1
|
Chen S, Lei Z, Sun T. The critical role of miRNA in bacterial zoonosis. Int Immunopharmacol 2024; 143:113267. [PMID: 39374566 DOI: 10.1016/j.intimp.2024.113267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 08/21/2024] [Accepted: 09/24/2024] [Indexed: 10/09/2024]
Abstract
The public's health and the financial sustainability of international societies remain threatened by bacterial zoonoses, with limited reliable diagnostic and therapeutic options available for bacterial diseases. Bacterial infections influence mammalian miRNA expression in host-pathogen interactions. In order to counteract bacterial infections, miRNAs participate in gene-specific expression and play important regulatory roles that rely on translational inhibition and target gene degradation by binding to the 3' non-coding region of target genes. Intriguingly, according to current studies, that exogenous miRNAs derived from plants could potentially serve as effective medicinal components sourced from traditional Chinese medicine plants. These exogenous miRNAs exhibit stable functionality in mammals and mimic the regulatory roles of endogenous miRNAs, illuminating the molecular processes behind the therapeutic effects of plants. This review details the immune defense mechanisms of inflammation, apoptosis, autophagy and cell cycle disturbance caused by some typical bacterial infections, summarizes the role of some mammalian miRNAs in regulating these mechanisms, and introduces the cGAS-STING signaling pathway in detail. Evidence suggests that this newly discovered immune defense mechanism in mammalian cells can also be affected by miRNAs. Meanwhile, some examples of transboundary regulation of mammalian mRNA and even bacterial diseases by exogenous miRNAs from plants are also summarized. This viewpoint provides fresh understanding of microbial tactics and host mechanisms in the management of bacterial illnesses.
Collapse
Affiliation(s)
- Si Chen
- School of Chemistry, Chemical Engineering and Life Science, Hubei Key Laboratory of Nanomedicine for Neurodegenerative Disease, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China
| | - Zhixin Lei
- School of Chemistry, Chemical Engineering and Life Science, Hubei Key Laboratory of Nanomedicine for Neurodegenerative Disease, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China.
| | - Taolei Sun
- School of Chemistry, Chemical Engineering and Life Science, Hubei Key Laboratory of Nanomedicine for Neurodegenerative Disease, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China.
| |
Collapse
|
2
|
Tajik F, Alian F, Yousefi M, Azadfallah A, Hoseini A, Mohammadi F, Karimi-Dehkordi M, Alizadeh-Fanalou S. MicroRNA-372 acts as a double-edged sword in human cancers. Heliyon 2023; 9:e15991. [PMID: 37251909 PMCID: PMC10208947 DOI: 10.1016/j.heliyon.2023.e15991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 04/26/2023] [Accepted: 04/28/2023] [Indexed: 05/31/2023] Open
Abstract
MicroRNAs (miRNAs or miRs) are non-coding, single-stranded, endogenous RNAs that regulate various biological processes, most notably the pathophysiology of many human malignancies. It process is accomplished by binding to 3'-UTR mRNAs and controlling gene expression at the post-transcriptional level. As an oncogene, miRNAs can either accelerate cancer progression or slow it down as a tumor suppressor. MicroRNA-372 (miR-372) has been found to have an abnormal expression in numerous human malignancies, implying that the miRNA plays a role in carcinogenesis. It is both increased and downregulated in various cancers, and it serves as both a tumor suppressor and an oncogene. This study examines the functions of miR-372 as well as the LncRNA/CircRNA-miRNA-mRNA signaling pathways in various malignancies and analyses its potential prognostic, diagnostic, and therapeutic implications.
Collapse
Affiliation(s)
- Fatemeh Tajik
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Alian
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Mohammad Yousefi
- Department of Medicine, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Ali Azadfallah
- Department of Medicine, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Aref Hoseini
- Student Research Committee, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Forogh Mohammadi
- Department of Veterinary, Agriculture Faculty, Kermanshah Branch, Islamic Azad University, Kermanshah, Iran
| | - Maryam Karimi-Dehkordi
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Shahin Alizadeh-Fanalou
- Department of Clinical Biochemistry, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
3
|
Liu Y, Niu L, Li N, Wang Y, Liu M, Su X, Bao X, Yin B, Shen S. Bacterial-Mediated Tumor Therapy: Old Treatment in a New Context. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2205641. [PMID: 36908053 PMCID: PMC10131876 DOI: 10.1002/advs.202205641] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 02/09/2023] [Indexed: 06/18/2023]
Abstract
Targeted therapy and immunotherapy have brought hopes for precision cancer treatment. However, complex physiological barriers and tumor immunosuppression result in poor efficacy, side effects, and resistance to antitumor therapies. Bacteria-mediated antitumor therapy provides new options to address these challenges. Thanks to their special characteristics, bacteria have excellent ability to destroy tumor cells from the inside and induce innate and adaptive antitumor immune responses. Furthermore, bacterial components, including bacterial vesicles, spores, toxins, metabolites, and other active substances, similarly inherit their unique targeting properties and antitumor capabilities. Bacteria and their accessory products can even be reprogrammed to produce and deliver antitumor agents according to clinical needs. This review first discusses the role of different bacteria in the development of tumorigenesis and the latest advances in bacteria-based delivery platforms and the existing obstacles for application. Moreover, the prospect and challenges of clinical transformation of engineered bacteria are also summarized.
Collapse
Affiliation(s)
- Yao Liu
- Key Laboratory of Spine and Spinal Cord Injury Repairand Regeneration of Ministry of EducationOrthopaedic Department of Tongji Hospital, The Institute for Biomedical Engineering and Nano ScienceTongji University School of MedicineShanghai200092P. R. China
- Pharmacy Department and Center for Medical Research and InnovationShanghai Pudong HospitalFudan University Pudong Medical CenterShanghai201399China
| | - Lili Niu
- Central LaboratoryFirst Affiliated HospitalInstitute (College) of Integrative MedicineDalian Medical UniversityDalian116021China
| | - Nannan Li
- Central LaboratoryFirst Affiliated HospitalInstitute (College) of Integrative MedicineDalian Medical UniversityDalian116021China
| | - Yang Wang
- Central LaboratoryFirst Affiliated HospitalInstitute (College) of Integrative MedicineDalian Medical UniversityDalian116021China
| | - Mingyang Liu
- Department of Surgical Oncology and General SurgeryThe First Hospital of China Medical University155 North Nanjing Street, Heping DistrictShenyang110001China
| | - Xiaomin Su
- Central LaboratoryFirst Affiliated HospitalInstitute (College) of Integrative MedicineDalian Medical UniversityDalian116021China
| | - Xuhui Bao
- Institute for Therapeutic Cancer VaccinesFudan University Pudong Medical CenterShanghai201399China
| | - Bo Yin
- Institute for Therapeutic Cancer Vaccines and Department of OncologyFudan University Pudong Medical CenterShanghai201399China
| | - Shun Shen
- Pharmacy Department and Center for Medical Research and InnovationShanghai Pudong HospitalFudan University Pudong Medical CenterShanghai201399China
| |
Collapse
|
4
|
Seeneevassen L, Dubus P, Gronnier C, Varon C. Hippo in Gastric Cancer: From Signalling to Therapy. Cancers (Basel) 2022; 14:cancers14092282. [PMID: 35565411 PMCID: PMC9105983 DOI: 10.3390/cancers14092282] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/12/2022] [Accepted: 04/20/2022] [Indexed: 12/12/2022] Open
Abstract
The Hippo pathway is one of the most important ones in mammals. Its key functions in cell proliferation, tissue growth, repair, and homeostasis make it the most crucial one to be controlled. Many means have been deployed for its regulation, since this pathway is not only composed of core regulatory components, but it also communicates with and regulates various other pathways, making this signalisation even more complex. Its role in cancer has been studied more and more over the past few years, and it presents YAP/TAZ as the major oncogenic actors. In this review, we relate how vital this pathway is for different organs, and how regulatory mechanisms have been bypassed to lead to cancerous states. Most studies present an upregulation status of YAP/TAZ, and urge the need to target them. A focus is made here on gastric carcinogenesis, its main dysregulations, and the major strategies adopted and tested to counteract Hippo pathway disbalance in this disease. Hippo pathway targeting can be achieved by various means, which are described in this review. Many studies have tested different potential molecules, which are detailed hereby. Though not all tested in gastric cancer, they could represent a real interest.
Collapse
Affiliation(s)
- Lornella Seeneevassen
- BRIC (BoRdeaux Institute of onCology), UMR1312, INSERM, University of Bordeaux, F-33000 Bordeaux, France; (L.S.); (P.D.); (C.G.)
| | - Pierre Dubus
- BRIC (BoRdeaux Institute of onCology), UMR1312, INSERM, University of Bordeaux, F-33000 Bordeaux, France; (L.S.); (P.D.); (C.G.)
- Department of Histology and Pathology, CHU Bordeaux, F-33000 Bordeaux, France
| | - Caroline Gronnier
- BRIC (BoRdeaux Institute of onCology), UMR1312, INSERM, University of Bordeaux, F-33000 Bordeaux, France; (L.S.); (P.D.); (C.G.)
- Department of Digestive Surgery, Haut-Lévêque Hospital, CHU Bordeaux, F-33000 Bordeaux, France
| | - Christine Varon
- BRIC (BoRdeaux Institute of onCology), UMR1312, INSERM, University of Bordeaux, F-33000 Bordeaux, France; (L.S.); (P.D.); (C.G.)
- Correspondence:
| |
Collapse
|
5
|
Prashar A, Capurro MI, Jones NL. Under the Radar: Strategies Used by Helicobacter pylori to Evade Host Responses. Annu Rev Physiol 2021; 84:485-506. [PMID: 34672717 DOI: 10.1146/annurev-physiol-061121-035930] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The body depends on its physical barriers and innate and adaptive immune responses to defend against the constant assault of potentially harmful microbes. In turn, successful pathogens have evolved unique mechanisms to adapt to the host environment and manipulate host defenses. Helicobacter pylori (Hp), a human gastric pathogen that is acquired in childhood and persists throughout life, is an example of a bacterium that is very successful at remodeling the host-pathogen interface to promote a long-term persistent infection. Using a combination of secreted virulence factors, immune subversion, and manipulation of cellular mechanisms, Hp can colonize and persist in the hostile environment of the human stomach. Here, we review the most recent and relevant information regarding how this successful pathogen overcomes gastric epithelial host defense responses to facilitate its own survival and establish a chronic infection. Expected final online publication date for the Annual Review of Physiology, Volume 84 is February 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Akriti Prashar
- Program in Cell Biology, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, Ontario, Canada;
| | - Mariana I Capurro
- Program in Cell Biology, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, Ontario, Canada;
| | - Nicola L Jones
- Program in Cell Biology, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, Ontario, Canada; .,Division of Gastroenterology, Hepatology and Nutrition, The Hospital for Sick Children, Toronto, Ontario, Canada.,Departments of Paediatrics and Physiology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
6
|
Riahi Rad Z, Riahi Rad Z, Goudarzi H, Goudarzi M, Mahmoudi M, Yasbolaghi Sharahi J, Hashemi A. MicroRNAs in the interaction between host-bacterial pathogens: A new perspective. J Cell Physiol 2021; 236:6249-6270. [PMID: 33599300 DOI: 10.1002/jcp.30333] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 02/04/2021] [Accepted: 02/08/2021] [Indexed: 12/17/2022]
Abstract
Gene expression regulation plays a critical role in host-pathogen interactions, and RNAs function is essential in this process. miRNAs are small noncoding, endogenous RNA fragments that affect stability and/or translation of mRNAs, act as major posttranscriptional regulators of gene expression. miRNA is involved in regulating many biological or pathological processes through targeting specific mRNAs, including development, differentiation, apoptosis, cell cycle, cytoskeleton organization, and autophagy. Deregulated microRNA expression is associated with many types of diseases, including cancers, immune disturbances, and infection. miRNAs are a vital section of the host immune response to bacterial-made infection. Bacterial pathogens suppress host miRNA expression for their benefit, promoting survival, replication, and persistence. The role played through miRNAs in interaction with host-bacterial pathogen has been extensively studied in the past 10 years, and knowledge about these staggering molecules' function can clarify the complicated and ambiguous interactions of the host-bacterial pathogen. Here, we review how pathogens prevent the host miRNA expression. We briefly discuss emerging themes in this field, including their role as biomarkers in identifying bacterial infections, as part of the gut microbiota, on host miRNA expression.
Collapse
Affiliation(s)
- Zohreh Riahi Rad
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Riahi Rad
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hossein Goudarzi
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehdi Goudarzi
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Mahmoudi
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Javad Yasbolaghi Sharahi
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Hashemi
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
7
|
Ebrahimi Ghahnavieh L, Tabatabaeian H, Ebrahimi Ghahnavieh Z, Honardoost MA, Azadeh M, Moazeni Bistgani M, Ghaedi K. Fluctuating expression of miR-584 in primary and high-grade gastric cancer. BMC Cancer 2020; 20:621. [PMID: 32615958 PMCID: PMC7345521 DOI: 10.1186/s12885-020-07116-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 06/25/2020] [Indexed: 12/24/2022] Open
Abstract
Background Gastric cancer is the fifth most common cancer worldwide. Along with environmental factors, such as Helicobacter pylori (H. pylori) infection, genetic changes play important roles in gastric tumor formations. miR-584 is a less well-characterized microRNA (miRNA), with apparent activity in human cancers. However, miR-584 expression pattern in gastric cancer development has remained unclear. This study aims to analyze the expression of miR-584 in gastric cancer samples and investigates the associations between this miRNA and H. pylori infection and clinical characteristics. Methods The expression level of miR-584 was studied in primary gastric cancers versus healthy control gastric mucosa samples using the RT-qPCR method. The clinical data were analyzed statistically in terms of miR-584 expression. In silico studies were employed to study miR-584 more broadly in order to assess its expression and find new potential target genes. Results Both experimental and in silico studies showed up-regulation of miR-584 in patients with gastric cancer. This up-regulation seems to be induced by H. pylori infection since the infected samples showed increased levels of miR-584 expression. Deeper analyses revealed that miR-584 undergoes a dramatic down-regulation in late stages, invasive and lymph node-metastatic gastric tumors. Bioinformatics studies demonstrated that miR-584 has a substantial role in cancer pathways and has the potential to target STAT1 transcripts. Consistent with the inverse correlation between TCGA RNA-seq data of miR-584 and STAT1 transcripts, the qPCR analysis showed a significant negative correlation between these two RNAs in a set of clinical samples. Conclusion miR-584 undergoes up-regulation in the stage of primary tumor formation; however, becomes down-regulated upon the progression of gastric cancer. These findings suggest the potential of miR-584 as a diagnostic or prognostic biomarker in gastric cancer.
Collapse
Affiliation(s)
| | - Hossein Tabatabaeian
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran. .,Anahid Cancer Clinic, Isfahan Healthcare City, Isfahan, Iran.
| | - Zhaleh Ebrahimi Ghahnavieh
- Department of Medical Education, Faculty of Medicine, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Mohammad Amin Honardoost
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | | | - Mohamad Moazeni Bistgani
- Department of Surgery, Faculty of Medicine, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Kamran Ghaedi
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran. .,Department of Cellular Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran.
| |
Collapse
|
8
|
TAZ Controls Helicobacter pylori-Induced Epithelial-Mesenchymal Transition and Cancer Stem Cell-Like Invasive and Tumorigenic Properties. Cells 2020; 9:cells9061462. [PMID: 32545795 PMCID: PMC7348942 DOI: 10.3390/cells9061462] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 06/01/2020] [Accepted: 06/10/2020] [Indexed: 12/14/2022] Open
Abstract
Helicobacter pylori infection, the main risk factor for gastric cancer (GC), leads to an epithelial–mesenchymal transition (EMT) of gastric epithelium contributing to gastric cancer stem cell (CSC) emergence. The Hippo pathway effectors yes-associated protein (YAP) and transcriptional co-activator with PDZ binding motif (TAZ) control cancer initiation and progression in many cancers including GC. Here, we investigated the role of TAZ in the early steps of H. pylori-mediated gastric carcinogenesis. TAZ implication in EMT, invasion, and CSC-related tumorigenic properties were evaluated in three gastric epithelial cell lines infected by H. pylori. We showed that H. pylori infection increased TAZ nuclear expression and transcriptional enhancer TEA domain (TEAD) transcription factors transcriptional activity. Nuclear TAZ and zinc finger E-box-binding homeobox 1 (ZEB1) were co-overexpressed in cells harboring a mesenchymal phenotype in vitro, and in areas of regenerative hyperplasia in gastric mucosa of H. pylori-infected patients and experimentally infected mice, as well as at the invasive front of gastric carcinoma. TAZ silencing reduced ZEB1 expression and EMT phenotype, and strongly inhibited invasion and tumorsphere formation induced by H. pylori. In conclusion, TAZ activation in response to H. pylori infection contributes to H. pylori-induced EMT, invasion, and CSC-like tumorigenic properties. TAZ overexpression in H. pylori-induced pre-neoplastic lesions and in GC could therefore constitute a biomarker of early transformation in gastric carcinogenesis.
Collapse
|
9
|
Denzer L, Schroten H, Schwerk C. From Gene to Protein-How Bacterial Virulence Factors Manipulate Host Gene Expression During Infection. Int J Mol Sci 2020; 21:ijms21103730. [PMID: 32466312 PMCID: PMC7279228 DOI: 10.3390/ijms21103730] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/19/2020] [Accepted: 05/20/2020] [Indexed: 02/06/2023] Open
Abstract
Bacteria evolved many strategies to survive and persist within host cells. Secretion of bacterial effectors enables bacteria not only to enter the host cell but also to manipulate host gene expression to circumvent clearance by the host immune response. Some effectors were also shown to evade the nucleus to manipulate epigenetic processes as well as transcription and mRNA procession and are therefore classified as nucleomodulins. Others were shown to interfere downstream with gene expression at the level of mRNA stability, favoring either mRNA stabilization or mRNA degradation, translation or protein stability, including mechanisms of protein activation and degradation. Finally, manipulation of innate immune signaling and nutrient supply creates a replicative niche that enables bacterial intracellular persistence and survival. In this review, we want to highlight the divergent strategies applied by intracellular bacteria to evade host immune responses through subversion of host gene expression via bacterial effectors. Since these virulence proteins mimic host cell enzymes or own novel enzymatic functions, characterizing their properties could help to understand the complex interactions between host and pathogen during infections. Additionally, these insights could propose potential targets for medical therapy.
Collapse
|
10
|
Molina-Castro SE, Tiffon C, Giraud J, Boeuf H, Sifre E, Giese A, Belleannée G, Lehours P, Bessède E, Mégraud F, Dubus P, Staedel C, Varon C. The Hippo Kinase LATS2 Controls Helicobacter pylori-Induced Epithelial-Mesenchymal Transition and Intestinal Metaplasia in Gastric Mucosa. Cell Mol Gastroenterol Hepatol 2019; 9:257-276. [PMID: 31669263 PMCID: PMC6957828 DOI: 10.1016/j.jcmgh.2019.10.007] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 10/17/2019] [Accepted: 10/18/2019] [Indexed: 02/08/2023]
Abstract
BACKGROUND & AIMS Gastric carcinoma is related mostly to CagA+-Helicobacter pylori infection, which disrupts the gastric mucosa turnover and elicits an epithelial-mesenchymal transition (EMT) and preneoplastic transdifferentiation. The tumor suppressor Hippo pathway controls stem cell homeostasis; its core, constituted by the large tumor suppressor 2 (LATS2) kinase and its substrate Yes-associated protein 1 (YAP1), was investigated in this context. METHODS Hippo, EMT, and intestinal metaplasia marker expression were investigated by transcriptomic and immunostaining analyses in human gastric AGS and MKN74 and nongastric immortalized RPE1 and HMLE epithelial cell lines challenged by H pylori, and on gastric tissues of infected patients and mice. LATS2 and YAP1 were silenced using small interfering RNAs. A transcriptional enhanced associated domain (TEAD) reporter assay was used. Cell proliferation and invasion were evaluated. RESULTS LATS2 and YAP1 appear co-overexpressed in the infected mucosa, especially in gastritis and intestinal metaplasia. H pylori via CagA stimulates LATS2 and YAP1 in a coordinated biphasic pattern, characterized by an early transient YAP1 nuclear accumulation and stimulated YAP1/TEAD transcription, followed by nuclear LATS2 up-regulation leading to YAP1 phosphorylation and targeting for degradation. LATS2 and YAP1 reciprocally positively regulate each other's expression. Loss-of-function experiments showed that LATS2 restricts H pylori-induced EMT marker expression, invasion, and intestinal metaplasia, supporting a role of LATS2 in maintaining the epithelial phenotype of gastric cells and constraining H pylori-induced preneoplastic changes. CONCLUSIONS H pylori infection engages a number of signaling cascades that alienate mucosa homeostasis, including the Hippo LATS2/YAP1/TEAD pathway. In the host-pathogen conflict, which generates an inflammatory environment and perturbations of the epithelial turnover and differentiation, Hippo signaling appears as a protective pathway, limiting the loss of gastric epithelial cell identity that precedes gastric carcinoma development.
Collapse
Affiliation(s)
- Silvia Elena Molina-Castro
- INSERM, UMR1053, Bordeaux Research in Translational Oncology, BaRITOn, University of Bordeaux, Bordeaux, France,University of Costa Rica, San José, Costa Rica
| | - Camille Tiffon
- INSERM, UMR1053, Bordeaux Research in Translational Oncology, BaRITOn, University of Bordeaux, Bordeaux, France
| | - Julie Giraud
- INSERM, UMR1053, Bordeaux Research in Translational Oncology, BaRITOn, University of Bordeaux, Bordeaux, France
| | - Hélène Boeuf
- INSERM, UMR1026, Bioingénierie tissulaire (BioTis), University of Bordeaux, Bordeaux, France
| | - Elodie Sifre
- INSERM, UMR1053, Bordeaux Research in Translational Oncology, BaRITOn, University of Bordeaux, Bordeaux, France
| | - Alban Giese
- INSERM, UMR1053, Bordeaux Research in Translational Oncology, BaRITOn, University of Bordeaux, Bordeaux, France
| | | | - Philippe Lehours
- INSERM, UMR1053, Bordeaux Research in Translational Oncology, BaRITOn, University of Bordeaux, Bordeaux, France,Centre Hospitalier Universitaire (CHU) de Bordeaux, Bordeaux, France
| | - Emilie Bessède
- INSERM, UMR1053, Bordeaux Research in Translational Oncology, BaRITOn, University of Bordeaux, Bordeaux, France,Centre Hospitalier Universitaire (CHU) de Bordeaux, Bordeaux, France
| | - Francis Mégraud
- INSERM, UMR1053, Bordeaux Research in Translational Oncology, BaRITOn, University of Bordeaux, Bordeaux, France,Centre Hospitalier Universitaire (CHU) de Bordeaux, Bordeaux, France
| | - Pierre Dubus
- INSERM, UMR1053, Bordeaux Research in Translational Oncology, BaRITOn, University of Bordeaux, Bordeaux, France,Centre Hospitalier Universitaire (CHU) de Bordeaux, Bordeaux, France
| | - Cathy Staedel
- INSERM, UMR1212, University of Bordeaux, Bordeaux, France,Cathy Staedel, PhD, INSERM U1212, “ARN: Régulations naturelle et artificielle” (ARNA)-Unités Mixtes de Recherche (UMR) Centre national de la recherche scientifique (CNRS) 5320, University of Bordeaux, 146 Rue Léo Saignat, 33076 Bordeaux Cedex, France. fax: +33 5 57 57 10 15.
| | - Christine Varon
- INSERM, UMR1053, Bordeaux Research in Translational Oncology, BaRITOn, University of Bordeaux, Bordeaux, France,Correspondence Address correspondence to: Christine Varon, PhD, INSERM U1053 Bordeaux Research in Translational Oncology (BaRITOn), University of Bordeaux, 146 Rue Léo Saignat, 33076 Bordeaux Cedex, France. fax: +33 5 56 79 60 18.
| |
Collapse
|
11
|
Alarcón-Millán J, Martínez-Carrillo DN, Peralta-Zaragoza O, Fernández-Tilapa G. Regulation of GKN1 expression in gastric carcinogenesis: A problem to resolve (Review). Int J Oncol 2019; 55:555-569. [PMID: 31322194 DOI: 10.3892/ijo.2019.4843] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 07/04/2019] [Indexed: 11/05/2022] Open
Abstract
Gastrokine 1 (GKN1) is a protein expressed on the surface mucosa cells of the gastric antrum and fundus, which contributes to maintaining gastric homeostasis, inhibits inflammation and is a tumor suppressor. The expression of GKN1 decreases in mucosa that are either inflamed or infected by Helicobacter pylori, and is absent in gastric cancer. The measurement of circulating GKN1 concentration, the protein itself, or the mRNA in gastric tissue may be of use for the early diagnosis of cancer. The mechanisms that modulate the deregulation or silencing of GKN1 expression have not been completely described. The modification of histones, methylation of the GKN1 promoter, or proteasomal degradation of the protein have been detected in some patients; however, these mechanisms do not completely explain the absence of GKN1 or the reduction in GKN1 levels. Only NKX6.3 transcription factor has been shown to be a positive modulator of GKN1 transcription, although others also have an affinity with sequences in the promoter of this gene. While microRNAs (miRNAs) are able to directly or indirectly regulate the expression of genes at the post‑transcriptional level, the involvement of miRNAs in the regulation of GKN1 has not been reported. The present review analyzes the information reported on the determination of GKN1 expression and the regulation of its expression at the transcriptional, post‑transcriptional and post‑translational levels; it proposes an integrated model that incorporates the regulation of GKN1 expression via transcription factors and miRNAs in H. pylori infection.
Collapse
Affiliation(s)
- Judit Alarcón-Millán
- Clinical Research Laboratory, Faculty of Biological Chemical Sciences, Guerrero Autonomous University, Chilpancingo, Guerrero 39070, México
| | - Dinorah Nashely Martínez-Carrillo
- Clinical Research Laboratory, Faculty of Biological Chemical Sciences, Guerrero Autonomous University, Chilpancingo, Guerrero 39070, México
| | - Oscar Peralta-Zaragoza
- Direction of Chronic Infections and Cancer, Research Center in Infection Diseases, National Institute of Public Health, Cuernavaca, Morelos 62100, México
| | - Gloria Fernández-Tilapa
- Clinical Research Laboratory, Faculty of Biological Chemical Sciences, Guerrero Autonomous University, Chilpancingo, Guerrero 39070, México
| |
Collapse
|
12
|
Aguilar C, Mano M, Eulalio A. Multifaceted Roles of microRNAs in Host-Bacterial Pathogen Interaction. Microbiol Spectr 2019; 7:10.1128/microbiolspec.bai-0002-2019. [PMID: 31152522 PMCID: PMC11026079 DOI: 10.1128/microbiolspec.bai-0002-2019] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Indexed: 02/06/2023] Open
Abstract
MicroRNAs (miRNAs) are a well-characterized class of small noncoding RNAs that act as major posttranscriptional regulators of gene expression. Accordingly, miRNAs have been associated with a wide range of fundamental biological processes and implicated in human diseases. During the past decade, miRNAs have also been recognized for their role in the complex interplay between the host and bacterial pathogens, either as part of the host response to counteract infection or as a molecular strategy employed by bacteria to subvert host pathways for their own benefit. Importantly, the characterization of downstream miRNA targets and their underlying mechanisms of action has uncovered novel molecular factors and pathways relevant to infection. In this article, we review the current knowledge of the miRNA response to bacterial infection, focusing on different bacterial pathogens, including Salmonella enterica, Listeria monocytogenes, Mycobacterium spp., and Helicobacter pylori, among others.
Collapse
Affiliation(s)
- Carmen Aguilar
- Host RNA Metabolism Group, Institute for Molecular Infection Biology (IMIB), University of Würzburg, Würzburg, Germany
| | - Miguel Mano
- Functional Genomics and RNA-Based Therapeutics Group, Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal
| | - Ana Eulalio
- Host RNA Metabolism Group, Institute for Molecular Infection Biology (IMIB), University of Würzburg, Würzburg, Germany
- RNA & Infection Group, Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal
| |
Collapse
|
13
|
Adibzadeh Sereshgi MM, Abdollahpour-Alitappeh M, Mahdavi M, Ranjbar R, Ahmadi K, Taheri RA, Fasihi-Ramandi M. Immunologic balance of regulatory T cell/T helper 17 responses in gastrointestinal infectious diseases: Role of miRNAs. Microb Pathog 2019; 131:135-143. [PMID: 30914387 DOI: 10.1016/j.micpath.2019.03.029] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 03/18/2019] [Accepted: 03/22/2019] [Indexed: 12/22/2022]
Abstract
Gastrointestinal Infectious diseases (GIDs) are the second cause of death worldwide. T helper17 cells (Th17) play an important role in GIDs through production of IL-17A, IL-17F, and IL-22 cytokines. Because of their increased activities in GID, Th17 and its inflammatory cytokines can inhibit the progression and eliminate the infection. Actually, although Th17 have the best performance in the acute phase, regulatory T cells (Treg cells) are enhanced in the chronic phase and infection progress through its suppressive function. In addition, Treg cells prevent undesirable inflammatory damages developed by immune system components. On the other hand, miRNAs have important roles in the regulation of immune responses to eliminate bacterial infections and protect host organisms from harmful effects. Actually, miRNAs can reinforce innate and adaptive immunity to remove infections. Of note, miRNAs can develop a regulatory network with the immune system. Additionally, miRNAs can also serve in favor of bacteria to reduce immune responses. Therefore, balance of immune responses in Treg and Th17 cells can influence outcome of many infectious diseases. In conclusion, there is an imbalance in the Treg/Th17 ratio in GIDs; importantly, sets of miRNAs, particularly miR155 and miR146, were determined to be involved clearly in GIDs.
Collapse
Affiliation(s)
| | | | - Mehdi Mahdavi
- Immunotherapy Group, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran; Recombinant Vaccine Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Ranjbar
- Molecular Biology Research Center, System Biology and Poisoning Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Kazem Ahmadi
- Molecular Biology Research Center, System Biology and Poisoning Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Ramezan Ali Taheri
- Nanobiotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mahdi Fasihi-Ramandi
- Molecular Biology Research Center, System Biology and Poisoning Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
14
|
Vo DD, Becquart C, Tran TPA, Di Giorgio A, Darfeuille F, Staedel C, Duca M. Building of neomycin-nucleobase-amino acid conjugates for the inhibition of oncogenic miRNAs biogenesis. Org Biomol Chem 2019; 16:6262-6274. [PMID: 30116813 DOI: 10.1039/c8ob01858h] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
MicroRNAs (miRNAs) are a recently discovered category of small RNA molecules that regulate gene expression at the post-transcriptional level. Accumulating evidence indicates that miRNAs are aberrantly expressed in a variety of human cancers, thus being oncogenic. The inhibition of oncogenic miRNAs (defined as the blocking of miRNAs' production or function) would find application in the therapy of different types of cancer in which these miRNAs are implicated. In this work, we describe the design and synthesis of new small-molecule RNA ligands with the aim of inhibiting Dicer-mediated processing of oncogenic miRNAs. One of the synthesized compound (4b) composed of the aminoglycoside neomycin conjugated to an artificial nucleobase and to amino acid histidine is able to selectively decrease miR-372 levels in gastric adenocarcinoma (AGS) cells and to restore the expression of the target LATS2 protein. This activity led to the inhibition of proliferation of these cells. The study of the interactions of 4b with pre-miR-372 allowed for the elucidation of the molecular mechanism of the conjugate, thus leading to new perspectives for the design of future inhibitors.
Collapse
Affiliation(s)
- Duc Duy Vo
- Université Côte d'Azur, CNRS, Institute of Chemistry of Nice (ICN), Nice, France.
| | | | | | | | | | | | | |
Collapse
|
15
|
Zou D, Xu L, Li H, Ma Y, Gong Y, Guo T, Jing Z, Xu X, Zhang Y. Role of abnormal microRNA expression in Helicobacter pylori associated gastric cancer. Crit Rev Microbiol 2019; 45:239-251. [PMID: 30776938 DOI: 10.1080/1040841x.2019.1575793] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Epidemiological studies have shown that Helicobacter pylori (HP) infection is a risk factor for gastric cancer (GC). HP infection may induce the release of pro-inflammatory mediators, and abnormally increase the level of reactive oxygen species (ROS), nitric oxide (NO), and cytokines in mucosal epithelial cells of the stomach. However, the specific mechanism underlying the pathogenesis of HP-associated GC is still poorly understood. Recent studies have revealed that abnormal microRNA expression may affect the proliferation, differentiation, and apoptosis of mucosal epithelial cells of the stomach to further influence GC occurrence, development, and metastasis. Herein, we summarize the role of abnormal microRNAs in the regulation of HP-associated GC progression. Abnormal microRNA expression in HP-positive GC may be a biomarker for GC diagnosis, occurrence, and development as well as its targeted treatment and prognosis.
Collapse
Affiliation(s)
- Dan Zou
- a The First laboratory of cancer institute , First Hospital of China Medical University , Shenyang , China
| | - Ling Xu
- b Department of Medical Oncology , First Hospital of China Medical University , Shenyang , China
| | - Heming Li
- b Department of Medical Oncology , First Hospital of China Medical University , Shenyang , China.,c Department of Oncology , Affiliated Zhongshan Hospital of Dalian University , Dalian , China
| | - Yanju Ma
- b Department of Medical Oncology , First Hospital of China Medical University , Shenyang , China.,d Department of Medical Oncology , Cancer Hospital of China Medical University , Shenyang , China
| | - Yuehua Gong
- e Department of Tumor Etiology and Screening Department of Cancer Institute and General Surgery, First Hospital of China Medical University , Key Laboratory of Cancer Etiology and Prevention (China Medical University), Liaoning Provincial Education Department , Shenyang , China
| | - Tianshu Guo
- b Department of Medical Oncology , First Hospital of China Medical University , Shenyang , China
| | - Zhitao Jing
- f Department of Neurosurgery , First Hospital of China Medical University , Shenyang , China
| | - Xiuying Xu
- g Department of Gastroenterology , First Hospital of China Medical University , Shenyang , China
| | - Ye Zhang
- a The First laboratory of cancer institute , First Hospital of China Medical University , Shenyang , China
| |
Collapse
|
16
|
Aguilar C, Mano M, Eulalio A. MicroRNAs at the Host-Bacteria Interface: Host Defense or Bacterial Offense. Trends Microbiol 2018; 27:206-218. [PMID: 30477908 DOI: 10.1016/j.tim.2018.10.011] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 10/17/2018] [Accepted: 10/30/2018] [Indexed: 02/07/2023]
Abstract
MicroRNAs are a class of small noncoding RNAs that act as major post-transcriptional regulators of gene expression. They are currently recognized for their important role in the intricate interaction between host and bacterial pathogens, either as part of the host immune response to neutralize infection, or as a molecular strategy employed by bacteria to hijack host pathways for their own benefit. Here, we summarize recent advances on the function of miRNAs during infection of mammalian hosts by bacterial pathogens, highlighting key cellular pathways. In addition, we discuss emerging themes in this field, including the participation of miRNAs in host-microbiota crosstalk and cell-to-cell communication.
Collapse
Affiliation(s)
- Carmen Aguilar
- Host RNA Metabolism Group, Institute for Molecular Infection Biology (IMIB), University of Würzburg, Würzburg, Germany
| | - Miguel Mano
- Functional Genomics and RNA-based Therapeutics Group, Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal
| | - Ana Eulalio
- Host RNA Metabolism Group, Institute for Molecular Infection Biology (IMIB), University of Würzburg, Würzburg, Germany; RNA & Infection Group, Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal.
| |
Collapse
|
17
|
Cortés-Márquez AC, Mendoza-Elizalde S, Arenas-Huertero F, Trillo-Tinoco J, Valencia-Mayoral P, Consuelo-Sánchez A, Zarate-Franco J, Dionicio-Avendaño AR, Herrera-Esquivel JDJ, Recinos-Carrera EG, Colín-Valverde C, Rivera-Gutiérrez S, Reyes-López A, Vigueras-Galindo JC, Velázquez-Guadarrama N. Differential expression of miRNA-146a and miRNA-155 in gastritis induced by Helicobacter pylori infection in paediatric patients, adults, and an animal model. BMC Infect Dis 2018; 18:463. [PMID: 30219037 PMCID: PMC6139157 DOI: 10.1186/s12879-018-3368-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 08/30/2018] [Indexed: 01/03/2023] Open
Abstract
Background Helicobacter pylori is a major aetiologic agent associated with gastritis. H. pylori infections increase the expression of the Toll-like receptor (TLR), which in turn modulates the expression of microRNA (miRNA)-146a and miRNA-155. The objective of this study was to compare the expression of miRNA-146a and miRNA-155 in gastric lesions of paediatric and adult patients with different pathologies and in Mongolian gerbils (Meriones unguiculatus) infected with H. pylori 26,695. Methods Quantification of miRNA expression was performed by quantitative real-time polymerase chain reaction (qRT-PCR) of paraffin-embedded gastric lesions of children with or without an infection (n = 25), adults with follicular gastritis and metaplasia (n = 32) and eight-week-old M. unguiculatus males (Hsd:MON) infected with H. pylori 26,695 for 0, 3, 6, 12 and 18 months (n = 25). The genes RNU48 and RNU6 were used as endogenous controls for data normalization. Statistical analyses were performed using Kruskal-Wallis, Mann-Whitney, ANOVA and Student’s t-test. Results The expression of miRNA-146a and miRNA-155 in infected children increased by 247.6- and 79.4-fold (on average), respectively, compared to that observed in the control group. However, these results were not significant (p = 0.12 and p = 0.07 respectively). In some children a gradual increase in expression was observed, while in others, expression was very high. Additionally, the expression levels of miRNA-146a and miRNA-155 increased by an average of 21.7- and 62-fold, respectively, in adult patients with follicular gastritis when compared to those of the controls. In M. unguiculatus infected with H. pylori 26,695, the expression of both miRNAs increased as the infection progressed. Conclusion This is the first report to show differences in the expression of miRNA-146a and miRNA-155 in paediatric and adult patients with gastritis who were infected with H. pylori. In addition, in M. unguiculatus infected with H. pylori, miRNA expression was associated with the progression of infection and the ability of the bacteria to adapt to the host. Electronic supplementary material The online version of this article (10.1186/s12879-018-3368-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ana Caren Cortés-Márquez
- Infectology Laboratory, Hospital Infantil de México Federico Gómez, México City, Mexico.,Biomedicine and Molecular Biotechnology, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, México City, Mexico.,Molecular Microbiology Laboratory, Microbiology Department, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, México City, Mexico
| | | | - Francisco Arenas-Huertero
- Laboratory of Research in Experimental Pathology, Hospital Infantil de México Federico Gómez, México City, Mexico
| | | | | | - Alejandra Consuelo-Sánchez
- Gastroenterology and Nutrition Department, Hospital Infantil de México Federico Gómez, México City, Mexico
| | - Jonathan Zarate-Franco
- Health Science, Escuela Superior de Medicina, Instituto Politécnico Nacional, México City, Mexico
| | | | | | | | | | - Sandra Rivera-Gutiérrez
- Molecular Microbiology Laboratory, Microbiology Department, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, México City, Mexico
| | - Alfonso Reyes-López
- Center of Economic and Social Studies in Health, Hospital Infantil de México Federico Gómez, México City, Mexico
| | | | | |
Collapse
|
18
|
Vaziri F, Tarashi S, Fateh A, Siadat SD. New insights of Helicobacter pylori host-pathogen interactions: The triangle of virulence factors, epigenetic modifications and non-coding RNAs. World J Clin Cases 2018; 6:64-73. [PMID: 29774218 PMCID: PMC5955730 DOI: 10.12998/wjcc.v6.i5.64] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Revised: 02/09/2018] [Accepted: 03/07/2018] [Indexed: 02/05/2023] Open
Abstract
Helicobacter pylori (H. pylori) is a model organism for understanding host-pathogen interactions and infection-mediated carcinogenesis. Gastric cancer and H. pylori colonization indicates the strong correlation. The progression and exacerbation of H. pylori infection are influenced by some factors of pathogen and host. Several virulence factors involved in the proper adherence and attenuation of immune defense to contribute the risk of emerging gastric cancer, therefore analysis of them is very important. H. pylori also modulates inflammatory and autophagy process to intensify its pathogenicity. From the host regard, different genetic factors particularly affect the development of gastric cancer. Indeed, epigenetic modifications, MicroRNA and long non-coding RNA received more attention. Generally, various factors related to pathogen and host that modulate gastric cancer development in response to H. pylori need more attention due to develop an efficacious therapeutic intervention. Therefore, this paper will present a brief overview of host-pathogen interaction especially emphases on bacterial virulence factors, interruption of host cellular signaling, the role of epigenetic modifications and non-coding RNAs.
Collapse
Affiliation(s)
- Farzam Vaziri
- Microbiology Research Center, Pasteur Institute of Iran, Tehran 1316943551, Iran
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran 1316943551, Iran
| | - Samira Tarashi
- Microbiology Research Center, Pasteur Institute of Iran, Tehran 1316943551, Iran
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran 1316943551, Iran
| | - Abolfazl Fateh
- Microbiology Research Center, Pasteur Institute of Iran, Tehran 1316943551, Iran
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran 1316943551, Iran
| | - Seyed Davar Siadat
- Microbiology Research Center, Pasteur Institute of Iran, Tehran 1316943551, Iran
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran 1316943551, Iran
| |
Collapse
|
19
|
Chung JW, Jeong SH, Lee SM, Pak JH, Lee GH, Jeong JY, Kim JH. Expression of MicroRNA in Host Cells Infected with Helicobacter pylori. Gut Liver 2018; 11:392-400. [PMID: 28208005 PMCID: PMC5417782 DOI: 10.5009/gnl16265] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 08/17/2016] [Accepted: 09/05/2016] [Indexed: 12/16/2022] Open
Abstract
Background/Aims MicroRNAs (miRNAs) regulate gene expression. We assess miRNA regulation by Helicobacter pylori infection and elucidate their role in H. pylori-infected gastric epithelial cells. Methods The relationship between miRNA expression and DNA methylation was examined. Cells were treated with the nuclear factor-kappaB (NF-κB) inhibitor Bay 11-7082 to determine the relationship between miRNA expression and NF-κB signal transduction. Results In the negative control cells infected with H. pylori 26695, the expression of six miRNAs was increased, whereas the expression of five miRNAs was decreased. The expression of upregulated miRNAs was increased when the host cells were treated with H. pylori and an NF-κB inhibitor. miR-127-5p, -155, and -181 were associated with increased interleukin 6 (IL-6) secretion in H. pylori infected cells treated with anti-miRNA. The expression of miR-155, -127-5p, -195, -216, -206, and -488 increased by approximately 3-fold following treatment with the methylation inhibitor Aza. Conclusions We found novel miRNAs in H. pylori-infected negative control cells using miRNA microarrays. Upregulated miRNA expression was inversely related to the transcription of NF-κB. miR-195 and miR-488 appear to play a pivotal role in controlling IL-6 activity in H. pylori infection. miRNA expression in H. pylori infection was affected by methylation.
Collapse
Affiliation(s)
- Jun-Won Chung
- Department of Internal Medicine, Gachon University Gil Medical Center, Incheon, Korea
| | - Seok Hoo Jeong
- Department of Internal Medicine, Catholic Kwandong University International St. Mary's Hospital, Incheon, Korea
| | - Sun Mi Lee
- Department of Convergence Medicine and Asan Institute for Life Sciences, Seoul, Korea
| | - Jhang Ho Pak
- Department of Convergence Medicine and Asan Institute for Life Sciences, Seoul, Korea
| | - Gin Hyug Lee
- Department of Gastroenterology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Jin-Yong Jeong
- Department of Convergence Medicine and Asan Institute for Life Sciences, Seoul, Korea
| | - Jin-Ho Kim
- Department of Gastroenterology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| |
Collapse
|
20
|
Modulation of oncogenic miRNA biogenesis using functionalized polyamines. Sci Rep 2018; 8:1667. [PMID: 29374231 PMCID: PMC5786041 DOI: 10.1038/s41598-018-20053-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 01/12/2018] [Indexed: 12/29/2022] Open
Abstract
MicroRNAs are key factors in the regulation of gene expression and their deregulation has been directly linked to various pathologies such as cancer. The use of small molecules to tackle the overexpression of oncogenic miRNAs has proved its efficacy and holds the promise for therapeutic applications. Here we describe the screening of a 640-compound library and the identification of polyamine derivatives interfering with in vitro Dicer-mediated processing of the oncogenic miR-372 precursor (pre-miR-372). The most active inhibitor is a spermine-amidine conjugate that binds to the pre-miR-372 with a KD of 0.15 µM, and inhibits its in vitro processing with a IC50 of 1.06 µM. The inhibition of miR-372 biogenesis was confirmed in gastric cancer cells overexpressing miR-372 and a specific inhibition of proliferation through de-repression of the tumor suppressor LATS2 protein, a miR-372 target, was observed. This compound modifies the expression of a small set of miRNAs and its selective biological activity has been confirmed in patient-derived ex vivo cultures of gastric carcinoma. Polyamine derivatives are promising starting materials for future studies about the inhibition of oncogenic miRNAs and, to the best of our knowledge, this is the first report about the application of functionalized polyamines as miRNAs interfering agents.
Collapse
|
21
|
Pagliari M, Munari F, Toffoletto M, Lonardi S, Chemello F, Codolo G, Millino C, Della Bella C, Pacchioni B, Vermi W, Fassan M, de Bernard M, Cagnin S. Helicobacter pylori Affects the Antigen Presentation Activity of Macrophages Modulating the Expression of the Immune Receptor CD300E through miR-4270. Front Immunol 2017; 8:1288. [PMID: 29085364 PMCID: PMC5649134 DOI: 10.3389/fimmu.2017.01288] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 09/25/2017] [Indexed: 12/12/2022] Open
Abstract
Helicobacter pylori (Hp) is a Gram-negative bacterium that infects the human gastric mucosa, leading to chronic inflammation. If not eradicated with antibiotic treatment, the bacterium persists in the human stomach for decades increasing the risk to develop chronic gastritis, gastroduodenal ulcer, and gastric adenocarcinoma. The lifelong persistence of Hp in the human stomach suggests that the host response fails to clear the infection. It has been recently shown that during Hp infection phagocytic cells promote high Hp loads rather than contributing to bacterial clearance. Within these cells Hp survives in "megasomes," large structures arising from homotypic fusion of phagosomes, but the mechanism that Hp employs to avoid phagocytic killing is not completely understood. Here, we show that Hp infection induces the downregulation of specific microRNAs involved in the regulation of transcripts codifying for inflammatory proteins. miR-4270 targets the most upregulated gene: the immune receptor CD300E, whose expression is strictly dependent on Hp infection. CD300E engagement enhances the pro-inflammatory potential of macrophages, but in parallel it affects their ability to express and expose MHC class II molecules on the plasma membrane, without altering phagocytosis. This effect compromises the possibility for effector T cells to recognize and activate the killing potential of macrophages, which, in turn would become a survival niche for the bacterium. Taken together, our data add another piece to the complicate puzzle represented by the long-life coexistence between Hp and the human host and contribute with new insights toward understanding the regulation and function of the immune receptor CD300E.
Collapse
Affiliation(s)
| | - Fabio Munari
- Department of Biomedical Sciences, University of Padua, Venetian Institute of Molecular Medicine (VIMM), Padua, Italy
| | | | - Silvia Lonardi
- Department of Molecular and Translational Medicine, Section of Pathology, University of Brescia, Brescia, Italy
| | - Francesco Chemello
- Department of Biology, University of Padua, Padua, Italy.,CRIBI Biotechnology Center, University of Padua, Padua, Italy
| | - Gaia Codolo
- Department of Biology, University of Padua, Padua, Italy
| | - Caterina Millino
- Department of Biology, University of Padua, Padua, Italy.,CRIBI Biotechnology Center, University of Padua, Padua, Italy
| | | | - Beniamina Pacchioni
- Department of Biology, University of Padua, Padua, Italy.,CRIBI Biotechnology Center, University of Padua, Padua, Italy
| | - William Vermi
- Department of Molecular and Translational Medicine, Section of Pathology, University of Brescia, Brescia, Italy
| | - Matteo Fassan
- Department of Medicine, University of Padua, Padua, Italy
| | | | - Stefano Cagnin
- Department of Biology, University of Padua, Padua, Italy.,CRIBI Biotechnology Center, University of Padua, Padua, Italy
| |
Collapse
|
22
|
Molina-Castro S, Pereira-Marques J, Figueiredo C, Machado JC, Varon C. Gastric cancer: Basic aspects. Helicobacter 2017; 22 Suppl 1. [PMID: 28891129 DOI: 10.1111/hel.12412] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Gastric cancer is one of the most incident and deadliest malignancies in the world. Gastric cancer is a heterogeneous disease and the end point of a long and multistep process, which results from the stepwise accumulation of numerous (epi)genetic alterations, leading to dysregulation of oncogenic and tumor suppressor pathways. Gastric cancer stem cells have emerged as fundamental players in cancer development and as contributors to gastric cancer heterogeneity. For this special issue, we will report last year's update on the gastric cancer molecular classification, and in particular address the gastric cancer groups who could benefit from immune checkpoint therapy. We will also review the latest advances on gastric cancer stem cells, their properties as gastric cancer markers and therapeutic targets, and associated signaling pathways. The understanding of the molecular basis underlying gastric cancer heterogeneity and of the role played by gastric cancer stem cells in cancer development and heterogeneity is of major significance, not only for identifying novel targets for cancer prevention and treatment, but also for clinical management and patient stratification for targeted therapies.
Collapse
Affiliation(s)
- Silvia Molina-Castro
- INSERM, UMR1053 Bordeaux Research in Translational Oncology, BaRITOn, University of Bordeaux, Bordeaux, France.,University of Costa Rica, San José, Costa Rica
| | - Joana Pereira-Marques
- i3S - Instituto de Investigação e Inovação em Saúde (Institute of Research and Innovation in Health), University of Porto, Porto, Portugal.,Ipatimup - Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal.,ICBAS - Institute of Biomedical Sciences Abel Salazar, University of Porto, Porto, Portugal
| | - Ceu Figueiredo
- i3S - Instituto de Investigação e Inovação em Saúde (Institute of Research and Innovation in Health), University of Porto, Porto, Portugal.,Ipatimup - Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal.,Faculty of Medicine of the University of Porto, Porto, Portugal
| | - Jose C Machado
- i3S - Instituto de Investigação e Inovação em Saúde (Institute of Research and Innovation in Health), University of Porto, Porto, Portugal.,Ipatimup - Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal.,Faculty of Medicine of the University of Porto, Porto, Portugal
| | - Christine Varon
- INSERM, UMR1053 Bordeaux Research in Translational Oncology, BaRITOn, University of Bordeaux, Bordeaux, France
| |
Collapse
|
23
|
Abstract
Proper cellular functionality and homeostasis are maintained by the convergent integration of various signaling cascades, which enable cells to respond to internal and external changes. The Dbf2-related kinases LATS1 and LATS2 (LATS) have emerged as central regulators of cell fate, by modulating the functions of numerous oncogenic or tumor suppressive effectors, including the canonical Hippo effectors YAP/TAZ, the Aurora mitotic kinase family, estrogen signaling and the tumor suppressive transcription factor p53. While the basic functions of the LATS kinase module are strongly conserved over evolution, the genomic duplication event leading to the emergence of two closely related kinases in higher organisms has increased the complexity of this signaling network. Here, we review the LATS1 and LATS2 intrinsic features as well as their reported cellular activities, emphasizing unique characteristics of each kinase. While differential activities between the two paralogous kinases have been reported, many converge to similar pathways and outcomes. Interestingly, the regulatory networks controlling the mRNA expression pattern of LATS1 and LATS2 differ strongly, and may contribute to the differences in protein binding partners of each kinase and in the subcellular locations in which each kinase exerts its functions.
Collapse
Affiliation(s)
- Noa Furth
- Department of Molecular Cell Biology, The Weizmann Institute of Science, POB 26, 234 Herzl St., Rehovot 7610001, Israel
| | - Yael Aylon
- Department of Molecular Cell Biology, The Weizmann Institute of Science, POB 26, 234 Herzl St., Rehovot 7610001, Israel
| |
Collapse
|
24
|
Quercetin from Polygonum capitatum Protects against Gastric Inflammation and Apoptosis Associated with Helicobacter pylori Infection by Affecting the Levels of p38MAPK, BCL-2 and BAX. Molecules 2017; 22:molecules22050744. [PMID: 28481232 PMCID: PMC6154337 DOI: 10.3390/molecules22050744] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 04/28/2017] [Accepted: 04/28/2017] [Indexed: 12/16/2022] Open
Abstract
Helicobacter pylori-associated gastritis is a major threat to public health and Polygonum capitatum (PC) may have beneficial effects on the disease. However, the molecular mechanism remains unknown. Quercetin was isolated from PC and found to be a main bioactive compound. The effects of quercetin on human gastric cancer cells GES-1 were determined by xCELLigence. H. pylori-infected mouse models were established. All mice were divided into three groups: control (CG, healthy mice), model (MG, H. pylori infection) and quercetin (QG, mouse model treated by quercetin) groups. IL-8 (interleukin-8) levels were detected via enzyme-linked immunosorbent assay (ELISA). Cell cycle and apoptosis were measured by flow cytometry (FCM). Quantitative reverse transcription PCR (qRT-PCR) and Western Blot were used to detect the levels of p38MAPK (38-kD tyrosine phosphorylated protein kinase), apoptosis regulator BCL-2-associated protein X (BAX) and B cell lymphoma gene 2 (BCL-2). The levels of IL-8 were increased by 8.1-fold in a MG group and 4.3-fold in a QG group when compared with a CG group. In a MG group, G0–G1(phases of the cell cycle)% ratio was higher than a CG group while S phase fraction was lower in a model group than in a control group (p < 0.01). After quercetin treatment, G0–G1% ratio was lower in a QG group than a MG group while S phase fraction was higher than a MG group (p < 0.01). Quercetin treatment reduced the levels of p38MAPK and BAX, and increased the levels of BCL-2 when compared with a MG group (p < 0.05). Quercetin regulates the balance of gastric cell proliferation and apoptosis to protect against gastritis. Quercetin protects against gastric inflammation and apoptosis associated with H. pylori infection by affecting the levels of p38MAPK, BCL-2 and BAX.
Collapse
|
25
|
Duval M, Cossart P, Lebreton A. Mammalian microRNAs and long noncoding RNAs in the host-bacterial pathogen crosstalk. Semin Cell Dev Biol 2017; 65:11-19. [PMID: 27381344 PMCID: PMC7089780 DOI: 10.1016/j.semcdb.2016.06.016] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 05/30/2016] [Accepted: 06/01/2016] [Indexed: 12/20/2022]
Abstract
Gene expression regulation is a critical question in host-pathogen interactions, and RNAs act as key players in this process. In this review, we focus on the mammalian RNA response to bacterial infection, with a special interest on microRNAs and long non-coding RNAs. We discuss the role of cellular miRNAs in immunity, the implication of circulating miRNAs as well as the influence of the microbiome on the miRNA response. We also review how pathogens counteract the host miRNA expression. Interestingly, bacterial non-coding RNAs regulate host gene expression and conversely eukaryotic miRNAs may regulate bacterial gene expression. Overall, the characterization of RNA regulatory networks represents an emerging theme in the field of host pathogen interactions.
Collapse
Affiliation(s)
- Mélodie Duval
- Institut Pasteur, Unité des Interactions Bactéries-Cellules, 75015 Paris, France; Inserm, U604, 75015 Paris, France; INRA, USC2020, 75015 Paris, France
| | - Pascale Cossart
- Institut Pasteur, Unité des Interactions Bactéries-Cellules, 75015 Paris, France; Inserm, U604, 75015 Paris, France; INRA, USC2020, 75015 Paris, France.
| | - Alice Lebreton
- École Normale Supérieure, PSL Research University, CNRS, Inserm, Institut de Biologie de l'École Normale Supérieure (IBENS), Équipe Infection et Devenir de l'ARN, 75005 Paris, France; INRA, IBENS, 75005 Paris, France.
| |
Collapse
|
26
|
Chen SY, Zhang RG, Duan GC. Pathogenic mechanisms of the oncoprotein CagA in H. pylori-induced gastric cancer (Review). Oncol Rep 2016; 36:3087-3094. [PMID: 27748858 DOI: 10.3892/or.2016.5145] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 09/16/2016] [Indexed: 11/06/2022] Open
Abstract
Infection with Helicobacter pylori is the strongest risk factor for the development of chronic gastritis, gastric ulcer and gastric carcinoma. The majority of the H. pylori-infected population remains asymptomatic, and only 1% of individuals may progress to gastric cancer. The clinical outcomes caused by H. pylori infection are considered to be associated with bacterial virulence, genetic polymorphism of hosts as well as environmental factors. Most H. pylori strains possess a cytotoxin-associated gene (cag) pathogenicity island (cagPAI), encoding a 120-140 kDa CagA protein, which is the most important bacterial oncoprotein. CagA is translocated into host cells via T4SS system and affects the expression of signaling proteins in a phosphorylation-dependent and independent manner. Thus, this review summarizes the results of relevant studies, discusses the pathogenesis of CagA-mediated gastric cancer.
Collapse
Affiliation(s)
- Shuai-Yin Chen
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China
| | - Rong-Guang Zhang
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China
| | - Guang-Cai Duan
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China
| |
Collapse
|
27
|
Wang J, Deng Z, Wang Z, Wu J, Gu T, Jiang Y, Li G. MicroRNA-155 in exosomes secreted from helicobacter pylori infection macrophages immunomodulates inflammatory response. Am J Transl Res 2016; 8:3700-3709. [PMID: 27725852 PMCID: PMC5040670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 03/04/2016] [Indexed: 06/06/2023]
Abstract
Exosomes containing microRNA-155 act as molecule carriers during immune cell-cell communication and play an important role in the inflammatory response of H. pylori infection macrophages. Previous reports have found that miR-155 was over-expressed in H. pylori infection macrophages, but the significance of which is still unknown. In this study, we analyzed the impact of miR-155 loaded in exosomes derived from macrophages to the inflammatory response of H. pylori infection macrophages and possible mechanisms. We found that miR-155 promoted the expression of inflammatory cytokines including TNF-a, IL-6, IL-23, but also increased the expression of CD40, CD63, CD81, and MCH-I. Meanwhile, inflammatory signal pathways proteins, such as MyD88, NF-κB in H. pylori infection macrophages were down-regulated due to the over-expression of miR-155. Experiments in vitro or in vivo revealed that miR-155 promoted macrophages to inhibit or kill H. pylori by regulating the inflammatory response of cells to prevent the gastritis caused by H. pylori infection. These findings contribute to the understanding of miR-155 contained in exosomes in inflammatory responses of H. pylori infection macrophages.
Collapse
Affiliation(s)
- Jianjun Wang
- Department of Clinical Laboratory, Kunshan First People’s Hospital, Affiliated to Jiangsu UniversityKunshan 215300, People’s Republic of China
| | - Zhiyong Deng
- Department of Clinical Laboratory, Kunshan First People’s Hospital, Affiliated to Jiangsu UniversityKunshan 215300, People’s Republic of China
| | - Zeyou Wang
- Department of Clinical Laboratory, The Second Xiangya Hospital of Central South UniversityChangsha 410000, People’s Republic of China
| | - Jianhong Wu
- Department of Clinical Laboratory, Kunshan First People’s Hospital, Affiliated to Jiangsu UniversityKunshan 215300, People’s Republic of China
| | - Tao Gu
- Department of Clinical Laboratory, Kunshan First People’s Hospital, Affiliated to Jiangsu UniversityKunshan 215300, People’s Republic of China
| | - Yibiao Jiang
- Department of Clinical Laboratory, Kunshan First People’s Hospital, Affiliated to Jiangsu UniversityKunshan 215300, People’s Republic of China
| | - Guangxin Li
- Department of Pathology, Chongqing Cancer InstituteChongqing 400030, People’s Republic of China
| |
Collapse
|
28
|
Jin L, Yi J, Gao Y, Han S, He Z, Chen L, Song H. MiR-630 inhibits invasion and metastasis in esophageal squamous cell carcinoma. Acta Biochim Biophys Sin (Shanghai) 2016; 48:810-9. [PMID: 27563011 DOI: 10.1093/abbs/gmw073] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 04/18/2016] [Indexed: 12/14/2022] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) is among the most aggressive malignancies and has a high incidence in China. MicroRNAs (miRNAs) are small endogenous RNAs that regulate multiple tumorigenic processes, including proliferation, invasion, metastasis and prognosis. Using miRNA expression profiling analysis, we found that miR-630 was markedly down-regulated in three ESCC tissue samples compared with that in paired normal esophageal tissues. Differential miR-630 expression was subsequently confirmed using quantitative real-time PCR. To determine whether miR-630 down-regulation could be considered as a diagnostic indicator and adverse prognostic factor, we investigated the association between miR-630 and clinicopathological characteristics in patients with ESCC. It was found that decreased miR-630 expression was associated with poor overall survival in these patients. In addition, we also explored the biological function of miR-630 by targeting Slug and investigated the correlation between miR-630 expression and epithelial-mesenchymal transition (EMT) progression in vivo and in vitro Ectopic miR-630 expression could inhibit proliferation, invasion and metastasis, whereas miR-630 knockdown induced proliferation, invasion, metastasis and EMT traits. Overall, our study supports a role for miR-630 as a critical novel modulator in ESCC.
Collapse
Affiliation(s)
- Li Jin
- Department of Medical Oncology, Jinling Hospital, Nanjing 210002, China
| | - Jun Yi
- Department of Cardiothoracic Surgery, Jinling Hospital, Nanjing 210002, China
| | - Yanping Gao
- Department of Medical Oncology, Jinling Hospital, Nanjing 210002, China
| | - Siqi Han
- Department of Medical Oncology, Jinling Hospital, Nanjing 210002, China
| | - Zhenyue He
- Department of Medical Oncology, Jinling Hospital, Nanjing 210002, China
| | - Longbang Chen
- Department of Medical Oncology, Jinling Hospital, Nanjing 210002, China
| | - Haizhu Song
- Department of Medical Oncology, Jinling Hospital, Nanjing 210002, China
| |
Collapse
|
29
|
Shafiee M, Aleyasin SA, Mowla SJ, Vasei M, Yazdanparast SA. The Effect of MicroRNA-375 Overexpression, an Inhibitor of Helicobacter pylori-Induced Carcinogenesis, on lncRNA SOX2OT. Jundishapur J Microbiol 2016; 9:e23464. [PMID: 27800139 PMCID: PMC5081003 DOI: 10.5812/jjm.23464] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Revised: 02/09/2015] [Accepted: 02/15/2015] [Indexed: 02/07/2023] Open
Abstract
Background Helicobacter pylori is a major human pathogenic bacterium in gastric mucosa. Although the association between gastric cancer and H. pylori has been well-established, the molecular mechanisms underlying H. pylori-induced carcinogenesis are still under investigation. MicroRNAs (miRNAs) are small noncoding RNAs that modulate gene expression at the posttranscriptional level. Recently, studies have revealed that miRNAs are involved in immune response and host cell response to bacteria. Also, microRNA-375 (miR-375) is a key regulator of epithelial properties that are necessary for securing epithelium-immune system cross-talk. It has been recently reported that miR-375 acts as an inhibitor of H. pylori-induced gastric carcinogenesis. There are few reports on miRNA-mediated targeting long noncoding RNAs (lncRNAs). Objectives This study aimed to examine the possible effect of miR-375 as an inhibitor of H. pylori-induced carcinogenesis on the expression of lncRNA SOX2 overlapping transcript (SOX2OT) and SOX2, a master regulator of pluripotency of cancer stem cells. Materials and Methods In a model cell line, NT-2 was transfected with the constructed expression vector pEGFP-C1 contained miR-375. The RNA isolations and cDNA synthesis were performed after 48 hours of transformation. Expression of miR-375 and SOX2OT and SOX2 were quantified using real-time polymerase chain reaction and compared with control cells transfected with pEGFP-C1-Mock clone. Cell cycle modification was also compared after transfections using the flow cytometry analysis. Results Following ectopic expression of miR-375, SOX2OT and SOX2 expression analysis revealed a significant decrease in their expression level (P < 0.05) in NT-2 cells compared to the control. Cell cycle analysis following ectopic expression of miR-375 in the NT-2 cells using propidium iodine staining revealed significant extension in sub-G1 cell cycle. Conclusions This is the first report to show down-regulation of SOX2OT and SOX2 following induced expression of miR-375. This finding may suggest expression regulation potential between different classes of ncRNAs, for example between miR-375 and SOX2OT. This data not only extends our understanding of possible ncRNA interactions in cancers but also may open novel investigation lines towards elucidation of molecular mechanisms controlling H. pylori inflammation and carcinogenesis.
Collapse
Affiliation(s)
- Mohammad Shafiee
- National Institute of Genetic Engineering and Biotechnology, Tehran, IR Iran
- Golestan Research Center of Gastroenterology and Hepatology, Golestan University of Medical Sciences, Gorgan, IR Iran
| | - Seyed Ahmad Aleyasin
- National Institute of Genetic Engineering and Biotechnology, Tehran, IR Iran
- Corresponding author: Seyed Ahmad Aleyasin, National Institute of Genetic Engineering and Biotechnology, Tehran, IR Iran. Tel: +98-2144580302, Fax: +98-2144580395, E-mail:
| | - Seyed Javad Mowla
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, IR Iran
| | - Mohammad Vasei
- Department of Pathology, Shariati Hospital, School of Medicine, Tehran University of Medical Sciences, Tehran, IR Iran
| | - Seyed Amir Yazdanparast
- Department of Medical Parasitology and Mycology, School of Allied Medicine, Iran University of Medical Sciences, Tehran, IR Iran
| |
Collapse
|
30
|
Vo DD, Tran TPA, Staedel C, Benhida R, Darfeuille F, Di Giorgio A, Duca M. Oncogenic MicroRNAs Biogenesis as a Drug Target: Structure-Activity Relationship Studies on New Aminoglycoside Conjugates. Chemistry 2016; 22:5350-62. [DOI: 10.1002/chem.201505094] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Indexed: 12/22/2022]
Affiliation(s)
- Duc Duy Vo
- University of Nice Sophia Antipolis; Institute of Chemistry of Nice, UMR7272 CNRS, Parc Valrose; 06100 Nice France
| | - Thi Phuong Anh Tran
- University of Nice Sophia Antipolis; Institute of Chemistry of Nice, UMR7272 CNRS, Parc Valrose; 06100 Nice France
| | - Cathy Staedel
- University of Bordeaux; ARNA Laboratory; 33000 Bordeaux France
- INSERM, U869; 33000 Bordeaux France
| | - Rachid Benhida
- University of Nice Sophia Antipolis; Institute of Chemistry of Nice, UMR7272 CNRS, Parc Valrose; 06100 Nice France
| | - Fabien Darfeuille
- University of Bordeaux; ARNA Laboratory; 33000 Bordeaux France
- INSERM, U869; 33000 Bordeaux France
| | - Audrey Di Giorgio
- University of Nice Sophia Antipolis; Institute of Chemistry of Nice, UMR7272 CNRS, Parc Valrose; 06100 Nice France
| | - Maria Duca
- University of Nice Sophia Antipolis; Institute of Chemistry of Nice, UMR7272 CNRS, Parc Valrose; 06100 Nice France
| |
Collapse
|
31
|
Wang J, Wu J, Cheng Y, Jiang Y, Li G. Over-expression of microRNA-223 inhibited the proinflammatory responses in Helicobacter pylori-infection macrophages by down-regulating IRAK-1. Am J Transl Res 2016; 8:615-622. [PMID: 27158353 PMCID: PMC4846910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 12/22/2015] [Indexed: 06/05/2023]
Abstract
MicroRNA-223 plays an important role in the inflammatory response of macrophages. Recent studies have identified that miR-223 was highly expressed in H. pylori infection macrophages, the significance of the elevation, however, has not yet been investigated. In this study, we analyzed the impact of elevated miR-233 to macrophage inflammatory response and possible mechanisms. We found that miR-223 not only could inhibit the expression of inflammatory cytokines including IL-6, IL-8, IL-12 and TNF-α, but also was able to decrease the expression of CD40, CD68, CD80, and CD163. Furthermore, proteins relating to inflammatory signal pathways, such as IRAK-1, NF-κB and MAPK, in H. pylori infected macrophages were down-regulated. Taken together, these results indicated that miR-223 may act as an inflammatory inhibitory factor in H. pylori infected macrophages by IRAK-1, NF-κB or MAPK signal pathways. These findings contribute to the understanding of miR-223 in macrophages inflammatory responses induced by H. pylori.
Collapse
Affiliation(s)
- Jianjun Wang
- Department of Clinical Laboratory, Kunshan First People’s Hospital, Affiliated to Jiangsu UniversityKunshan 215300, People’s Republic of China
| | - Jianhong Wu
- Department of Clinical Laboratory, Kunshan First People’s Hospital, Affiliated to Jiangsu UniversityKunshan 215300, People’s Republic of China
| | - Yang Cheng
- Department of Clinical Laboratory, Kunshan First People’s Hospital, Affiliated to Jiangsu UniversityKunshan 215300, People’s Republic of China
| | - Yibiao Jiang
- Department of Clinical Laboratory, Kunshan First People’s Hospital, Affiliated to Jiangsu UniversityKunshan 215300, People’s Republic of China
| | - Guangxin Li
- Department of Pathology, Chong Qing Cancer InstituteChongqing 400030, People’s Republic of China
| |
Collapse
|
32
|
Inhibition of Gastric Tumor Cell Growth Using Seed-targeting LNA as Specific, Long-lasting MicroRNA Inhibitors. MOLECULAR THERAPY. NUCLEIC ACIDS 2015; 4:e246. [PMID: 26151747 PMCID: PMC4561653 DOI: 10.1038/mtna.2015.18] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Accepted: 04/27/2015] [Indexed: 12/21/2022]
Abstract
MicroRNAs regulate eukaryotic gene expression upon pairing onto target mRNAs. This targeting is influenced by the complementarity between the microRNA “seed” sequence at its 5′ end and the seed-matching sequences in the mRNA. Here, we assess the efficiency and specificity of 8-mer locked nucleic acid (LNA)-modified oligonucleotides raised against the seeds of miR-372 and miR-373, two embryonic stem cell-specific microRNAs prominently expressed in the human gastric adenocarcinoma AGS cell line. Provided that the pairing is perfect over all the eight nucleotides of the seed and starts at nucleotide 2 or 1 at the microRNA 5′ end, these short LNAs inhibit miR-372/373 functions and derepress their common target, the cell cycle regulator LATS2. They decrease cell proliferation in vitro upon either transfection at nanomolar concentrations or unassisted delivery at micromolar concentrations. Subcutaneously delivered LNAs reduce tumor growth of AGS xenografts in mice, upon formation of a stable, specific heteroduplex with the targeted miR-372 and -373 and LATS2 upregulation. Their therapeutic potential is confirmed in fast-growing, miR-372-positive, primary human gastric adenocarcinoma xenografts in mice. Thus, microRNA silencing by 8-mer seed-targeting LNAs appears a valuable approach for both loss-of-function studies aimed at elucidating microRNA functions and for microRNA-based therapeutic strategies.
Collapse
|
33
|
Wei F, Cao C, Xu X, Wang J. Diverse functions of miR-373 in cancer. J Transl Med 2015; 13:162. [PMID: 25990556 PMCID: PMC4490662 DOI: 10.1186/s12967-015-0523-z] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Accepted: 05/06/2015] [Indexed: 12/19/2022] Open
Abstract
MicroRNAs (miRNAs) are small noncoding RNAs that regulate gene expression post-transcriptionally. They are involved in almost all cellular processes, and many have been described as potential oncogenes or tumor suppressors. MicroRNA-373 (miR-373), which was first identified as a human embryonic stem cell (ESC)-specific miRNA, is suggested to be implicated in the regulation of cell proliferation, apoptosis, senescence, migration and invasion, as well as DNA damage repair following hypoxia stress. Deregulation of miR-373 has been demonstrated in a number of cancers, whether it acts as an oncogene or a tumor suppressor, however, seems to be context dependent. In this review, we focus on the diverse functions of miR-373 and its implication in cancers.
Collapse
Affiliation(s)
- Furong Wei
- Institute of Basic Medicine, Shandong Academy of Medical Sciences, School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Sciences, 18877 Jingshi Road, 250062, Jinan, Shandong, People's Republic of China.
| | - Chuanhua Cao
- Department of Oncology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, China.
| | - Xiaoqun Xu
- Institute of Basic Medicine, Shandong Academy of Medical Sciences, School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Sciences, 18877 Jingshi Road, 250062, Jinan, Shandong, People's Republic of China.
| | - Junfu Wang
- Institute of Basic Medicine, Shandong Academy of Medical Sciences, School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Sciences, 18877 Jingshi Road, 250062, Jinan, Shandong, People's Republic of China.
| |
Collapse
|
34
|
Yao Y, Li G, Wu J, Zhang X, Wang J. Inflammatory response of macrophages cultured with Helicobacter pylori strains was regulated by miR-155. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2015; 8:4545-4554. [PMID: 26191144 PMCID: PMC4503016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 04/24/2015] [Indexed: 06/04/2023]
Abstract
MicroRNA-155 plays an important role in the inflammatory response macrophages, while present studies identified that miR-155 was up-expressed in gastritis induced by Helicobacter pylori. We found that miR-155 was over expressed in macrophages infected with H. pylori in vivo or in vitro. Subsequently, inflammatory cytokines IL-23, IL-10, TNF-α and IL-8 were increased significantly, and the expression of CD80, CD86 or COX2, NOS2. Were enhanced in H. pylori infection macrophages by regulated with miR-155mimics. Furthermore, the apoptosis of macrophages induced by H. pylori was increased obviously due to the over-expression of miR-155. Therefore, these observations indicated that miR-155 may act as a inflammatory promoter in H. pylori infected macrophages. These findings contribute us to understand the functions of miR-155 in gastritis induced by H. pylori furtherly.
Collapse
Affiliation(s)
- Yongliang Yao
- Department of Clinical Laboratory, Kunshan First People’s Hospital, Affiliated to Jiangsu UniversityKunshan 215300, People’s Republic of China
| | - Guangxin Li
- Chongqing Cancer InstituteChongqing 400030, People’s Republic of China
| | - Jianhong Wu
- Department of Clinical Laboratory, Kunshan First People’s Hospital, Affiliated to Jiangsu UniversityKunshan 215300, People’s Republic of China
| | - Xian Zhang
- Department of Clinical Laboratory, Kunshan First People’s Hospital, Affiliated to Jiangsu UniversityKunshan 215300, People’s Republic of China
| | - Jianjun Wang
- Department of Clinical Laboratory, Kunshan First People’s Hospital, Affiliated to Jiangsu UniversityKunshan 215300, People’s Republic of China
| |
Collapse
|
35
|
Arimoto-Kobayashi S, Ohta K, Yuhara Y, Ayabe Y, Negishi T, Okamoto K, Nakajima Y, Ishikawa T, Oguma K, Otsuka T. Mutagenicity and clastogenicity of extracts of Helicobacter pylori detected by the Ames test and in the micronucleus test using human lymphoblastoid cells. Mutagenesis 2015; 30:537-44. [DOI: 10.1093/mutage/gev016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
|
36
|
Maudet C, Mano M, Sunkavalli U, Sharan M, Giacca M, Förstner KU, Eulalio A. Functional high-throughput screening identifies the miR-15 microRNA family as cellular restriction factors for Salmonella infection. Nat Commun 2014; 5:4718. [DOI: 10.1038/ncomms5718] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Accepted: 07/16/2014] [Indexed: 02/07/2023] Open
|
37
|
MicroRNAs in the interaction between host and bacterial pathogens. FEBS Lett 2014; 588:4140-7. [PMID: 25128459 DOI: 10.1016/j.febslet.2014.08.002] [Citation(s) in RCA: 120] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2014] [Revised: 08/01/2014] [Accepted: 08/04/2014] [Indexed: 02/06/2023]
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs with a central role in the post-transcriptional control of gene expression, that have been implicated in a wide-range of biological processes. Regulation of miRNA expression is increasingly recognized as a crucial part of the host response to infection by bacterial pathogens, as well as a novel molecular strategy exploited by bacteria to manipulate host cell pathways. Here, we review the current knowledge of bacterial pathogens that modulate host miRNA expression, focusing on mammalian host cells, and the implications of miRNA regulation on the outcome of infection. The emerging role of commensal bacteria, as part of the gut microbiota, on host miRNA expression in the presence or absence of bacterial pathogens is also discussed.
Collapse
|
38
|
Fosso MY, Li Y, Garneau-Tsodikova S. New trends in aminoglycosides use. MEDCHEMCOMM 2014; 5:1075-1091. [PMID: 25071928 PMCID: PMC4111210 DOI: 10.1039/c4md00163j] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Despite their inherent toxicity and the acquired bacterial resistance that continuously threaten their long-term clinical use, aminoglycosides (AGs) still remain valuable components of the antibiotic armamentarium. Recent literature shows that the AGs' role has been further expanded as multi-tasking players in different areas of study. This review aims at presenting some of the new trends observed in the use of AGs in the past decade, along with the current understanding of their mechanisms of action in various bacterial and eukaryotic cellular processes.
Collapse
Affiliation(s)
- Marina Y. Fosso
- University of Kentucky, Department of Pharmaceutical Sciences, College of Pharmacy, BioPharm Complex, Room 423, 789 South Limestone Street, Lexington, KY, 40536-0596, U.S.A
| | - Yijia Li
- University of Kentucky, Department of Pharmaceutical Sciences, College of Pharmacy, BioPharm Complex, Room 423, 789 South Limestone Street, Lexington, KY, 40536-0596, U.S.A
| | - Sylvie Garneau-Tsodikova
- University of Kentucky, Department of Pharmaceutical Sciences, College of Pharmacy, BioPharm Complex, Room 423, 789 South Limestone Street, Lexington, KY, 40536-0596, U.S.A
| |
Collapse
|
39
|
Vo DD, Staedel C, Zehnacker L, Benhida R, Darfeuille F, Duca M. Targeting the production of oncogenic microRNAs with multimodal synthetic small molecules. ACS Chem Biol 2014; 9:711-21. [PMID: 24359019 DOI: 10.1021/cb400668h] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
MicroRNAs (miRNAs) are a recently discovered category of small RNA molecules that regulate gene expression at the post-transcriptional level. Accumulating evidence indicates that miRNAs are aberrantly expressed in a variety of human cancers and revealed to be oncogenic and to play a pivotal role in initiation and progression of these pathologies. It is now clear that the inhibition of oncogenic miRNAs, defined as blocking their biosynthesis or their function, could find an application in the therapy of different types of cancer in which these miRNAs are implicated. Here we report the design, synthesis, and biological evaluation of new small-molecule RNA ligands targeting the production of oncogenic microRNAs. In this work we focused our attention on miR-372 and miR-373 that are implicated in the tumorigenesis of different types of cancer such as gastric cancer. These two oncogenic miRNAs are overexpressed in gastric cancer cells starting from their precursors pre-miR-372 and pre-miR-373, two stem-loop structured RNAs that lead to mature miRNAs after cleavage by the enzyme Dicer. The small molecules described herein consist of the conjugation of two RNA binding motives, i.e., the aminoglycoside neomycin and different natural and artificial nucleobases, in order to obtain RNA ligands with increased affinity and selectivity compared to that of parent compounds. After the synthesis of this new series of RNA ligands, we demonstrated that they are able to inhibit the production of the oncogenic miRNA-372 and -373 by binding their pre-miRNAs and inhibiting the processing by Dicer. Moreover, we proved that some of these compounds bear anti-proliferative activity toward gastric cancer cells and that this activity is likely linked to a decrease in the production of targeted miRNAs. To date, only few examples of small molecules targeting oncogenic miRNAs have been reported, and such inhibitors could be extremely useful for the development of new anticancer therapeutic strategies as well as useful biochemical tools for the study of miRNAs' pathways and mechanisms. Furthermore, this is the first time that a design based on current knowledge about RNA targeting is proposed in order to target miRNAs' production with small molecules.
Collapse
Affiliation(s)
- Duc Duy Vo
- Institut de Chimie
de Nice UMR7272 CNRS, University of Nice, Parc Valrose, 06100 Nice, France
| | - Cathy Staedel
- ARNA
Laboratory, INSERM U869, University of Bordeaux, 146 rue Léo Saignat, 33076 Bordeaux, France
| | - Laura Zehnacker
- Institut de Chimie
de Nice UMR7272 CNRS, University of Nice, Parc Valrose, 06100 Nice, France
| | - Rachid Benhida
- Institut de Chimie
de Nice UMR7272 CNRS, University of Nice, Parc Valrose, 06100 Nice, France
| | - Fabien Darfeuille
- ARNA
Laboratory, INSERM U869, University of Bordeaux, 146 rue Léo Saignat, 33076 Bordeaux, France
| | - Maria Duca
- Institut de Chimie
de Nice UMR7272 CNRS, University of Nice, Parc Valrose, 06100 Nice, France
| |
Collapse
|
40
|
Takahashi K. Influence of bacteria on epigenetic gene control. Cell Mol Life Sci 2014; 71:1045-54. [PMID: 24132510 PMCID: PMC11113846 DOI: 10.1007/s00018-013-1487-x] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Revised: 09/25/2013] [Accepted: 09/26/2013] [Indexed: 01/26/2023]
Abstract
Cellular information is inherited by daughter cells through epigenetic routes in addition to genetic routes. Epigenetics, which is primarily mediated by inheritable DNA methylation and histone post-translational modifications, involves changes in the chromatin structure important for regulating gene expression. It is widely known that epigenetic control of gene expression plays an essential role in cell differentiation processes in vertebrates. Furthermore, because epigenetic changes can occur reversibly depending on environmental factors in differentiated cells, they have recently attracted considerable attention as targets for disease prevention and treatment. These environmental factors include diet, exposure to bacteria or viruses, and air pollution, of which this review focuses on the influence of bacteria on epigenetic gene control in a host. Host-bacterial interactions not only occur upon pathogenic bacterial infection but also continuously exist between commensal bacteria and the host. These bacterial stimuli play an essential role in various biological responses involving external stimuli and in maintaining physiological homeostasis by altering epigenetic markers and machinery.
Collapse
Affiliation(s)
- Kyoko Takahashi
- Food and Physiological Functions Laboratory, College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa-shi, Kanagawa, 252-0880, Japan,
| |
Collapse
|
41
|
Cadamuro ACT, Rossi AFT, Maniezzo NM, Silva AE. Helicobacter pylori infection: host immune response, implications on gene expression and microRNAs. World J Gastroenterol 2014; 20:1424-37. [PMID: 24587619 PMCID: PMC3925852 DOI: 10.3748/wjg.v20.i6.1424] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Revised: 12/18/2013] [Accepted: 01/03/2014] [Indexed: 02/06/2023] Open
Abstract
Helicobacter pylori (H. pylori) infection is the most common bacterial infection worldwide. Persistent infection of the gastric mucosa leads to inflammatory processes and may remain silent for decades or progress causing more severe diseases, such as gastric adenocarcinoma. The clinical consequences of H. pylori infection are determined by multiple factors, including host genetic predisposition, gene regulation, environmental factors and heterogeneity of H. pylori virulence factors. After decades of studies of this successful relationship between pathogen and human host, various mechanisms have been elucidated. In this review, we have made an introduction on H. pylori infection and its virulence factors, and focused mainly on modulation of host immune response triggered by bacteria, changes in the pattern of gene expression in H. pylori-infected gastric mucosa, with activation of gene transcription involved in defense mechanisms, inflammatory and immunological response, cell proliferation and apoptosis. We also highlighted the role of bacteria eradication on gene expression levels. In addition, we addressed the recent involvement of different microRNAs in precancerous lesions, gastric cancer, and inflammatory processes induced by bacteria. New discoveries in this field may allow a better understanding of the role of major factors involved in the pathogenic mechanisms of H. pylori.
Collapse
|
42
|
Stein M, Ruggiero P, Rappuoli R, Bagnoli F. Helicobacter pylori CagA: From Pathogenic Mechanisms to Its Use as an Anti-Cancer Vaccine. Front Immunol 2013; 4:328. [PMID: 24133496 PMCID: PMC3796731 DOI: 10.3389/fimmu.2013.00328] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Accepted: 09/25/2013] [Indexed: 02/06/2023] Open
Abstract
Helicobacter pylori colonizes the gastric mucosa of more than 50% of the human population, causing chronic inflammation, which however is largely asymptomatic. Nevertheless, H. pylori-infected subjects can develop chronic gastritis, peptic ulcer, gastric mucosa-associated lymphoid tissue lymphoma, and gastric cancer. Chronic exposure to the pathogen and its ability to induce epithelial to mesenchymal transition (EMT) through the injection of cytotoxin-associated gene A into gastric epithelial cells may be key triggers of carcinogenesis. By deregulating cell-cell and cell-matrix interactions as well as DNA methylation, histone modifications, expression of micro RNAs, and resistance to apoptosis, EMT can actively contribute to early stages of the cancer formation. Host response to the infection significantly contributes to disease development and the concomitance of particular genotypes of both pathogen and host may turn into the most severe outcomes. T regulatory cells (Treg) have been recently demonstrated to play an important role in H. pylori-related disease development and at the same time the Treg-induced tolerance has been proposed as a possible mechanism that leads to less severe disease. Efficacy of antibiotic therapies of H. pylori infection has significantly dropped. Unfortunately, no vaccine against H. pylori is currently licensed, and protective immunity mechanisms against H. pylori are only partially understood. In spite of promising results obtained in animal models of infection with a number of vaccine candidates, few clinical trials have been conducted so far and with no satisfactory outcomes. However, prophylactic vaccination may be the only means to efficiently prevent H. pylori-associated cancers.
Collapse
Affiliation(s)
- Markus Stein
- Albany College of Pharmacy and Health Sciences, Albany, NY, USA
| | | | | | | |
Collapse
|
43
|
Ghosh J, Bose M, Roy S, Bhattacharyya SN. Leishmania donovani targets Dicer1 to downregulate miR-122, lower serum cholesterol, and facilitate murine liver infection. Cell Host Microbe 2013; 13:277-88. [PMID: 23498953 PMCID: PMC3605572 DOI: 10.1016/j.chom.2013.02.005] [Citation(s) in RCA: 136] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Revised: 11/20/2012] [Accepted: 02/08/2013] [Indexed: 12/21/2022]
Abstract
Leishmania donovani causes visceral leishmaniasis (VL) where the parasite infects and resides inside liver and spleen tissue macrophages. Given the abnormal lipid profile observed in VL patients, we examined the status of serum lipids in an experimental murine model of VL. The murine VL liver displayed altered expression of lipid metabolic genes, many of which are direct or indirect targets of the liver-specific microRNA-122. Concomitant reduction of miR-122 expression was observed in VL liver. High serum cholesterol caused resistance to L. donovani infection, while downregulation of miR-122 is coupled with low serum cholesterol in VL mice. Exosomes secreted by the infective parasites caused reduction in miR-122 activity in hepatic cells. Leishmania surface glycoprotein gp63, a Zn-metalloprotease, targets pre-miRNA processor Dicer1 to prevent miRNP formation in L. donovani-interacting hepatic cells. Conversely, restoration of miR-122 or Dicer1 levels in VL mouse liver increased serum cholesterol and reduced liver parasite burden.
Collapse
Affiliation(s)
- June Ghosh
- RNA Biology Research Laboratory, Molecular and Human Genetics Division, CSIR-Indian Institute of Chemical Biology, Kolkata 700032, India
| | | | | | | |
Collapse
|
44
|
Hocès de la Guardia A, Staedel C, Kaafarany I, Clément A, Roubaud Baudron C, Mégraud F, Lehours P. Inflammatory cytokine and microRNA responses of primary human dendritic cells cultured with Helicobacter pylori strains. Front Microbiol 2013; 4:236. [PMID: 23970881 PMCID: PMC3747313 DOI: 10.3389/fmicb.2013.00236] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Accepted: 07/30/2013] [Indexed: 12/31/2022] Open
Abstract
Primary human dendritic cells (DC) were used to explore the inflammatory effectors, including cytokines and microRNAs, regulated by Helicobacter pylori. In a 48 h ex-vivo co-culture system, both H. pylori B38 and B45 strains activated human DCs and promoted a strong inflammatory response characterized by the early production of pro-inflammatory TNFα and IL-6 cytokines, followed by IL-10, IL-1β, and IL-23 secretion. IL-23 was the only cytokine dependent on the cag pathogenicity island status of the bacterial strains. DC activation and cytokine production were accompanied by an early miR-146a upregulation followed by a strong miR-155 induction, which mainly controlled TNFα production. These results pave the way for further investigations into the nature of H. pylori antigens and the subsequently activated signaling pathways involved in the inflammatory response to H. pylori infection, the deregulation of which may likely contribute to gastric lymphomagenesis.
Collapse
Affiliation(s)
- Anaïs Hocès de la Guardia
- Bacteriology Laboratory, Université Bordeaux Bordeaux, France ; Institut National de la Santé et de la Recherche Médicale, U853 Bordeaux, France
| | | | | | | | | | | | | |
Collapse
|
45
|
Harris JF, Micheva-Viteva S, Li N, Hong-Geller E. Small RNA-mediated regulation of host-pathogen interactions. Virulence 2013; 4:785-95. [PMID: 23958954 PMCID: PMC3925712 DOI: 10.4161/viru.26119] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The rise in antimicrobial drug resistance, alongside the failure of conventional research to discover new antibiotics, will inevitably lead to a public health crisis that can drastically curtail our ability to combat infectious disease. Thus, there is a great global health need for development of antimicrobial countermeasures that target novel cell molecules or processes. RNA represents a largely unexploited category of potential targets for antimicrobial design. For decades, control of cellular behavior was thought to be the exclusive purview of protein-based regulators. The recent discovery of small RNAs (sRNAs) as a universal class of powerful RNA-based regulatory biomolecules has the potential to revolutionize our understanding of gene regulation in practically all biological functions. In general, sRNAs regulate gene expression by base-pairing with multiple downstream target mRNAs to prevent translation of mRNA into protein. In this review, we will discuss recent studies that document discovery of bacterial, viral, and human sRNAs and their molecular mechanisms in regulation of pathogen virulence and host immunity. Illuminating the functional roles of sRNAs in virulence and host immunity can provide the fundamental knowledge for development of next-generation antibiotics using sRNAs as novel targets.
Collapse
Affiliation(s)
- Jennifer F Harris
- Bioscience Division; Los Alamos National Laboratory; Los Alamos, NM USA
| | | | - Nan Li
- Bioscience Division; Los Alamos National Laboratory; Los Alamos, NM USA
| | | |
Collapse
|
46
|
Staedel C, Darfeuille F. MicroRNAs and bacterial infection. Cell Microbiol 2013; 15:1496-507. [PMID: 23795564 DOI: 10.1111/cmi.12159] [Citation(s) in RCA: 160] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Revised: 06/14/2013] [Accepted: 06/17/2013] [Indexed: 12/13/2022]
Abstract
MicroRNAs, small non-coding RNAs expressed by eukaryotic cells, play pivotal roles in shaping cell differentiation and organism development. Deregulated microRNA expression is associated with several types of diseases including cancers, immune disorders and infection. Acting at the post-transcriptional level, miRNAs have expanded our understanding of the control of gene expression in regulatory networks involved in the adaptation to environmental situations such as biotic stress. It is increasingly clear that miRNAs are an important part of the host response to microbes. This review presents the current state of knowledge about the role of miRNAs in the response to both bacterial pathogens and commensal bacteria in human cells or animal experimental models. Some microRNAs, including miR-146, miR-155, miR-125, let-7 and miR-21, are commonly affected during bacterial infection and contribute to immune responses protecting the organism against overwhelmed inflammation. Cell-specific relationships between miRNAs and their targets are also engaged in the alterations induced by virulent bacteria in the proliferation/differentiation/apoptosis pathways of their host cells. In a separate role, miRNA modulation also represents a mechanism through which commensal bacteria impact the regulation of the barrier function and intestinal homeostasis.
Collapse
Affiliation(s)
- Cathy Staedel
- Univ. Bordeaux, ARNA Laboratory, F-33000, Bordeaux, France.
| | | |
Collapse
|
47
|
LI XIAOFENG, ZHANG XIAOTING, LIU XIZHI, TAN ZHIWEN, YANG CELI, DING XIAOFENG, HU XIANG, ZHOU JIANLIN, XIANG SHUANGLIN, ZHOU CHANG, ZHANG JIAN. Caudatin induces cell apoptosis in gastric cancer cells through modulation of Wnt/β-catenin signaling. Oncol Rep 2013; 30:677-84. [DOI: 10.3892/or.2013.2495] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Accepted: 04/16/2013] [Indexed: 11/05/2022] Open
|
48
|
Baud J, Varon C, Chabas S, Chambonnier L, Darfeuille F, Staedel C. Helicobacter pylori initiates a mesenchymal transition through ZEB1 in gastric epithelial cells. PLoS One 2013; 8:e60315. [PMID: 23565224 PMCID: PMC3614934 DOI: 10.1371/journal.pone.0060315] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Accepted: 02/26/2013] [Indexed: 02/07/2023] Open
Abstract
Chronic Helicobacter pylori infection provokes an inflammation of the gastric mucosa, at high risk for ulcer and cancer development. The most virulent strains harbor the cag pathogenicity island (cagPAI) encoding a type 4 secretion system, which allows delivery of bacterial effectors into gastric epithelial cells, inducing pro-inflammatory responses and phenotypic alterations reminiscent of an epithelial-to-mesenchymal transition (EMT). This study characterizes EMT features in H. pylori-infected gastric epithelial cells, and investigates their relationship with NF-κB activation. Cultured human gastric epithelial cell lines were challenged with a cagPAI+ H. pylori strain or cag isogenic mutants. Morphological changes, epithelial and mesenchymal gene expression and EMT-related microRNAs were studied. H. pylori up-regulates mesenchymal markers, including ZEB1. This transcription factor is prominently involved in the mesenchymal transition of infected cells and its up-regulation depends on cagPAI and NF-κB activation. ZEB1 expression and NF-κB activation were confirmed by immunohistochemistry in gastric mucosa from cagPAI+ H. pylori-infected patients. Gastric epithelial cell lines express high miR-200 levels, which are linked to ZEB1 in a reciprocal negative feedback loop and maintain their epithelial phenotype in non-infected conditions. However, miR-200b/c were increased upon infection, despite ZEB1 up-regulation and mesenchymal morphology. In the miR-200b-200a-429 cluster promoter, we identified a functional NF-κB binding site, recruiting NF-κB upon infection and trans-activating the microRNA cluster transcription. In conclusion, in gastric epithelial cells, cagPAI+ H. pylori activates NF-κB, which transactivates ZEB1, subsequently promoting mesenchymal transition. The unexpected N-FκB-dependent increase of miR-200 levels likely thwarts the irreversible loss of epithelial identity in that critical situation.
Collapse
Affiliation(s)
- Jessica Baud
- University Bordeaux, ARNA Laboratory, Bordeaux, France
- INSERM, U869, ARNA Laboratory, Bordeaux, France
| | - Christine Varon
- University Bordeaux, Laboratoire de Bactériologie, Bordeaux, France
- INSERM, U853, Laboratoire de Bactériologie, Bordeaux, France
| | - Sandrine Chabas
- University Bordeaux, ARNA Laboratory, Bordeaux, France
- INSERM, U869, ARNA Laboratory, Bordeaux, France
| | - Lucie Chambonnier
- University Bordeaux, Laboratoire de Bactériologie, Bordeaux, France
- INSERM, U853, Laboratoire de Bactériologie, Bordeaux, France
| | - Fabien Darfeuille
- University Bordeaux, ARNA Laboratory, Bordeaux, France
- INSERM, U869, ARNA Laboratory, Bordeaux, France
- * E-mail: (CS); (FD)
| | - Cathy Staedel
- University Bordeaux, ARNA Laboratory, Bordeaux, France
- INSERM, U869, ARNA Laboratory, Bordeaux, France
- * E-mail: (CS); (FD)
| |
Collapse
|
49
|
Zhou C, Li X, Zhang X, Liu X, Tan Z, Yang C, Zhang J. microRNA-372 maintains oncogene characteristics by targeting TNFAIP1 and affects NFκB signaling in human gastric carcinoma cells. Int J Oncol 2012; 42:635-42. [PMID: 23242208 DOI: 10.3892/ijo.2012.1737] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Accepted: 11/23/2012] [Indexed: 11/06/2022] Open
Abstract
Aberrant microRNA (miRNA) expression has been investigated in gastric cancer, which is one of the most common malignancies. However, the roles of miRNAs in gastric cancer remain largely unknown. In the present study, we found that microRNA-372 (miR-372) directly targets tumor necrosis factor, α-induced protein 1 (TNFAIP1), and is involved in the regulation of the NFκB signaling pathway. Furthermore, overexpression of TNFAIP1 induced changes in AGS cells similar to those in AGS cells treated with miR-372-ASO. Collectively, these findings demonstrate an oncogenic role for miR-372 in controlling cell growth and apoptosis through downregulation of TNFAIP1. This novel molecular basis provides new insights into the etiology of gastric cancer.
Collapse
Affiliation(s)
- Chang Zhou
- Key Laboratory of Protein Chemistry and Developmental Biology of State Education Ministry of China, College of Life Science, Hunan Normal University, Changsha, Hunan 410081, P.R. China.
| | | | | | | | | | | | | |
Collapse
|
50
|
Abstract
Although Helicobacter pylori infection is highly prevalent in the global human population, the majority of infected individuals remain asymptomatic. A complex combination of host, environmental, and bacterial factors are considered to determine susceptibility and severity of outcome in the subset of individuals that develop clinical disease. These factors collectively determine the ability of H. pylori to colonize the gastric mucosa and profoundly influence the nature of the interaction that ensues. Many studies over the last year provide new insight into H. pylori virulence strategies and the activities of critical bacterial determinants that modulate the host environment. These latter include the secreted proteins CagA and VacA and adhesins BabA and OipA, which directly interact with host tissues. Observations from several studies extend the functional repertoire of CagA and the cag type IV secretion system in particular, providing further mechanistic understanding of how these important determinants engage and activate host signalling pathways important in the development of disease.
Collapse
Affiliation(s)
- Robin M Delahay
- Centre for Biomolecular Sciences and Nottingham Digestive Diseases Centre, University of Nottingham, Nottingham, UK.
| | | |
Collapse
|