that plays important roles in growth and development, tissue and organ regeneration, as well as numerous pathological conditions. Angiogenesis undergoes multiple discrete steps that can be individually evaluated and quantified by a large number of bioassays. These independent assessments hold advantages but also have limitations. This article describes in vivo, ex vivo, and in vitro bioassays that are available for the evaluation of angiogenesis and highlights critical aspects that are relevant for their execution and proper interpretation. As such, this collaborative work is the first edition of consensus guidelines on angiogenesis bioassays to serve for current and future reference.
Collapse
Affiliation(s)
- Patrycja Nowak-Sliwinska
- Molecular Pharmacology Group, School of Pharmaceutical Sciences, Faculty of Sciences, University of Geneva, University of Lausanne, Rue Michel-Servet 1, CMU, 1211, Geneva 4, Switzerland.
- Translational Research Center in Oncohaematology, University of Geneva, Geneva, Switzerland.
| | - Kari Alitalo
- Wihuri Research Institute and Translational Cancer Biology Program, University of Helsinki, Helsinki, Finland
| | - Elizabeth Allen
- Laboratory of Tumor Microenvironment and Therapeutic Resistance, Department of Oncology, VIB-Center for Cancer Biology, KU Leuven, Louvain, Belgium
| | - Andrey Anisimov
- Wihuri Research Institute and Translational Cancer Biology Program, University of Helsinki, Helsinki, Finland
| | - Alfred C Aplin
- Department of Pathology, University of Washington, Seattle, WA, USA
| | | | - Hellmut G Augustin
- European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
- Division of Vascular Oncology and Metastasis Research, German Cancer Research Center, Heidelberg, Germany
- German Cancer Consortium, Heidelberg, Germany
| | - David O Bates
- Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham, UK
| | - Judy R van Beijnum
- Angiogenesis Laboratory, Department of Medical Oncology, VU University Medical Center, Cancer Center Amsterdam, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - R Hugh F Bender
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, USA
| | - Gabriele Bergers
- Laboratory of Tumor Microenvironment and Therapeutic Resistance, Department of Oncology, VIB-Center for Cancer Biology, KU Leuven, Louvain, Belgium
- Department of Neurological Surgery, Brain Tumor Research Center, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA
| | - Andreas Bikfalvi
- Angiogenesis and Tumor Microenvironment Laboratory (INSERM U1029), University Bordeaux, Pessac, France
| | - Joyce Bischoff
- Vascular Biology Program and Department of Surgery, Harvard Medical School, Boston Children's Hospital, Boston, MA, USA
| | - Barbara C Böck
- European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
- Division of Vascular Oncology and Metastasis Research, German Cancer Research Center, Heidelberg, Germany
- German Cancer Consortium, Heidelberg, Germany
| | - Peter C Brooks
- Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, ME, USA
| | - Federico Bussolino
- Department of Oncology, University of Torino, Turin, Italy
- Candiolo Cancer Institute-FPO-IRCCS, 10060, Candiolo, Italy
| | - Bertan Cakir
- Department of Ophthalmology, Harvard Medical School, Boston Children's Hospital, Boston, MA, USA
| | - Peter Carmeliet
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology and Leuven Cancer Institute (LKI), KU Leuven, Leuven, Belgium
- Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology, VIB, Leuven, Belgium
| | - Daniel Castranova
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Anca M Cimpean
- Department of Microscopic Morphology/Histology, Angiogenesis Research Center, Victor Babes University of Medicine and Pharmacy, Timisoara, Romania
| | - Ondine Cleaver
- Department of Molecular Biology, Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - George Coukos
- Ludwig Institute for Cancer Research, Department of Oncology, University of Lausanne, Lausanne, Switzerland
| | - George E Davis
- Department of Medical Pharmacology and Physiology, University of Missouri, School of Medicine and Dalton Cardiovascular Center, Columbia, MO, USA
| | - Michele De Palma
- School of Life Sciences, Swiss Federal Institute of Technology, Lausanne, Switzerland
| | - Anna Dimberg
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Ruud P M Dings
- Department of Radiation Oncology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | | | - Andrew C Dudley
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA, USA
- Emily Couric Cancer Center, The University of Virginia, Charlottesville, VA, USA
| | - Neil P Dufton
- Vascular Sciences, Imperial Centre for Translational and Experimental Medicine, National Heart and Lung Institute, Imperial College London, London, UK
| | - Sarah-Maria Fendt
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB Center for Cancer Biology, Leuven, Belgium
- Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute, Leuven, Belgium
| | | | - Marcus Fruttiger
- Institute of Ophthalmology, University College London, London, UK
| | - Dai Fukumura
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Bart Ghesquière
- Metabolomics Expertise Center, VIB Center for Cancer Biology, VIB, Leuven, Belgium
- Department of Oncology, Metabolomics Expertise Center, KU Leuven, Leuven, Belgium
| | - Yan Gong
- Department of Ophthalmology, Harvard Medical School, Boston Children's Hospital, Boston, MA, USA
| | - Robert J Griffin
- Department of Radiation Oncology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Adrian L Harris
- Molecular Oncology Laboratories, Oxford University Department of Oncology, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, Oxford, UK
| | - Christopher C W Hughes
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, USA
| | - Nan W Hultgren
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, USA
| | | | - Melita Irving
- Ludwig Institute for Cancer Research, Department of Oncology, University of Lausanne, Lausanne, Switzerland
| | - Rakesh K Jain
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Raghu Kalluri
- Department of Cancer Biology, Metastasis Research Center, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Joanna Kalucka
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology and Leuven Cancer Institute (LKI), KU Leuven, Leuven, Belgium
- Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology, VIB, Leuven, Belgium
| | - Robert S Kerbel
- Department of Medical Biophysics, Biological Sciences Platform, Sunnybrook Research Institute, University of Toronto, Toronto, ON, Canada
| | - Jan Kitajewski
- Department of Physiology and Biophysics, University of Illinois, Chicago, IL, USA
| | - Ingeborg Klaassen
- Ocular Angiogenesis Group, Departments of Ophthalmology and Medical Biology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Hynda K Kleinmann
- The George Washington University School of Medicine, Washington, DC, USA
| | - Pieter Koolwijk
- Department of Ophthalmology, University of Lausanne, Jules-Gonin Eye Hospital, Fondation Asile des Aveugles, Lausanne, Switzerland
| | - Elisabeth Kuczynski
- Department of Medical Biophysics, Biological Sciences Platform, Sunnybrook Research Institute, University of Toronto, Toronto, ON, Canada
| | - Brenda R Kwak
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| | | | - Juan M Melero-Martin
- Department of Cardiac Surgery, Harvard Medical School, Boston Children's Hospital, Boston, MA, USA
| | - Lance L Munn
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Roberto F Nicosia
- Department of Pathology, University of Washington, Seattle, WA, USA
- Pathology and Laboratory Medicine Service, VA Puget Sound Health Care System, Seattle, WA, USA
| | - Agnes Noel
- Laboratory of Tumor and Developmental Biology, GIGA-Cancer, University of Liège, Liège, Belgium
| | - Jussi Nurro
- Department of Biotechnology and Molecular Medicine, University of Eastern Finland, Kuopio, Finland
| | - Anna-Karin Olsson
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala Biomedical Center, Uppsala University, Uppsala, Sweden
| | - Tatiana V Petrova
- Department of oncology UNIL-CHUV, Ludwig Institute for Cancer Research Lausanne, Lausanne, Switzerland
| | - Kristian Pietras
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund, Sweden
| | - Roberto Pili
- Genitourinary Program, Indiana University-Simon Cancer Center, Indianapolis, IN, USA
| | - Jeffrey W Pollard
- Medical Research Council Centre for Reproductive Health, College of Medicine and Veterinary Medicine, University of Edinburgh, Edinburgh, UK
| | - Mark J Post
- Department of Physiology, Maastricht University, Maastricht, The Netherlands
| | - Paul H A Quax
- Einthoven Laboratory for Experimental Vascular Medicine, Department Surgery, LUMC, Leiden, The Netherlands
| | - Gabriel A Rabinovich
- Laboratory of Immunopathology, Institute of Biology and Experimental Medicine, National Council of Scientific and Technical Investigations (CONICET), Buenos Aires, Argentina
| | - Marius Raica
- Department of Microscopic Morphology/Histology, Angiogenesis Research Center, Victor Babes University of Medicine and Pharmacy, Timisoara, Romania
| | - Anna M Randi
- Vascular Sciences, Imperial Centre for Translational and Experimental Medicine, National Heart and Lung Institute, Imperial College London, London, UK
| | - Domenico Ribatti
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari Medical School, Bari, Italy
- National Cancer Institute "Giovanni Paolo II", Bari, Italy
| | - Curzio Ruegg
- Department of Oncology, Microbiology and Immunology, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Reinier O Schlingemann
- Ocular Angiogenesis Group, Departments of Ophthalmology and Medical Biology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
- Department of Ophthalmology, University of Lausanne, Jules-Gonin Eye Hospital, Fondation Asile des Aveugles, Lausanne, Switzerland
| | - Stefan Schulte-Merker
- Institute of Cardiovascular Organogenesis and Regeneration, Faculty of Medicine, WWU, Münster, Germany
| | - Lois E H Smith
- Department of Ophthalmology, Harvard Medical School, Boston Children's Hospital, Boston, MA, USA
| | - Jonathan W Song
- Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, OH, USA
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Steven A Stacker
- Tumour Angiogenesis and Microenvironment Program, Peter MacCallum Cancer Centre and The Sir Peter MacCallum, Department of Oncology, University of Melbourne, Melbourne, VIC, Australia
| | - Jimmy Stalin
- Institute of Cardiovascular Organogenesis and Regeneration, Faculty of Medicine, WWU, Münster, Germany
| | - Amber N Stratman
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Maureen Van de Velde
- Laboratory of Tumor and Developmental Biology, GIGA-Cancer, University of Liège, Liège, Belgium
| | - Victor W M van Hinsbergh
- Department of Ophthalmology, University of Lausanne, Jules-Gonin Eye Hospital, Fondation Asile des Aveugles, Lausanne, Switzerland
| | - Peter B Vermeulen
- HistoGeneX, Antwerp, Belgium
- Translational Cancer Research Unit, GZA Hospitals, Sint-Augustinus & University of Antwerp, Antwerp, Belgium
| | - Johannes Waltenberger
- Medical Faculty, University of Münster, Albert-Schweitzer-Campus 1, Münster, Germany
| | - Brant M Weinstein
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Hong Xin
- University of California, San Diego, La Jolla, CA, USA
| | - Bahar Yetkin-Arik
- Ocular Angiogenesis Group, Departments of Ophthalmology and Medical Biology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Seppo Yla-Herttuala
- Department of Biotechnology and Molecular Medicine, University of Eastern Finland, Kuopio, Finland
| | - Mervin C Yoder
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Arjan W Griffioen
- Angiogenesis Laboratory, Department of Medical Oncology, VU University Medical Center, Cancer Center Amsterdam, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands.
| |
Collapse
|
22
|
Simara P, Tesarova L, Rehakova D, Farkas S, Salingova B, Kutalkova K, Vavreckova E, Matula P, Matula P, Veverkova L, Koutna I. Reprogramming of Adult Peripheral Blood Cells into Human Induced Pluripotent Stem Cells as a Safe and Accessible Source of Endothelial Cells. Stem Cells Dev 2017; 27:10-22. [PMID: 29117787 PMCID: PMC5756468 DOI: 10.1089/scd.2017.0132] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
New approaches in regenerative medicine and vasculogenesis have generated a demand for sufficient numbers of human endothelial cells (ECs). ECs and their progenitors reside on the interior surface of blood and lymphatic vessels or circulate in peripheral blood; however, their numbers are limited, and they are difficult to expand after isolation. Recent advances in human induced pluripotent stem cell (hiPSC) research have opened possible avenues to generate unlimited numbers of ECs from easily accessible cell sources, such as the peripheral blood. In this study, we reprogrammed peripheral blood mononuclear cells, human umbilical vein endothelial cells (HUVECs), and human saphenous vein endothelial cells (HSVECs) into hiPSCs and differentiated them into ECs. The phenotype profiles, functionality, and genome stability of all hiPSC-derived ECs were assessed and compared with HUVECs and HSVECs. hiPSC-derived ECs resembled their natural EC counterparts, as shown by the expression of the endothelial surface markers CD31 and CD144 and the results of the functional analysis. Higher expression of endothelial progenitor markers CD34 and kinase insert domain receptor (KDR) was measured in hiPSC-derived ECs. An analysis of phosphorylated histone H2AX (γH2AX) foci revealed that an increased number of DNA double-strand breaks upon reprogramming into pluripotent cells. However, differentiation into ECs restored a normal number of γH2AX foci. Our hiPSCs retained a normal karyotype, with the exception of the HSVEC-derived hiPSC line, which displayed mosaicism due to a gain of chromosome 1. Peripheral blood from adult donors is a suitable source for the unlimited production of patient-specific ECs through the hiPSC interstage. hiPSC-derived ECs are fully functional and comparable to natural ECs. The protocol is eligible for clinical applications in regenerative medicine, if the genomic stability of the pluripotent cell stage is closely monitored.
Collapse
Affiliation(s)
- Pavel Simara
- Centre for Biomedical Image Analysis, Faculty of Informatics, Masaryk University, Brno, Czech Republic
| | - Lenka Tesarova
- Centre for Biomedical Image Analysis, Faculty of Informatics, Masaryk University, Brno, Czech Republic
- International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czech Republic
| | - Daniela Rehakova
- Centre for Biomedical Image Analysis, Faculty of Informatics, Masaryk University, Brno, Czech Republic
| | - Simon Farkas
- Centre for Biomedical Image Analysis, Faculty of Informatics, Masaryk University, Brno, Czech Republic
| | - Barbara Salingova
- Centre for Biomedical Image Analysis, Faculty of Informatics, Masaryk University, Brno, Czech Republic
| | - Katerina Kutalkova
- Centre for Biomedical Image Analysis, Faculty of Informatics, Masaryk University, Brno, Czech Republic
| | - Eva Vavreckova
- Centre for Biomedical Image Analysis, Faculty of Informatics, Masaryk University, Brno, Czech Republic
| | - Pavel Matula
- Centre for Biomedical Image Analysis, Faculty of Informatics, Masaryk University, Brno, Czech Republic
| | - Petr Matula
- Centre for Biomedical Image Analysis, Faculty of Informatics, Masaryk University, Brno, Czech Republic
| | - Lenka Veverkova
- I. Surgery Department, St. Anne's University Hospital Brno, Brno, Czech Republic
| | - Irena Koutna
- Centre for Biomedical Image Analysis, Faculty of Informatics, Masaryk University, Brno, Czech Republic
- International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czech Republic
| |
Collapse
|
23
|
Zhang ZC, Tang C, Dong Y, Zhang J, Yuan T, Tao SC, Li XL. Targeting the long noncoding RNA MALAT1 blocks the pro-angiogenic effects of osteosarcoma and suppresses tumour growth. Int J Biol Sci 2017; 13:1398-1408. [PMID: 29209144 PMCID: PMC5715523 DOI: 10.7150/ijbs.22249] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2017] [Accepted: 09/22/2017] [Indexed: 11/18/2022] Open
Abstract
Osteosarcoma (OS), the commonest primary malignant tumour originating from bone, affects a substantial number of people, mostly during adolescent growth, and leads to a very poor prognosis as a result of the high rate of early metastases. Consequently, there is urgent demand for a novel treatment for this disease. There are growing concerns focused on OS-induced pro-angiogenic effects, but to date, the mechanism of OS-induced pro-angiogenesis is still insufficiently well-understood. Long noncoding RNAs (lncRNAs) have attracted increasing interest due to their strong correlation with a variety of diseases and their powerful capacity for epigenetic regulation. Recently, metastasis-associated lung adenocarcinoma transcript 1 (MALAT1), a lncRNA, has been discovered to be closely related to OS progression and hypoxia responses which are associated with angiogenesis. In this study, we confirm that MALAT1 induces pro-angiogenic effects, and demonstrate that the underlying mechanism involves a MALAT1/mechanistic target of rapamycin (mTOR)/hypoxia inducible factor-1α (HIF-1α) loop. With the help of chemically-modified small interfering RNAs targeting MALAT1 (siMALAT1), we confirm that siMALAT could provide a potential strategy to block the abnormally active OS-induced pro-angiogenic effect, and ultimately successfully suppress progression of OS tumours.
Collapse
Affiliation(s)
- Zhi-Chang Zhang
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, China
| | - Chun Tang
- Department of Nursing, Guangming Traditional Chinese Medicine Hospital, Pudong New Area, Shanghai 201300, China
| | - Yang Dong
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, China
| | - Jing Zhang
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, China
| | - Ting Yuan
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, China
| | - Shi-Cong Tao
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, China
| | - Xiao-Lin Li
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, China
| |
Collapse
|
24
|
Krawczenko A, Bielawska-Pohl A, Wojtowicz K, Jura R, Paprocka M, Wojdat E, Kozłowska U, Klimczak A, Grillon C, Kieda C, Duś D. Expression and activity of multidrug resistance proteins in mature endothelial cells and their precursors: A challenging correlation. PLoS One 2017; 12:e0172371. [PMID: 28212450 PMCID: PMC5315393 DOI: 10.1371/journal.pone.0172371] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Accepted: 02/03/2017] [Indexed: 01/30/2023] Open
Abstract
Active cellular transporters of harmful agents-multidrug resistance (mdr) proteins-are present in tumor, stem and endothelial cells, among others. While mdr proteins are broadly studied in tumor cells, their role in non-tumor cells and the significance of their action not connected with removal of harmful xenobiotics is less extensively documented. Proper assessment of mdr proteins expression is difficult. Mdr mRNA presence is most often evaluated but that does not necessarily correlate with the protein level. The protein expression itself is difficult to determine; usually cells with mdr overexpression are studied, not cells under physiological conditions, in which a low expression level of mdr protein is often insufficient for detection in vitro. Various methods are used to identify mdr mRNA and protein expression, together with functional tests demonstrating their biological drug transporting activities. Data comparing different methods of investigating expression of mdr mRNAs and their corresponding proteins are still scarce. In this article we present the results of a study concerning mdr mRNA and protein expression. Our goal was to search for the best method to investigate the expression level and functional activity of five selected mdr proteins-MDR1, BCRP, MRP1, MRP4 and MRP5-in established in vitro cell lines of human endothelial cells (ECs) and their progenitors. Endothelial cells demonstrated mdr presence at the mRNA level, which was not always confirmed at the protein level or in functional tests. Therefore, several different assays had to be applied for evaluation of mdr proteins expression and functions in endothelial cells. Among them functional tests seemed to be the most conclusive, although not very specific.
Collapse
Affiliation(s)
- Agnieszka Krawczenko
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Aleksandra Bielawska-Pohl
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Karolina Wojtowicz
- Department of Histology and Embryology, Poznan University of Medical Sciences, Poznan, Poland
| | | | - Maria Paprocka
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Elżbieta Wojdat
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Urszula Kozłowska
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Aleksandra Klimczak
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Catherine Grillon
- Cellular Microenvironment and Pharmacological Targets, Centre de Biophysique Moléculaire, CNRS UPR 4301, Orléans, France
| | - Claudine Kieda
- Cellular Microenvironment and Pharmacological Targets, Centre de Biophysique Moléculaire, CNRS UPR 4301, Orléans, France
| | - Danuta Duś
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| |
Collapse
|
25
|
Junhom C, Weerapreeyakul N, Tanthanuch W, Thumanu K. Partial least squares regression and fourier transform infrared (FTIR) microspectroscopy for prediction of resistance in hepatocellular carcinoma HepG2 cells. Exp Cell Res 2017; 351:82-90. [DOI: 10.1016/j.yexcr.2016.12.027] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 12/27/2016] [Accepted: 12/31/2016] [Indexed: 02/07/2023]
|
26
|
Torok S, Rezeli M, Kelemen O, Vegvari A, Watanabe K, Sugihara Y, Tisza A, Marton T, Kovacs I, Tovari J, Laszlo V, Helbich TH, Hegedus B, Klikovits T, Hoda MA, Klepetko W, Paku S, Marko-Varga G, Dome B. Limited Tumor Tissue Drug Penetration Contributes to Primary Resistance against Angiogenesis Inhibitors. Am J Cancer Res 2017; 7:400-412. [PMID: 28042343 PMCID: PMC5197073 DOI: 10.7150/thno.16767] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 11/07/2016] [Indexed: 01/25/2023] Open
Abstract
Resistance mechanisms against antiangiogenic drugs are unclear. Here, we correlated the antitumor and antivascular properties of five different antiangiogenic receptor tyrosine kinase inhibitors (RTKIs) (motesanib, pazopanib, sorafenib, sunitinib, vatalanib) with their intratumoral distribution data obtained by matrix-assisted laser desorption ionization mass spectrometry imaging (MALDI-MSI). In the first mouse model, only sunitinib exhibited broad-spectrum antivascular and antitumor activities by simultaneously suppressing vascular endothelial growth factor receptor-2 (VEGFR2) and desmin expression, and by increasing intratumoral hypoxia and inhibiting both tumor growth and vascularisation significantly. Importantly, the highest and most homogeneous intratumoral drug concentrations have been found in sunitinib-treated animals. In another animal model, where - in contrast to the first model - vatalanib was detectable at homogeneously high intratumoral concentrations, the drug significantly reduced tumor growth and angiogenesis. In conclusion, the tumor tissue penetration and thus the antiangiogenic and antitumor potential of antiangiogenic RTKIs vary among the tumor models and our study demonstrates the potential of MALDI-MSI to predict the efficacy of unlabelled small molecule antiangiogenic drugs in malignant tissue. Our approach is thus a major technical and preclinical advance demonstrating that primary resistance to angiogenesis inhibitors involves limited tumor tissue drug penetration. We also conclude that MALDI-MSI may significantly contribute to the improvement of antivascular cancer therapies.
Collapse
|
27
|
Gu Y, Lu H, Boisson-Vidal C, Li H, Bousquet G, Janin A, Di Benedetto M. [Resistance to anti-angiogenic therapy: a clinical and scientific current issue]. Med Sci (Paris) 2016; 32:370-7. [PMID: 27137694 DOI: 10.1051/medsci/20163204015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Although the use of anti-angiogenic agents has been considered a promising strategy to block tumor growth and improve the bioavailability of drugs into the tumor, the use of most of them in clinical trials is limited. The development of resistance to some anti-angiogenic agents and their high toxicity are currently under investigations. However, the approach is still valid since this therapeutic tool has lengthened survival of patients with colon, breast, kidney, lungs and liver cancers. The identification of biomarkers in response to this family of drugs is an important area of investigation.
Collapse
Affiliation(s)
- Yuchen Gu
- Inserm UMR-S1165, université Paris Diderot, Sorbonne Paris Cité, 1, avenue Claude Vellefaux, 75010 Paris, France
| | - He Lu
- Inserm UMR-S1165, université Paris Diderot, Sorbonne Paris Cité, 1, avenue Claude Vellefaux, 75010 Paris, France
| | | | - Hong Li
- Microenvironnement et renouvellement cellulaire intégré (MERCI - EA 3829), faculté de médecine et de pharmacie, université de Rouen, France
| | - Guilhem Bousquet
- Inserm UMR-S1165, université Paris Diderot, Sorbonne Paris Cité, 1, avenue Claude Vellefaux, 75010 Paris, France
| | - Anne Janin
- Inserm UMR-S1165, université Paris Diderot, Sorbonne Paris Cité, 1, avenue Claude Vellefaux, 75010 Paris, France
| | - Mélanie Di Benedetto
- Inserm UMR-S1165, université Paris Diderot, Sorbonne Paris Cité, 1, avenue Claude Vellefaux, 75010 Paris, France - Université Paris 13, avenue Jean-Baptiste Clément, 93430 Villetaneuse, France
| |
Collapse
|
28
|
Somasundaram R, Herlyn M, Wagner SN. The role of tumor microenvironment in melanoma therapy resistance. Melanoma Manag 2016; 3:23-32. [PMID: 30190870 PMCID: PMC6094607 DOI: 10.2217/mmt.15.37] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 10/06/2015] [Indexed: 12/16/2022] Open
Abstract
Melanoma patients develop resistance to both chemotherapy and targeted-therapy drugs. Promising preclinical and clinical results with immune checkpoint inhibitors using antibodies directed against cytotoxic T-lymphocyte-associated protein 4 and programmed cell death protein 1 have re-energized the field of immune-based therapies in melanoma. However, similar to chemotherapy or targeted therapies, immune checkpoint blockade responds in only subsets of melanoma patients. A number of factors, including gene mutations, altered cell-signaling pathways and tumor heterogeneity can contribute to therapy resistance. Recent studies have highlighted the role of inflammatory tumor microenvironment on therapy resistance of cancer cells. Cancer cells either alone or in conjunction with the tumor stroma can contribute to an inflammatory microenvironment. Multimodal approaches of targeting the tumor microenvironment, in addition to malignant cells, may be necessary for better therapy responses.
Collapse
Affiliation(s)
| | - Meenhard Herlyn
- The Wistar Institute, 3601 Spruce St, Philadelphia, PA 19104, USA
| | - Stephan N Wagner
- Division of Immunology, Allergy & Infectious Diseases (DIAID), Department of Dermatology, Medical University of Vienna, 1090 Wien, Austria
| |
Collapse
|
29
|
Multidrug resistant tumour cells shed more microvesicle-like EVs and less exosomes than their drug-sensitive counterpart cells. Biochim Biophys Acta Gen Subj 2016; 1860:618-27. [DOI: 10.1016/j.bbagen.2015.12.011] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 11/06/2015] [Accepted: 12/16/2015] [Indexed: 12/21/2022]
|
30
|
Role of the tumor stroma in resistance to anti-angiogenic therapy. Drug Resist Updat 2016; 25:26-37. [DOI: 10.1016/j.drup.2016.02.002] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 02/09/2016] [Accepted: 02/17/2016] [Indexed: 12/13/2022]
|
31
|
Kakarla P, Inupakutika M, Devireddy AR, Gunda SK, Willmon TM, Ranjana KC, Shrestha U, Ranaweera I, Hernandez AJ, Barr S, Varela MF. 3D-QSAR AND CONTOUR MAP ANALYSIS OF TARIQUIDAR ANALOGUES AS MULTIDRUG RESISTANCE PROTEIN-1 (MRP1) INHIBITORS. INTERNATIONAL JOURNAL OF PHARMACEUTICAL SCIENCES AND RESEARCH 2016; 7:554-572. [PMID: 26913287 PMCID: PMC4762489 DOI: 10.13040/ijpsr.0975-8232.7(2).554-72] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
One of the major obstacles to the successful chemotherapy towards several cancers is multidrug resistance of human cancer cells to anti-cancer drugs. An important contributor to multidrug resistance is the human multidrug resistance protein-1 transporter (MRP1), which is an efflux pump of the ABC (ATP binding cassette) superfamily. Thus, highly efficacious, third generation MRP1 inhibitors, like tariquidar analogues, are promising inhibitors of multidrug resistance and are under clinical trials. To maximize the efficacy of MRP1 inhibitors and to reduce systemic toxicity, it is important to limit the exposure of MRP1 inhibitors and anticancer drugs to normal tissues and to increase their co-localization with tumor cells. Comparative Molecular Field Analysis (CoMFA) and Comparative Molecular Similarity Indices Analysis (CoMSIA) associated with 3D-Quantitiative structure-activity relationship (3D-QSAR) studies were performed on a series of tariquidar analogues, as selective MDR modulators. Best predictability was obtained with CoMFA model r2 (non-cross-validated square of correlation coefficient) = 0.968, F value = 151.768 with five components, standard error of estimate = 0.107 while the CoMSIA yielded r2 = 0.982, F value = 60.628 with six components, and standard error of estimate = 0.154. These results indicate that steric, electrostatic, hydrophobic (lipophilic), and hydrogen bond donor substituents play significant roles in multidrug resistance modulation of tariquidar analogues upon MRP1. The tariquidar analogue and MRP1 binding and stability data generated from CoMFA and CoMSIA based 3D-contour maps may further aid in study and design of tariquidar analogues as novel, potent and selective MDR modulator drug candidates.
Collapse
Affiliation(s)
- Prathusha Kakarla
- Department of Biology, Eastern New Mexico University, Station 33, Portales, NM, 88130, USA
| | - Madhuri Inupakutika
- Department of Biological Sciences, College of Arts and Sciences, University of North Texas, 1155 Union Circle #305220, Denton, TX 76203, USA
| | - Amith R. Devireddy
- Department of Biological Sciences, College of Arts and Sciences, University of North Texas, 1155 Union Circle #305220, Denton, TX 76203, USA
| | - Shravan Kumar Gunda
- Bioinformatics Division, Osmania University, Hyderabad-500007, Andhra Pradesh, India
| | - Thomas Mark Willmon
- Department of Biology, Eastern New Mexico University, Station 33, Portales, NM, 88130, USA
| | - KC Ranjana
- Department of Biology, Eastern New Mexico University, Station 33, Portales, NM, 88130, USA
| | - Ugina Shrestha
- Department of Biology, Eastern New Mexico University, Station 33, Portales, NM, 88130, USA
| | - Indrika Ranaweera
- Department of Biology, Eastern New Mexico University, Station 33, Portales, NM, 88130, USA
| | - Alberto J. Hernandez
- Department of Biology, Eastern New Mexico University, Station 33, Portales, NM, 88130, USA
| | - Sharla Barr
- Department of Biology, Eastern New Mexico University, Station 33, Portales, NM, 88130, USA
| | - Manuel F. Varela
- Department of Biology, Eastern New Mexico University, Station 33, Portales, NM, 88130, USA
| |
Collapse
|
32
|
Recio-Vega R, Dena-Cazares JA, Ramirez-de la Peña JL, Jacobo-Ávila A, Portales-Castanedo A, Gallegos-Arreola MP, Ocampo-Gomez G, Michel-Ramirez G. MRP1 expression in bronchoalveolar lavage cells in subjects with lung cancer who were chronically exposed to arsenic. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2015; 56:759-766. [PMID: 26031227 DOI: 10.1002/em.21960] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Revised: 05/06/2015] [Accepted: 05/25/2015] [Indexed: 06/04/2023]
Abstract
Alteration of multidrug resistance-associated protein-1 (MRP1) expression has been associated with certain lung diseases, and this protein may be pivotal in protecting the lungs against endogenous or exogenous toxic compounds. The aim of this study was to evaluate and compare the expression of MRP1 in bronchoalveolar cells from subjects with and without lung cancer who had been chronically exposed to arsenic through drinking water. MRP1 expression was assessed in bronchoalveolar cells in a total of 102 participants. MRP1 expression was significantly decreased in those with arsenic urinary levels >50 μg/L when compared with the controls. In conclusion, chronic arsenic exposure negatively correlates with the expression of MRP1 in BAL cells in patients with lung cancer.
Collapse
Affiliation(s)
- Rogelio Recio-Vega
- Department of Environmental Health, Biomedical Research Center, School of Medicine at Torreón, University of Coahuila, Mexico
| | - Jose Angel Dena-Cazares
- Department of Environmental Health, Biomedical Research Center, School of Medicine at Torreón, University of Coahuila, Mexico
| | - Jorge Luis Ramirez-de la Peña
- Department of Environmental Health, Biomedical Research Center, School of Medicine at Torreón, University of Coahuila, Mexico
| | - Antonio Jacobo-Ávila
- Department of Pneumology, Instituto Mexicano Del Seguro Social, Torreón, Coahuila, México
| | | | - Martha Patricia Gallegos-Arreola
- Division of Molecular Medicine, Molecular Genetics Laboratory, Centro De Investigación Biomédica De Occidente, Guadalajara, Jalisco, Mexico
| | - Guadalupe Ocampo-Gomez
- Department of Environmental Health, Biomedical Research Center, School of Medicine at Torreón, University of Coahuila, Mexico
| | - Gladis Michel-Ramirez
- Department of Environmental Health, Biomedical Research Center, School of Medicine at Torreón, University of Coahuila, Mexico
| |
Collapse
|
33
|
MicroRNA181a Is Overexpressed in T-Cell Leukemia/Lymphoma and Related to Chemoresistance. BIOMED RESEARCH INTERNATIONAL 2015; 2015:197241. [PMID: 26436088 PMCID: PMC4575996 DOI: 10.1155/2015/197241] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Revised: 01/20/2015] [Accepted: 01/27/2015] [Indexed: 02/06/2023]
Abstract
MicroRNAs (miRs) play an important role in tumorogenesis and chemoresistance in lymphoid malignancies. Comparing with reactive hyperplasia, miR181a was overexpressed in 130 patients with T-cell leukemia/lymphoma, including acute T-cell lymphoblastic leukemia (n = 32), T-cell lymphoblastic lymphoma (n = 16), peripheral T-cell lymphoma, not otherwise specified (n = 45), anaplastic large cell lymphoma (n = 15), and angioimmunoblastic T-cell lymphoma (n = 22). Irrespective to histological subtypes, miR181a overexpression was associated with increased AKT phosphorylation. In vitro, ectopic expression of miR181a in HEK-293T cells significantly enhanced cell proliferation, activated AKT, and conferred cell resistance to doxorubicin. Meanwhile, miR181a expression was upregulated in Jurkat cells, along with AKT activation, during exposure to chemotherapeutic agents regularly applied to T-cell leukemia/lymphoma treatment, such as doxorubicin, cyclophosphamide, cytarabine, and cisplatin. Isogenic doxorubicin-resistant Jurkat and H9 cells were subsequently developed, which also presented with miR181a overexpression and cross-resistance to cyclophosphamide and cisplatin. Meanwhile, specific inhibition of miR181a enhanced Jurkat and H9 cell sensitivity to chemotherapeutic agents, further indicating that miR181a was involved in acquired chemoresistance. Collectively, miR181a functioned as a biomarker of T-cell leukemia/lymphoma through modulation of AKT pathway. Related to tumor cell chemoresistance, miR181a could be a potential therapeutic target in treating T-cell malignancies.
Collapse
|
34
|
Discovery of substituted 1,4-dihydroquinolines as novel class of ABCB1 modulators. Bioorg Med Chem 2015; 23:5015-5021. [DOI: 10.1016/j.bmc.2015.05.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Revised: 05/05/2015] [Accepted: 05/06/2015] [Indexed: 11/18/2022]
|
35
|
Asada H, Tomiyasu H, Goto-Koshino Y, Fujino Y, Ohno K, Tsujimoto H. Evaluation of the drug sensitivity and expression of 16 drug resistance-related genes in canine histiocytic sarcoma cell lines. J Vet Med Sci 2015; 77:677-84. [PMID: 25715778 PMCID: PMC4488404 DOI: 10.1292/jvms.14-0415] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Canine histiocytic sarcoma (HS) is an aggressive tumor type originating from histiocytic
cell lineages. This disease is characterized by poor response to chemotherapy and short
survival time. Therefore, it is of critical importance to identify and develop effective
antitumor drugs against HS. The objectives of this study were to examine the drug
sensitivities of 10 antitumor drugs. Using a real-time RT-PCR system, the mRNA expression
levels of 16 genes related to drug resistance in 4 canine HS cell lines established from
dogs with disseminated HS were determined and compared to 2 canine lymphoma cell lines
(B-cell and T-cell). These 4 canine HS cell lines showed sensitivities toward microtubule
inhibitors (vincristine, vinblastine and paclitaxel), comparable to those in the canine
B-cell lymphoma cell line. Moreover, it was shown that P-gp in the HS cell lines used in
this study did not have enough function to efflux its substrate. Sensitivities to
melphalan, nimustine, methotrexate, cytarabine, doxorubicin and etoposide were lower in
the 4 HS cell lines than in the 2 canine lymphoma cell lines. The data obtained in this
study using cultured cell lines could prove helpful in the developing of advanced and
effective chemotherapies for treating dogs that are suffering from HS.
Collapse
Affiliation(s)
- Hajime Asada
- Department of Veterinary Internal Medicine, Graduate School of Agricultural and Life Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | | | | | | | | | | |
Collapse
|
36
|
Tomankova K, Polakova K, Pizova K, Binder S, Havrdova M, Kolarova M, Kriegova E, Zapletalova J, Malina L, Horakova J, Malohlava J, Kolokithas-Ntoukas A, Bakandritsos A, Kolarova H, Zboril R. In vitro cytotoxicity analysis of doxorubicin-loaded/superparamagnetic iron oxide colloidal nanoassemblies on MCF7 and NIH3T3 cell lines. Int J Nanomedicine 2015; 10:949-61. [PMID: 25673990 PMCID: PMC4321606 DOI: 10.2147/ijn.s72590] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
One of the promising strategies for improvement of cancer treatment is based on magnetic drug delivery systems, thus avoiding side effects of standard chemotherapies. Superparamagnetic iron oxide (SPIO) nanoparticles have ideal properties to become a targeted magnetic drug delivery contrast probes, named theranostics. We worked with SPIO condensed colloidal nanocrystal clusters (MagAlg) prepared through a new soft biomineralization route in the presence of alginate as the polymeric shell and loaded with doxorubicin (DOX). The aim of this work was to study the in vitro cytotoxicity of these new MagAlg-DOX systems on mouse fibroblast and breast carcinoma cell lines. For proper analysis and understanding of cell behavior after administration of MagAlg-DOX compared with free DOX, a complex set of in vitro tests, including production of reactive oxygen species, comet assay, cell cycle determination, gene expression, and cellular uptake, were utilized. It was found that the cytotoxic effect of MagAlg-DOX system is delayed compared to free DOX in both cell lines. This was attributed to the different mechanism of internalization of DOX and MagAlg-DOX into the cells, together with the fact that the drug is strongly bound on the drug nanocarriers. We discovered that nanoparticles can attenuate or even inhibit the effect of DOX, particularly in the tumor MCF7 cell line. This is a first comprehensive study on the cytotoxic effect of DOX-loaded SPIO compared with free DOX on healthy and cancer cell lines, as well as on the induced changes in gene expression.
Collapse
Affiliation(s)
- Katerina Tomankova
- Department of Medical Biophysics, Institute of Translation Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Katerina Polakova
- Regional Centre of Advanced Technologies and Materials, Departments of Physical Chemistry and Experimental Physics, Faculty of Science, Palacky University, Olomouc, Czech Republic
| | - Klara Pizova
- Department of Medical Biophysics, Institute of Translation Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Svatopluk Binder
- Department of Medical Biophysics, Institute of Translation Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Marketa Havrdova
- Regional Centre of Advanced Technologies and Materials, Departments of Physical Chemistry and Experimental Physics, Faculty of Science, Palacky University, Olomouc, Czech Republic
| | - Mary Kolarova
- Regional Centre of Advanced Technologies and Materials, Departments of Physical Chemistry and Experimental Physics, Faculty of Science, Palacky University, Olomouc, Czech Republic
| | - Eva Kriegova
- Department of Immunology, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Jana Zapletalova
- Department of Medical Biophysics, Institute of Translation Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Lukas Malina
- Department of Medical Biophysics, Institute of Translation Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Jana Horakova
- Department of Medical Biophysics, Institute of Translation Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Jakub Malohlava
- Department of Medical Biophysics, Institute of Translation Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | | | | | - Hana Kolarova
- Department of Medical Biophysics, Institute of Translation Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Radek Zboril
- Regional Centre of Advanced Technologies and Materials, Departments of Physical Chemistry and Experimental Physics, Faculty of Science, Palacky University, Olomouc, Czech Republic
| |
Collapse
|
37
|
Huang L, Hu C, DI Benedetto M, Varin R, Liu J, Jin J, Wang L, Vannier JP, Janin A, Lu H, Li H. Cross-drug resistance to sunitinib induced by doxorubicin in endothelial cells. Oncol Lett 2014; 9:1287-1292. [PMID: 25663899 PMCID: PMC4315062 DOI: 10.3892/ol.2014.2819] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Accepted: 10/15/2014] [Indexed: 01/08/2023] Open
Abstract
Multiple drug resistance remains an unsolved problem in cancer therapy. A previous study has demonstrated that the chemotherapeutic drug doxorubicin (Dox) induced upregulation of P-glycoprotein in endothelial cells, resulting in a 20-fold increase in drug resistance and reduced efficiency of doxorubicin treatment in a mouse tumor model. In the present study, the cross-resistance and sensitivity of HMECd1 and HMECd2 established cell lines to anti-angiogenic drugs, particularly sunitinib, was explored. The results revealed that Dox treatment induced a significant increase in the breast cancer resistance protein (ABCG2) gene transcription and protein expression. This increase gave rise to a 4- to 5-fold increase in the half maximal inhibitory concentration of the HMECd1 and HMECd2 cells in response to sunitinib treatment in vitro. Functionally, the role of ABCG2 in the resistance to sunitinib was confirmed by the use of the ABCG2 inhibitors fumitremorgin C and diethylstilbestrol, which blocked cell resistance. The present study indicates that endothelial cells exhibit cross-resistance between cytotoxic drugs and anti-angiogenic drugs. This suggests that multiple drug resistance induced by chemotherapy in endothelial cells may affect the efficiency of anti-angiogenic drugs.
Collapse
Affiliation(s)
- Limin Huang
- Department of Oncology, People's Hospital of Guizhou Province, Guiyang, Guizhou 550000, P.R. China
| | - Chaoquan Hu
- Department of Surgery, Affiliated Hospital of Guiyang Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Mélanie DI Benedetto
- French Institute of Health and Medical Research, UMR-S 1165, University Institute of Hematology, Saint Louis Hospital, Paris 75010, France
| | - Rémi Varin
- Laboratory of MERCI (EA 3829), Faculty of Medicine and Pharmacy, University of Rouen, Rouen 76183, France
| | - Jielin Liu
- Department of Surgery, Affiliated Hospital of Guiyang Medical University, Guiyang, Guizhou 550004, P.R. China ; French Institute of Health and Medical Research, UMR-S 1165, University Institute of Hematology, Saint Louis Hospital, Paris 75010, France
| | - Jian Jin
- French Institute of Health and Medical Research, UMR-S 1165, University Institute of Hematology, Saint Louis Hospital, Paris 75010, France ; School of Medicine and Pharmaceutics, Jiangnan University, Wuxi, Jiangsu 214122, P.R. China
| | - Li Wang
- French Institute of Health and Medical Research, UMR-S 1165, University Institute of Hematology, Saint Louis Hospital, Paris 75010, France
| | - Jean-Pierre Vannier
- Laboratory of MERCI (EA 3829), Faculty of Medicine and Pharmacy, University of Rouen, Rouen 76183, France
| | - Anne Janin
- French Institute of Health and Medical Research, UMR-S 1165, University Institute of Hematology, Saint Louis Hospital, Paris 75010, France ; Laboratory of Pathology, Paris Diderot University, Sorbonne Paris Cité, UMR-S 1165, France ; Saint-Louis Hospital, Laboratory of Pathology, Paris 75010, France
| | - He Lu
- French Institute of Health and Medical Research, UMR-S 1165, University Institute of Hematology, Saint Louis Hospital, Paris 75010, France ; Laboratory of Pathology, Paris Diderot University, Sorbonne Paris Cité, UMR-S 1165, France
| | - Hong Li
- Laboratory of MERCI (EA 3829), Faculty of Medicine and Pharmacy, University of Rouen, Rouen 76183, France
| |
Collapse
|
38
|
Huang L, Hu C, Di Benedetto M, Varin R, Liu J, Wang L, Vannier JP, Jin J, Janin A, Lu H, Li H. Induction of multiple drug resistance in HMEC-1 endothelial cells after long-term exposure to sunitinib. Onco Targets Ther 2014; 7:2249-55. [PMID: 25587220 PMCID: PMC4262216 DOI: 10.2147/ott.s67251] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Multiple drug resistance is still an unsolved problem in cancer therapy. Our previous study demonstrated that the chemotherapeutic drug doxorubicin (Dox) induced upregulation of P-glycoprotein (P-gp) in endothelial cells, resulting in a 20-fold increase in drug resistance and reduced efficiency of Dox treatment in a mice tumor model. In this study, we exposed human microvascular endothelial cells (HMEC-1) to sunitinib, a tyrosine kinase receptor inhibitor, to induce drug resistance. The results show that sunitinib treatment induced multiple drug resistance in these cells. They became resistant not only to sunitinib but also to Dox, paclitaxel, and vinblastine. Significant increases in P-gp (9.3-fold), ABCG2 (breast cancer resistance protein, 1.9-fold), and multidrug resistance-associated protein 1 (2.7-fold) gene transcription were found by quantitative polymerase chain reaction quantification, and their protein expression was confirmed by Western blot. These increases gave rise to an approximately five-fold increase in half maximal inhibitory concentration in these cells in response to sunitinib treatment in vitro. The inhibitors of adenosine triphosphate-binding cassette transporters did not reverse the drug resistance in sunitinib-resistant HMEC-1 cells, assumedly because of a blockage of the pump function caused by sunitinib. Our study indicates that the antiangiogenic drug sunitinib induces multiple drug resistance in endothelial cells. The induction of adenosine triphosphate-binding cassette transporters seems not to be responsible for observed multiple drug resistance, and the underlying mechanisms remain unknown.
Collapse
Affiliation(s)
- Limin Huang
- Department of Oncology, People's Hospital of Guizhou Province, Guiyang, People's Republic of China
| | - Chaoquan Hu
- Department of Surgery, Affiliated Hospital, Guiyang Medical University, Guiyang, People's Republic of China
| | | | - Rémi Varin
- MERCI (EA 3829), Faculté de Médecine et de Pharmacie, Université de Rouen, Rouen, France
| | - Jielin Liu
- Department of Surgery, Affiliated Hospital, Guiyang Medical University, Guiyang, People's Republic of China ; INSERM UMR-S 1165, Paris, France
| | - Li Wang
- INSERM UMR-S 1165, Paris, France
| | - Jean-Pierre Vannier
- MERCI (EA 3829), Faculté de Médecine et de Pharmacie, Université de Rouen, Rouen, France
| | - Jian Jin
- INSERM UMR-S 1165, Paris, France ; School of Medicine and Pharmaceutics, Jiangnan University, Wuxi, People's Republic of China
| | - Anne Janin
- INSERM UMR-S 1165, Paris, France ; Université Paris Diderot, Laboratoire de Pathologie, Paris, France ; AP-HP-Hôpital Saint-Louis, Laboratoire de Pathologie, Paris, France
| | - He Lu
- INSERM UMR-S 1165, Paris, France ; Université Paris Diderot, Laboratoire de Pathologie, Paris, France
| | - Hong Li
- MERCI (EA 3829), Faculté de Médecine et de Pharmacie, Université de Rouen, Rouen, France
| |
Collapse
|
39
|
Tumor endothelial expression of P-glycoprotein upon microvesicular transfer of TrpC5 derived from adriamycin-resistant breast cancer cells. Biochem Biophys Res Commun 2014; 446:85-90. [DOI: 10.1016/j.bbrc.2014.02.076] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2014] [Accepted: 02/13/2014] [Indexed: 12/11/2022]
|