1
|
Srivastava LK, Ehrlicher AJ. Sensing the squeeze: nuclear mechanotransduction in health and disease. Nucleus 2024; 15:2374854. [PMID: 38951951 PMCID: PMC11221475 DOI: 10.1080/19491034.2024.2374854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 06/26/2024] [Indexed: 07/03/2024] Open
Abstract
The nucleus not only is a repository for DNA but also a center of cellular and nuclear mechanotransduction. From nuclear deformation to the interplay between mechanosensing components and genetic control, the nucleus is poised at the nexus of mechanical forces and cellular function. Understanding the stresses acting on the nucleus, its mechanical properties, and their effects on gene expression is therefore crucial to appreciate its mechanosensitive function. In this review, we examine many elements of nuclear mechanotransduction, and discuss the repercussions on the health of cells and states of illness. By describing the processes that underlie nuclear mechanosensation and analyzing its effects on gene regulation, the review endeavors to open new avenues for studying nuclear mechanics in physiology and diseases.
Collapse
Affiliation(s)
| | - Allen J. Ehrlicher
- Department of Bioengineering, McGill University, Montreal, Canada
- Department of Biomedical Engineering, McGill University, Montreal, Canada
- Department of Anatomy and Cell Biology, McGill University, Montreal, Canada
- Centre for Structural Biology, McGill University, Montreal, Canada
- Department of Mechanical Engineering, McGill University, Montreal, Canada
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, Canada
| |
Collapse
|
2
|
Sinha J, Nickels JF, Thurm AR, Ludwig CH, Archibald BN, Hinks MM, Wan J, Fang D, Bintu L. The H3.3K36M oncohistone disrupts the establishment of epigenetic memory through loss of DNA methylation. Mol Cell 2024; 84:3899-3915.e7. [PMID: 39368466 PMCID: PMC11526022 DOI: 10.1016/j.molcel.2024.09.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 05/31/2024] [Accepted: 09/13/2024] [Indexed: 10/07/2024]
Abstract
Histone H3.3 is frequently mutated in tumors, with the lysine 36 to methionine mutation (K36M) being a hallmark of chondroblastomas. While it is known that H3.3K36M changes the epigenetic landscape, its effects on gene expression dynamics remain unclear. Here, we use a synthetic reporter to measure the effects of H3.3K36M on silencing and epigenetic memory after recruitment of the ZNF10 Krüppel-associated box (KRAB) domain, part of the largest class of human repressors and associated with H3K9me3 deposition. We find that H3.3K36M, which decreases H3K36 methylation and increases histone acetylation, leads to a decrease in epigenetic memory and promoter methylation weeks after KRAB release. We propose a model for establishment and maintenance of epigenetic memory, where the H3K36 methylation pathway is necessary to maintain histone deacetylation and convert H3K9me3 domains into DNA methylation for stable epigenetic memory. Our quantitative model can inform oncogenic mechanisms and guide development of epigenetic editing tools.
Collapse
Affiliation(s)
- Joydeb Sinha
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Jan F Nickels
- Niels Bohr Institute, University of Copenhagen, Copenhagen 2100, Denmark; Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Abby R Thurm
- Biophysics Program, Stanford University, Stanford, CA 94305, USA
| | - Connor H Ludwig
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Bella N Archibald
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Michaela M Hinks
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Jun Wan
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Dong Fang
- Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Lacramioara Bintu
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
3
|
Wu Z, Qu J, Liu GH. Roles of chromatin and genome instability in cellular senescence and their relevance to ageing and related diseases. Nat Rev Mol Cell Biol 2024:10.1038/s41580-024-00775-3. [PMID: 39363000 DOI: 10.1038/s41580-024-00775-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/12/2024] [Indexed: 10/05/2024]
Abstract
Ageing is a complex biological process in which a gradual decline in physiological fitness increases susceptibility to diseases such as neurodegenerative disorders and cancer. Cellular senescence, a state of irreversible cell-growth arrest accompanied by functional deterioration, has emerged as a pivotal driver of ageing. In this Review, we discuss how heterochromatin loss, telomere attrition and DNA damage contribute to cellular senescence, ageing and age-related diseases by eliciting genome instability, innate immunity and inflammation. We also discuss how emerging therapeutic strategies could restore heterochromatin stability, maintain telomere integrity and boost the DNA repair capacity, and thus counteract cellular senescence and ageing-associated pathologies. Finally, we outline current research challenges and future directions aimed at better comprehending and delaying ageing.
Collapse
Affiliation(s)
- Zeming Wu
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Jing Qu
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
- Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing Anzhen Hospital, Capital Medical University, Beijing, China.
- Aging Biomarker Consortium, Beijing, China.
| | - Guang-Hui Liu
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
- Aging Biomarker Consortium, Beijing, China.
- Aging Translational Medicine Center, International Center for Aging and Cancer, Xuanwu Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
4
|
Haider S, Farrona S. Decoding histone 3 lysine methylation: Insights into seed germination and flowering. CURRENT OPINION IN PLANT BIOLOGY 2024; 81:102598. [PMID: 38986392 DOI: 10.1016/j.pbi.2024.102598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/01/2024] [Accepted: 06/12/2024] [Indexed: 07/12/2024]
Abstract
Histone lysine methylation is a highly conserved epigenetic modification across eukaryotes that contributes to creating different dynamic chromatin states, which may result in transcriptional changes. Over the years, an accumulated set of evidence has shown that histone methylation allows plants to align their development with their surroundings, enabling them to respond and memorize past events due to changes in the environment. In this review, we discuss the molecular mechanisms of histone methylation in plants. Writers, readers, and erasers of Arabidopsis histone methylation marks are described with an emphasis on their role in two of the most important developmental transition phases in plants, seed germination and flowering. Further, the crosstalk between different methylation marks is also discussed. An overview of the mechanisms of histone methylation modifications and their biological outcomes will shed light on existing research gaps and may provide novel perspectives to increase crop yield and resistance in the era of global climate change.
Collapse
Affiliation(s)
- Saqlain Haider
- School of Biological and Chemical Sciences, College of Science and Engineering, University of Galway, Galway H91 TK33, Ireland
| | - Sara Farrona
- School of Biological and Chemical Sciences, College of Science and Engineering, University of Galway, Galway H91 TK33, Ireland.
| |
Collapse
|
5
|
Zou Z, Wang Q, Wu X, Schultz RM, Xie W. Kick-starting the zygotic genome: licensors, specifiers, and beyond. EMBO Rep 2024; 25:4113-4130. [PMID: 39160344 PMCID: PMC11467316 DOI: 10.1038/s44319-024-00223-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 06/14/2024] [Accepted: 07/24/2024] [Indexed: 08/21/2024] Open
Abstract
Zygotic genome activation (ZGA), the first transcription event following fertilization, kickstarts the embryonic program that takes over the control of early development from the maternal products. How ZGA occurs, especially in mammals, is poorly understood due to the limited amount of research materials. With the rapid development of single-cell and low-input technologies, remarkable progress made in the past decade has unveiled dramatic transitions of the epigenomes, transcriptomes, proteomes, and metabolomes associated with ZGA. Moreover, functional investigations are yielding insights into the key regulators of ZGA, among which two major classes of players are emerging: licensors and specifiers. Licensors would control the permission of transcription and its timing during ZGA. Accumulating evidence suggests that such licensors of ZGA include regulators of the transcription apparatus and nuclear gatekeepers. Specifiers would instruct the activation of specific genes during ZGA. These specifiers include key transcription factors present at this stage, often facilitated by epigenetic regulators. Based on data primarily from mammals but also results from other species, we discuss in this review how recent research sheds light on the molecular regulation of ZGA and its executors, including the licensors and specifiers.
Collapse
Affiliation(s)
- Zhuoning Zou
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, 100084, Beijing, China
| | - Qiuyan Wang
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, 100084, Beijing, China
| | - Xi Wu
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, 100084, Beijing, China
- Peking University-Tsinghua University-National Institute of Biological Sciences (PTN) Joint Graduate Program, Academy for Advanced Interdisciplinary Studies, Peking University, 100871, Beijing, China
| | - Richard M Schultz
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
- Department of Microbiology and Molecular Genetics, College of Biological Sciences, University of California, Davis, Davis, CA, USA
| | - Wei Xie
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, 100084, Beijing, China.
- Tsinghua-Peking Center for Life Sciences, Beijing, China.
| |
Collapse
|
6
|
Tomizawa SI, Fellows R, Ono M, Kuroha K, Dočkal I, Kobayashi Y, Minamizawa K, Natsume K, Nakajima K, Hoshi I, Matsuda S, Seki M, Suzuki Y, Aoto K, Saitsu H, Ohbo K. The non-canonical bivalent gene Wfdc15a controls spermatogenic protease and immune homeostasis. Development 2024; 151:dev202834. [PMID: 39222051 DOI: 10.1242/dev.202834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 08/15/2024] [Indexed: 09/04/2024]
Abstract
Male infertility can be caused by chromosomal abnormalities, mutations and epigenetic defects. Epigenetic modifiers pre-program hundreds of spermatogenic genes in spermatogonial stem cells (SSCs) for expression later in spermatids, but it remains mostly unclear whether and how those genes are involved in fertility. Here, we report that Wfdc15a, a WFDC family protease inhibitor pre-programmed by KMT2B, is essential for spermatogenesis. We found that Wfdc15a is a non-canonical bivalent gene carrying both H3K4me3 and facultative H3K9me3 in SSCs, but is later activated along with the loss of H3K9me3 and acquisition of H3K27ac during meiosis. We show that WFDC15A deficiency causes defective spermiogenesis at the beginning of spermatid elongation. Notably, depletion of WFDC15A causes substantial disturbance of the testicular protease-antiprotease network and leads to an orchitis-like inflammatory response associated with TNFα expression in round spermatids. Together, our results reveal a unique epigenetic program regulating innate immunity crucial for fertility.
Collapse
Affiliation(s)
- Shin-Ichi Tomizawa
- Department of Histology and Cell Biology, Yokohama City University School of Medicine, Yokohama 236-0004, Japan
| | - Rachel Fellows
- Department of Histology and Cell Biology, Yokohama City University School of Medicine, Yokohama 236-0004, Japan
| | - Michio Ono
- Department of Histology and Cell Biology, Yokohama City University School of Medicine, Yokohama 236-0004, Japan
| | - Kazushige Kuroha
- Department of Histology and Cell Biology, Yokohama City University School of Medicine, Yokohama 236-0004, Japan
| | - Ivana Dočkal
- Department of Histology and Cell Biology, Yokohama City University School of Medicine, Yokohama 236-0004, Japan
| | - Yuki Kobayashi
- Department of Histology and Cell Biology, Yokohama City University School of Medicine, Yokohama 236-0004, Japan
| | - Keisuke Minamizawa
- Department of Histology and Cell Biology, Yokohama City University School of Medicine, Yokohama 236-0004, Japan
| | - Koji Natsume
- Department of Histology and Cell Biology, Yokohama City University School of Medicine, Yokohama 236-0004, Japan
| | - Kuniko Nakajima
- Department of Histology and Cell Biology, Yokohama City University School of Medicine, Yokohama 236-0004, Japan
| | - Ikue Hoshi
- Department of Histology and Cell Biology, Yokohama City University School of Medicine, Yokohama 236-0004, Japan
| | - Shion Matsuda
- Department of Histology and Cell Biology, Yokohama City University School of Medicine, Yokohama 236-0004, Japan
| | - Masahide Seki
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa 277-8562, Japan
| | - Yutaka Suzuki
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa 277-8562, Japan
| | - Kazushi Aoto
- Department of Biochemistry, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka 431-3192, Japan
- Central Laboratory, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan
| | - Hirotomo Saitsu
- Department of Biochemistry, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka 431-3192, Japan
| | - Kazuyuki Ohbo
- Department of Histology and Cell Biology, Yokohama City University School of Medicine, Yokohama 236-0004, Japan
| |
Collapse
|
7
|
Masuzawa R, Rosa Flete HK, Shimizu J, Kawano F. Age-related histone H3.3 accumulation associates with a repressive chromatin in mouse tibialis anterior muscle. J Physiol Sci 2024; 74:41. [PMID: 39277714 PMCID: PMC11401410 DOI: 10.1186/s12576-024-00935-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 08/25/2024] [Indexed: 09/17/2024]
Abstract
The present study aimed to investigate age-related changes in histone variant H3.3 and its role in the aging process of mouse tibialis anterior muscle. H3.3 level significantly increased with age and correlated with H3K27me3 level. Acute exercise successfully upregulated the target gene expression in 8-wk-old mice, whereas no upregulation was noted in 53-wk-old mice. H3K27me3 level was increased at these loci in response to acute exercise in 8-wk-old mice. However, in 53-wk-old mice, H3.3 and H3K27me3 levels were increased at rest and were not affected by acute exercise. Furthermore, forced H3.3 expression in the skeletal muscle of 8-wk-old mice led to a gradual improvement in motor function. The results suggest that age-related H3.3 accumulation induces the formation of repressive chromatin in the mouse tibialis anterior muscle. However, H3.3 accumulation also appears to play a positive role in enhancing skeletal muscle function.
Collapse
Affiliation(s)
- Ryo Masuzawa
- Graduate School of Health Science, Matsumoto University, 2095-1 Niimura, Matsumoto, Nagano, 390-1295, Japan
| | - Hemilce Karina Rosa Flete
- Graduate School of Health Science, Matsumoto University, 2095-1 Niimura, Matsumoto, Nagano, 390-1295, Japan
| | - Junya Shimizu
- Graduate School of Health Science, Matsumoto University, 2095-1 Niimura, Matsumoto, Nagano, 390-1295, Japan
| | - Fuminori Kawano
- Graduate School of Health Science, Matsumoto University, 2095-1 Niimura, Matsumoto, Nagano, 390-1295, Japan.
| |
Collapse
|
8
|
Kelnhofer-Millevolte LE, Arnold EA, Nguyen DH, Avgousti DC. Controlling Much? Viral Control of Host Chromatin Dynamics. Annu Rev Virol 2024; 11:171-191. [PMID: 38684115 DOI: 10.1146/annurev-virology-100422-011616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
Viruses are exemplary molecular biologists and have been integral to scientific discovery for generations. It is therefore no surprise that nuclear replicating viruses have evolved to systematically take over host cell function through astoundingly specific nuclear and chromatin hijacking. In this review, we focus on nuclear replicating DNA viruses-herpesviruses and adenoviruses-as key examples of viral invasion in the nucleus. We concentrate on critical features of nuclear architecture, such as chromatin and the nucleolus, to illustrate the complexity of the virus-host battle for resources in the nucleus. We conclude with a discussion of the technological advances that have enabled the discoveries we describe and upcoming steps in this burgeoning field.
Collapse
Affiliation(s)
- Laurel E Kelnhofer-Millevolte
- Medical Scientist Training Program, University of Washington, Seattle, Washington, USA
- Department of Molecular and Cellular Biology, University of Washington, Seattle, Washington, USA
| | - Edward A Arnold
- Department of Microbiology, University of Washington, Seattle, Washington, USA
| | - Daniel H Nguyen
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA;
| | - Daphne C Avgousti
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA;
- Department of Microbiology, University of Washington, Seattle, Washington, USA
| |
Collapse
|
9
|
Wong LH, Tremethick DJ. Multifunctional histone variants in genome function. Nat Rev Genet 2024:10.1038/s41576-024-00759-1. [PMID: 39138293 DOI: 10.1038/s41576-024-00759-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/18/2024] [Indexed: 08/15/2024]
Abstract
Histones are integral components of eukaryotic chromatin that have a pivotal role in the organization and function of the genome. The dynamic regulation of chromatin involves the incorporation of histone variants, which can dramatically alter its structural and functional properties. Contrary to an earlier view that limited individual histone variants to specific genomic functions, new insights have revealed that histone variants exert multifaceted roles involving all aspects of genome function, from governing patterns of gene expression at precise genomic loci to participating in genome replication, repair and maintenance. This conceptual change has led to a new understanding of the intricate interplay between chromatin and DNA-dependent processes and how this connection translates into normal and abnormal cellular functions.
Collapse
Affiliation(s)
- Lee H Wong
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - David J Tremethick
- The John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capial Territory, Australia.
| |
Collapse
|
10
|
Goto N, Suke K, Yonezawa N, Nishihara H, Handa T, Sato Y, Kujirai T, Kurumizaka H, Yamagata K, Kimura H. ISWI chromatin remodeling complexes recruit NSD2 and H3K36me2 in pericentromeric heterochromatin. J Cell Biol 2024; 223:e202310084. [PMID: 38709169 PMCID: PMC11076809 DOI: 10.1083/jcb.202310084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 03/04/2024] [Accepted: 04/16/2024] [Indexed: 05/07/2024] Open
Abstract
Histone H3 lysine36 dimethylation (H3K36me2) is generally distributed in the gene body and euchromatic intergenic regions. However, we found that H3K36me2 is enriched in pericentromeric heterochromatin in some mouse cell lines. We here revealed the mechanism of heterochromatin targeting of H3K36me2. Among several H3K36 methyltransferases, NSD2 was responsible for inducing heterochromatic H3K36me2. Depletion and overexpression analyses of NSD2-associating proteins revealed that NSD2 recruitment to heterochromatin was mediated through the imitation switch (ISWI) chromatin remodeling complexes, such as BAZ1B-SMARCA5 (WICH), which directly binds to AT-rich DNA via a BAZ1B domain-containing AT-hook-like motifs. The abundance and stoichiometry of NSD2, SMARCA5, and BAZ1B could determine the localization of H3K36me2 in different cell types. In mouse embryos, H3K36me2 heterochromatin localization was observed at the two- to four-cell stages, suggesting its physiological relevance.
Collapse
Affiliation(s)
- Naoki Goto
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Kazuma Suke
- Faculty of Biology-Oriented Science and Technology, Kindai University, Kinokawa, Japan
| | - Nao Yonezawa
- Faculty of Biology-Oriented Science and Technology, Kindai University, Kinokawa, Japan
| | - Hidenori Nishihara
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
- Department of Advanced Bioscience, Graduate School of Agriculture, Kindai University, Nara, Japan
| | - Tetsuya Handa
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan
| | - Yuko Sato
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan
| | - Tomoya Kujirai
- Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, Japan
| | - Hitoshi Kurumizaka
- Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, Japan
| | - Kazuo Yamagata
- Faculty of Biology-Oriented Science and Technology, Kindai University, Kinokawa, Japan
| | - Hiroshi Kimura
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan
| |
Collapse
|
11
|
Zhang W, Cheng L, Li K, Xie L, Ji J, Lei X, Jiang A, Chen C, Li H, Li P, Sun Q. Evolutional heterochromatin condensation delineates chromocenter formation and retrotransposon silencing in plants. NATURE PLANTS 2024; 10:1215-1230. [PMID: 39014153 DOI: 10.1038/s41477-024-01746-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 06/20/2024] [Indexed: 07/18/2024]
Abstract
Heterochromatic condensates (chromocenters) are critical for maintaining the silencing of heterochromatin. It is therefore puzzling that the presence of chromocenters is variable across plant species. Here we reveal that variations in the plant heterochromatin protein ADCP1 confer a diversity in chromocenter formation via phase separation. ADCP1 physically interacts with the high mobility group protein HMGA to form a complex and mediates heterochromatin condensation by multivalent interactions. The loss of intrinsically disordered regions (IDRs) in ADCP1 homologues during evolution has led to the absence of prominent chromocenter formation in various plant species, and introduction of IDR-containing ADCP1 with HMGA promotes heterochromatin condensation and retrotransposon silencing. Moreover, plants in the Cucurbitaceae group have evolved an IDR-containing chimaera of ADCP1 and HMGA, which remarkably enables formation of chromocenters. Together, our work uncovers a coevolved mechanism of phase separation in packing heterochromatin and silencing retrotransposons.
Collapse
Affiliation(s)
- Weifeng Zhang
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Lingling Cheng
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Kuan Li
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Leiming Xie
- Tsinghua-Peking Center for Life Sciences, Beijing, China
- State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structure, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Jinyao Ji
- Tsinghua-Peking Center for Life Sciences, Beijing, China
- State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structure, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Xue Lei
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Anjie Jiang
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Chunlai Chen
- Tsinghua-Peking Center for Life Sciences, Beijing, China
- State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structure, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Haitao Li
- Tsinghua-Peking Center for Life Sciences, Beijing, China
- State Key Laboratory of Molecular Oncology, MOE Key Laboratory of Protein Sciences, Beijing Frontier Research Center for Biological Structure, SXMU-Tsinghua Collaborative Innovation Center for Frontier Medicine, School of Medicine, Tsinghua University, Beijing, China
| | - Pilong Li
- Tsinghua-Peking Center for Life Sciences, Beijing, China
- State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structure, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Qianwen Sun
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, China.
- Tsinghua-Peking Center for Life Sciences, Beijing, China.
| |
Collapse
|
12
|
Carlier F, Castro Ramirez S, Kilani J, Chehboub S, Loïodice I, Taddei A, Gladyshev E. Remodeling of perturbed chromatin can initiate de novo transcriptional and post-transcriptional silencing. Proc Natl Acad Sci U S A 2024; 121:e2402944121. [PMID: 39052837 PMCID: PMC11295056 DOI: 10.1073/pnas.2402944121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 06/17/2024] [Indexed: 07/27/2024] Open
Abstract
In eukaryotes, repetitive DNA can become silenced de novo, either transcriptionally or post-transcriptionally, by processes independent of strong sequence-specific cues. The mechanistic nature of such processes remains poorly understood. We found that in the fungus Neurospora crassa, de novo initiation of both transcriptional and post-transcriptional silencing was linked to perturbed chromatin, which was produced experimentally by the aberrant activity of transcription factors at the tetO operator array. Transcriptional silencing was mediated by canonical constitutive heterochromatin. On the other hand, post-transcriptional silencing resembled repeat-induced quelling but occurred normally when homologous recombination was inactivated. All silencing of the tetO array was dependent on SAD-6, fungal ortholog of the SWI/SNF chromatin remodeler ATRX (Alpha Thalassemia/Mental Retardation Syndrome X-Linked), which was required to maintain nucleosome occupancy at the perturbed locus. In addition, we found that two other types of sequences (the lacO array and native AT-rich DNA) could also undergo recombination-independent quelling associated with perturbed chromatin. These results suggested a model in which the de novo initiation of transcriptional and post-transcriptional silencing is coupled to the remodeling of perturbed chromatin.
Collapse
Affiliation(s)
- Florian Carlier
- Institut Pasteur, Department of Mycology, Molecular Genetics and Epigenetics Unit, Université Paris Cité, Paris75015, France
| | - Sebastian Castro Ramirez
- Institut Pasteur, Department of Mycology, Molecular Genetics and Epigenetics Unit, Université Paris Cité, Paris75015, France
| | - Jaafar Kilani
- Institut Pasteur, Department of Mycology, Molecular Genetics and Epigenetics Unit, Université Paris Cité, Paris75015, France
| | - Sara Chehboub
- Institut Pasteur, Department of Mycology, Molecular Genetics and Epigenetics Unit, Université Paris Cité, Paris75015, France
| | - Isabelle Loïodice
- Institut Curie, UMR3664 Nuclear Dynamics, CNRS, Université Paris Sciences et Lettres, Sorbonne Université, Paris75005, France
| | - Angela Taddei
- Institut Curie, UMR3664 Nuclear Dynamics, CNRS, Université Paris Sciences et Lettres, Sorbonne Université, Paris75005, France
| | - Eugene Gladyshev
- Institut Pasteur, Department of Mycology, Molecular Genetics and Epigenetics Unit, Université Paris Cité, Paris75015, France
| |
Collapse
|
13
|
Pal I, Illendula A, Joyner A, Manavalan JS, Deddens TM, Sabzevari A, Damera DP, Zuberi S, Marchi E, Fox TE, Dunlap-Brown ME, Jayappa KD, Craig JW, Loughran TP, Feith DJ, O'Connor OA. Preclinical Development of a Romidepsin Nanoparticle Demonstrates Superior Tolerability and Efficacy in Models of Human T-Cell Lymphoma and Large Granular Lymphocyte Leukemia. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.18.603379. [PMID: 39071370 PMCID: PMC11275871 DOI: 10.1101/2024.07.18.603379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Histone deacetylase (HDAC) inhibitors are a widely recognized and valued treatment option for patients with relapsed or refractory peripheral T cell lymphomas (PTCL). Romidepsin is a relatively selective Class I HDAC inhibitor originally approved for patients with relapsed or refractory (R/R) cutaneous T cell lymphoma (CTCL) and subsequently R/R PTCL. Unfortunately, the FDA approval of romidepsin for R/R PTCL was withdrawn due to a negative Phase 4 post-marketing requirement (PMR), diminishing further the treatment options for patients with PTCL. Herein we describe the development of a first-in-class polymer nanoparticle of romidepsin (Nanoromidepsin) using an innovative amphiphilic di-block copolymer-based nanochemistry platform. Nanoromidepsin exhibited superior pharmacologic disposition, with improved tolerability and safety in murine models of T-cell lymphoma. Nanoromidepsin also exhibited superior anti-tumor efficacy in multiple models including in vitro T cell lymphoma (TCL) cell lines, ex vivo LGL leukemia primary patient samples, and murine TCL xenografts. Nanoromidepsin demonstrated greater accumulation in tumors and a statistically significant improvement in overall survival (OS) compared to romidepsin in murine xenograft models. These findings collectively justify the clinical development of Nanoromidepsin in patients with T-cell malignancies.
Collapse
|
14
|
Ma R, Zhang Y, Zhang J, Zhang P, Liu Z, Fan Y, Wang HT, Zhang Z, Zhu B. Targeting pericentric non-consecutive motifs for heterochromatin initiation. Nature 2024; 631:678-685. [PMID: 38961301 DOI: 10.1038/s41586-024-07640-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 05/31/2024] [Indexed: 07/05/2024]
Abstract
Pericentric heterochromatin is a critical component of chromosomes marked by histone H3 K9 (H3K9) methylation1-3. However, what recruits H3K9-specific histone methyltransferases to pericentric regions in vertebrates remains unclear4, as does why pericentric regions in different species share the same H3K9 methylation mark despite lacking highly conserved DNA sequences2,5. Here we show that zinc-finger proteins ZNF512 and ZNF512B specifically localize at pericentric regions through direct DNA binding. Notably, both ZNF512 and ZNF512B are sufficient to initiate de novo heterochromatin formation at ectopically targeted repetitive regions and pericentric regions, as they directly recruit SUV39H1 and SUV39H2 (SUV39H) to catalyse H3K9 methylation. SUV39H2 makes a greater contribution to H3K9 trimethylation, whereas SUV39H1 seems to contribute more to silencing, probably owing to its preferential association with HP1 proteins. ZNF512 and ZNF512B from different species can specifically target pericentric regions of other vertebrates, because the atypical long linker residues between the zinc-fingers of ZNF512 and ZNF512B offer flexibility in recognition of non-consecutively organized three-nucleotide triplets targeted by each zinc-finger. This study addresses two long-standing questions: how constitutive heterochromatin is initiated and how seemingly variable pericentric sequences are targeted by the same set of conserved machinery in vertebrates.
Collapse
Affiliation(s)
- Runze Ma
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Epigenetic Regulation and Intervention, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yan Zhang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Epigenetic Regulation and Intervention, Chinese Academy of Sciences, Beijing, China
| | - Jing Zhang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Epigenetic Regulation and Intervention, Chinese Academy of Sciences, Beijing, China
| | - Pinqi Zhang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Epigenetic Regulation and Intervention, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Zeqi Liu
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Epigenetic Regulation and Intervention, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yiming Fan
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Hao-Tian Wang
- State Key Laboratory of Genetic Resources and Evolution/Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Zhuqiang Zhang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Epigenetic Regulation and Intervention, Chinese Academy of Sciences, Beijing, China
| | - Bing Zhu
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.
- Key Laboratory of Epigenetic Regulation and Intervention, Chinese Academy of Sciences, Beijing, China.
- New Cornerstone Science Laboratory, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
15
|
Yabe K, Kamio A, Oya S, Kakutani T, Hirayama M, Tanaka Y, Inagaki S. H3K9 methylation regulates heterochromatin silencing through incoherent feedforward loops. SCIENCE ADVANCES 2024; 10:eadn4149. [PMID: 38924413 PMCID: PMC11204290 DOI: 10.1126/sciadv.adn4149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 05/22/2024] [Indexed: 06/28/2024]
Abstract
Histone H3 lysine-9 methylation (H3K9me) is a hallmark of the condensed and transcriptionally silent heterochromatin. It remains unclear how H3K9me controls transcription silencing and how cells delimit H3K9me domains to avoid silencing essential genes. Here, using Arabidopsis genetic systems that induce H3K9me2 in genes and transposons de novo, we show that H3K9me2 accumulation paradoxically also causes the deposition of the euchromatic mark H3K36me3 by a SET domain methyltransferase, ASHH3. ASHH3-induced H3K36me3 confers anti-silencing by preventing the demethylation of H3K4me1 by LDL2, which mediates transcriptional silencing downstream of H3K9me2. These results demonstrate that H3K9me2 not only facilitates but orchestrates silencing by actuating antagonistic silencing and anti-silencing pathways, providing insights into the molecular basis underlying proper partitioning of chromatin domains and the creation of metastable epigenetic variation.
Collapse
Affiliation(s)
| | | | - Satoyo Oya
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | | | - Mami Hirayama
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Yuriko Tanaka
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | | |
Collapse
|
16
|
Lim GM, Maharajan N, Cho GW. How calorie restriction slows aging: an epigenetic perspective. J Mol Med (Berl) 2024; 102:629-640. [PMID: 38456926 DOI: 10.1007/s00109-024-02430-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 01/14/2024] [Accepted: 02/07/2024] [Indexed: 03/09/2024]
Abstract
Genomic instability and epigenetic alterations are some of the prominent factors affecting aging. Age-related heterochromatin loss and decreased whole-genome DNA methylation are associated with abnormal gene expression, leading to diseases and genomic instability. Modulation of these epigenetic changes is crucial for preserving genomic integrity and controlling cellular identity is important for slowing the aging process. Numerous studies have shown that caloric restriction is the gold standard for promoting longevity and healthy aging in various species ranging from rodents to primates. It can be inferred that delaying of aging through the main effector such as calorie restriction is involved in cellular identity and epigenetic modification. Thus, an understanding of aging through calorie restriction may seek a more in-depth understanding. In this review, we discuss how caloric restriction promotes longevity and healthy aging through genomic stability and epigenetic alterations. We have also highlighted how the effectors of caloric restriction are involved in modulating the chromatin-based barriers.
Collapse
Affiliation(s)
- Gyeong Min Lim
- Department of Biological Science, College of Natural Science, Chosun University, 309 Pilmun-Daero, Dong-Gu, Gwangju, 61452, Republic of Korea
- BK21 FOUR Education Research Group for Age-Associated Disorder Control Technology, Department of Integrative Biological Science, Chosun University, Gwangju, 61452, Republic of Korea
| | - Nagarajan Maharajan
- The Department of Obstetrics & Gynecology and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Gwang-Won Cho
- Department of Biological Science, College of Natural Science, Chosun University, 309 Pilmun-Daero, Dong-Gu, Gwangju, 61452, Republic of Korea.
- BK21 FOUR Education Research Group for Age-Associated Disorder Control Technology, Department of Integrative Biological Science, Chosun University, Gwangju, 61452, Republic of Korea.
- The Basic Science Institute of Chosun University, Chosun University, Gwangju, 61452, Republic of Korea.
| |
Collapse
|
17
|
He S, Yu Y, Wang L, Zhang J, Bai Z, Li G, Li P, Feng X. Linker histone H1 drives heterochromatin condensation via phase separation in Arabidopsis. THE PLANT CELL 2024; 36:1829-1843. [PMID: 38309957 PMCID: PMC11062459 DOI: 10.1093/plcell/koae034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 11/01/2023] [Accepted: 11/25/2023] [Indexed: 02/05/2024]
Abstract
In the eukaryotic nucleus, heterochromatin forms highly condensed, visible foci known as heterochromatin foci (HF). These HF are enriched with linker histone H1, a key player in heterochromatin condensation and silencing. However, it is unknown how H1 aggregates HF and condenses heterochromatin. In this study, we established that H1 facilitates heterochromatin condensation by enhancing inter- and intrachromosomal interactions between and within heterochromatic regions of the Arabidopsis (Arabidopsis thaliana) genome. We demonstrated that H1 drives HF formation via phase separation, which requires its C-terminal intrinsically disordered region (C-IDR). A truncated H1 lacking the C-IDR fails to form foci or recover HF in the h1 mutant background, whereas C-IDR with a short stretch of the globular domain (18 out of 71 amino acids) is sufficient to rescue both defects. In addition, C-IDR is essential for H1's roles in regulating nucleosome repeat length and DNA methylation in Arabidopsis, indicating that phase separation capability is required for chromatin functions of H1. Our data suggest that bacterial H1-like proteins, which have been shown to condense DNA, are intrinsically disordered and capable of mediating phase separation. Therefore, we propose that phase separation mediated by H1 or H1-like proteins may represent an ancient mechanism for condensing chromatin and DNA.
Collapse
Affiliation(s)
- Shengbo He
- Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
| | - Yiming Yu
- Institute of Science and Technology Austria (ISTA), Am Campus 1, Klosterneuburg 3400, Austria
| | - Liang Wang
- Institute of Biophysics, Chinese Academy of Science, 15 Datun Road, Chaoyang District, Beijing 100101, China
- Beijing Advanced Innovation Center for Structural Biology, Tsinghua University-Peking University Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Jingyi Zhang
- Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
| | - Zhengyong Bai
- Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
| | - Guohong Li
- Institute of Biophysics, Chinese Academy of Science, 15 Datun Road, Chaoyang District, Beijing 100101, China
| | - Pilong Li
- Beijing Advanced Innovation Center for Structural Biology, Tsinghua University-Peking University Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Xiaoqi Feng
- Institute of Science and Technology Austria (ISTA), Am Campus 1, Klosterneuburg 3400, Austria
| |
Collapse
|
18
|
Bone B, Lichterfeld M. "Block and lock" viral integration sites in persons with drug-free control of HIV-1 infection. Curr Opin HIV AIDS 2024; 19:110-115. [PMID: 38457193 DOI: 10.1097/coh.0000000000000845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2024]
Abstract
PURPOSE OF REVIEW Elite controllers (ECs) and Posttreatment controllers (PTCs) represent a small subset of individuals who are capable of maintaining drug-free control of HIV plasma viral loads despite the persistence of a replication-competent viral reservoir. This review aims to curate recent experimental studies evaluating viral reservoirs that distinguish EC/PTC and may contribute to their ability to maintain undetectable viral loads in the absence of antiretroviral therapy. RECENT FINDINGS Recent studies on ECs have demonstrated that integration sites of intact proviruses in EC/PTC are markedly biased towards heterochromatin regions; in contrast, intact proviruses in accessible and permissive chromatin were profoundly underrepresented. Of note, no such biases were noted when CD4 + T cells from EC were infected directly ex vivo, suggesting that the viral reservoir profile in EC is not related to altered integration site preferences during acute infection, but instead represents the result of immune-mediated selection mechanisms that can eliminate proviruses in transcriptionally-active euchromatin regions while promoting preferential persistence of intact proviruses in nonpermissive genome regions. Proviral transcription in such "blocked and locked" regions may be restricted through epigenetic mechanisms, protecting them from immune-recognition but presumably limiting their ability to drive viral rebound. While the exact immune mechanisms driving this selection process remain undefined, recent single-cell analytic approaches support the hypothesis that HIV reservoir cells are subject to immune selection pressure by host factors. SUMMARY A "blocked and locked" viral reservoir profile may constitute a structural virological correlate of a functional cure of HIV-1 infection. Further research into the immunological mechanism promoting HIV-1 reservoir selection and evolution in EC/PTC is warranted and could inform foreseeable cure strategies.
Collapse
Affiliation(s)
- Benjamin Bone
- Infectious Disease Division, Brigham Women's Hospital, Boston
- The Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts, USA
| | - Mathias Lichterfeld
- Infectious Disease Division, Brigham Women's Hospital, Boston
- The Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts, USA
| |
Collapse
|
19
|
Cai P, Casas CJ, Plancarte GQ, Mikawa T, Hua LL. Ipsilateral restriction of chromosome movement along a centrosome, and apical-basal axis during the cell cycle. RESEARCH SQUARE 2024:rs.3.rs-4283973. [PMID: 38746098 PMCID: PMC11092853 DOI: 10.21203/rs.3.rs-4283973/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Little is known about how distance between homologous chromosomes are controlled during the cell cycle. Here, we show that the distribution of centromere components display two discrete clusters placed to either side of the centrosome and apical/basal axis from prophase to G1 interphase. 4-Dimensional live cell imaging analysis of centromere and centrosome tracking reveals that centromeres oscillate largely within one cluster, but do not cross over to the other cluster. We propose a model of an axis-dependent ipsilateral restriction of chromosome oscillations throughout mitosis.
Collapse
|
20
|
Cohen LRZ, Meshorer E. The many faces of H3.3 in regulating chromatin in embryonic stem cells and beyond. Trends Cell Biol 2024:S0962-8924(24)00052-7. [PMID: 38614918 DOI: 10.1016/j.tcb.2024.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/12/2024] [Accepted: 03/14/2024] [Indexed: 04/15/2024]
Abstract
H3.3 is a highly conserved nonreplicative histone variant. H3.3 is enriched in promoters and enhancers of active genes, but it is also found within suppressed heterochromatin, mostly around telomeres. Accordingly, H3.3 is associated with seemingly contradicting functions: It is involved in development, differentiation, reprogramming, and cell fate, as well as in heterochromatin formation and maintenance, and the silencing of developmental genes. The emerging view is that different cellular contexts and histone modifications can promote opposing functions for H3.3. Here, we aim to provide an update with a focus on H3.3 functions in early mammalian development, considering the context of embryonic stem cell maintenance and differentiation, to finally conclude with emerging roles in cancer development and cell fate transition and maintenance.
Collapse
Affiliation(s)
- Lea R Z Cohen
- Department of Genetics, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel; The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Eran Meshorer
- Department of Genetics, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel; The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel.
| |
Collapse
|
21
|
Alavattam KG, Esparza JM, Hu M, Shimada R, Kohrs AR, Abe H, Munakata Y, Otsuka K, Yoshimura S, Kitamura Y, Yeh YH, Hu YC, Kim J, Andreassen PR, Ishiguro KI, Namekawa SH. ATF7IP2/MCAF2 directs H3K9 methylation and meiotic gene regulation in the male germline. Genes Dev 2024; 38:115-130. [PMID: 38383062 PMCID: PMC10982687 DOI: 10.1101/gad.351569.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 01/31/2024] [Indexed: 02/23/2024]
Abstract
H3K9 trimethylation (H3K9me3) plays emerging roles in gene regulation, beyond its accumulation on pericentric constitutive heterochromatin. It remains a mystery why and how H3K9me3 undergoes dynamic regulation in male meiosis. Here, we identify a novel, critical regulator of H3K9 methylation and spermatogenic heterochromatin organization: the germline-specific protein ATF7IP2 (MCAF2). We show that in male meiosis, ATF7IP2 amasses on autosomal and X-pericentric heterochromatin, spreads through the entirety of the sex chromosomes, and accumulates on thousands of autosomal promoters and retrotransposon loci. On the sex chromosomes, which undergo meiotic sex chromosome inactivation (MSCI), the DNA damage response pathway recruits ATF7IP2 to X-pericentric heterochromatin, where it facilitates the recruitment of SETDB1, a histone methyltransferase that catalyzes H3K9me3. In the absence of ATF7IP2, male germ cells are arrested in meiotic prophase I. Analyses of ATF7IP2-deficient meiosis reveal the protein's essential roles in the maintenance of MSCI, suppression of retrotransposons, and global up-regulation of autosomal genes. We propose that ATF7IP2 is a downstream effector of the DDR pathway in meiosis that coordinates the organization of heterochromatin and gene regulation through the spatial regulation of SETDB1-mediated H3K9me3 deposition.
Collapse
Affiliation(s)
- Kris G Alavattam
- Reproductive Sciences Center, Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229, USA
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington 98109, USA
| | - Jasmine M Esparza
- Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, California 95616, USA
| | - Mengwen Hu
- Reproductive Sciences Center, Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229, USA
- Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, California 95616, USA
| | - Ryuki Shimada
- Department of Chromosome Biology, Institute of Molecular Embryology and Genetics (IMEG), Kumamoto University, Kumamoto 860-0811, Japan
| | - Anna R Kohrs
- Reproductive Sciences Center, Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229, USA
| | - Hironori Abe
- Reproductive Sciences Center, Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229, USA
- Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, California 95616, USA
- Department of Chromosome Biology, Institute of Molecular Embryology and Genetics (IMEG), Kumamoto University, Kumamoto 860-0811, Japan
| | - Yasuhisa Munakata
- Reproductive Sciences Center, Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229, USA
- Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, California 95616, USA
| | - Kai Otsuka
- Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, California 95616, USA
| | - Saori Yoshimura
- Department of Chromosome Biology, Institute of Molecular Embryology and Genetics (IMEG), Kumamoto University, Kumamoto 860-0811, Japan
| | - Yuka Kitamura
- Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, California 95616, USA
| | - Yu-Han Yeh
- Reproductive Sciences Center, Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229, USA
- Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, California 95616, USA
| | - Yueh-Chiang Hu
- Reproductive Sciences Center, Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio 49229, USA
| | - Jihye Kim
- Laboratory of Chromosome Dynamics, Institute of Molecular and Cellular Biosciences, University of Tokyo, Tokyo 113-0032, Japan
| | - Paul R Andreassen
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio 49229, USA
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229, USA
| | - Kei-Ichiro Ishiguro
- Department of Chromosome Biology, Institute of Molecular Embryology and Genetics (IMEG), Kumamoto University, Kumamoto 860-0811, Japan;
| | - Satoshi H Namekawa
- Reproductive Sciences Center, Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229, USA;
- Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, California 95616, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio 49229, USA
| |
Collapse
|
22
|
Dulka K, Lajkó N, Nacsa K, Gulya K. Opposite and Differently Altered Postmortem Changes in H3 and H3K9me3 Patterns in the Rat Frontal Cortex and Hippocampus. EPIGENOMES 2024; 8:11. [PMID: 38534795 DOI: 10.3390/epigenomes8010011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/18/2024] [Accepted: 03/12/2024] [Indexed: 03/28/2024] Open
Abstract
Temporal and spatial epigenetic modifications in the brain occur during ontogenetic development, pathophysiological disorders, and aging. When epigenetic marks, such as histone methylations, in brain autopsies or biopsy samples are studied, it is critical to understand their postmortem/surgical stability. For this study, the frontal cortex and hippocampus of adult rats were removed immediately (controls) or after a postmortem delay of 15, 30, 60, 90, 120, or 150 min. The patterns of unmodified H3 and its trimethylated form H3K9me3 were analyzed in frozen samples for Western blot analysis and in formalin-fixed tissues embedded in paraffin for confocal microscopy. We found that both the unmodified H3 and H3K9me3 showed time-dependent but opposite changes and were altered differently in the frontal cortex and hippocampus with respect to postmortem delay. In the frontal cortex, the H3K9me3 marks increased approximately 450% with a slow parallel 20% decrease in the unmodified H3 histones after 150 min. In the hippocampus, the change was opposite, since H3K9me3 marks decreased steadily by approximately 65% after 150 min with a concomitant rapid increase of 20-25% in H3 histones at the same time. Confocal microscopy located H3K9me3 marks in the heterochromatic regions of the nuclei of all major cell types in the control brains: oligodendrocytes, astrocytes, neurons, and microglia. Therefore, epigenetic marks could be affected differently by postmortem delay in different parts of the brain.
Collapse
Affiliation(s)
- Karolina Dulka
- Department of Cell Biology and Molecular Medicine, University of Szeged, 6720 Szeged, Hungary
| | - Noémi Lajkó
- Department of Cell Biology and Molecular Medicine, University of Szeged, 6720 Szeged, Hungary
| | - Kálmán Nacsa
- Department of Cell Biology and Molecular Medicine, University of Szeged, 6720 Szeged, Hungary
| | - Karoly Gulya
- Department of Cell Biology and Molecular Medicine, University of Szeged, 6720 Szeged, Hungary
| |
Collapse
|
23
|
Cai P, Casas CJ, Plancarte GQ, Hua LL, Mikawa T. Ipsilateral restriction of chromosome movement along a centrosome, and apical-basal axis during the cell cycle. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.03.27.534352. [PMID: 37034601 PMCID: PMC10081237 DOI: 10.1101/2023.03.27.534352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Little is known about how distance between homologous chromosomes are controlled during the cell cycle. Here, we show that the distribution of centromere components display two discrete clusters placed to either side of the centrosome and apical/basal axis from prophase to G 1 interphase. 4-Dimensional live cell imaging analysis of centromere and centrosome tracking reveals that centromeres oscillate largely within one cluster, but do not cross over to the other cluster. We propose a model of an axis-dependent ipsilateral restriction of chromosome oscillations throughout mitosis.
Collapse
|
24
|
Vargas-López V, Prada LF, Alméciga-Díaz CJ. Evidence of epigenetic landscape shifts in mucopolysaccharidosis IIIB and IVA. Sci Rep 2024; 14:3961. [PMID: 38368436 PMCID: PMC10874391 DOI: 10.1038/s41598-024-54626-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 02/14/2024] [Indexed: 02/19/2024] Open
Abstract
Lysosomal storage diseases (LSDs) are a group of monogenic diseases characterized by mutations in genes coding for proteins associated with the lysosomal function. Despite the monogenic nature, LSDs patients exhibit variable and heterogeneous clinical manifestations, prompting investigations into epigenetic factors underlying this phenotypic diversity. In this study, we focused on the potential role of epigenetic mechanisms in the pathogenesis of mucopolysaccharidosis IIIB (MPS IIIB) and mucopolysaccharidosis IVA (MPS IVA). We analyzed DNA methylation (5mC) and histone modifications (H3K14 acetylation and H3K9 trimethylation) in MPS IIIB and MPS IVA patients' fibroblasts and healthy controls. The findings revealed that global DNA hypomethylation is present in cell lines for both diseases. At the same time, histone acetylation was increased in MPS IIIB and MPS IVA cells in a donor-dependent way, further indicating a shift towards relaxed open chromatin in these MPS. Finally, the constitutive heterochromatin marker, histone H3K9 trimethylation, only showed reduced clustering in MPS IIIB cells, suggesting limited alterations in heterochromatin organization. These findings collectively emphasize the significance of epigenetic mechanisms in modulating the phenotypic variations observed in LSDs. While global DNA hypomethylation could contribute to the MPS pathogenesis, the study also highlights individual-specific epigenetic responses that might contribute to phenotypic heterogeneity. Further research into the specific genes and pathways affected by these epigenetic changes could provide insights into potential therapeutic interventions for these MPS and other LSDs.
Collapse
Affiliation(s)
- Viviana Vargas-López
- Institute for the Study of Inborn Errors of Metabolism, Faculty of Science, Pontificia Universidad Javeriana, Cra. 7 No. 43-82 Edificio 54, Laboratorio 305A, Bogotá D.C., 110231, Colombia
| | - Luisa F Prada
- Institute for the Study of Inborn Errors of Metabolism, Faculty of Science, Pontificia Universidad Javeriana, Cra. 7 No. 43-82 Edificio 54, Laboratorio 305A, Bogotá D.C., 110231, Colombia
| | - Carlos J Alméciga-Díaz
- Institute for the Study of Inborn Errors of Metabolism, Faculty of Science, Pontificia Universidad Javeriana, Cra. 7 No. 43-82 Edificio 54, Laboratorio 305A, Bogotá D.C., 110231, Colombia.
| |
Collapse
|
25
|
Santarelli P, Rosti V, Vivo M, Lanzuolo C. Chromatin organization of muscle stem cell. Curr Top Dev Biol 2024; 158:375-406. [PMID: 38670713 DOI: 10.1016/bs.ctdb.2024.01.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2024]
Abstract
The proper functioning of skeletal muscles is essential throughout life. A crucial crosstalk between the environment and several cellular mechanisms allows striated muscles to perform successfully. Notably, the skeletal muscle tissue reacts to an injury producing a completely functioning tissue. The muscle's robust regenerative capacity relies on the fine coordination between muscle stem cells (MuSCs or "satellite cells") and their specific microenvironment that dictates stem cells' activation, differentiation, and self-renewal. Critical for the muscle stem cell pool is a fine regulation of chromatin organization and gene expression. Acquiring a lineage-specific 3D genome architecture constitutes a crucial modulator of muscle stem cell function during development, in the adult stage, in physiological and pathological conditions. The context-dependent relationship between genome structure, such as accessibility and chromatin compartmentalization, and their functional effects will be analysed considering the improved 3D epigenome knowledge, underlining the intimate liaison between environmental encounters and epigenetics.
Collapse
Affiliation(s)
- Philina Santarelli
- INGM Istituto Nazionale Genetica Molecolare Romeo ed Enrica Invernizzi, Milan, Italy
| | - Valentina Rosti
- INGM Istituto Nazionale Genetica Molecolare Romeo ed Enrica Invernizzi, Milan, Italy; CNR Institute of Biomedical Technologies, Milan, Italy
| | - Maria Vivo
- Università degli studi di Salerno, Fisciano, Italy.
| | - Chiara Lanzuolo
- INGM Istituto Nazionale Genetica Molecolare Romeo ed Enrica Invernizzi, Milan, Italy; CNR Institute of Biomedical Technologies, Milan, Italy.
| |
Collapse
|
26
|
Willemin A, Szabó D, Pombo A. Epigenetic regulatory layers in the 3D nucleus. Mol Cell 2024; 84:415-428. [PMID: 38242127 PMCID: PMC10872226 DOI: 10.1016/j.molcel.2023.12.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 11/21/2023] [Accepted: 12/15/2023] [Indexed: 01/21/2024]
Abstract
Nearly 7 decades have elapsed since Francis Crick introduced the central dogma of molecular biology, as part of his ideas on protein synthesis, setting the fundamental rules of sequence information transfer from DNA to RNAs and proteins. We have since learned that gene expression is finely tuned in time and space, due to the activities of RNAs and proteins on regulatory DNA elements, and through cell-type-specific three-dimensional conformations of the genome. Here, we review major advances in genome biology and discuss a set of ideas on gene regulation and highlight how various biomolecular assemblies lead to the formation of structural and regulatory features within the nucleus, with roles in transcriptional control. We conclude by suggesting further developments that will help capture the complex, dynamic, and often spatially restricted events that govern gene expression in mammalian cells.
Collapse
Affiliation(s)
- Andréa Willemin
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Institute for Medical Systems Biology (BIMSB), Epigenetic Regulation and Chromatin Architecture Group, Berlin, Germany; Humboldt-Universität zu Berlin, Institute for Biology, Berlin, Germany.
| | - Dominik Szabó
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Institute for Medical Systems Biology (BIMSB), Epigenetic Regulation and Chromatin Architecture Group, Berlin, Germany; Humboldt-Universität zu Berlin, Institute for Biology, Berlin, Germany
| | - Ana Pombo
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Institute for Medical Systems Biology (BIMSB), Epigenetic Regulation and Chromatin Architecture Group, Berlin, Germany; Humboldt-Universität zu Berlin, Institute for Biology, Berlin, Germany.
| |
Collapse
|
27
|
Choi J, Kim T, Cho EJ. HIRA vs. DAXX: the two axes shaping the histone H3.3 landscape. Exp Mol Med 2024; 56:251-263. [PMID: 38297159 PMCID: PMC10907377 DOI: 10.1038/s12276-023-01145-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/20/2023] [Accepted: 11/23/2023] [Indexed: 02/02/2024] Open
Abstract
H3.3, the most common replacement variant for histone H3, has emerged as an important player in chromatin dynamics for controlling gene expression and genome integrity. While replicative variants H3.1 and H3.2 are primarily incorporated into nucleosomes during DNA synthesis, H3.3 is under the control of H3.3-specific histone chaperones for spatiotemporal incorporation throughout the cell cycle. Over the years, there has been progress in understanding the mechanisms by which H3.3 affects domain structure and function. Furthermore, H3.3 distribution and relative abundance profoundly impact cellular identity and plasticity during normal development and pathogenesis. Recurrent mutations in H3.3 and its chaperones have been identified in neoplastic transformation and developmental disorders, providing new insights into chromatin biology and disease. Here, we review recent findings emphasizing how two distinct histone chaperones, HIRA and DAXX, take part in the spatial and temporal distribution of H3.3 in different chromatin domains and ultimately achieve dynamic control of chromatin organization and function. Elucidating the H3.3 deposition pathways from the available histone pool will open new avenues for understanding the mechanisms by which H3.3 epigenetically regulates gene expression and its impact on cellular integrity and pathogenesis.
Collapse
Affiliation(s)
- Jinmi Choi
- Sungkyunkwan University School of Pharmacy, Seoburo 2066, Jangan-gu Suwon, Gyeonggi-do, 16419, Republic of Korea
| | - Taewan Kim
- Sungkyunkwan University School of Pharmacy, Seoburo 2066, Jangan-gu Suwon, Gyeonggi-do, 16419, Republic of Korea
| | - Eun-Jung Cho
- Sungkyunkwan University School of Pharmacy, Seoburo 2066, Jangan-gu Suwon, Gyeonggi-do, 16419, Republic of Korea.
| |
Collapse
|
28
|
Edwards MM, Wang N, Massey DJ, Bhatele S, Egli D, Koren A. Incomplete reprogramming of DNA replication timing in induced pluripotent stem cells. Cell Rep 2024; 43:113664. [PMID: 38194345 PMCID: PMC11231959 DOI: 10.1016/j.celrep.2023.113664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 10/27/2023] [Accepted: 12/21/2023] [Indexed: 01/10/2024] Open
Abstract
Induced pluripotent stem cells (iPSCs) are the foundation of cell therapy. Differences in gene expression, DNA methylation, and chromatin conformation, which could affect differentiation capacity, have been identified between iPSCs and embryonic stem cells (ESCs). Less is known about whether DNA replication timing, a process linked to both genome regulation and genome stability, is efficiently reprogrammed to the embryonic state. To answer this, we compare genome-wide replication timing between ESCs, iPSCs, and cells reprogrammed by somatic cell nuclear transfer (NT-ESCs). While NT-ESCs replicate their DNA in a manner indistinguishable from ESCs, a subset of iPSCs exhibits delayed replication at heterochromatic regions containing genes downregulated in iPSCs with incompletely reprogrammed DNA methylation. DNA replication delays are not the result of gene expression or DNA methylation aberrations and persist after cells differentiate to neuronal precursors. Thus, DNA replication timing can be resistant to reprogramming and influence the quality of iPSCs.
Collapse
Affiliation(s)
- Matthew M Edwards
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Ning Wang
- Department of Pediatrics and Naomi Berrie Diabetes Center, Columbia University, New York, NY 10032, USA; Columbia University Stem Cell Initiative, New York, NY 10032, USA
| | - Dashiell J Massey
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Sakshi Bhatele
- Department of Pediatrics and Naomi Berrie Diabetes Center, Columbia University, New York, NY 10032, USA; Columbia University Stem Cell Initiative, New York, NY 10032, USA
| | - Dieter Egli
- Department of Pediatrics and Naomi Berrie Diabetes Center, Columbia University, New York, NY 10032, USA; Columbia University Stem Cell Initiative, New York, NY 10032, USA.
| | - Amnon Koren
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA; Department of Molecular and Cellular Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA.
| |
Collapse
|
29
|
Schmidt A, Zhang H, Schmitt S, Rausch C, Popp O, Chen J, Cmarko D, Butter F, Dittmar G, Lermyte F, Cardoso MC. The Proteomic Composition and Organization of Constitutive Heterochromatin in Mouse Tissues. Cells 2024; 13:139. [PMID: 38247831 PMCID: PMC10814525 DOI: 10.3390/cells13020139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/13/2023] [Accepted: 01/09/2024] [Indexed: 01/23/2024] Open
Abstract
Pericentric heterochromatin (PCH) forms spatio-temporarily distinct compartments and affects chromosome organization and stability. Albeit some of its components are known, an elucidation of its proteome and how it differs between tissues in vivo is lacking. Here, we find that PCH compartments are dynamically organized in a tissue-specific manner, possibly reflecting compositional differences. As the mouse brain and liver exhibit very different PCH architecture, we isolated native PCH fractions from these tissues, analyzed their protein compositions using quantitative mass spectrometry, and compared them to identify common and tissue-specific PCH proteins. In addition to heterochromatin-enriched proteins, the PCH proteome includes RNA/transcription and membrane-related proteins, which showed lower abundance than PCH-enriched proteins. Thus, we applied a cut-off of PCH-unspecific candidates based on their abundance and validated PCH-enriched proteins. Amongst the hits, MeCP2 was classified into brain PCH-enriched proteins, while linker histone H1 was not. We found that H1 and MeCP2 compete to bind to PCH and regulate PCH organization in opposite ways. Altogether, our workflow of unbiased PCH isolation, quantitative mass spectrometry, and validation-based analysis allowed the identification of proteins that are common and tissue-specifically enriched at PCH. Further investigation of selected hits revealed their opposing role in heterochromatin higher-order architecture in vivo.
Collapse
Affiliation(s)
- Annika Schmidt
- Cell Biology and Epigenetics, Department of Biology, Technical University of Darmstadt, 64287 Darmstadt, Germany (S.S.)
| | - Hui Zhang
- Cell Biology and Epigenetics, Department of Biology, Technical University of Darmstadt, 64287 Darmstadt, Germany (S.S.)
| | - Stephanie Schmitt
- Cell Biology and Epigenetics, Department of Biology, Technical University of Darmstadt, 64287 Darmstadt, Germany (S.S.)
| | - Cathia Rausch
- Cell Biology and Epigenetics, Department of Biology, Technical University of Darmstadt, 64287 Darmstadt, Germany (S.S.)
| | - Oliver Popp
- Proteomics Platform, Max-Delbrueck-Center for Molecular Medicine in the Helmholtz Association, 13125 Berlin, Germany
| | - Jiaxuan Chen
- Institute of Molecular Biology (IMB), 55128 Mainz, Germany
| | - Dusan Cmarko
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University and General University Hospital in Prague, 128 00 Prague, Czech Republic
| | - Falk Butter
- Institute of Molecular Biology (IMB), 55128 Mainz, Germany
| | - Gunnar Dittmar
- Proteomics Platform, Max-Delbrueck-Center for Molecular Medicine in the Helmholtz Association, 13125 Berlin, Germany
| | - Frederik Lermyte
- Clemens-Schöpf Institute of Organic Chemistry and Biochemistry, Department of Chemistry, Technical University of Darmstadt, 64287 Darmstadt, Germany
| | - M. Cristina Cardoso
- Cell Biology and Epigenetics, Department of Biology, Technical University of Darmstadt, 64287 Darmstadt, Germany (S.S.)
| |
Collapse
|
30
|
Tam PLF, Cheung MF, Chan LY, Leung D. Cell-type differential targeting of SETDB1 prevents aberrant CTCF binding, chromatin looping, and cis-regulatory interactions. Nat Commun 2024; 15:15. [PMID: 38167730 PMCID: PMC10762014 DOI: 10.1038/s41467-023-44578-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 12/19/2023] [Indexed: 01/05/2024] Open
Abstract
SETDB1 is an essential histone methyltransferase that deposits histone H3 lysine 9 trimethylation (H3K9me3) to transcriptionally repress genes and repetitive elements. The function of differential H3K9me3 enrichment between cell-types remains unclear. Here, we demonstrate mutual exclusivity of H3K9me3 and CTCF across mouse tissues from different developmental timepoints. We analyze SETDB1 depleted cells and discover that H3K9me3 prevents aberrant CTCF binding independently of DNA methylation and H3K9me2. Such sites are enriched with SINE B2 retrotransposons. Moreover, analysis of higher-order genome architecture reveals that large chromatin structures including topologically associated domains and subnuclear compartments, remain intact in SETDB1 depleted cells. However, chromatin loops and local 3D interactions are disrupted, leading to transcriptional changes by modifying pre-existing chromatin landscapes. Specific genes with altered expression show differential interactions with dysregulated cis-regulatory elements. Collectively, we find that cell-type specific targets of SETDB1 maintain cellular identities by modulating CTCF binding, which shape nuclear architecture and transcriptomic networks.
Collapse
Affiliation(s)
- Phoebe Lut Fei Tam
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, SAR, China
| | - Ming Fung Cheung
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, SAR, China
- Center for Epigenomics Research, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, SAR, China
| | - Lu Yan Chan
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, SAR, China
- Center for Epigenomics Research, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, SAR, China
| | - Danny Leung
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, SAR, China.
- Center for Epigenomics Research, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, SAR, China.
| |
Collapse
|
31
|
Laghmach R, Di Pierro M, Potoyan DA. Four-Dimensional Mesoscale Liquid Model of Nucleus Resolves Chromatin's Radial Organization. PRX LIFE 2024; 2:013006. [PMID: 38601142 PMCID: PMC11005002 DOI: 10.1103/prxlife.2.013006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
Recent advances chromatin capture, imaging techniques, and polymer modeling have dramatically enhanced quantitative understanding of chromosomal folding. However, the dynamism inherent in genome architectures due to physical and biochemical forces and their impact on nuclear architecture and cellular functions remains elusive. While imaging of chromatin in four dimensions is becoming more common, there is a conspicuous lack of physics-based computational tools appropriate for revealing the forces that shape nuclear architecture and dynamics. To this end, we have developed a multiphase liquid model of the nucleus, which can resolve chromosomal territories, compartments, and nuclear lamina using a physics-based and data-informed free-energy function. The model enables rapid hypothesis-driven prototyping of nuclear dynamics in four dimensions, thereby facilitating comparison with whole nucleus imaging experiments. As an application, we model the Drosophila nucleus and map phase diagram of various possible nuclear morphologies. We shed light on the interplay of adhesive and cohesive interactions which give rise to distinct radial organization seen in conventional, inverted, and senescent nuclear architectures. The results also show the highly dynamic nature of the radial organization, the disruption of which leads to significant variability in domain coarsening dynamics and consequently variability of chromatin architecture. The model also highlights the impact of oblate nuclear geometry and heterochromatin-subtype interactions on the global chromatin architecture and local asymmetry of chromatin compartments.
Collapse
Affiliation(s)
- Rabia Laghmach
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, USA
| | - Michele Di Pierro
- Department of Physics, Northeastern University, Boston, Massachusetts 02115, USA
| | - Davit A. Potoyan
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, USA and Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, Iowa 50011, USA
| |
Collapse
|
32
|
Knodel F, Pinter S, Kroll C, Rathert P. Fluorescent Reporter Systems to Investigate Chromatin Effector Proteins in Living Cells. Methods Mol Biol 2024; 2842:225-252. [PMID: 39012599 DOI: 10.1007/978-1-0716-4051-7_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
Epigenetic research faces the challenge of the high complexity and tight regulation in chromatin modification networks. Although many isolated mechanisms of chromatin-mediated gene regulation have been described, solid approaches for the comprehensive analysis of specific processes as parts of the bigger epigenome network are missing. In order to expand the toolbox of methods by a system that will help to capture and describe the complexity of transcriptional regulation, we describe here a robust protocol for the generation of stable reporter systems for transcriptional activity and summarize their applications. The system allows for the induced recruitment of a chromatin regulator to a fluorescent reporter gene, followed by the detection of transcriptional changes using flow cytometry. The reporter gene is integrated into an endogenous chromatin environment, thus enabling the detection of regulatory dependencies of the investigated chromatin regulator on endogenous cofactors. The system allows for an easy and dynamic readout at the single-cell level and the ability to compensate for cell-to-cell variances of transcription. The modular design of the system enables the simple adjustment of the method for the investigation of different chromatin regulators in a broad panel of cell lines. We also summarize applications of this technology to characterize the silencing velocity of different chromatin effectors, removal of activating histone modifications, analysis of stability and reversibility of epigenome modifications, the investigation of the effects of small molecule on chromatin effectors and of functional effector-coregulator relationships. The presented method allows to investigate the complexity of transcriptional regulation by epigenetic effector proteins in living cells.
Collapse
Affiliation(s)
- Franziska Knodel
- Department of Biochemistry, Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Stuttgart, Germany
| | - Sabine Pinter
- Department of Biochemistry, Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Stuttgart, Germany
| | - Carolin Kroll
- Department of Biochemistry, Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Stuttgart, Germany
| | - Philipp Rathert
- Department of Biochemistry, Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Stuttgart, Germany.
| |
Collapse
|
33
|
Zhang Y, Maskan Bermudez N, Sa B, Maderal AD, Jimenez JJ. Epigenetic mechanisms driving the pathogenesis of systemic lupus erythematosus, systemic sclerosis and dermatomyositis. Exp Dermatol 2024; 33:e14986. [PMID: 38059632 DOI: 10.1111/exd.14986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 09/27/2023] [Accepted: 11/08/2023] [Indexed: 12/08/2023]
Abstract
Autoimmune connective tissue disorders, including systemic lupus erythematosus, systemic sclerosis (SSc) and dermatomyositis (DM), often manifest with debilitating cutaneous lesions and can result in systemic organ damage that may be life-threatening. Despite recent therapeutic advancements, many patients still experience low rates of sustained remission and significant treatment toxicity. While genetic predisposition plays a role in these connective tissue disorders, the relatively low concordance rates among monozygotic twins (ranging from approximately 4% for SSc to about 11%-50% for SLE) have prompted increased scrutiny of the epigenetic factors contributing to these diseases. In this review, we explore some seminal studies and key findings to provide a comprehensive understanding of how dysregulated epigenetic mechanisms can contribute to the development of SLE, SSc and DM.
Collapse
Affiliation(s)
- Yusheng Zhang
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Narges Maskan Bermudez
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Brianna Sa
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Andrea D Maderal
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Joaquin J Jimenez
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| |
Collapse
|
34
|
Perez AA, Goronzy IN, Blanco MR, Guo JK, Guttman M. ChIP-DIP: A multiplexed method for mapping hundreds of proteins to DNA uncovers diverse regulatory elements controlling gene expression. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.14.571730. [PMID: 38187704 PMCID: PMC10769186 DOI: 10.1101/2023.12.14.571730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Gene expression is controlled by the dynamic localization of thousands of distinct regulatory proteins to precise regions of DNA. Understanding this cell-type specific process has been a goal of molecular biology for decades yet remains challenging because most current DNA-protein mapping methods study one protein at a time. To overcome this, we developed ChIP-DIP (ChIP Done In Parallel), a split-pool based method that enables simultaneous, genome-wide mapping of hundreds of diverse regulatory proteins in a single experiment. We demonstrate that ChIP-DIP generates highly accurate maps for all classes of DNA-associated proteins, including histone modifications, chromatin regulators, transcription factors, and RNA Polymerases. Using these data, we explore quantitative combinations of protein localization on genomic DNA to define distinct classes of regulatory elements and their functional activity. Our data demonstrate that ChIP-DIP enables the generation of 'consortium level', context-specific protein localization maps within any molecular biology lab.
Collapse
|
35
|
Singh A, Chakrabarti S. Diffusion controls local versus dispersed inheritance of histones during replication and shapes epigenomic architecture. PLoS Comput Biol 2023; 19:e1011725. [PMID: 38109423 PMCID: PMC10760866 DOI: 10.1371/journal.pcbi.1011725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 01/02/2024] [Accepted: 12/01/2023] [Indexed: 12/20/2023] Open
Abstract
The dynamics of inheritance of histones and their associated modifications across cell divisions can have major consequences on maintenance of the cellular epigenomic state. Recent experiments contradict the long-held notion that histone inheritance during replication is always local, suggesting that active and repressed regions of the genome exhibit fundamentally different histone dynamics independent of transcription-coupled turnover. Here we develop a stochastic model of histone dynamics at the replication fork and demonstrate that differential diffusivity of histones in active versus repressed chromatin is sufficient to quantitatively explain these recent experiments. Further, we use the model to predict patterns in histone mark similarity between pairs of genomic loci that should be developed as a result of diffusion, but cannot originate from either PRC2 mediated mark spreading or transcriptional processes. Interestingly, using a combination of CHIP-seq, replication timing and Hi-C datasets we demonstrate that all the computationally predicted patterns are consistently observed for both active and repressive histone marks in two different cell lines. While direct evidence for histone diffusion remains controversial, our results suggest that dislodged histones in euchromatin and facultative heterochromatin may exhibit some level of diffusion within "Diffusion-Accessible-Domains" (DADs), leading to redistribution of epigenetic marks within and across chromosomes. Preservation of the epigenomic state across cell divisions therefore might be achieved not by passing on strict positional information of histone marks, but by maintaining the marks in somewhat larger DADs of the genome.
Collapse
Affiliation(s)
- Archit Singh
- Simons Centre for the Study of Living Machines, National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India
| | - Shaon Chakrabarti
- Simons Centre for the Study of Living Machines, National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India
| |
Collapse
|
36
|
Lee H, Kim S, Lee D. The versatility of the proteasome in gene expression and silencing: Unraveling proteolytic and non-proteolytic functions. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2023; 1866:194978. [PMID: 37633648 DOI: 10.1016/j.bbagrm.2023.194978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 08/02/2023] [Accepted: 08/21/2023] [Indexed: 08/28/2023]
Abstract
The 26S proteasome consists of a 20S core particle and a 19S regulatory particle and critically regulates gene expression and silencing through both proteolytic and non-proteolytic functions. The 20S core particle mediates proteolysis, while the 19S regulatory particle performs non-proteolytic functions. The proteasome plays a role in regulating gene expression in euchromatin by modifying histones, activating transcription, initiating and terminating transcription, mRNA export, and maintaining transcriptome integrity. In gene silencing, the proteasome modulates the heterochromatin formation, spreading, and subtelomere silencing by degrading specific proteins and interacting with anti-silencing factors such as Epe1, Mst2, and Leo1. This review discusses the proteolytic and non-proteolytic functions of the proteasome in regulating gene expression and gene silencing-related heterochromatin formation. This article is part of a special issue on the regulation of gene expression and genome integrity by the ubiquitin-proteasome system.
Collapse
Affiliation(s)
- Hyesu Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, South Korea
| | - Sungwook Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, South Korea
| | - Daeyoup Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, South Korea.
| |
Collapse
|
37
|
Arbel-Groissman M, Menuhin-Gruman I, Naki D, Bergman S, Tuller T. Fighting the battle against evolution: designing genetically modified organisms for evolutionary stability. Trends Biotechnol 2023; 41:1518-1531. [PMID: 37442714 DOI: 10.1016/j.tibtech.2023.06.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 06/10/2023] [Accepted: 06/16/2023] [Indexed: 07/15/2023]
Abstract
Synthetic biology has made significant progress in many areas, but a major challenge that has received limited attention is the evolutionary stability of synthetic constructs made of heterologous genes. The expression of these constructs in microorganisms, that is, production of proteins that are not necessary for the organism, is a metabolic burden, leading to a decrease in relative fitness and make the synthetic constructs unstable over time. This is a significant concern for the synthetic biology community, particularly when it comes to bringing this technology out of the laboratory. In this review, we discuss the issue of evolutionary stability in synthetic biology and review the available tools to address this challenge.
Collapse
Affiliation(s)
- Matan Arbel-Groissman
- Shmunis School of Biomedicine and Cancer Research, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Itamar Menuhin-Gruman
- School of Mathematical Sciences, The Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Doron Naki
- Shmunis School of Biomedicine and Cancer Research, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Shaked Bergman
- Department of Biomedical Engineering, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Tamir Tuller
- Department of Biomedical Engineering, Tel Aviv University, Tel Aviv 6997801, Israel; The Sagol School of Neuroscience, Tel-Aviv University, Tel Aviv 6997801, Israel.
| |
Collapse
|
38
|
Chung YC, Tu LC. Interplay of dynamic genome organization and biomolecular condensates. Curr Opin Cell Biol 2023; 85:102252. [PMID: 37806293 DOI: 10.1016/j.ceb.2023.102252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 08/01/2023] [Accepted: 09/07/2023] [Indexed: 10/10/2023]
Abstract
After 60 years of chromatin investigation, our understanding of chromatin organization has evolved from static chromatin fibers to dynamic nuclear compartmentalization. Chromatin is embedded in a heterogeneous nucleoplasm in which molecules are grouped into distinct compartments, partitioning nuclear space through phase separation. Human genome organization affects transcription which controls euchromatin formation by excluding inactive chromatin. Chromatin condensates have been described as either liquid-like or solid-like. In this short review, we discuss the dynamic nature of chromatin from the perspective of biomolecular condensates and highlight new live-cell synthetic tools to probe and manipulate chromatin organization and associated condensates.
Collapse
Affiliation(s)
- Yu-Chieh Chung
- Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH 43210, USA
| | - Li-Chun Tu
- Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH 43210, USA; Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA; The Ohio State University Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
39
|
Lee GE, Byun J, Lee CJ, Cho YY. Molecular Mechanisms for the Regulation of Nuclear Membrane Integrity. Int J Mol Sci 2023; 24:15497. [PMID: 37895175 PMCID: PMC10607757 DOI: 10.3390/ijms242015497] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/19/2023] [Accepted: 10/22/2023] [Indexed: 10/29/2023] Open
Abstract
The nuclear membrane serves a critical role in protecting the contents of the nucleus and facilitating material and signal exchange between the nucleus and cytoplasm. While extensive research has been dedicated to topics such as nuclear membrane assembly and disassembly during cell division, as well as interactions between nuclear transmembrane proteins and both nucleoskeletal and cytoskeletal components, there has been comparatively less emphasis on exploring the regulation of nuclear morphology through nuclear membrane integrity. In particular, the role of type II integral proteins, which also function as transcription factors, within the nuclear membrane remains an area of research that is yet to be fully explored. The integrity of the nuclear membrane is pivotal not only during cell division but also in the regulation of gene expression and the communication between the nucleus and cytoplasm. Importantly, it plays a significant role in the development of various diseases. This review paper seeks to illuminate the biomolecules responsible for maintaining the integrity of the nuclear membrane. It will delve into the mechanisms that influence nuclear membrane integrity and provide insights into the role of type II membrane protein transcription factors in this context. Understanding these aspects is of utmost importance, as it can offer valuable insights into the intricate processes governing nuclear membrane integrity. Such insights have broad-reaching implications for cellular function and our understanding of disease pathogenesis.
Collapse
Affiliation(s)
- Ga-Eun Lee
- BK21-4th, and BRL, College of Pharmacy, The Catholic University of Korea, 43, Jibong-ro, Wonmi-gu, Bucheon-si 14662, Gyeonggi-do, Republic of Korea; (G.-E.L.); (J.B.)
| | - Jiin Byun
- BK21-4th, and BRL, College of Pharmacy, The Catholic University of Korea, 43, Jibong-ro, Wonmi-gu, Bucheon-si 14662, Gyeonggi-do, Republic of Korea; (G.-E.L.); (J.B.)
| | - Cheol-Jung Lee
- Research Center for Materials Analysis, Korea Basic Science Institute, 169-148, Gwahak-ro, Yuseong-gu, Daejeon 34133, Chungcheongnam-do, Republic of Korea
| | - Yong-Yeon Cho
- BK21-4th, and BRL, College of Pharmacy, The Catholic University of Korea, 43, Jibong-ro, Wonmi-gu, Bucheon-si 14662, Gyeonggi-do, Republic of Korea; (G.-E.L.); (J.B.)
- RCD Control and Material Research Institute, The Catholic University of Korea, 43, Jibong-ro, Wonmi-gu, Bucheon-si 14662, Gyeonggi-do, Republic of Korea
| |
Collapse
|
40
|
Sinha J, Nickels JF, Thurm AR, Ludwig CH, Archibald BN, Hinks MM, Wan J, Fang D, Bintu L. The H3.3 K36M oncohistone disrupts the establishment of epigenetic memory through loss of DNA methylation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.13.562147. [PMID: 37873347 PMCID: PMC10592807 DOI: 10.1101/2023.10.13.562147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Histone H3.3 is frequently mutated in cancers, with the lysine 36 to methionine mutation (K36M) being a hallmark of chondroblastomas. While it is known that H3.3K36M changes the cellular epigenetic landscape, it remains unclear how it affects the dynamics of gene expression. Here, we use a synthetic reporter to measure the effect of H3.3K36M on silencing and epigenetic memory after recruitment of KRAB: a member of the largest class of human repressors, commonly used in synthetic biology, and associated with H3K9me3. We find that H3.3K36M, which decreases H3K36 methylation, leads to a decrease in epigenetic memory and promoter methylation weeks after KRAB release. We propose a new model for establishment and maintenance of epigenetic memory, where H3K36 methylation is necessary to convert H3K9me3 domains into DNA methylation for stable epigenetic memory. Our quantitative model can inform oncogenic mechanisms and guide development of epigenetic editing tools.
Collapse
Affiliation(s)
- Joydeb Sinha
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Jan F. Nickels
- Niels Bohr Institute, University of Copenhagen, Copenhagen 2100, Denmark
| | - Abby R. Thurm
- Biophysics Program, Stanford University, Stanford, CA 94305, USA
| | - Connor H. Ludwig
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Bella N. Archibald
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Michaela M. Hinks
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Jun Wan
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Dong Fang
- Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Lacramioara Bintu
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
41
|
Alavattam KG, Esparza JM, Hu M, Shimada R, Kohrs AR, Abe H, Munakata Y, Otsuka K, Yoshimura S, Kitamura Y, Yeh YH, Hu YC, Kim J, Andreassen PR, Ishiguro KI, Namekawa SH. ATF7IP2/MCAF2 directs H3K9 methylation and meiotic gene regulation in the male germline. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.30.560314. [PMID: 37873266 PMCID: PMC10592865 DOI: 10.1101/2023.09.30.560314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
H3K9 tri-methylation (H3K9me3) plays emerging roles in gene regulation, beyond its accumulation on pericentric constitutive heterochromatin. It remains a mystery why and how H3K9me3 undergoes dynamic regulation in male meiosis. Here, we identify a novel, critical regulator of H3K9 methylation and spermatogenic heterochromatin organization: the germline-specific protein ATF7IP2 (MCAF2). We show that, in male meiosis, ATF7IP2 amasses on autosomal and X pericentric heterochromatin, spreads through the entirety of the sex chromosomes, and accumulates on thousands of autosomal promoters and retrotransposon loci. On the sex chromosomes, which undergo meiotic sex chromosome inactivation (MSCI), the DNA damage response pathway recruits ATF7IP2 to X pericentric heterochromatin, where it facilitates the recruitment of SETDB1, a histone methyltransferase that catalyzes H3K9me3. In the absence of ATF7IP2, male germ cells are arrested in meiotic prophase I. Analyses of ATF7IP2-deficient meiosis reveal the protein's essential roles in the maintenance of MSCI, suppression of retrotransposons, and global upregulation of autosomal genes. We propose that ATF7IP2 is a downstream effector of the DDR pathway in meiosis that coordinates the organization of heterochromatin and gene regulation through the spatial regulation of SETDB1-mediated H3K9me3 deposition.
Collapse
Affiliation(s)
- Kris G. Alavattam
- Reproductive Sciences Center, Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio 45229, USA
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington 98109, USA
- These authors contributed equally to this work
| | - Jasmine M. Esparza
- Department of Microbiology and Molecular Genetics, University of California, Davis, California 95616, USA
- These authors contributed equally to this work
| | - Mengwen Hu
- Reproductive Sciences Center, Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio 45229, USA
- Department of Microbiology and Molecular Genetics, University of California, Davis, California 95616, USA
- These authors contributed equally to this work
| | - Ryuki Shimada
- Department of Chromosome Biology, Institute of Molecular Embryology and Genetics (IMEG), Kumamoto University, Kumamoto, 860-0811, Japan
- These authors contributed equally to this work
| | - Anna R. Kohrs
- Reproductive Sciences Center, Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio 45229, USA
| | - Hironori Abe
- Reproductive Sciences Center, Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio 45229, USA
- Department of Microbiology and Molecular Genetics, University of California, Davis, California 95616, USA
- Department of Chromosome Biology, Institute of Molecular Embryology and Genetics (IMEG), Kumamoto University, Kumamoto, 860-0811, Japan
| | - Yasuhisa Munakata
- Reproductive Sciences Center, Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio 45229, USA
- Department of Microbiology and Molecular Genetics, University of California, Davis, California 95616, USA
| | - Kai Otsuka
- Department of Microbiology and Molecular Genetics, University of California, Davis, California 95616, USA
| | - Saori Yoshimura
- Department of Chromosome Biology, Institute of Molecular Embryology and Genetics (IMEG), Kumamoto University, Kumamoto, 860-0811, Japan
| | - Yuka Kitamura
- Department of Microbiology and Molecular Genetics, University of California, Davis, California 95616, USA
| | - Yu-Han Yeh
- Reproductive Sciences Center, Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio 45229, USA
- Department of Microbiology and Molecular Genetics, University of California, Davis, California 95616, USA
| | - Yueh-Chiang Hu
- Reproductive Sciences Center, Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio 45229, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio 49229, USA
| | - Jihye Kim
- Laboratory of Chromosome Dynamics, Institute of Molecular and Cellular Biosciences, University of Tokyo, 1-1-1, Yayoi, Tokyo, 113-0032, Japan
| | - Paul R. Andreassen
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio 45229, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio 49229, USA
| | - Kei-ichiro Ishiguro
- Department of Chromosome Biology, Institute of Molecular Embryology and Genetics (IMEG), Kumamoto University, Kumamoto, 860-0811, Japan
| | - Satoshi H. Namekawa
- Reproductive Sciences Center, Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio 45229, USA
- Department of Microbiology and Molecular Genetics, University of California, Davis, California 95616, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio 49229, USA
| |
Collapse
|
42
|
Lawson HA, Liang Y, Wang T. Transposable elements in mammalian chromatin organization. Nat Rev Genet 2023; 24:712-723. [PMID: 37286742 DOI: 10.1038/s41576-023-00609-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/24/2023] [Indexed: 06/09/2023]
Abstract
Transposable elements (TEs) are mobile DNA elements that comprise almost 50% of mammalian genomic sequence. TEs are capable of making additional copies of themselves that integrate into new positions in host genomes. This unique property has had an important impact on mammalian genome evolution and on the regulation of gene expression because TE-derived sequences can function as cis-regulatory elements such as enhancers, promoters and silencers. Now, advances in our ability to identify and characterize TEs have revealed that TE-derived sequences also regulate gene expression by both maintaining and shaping 3D genome architecture. Studies are revealing how TEs contribute raw sequence that can give rise to the structures that shape chromatin organization, and thus gene expression, allowing for species-specific genome innovation and evolutionary novelty.
Collapse
Affiliation(s)
- Heather A Lawson
- Department of Genetics, Washington University School of Medicine, Saint Louis, MO, USA.
| | - Yonghao Liang
- Department of Genetics, Washington University School of Medicine, Saint Louis, MO, USA
- Center for Genome Sciences and Systems Biology, Washington University School of Medicine, Saint Louis, MO, USA
| | - Ting Wang
- Department of Genetics, Washington University School of Medicine, Saint Louis, MO, USA.
- Center for Genome Sciences and Systems Biology, Washington University School of Medicine, Saint Louis, MO, USA.
- McDonnell Genome Institute, Washington University School of Medicine, Saint Louis, MO, USA.
| |
Collapse
|
43
|
Li J, Yuan P, Ma G, Liu Y, Zhang Q, Wang W, Guo Y. The composition dynamics of transposable elements in human blastocysts. J Hum Genet 2023; 68:681-688. [PMID: 37308564 DOI: 10.1038/s10038-023-01169-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 05/11/2023] [Accepted: 06/03/2023] [Indexed: 06/14/2023]
Abstract
Transposable elements (TEs) are mobile DNA sequences that can replicate themselves and play significant roles in embryo development and chromosomal structure remodeling. In this study, we investigated the variation of TEs in blastocysts with different parental genetic backgrounds. We analyzed the proportions of 1137 TEs subfamilies from six classes at the DNA level using Bowtie2 and PopoolationTE2 in 196 blastocysts with abnormal parental chromosomal diseases. Our findings revealed that the parental karyotype was the dominant factor influencing TEs frequencies. Out of the 1116 subfamilies, different frequencies were observed in blastocysts with varying parental karyotypes. The development stage of blastocysts was the second most crucial factor influencing TEs proportions. A total of 614 subfamilies exhibited different proportions at distinct blastocyst stages. Notably, subfamily members belonging to the Alu family showed a high proportion at stage 6, while those from the LINE class exhibited a high proportion at stage 3 and a low proportion at stage 6. Moreover, the proportions of some TEs subfamilies also varied depending on blastocyst karyotype, inner cell mass status, and outer trophectoderm status. We found that 48 subfamilies displayed different proportions between balanced and unbalanced blastocysts. Additionally, 19 subfamilies demonstrated varying proportions among different inner cell mass scores, and 43 subfamilies exhibited different proportions among outer trophectoderm scores. This study suggests that the composition of TEs subfamilies may be influenced by various factors and undergoes dynamic modulation during embryo development.
Collapse
Affiliation(s)
- Jian Li
- Department of Clinical Laboratory, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ping Yuan
- IVF Center, Department of Obstetrics and Gynecology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- IVF Center, The First People's Hospital of Kashi Prefecture, Kashi, China
| | - Guangwei Ma
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou, China
| | - Ying Liu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Reproductive Medical Center, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Qingxue Zhang
- IVF Center, Department of Obstetrics and Gynecology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Wenjun Wang
- IVF Center, Department of Obstetrics and Gynecology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.
| | - Yabin Guo
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
44
|
Zhang M, Ehmann ME, Matukumalli S, Boob AG, Gilbert DM, Zhao H. SHIELD: a platform for high-throughput screening of barrier-type DNA elements in human cells. Nat Commun 2023; 14:5616. [PMID: 37699958 PMCID: PMC10497619 DOI: 10.1038/s41467-023-41468-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 09/04/2023] [Indexed: 09/14/2023] Open
Abstract
Chromatin boundary elements contribute to the partitioning of mammalian genomes into topological domains to regulate gene expression. Certain boundary elements are adopted as DNA insulators for safe and stable transgene expression in mammalian cells. These elements, however, are ill-defined and less characterized in the non-coding genome, partially due to the lack of a platform to readily evaluate boundary-associated activities of putative DNA sequences. Here we report SHIELD (Site-specific Heterochromatin Insertion of Elements at Lamina-associated Domains), a platform tailored for the high-throughput screening of barrier-type DNA elements in human cells. SHIELD takes advantage of the high specificity of serine integrase at heterochromatin, and exploits the natural heterochromatin spreading inside lamina-associated domains (LADs) for the discovery of potent barrier elements. We adopt SHIELD to evaluate the barrier activity of 1000 DNA elements in a high-throughput manner and identify 8 candidates with barrier activities comparable to the core region of cHS4 element in human HCT116 cells. We anticipate SHIELD could facilitate the discovery of novel barrier DNA elements from the non-coding genome in human cells.
Collapse
Affiliation(s)
- Meng Zhang
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Mary Elisabeth Ehmann
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Srija Matukumalli
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Aashutosh Girish Boob
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - David M Gilbert
- San Diego Biomedical Research Institute, San Diego, CA, 92121, USA
| | - Huimin Zhao
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
- Department of Chemistry, Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
| |
Collapse
|
45
|
Zhao P, Gu L, Gao Y, Pan Z, Liu L, Li X, Zhou H, Yu D, Han X, Qian L, Liu GE, Fang L, Wang Z. Young SINEs in pig genomes impact gene regulation, genetic diversity, and complex traits. Commun Biol 2023; 6:894. [PMID: 37652983 PMCID: PMC10471783 DOI: 10.1038/s42003-023-05234-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 08/09/2023] [Indexed: 09/02/2023] Open
Abstract
Transposable elements (TEs) are a major source of genetic polymorphisms and play a role in chromatin architecture, gene regulatory networks, and genomic evolution. However, their functional role in pigs and contributions to complex traits are largely unknown. We created a catalog of TEs (n = 3,087,929) in pigs and found that young SINEs were predominantly silenced by histone modifications, DNA methylation, and decreased accessibility. However, some transcripts from active young SINEs showed high tissue-specificity, as confirmed by analyzing 3570 RNA-seq samples. We also detected 211,067 dimorphic SINEs in 374 individuals, including 340 population-specific ones associated with local adaptation. Mapping these dimorphic SINEs to genome-wide associations of 97 complex traits in pigs, we found 54 candidate genes (e.g., ANK2 and VRTN) that might be mediated by TEs. Our findings highlight the important roles of young SINEs and provide a supplement for genotype-to-phenotype associations and modern breeding in pigs.
Collapse
Affiliation(s)
- Pengju Zhao
- Hainan Institute, Zhejiang University, Yongyou Industry Park, Yazhou Bay Sci-Tech City, Sanya, 572000, China
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Lihong Gu
- Institute of Animal Science & Veterinary Medicine, Hainan Academy of Agricultural Sciences, No. 14 Xingdan Road, Haikou, 571100, China
| | - Yahui Gao
- Animal Genomics and Improvement Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, USDA, Beltsville, MD, 20705, USA
| | - Zhangyuan Pan
- Department of Animal Science, University of California, Davis, CA, 95616, USA
| | - Lei Liu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518124, China
| | - Xingzheng Li
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518124, China
| | - Huaijun Zhou
- Department of Animal Science, University of California, Davis, CA, 95616, USA
| | - Dongyou Yu
- Hainan Institute, Zhejiang University, Yongyou Industry Park, Yazhou Bay Sci-Tech City, Sanya, 572000, China
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Xinyan Han
- Hainan Institute, Zhejiang University, Yongyou Industry Park, Yazhou Bay Sci-Tech City, Sanya, 572000, China
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Lichun Qian
- Hainan Institute, Zhejiang University, Yongyou Industry Park, Yazhou Bay Sci-Tech City, Sanya, 572000, China
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - George E Liu
- Animal Genomics and Improvement Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, USDA, Beltsville, MD, 20705, USA.
| | - Lingzhao Fang
- Center for Quantitative Genetics and Genomics, Aarhus University, Aarhus, 8000, Denmark.
| | - Zhengguang Wang
- Hainan Institute, Zhejiang University, Yongyou Industry Park, Yazhou Bay Sci-Tech City, Sanya, 572000, China.
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China.
| |
Collapse
|
46
|
Otlu B, Díaz-Gay M, Vermes I, Bergstrom EN, Zhivagui M, Barnes M, Alexandrov LB. Topography of mutational signatures in human cancer. Cell Rep 2023; 42:112930. [PMID: 37540596 PMCID: PMC10507738 DOI: 10.1016/j.celrep.2023.112930] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 05/09/2023] [Accepted: 07/18/2023] [Indexed: 08/06/2023] Open
Abstract
The somatic mutations found in a cancer genome are imprinted by different mutational processes. Each process exhibits a characteristic mutational signature, which can be affected by the genome architecture. However, the interplay between mutational signatures and topographical genomic features has not been extensively explored. Here, we integrate mutations from 5,120 whole-genome-sequenced tumors from 40 cancer types with 516 topographical features from ENCODE to evaluate the effect of nucleosome occupancy, histone modifications, CTCF binding, replication timing, and transcription/replication strand asymmetries on the cancer-specific accumulation of mutations from distinct mutagenic processes. Most mutational signatures are affected by topographical features, with signatures of related etiologies being similarly affected. Certain signatures exhibit periodic behaviors or cancer-type-specific enrichments/depletions near topographical features, revealing further information about the processes that imprinted them. Our findings, disseminated via the COSMIC (Catalog of Somatic Mutations in Cancer) signatures database, provide a comprehensive online resource for exploring the interactions between mutational signatures and topographical features across human cancer.
Collapse
Affiliation(s)
- Burçak Otlu
- Department of Cellular and Molecular Medicine, UC San Diego, La Jolla, CA 92093, USA; Department of Bioengineering, UC San Diego, La Jolla, CA 92093, USA; Moores Cancer Center, UC San Diego, La Jolla, CA 92037, USA; Department of Health Informatics, Graduate School of Informatics, Middle East Technical University, Ankara 06800, Turkey
| | - Marcos Díaz-Gay
- Department of Cellular and Molecular Medicine, UC San Diego, La Jolla, CA 92093, USA; Department of Bioengineering, UC San Diego, La Jolla, CA 92093, USA; Moores Cancer Center, UC San Diego, La Jolla, CA 92037, USA
| | - Ian Vermes
- COSMIC, Wellcome Sanger Institute, Hinxton, Cambridgeshire CB10 1SA, UK
| | - Erik N Bergstrom
- Department of Cellular and Molecular Medicine, UC San Diego, La Jolla, CA 92093, USA; Department of Bioengineering, UC San Diego, La Jolla, CA 92093, USA; Moores Cancer Center, UC San Diego, La Jolla, CA 92037, USA
| | - Maria Zhivagui
- Department of Cellular and Molecular Medicine, UC San Diego, La Jolla, CA 92093, USA; Department of Bioengineering, UC San Diego, La Jolla, CA 92093, USA; Moores Cancer Center, UC San Diego, La Jolla, CA 92037, USA
| | - Mark Barnes
- Department of Cellular and Molecular Medicine, UC San Diego, La Jolla, CA 92093, USA; Department of Bioengineering, UC San Diego, La Jolla, CA 92093, USA; Moores Cancer Center, UC San Diego, La Jolla, CA 92037, USA
| | - Ludmil B Alexandrov
- Department of Cellular and Molecular Medicine, UC San Diego, La Jolla, CA 92093, USA; Department of Bioengineering, UC San Diego, La Jolla, CA 92093, USA; Moores Cancer Center, UC San Diego, La Jolla, CA 92037, USA.
| |
Collapse
|
47
|
Agredo A, Kasinski AL. Histone 4 lysine 20 tri-methylation: a key epigenetic regulator in chromatin structure and disease. Front Genet 2023; 14:1243395. [PMID: 37671044 PMCID: PMC10475950 DOI: 10.3389/fgene.2023.1243395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 08/07/2023] [Indexed: 09/07/2023] Open
Abstract
Chromatin is a vital and dynamic structure that is carefully regulated to maintain proper cell homeostasis. A great deal of this regulation is dependent on histone proteins which have the ability to be dynamically modified on their tails via various post-translational modifications (PTMs). While multiple histone PTMs are studied and often work in concert to facilitate gene expression, here we focus on the tri-methylation of histone H4 on lysine 20 (H4K20me3) and its function in chromatin structure, cell cycle, DNA repair, and development. The recent studies evaluated in this review have shed light on how H4K20me3 is established and regulated by various interacting partners and how H4K20me3 and the proteins that interact with this PTM are involved in various diseases. Through analyzing the current literature on H4K20me3 function and regulation, we aim to summarize this knowledge and highlights gaps that remain in the field.
Collapse
Affiliation(s)
- Alejandra Agredo
- Department of Biological Sciences, Purdue University, West Lafayette, IN, United States
- Purdue Life Sciences Interdisciplinary Program (PULSe), Purdue University, West Lafayette, IN, United States
| | - Andrea L. Kasinski
- Department of Biological Sciences, Purdue University, West Lafayette, IN, United States
- Purdue Institute for Cancer Research, Purdue University, West Lafayette, IN, United States
| |
Collapse
|
48
|
Zhou J, Lei X, Shafiq S, Zhang W, Li Q, Li K, Zhu J, Dong Z, He XJ, Sun Q. DDM1-mediated R-loop resolution and H2A.Z exclusion facilitates heterochromatin formation in Arabidopsis. SCIENCE ADVANCES 2023; 9:eadg2699. [PMID: 37566662 PMCID: PMC10421056 DOI: 10.1126/sciadv.adg2699] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 07/13/2023] [Indexed: 08/13/2023]
Abstract
Programmed constitutive heterochromatin silencing is essential for eukaryotic genome regulation, yet the initial step of this process is ambiguous. A large proportion of R-loops (RNA:DNA hybrids) had been unexpectedly identified within Arabidopsis pericentromeric heterochromatin with unknown functions. Through a genome-wide R-loop profiling screen, we find that DDM1 (decrease in DNA methylation 1) is the primary restrictor of pericentromeric R-loops via its RNA:DNA helicase activity. Low levels of pericentromeric R-loops resolved by DDM1 cotranscriptionally can facilitate constitutive heterochromatin silencing. Furthermore, we demonstrate that DDM1 physically excludes histone H2A variant H2A.Z and promotes H2A.W deposition for faithful heterochromatin initiation soon after R-loop clearance. The dual functions of DDM1 in R-loop resolution and H2A.Z eviction are essential for sperm nuclei structure maintenance in mature pollen. Our work unravels the cotranscriptional R-loop resolution coupled with accurate H2A variants deposition is the primary step of constitutive heterochromatin silencing in Arabidopsis, which might be conserved across eukaryotes.
Collapse
Affiliation(s)
- Jincong Zhou
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Xue Lei
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Sarfraz Shafiq
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Weifeng Zhang
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Qin Li
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Kuan Li
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Jiafu Zhu
- School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Zhicheng Dong
- School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Xin-jian He
- National Institute of Biological Sciences, Beijing, China
| | - Qianwen Sun
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| |
Collapse
|
49
|
Malla AB, Yu H, Farris D, Kadimi S, Lam TT, Cox AL, Smith ZD, Lesch BJ. DOT1L bridges transcription and heterochromatin formation at mammalian pericentromeres. EMBO Rep 2023; 24:e56492. [PMID: 37317657 PMCID: PMC10398668 DOI: 10.15252/embr.202256492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 04/28/2023] [Accepted: 05/26/2023] [Indexed: 06/16/2023] Open
Abstract
Repetitive DNA elements are packaged in heterochromatin, but many require bursts of transcription to initiate and maintain long-term silencing. The mechanisms by which these heterochromatic genome features are transcribed remain largely unknown. Here, we show that DOT1L, a conserved histone methyltransferase that modifies lysine 79 of histone H3 (H3K79), has a specialized role in transcription of major satellite repeats to maintain pericentromeric heterochromatin and genome stability. We find that H3K79me3 is selectively enriched relative to H3K79me2 at repetitive elements in mouse embryonic stem cells (mESCs), that DOT1L loss compromises pericentromeric satellite transcription, and that this activity involves possible coordination between DOT1L and the chromatin remodeler SMARCA5. Stimulation of transcript production from pericentromeric repeats by DOT1L participates in stabilization of heterochromatin structures in mESCs and cleavage-stage embryos and is required for preimplantation viability. Our findings uncover an important role for DOT1L as a bridge between transcriptional activation of repeat elements and heterochromatin stability, advancing our understanding of how genome integrity is maintained and how chromatin state is set up during early development.
Collapse
Affiliation(s)
- Aushaq B Malla
- Department of GeneticsYale School of MedicineNew HavenCTUSA
| | - Haoming Yu
- Department of GeneticsYale School of MedicineNew HavenCTUSA
| | - Delaney Farris
- Department of GeneticsYale School of MedicineNew HavenCTUSA
| | | | - TuKiet T Lam
- Keck MS & Proteomics ResourceYale School of MedicineNew HavenCTUSA
- Department of Molecular Biophysics and BiochemistryYale UniversityNew HavenCTUSA
| | - Andy L Cox
- Department of GeneticsYale School of MedicineNew HavenCTUSA
| | - Zachary D Smith
- Department of GeneticsYale School of MedicineNew HavenCTUSA
- Yale Stem Cell CenterYale School of MedicineNew HavenCTUSA
| | - Bluma J Lesch
- Department of GeneticsYale School of MedicineNew HavenCTUSA
- Yale Cancer CenterYale School of MedicineNew HavenCTUSA
| |
Collapse
|
50
|
Piro MC, Gasperi V, De Stefano A, Anemona L, Cenciarelli CR, Montanaro M, Mauriello A, Catani MV, Terrinoni A, Gambacurta A. In Vivo Identification of H3K9me2/H3K79me3 as an Epigenetic Barrier to Carcinogenesis. Int J Mol Sci 2023; 24:12158. [PMID: 37569534 PMCID: PMC10419041 DOI: 10.3390/ijms241512158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 07/26/2023] [Accepted: 07/28/2023] [Indexed: 08/13/2023] Open
Abstract
The highly dynamic nature of chromatin's structure, due to the epigenetic alterations of histones and DNA, controls cellular plasticity and allows the rewiring of the epigenetic landscape required for either cell differentiation or cell (re)programming. To dissect the epigenetic switch enabling the programming of a cancer cell, we carried out wide genome analysis of Histone 3 (H3) modifications during osteogenic differentiation of SH-SY5Y neuroblastoma cells. The most significant modifications concerned H3K27me2/3, H3K9me2, H3K79me1/2, and H3K4me1 that specify the process of healthy adult stem cell differentiation. Next, we translated these findings in vivo, assessing H3K27, H3K9, and H3K79 methylation states in biopsies derived from patients affected by basalioma, head and neck carcinoma, and bladder tumors. Interestingly, we found a drastic decrease in H3K9me2 and H3K79me3 in cancer specimens with respect to their healthy counterparts and also a positive correlation between these two epigenetic flags in all three tumors. Therefore, we suggest that elevated global levels of H3K9me2 and H3K79me3, present in normal differentiated cells but lost in malignancy, may reflect an important epigenetic barrier to tumorigenesis. This suggestion is further corroborated, at least in part, by the deranged expression of the most relevant H3 modifier enzymes, as revealed by bioinformatic analysis. Overall, our study indicates that the simultaneous occurrence of H3K9me2 and H3K79me3 is fundamental to ensure the integrity of differentiated tissues and, thus, their combined evaluation may represent a novel diagnostic marker and potential therapeutic target.
Collapse
Affiliation(s)
- Maria Cristina Piro
- Department of Experimental Medicine, Tor Vergata University of Rome, 00133 Rome, Italy; (M.C.P.); (V.G.); (A.D.S.); (L.A.); (C.R.C.); (A.M.); (A.T.)
| | - Valeria Gasperi
- Department of Experimental Medicine, Tor Vergata University of Rome, 00133 Rome, Italy; (M.C.P.); (V.G.); (A.D.S.); (L.A.); (C.R.C.); (A.M.); (A.T.)
| | - Alessandro De Stefano
- Department of Experimental Medicine, Tor Vergata University of Rome, 00133 Rome, Italy; (M.C.P.); (V.G.); (A.D.S.); (L.A.); (C.R.C.); (A.M.); (A.T.)
| | - Lucia Anemona
- Department of Experimental Medicine, Tor Vergata University of Rome, 00133 Rome, Italy; (M.C.P.); (V.G.); (A.D.S.); (L.A.); (C.R.C.); (A.M.); (A.T.)
| | - Claudio Raffaele Cenciarelli
- Department of Experimental Medicine, Tor Vergata University of Rome, 00133 Rome, Italy; (M.C.P.); (V.G.); (A.D.S.); (L.A.); (C.R.C.); (A.M.); (A.T.)
| | - Manuela Montanaro
- Department of Biomedicine and Prevention, Tor Vergata University of Rome, 00133 Rome, Italy;
| | - Alessandro Mauriello
- Department of Experimental Medicine, Tor Vergata University of Rome, 00133 Rome, Italy; (M.C.P.); (V.G.); (A.D.S.); (L.A.); (C.R.C.); (A.M.); (A.T.)
| | - Maria Valeria Catani
- Department of Experimental Medicine, Tor Vergata University of Rome, 00133 Rome, Italy; (M.C.P.); (V.G.); (A.D.S.); (L.A.); (C.R.C.); (A.M.); (A.T.)
| | - Alessandro Terrinoni
- Department of Experimental Medicine, Tor Vergata University of Rome, 00133 Rome, Italy; (M.C.P.); (V.G.); (A.D.S.); (L.A.); (C.R.C.); (A.M.); (A.T.)
| | - Alessandra Gambacurta
- Department of Experimental Medicine, Tor Vergata University of Rome, 00133 Rome, Italy; (M.C.P.); (V.G.); (A.D.S.); (L.A.); (C.R.C.); (A.M.); (A.T.)
- NAST Centre (Nanoscience & Nanotechnology & Innovative Instrumentation), Tor Vergata University of Rome, 00133 Rome, Italy
| |
Collapse
|