1
|
Yang JT, Kuo YC, Lee KC, De S, Chen YY. Resveratrol and ceftriaxone encapsulated in hybrid nanoparticles to prevent dopaminergic neurons from degeneration for Parkinson's disease treatment. BIOMATERIALS ADVANCES 2025; 166:214065. [PMID: 39426178 DOI: 10.1016/j.bioadv.2024.214065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/24/2024] [Accepted: 10/08/2024] [Indexed: 10/21/2024]
Abstract
The purpose of this study is to evaluate the influence of phospholipid-polymer nanoparticles (PNPs) on mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) signaling of dopaminergic neurons in degenerated brain. Resveratrol (RES)- and ceftriaxone (CEF)-entrapped PNPs with surface leptin (Lep) and transferrin (Tf) were fabricated to rescue both 1-methyl-4-phenylpyridinium (MPP+)-insulted SH-SY5Y cells and Wistar rats. Based on PNPs, anti-apoptosis of RES and CEF, and targeting of Lep and Tf were investigated. Experimental results revealed that 20-30 % alginic acid (Alg) yielded the maximal particle size, physical stability and entrapment efficiency of CEF, and the minimal release percentage of CEF. Increasing Alg content in PNPs decreased the entrapment efficiency of RES, and facilitated the release of RES. Optimized PNP composition was about 40 % Alg, 15 % phosphatidylserine and 45 % poly-ε-caprolactone. Lep-Tf-PNPs ameliorated brain permeability of RES and CEF without jeopardizing the blood-brain barrier, and promoted the viability of MPP+-insulted SH-SY5Y cells. Immunofluorescence images and western blots of MPP+-insulted SH-SY5Y cells showed that Lep-Tf-RES-CEF-PNPs upregulated dopamine transporter, tyrosine hydroxylase, B-cell lymphoma 2 (Bcl-2), cyclic AMP response element-binding protein and ERK5 expressions, and downregulated Bcl-2-associated X protein (Bax), α-synuclein (α-syn), phosphorylated tau protein (p-tau), c-Jun N-terminal kinase and ERK1/2 expressions. Lep-Tf-RES-CEF-PNPs unveiled a strong capacity to recover Bcl-2, Bax, α-syn and p-tau levels from MPP+ injury in the substantia nigra of rats. Hence, Lep-Tf-RES-CEF-PNPs can retard α-syn fibril formation, prevent tau protein from phosphorylation, and moderate MAPK/ERK and phosphatidylinositol 3-kinase/protein kinase B, and are promising for brain- and neuron-targeted pharmacotherapy to manage Parkinson's disease.
Collapse
Affiliation(s)
- Jen-Tsung Yang
- Department of Neurosurgery, Chang Gung Memorial Hospital, 6, West Sec., Chia-Pu Road, Chia-Yi 61363, Taiwan, ROC; College of Medicine, Chang Gung University, 259, Wenhua 1st Road, Tao-Yuan 33302, Taiwan, ROC
| | - Yung-Chih Kuo
- Department of Chemical Engineering, National Chung Cheng University, Chia-Yi 62102, Taiwan, ROC; Advanced Institute of Manufacturing with High-tech Innovations, National Chung Cheng University, Chia-Yi 62102, Taiwan, ROC.
| | - Kuan-Chun Lee
- Department of Chemical Engineering, National Chung Cheng University, Chia-Yi 62102, Taiwan, ROC
| | - Sourav De
- Department of Chemical Engineering, National Chung Cheng University, Chia-Yi 62102, Taiwan, ROC; Department of Pharmaceutical Technology, Eminent College of Pharmaceutical Technology, Barasat, West Bengal 700126, India
| | - Yu-Yin Chen
- Department of Chemical Engineering, National Chung Cheng University, Chia-Yi 62102, Taiwan, ROC
| |
Collapse
|
2
|
Ahmadi SS, Bagherzadeh O, Sargazi M, Kalantar F, Najafi MAE, Vahedi MM, Afshari AR, Sahebkar A. Harnessing the therapeutic potential of phytochemicals in neuroblastoma. Biofactors 2024. [PMID: 39189819 DOI: 10.1002/biof.2115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 07/31/2024] [Indexed: 08/28/2024]
Abstract
Neuroblastomas are the most common solid tumors outside of the brain that originate from immature neural crest cells, accounting for about 10% of all pediatric malignancies. The treatment for neuroblastomas involves a multimodal schedule, including surgery, radiation, chemotherapy, and immunotherapy. All these modalities are limited by side effects that might be severe, poor prognosis, and a high risk of recurrence. In the quest for additional therapeutic approaches, phytochemicals have attracted attention owing to their reported antitumor properties, safety, and multimechanistic mode of action. Several studies have used plant-derived bioactive compounds such as phenolics and flavonoids, suggesting modulation of biomolecules and signal transduction pathways involved in neuroblastoma. We reviewed the findings of recent preclinical and clinical studies demonstrating the effects of phytochemicals on neuroblastoma, shedding light on their molecular mechanism of action and potential therapeutic applications.
Collapse
Affiliation(s)
- Seyed Sajad Ahmadi
- Department of Ophthalmology, Khatam-Ol-Anbia Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Omid Bagherzadeh
- Department of Ophthalmology, Khatam-Ol-Anbia Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Meysam Sargazi
- Department of Ophthalmology, Alzahra Eye Hospital, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Farnaz Kalantar
- Departman of Pharmacology, Faculty of Pharmacy and Pharmaceutical sciences, Islamic Azad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Amin Elahi Najafi
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, New York, USA
| | - Mohammad Mahdi Vahedi
- Department of Pharmacology, Faculty of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Amir R Afshari
- Department of Basic Sciences, Faculty of Medicine, Mashhad Medical Sciences, Islamic Azad University, Mashhad, Iran
- Department of Physiology and Pharmacology, Faculty of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Amirhossein Sahebkar
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
3
|
Armari M, Zavattaro E, Trejo CF, Galeazzi A, Grossetti A, Veronese F, Savoia P, Azzimonti B. Vitis vinifera L. Leaf Extract, a Microbiota Green Ally against Infectious and Inflammatory Skin and Scalp Diseases: An In-Depth Update. Antibiotics (Basel) 2024; 13:697. [PMID: 39199997 PMCID: PMC11350673 DOI: 10.3390/antibiotics13080697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 07/18/2024] [Accepted: 07/24/2024] [Indexed: 09/01/2024] Open
Abstract
The skin microbiota, with its millions of bacteria, fungi, and viruses, plays a key role in balancing the health of the skin and scalp. Its continuous exposure to potentially harmful stressors can lead to abnormalities such as local dysbiosis, altered barrier function, pathobiont overabundance, and infections often sustained by multidrug-resistant bacteria. These factors contribute to skin impairment, deregulation of immune response, and chronic inflammation, with local and systemic consequences. In this scenario, according to the needs of the bio-circular-green economy model, novel harmless strategies, both for regulating the diverse epidermal infectious and inflammatory processes and for preserving or restoring the host skin eubiosis and barrier selectivity, are requested. Vitis vinifera L. leaves and their derived extracts are rich in plant secondary metabolites, such as polyphenols, with antioxidant, anti-inflammatory, antimicrobial, and immunomodulatory properties that can be further exploited through microbe-driven fermentation processes. On this premise, this literature review aims to provide an informative summary of the most updated evidence on their interactions with skin commensals and pathogens and on their ability to manage inflammatory conditions and restore microbial biodiversity. The emerging research showcases the potential novel beneficial ingredients for addressing various skincare concerns and advancing the cosmeceutics field as well.
Collapse
Affiliation(s)
- Marta Armari
- Laboratory of Applied Microbiology, Center for Translational Research on Allergic and Autoimmune Diseases (CAAD), Department of Health Sciences (DiSS), School of Medicine, Università del Piemonte Orientale (UPO), Corso Trieste 15/A, 28100 Novara, Italy; (M.A.); (A.G.); (A.G.)
| | - Elisa Zavattaro
- Dermatology Unit, Department of Health Sciences (DiSS), School of Medicine, Università del Piemonte Orientale (UPO), Via Solaroli 17, 28100 Novara, Italy; (E.Z.); (F.V.); (P.S.)
| | | | - Alice Galeazzi
- Laboratory of Applied Microbiology, Center for Translational Research on Allergic and Autoimmune Diseases (CAAD), Department of Health Sciences (DiSS), School of Medicine, Università del Piemonte Orientale (UPO), Corso Trieste 15/A, 28100 Novara, Italy; (M.A.); (A.G.); (A.G.)
| | - Alessia Grossetti
- Laboratory of Applied Microbiology, Center for Translational Research on Allergic and Autoimmune Diseases (CAAD), Department of Health Sciences (DiSS), School of Medicine, Università del Piemonte Orientale (UPO), Corso Trieste 15/A, 28100 Novara, Italy; (M.A.); (A.G.); (A.G.)
| | - Federica Veronese
- Dermatology Unit, Department of Health Sciences (DiSS), School of Medicine, Università del Piemonte Orientale (UPO), Via Solaroli 17, 28100 Novara, Italy; (E.Z.); (F.V.); (P.S.)
| | - Paola Savoia
- Dermatology Unit, Department of Health Sciences (DiSS), School of Medicine, Università del Piemonte Orientale (UPO), Via Solaroli 17, 28100 Novara, Italy; (E.Z.); (F.V.); (P.S.)
| | - Barbara Azzimonti
- Laboratory of Applied Microbiology, Center for Translational Research on Allergic and Autoimmune Diseases (CAAD), Department of Health Sciences (DiSS), School of Medicine, Università del Piemonte Orientale (UPO), Corso Trieste 15/A, 28100 Novara, Italy; (M.A.); (A.G.); (A.G.)
| |
Collapse
|
4
|
D’Amico E, Cinquini C, Petrini M, Barone A, Iezzi G, D’Ercole S, De Filippis B, Pierfelice TV. The Application of Resveratrol Derivatives in Oral Cells Reduces the Oxidative Stress Induced by Glucocorticoids. Metabolites 2024; 14:350. [PMID: 39057674 PMCID: PMC11279245 DOI: 10.3390/metabo14070350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/13/2024] [Accepted: 06/20/2024] [Indexed: 07/28/2024] Open
Abstract
Oxidative stress and high levels of reactive oxygen species (ROS) are linked to various age-related diseases and chronic conditions, including damage to oral tissues. Dexamethasone (DEX), a widely used glucocorticoid in dentistry, can have side effects like increased ROS production and delayed wound healing. Resveratrol (RSV) is known for its antioxidant properties, but its limited bioavailability hinders its clinical use. This study investigated the potential of two RSV derivatives (1d and 1h) to address these limitations. The antioxidant abilities of 1d and 1h (5 μM) against DEX-induced oxidative stress (200 μM) were evaluated in human gingival fibroblasts (hGFs) and osteoblasts (hOBs). The effects of these compounds on cell viability, morphology, ROS levels, SOD activity, gene expression, and collagen production were evaluated. RSV derivatives, under DEX-induced oxidative stress condition, improved cell growth at 72 h (191.70 ± 10.92% for 1d+DEX and 184.80 ± 13.87% for 1h+DEX), morphology, and SOD activity (77.33 ± 3.35 OD for 1d+DEX; 76.87 ± 3.59 OD for 1h+DEX at 1 h), while reducing ROS levels (2417.33 ± 345.49 RFU for 1d+DEX and 1843.00 ± 98.53 RFU at 4 h), especially in hOBs. The co-treatment of RSV or derivatives with DEX restored the expression of genes that were downregulated by DEX, such as HO-1 (1.76 ± 0.05 for 1d+DEX and 1.79 ± 0.01 for 1h+DEX), CAT (0.97 ± 0.06 for 1d+DEX and 0.99 ± 0.03 for 1h+DEX), NRF2 (1.62 ± 0.04 for 1d+DEX and 1.91 ± 0.05 for 1h+DEX), SOD1 (1.63 ± 0.15 for 1d+DEX and 1.69 ± 0.04 for 1h+DEX). In addition, 1d and 1h preserved collagen production (111.79 ± 1.56 for 1d+DEX and 122.27 ± 1.56 for 1h+DEX). In conclusion, this study suggests that the RSV derivatives 1d and 1h hold promise as potential antioxidant agents to counteract DEX-induced oxidative stress. These findings contribute to the development of novel therapeutic strategies for managing oxidative stress-related oral conditions.
Collapse
Affiliation(s)
- Emira D’Amico
- Department of Medical, Oral and Biotechnological Sciences, University “G. d’Annunzio” of Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy; (E.D.); (G.I.); (S.D.); (T.V.P.)
| | - Chiara Cinquini
- Department of Surgical, Medical, Molecular Pathologies and of the Critical Needs, School of Dentistry, University of Pisa, 56126 Pisa, Italy; (C.C.); (A.B.)
- Complex Unit of Stomatology and Oral Surgery, University-Hospital of Pisa, 56126 Pisa, Italy
| | - Morena Petrini
- Department of Medical, Oral and Biotechnological Sciences, University “G. d’Annunzio” of Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy; (E.D.); (G.I.); (S.D.); (T.V.P.)
| | - Antonio Barone
- Department of Surgical, Medical, Molecular Pathologies and of the Critical Needs, School of Dentistry, University of Pisa, 56126 Pisa, Italy; (C.C.); (A.B.)
- Complex Unit of Stomatology and Oral Surgery, University-Hospital of Pisa, 56126 Pisa, Italy
| | - Giovanna Iezzi
- Department of Medical, Oral and Biotechnological Sciences, University “G. d’Annunzio” of Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy; (E.D.); (G.I.); (S.D.); (T.V.P.)
| | - Simonetta D’Ercole
- Department of Medical, Oral and Biotechnological Sciences, University “G. d’Annunzio” of Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy; (E.D.); (G.I.); (S.D.); (T.V.P.)
| | - Barbara De Filippis
- Department of Pharmacy, “G. d’Annunzio” University of Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy;
| | - Tania Vanessa Pierfelice
- Department of Medical, Oral and Biotechnological Sciences, University “G. d’Annunzio” of Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy; (E.D.); (G.I.); (S.D.); (T.V.P.)
| |
Collapse
|
5
|
Gál R, Halmosi R, Gallyas F, Tschida M, Mutirangura P, Tóth K, Alexy T, Czopf L. Resveratrol and beyond: The Effect of Natural Polyphenols on the Cardiovascular System: A Narrative Review. Biomedicines 2023; 11:2888. [PMID: 38001889 PMCID: PMC10669290 DOI: 10.3390/biomedicines11112888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/11/2023] [Accepted: 10/19/2023] [Indexed: 11/26/2023] Open
Abstract
Cardiovascular diseases (CVDs) are among the leading causes of morbidity and mortality worldwide. Unhealthy dietary habits have clearly been shown to contribute to the development of CVDs. Beyond the primary nutrients, a healthy diet is also rich in plant-derived compounds. Natural polyphenols, found in fruits, vegetables, and red wine, have a clear role in improving cardiovascular health. In this review, we strive to summarize the results of the relevant pre-clinical and clinical trials that focused on some of the most important natural polyphenols, such as resveratrol and relevant flavonoids. In addition, we aim to identify their common sources, biosynthesis, and describe their mechanism of action including their regulatory effect on signal transduction pathways. Finally, we provide scientific evidence regarding the cardiovascular benefits of moderate, long-term red wine consumption.
Collapse
Affiliation(s)
- Roland Gál
- Division of Cardiology, 1st Department of Medicine, Medical School, University of Pecs, 7624 Pecs, Hungary; (R.G.); (R.H.); (K.T.)
- Szentágothai Research Centre, University of Pecs, 7624 Pecs, Hungary
| | - Róbert Halmosi
- Division of Cardiology, 1st Department of Medicine, Medical School, University of Pecs, 7624 Pecs, Hungary; (R.G.); (R.H.); (K.T.)
- Szentágothai Research Centre, University of Pecs, 7624 Pecs, Hungary
| | - Ferenc Gallyas
- Department of Biochemistry and Medical Chemistry, University of Pecs, 7624 Pecs, Hungary;
| | - Michael Tschida
- Medical School, University of Minnesota, Minneapolis, MN 55455, USA;
| | - Pornthira Mutirangura
- Department of Medicine, University of Minnesota Medical School, Minneapolis, MN 55455, USA;
| | - Kálmán Tóth
- Division of Cardiology, 1st Department of Medicine, Medical School, University of Pecs, 7624 Pecs, Hungary; (R.G.); (R.H.); (K.T.)
- Szentágothai Research Centre, University of Pecs, 7624 Pecs, Hungary
| | - Tamás Alexy
- Department of Medicine, Division of Cardiology, University of Minnesota, Minneapolis, MN 55455, USA;
| | - László Czopf
- Division of Cardiology, 1st Department of Medicine, Medical School, University of Pecs, 7624 Pecs, Hungary; (R.G.); (R.H.); (K.T.)
| |
Collapse
|
6
|
Sarfraz M, Arafat M, Zaidi SHH, Eltaib L, Siddique MI, Kamal M, Ali A, Asdaq SMB, Khan A, Aaghaz S, Alshammari MS, Imran M. Resveratrol-Laden Nano-Systems in the Cancer Environment: Views and Reviews. Cancers (Basel) 2023; 15:4499. [PMID: 37760469 PMCID: PMC10526844 DOI: 10.3390/cancers15184499] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 08/31/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
The genesis of cancer is a precisely organized process in which normal cells undergo genetic alterations that cause the cells to multiply abnormally, colonize, and metastasize to other organs such as the liver, lungs, colon, and brain. Potential drugs that could modify these carcinogenic pathways are the ones that will be used in clinical trials as anti-cancer drugs. Resveratrol (RES) is a polyphenolic natural antitoxin that has been utilized for the treatment of several diseases, owing to its ability to scavenge free radicals, control the expression and activity of antioxidant enzymes, and have effects on inflammation, cancer, aging, diabetes, and cardioprotection. Although RES has a variety of pharmacological uses and shows promising applications in natural medicine, its unpredictable pharmacokinetics compromise its therapeutic efficacy and prevent its use in clinical settings. RES has been encapsulated into various nanocarriers, such as liposomes, polymeric nanoparticles, lipidic nanocarriers, and inorganic nanoparticles, to address these issues. These nanocarriers can modulate drug release, increase bioavailability, and reach therapeutically relevant plasma concentrations. Studies on resveratrol-rich nano-formulations in various cancer types are compiled in the current article. Studies relating to enhanced drug stability, increased therapeutic potential in terms of pharmacokinetics and pharmacodynamics, and reduced toxicity to cells and tissues are the main topics of this research. To keep the readers informed about the current state of resveratrol nano-formulations from an industrial perspective, some recent and significant patent literature has also been provided. Here, the prospects for nano-formulations are briefly discussed, along with machine learning and pharmacometrics methods for resolving resveratrol's pharmacokinetic concerns.
Collapse
Affiliation(s)
- Muhammad Sarfraz
- College of Pharmacy, Al Ain University, Al Ain Campus, Al Ain P.O. Box 64141, United Arab Emirates
| | - Mosab Arafat
- College of Pharmacy, Al Ain University, Al Ain Campus, Al Ain P.O. Box 64141, United Arab Emirates
| | - Syeda Huma H. Zaidi
- Department of Chemistry, Faculty of Science, Northern Border University, Arar 91431, Saudi Arabia
| | - Lina Eltaib
- Department of Pharmaceutics, Faculty of Pharmacy, Northern Border University, Rafha 91911, Saudi Arabia
| | - Muhammad Irfan Siddique
- Department of Pharmaceutics, Faculty of Pharmacy, Northern Border University, Rafha 91911, Saudi Arabia
| | - Mehnaz Kamal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia;
| | - Abuzer Ali
- Department of Pharmacognosy, College of Pharmacy, Taif University, Taif 21944, Saudi Arabia
| | | | - Abida Khan
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Northern Border University, Rafha 91911, Saudi Arabia (M.I.)
| | - Shams Aaghaz
- Department of Pharmacy, School of Medical & Allied Sciences, Galgotias University, Greater Noida 203201, India
| | - Mohammed Sanad Alshammari
- Department of Computer Science, Faculty of Computing and Information Technology, Northern Border University, Rafha 91911, Saudi Arabia
| | - Mohd Imran
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Northern Border University, Rafha 91911, Saudi Arabia (M.I.)
| |
Collapse
|
7
|
Pasquereau S, Galais M, Bellefroid M, Pachón Angona I, Morot-Bizot S, Ismaili L, Van Lint C, Herbein G. Ferulic acid derivatives block coronaviruses HCoV-229E and SARS-CoV-2 replication in vitro. Sci Rep 2022; 12:20309. [PMID: 36434137 PMCID: PMC9700709 DOI: 10.1038/s41598-022-24682-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 11/18/2022] [Indexed: 11/27/2022] Open
Abstract
A novel coronavirus, SARS-CoV-2, emerged in China at the end of 2019 causing a large global outbreak. As treatments are of the utmost importance, drugs with broad anti-coronavirus activity embody a rich and rapid drug discovery landscape, where candidate drug compounds could be identified and optimized. To this end, we tested ten small-molecules with chemical structures close to ferulic acid derivatives (FADs) (n = 8), caffeic acid derivatives (CAFDs) (n = 1) and carboxamide derivatives (CAMDs) (n = 1) for their ability to reduce HCoV-229E replication, another member of the coronavirus family. Among these ten drugs tested, five of them namely MBA112, MBA33, MBA27-1, OS4-1 and MBA108-1 were highly cytotoxic and did not warrant further testing. In contrast, we observed a moderate cytotoxicity for two of them, MBA152 and 5c. Three drugs, namely MBA140, LIJ2P40, and MBA28 showed lower cytotoxicity. These candidates were then tested for their antiviral propreties against HCoV-229E and SARS-CoV2 replication. We first observed encouraging results in HCoV-229E. We then measured a reduction of the viral SARS-CoV2 replication by 46% with MBA28 (EC50 > 200 µM), by 58% with MBA140 (EC50 = 176 µM), and by 82% with LIJ2P40 (EC50 = 66.5 µM). Overall, the FAD LIJ2P40 showed a reduction of the viral titer on SARS-CoV-2 up to two logs with moderate cytotoxicity which opens the door to further evaluation to fight Covid-19.
Collapse
Affiliation(s)
- Sébastien Pasquereau
- grid.7459.f0000 0001 2188 3779Pathogens and Inflammation/EPILAB Laboratory, EA 4266, Université de Franche-Comté, Université Bourgogne Franche-Comté (UBFC), Besançon, France
| | - Mathilde Galais
- grid.4989.c0000 0001 2348 0746Service of Molecular Virology, Department of Molecular Biology (DBM), Université Libre de Bruxelles (ULB), 6041 Gosselies, Belgium
| | - Maxime Bellefroid
- grid.4989.c0000 0001 2348 0746Service of Molecular Virology, Department of Molecular Biology (DBM), Université Libre de Bruxelles (ULB), 6041 Gosselies, Belgium
| | - Irene Pachón Angona
- grid.493090.70000 0004 4910 6615Neurosciences Intégratives et Cliniques EA 481, Pôle de Chimie Organique et Thérapeutique, Univ. Bourgogne Franche-Comté, UFR Santé, Besançon, France
| | | | - Lhassane Ismaili
- grid.493090.70000 0004 4910 6615Neurosciences Intégratives et Cliniques EA 481, Pôle de Chimie Organique et Thérapeutique, Univ. Bourgogne Franche-Comté, UFR Santé, Besançon, France
| | - Carine Van Lint
- grid.4989.c0000 0001 2348 0746Service of Molecular Virology, Department of Molecular Biology (DBM), Université Libre de Bruxelles (ULB), 6041 Gosselies, Belgium
| | - Georges Herbein
- grid.7459.f0000 0001 2188 3779Pathogens and Inflammation/EPILAB Laboratory, EA 4266, Université de Franche-Comté, Université Bourgogne Franche-Comté (UBFC), Besançon, France ,grid.411158.80000 0004 0638 9213Department of Virology, CHU Besançon, Besançon, France
| |
Collapse
|
8
|
A Micro-Immunotherapy Sequential Medicine MIM-seq Displays Immunomodulatory Effects on Human Macrophages and Anti-Tumor Properties towards In Vitro 2D and 3D Models of Colon Carcinoma and in an In Vivo Subcutaneous Xenograft Colon Carcinoma Model. Int J Mol Sci 2022; 23:ijms23116059. [PMID: 35682738 PMCID: PMC9181410 DOI: 10.3390/ijms23116059] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/20/2022] [Accepted: 05/25/2022] [Indexed: 11/25/2022] Open
Abstract
In this study, the immunomodulatory effects of a sequential micro-immunotherapy medicine, referred as MIM-seq, were appraised in human primary M1 and M2 macrophages, in which the secretion of pro-inflammatory cytokines, such as interleukin (IL)-1β, IL-6, IL-12, IL-23, and tumor necrosis factor (TNF)-alpha, was inhibited. In addition, the potential anti-proliferative effects of MIM-seq on tumor cells was assessed in three models of colorectal cancer (CRC): an in vitro two-dimensions (2D) model of HCT-116 cells, an in vitro tri-dimensional (3D) model of spheroids, and an in vivo model of subcutaneous xenografted mice. In these models, MIM-seq displayed anti-proliferative effects when compared with the vehicle. In vivo, the tumor growth was slightly reduced in MIM-seq-treated animals. Moreover, MIM-seq could slightly reduce the growth of our spheroid models, especially under serum-deprivation. When MIM-seq was combined with two well-known anti-cancerogenic agents, either resveratrol or etoposide, MIM-seq could even further reduce the spheroid’s volume, pointing up the need to further assess whether MIM-seq could be beneficial for CRC patients as an adjuvant therapy. Altogether, these data suggest that MIM-seq could have anti-tumor properties against CRC and an immunomodulatory effect towards the mediators of inflammation, whose systemic dysregulation is considered to be a poor prognosis for patients.
Collapse
|
9
|
Network Pharmacology Reveals That Resveratrol Can Alleviate COVID-19-Related Hyperinflammation. DISEASE MARKERS 2021; 2021:4129993. [PMID: 34580601 PMCID: PMC8463930 DOI: 10.1155/2021/4129993] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 08/17/2021] [Accepted: 08/26/2021] [Indexed: 12/11/2022]
Abstract
Hyperinflammation is related to the development of COVID-19. Resveratrol is considered an anti-inflammatory and antiviral agent. Herein, we used a network pharmacological approach and bioinformatic gene analysis to explore the pharmacological mechanism of Resveratrol in COVID-19 therapy. Potential targets of Resveratrol were obtained from public databases. SARS-CoV-2 differentially expressed genes (DEGs) were screened out via bioinformatic analysis Gene Expression Omnibus (GEO) datasets GSE147507, followed by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis; then, protein-protein interaction network was constructed. The common targets, GO terms, and KEGG pathways of Resveratrol targets and SARS-CoV-2 DEGs were confirmed. KEGG Mapper queried the location of common targets in the key pathways. A notable overlap of the GO terms and KEGG pathways between Resveratrol targets and SARS-CoV-2 DEGs was revealed. The shared targets between Resveratrol targets and SARS-CoV-2 mainly involved the IL-17 signaling pathway, NF-kappa B signaling pathway, and TNF signaling pathway. Our study uncovered that Resveratrol is a promising therapeutic candidate for COVID-19 and we also revealed the probable key targets and pathways involved. Ultimately, we bring forward new insights and encourage more studies on Resveratol to benefit COVID-19 patients.
Collapse
|
10
|
The Effect of Resveratrol on the Cardiovascular System from Molecular Mechanisms to Clinical Results. Int J Mol Sci 2021; 22:ijms221810152. [PMID: 34576315 PMCID: PMC8466271 DOI: 10.3390/ijms221810152] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/02/2021] [Accepted: 09/16/2021] [Indexed: 12/13/2022] Open
Abstract
Cardiovascular diseases are the leading causes of death worldwide. The cardioprotective effects of natural polyphenols such as resveratrol (3,5,4-trihydroxystilbene) have been extensively investigated throughout recent decades. Many studies of RES have focused on its favorable effects on pathological conditions related to cardiovascular diseases and their risk factors. The aim of this review was to summarize the wide beneficial effects of resveratrol on the cardiovascular system, including signal transduction pathways of cell longevity, energy metabolism of cardiomyocytes or cardiac remodeling, and its anti-inflammatory and antioxidant properties. In addition, this paper discusses the significant preclinical and human clinical trials of recent years with resveratrol on cardiovascular system. Finally, we present a short overview of antiviral and anti-inflammatory properties and possible future perspectives on RES against COVID-19 in cardiovascular diseases.
Collapse
|
11
|
Leow SS, Fairus S, Sambanthamurthi R. Water-soluble palm fruit extract: composition, biological properties, and molecular mechanisms for health and non-health applications. Crit Rev Food Sci Nutr 2021; 62:9076-9092. [PMID: 34156318 DOI: 10.1080/10408398.2021.1939648] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The oil palm (Elaeis guineensis) fruit is a source of vegetable oil and various phytonutrients. Phytochemical compounds present in palm oil include tocotrienols, carotenoids, phytosterols, squalene, coenzyme Q10, and phospholipids. Being a fruit, the oil palm is also a rich source of water-soluble phytonutrients, including phenolic compounds. Extraction of phytonutrients from the oil palm vegetation liquor of palm oil milling results in a phenolic acid-rich fraction termed Water-Soluble Palm Fruit Extract (WSPFE). Pre-clinical in vitro, ex vivo, and in vivo studies carried out using various biological models have shown that WSPFE has beneficial bioactive properties, while clinical studies in healthy volunteers showed that it is safe for human consumption and confers antioxidant and anti-inflammatory effects. The composition, biological properties, and relevant molecular mechanisms of WSPFE discovered thus far are discussed in the present review, with a view to offer future research perspectives on WSPFE for health and non-health applications.
Collapse
Affiliation(s)
- Soon-Sen Leow
- Malaysian Palm Oil Board, Kajang, Selangor, Malaysia
| | - Syed Fairus
- Malaysian Palm Oil Board, Kajang, Selangor, Malaysia
| | | |
Collapse
|
12
|
Hamada H, Hamada H, Shimoda K, Kuboki A, Iwaki T, Kiriake Y, Ishihara K. Resveratrol Oligosaccharides (Gluco-Oligosaccharides) Effectively Inhibit SARS-CoV-2 Infection: Glycoside (Polysaccharide) Approach for Treatment of COVID-19. Nat Prod Commun 2021. [DOI: 10.1177/1934578x211012903] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
To examine the anti-SARS-CoV-2 effects of resveratrol oligosaccharides, human MRC5 lung cells, which had been infected with SARS-CoV-2, were incubated with different concentrations of resveratrol oligosaccharides. These suppressed the cell death induced by SARS-CoV-2 infection, more efficiently, at 0.1% concentration, than resveratrol itself. Resveratrol oligosaccharides effectively inhibited SARS-CoV-2 infection in the 5% to 10% concentration range, which indicates that these compounds could be useful anti-SARS-CoV-2 agents.
Collapse
Affiliation(s)
- Hiroki Hamada
- Department of Life Science, Okayama University of Science, Kita-ku, Okayama, Japan
| | - Hatsuyuki Hamada
- Department of Life Science, Okayama University of Science, Kita-ku, Okayama, Japan
| | - Kei Shimoda
- Department of Biomedical Chemistry, Faculty of Medicine, Oita University, Hasama-machi, Oita, Japan
| | - Atsuhito Kuboki
- Department of Biochemistry, Okayama University of Science, Kita-ku, Okayama, Japan
| | - Takafumi Iwaki
- Department of Biophysics, Oita University, Hasama-machi, Oita, Japan
| | - Yuya Kiriake
- Faculty of Medicine and Health Sciences, Yamaguchi University, Minamikogushi, Ube-shi, Japan
| | - Kohji Ishihara
- Department of Life Science, Okayama University of Science, Kita-ku, Okayama, Japan
| |
Collapse
|
13
|
Parisi GF, Carota G, Castruccio Castracani C, Spampinato M, Manti S, Papale M, Di Rosa M, Barbagallo I, Leonardi S. Nutraceuticals in the Prevention of Viral Infections, including COVID-19, among the Pediatric Population: A Review of the Literature. Int J Mol Sci 2021; 22:2465. [PMID: 33671104 PMCID: PMC7957644 DOI: 10.3390/ijms22052465] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 02/24/2021] [Accepted: 02/25/2021] [Indexed: 02/06/2023] Open
Abstract
In recent years, there has been a growth in scientific interest in nutraceuticals, which are those nutrients in foods that have beneficial effects on health. Nutraceuticals can be extracted, used for food supplements, or added to foods. There has long been interest in the antiviral properties of nutraceuticals, which are especially topical in the context of the ongoing COVID-19 pandemic. Therefore, the purpose of this review is to evaluate the main nutraceuticals to which antiviral roles have been attributed (either by direct action on viruses or by modulating the immune system), with a focus on the pediatric population. Furthermore, the possible applications of these substances against SARS-CoV-2 will be considered.
Collapse
Affiliation(s)
- Giuseppe Fabio Parisi
- Pediatric Pulmonology Unit, Department of Clinical and Experimental Medicine, University of Catania, Viale A. Doria 6, 95125 Catania, Italy; (G.F.P.); (S.M.); (M.P.); (S.L.)
| | - Giuseppe Carota
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia, 87 95125 Catania, Italy; (G.C.); (M.S.); (M.D.R.)
| | - Carlo Castruccio Castracani
- The Children’s Hospital of Philadelphia (CHOP), Department of Pediatrics, Division of Hematology Leonard and Madlyn Abramson Pediatric Research Center, Philadelphia, PA 19104, USA;
| | - Mariarita Spampinato
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia, 87 95125 Catania, Italy; (G.C.); (M.S.); (M.D.R.)
| | - Sara Manti
- Pediatric Pulmonology Unit, Department of Clinical and Experimental Medicine, University of Catania, Viale A. Doria 6, 95125 Catania, Italy; (G.F.P.); (S.M.); (M.P.); (S.L.)
| | - Maria Papale
- Pediatric Pulmonology Unit, Department of Clinical and Experimental Medicine, University of Catania, Viale A. Doria 6, 95125 Catania, Italy; (G.F.P.); (S.M.); (M.P.); (S.L.)
| | - Michelino Di Rosa
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia, 87 95125 Catania, Italy; (G.C.); (M.S.); (M.D.R.)
| | - Ignazio Barbagallo
- Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy
| | - Salvatore Leonardi
- Pediatric Pulmonology Unit, Department of Clinical and Experimental Medicine, University of Catania, Viale A. Doria 6, 95125 Catania, Italy; (G.F.P.); (S.M.); (M.P.); (S.L.)
| |
Collapse
|
14
|
Pasquereau S, Nehme Z, Haidar Ahmad S, Daouad F, Van Assche J, Wallet C, Schwartz C, Rohr O, Morot-Bizot S, Herbein G. Resveratrol Inhibits HCoV-229E and SARS-CoV-2 Coronavirus Replication In Vitro. Viruses 2021; 13:v13020354. [PMID: 33672333 PMCID: PMC7926471 DOI: 10.3390/v13020354] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 02/12/2021] [Accepted: 02/17/2021] [Indexed: 12/31/2022] Open
Abstract
A novel coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), emerged in China at the end of 2019 causing a large global outbreak. As treatments are of the utmost importance, drug repurposing embodies a rich and rapid drug discovery landscape, where candidate drug compounds could be identified and optimized. To this end, we tested seven compounds for their ability to reduce replication of human coronavirus (HCoV)-229E, another member of the coronavirus family. Among these seven drugs tested, four of them, namely rapamycin, disulfiram, loperamide and valproic acid, were highly cytotoxic and did not warrant further testing. In contrast, we observed a reduction of the viral titer by 80% with resveratrol (50% effective concentration (EC50) = 4.6 µM) and lopinavir/ritonavir (EC50 = 8.8 µM) and by 60% with chloroquine (EC50 = 5 µM) with very limited cytotoxicity. Among these three drugs, resveratrol was less cytotoxic (cytotoxic concentration 50 (CC50) = 210 µM) than lopinavir/ritonavir (CC50 = 102 µM) and chloroquine (CC50 = 67 µM). Thus, among the seven drugs tested against HCoV-229E, resveratrol demonstrated the optimal antiviral response with low cytotoxicity with a selectivity index (SI) of 45.65. Similarly, among the three drugs with an anti-HCoV-229E activity, namely lopinavir/ritonavir, chloroquine and resveratrol, only the latter showed a reduction of the viral titer on SARS-CoV-2 with reduced cytotoxicity. This opens the door to further evaluation to fight Covid-19.
Collapse
Affiliation(s)
- Sébastien Pasquereau
- Pathogens & Inflammation/EPILAB Laboratory, EA 4266, Université de Franche-Comté, Université Bourgogne Franche-Comté (UBFC), 25030 Besançon, France; (S.P.); (Z.N.); (S.H.A.)
| | - Zeina Nehme
- Pathogens & Inflammation/EPILAB Laboratory, EA 4266, Université de Franche-Comté, Université Bourgogne Franche-Comté (UBFC), 25030 Besançon, France; (S.P.); (Z.N.); (S.H.A.)
- Lebanese University, P.O. Box 6573/14 Badaro Museum, Beirut, Lebanon
| | - Sandy Haidar Ahmad
- Pathogens & Inflammation/EPILAB Laboratory, EA 4266, Université de Franche-Comté, Université Bourgogne Franche-Comté (UBFC), 25030 Besançon, France; (S.P.); (Z.N.); (S.H.A.)
- Lebanese University, P.O. Box 6573/14 Badaro Museum, Beirut, Lebanon
| | - Fadoua Daouad
- FMTS, EA7292, Université de Strasbourg, IUT Louis Pasteur, 67300 Schiltigheim, France; (F.D.); (J.V.A.); (C.W.); (C.S.); (O.R.)
| | - Jeanne Van Assche
- FMTS, EA7292, Université de Strasbourg, IUT Louis Pasteur, 67300 Schiltigheim, France; (F.D.); (J.V.A.); (C.W.); (C.S.); (O.R.)
| | - Clémentine Wallet
- FMTS, EA7292, Université de Strasbourg, IUT Louis Pasteur, 67300 Schiltigheim, France; (F.D.); (J.V.A.); (C.W.); (C.S.); (O.R.)
| | - Christian Schwartz
- FMTS, EA7292, Université de Strasbourg, IUT Louis Pasteur, 67300 Schiltigheim, France; (F.D.); (J.V.A.); (C.W.); (C.S.); (O.R.)
| | - Olivier Rohr
- FMTS, EA7292, Université de Strasbourg, IUT Louis Pasteur, 67300 Schiltigheim, France; (F.D.); (J.V.A.); (C.W.); (C.S.); (O.R.)
| | | | - Georges Herbein
- Pathogens & Inflammation/EPILAB Laboratory, EA 4266, Université de Franche-Comté, Université Bourgogne Franche-Comté (UBFC), 25030 Besançon, France; (S.P.); (Z.N.); (S.H.A.)
- Department of Virology, Besancon University Hospital, 25030 Besançon, France
- Correspondence:
| |
Collapse
|
15
|
Olaleye O, Titilope O, Moses O. Possible health benefits of polyphenols in neurological disorders associated with COVID-19. ACTA FACULTATIS MEDICAE NAISSENSIS 2021. [DOI: 10.5937/afmnai38-30190] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Novel Coronavirus disease 2019 (COVID-19) represents an emergent global health burden that has challenged the health systems worldwide. Since its sudden upsurge in 2019, many COVID-19 patients have exhibited neurological symptoms and complications. Till now, there is no known effective established drug against the highly contagious COVID-19 infection despite the frightening associated mortality rate. This article aims to present the mechanism of action of coronavirus-2 (SARS-CoV-2), the clinical neurological manifestations displayed by COVID-19 patients, and present polyphenols with neuroprotective ability that can offer beneficial effects against COVID-19-mediated neuropathology. Reports from COVID-19 clinical studies, case reports, and other related literature were evaluated for this review. Neurological complications of COVID-19 include anosmia, acute cerebrovascular disease, acute disseminated post-infectious encephalomyelitis, encephalitis, etc. Also, SARS-CoV-2 sould be a neurotropic vіruѕ due to its iѕolatіon from serebroѕrіnal fluіd. Multіrle neurologіsal damages displayed by COVID-19 patients might be due to hyperinflammation associated with SARS-CoV-2 infections. Resveratrol, kolaviron, quercetin and apigenin are polyphenols with proven anti-inflammatory and therapeutic properties that can extenuate the adverse effects of COVID-19. These polyphenols have been documented to suppress c-Jun N-terminal kinase (JNK), phosphoinositide-3-kinase (PI3-K), extrasellularѕіgnal-regulated kinase (ERK), nuclear factor kappa-light-chain-enhancer of activated B-cells (NF-kB) and mіtogen-astіvated protein kіnaѕe (MAPK) pathways which are essential in the pathogenesis of COVID-19. They also showed significant inhibitory activities against SARS-CoV-2 proteins. Taken together, these polyphenols may offer neuroprotective benefits against COVID-19 mediated neuropathology via modulation of the pathogenic pathways.
Collapse
|
16
|
Role of the DNA-Binding Protein pA104R in ASFV Genome Packaging and as a Novel Target for Vaccine and Drug Development. Vaccines (Basel) 2020; 8:vaccines8040585. [PMID: 33023005 PMCID: PMC7712801 DOI: 10.3390/vaccines8040585] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 09/30/2020] [Accepted: 10/01/2020] [Indexed: 12/23/2022] Open
Abstract
The recent incursions of African swine fever (ASF), a severe, highly contagious, transboundary viral disease that affects members of the Suidae family, in Europe and China have had a catastrophic impact on trade and pig production, with serious implications for global food security. Despite efforts made over past decades, there is no vaccine or treatment available for preventing and controlling the ASF virus (ASFV) infection, and there is an urgent need to develop novel strategies. Genome condensation and packaging are essential processes in the life cycle of viruses. The involvement of viral DNA-binding proteins in the regulation of virulence genes, transcription, DNA replication, and repair make them significant targets. pA104R is a highly conserved HU/IHF-like DNA-packaging protein identified in the ASFV nucleoid that appears to be profoundly involved in the spatial organization and packaging of the ASFV genome. Here, we briefly review the components of the ASFV packaging machinery, the structure, function, and phylogeny of pA104R, and its potential as a target for vaccine and drug development.
Collapse
|
17
|
Shaito A, Posadino AM, Younes N, Hasan H, Halabi S, Alhababi D, Al-Mohannadi A, Abdel-Rahman WM, Eid AH, Nasrallah GK, Pintus G. Potential Adverse Effects of Resveratrol: A Literature Review. Int J Mol Sci 2020; 21:E2084. [PMID: 32197410 PMCID: PMC7139620 DOI: 10.3390/ijms21062084] [Citation(s) in RCA: 346] [Impact Index Per Article: 86.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 03/11/2020] [Accepted: 03/15/2020] [Indexed: 02/07/2023] Open
Abstract
Due to its health benefits, resveratrol (RE) is one of the most researched natural polyphenols. Resveratrol's health benefits were first highlighted in the early 1990s in the French paradox study, which opened extensive research activity into this compound. Ever since, several pharmacological activities including antioxidant, anti-aging, anti-inflammatory, anti-cancerous, anti-diabetic, cardioprotective, and neuroprotective properties, were attributed to RE. However, results from the available human clinical trials were controversial concerning the protective effects of RE against diseases and their sequelae. The reason for these conflicting findings is varied but differences in the characteristics of the enrolled patients, RE doses used, and duration of RE supplementation were proposed, at least in part, as possible causes. In particular, the optimal RE dosage capable of maximizing its health benefits without raising toxicity issues remains an area of extensive research. In this context, while there is a consistent body of literature on the protective effects of RE against diseases, there are relatively few reports investigating its possible toxicity. Indeed, toxicity and adverse effects were reported following consumption of RE; therefore, extensive future studies on the long-term effects, as well as the in vivo adverse effects, of RE supplementation in humans are needed. Furthermore, data on the interactions of RE when combined with other therapies are still lacking, as well as results related to its absorption and bioavailability in the human body. In this review, we collect and summarize the available literature about RE toxicity and side effects. In this process, we analyze in vitro and in vivo studies that have addressed this stilbenoid. These studies suggest that RE still has an unexplored side. Finally, we discuss the new delivery methods that are being employed to overcome the low bioavailability of RE.
Collapse
Affiliation(s)
- Abdullah Shaito
- Department of Biological and Chemical Sciences, Lebanese International University, 1105 Beirut, Lebanon;
| | - Anna Maria Posadino
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy;
| | - Nadin Younes
- Department of Biomedical Science, College of Health Sciences, and Biomedical Research Center Qatar University, P.O Box 2713 Doha, Qatar; (N.Y.); (D.A.); (A.A.-M.)
| | - Hiba Hasan
- Institute of Anatomy and Cell Biology, Justus-Liebig-University Giessen, 35392 Giessen, Germany;
| | - Sarah Halabi
- Biology Department, Faculty of Arts and Sciences, American University of Beirut, 1105 Beirut, Lebanon;
| | - Dalal Alhababi
- Department of Biomedical Science, College of Health Sciences, and Biomedical Research Center Qatar University, P.O Box 2713 Doha, Qatar; (N.Y.); (D.A.); (A.A.-M.)
| | - Anjud Al-Mohannadi
- Department of Biomedical Science, College of Health Sciences, and Biomedical Research Center Qatar University, P.O Box 2713 Doha, Qatar; (N.Y.); (D.A.); (A.A.-M.)
| | - Wael M Abdel-Rahman
- Department of Medical Laboratory Sciences, College of Health Sciences and Sharjah Institute for Medical Research, University of Sharjah, Sharjah P.O Box: 27272, United Arab Emirates;
| | - Ali H. Eid
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, P.O. Box 11-0236 Beirut, Lebanon
| | - Gheyath K. Nasrallah
- Department of Biomedical Science, College of Health Sciences, and Biomedical Research Center Qatar University, P.O Box 2713 Doha, Qatar; (N.Y.); (D.A.); (A.A.-M.)
| | - Gianfranco Pintus
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy;
- Department of Medical Laboratory Sciences, College of Health Sciences and Sharjah Institute for Medical Research, University of Sharjah, Sharjah P.O Box: 27272, United Arab Emirates;
| |
Collapse
|
18
|
Abstract
Fruits come in a wide variety of colors, shapes, and flavors. This chapter will cover selected fruits that are known to be healthy and highly nutritious. These fruits were chosen due to their common usage and availability. Since it is not possible to cover all health benefits or essential nutrients and important phytochemicals of the fruit composition, this chapter will focus on the key valuable constituents and their potential health effects.
Collapse
Affiliation(s)
- Sawsan G Mohammed
- Qatar Research Leadership Program (QRLP), Qatar Foundation, Doha, Qatar.
| | - M Walid Qoronfleh
- Research & Policy Department, World Innovation Summit for Health (WISH), Qatar Foundation, Doha, Qatar.
| |
Collapse
|
19
|
Adjei IM, Yang H, Plumton G, Maldonado-Camargo L, Dobson J, Rinaldi C, Jiang H, Sharma B. Multifunctional nanoparticles for intracellular drug delivery and photoacoustic imaging of mesenchymal stem cells. Drug Deliv Transl Res 2020; 9:652-666. [PMID: 30784022 DOI: 10.1007/s13346-019-00621-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Strategies that control the differentiation of mesenchymal stem cells (MSC) and enable image-guided cell implantation and longitudinal monitoring could advance MSC-based therapies for bone defects and injuries. Here we demonstrate a multifunctional nanoparticle system that delivers resveratrol (RESV) intracellularly to improve osteogenesis and enables photoacoustic imaging of MSCs. RESV-loaded nanoparticles (RESV-NPs), formulated from poly (lactic-co-glycolic) acid and iron oxide, enhanced the stability of RESV by 18-fold and served as photoacoustic tomography (PAT) contrast for MSCs. Pre-loading MSCs with RESV-NP upregulated RUNX2 expression with a resultant increase in mineralization by 27% and 45% compared to supplementation with RESV-NP and free RESV, respectively, in 2-dimensional cultures. When grown in polyethylene glycol-based hydrogels, MSCs pre-loaded with RESV-NPs increased the overall level and homogeneity of mineralization compared to those supplemented with free RESV or RESV-NP. The PAT detected RESV-NP-loaded MSCs with a resolution of 1500 cells/μL, which ensured imaging of MSCs upon encapsulation in a PEG-based hydrogel and implantation within the rodent cranium. Significantly, RESV-NP-loaded MSCs in hydrogels did not show PAT signal dilution over time or a reduction in signal upon osteogenic differentiation. This multifunctional NP platform has the potential to advance translation of stem cell-based therapies, by improving stem cell function and consistency via intracellular drug delivery, and enabling the use of a promising emerging technology to monitor cells in a clinically relevant manner.
Collapse
Affiliation(s)
- Isaac M Adjei
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, 1275 Center Drive, JG56, Gainesville, FL, 32611, USA
| | - Hao Yang
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, 1275 Center Drive, JG56, Gainesville, FL, 32611, USA
| | - Glendon Plumton
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, 1275 Center Drive, JG56, Gainesville, FL, 32611, USA
| | | | - Jon Dobson
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, 1275 Center Drive, JG56, Gainesville, FL, 32611, USA.,Department of Materials Science and Engineering, University of Florida, Gainesville, FL, 32611, USA
| | - Carlos Rinaldi
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, 1275 Center Drive, JG56, Gainesville, FL, 32611, USA.,Department of Chemical Engineering, University of Florida, Gainesville, FL, 32611, USA
| | - Huabei Jiang
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, 1275 Center Drive, JG56, Gainesville, FL, 32611, USA
| | - Blanka Sharma
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, 1275 Center Drive, JG56, Gainesville, FL, 32611, USA.
| |
Collapse
|
20
|
|
21
|
Effect of extraction system and grape variety on anti-influenza compounds from wine production residue. Food Control 2019. [DOI: 10.1016/j.foodcont.2018.12.036] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
22
|
Vizza D, Lupinacci S, Toteda G, Puoci F, Ortensia I P, De Bartolo A, Lofaro D, Scrivano L, Bonofiglio R, La Russa A, Bonofiglio M, Perri A. An Olive Leaf Extract Rich in Polyphenols Promotes Apoptosis in Cervical Cancer Cells by Upregulating p21 Cip/WAF1 Gene Expression. Nutr Cancer 2019; 71:320-333. [PMID: 30661406 DOI: 10.1080/01635581.2018.1559934] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Most of the common drugs used to treat the cervical cancer, which main etiological factor is the HPV infection, cause side effects and intrinsic/acquired resistance to chemotherapy. In this study we investigated whether an olive leaf extract (OLE), rich in polyphenols, was able to exert anti-tumor effects in human cervical cancer cells (HeLa). MTT assay results showed a reduction of HeLa cells viability OLE-induced, concomitantly with a gene and protein down-regulation of Cyclin-D1 and an up-regulation of p21, triggering intrinsic apoptosis. OLE reduced NFkB nuclear translocation, which constitutive activation, stimulated by HPV-oncoproteins, promotes cancer progression and functional studies revealed that OLE activated p21Cip/WAF1 in a transcriptional-dependent-manner, by reducing the nuclear recruitment of NFkB on its responsive elements. Furthermore, OLE treatment counteracted epithelial-to-mesenchymal-transition and inhibited anchorage-dependent and -independent cell growth EGF-induced. Finally, MTT assay results revealed that OLE plus Cisplatin strengthened the reduction of cells viability Cisplatin-induced, as OLE inhibited NFkB, AkT and MAPK pathways, all involved in Cisplatin chemoresistance. In conclusion, we demonstrated that in HeLa cells OLE exerts pro-apoptotic effects, elucidating the molecular mechanism and that OLE could mitigate Cisplatin chemoresistance. Further studies are needed to explore the potential coadiuvant use of OLE for cervical cancer treatment.
Collapse
Affiliation(s)
- Donatella Vizza
- a Kidney and Transplantation Research Center, Annunziata Hospital , Cosenza , Italy
| | - Simona Lupinacci
- a Kidney and Transplantation Research Center, Annunziata Hospital , Cosenza , Italy
| | - Giuseppina Toteda
- a Kidney and Transplantation Research Center, Annunziata Hospital , Cosenza , Italy
| | - Francesco Puoci
- b Department of Pharmacy Health and Nutritional Sciences , University of Calabria , Cosenza , Italy
| | - Parisi Ortensia I
- b Department of Pharmacy Health and Nutritional Sciences , University of Calabria , Cosenza , Italy
| | - Anna De Bartolo
- a Kidney and Transplantation Research Center, Annunziata Hospital , Cosenza , Italy
| | - Danilo Lofaro
- a Kidney and Transplantation Research Center, Annunziata Hospital , Cosenza , Italy
| | - Luca Scrivano
- b Department of Pharmacy Health and Nutritional Sciences , University of Calabria , Cosenza , Italy
| | - Renzo Bonofiglio
- a Kidney and Transplantation Research Center, Annunziata Hospital , Cosenza , Italy
| | - Antonella La Russa
- a Kidney and Transplantation Research Center, Annunziata Hospital , Cosenza , Italy
| | - Martina Bonofiglio
- a Kidney and Transplantation Research Center, Annunziata Hospital , Cosenza , Italy
| | - Anna Perri
- a Kidney and Transplantation Research Center, Annunziata Hospital , Cosenza , Italy
| |
Collapse
|
23
|
Annunziata G, Maisto M, Schisano C, Ciampaglia R, Narciso V, Tenore GC, Novellino E. Resveratrol as a Novel Anti-Herpes Simplex Virus Nutraceutical Agent: An Overview. Viruses 2018; 10:v10090473. [PMID: 30177661 PMCID: PMC6164158 DOI: 10.3390/v10090473] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 09/01/2018] [Accepted: 09/02/2018] [Indexed: 01/01/2023] Open
Abstract
The herpes simplex virus (HSV) is a common human virus affecting many people worldwide. HSV infections manifest with lesions that occur in different parts of the body, including oral, ocular, nasal, and genital skin and mucosa. In rare cases, HSV infections can be serious and lethal. Several anti-HSV drugs have been developed, but the existence of mutant viruses resistant to these drugs led to the individuation of novel antiviral agents. Plant-derived bioactive compounds, and more specifically polyphenols, have been demonstrated to exert marked anti-HSV activity and, among these, resveratrol (RSV) would be considered a good candidate. The purpose of this manuscript is to review the available literature elucidating the efficacy of RSV against HSV and the main demonstrated mechanisms of action.
Collapse
Affiliation(s)
- Giuseppe Annunziata
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy.
| | - Maria Maisto
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy.
| | - Connie Schisano
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy.
| | - Roberto Ciampaglia
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy.
| | - Viviana Narciso
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy.
| | - Gian Carlo Tenore
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy.
| | - Ettore Novellino
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy.
| |
Collapse
|
24
|
MERS-CoV: Understanding the Latest Human Coronavirus Threat. Viruses 2018; 10:v10020093. [PMID: 29495250 PMCID: PMC5850400 DOI: 10.3390/v10020093] [Citation(s) in RCA: 155] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 01/28/2018] [Accepted: 02/02/2018] [Indexed: 12/19/2022] Open
Abstract
Human coronaviruses cause both upper and lower respiratory tract infections in humans. In 2012, a sixth human coronavirus (hCoV) was isolated from a patient presenting with severe respiratory illness. The 60-year-old man died as a result of renal and respiratory failure after admission to a hospital in Jeddah, Saudi Arabia. The aetiological agent was eventually identified as a coronavirus and designated Middle East respiratory syndrome coronavirus (MERS-CoV). MERS-CoV has now been reported in more than 27 countries across the Middle East, Europe, North Africa and Asia. As of July 2017, 2040 MERS-CoV laboratory confirmed cases, resulting in 712 deaths, were reported globally, with a majority of these cases from the Arabian Peninsula. This review summarises the current understanding of MERS-CoV, with special reference to the (i) genome structure; (ii) clinical features; (iii) diagnosis of infection; and (iv) treatment and vaccine development.
Collapse
|
25
|
Saez-Lopez C, Brianso-Llort L, Torres-Torronteras J, Simó R, Hammond GL, Selva DM. Resveratrol Increases Hepatic SHBG Expression through Human Constitutive Androstane Receptor: a new Contribution to the French Paradox. Sci Rep 2017; 7:12284. [PMID: 28947831 PMCID: PMC5612985 DOI: 10.1038/s41598-017-12509-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 09/12/2017] [Indexed: 01/08/2023] Open
Abstract
Sex hormone-binding globulin (SHBG) carries sex steroids in blood regulating their bioavailability. Red wine consumption increases plasma SHBG levels, and we have discovered that resveratrol, a polyphenol enriched in red wine, acts specifically through the human constitutive androstane receptor (CAR), a drug/xenobiotic detoxification gene regulator, to increase hepatic SHBG production. Chromatin immunoprecipitation and luciferase reporter gene assays show that human CAR binds to a typical direct repeat 1 nuclear hormone receptor-binding element in the human SHBG proximal promoter. Resveratrol also increased hepatic SHBG production in humanized SHBG/CAR transgenic mice. Moreover, SHBG expression correlated significantly with CAR mRNA levels in human liver biopsies. We conclude that the beneficial effects of red wine on the metabolic syndrome and it associated co-morbidities, including cardiovascular disease and type 2 diabetes, may be mediated in part by resveratrol acting via CAR to increase plasma SHBG levels.
Collapse
Affiliation(s)
- Cristina Saez-Lopez
- Diabetes and Metabolism Research Unit, Vall Hebron Institut de Recerca (VHIR). Universitat Autònoma de Barcelona and Biomedical Network Research Centre on Diabetes and Metabolic Diseases (CIBERDEM, ISCIII), Barcelona, Spain
| | - Laura Brianso-Llort
- Diabetes and Metabolism Research Unit, Vall Hebron Institut de Recerca (VHIR). Universitat Autònoma de Barcelona and Biomedical Network Research Centre on Diabetes and Metabolic Diseases (CIBERDEM, ISCIII), Barcelona, Spain
| | - J Torres-Torronteras
- Research Group on Neuromuscular and Mitochondrial Diseases, Vall Hebron Institut de Recerca (VHIR). Universitat Autònoma de Barcelona and Biomedical Network Research Centre on Rare Diseases (CIBERER, ISCIII), Barcelona, Spain
| | - Rafael Simó
- Diabetes and Metabolism Research Unit, Vall Hebron Institut de Recerca (VHIR). Universitat Autònoma de Barcelona and Biomedical Network Research Centre on Diabetes and Metabolic Diseases (CIBERDEM, ISCIII), Barcelona, Spain.
| | - Geoffrey L Hammond
- Cellular & Physiological Sciences, University of British Columbia, Vancouver, Canada.
| | - David M Selva
- Diabetes and Metabolism Research Unit, Vall Hebron Institut de Recerca (VHIR). Universitat Autònoma de Barcelona and Biomedical Network Research Centre on Diabetes and Metabolic Diseases (CIBERDEM, ISCIII), Barcelona, Spain.
| |
Collapse
|
26
|
Nair MS, D'Mello S, Pant R, Poluri KM. Binding of resveratrol to the minor groove of DNA sequences with AATT and TTAA segments induces differential stability. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2017; 170:217-224. [DOI: 10.1016/j.jphotobiol.2017.04.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 04/06/2017] [Accepted: 04/16/2017] [Indexed: 12/21/2022]
|
27
|
Fuggetta MP, Bordignon V, Cottarelli A, Macchi B, Frezza C, Cordiali-Fei P, Ensoli F, Ciafrè S, Marino-Merlo F, Mastino A, Ravagnan G. Downregulation of proinflammatory cytokines in HTLV-1-infected T cells by Resveratrol. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2016; 35:118. [PMID: 27448598 PMCID: PMC4957876 DOI: 10.1186/s13046-016-0398-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 07/14/2016] [Indexed: 01/05/2023]
Abstract
BACKGROUND Human T-cell leukemia virus (HTLV-1) is a lymphotropic retrovirus associated to adult T cell leukemia (ATL) and to non-neoplastic inflammatory conditions affecting the central nervous system, lung or skin. The inflammatory disorders associated to HTLV-1 are mediated by different proinflammatory cytokines as IL-1α, IL-6, TNF-α. The release and the role of IL-17 is still debated. Aims of this study were to analyze IL-17 induction by HTLV-1 infection and to determine whether resveratrol (RES) is able to down regulate the pathway of cytokines production either in HTLV-1 chronically infected MT-2 cell line or in human CD4+ cells infected in vitro with HTLV-1. METHODS MT-2 and HTLV-1 infected CD4+ cells were analyzed for proinflammatory cytokine production before or after RES treatment. The concentrations of IL-17, IL-1α, IL-6, and TNF-α were measured in cell culture supernatants by ELISA and SearchLight™ technology. The IL-17 mRNA expression was evaluated by RT-PCR. NF-kB activation was detected by non-radioactive, Electro Mobility Shift Assay (EMSA). HTLV-1 RNA expression was detected by Real-time-PCR (RQ-PCR). RESULTS We found that RES is capable of inducing a dose-dependent inhibition of IL-1α, IL-6 and TNF-α production in vitro and can down regulate the expression of IL-17 at both mRNA and protein levels in HTLV-1 infected cells. This effect was associated with a dose-dependent inhibition of the of the nuclear factor kappa-B (NF-kB) activity. Conversely, RES did not apparently affect HTLV-1 proliferation. CONCLUSIONS These results support the anti-inflammatory properties of RES, suggesting that it might be a useful therapeutic agent for the treatment of HTLV-1 related inflammatory diseases.
Collapse
Affiliation(s)
- Maria Pia Fuggetta
- Institute of Translational Pharmacology (IFT), National Research Council (CNR), Via Fosso del Cavaliere 100, 00133, Rome, Italy.
| | - Valentina Bordignon
- Laboratory of Clinical Pathology and Microbiology, San Gallicano Dermatologic Institute, Via Elio Chianesi, 53, 00144, Rome, Italy.
| | - Andrea Cottarelli
- Institute of Translational Pharmacology (IFT), National Research Council (CNR), Via Fosso del Cavaliere 100, 00133, Rome, Italy
| | - Beatrice Macchi
- Department of System Medicine, University of Rome "Tor Vergata", Via Montpellier 1, 00133, Rome, Italy
| | - Caterina Frezza
- Department of Biochemical Science and Surgery, University of Rome "Tor Vergata", Via Montpellier 1, 00133, Rome, Italy
| | - Paola Cordiali-Fei
- Laboratory of Clinical Pathology and Microbiology, San Gallicano Dermatologic Institute, Via Elio Chianesi, 53, 00144, Rome, Italy
| | - Fabrizio Ensoli
- Laboratory of Clinical Pathology and Microbiology, San Gallicano Dermatologic Institute, Via Elio Chianesi, 53, 00144, Rome, Italy
| | - Stefania Ciafrè
- Institute of Translational Pharmacology (IFT), National Research Council (CNR), Via Fosso del Cavaliere 100, 00133, Rome, Italy
| | - Francesca Marino-Merlo
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences, University of Messina, 98166, Messina, Italy
| | - Antonio Mastino
- Institute of Translational Pharmacology (IFT), National Research Council (CNR), Via Fosso del Cavaliere 100, 00133, Rome, Italy.,Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences, University of Messina, 98166, Messina, Italy
| | - Giampietro Ravagnan
- Institute of Translational Pharmacology (IFT), National Research Council (CNR), Via Fosso del Cavaliere 100, 00133, Rome, Italy
| |
Collapse
|
28
|
Nassiri-Asl M, Hosseinzadeh H. Review of the Pharmacological Effects of Vitis vinifera (Grape) and its Bioactive Constituents: An Update. Phytother Res 2016; 30:1392-403. [PMID: 27196869 DOI: 10.1002/ptr.5644] [Citation(s) in RCA: 131] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Revised: 04/16/2016] [Accepted: 04/19/2016] [Indexed: 01/31/2023]
Abstract
Vitis vinifera fruit (grape) contains various phenolic compounds, flavonoids and stilbenes. In recent years, active constituents found in the fruits, seeds, stems, skin and pomaces of grapes have been identified and some have been studied. In this review, we summarize the active constituents of different parts of V. vinifera and their pharmacological effects including skin protection, antioxidant, antibacterial, anticancer, antiinflammatory and antidiabetic activities, as well as hepatoprotective, cardioprotective and neuroprotective effects in experimental studies published after our 2009 review. Clinical and toxicity studies have also been examined. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Marjan Nassiri-Asl
- Cellular and Molecular Research Center, Department of Pharmacology, School of Medicine, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Hossein Hosseinzadeh
- Pharmaceutical Research Center, Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
29
|
Yang T, Li S, Zhang X, Pang X, Lin Q, Cao J. Resveratrol, sirtuins, and viruses. Rev Med Virol 2015; 25:431-45. [DOI: 10.1002/rmv.1858] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Accepted: 09/19/2015] [Indexed: 12/25/2022]
Affiliation(s)
- Tao Yang
- College of Food Science and Technology; Central South University of Forestry and Technology; Changsha Hunan Province China
| | - Shugang Li
- Construction Corps Key Laboratory of Deep Processing on Featured Agricultural Products in South Xinjiang; Tarim University; Alar Xinjiang China
| | - Xuming Zhang
- Department of Microbiology and Immunology; University of Arkansas for Medical Sciences; Little Rock AR USA
| | - Xiaowu Pang
- Departments of Oral Pathology, College of Dentistry; Howard University; Washington DC USA
| | - Qinlu Lin
- College of Food Science and Technology; Central South University of Forestry and Technology; Changsha Hunan Province China
| | - Jianzhong Cao
- College of Food Science and Technology; Central South University of Forestry and Technology; Changsha Hunan Province China
| |
Collapse
|
30
|
Investigation of Stilbenoids as Potential Therapeutic Agents for Rotavirus Gastroenteritis. Adv Virol 2015; 2015:293524. [PMID: 26379708 PMCID: PMC4563088 DOI: 10.1155/2015/293524] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Revised: 08/06/2015] [Accepted: 08/09/2015] [Indexed: 12/20/2022] Open
Abstract
Rotavirus (RV) infections cause severe diarrhea in infants and young children worldwide. Vaccines are available but cost prohibitive for many countries and only reduce severe symptoms. Vaccinated infants continue to shed infectious particles, and studies show decreased efficacy of the RV vaccines in tropical and subtropical countries where they are needed most. Continuing surveillance for new RV strains, assessment of vaccine efficacy, and development of cost effective antiviral drugs remain an important aspect of RV studies. This study was to determine the efficacy of antioxidant and anti-inflammatory stilbenoids to inhibit RV replication. Peanut (A. hypogaea) hairy root cultures were induced to produce stilbenoids, which were purified by high performance countercurrent chromatography (HPCCC) and analyzed by HPLC. HT29.f8 cells were infected with RV in the presence stilbenoids. Cell viability counts showed no cytotoxic effects on HT29.f8 cells. Viral infectivity titers were calculated and comparatively assessed to determine the effects of stilbenoid treatments. Two stilbenoids, trans-arachidin-1 and trans-arachidin-3, show a significant decrease in RV infectivity titers. Western blot analyses performed on the infected cell lysates complemented the infectivity titrations and indicated a significant decrease in viral replication. These studies show the therapeutic potential of the stilbenoids against RV replication.
Collapse
|
31
|
Iqbal Z, Kamran Z, Sultan J, Ali A, Ahmad S, Shahzad M, Ahsan U, Ashraf S, Sohail M. Replacement effect of vitamin E with grape polyphenols on antioxidant status, immune, and organs histopathological responses in broilers from 1- to 35-d age. J APPL POULTRY RES 2015. [DOI: 10.3382/japr/pfv009] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
32
|
Komaravelli N, Kelley JP, Garofalo MP, Wu H, Casola A, Kolli D. Role of dietary antioxidants in human metapneumovirus infection. Virus Res 2015; 200:19-23. [PMID: 25645280 DOI: 10.1016/j.virusres.2015.01.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Revised: 01/20/2015] [Accepted: 01/21/2015] [Indexed: 12/20/2022]
Abstract
Human metapneumovirus (hMPV) is a major cause of respiratory tract infections in children, elderly and immunocompromised hosts, for which no vaccine or treatment are currently available. Oxidative stress and inflammatory responses represent important pathogenic mechanism(s) of hMPV infection. Here, we explored the potential protective role of dietary antioxidants in hMPV infection. Treatment of airway epithelial cells with resveratrol and quercetin during hMPV infection significantly reduced cellular oxidative damage, inflammatory mediator secretion and viral replication, without affecting viral gene transcription and protein synthesis, indicating that inhibition of viral replication occurred at the level of viral assembly and/or release. Modulation of proinflammatory mediator expression occurred through the inhibition of transcription factor nuclear factor (NF)-κB and interferon regulatory factor (IRF)-3 binding to their cognate site of endogenous gene promoters. Our results indicate the use of dietary antioxidants as an effective treatment approach for modulating hMPV induced lung oxidative damage and inflammation.
Collapse
Affiliation(s)
- Narayana Komaravelli
- Departments of Pediatrics, The University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA.
| | - John P Kelley
- Departments of Pediatrics, The University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
| | - Matteo P Garofalo
- Departments of Pediatrics, The University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
| | - Haotian Wu
- Departments of Pediatrics, The University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
| | - Antonella Casola
- Departments of Pediatrics, The University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA; Sealy Center for Molecular Medicine, The University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
| | - Deepthi Kolli
- Departments of Pediatrics, The University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
| |
Collapse
|
33
|
The Cell Membrane is the Main Target of Resveratrol as Shown by Interdisciplinary Biomolecular/Cellular and Biophysical Approaches. J Membr Biol 2013; 247:1-8. [DOI: 10.1007/s00232-013-9604-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Accepted: 09/30/2013] [Indexed: 12/13/2022]
|
34
|
Singh N, Agrawal M, Doré S. Neuroprotective properties and mechanisms of resveratrol in in vitro and in vivo experimental cerebral stroke models. ACS Chem Neurosci 2013; 4:1151-62. [PMID: 23758534 DOI: 10.1021/cn400094w] [Citation(s) in RCA: 130] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Resveratrol, a natural stilbene present at relatively high concentrations in grape skin and seeds and red wine, is known for its purported antioxidant activity in the vascular and nervous systems. In contrast to its direct antioxidant role within the central nervous system, recent research supports a protective mechanism through increasing endogenous cellular antioxidant defenses, which triggers a cascade of parallel neuroprotective pathways. A growing body of in vitro and in vivo evidence indicates that resveratrol acts through multiple pathways and reduces ischemic damage in vital organs, such as the heart and the brain, in various rodent models. Most of the protective biological actions of resveratrol have been associated with its antioxidative, anti-inflammatory, and antiapoptotic properties and other indirect pathways. Continued public interest and increasing resveratrol supplements on the market warrant a review of the available in vitro and in vivo science reported in the stroke-related literature. Rigorous clinical trials evaluating the effects of resveratrol in stroke are absent, though the general population consumption appears to be relatively safe. Resveratrol has shown potential for treating stroke in laboratory animals and in vitro human cell studies, yet there is still a need for human research in preclinical settings. This review summarizes many of the findings on the neuroprotective potential of resveratrol in cerebral stroke, focusing on both the in vitro and in vivo experimental models and some proposed mechanisms of action.
Collapse
Affiliation(s)
- Nilendra Singh
- Department of Anesthesiology and ‡Departments of Neurology, Psychiatry, and
Neuroscience, University of Florida, College of Medicine, Gainesville, Florida 32610, United States
| | - Megha Agrawal
- Department of Anesthesiology and ‡Departments of Neurology, Psychiatry, and
Neuroscience, University of Florida, College of Medicine, Gainesville, Florida 32610, United States
| | - Sylvain Doré
- Department of Anesthesiology and ‡Departments of Neurology, Psychiatry, and
Neuroscience, University of Florida, College of Medicine, Gainesville, Florida 32610, United States
| |
Collapse
|
35
|
Resveratrol Induces Pro-oxidant Effects and Time-Dependent Resistance to Cytotoxicity in Activated Hepatic Stellate Cells. Cell Biochem Biophys 2013; 68:247-57. [DOI: 10.1007/s12013-013-9703-8] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
36
|
Gollucke AP, Aguiar O, Barbisan LF, Ribeiro DA. Use of Grape Polyphenols Against Carcinogenesis: Putative Molecular Mechanisms of Action Using In Vitro and In Vivo Test Systems. J Med Food 2013; 16:199-205. [DOI: 10.1089/jmf.2012.0170] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Affiliation(s)
- Andrea P.B. Gollucke
- HEXALAB and Department of Nutrition, Catholic University of Santos, Sao Paulo, Brazil
| | - Odair Aguiar
- Departament of Biosciences, Federal University of Sao Paulo, Santos, Sao Paulo, Brazil
| | - Luis Fernando Barbisan
- Department of Morphology, Institute of Biosciences, Sao Paulo State University, Botucatu, Sao Paulo, Brazil
| | - Daniel Araki Ribeiro
- Departament of Biosciences, Federal University of Sao Paulo, Santos, Sao Paulo, Brazil
| |
Collapse
|
37
|
Resveratrol inhibits Epstein Barr Virus lytic cycle in Burkitt's lymphoma cells by affecting multiple molecular targets. Antiviral Res 2012; 96:196-202. [PMID: 22985630 DOI: 10.1016/j.antiviral.2012.09.003] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Revised: 09/04/2012] [Accepted: 09/05/2012] [Indexed: 12/12/2022]
Abstract
Resveratrol (RV), a polyphenolic natural product present in many plants and fruits, exhibits anti-inflammatory, cardio-protective and anti-proliferative properties. Moreover, RV affects a wide variety of viruses including members of the Herpesviridae family, retroviruses, influenza A virus and polyomavirus by altering cellular pathways that affect viral replication itself. Epstein Barr Virus (EBV), the causative agent of infectious mononucleosis, is associated with different proliferative diseases in which it establishes a latent and/or a lytic infection. In this study, we examined the antiviral activity of RV against the EBV replicative cycle and investigated the molecular targets possibly involved. In a cellular context that allows in vitro EBV activation and lytic cycle progression through mechanisms closely resembling those that in vivo initiate and enable productive infection, we found that RV inhibited EBV lytic genes expression and the production of viral particles in a dose-dependent manner. We demonstrated that RV inhibited protein synthesis, decreased reactive oxygen species (ROS) levels, and suppressed the EBV-induced activation of the redox-sensitive transcription factors NF-kB and AP-1. Further insights into the signaling pathways and molecular targets modulated by RV may provide the basis for exploiting the antiviral activity of this natural product on EBV replication.
Collapse
|
38
|
Fioravanti R, Celestino I, Costi R, Cuzzucoli Crucitti G, Pescatori L, Mattiello L, Novellino E, Checconi P, Palamara AT, Nencioni L, Di Santo R. Effects of polyphenol compounds on influenza A virus replication and definition of their mechanism of action. Bioorg Med Chem 2012; 20:5046-52. [PMID: 22743086 DOI: 10.1016/j.bmc.2012.05.062] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Revised: 05/16/2012] [Accepted: 05/25/2012] [Indexed: 12/21/2022]
Abstract
A set of polyphenol compounds was synthesized and assayed for their ability in inhibiting influenza A virus replication. A sub-set of them showed low toxicity. The best compounds within this sub-set were 4 and 6g, which inhibited the viral replication in a dose-dependent manner. The antiviral activity of these molecules was demonstrated to be caused by their interference with intracellular pathways exploited for viral replication: (1) MAP kinases controlling nuclear-cytoplasmic traffic of viral ribonucleoprotein complex; (2) redox-sensitive pathways, involved in maturation of viral hemagglutinin protein.
Collapse
Affiliation(s)
- Rossella Fioravanti
- Istituto Pasteur Cenci Bolognetti - Dip. Chimica e Tecnologie del Farmaco, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Erdman CP, Dosier CR, Olivares-Navarrete R, Baile C, Guldberg RE, Schwartz Z, Boyan BD. Effects of resveratrol on enrichment of adipose-derived stem cells and their differentiation to osteoblasts in two-and three-dimensional cultures. J Tissue Eng Regen Med 2012; 6 Suppl 3:s34-46. [PMID: 22467433 DOI: 10.1002/term.513] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2011] [Revised: 04/06/2011] [Accepted: 08/27/2011] [Indexed: 01/05/2023]
Abstract
The goal of this study was to develop a method for increasing the yield of multipotent adipose-derived mesenchymal stem cells (ASCs) and osteoprogenitor cells (OPCs) from subcutaneous fat. After removing mature adipocytes and haematopoietic cells from rat inguinal fat, ASCs in the remaining cell population were verified by their attachment to plastic, surface marker profile (CD271(+), CD73(+) and CD45(-)) and ability to differentiate into adipocytes, chondrocytes and osteoblasts. OPCs were defined as E11(+) and OCN(+). Adherent cells were cultured in growth medium (GM) or osteogenic medium (OM) and treated with resveratrol (0, 12.5, and 25 µM) for 7 days; ASCs and OPCs were assessed by flow cytometry. Osteogenic potential was determined in two-dimensional (2D) cultures as a function of alkaline phosphatase-specific activity and osteocalcin production. In addition, cells were seeded onto three-dimensional (3D) poly-ε-caprolactone scaffolds and cultured under dynamic conditions; mineralization was quantified by micro-CT at 4, 8 and 12 weeks. Resveratrol increased the percentage of ASCs in the population (population%) and number of ASCs in both GM and OM, but increased only the number of OPCs in GM. In both media types resveratrol increased alkaline phosphatase activity and osteocalcin levels. In 3D cultures, resveratrol-treated cells significantly increased mineralized matrix volume at early time points. Resveratrol exerted a biphasic effect on adherent cells by enriching the ASC and OPC populations and enhancing osteogenic differentiation. Resveratrol pretreatment induced more mineralization at earlier time points and represents a clinically viable technique for orthopaedic and dental applications for autologous stem cell therapy.
Collapse
Affiliation(s)
- Christopher P Erdman
- Parker H Petit Institute for Bioengineering and Bioscience, Georgia, Institute of Technology, 315 Ferst Drive NW, Atlanta, GA 30332, USA
| | | | | | | | | | | | | |
Collapse
|
40
|
Galindo I, Hernáez B, Berná J, Fenoll J, Cenis JL, Escribano JM, Alonso C. Comparative inhibitory activity of the stilbenes resveratrol and oxyresveratrol on African swine fever virus replication. Antiviral Res 2011; 91:57-63. [PMID: 21557969 DOI: 10.1016/j.antiviral.2011.04.013] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2011] [Revised: 04/08/2011] [Accepted: 04/26/2011] [Indexed: 12/18/2022]
Abstract
Stilbenols are polyphenolic phytoalexins produced by plants in response to biotic or abiotic stress. These compounds have received much attention because of their significant biological effects. One of these is their antiviral action, which has previously been documented for two members of this class, namely resveratrol and oxyresveratrol. Here we tested the antiviral effect of these two compounds on African swine fever virus, the only member of the newly created family Asfarviridae and a serious limitation to porcine production worldwide. Our results show a potent, dose-dependent antiviral effect of resveratrol and oxyresveratrol in vitro. Interestingly, this antiviral activity was found for these synthetic compounds and also for oxyresveratrol extracted from new natural sources (mulberry twigs). The antiviral effect of these two drugs was demonstrated at concentrations that do not induce cytotoxicity in cultured cells. Moreover, these antivirals achieved a 98-100% reduction in viral titers. Both compounds allowed early protein synthesis but inhibited viral DNA replication, late viral protein synthesis and viral factory formation.
Collapse
Affiliation(s)
- I Galindo
- Dpt. Biotecnología, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, INIA, Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
41
|
Abstract
Grape seed extract (GSE) is reported to have many pharmacological benefits, including antioxidant, anti-inflammatory, anticarcinogenic, and antimicrobial properties. However, the effect of this inexpensive rich source of natural phenolic compounds on human enteric viruses has not been well documented. In the present study, the effect of commercial GSE, Gravinol-S, on the infectivity of human enteric virus surrogates (feline calicivirus, FCV-F9; murine norovirus, MNV-1; and bacteriophage MS2) and hepatitis A virus (HAV; strain HM175) was evaluated. GSE at concentrations of 0.5, 1, and 2 mg/ml was individually mixed with equal volumes of each virus at titers of ∼7 log(10) PFU/ml or ∼5 log(10) PFU/ml and incubated for 2 h at room temperature or 37°C. The infectivity of the recovered viruses after triplicate treatments was evaluated by standardized plaque assays. At high titers (∼7 log(10) PFU/ml), FCV-F9 was significantly reduced by 3.64, 4.10, and 4.61 log(10) PFU/ml; MNV-1 by 0.82, 1.35, and 1.73 log(10) PFU/ml; MS2 by 1.13, 1.43, and 1.60 log(10) PFU/ml; and HAV by 1.81, 2.66, and 3.20 log(10) PFU/ml after treatment at 37°C with 0.25, 0.50, and 1 mg/ml GSE, respectively (P < 0.05) in a dose-dependent manner. GSE treatment of low titers (∼5 log(10) PFU/ml) at 37°C also showed viral reductions. Room-temperature treatments with GSE caused significant reduction of the four viruses, with higher reduction for low-titer FCV-F9, MNV-1, and HAV compared to high titers. Our results indicate that GSE shows promise for application in the food industry as an inexpensive novel natural alternative to reduce viral contamination and enhance food safety.
Collapse
|
42
|
Alex AF, Spitznas M, Tittel AP, Kurts C, Eter N. Inhibitory effect of epigallocatechin gallate (EGCG), resveratrol, and curcumin on proliferation of human retinal pigment epithelial cells in vitro. Curr Eye Res 2011; 35:1021-33. [PMID: 20958191 DOI: 10.3109/02713683.2010.506970] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
PURPOSE To investigate potential inhibitory effects of three polyphenolic agents, epigallocatechin gallate (EGCG; from green tea), resveratrol (from red wine), and curcumin (from turmeric), on the proliferation of human retinal pigment epithelial (RPE) cells and to elucidate unwanted effects. METHODS ARPE19 cells and primary human RPE cells were cultured in the presence of various concentrations of EGCG, resveratrol, or curcumin, and compared with controls. The number of viable cells was determined after 24, 48, and 72 hr by flow cytometrical enumeration. Furthermore, cell division was measured by dye dilution assay using carboxyfluorescein succinimidyl ester (CFSE), cell death by Hoechst 33258 staining, and apoptosis by staining for active caspase 3/7 and 8. RESULTS The three drugs inhibited the increase of RPE cell numbers at all time points, with resveratrol being the most efficient and curcumin being the least efficient. EGCG inhibited cell proliferation with intermediate efficiency, and showed little induction of cell death. Resveratrol almost completely suppressed cell proliferation, and induced RPE cell necrosis and caspase 3/7- and caspase 8-dependent apoptosis. Curcumin inhibited RPE cell increase exclusively by inducing caspase 3/7-dependent but caspase 8-independent cell death and necrosis. CONCLUSIONS All three polyphenols tested reduced the absolute number of cells, but had different effects on cell proliferation, apoptosis, and necrosis. Resveratrol was most potent and EGCG induced the least cell death. These polyphenols may aid treatment of proliferative vitreoretinopathy (PVR).
Collapse
Affiliation(s)
- Anne F Alex
- Department of Ophthalmology, University of Bonn Medical Center, Bonn, Germany
| | | | | | | | | |
Collapse
|
43
|
Tedesco I, Russo M, Russo GL. Commentary on ‘Resveratrol commonly displays hormesis: Occurrence and biomedical significance’. Hum Exp Toxicol 2010; 29:1029-31. [DOI: 10.1177/0960327110383628] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The review by Calabrese et al. describes the hormetic dose responses induced by phytoalexin resveratrol in a wide range of biological models. We agree and support the authors’ strategy to present an impressive number of experiments furnished with an exhaustive bibliography to emphasize that ‘many effects induced by resveratrol are dependent on dose and that opposite effects occur at low and high doses, being indicative of a hormetic dose response.’ We also highly appreciate the holistic view of the hormetic behavior of resveratrol provided by the authors spanning from tumor and non-tumor cell lines to human and parasitic diseases. In our comments, we touched minor points whose discussion would have strengthened the work of Calabrese, such as contradictions on the role of resveratrol in the ‘French Paradox,’ its effect on aromatase activity, glutamate cysteine ligase expression and glutathione levels. Overall, we encourage colleagues working in this field to read the present review and consider its relevant biological implications. The vision of Calabrese et al. is far too important to be ignored.
Collapse
Affiliation(s)
- Idolo Tedesco
- Institute of Food Sciences, National Research Council, Avellino, Italy,
| | - Maria Russo
- Institute of Food Sciences, National Research Council, Avellino, Italy
| | - Gian Luigi Russo
- Institute of Food Sciences, National Research Council, Avellino, Italy
| |
Collapse
|
44
|
Matias AA, Serra AT, Silva AC, Perdigão R, Ferreira TB, Marcelino I, Silva S, Coelho AV, Alves PM, Duarte CMM. Portuguese winemaking residues as a potential source of natural anti-adenoviral agents. Int J Food Sci Nutr 2010; 61:357-68. [PMID: 20109126 DOI: 10.3109/09637480903430990] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
To date there are no licensed systemic or topical treatments in Europe or the USA for adenovirus infections. In the present paper, we evaluate the effect of a polyphenol-based grape extract (NE) obtained from Portuguese white-winemaking by-products, and Resveratrol in pure form, on adenovirus type 5 infection. For this purpose, recombinant adenovirus vectors (Ad-5) and a human-derived cell line (293) were used as models. The NE and Resveratrol at the used concentrations do not induce cell cytotoxicity or direct virucidal activity; however, they reduce 4.5 and 6.5 log (TCID(50)/ml) on total infectious Ad-5 production, respectively. The capacity of Ad-5 replication upon removal of NE and Resveratrol after 24 h post infection was also evaluated. In contrast to Resveratrol, the highest evaluated NE concentration inhibits irreversibly the Ad-5 replication. These results provide useful information for the use of NE and Resveratrol as potential sources of promising natural antiviral agents on Ad-5 infection.
Collapse
Affiliation(s)
- Ana A Matias
- Instituto de Biologia Experimental e Tecnológica, Avenida da República, Quinta do Marquês, Estação Agronómica Nacional, Oeiras, Portugal
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Protection against severe intestinal ischemia/reperfusion injury in rats by intravenous resveratrol. J Surg Res 2010; 167:e145-55. [PMID: 20850780 DOI: 10.1016/j.jss.2010.06.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2010] [Revised: 05/11/2010] [Accepted: 06/01/2010] [Indexed: 01/13/2023]
Abstract
BACKGROUND Repetitive enteral or intraperitoneal administration of resveratrol at high doses has recently been found to protect the small intestine against acute ischemia/reperfusion (I/R) injury. In the present work, the protective potential of solvent-free continuous intravenous infusions of small amounts of resveratrol was studied in a model of severe intestinal I/R injury. MATERIALS AND METHODS Mesenteric ischemia was induced in male Wistar rats (six animals/group) by superior mesenteric artery occlusion (SMAO, 90 min) and reperfusion (120 min) by reopening of the microvascular clamp. Resveratrol (0.056 or 0.28 mg/kg) was continuously perfused into the jugular vein (0.014 or 0.07 mg/kg × h) starting 30 min before SMAO; an SMAO control group and sham groups (no SMAO) receiving either 0.9% NaCl solution or resveratrol (0.28 mg/kg) were included. During the experimental procedure, isotonic saline was given at a systolic blood pressure below 90 mmHg, and several parameters including those of biomonitoring and blood gas analysis were measured. Small intestine injury was assessed macroscopically, from released plasma enzyme activities, from the tissue contents of thiobarbituric acid-reactive substances and hemoglobin, from the tissue myeloperoxidase activity, and histopathologically. RESULTS Resveratrol at only 0.056 mg/kg significantly decreased the macroscopic damage score, the tissue myeloperoxidase activity, the hemoglobin content, the histopathologic score, and the plasma glutamate-pyruvate transaminase activity, but it did not improve the systemic and metabolic parameters. Instead, during reperfusion, significantly higher volumes of saline were administered to animals receiving the polyphenol, although resveratrol did not significantly affect any parameters in sham-operated animals. CONCLUSIONS Low doses of intravenously administered resveratrol considerably protected the rat small intestine against severe I/R injury, despite some adverse effects on blood pressure under these conditions.
Collapse
|
46
|
Abstract
Resveratrol is a natural compound produced by certain plants on various stimuli. In recent years, extensive research on resveratrol has been carried out, demonstrating its capacity to prevent a wide variety of conditions, including cardiovascular diseases and cancer, and to control fungal, bacterial and viral infections. In the present review, we summarize the current knowledge of the activity of resveratrol against viral infection and describe the possible molecular pathways through which resveratrol exerts its antiviral activity.
Collapse
|
47
|
The synthetic inhibitor of fibroblast growth factor receptor PD166866 controls negatively the growth of tumor cells in culture. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2009; 28:151. [PMID: 20003343 PMCID: PMC2797793 DOI: 10.1186/1756-9966-28-151] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2009] [Accepted: 12/11/2009] [Indexed: 01/18/2023]
Abstract
Background Many experimental data evidence that over-expression of various growth factors cause disorders in cell proliferation. The role of the Fibroblast Growth Factors (FGF) in growth control is indisputable: in particular, FGF1 and its tyrosine kinase receptor (FGFR1) act through a very complex network of mechanisms and pathways. In this work we have evaluated the antiproliferative activity effect of PD166866, a synthetic molecule inhibiting the tyrosin kinase action of FGFR1. Methods Cells were routinely grown in Dulbecco Modified Eagle's medium supplemented with newborn serum and a penicillin-streptomycin mixture. Cell viability was evaluated by Mosmann assay and by trypan blue staining. DNA damage was assessed by in situ fluorescent staining with Terminal Deoxynucleotidyl Transferase dUTP nick end labeling (TUNEL assay). Assessment of oxidative stress at membrane level was measured by quantitative analysis of the intra-cellular formation of malonyl-dialdheyde (MDA) deriving from the decomposition of poly-unsaturated fatty acids. The expression of Poly-ADP-Ribose-Polymerase (PARP), consequent to DNA fragmentation, was evidenced by immuno-histochemistry utilizing an antibody directed against an N-terminal fragment of the enzyme. Results The bioactivity of the drug was investigated on Hela cells. Cytoxicity was assessed by the Mosmann assay and by vital staining with trypan blue. The target of the molecule is most likely the cell membrane as shown by the significant increase of the intracellular concentration of malonyl-dihaldheyde. The increase of this compound, as a consequence of the treatment with PD166866, is suggestive of membrane lipoperoxidation. The TUNEL assay gave a qualitative, though clear, indication of DNA damage. Furthermore we demonstrate intracellular accumulation of poly-ADP-ribose polymerase I. This enzyme is a sensor of nicks on the DNA strands and this supports the idea that treatment with the drug induces cell death. Conclusions Data presented in this work show that PD166866 has clear antiproliferative effects. The negative control of cell proliferation may be exerted through the activation of the apoptotic pathway. The results of experiments addressing this specific point, such as: evaluation of DNA damage, lipoperoxidation of the cell membrane and increase of expression of PARP, an enzyme directly involved in DNA repair. Results suggest that cells exposed to PD16866 undergo apoptosis. However, concomitant modes of cell death cannot be ruled out. The possible use of this drug for therapeutic purposes is discussed.
Collapse
|
48
|
Baus D, Yan Y, Li Z, Garyantes T, de Hoop M, Tennagels N. A robust assay measuring GLUT4 translocation in rat myoblasts overexpressing GLUT4-myc and AS160_v2. Anal Biochem 2009; 397:233-40. [PMID: 19854150 DOI: 10.1016/j.ab.2009.10.036] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2009] [Revised: 10/16/2009] [Accepted: 10/20/2009] [Indexed: 11/30/2022]
Abstract
Muscle and fat cells translocate GLUT4 (glucose transporter 4) to the plasma membrane when stimulated by insulin. Usually, this event is measured in differentiated adipocytes, myotubes, or cell lines overexpressing tagged GLUT4 by immunostaining. However, measurement of the translocation in differentiated adipocytes or myotubes or GLUT4 overexpressing cell lines is difficult because of high assay variability caused by either the differentiation protocol or low assay sensitivity. We recently reported the identification of a novel splice variant of AS160 (substrate of 160kDa), namely AS160_v2, and showed that its coexpression with GLUT4 in L6 myoblasts increased the insulin-stimulated glucose uptake rate due to an increased amount of GLUT4 on the cell surface. L6 cells, which coexpress myc-tagged GLUT4 and AS160_v2, can be efficiently used to generate an assay useful for identifying compounds that affect cellular responses to insulin. We compared the EC(50) values for radioactive glucose uptake and GLUT4 translocation of different insulins and several small molecules to validate the assay. The use of L6 cells overexpressing AS160_v2 can be considered as a novel tool for the characterization of molecules modulating insulin signaling and GLUT4 translocation, and an image-based assay increases our confidence in the mode of action of the compounds identified.
Collapse
Affiliation(s)
- Daniela Baus
- Sanofi-Aventis Deutschland, 65926 Frankfurt am Main, Germany
| | | | | | | | | | | |
Collapse
|