1
|
Díaz-Flores L, Gutiérrez R, González-Gómez M, García MDP, Carrasco-Juan JL, Martín-Vasallo P, Madrid JF, Díaz-Flores L. Phenomena of Intussusceptive Angiogenesis and Intussusceptive Lymphangiogenesis in Blood and Lymphatic Vessel Tumors. Biomedicines 2024; 12:258. [PMID: 38397861 PMCID: PMC10887293 DOI: 10.3390/biomedicines12020258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 01/16/2024] [Accepted: 01/22/2024] [Indexed: 02/25/2024] Open
Abstract
Intussusceptive angiogenesis (IA) and intussusceptive lymphangiogenesis (IL) play a key role in the growth and morphogenesis of vessels. However, there are very few studies in this regard in vessel tumors (VTs). Our objective is to assess the presence, characteristics, and possible mechanisms of the formation of intussusceptive structures in a broad spectrum of VTs. For this purpose, examples of benign and malignant blood and lymphatic VTs were studied via conventional procedures, semithin sections, and immunochemistry and immunofluorescence microscopy. The results demonstrated intussusceptive structures (pillars, meshes, and folds) in benign (lobular capillary hemangioma or pyogenic granuloma, intravascular papillary endothelial hyperplasia or Masson tumor, sinusoidal hemangioma, cavernous hemangioma, glomeruloid hemangioma, angiolipoma, and lymphangiomas), low-grade malignancy (retiform hemangioendothelioma and Dabska tumor), and malignant (angiosarcoma and Kaposi sarcoma) VTs. Intussusceptive structures showed an endothelial cover and a core formed of connective tissue components and presented findings suggesting an origin through vessel loops, endothelialized thrombus, interendothelial bridges, and/or splitting and fusion, and conditioned VT morphology. In conclusion, the findings support the participation of IA and IL, in association with sprouting angiogenesis, in VTs, and therefore in their growth and morphogenesis, which is of pathophysiological interest and lays the groundwork for in-depth molecular studies with therapeutic purposes.
Collapse
Affiliation(s)
- Lucio Díaz-Flores
- Department of Basic Medical Sciences, Faculty of Medicine, University of La Laguna, 38071 Tenerife, Spain (J.-L.C.-J.)
| | - Ricardo Gutiérrez
- Department of Basic Medical Sciences, Faculty of Medicine, University of La Laguna, 38071 Tenerife, Spain (J.-L.C.-J.)
| | - Miriam González-Gómez
- Department of Basic Medical Sciences, Faculty of Medicine, University of La Laguna, 38071 Tenerife, Spain (J.-L.C.-J.)
- Instituto de Tecnologías Biomédicas de Canarias, University of La Laguna, 38071 Tenerife, Spain
| | - Maria del Pino García
- Department of Pathology, Eurofins Megalab-Hospiten Hospitals, 38100 Tenerife, Spain;
| | - Jose-Luis Carrasco-Juan
- Department of Basic Medical Sciences, Faculty of Medicine, University of La Laguna, 38071 Tenerife, Spain (J.-L.C.-J.)
| | - Pablo Martín-Vasallo
- Department of Bioquímica, Microbiología, Biología Celular y Genética, University of La Laguna, 38206 Tenerife, Spain;
| | - Juan Francisco Madrid
- Department of Cell Biology and Histology, School of Medicine, Campus of International Excellence “Campus Mare Nostrum”, IMIB-Arrixaca, University of Murcia, 30100 Murcia, Spain;
| | - Lucio Díaz-Flores
- Department of Basic Medical Sciences, Faculty of Medicine, University of La Laguna, 38071 Tenerife, Spain (J.-L.C.-J.)
| |
Collapse
|
2
|
Röss H, Aaldijk D, Vladymyrov M, Odriozola A, Djonov V. Transluminal Pillars-Their Origin and Role in the Remodelling of the Zebrafish Caudal Vein Plexus. Int J Mol Sci 2023; 24:16703. [PMID: 38069025 PMCID: PMC10706262 DOI: 10.3390/ijms242316703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 11/10/2023] [Accepted: 11/16/2023] [Indexed: 12/18/2023] Open
Abstract
Intussusceptive pillars, regarded as a hallmark of intussusceptive angiogenesis, have been described in developing vasculature of many organs and organisms. The aim of this study was to resolve the question about pillar formation and their further maturation employing zebrafish caudal vein plexus (CVP). The CVP development was monitored by in vivo confocal microscopy in high spatio-temporal resolution using the transgenic zebrafish model Fli1a:eGPF//Gata1:dsRed. We tracked back the formation of pillars (diameter ≤ 4 µm) and intercapillary meshes (diameter > 4 µm) and analysed their morphology and behaviour. Transluminal pillars in the CVP arose via a combination of sprouting, lumen expansion, and/or the creation of intraluminal folds, and those mechanisms were not associated directly with blood flow. The follow-up of pillars indicated that one-third of them disappeared between 28 and 48 h post fertilisation (hpf), and of the remaining ones, only 1/17 changed their cross-section area by >50%. The majority of the bigger meshes (39/62) increased their cross-section area by >50%. Plexus simplification and the establishment of hierarchy were dominated by the dynamics of intercapillary meshes, which formed mainly via sprouting angiogenesis. These meshes were observed to grow, reshape, and merge with each other. Our observations suggested an alternative view on intussusceptive angiogenesis in the CVP.
Collapse
Affiliation(s)
- Helena Röss
- Institute of Anatomy, University of Bern, 3012 Bern, Switzerland; (H.R.); (D.A.); (A.O.)
| | - Dea Aaldijk
- Institute of Anatomy, University of Bern, 3012 Bern, Switzerland; (H.R.); (D.A.); (A.O.)
| | | | - Adolfo Odriozola
- Institute of Anatomy, University of Bern, 3012 Bern, Switzerland; (H.R.); (D.A.); (A.O.)
| | - Valentin Djonov
- Institute of Anatomy, University of Bern, 3012 Bern, Switzerland; (H.R.); (D.A.); (A.O.)
| |
Collapse
|
3
|
Butler K, Brinker CJ, Leong HS. Bridging the In Vitro to In Vivo gap: Using the Chick Embryo Model to Accelerate Nanoparticle Validation and Qualification for In Vivo studies. ACS NANO 2022; 16:19626-19650. [PMID: 36453753 PMCID: PMC9799072 DOI: 10.1021/acsnano.2c03990] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 10/17/2022] [Indexed: 06/17/2023]
Abstract
We postulate that nanoparticles (NPs) for use in therapeutic applications have largely not realized their clinical potential due to an overall inability to use in vitro results to predict NP performance in vivo. The avian embryo and associated chorioallantoic membrane (CAM) has emerged as an in vivo preclinical model that bridges the gap between in vitro and in vivo, enabling rapid screening of NP behavior under physiologically relevant conditions and providing a rapid, accessible, economical, and more ethical means of qualifying nanoparticles for in vivo use. The CAM is highly vascularized and mimics the diverging/converging vasculature of the liver, spleen, and lungs that serve as nanoparticle traps. Intravital imaging of fluorescently labeled NPs injected into the CAM vasculature enables immediate assessment and quantification of nano-bio interactions at the individual NP scale in any tissue of interest that is perfused with a microvasculature. In this review, we highlight how utilization of the avian embryo and its CAM as a preclinical model can be used to understand NP stability in blood and tissues, extravasation, biocompatibility, and NP distribution over time, thereby serving to identify a subset of NPs with the requisite stability and performance to introduce into rodent models and enabling the development of structure-property relationships and NP optimization without the sacrifice of large populations of mice or other rodents. We then review how the chicken embryo and CAM model systems have been used to accelerate the development of NP delivery and imaging agents by allowing direct visualization of targeted (active) and nontargeted (passive) NP binding, internalization, and cargo delivery to individual cells (of relevance for the treatment of leukemia and metastatic cancer) and cellular ensembles (e.g., cancer xenografts of interest for treatment or imaging of cancer tumors). We conclude by showcasing emerging techniques for the utilization of the CAM in future nano-bio studies.
Collapse
Affiliation(s)
- Kimberly
S. Butler
- Molecular
and Microbiology, Sandia National Laboratories, Albuquerque, New Mexico 87123, United States
| | - C. Jeffrey Brinker
- Department
of Chemical and Biological Engineering and the Comprehensive Cancer
Center, The University of New Mexico, Albuquerque, New Mexico 87131, United States
| | - Hon Sing Leong
- Department
of Medical Biophysics, Faculty of Medicine, University of Toronto, Toronto M5G 1L7, Canada
- Biological
Sciences Platform, Sunnybrook Hospital, Toronto M4N 3M5, Canada
| |
Collapse
|
4
|
Nitzsche B, Rong WW, Goede A, Hoffmann B, Scarpa F, Kuebler WM, Secomb TW, Pries AR. Coalescent angiogenesis-evidence for a novel concept of vascular network maturation. Angiogenesis 2021; 25:35-45. [PMID: 34905124 PMCID: PMC8669669 DOI: 10.1007/s10456-021-09824-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 11/07/2021] [Indexed: 02/06/2023]
Abstract
Angiogenesis describes the formation of new blood vessels from pre-existing vascular structures. While the most studied mode of angiogenesis is vascular sprouting, specific conditions or organs favor intussusception, i.e., the division or splitting of an existing vessel, as preferential mode of new vessel formation. In the present study, sustained (33-h) intravital microscopy of the vasculature in the chick chorioallantoic membrane (CAM) led to the hypothesis of a novel non-sprouting mode for vessel generation, which we termed "coalescent angiogenesis." In this process, preferential flow pathways evolve from isotropic capillary meshes enclosing tissue islands. These preferential flow pathways progressively enlarge by coalescence of capillaries and elimination of internal tissue pillars, in a process that is the reverse of intussusception. Concomitantly, less perfused segments regress. In this way, an initially mesh-like capillary network is remodeled into a tree structure, while conserving vascular wall components and maintaining blood flow. Coalescent angiogenesis, thus, describes the remodeling of an initial, hemodynamically inefficient mesh structure, into a hierarchical tree structure that provides efficient convective transport, allowing for the rapid expansion of the vasculature with maintained blood supply and function during development.
Collapse
Affiliation(s)
- Bianca Nitzsche
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Physiology, Berlin, Germany.,German Center for Cardiovascular Research (DZHK), Partner site Berlin, 10117, Berlin, Germany
| | - Wen Wei Rong
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Physiology, Berlin, Germany
| | - Andrean Goede
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Physiology, Berlin, Germany
| | - Björn Hoffmann
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Physiology, Berlin, Germany
| | - Fabio Scarpa
- Department of Information Engineering, University of Padua, Padua, Italy
| | - Wolfgang M Kuebler
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Physiology, Berlin, Germany.,German Center for Cardiovascular Research (DZHK), Partner site Berlin, 10117, Berlin, Germany
| | - Timothy W Secomb
- Department of Physiology, University of Arizona, Tucson, AZ, 85724, USA
| | - Axel R Pries
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Physiology, Berlin, Germany. .,German Center for Cardiovascular Research (DZHK), Partner site Berlin, 10117, Berlin, Germany.
| |
Collapse
|
5
|
Rezaei-Lotfi S, Vujovic F, Simonian M, Hunter N, Farahani RM. Programmed genomic instability regulates neural transdifferentiation of human brain microvascular pericytes. Genome Biol 2021; 22:334. [PMID: 34886891 PMCID: PMC8656028 DOI: 10.1186/s13059-021-02555-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 11/22/2021] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Transdifferentiation describes transformation in vivo of specialized cells from one lineage into another. While there is extensive literature on forced induction of lineage reprogramming in vitro, endogenous mechanisms that govern transdifferentiation remain largely unknown. The observation that human microvascular pericytes transdifferentiate into neurons provided an opportunity to explore the endogenous molecular basis for lineage reprogramming. RESULTS We show that abrupt destabilization of the higher-order chromatin topology that chaperones lineage memory of pericytes is driven by transient global transcriptional arrest. This leads within minutes to localized decompression of the repressed competing higher-order chromatin topology and expression of pro-neural genes. Transition to neural lineage is completed by probabilistic induction of R-loops in key myogenic loci upon re-initiation of RNA polymerase activity, leading to depletion of the myogenic transcriptome and emergence of the neurogenic transcriptome. CONCLUSIONS These findings suggest that the global transcriptional landscape not only shapes the functional cellular identity of pericytes, but also stabilizes lineage memory by silencing the competing neural program within a repressed chromatin state.
Collapse
Affiliation(s)
- Saba Rezaei-Lotfi
- IDR/Westmead Institute for Medical Research, Westmead, NSW 2145 Australia
- School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006 Australia
| | - Filip Vujovic
- IDR/Westmead Institute for Medical Research, Westmead, NSW 2145 Australia
- School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006 Australia
| | - Mary Simonian
- IDR/Westmead Institute for Medical Research, Westmead, NSW 2145 Australia
| | - Neil Hunter
- IDR/Westmead Institute for Medical Research, Westmead, NSW 2145 Australia
| | - Ramin M. Farahani
- IDR/Westmead Institute for Medical Research, Westmead, NSW 2145 Australia
- School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006 Australia
| |
Collapse
|
6
|
Arpino JM, Yin H, Prescott EK, Staples SCR, Nong Z, Li F, Chevalier J, Balint B, O’Neil C, Mortuza R, Milkovich S, Lee JJ, Lorusso D, Sandig M, Hamilton DW, Holdsworth DW, Poepping TL, Ellis CG, Pickering JG. Low-flow intussusception and metastable VEGFR2 signaling launch angiogenesis in ischemic muscle. SCIENCE ADVANCES 2021; 7:eabg9509. [PMID: 34826235 PMCID: PMC8626079 DOI: 10.1126/sciadv.abg9509] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Efforts to promote sprouting angiogenesis in skeletal muscles of individuals with peripheral artery disease have not been clinically successful. We discovered that, contrary to the prevailing view, angiogenesis following ischemic muscle injury in mice was not driven by endothelial sprouting. Instead, real-time imaging revealed the emergence of wide-caliber, primordial conduits with ultralow flow that rapidly transformed into a hierarchical neocirculation by transluminal bridging and intussusception. This process was accelerated by inhibiting vascular endothelial growth factor receptor-2 (VEGFR2). We probed this response by developing the first live-cell model of transluminal endothelial bridging using microfluidics. Endothelial cells subjected to ultralow shear stress could reposition inside the flowing lumen as pillars. Moreover, the low-flow lumen proved to be a privileged location for endothelial cells with reduced VEGFR2 signaling capacity, as VEGFR2 mechanosignals were boosted. These findings redefine regenerative angiogenesis in muscle as an intussusceptive process and uncover a basis for its launch.
Collapse
Affiliation(s)
- John-Michael Arpino
- Robarts Research Institute, Western University, London, Canada
- Department of Medical Biophysics, Western University, London, Canada
| | - Hao Yin
- Robarts Research Institute, Western University, London, Canada
| | - Emma K. Prescott
- Robarts Research Institute, Western University, London, Canada
- Department of Medical Biophysics, Western University, London, Canada
| | - Sabrina C. R. Staples
- Robarts Research Institute, Western University, London, Canada
- Department of Medical Biophysics, Western University, London, Canada
| | - Zengxuan Nong
- Robarts Research Institute, Western University, London, Canada
| | - Fuyan Li
- Robarts Research Institute, Western University, London, Canada
| | - Jacqueline Chevalier
- Robarts Research Institute, Western University, London, Canada
- Department of Medical Biophysics, Western University, London, Canada
| | - Brittany Balint
- Robarts Research Institute, Western University, London, Canada
- Department of Medical Biophysics, Western University, London, Canada
| | - Caroline O’Neil
- Robarts Research Institute, Western University, London, Canada
| | | | - Stephanie Milkovich
- Robarts Research Institute, Western University, London, Canada
- Department of Medical Biophysics, Western University, London, Canada
| | - Jason J. Lee
- Robarts Research Institute, Western University, London, Canada
- Department of Medical Biophysics, Western University, London, Canada
- Department of Medicine, Western University, London, Canada
| | - Daniel Lorusso
- Robarts Research Institute, Western University, London, Canada
| | - Martin Sandig
- Department of Anatomy and Cell Biology, Western University, London, Canada
| | | | - David W. Holdsworth
- Robarts Research Institute, Western University, London, Canada
- Department of Medical Biophysics, Western University, London, Canada
| | - Tamie L. Poepping
- Department of Physics and Astronomy, Western University, London, Canada
| | - Christopher G. Ellis
- Robarts Research Institute, Western University, London, Canada
- Department of Medical Biophysics, Western University, London, Canada
- Department of Medicine, Western University, London, Canada
| | - J. Geoffrey Pickering
- Robarts Research Institute, Western University, London, Canada
- Department of Medical Biophysics, Western University, London, Canada
- Department of Medicine, Western University, London, Canada
- Department of Biochemistry, Western University, London, Canada
- Corresponding author.
| |
Collapse
|
7
|
Ai J, Hong W, Wu M, Wei X. Pulmonary vascular system: A vulnerable target for COVID-19. MedComm (Beijing) 2021; 2:531-547. [PMID: 34909758 PMCID: PMC8662299 DOI: 10.1002/mco2.94] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/18/2021] [Accepted: 09/21/2021] [Indexed: 02/05/2023] Open
Abstract
The number of coronavirus disease 2019 (COVID‐19) cases has been increasing significantly, and the disease has evolved into a global pandemic, posing an unprecedented challenge to the healthcare community. Angiotensin‐converting enzyme 2, the binding and entry receptor of severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2) in hosts, is also expressed on pulmonary vascular endothelium; thus, pulmonary vasculature is a potential target in COVID‐19. Indeed, pulmonary vascular thickening is observed by early clinical imaging, implying a tropism of SARS‐CoV‐2 for pulmonary vasculature. Recent studies reported that COVID‐19 is associated with vascular endothelial damage and dysfunction along with inflammation, coagulopathy, and microthrombosis; all of these pathologic changes are the hallmarks of pulmonary vascular diseases. Notwithstanding the not fully elucidated effects of COVID‐19 on pulmonary vasculature, the vascular endotheliopathy that occurs after infection is attributed to direct infection and indirect damage mainly caused by renin‐angiotensin‐aldosterone system imbalance, coagulation cascade, oxidative stress, immune dysregulation, and intussusceptive angiogenesis. Degradation of endothelial glycocalyx exposes endothelial cell (EC) surface receptors to the vascular lumen, which renders pulmonary ECs more susceptible to SARS‐CoV‐2 infection. The present article reviews the potential pulmonary vascular pathophysiology and clinical presentations in COVID‐19 to provide a basis for clinicians and scientists, providing insights into the development of therapeutic strategies targeting pulmonary vasculature.
Collapse
Affiliation(s)
- Jiayuan Ai
- Laboratory of Aging Research and Cancer Drug Target State Key Laboratory of Biotherapy National Clinical Research Center for Geriatrics West China Hospital Sichuan University Chengdu Sichuan PR China
| | - Weiqi Hong
- Laboratory of Aging Research and Cancer Drug Target State Key Laboratory of Biotherapy National Clinical Research Center for Geriatrics West China Hospital Sichuan University Chengdu Sichuan PR China
| | - Min Wu
- Department of Biomedical Sciences School of Medicine and Health Sciences University of North Dakota Grand Forks North Dakota USA
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Drug Target State Key Laboratory of Biotherapy National Clinical Research Center for Geriatrics West China Hospital Sichuan University Chengdu Sichuan PR China
| |
Collapse
|
8
|
Du Cheyne C, Smeets M, De Spiegelaere W. Techniques used to assess intussusceptive angiogenesis: A systematic review. Dev Dyn 2021; 250:1704-1716. [PMID: 34101289 DOI: 10.1002/dvdy.382] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 04/25/2021] [Accepted: 06/03/2021] [Indexed: 12/18/2022] Open
Abstract
Intussusceptive angiogenesis (IA) is an important physiological form of angiogenesis in which an existing vessel splits in two by the formation of an intraluminal tissue pillar. The presence of these intraluminal pillars form the hallmark of ongoing IA in growing vascular beds. However, their visualization is technically challenging. The goal of this systematic review was to investigate which techniques are being used to identify intraluminal pillars and to formulate important points to keep in mind when studying IA. A systematic literature search resulted in 154 evaluated articles of which the majority (65%) provided sufficient data to unambiguously demonstrate the presence of intraluminal pillars. Scanning electron microscopy imaging of vascular corrosion casts and serial sectioning of ultrathin sections are the most used techniques. New methods such as serial block face scanning electron microscopy and micro computed tomography (μCT) are gaining importance. Moreover, our results indicate that IA was studied in a variety of animals and tissues. IA is a biologically very relevant form of angiogenesis. Techniques to visualize intraluminal pillars need to have a minimal resolution of 1 μm and should provide information on the 3D-nature of the pillars. Optimally, several techniques are combined to demonstrate ongoing IA.
Collapse
Affiliation(s)
- Charis Du Cheyne
- Department of Morphology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Marloes Smeets
- Department of Morphology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Ward De Spiegelaere
- Department of Morphology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| |
Collapse
|
9
|
Bösmüller H, Matter M, Fend F, Tzankov A. The pulmonary pathology of COVID-19. Virchows Arch 2021; 478:137-150. [PMID: 33604758 PMCID: PMC7892326 DOI: 10.1007/s00428-021-03053-1] [Citation(s) in RCA: 110] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 02/01/2021] [Accepted: 02/03/2021] [Indexed: 01/08/2023]
Abstract
The lung is the main affected organ in severe coronavirus disease 2019 (COVID-19) caused by the novel coronavirus SARS-CoV-2, and lung damage is the leading cause of death in the vast majority of patients. Mainly based on results obtained by autopsies, the seminal features of fatal COVID-19 have been described by many groups worldwide. Early changes encompass edema, epithelial damage, and capillaritis/endothelialitis, frequently combined with microthrombosis. Subsequently, patients with manifest respiratory insufficiency exhibit exudative diffuse alveolar damage (DAD) with hyaline membrane formation and pneumocyte type 2 hyperplasia, variably complicated by superinfection, which may progress to organizing/fibrotic stage DAD. These features, however, are not specific for COVID-19 and can be found in other disorders including viral infections. Clinically, the early disease stage of severe COVID-19 is characterized by high viral load, lymphopenia, massive secretion of pro-inflammatory cytokines and hypercoagulability, documented by elevated D-dimers and an increased frequency of thrombotic and thromboembolic events, whereas virus loads and cytokine levels tend to decrease in late disease stages, when tissue repair including angiogenesis prevails. The present review describes the spectrum of lung pathology based on the current literature and the authors' personal experience derived from clinical autopsies, and tries to summarize our current understanding and open questions of the pathophysiology of severe pulmonary COVID-19.
Collapse
Affiliation(s)
- Hans Bösmüller
- Institute of Pathology and Neuropathology, University Hospital Tübingen and Eberhard Karls University Tübingen, Liebermeisterstraße 8, 72076, Tübingen, Germany
| | - Matthias Matter
- Pathology, Institute of Medical Genetics and Pathology, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Falko Fend
- Institute of Pathology and Neuropathology, University Hospital Tübingen and Eberhard Karls University Tübingen, Liebermeisterstraße 8, 72076, Tübingen, Germany.
| | - Alexandar Tzankov
- Pathology, Institute of Medical Genetics and Pathology, University Hospital Basel, University of Basel, Basel, Switzerland.
| |
Collapse
|
10
|
Ackermann M, Mentzer SJ, Kolb M, Jonigk D. Inflammation and intussusceptive angiogenesis in COVID-19: everything in and out of flow. Eur Respir J 2020; 56:13993003.03147-2020. [PMID: 33008942 PMCID: PMC7530910 DOI: 10.1183/13993003.03147-2020] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 08/28/2020] [Indexed: 12/20/2022]
Affiliation(s)
- Maximilian Ackermann
- Institute of Pathology and Molecular Pathology, Helios University Clinic Wuppertal, University of Witten/Herdecke, Wuppertal, Germany .,Institute of Functional and Clinical Anatomy, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Steven J Mentzer
- Laboratory of Adaptive and Regenerative Biology, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, USA
| | - Martin Kolb
- Firestone Institute for Respiratory Health, Research Institute at St Joseph's Healthcare, Dept of Medicine, McMaster University, Hamilton, ON, Canada
| | - Danny Jonigk
- Institute of Pathology, Hannover Medical School, Hannover, Germany.,Member of the German Center for Lung Research (DZL), Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Hannover, Germany
| |
Collapse
|
11
|
Santamaría R, González-Álvarez M, Delgado R, Esteban S, Arroyo AG. Remodeling of the Microvasculature: May the Blood Flow Be With You. Front Physiol 2020; 11:586852. [PMID: 33178049 PMCID: PMC7593767 DOI: 10.3389/fphys.2020.586852] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 09/09/2020] [Indexed: 12/12/2022] Open
Abstract
The vasculature ensures optimal delivery of nutrients and oxygen throughout the body, and to achieve this function it must continually adapt to varying tissue demands. Newly formed vascular plexuses during development are immature and require dynamic remodeling to generate well-patterned functional networks. This is achieved by remodeling of the capillaries preserving those which are functional and eliminating other ones. A balanced and dynamically regulated capillary remodeling will therefore ensure optimal distribution of blood and nutrients to the tissues. This is particularly important in pathological contexts in which deficient or excessive vascular remodeling may worsen tissue perfusion and hamper tissue repair. Blood flow is a major determinant of microvascular reshaping since capillaries are pruned when relatively less perfused and they split when exposed to high flow in order to shape the microvascular network for optimal tissue perfusion and oxygenation. The molecular machinery underlying blood flow sensing by endothelial cells is being deciphered, but much less is known about how this translates into endothelial cell responses as alignment, polarization and directed migration to drive capillary remodeling, particularly in vivo. Part of this knowledge is theoretical from computational models since blood flow hemodynamics are not easily recapitulated by in vitro or ex vivo approaches. Moreover, these events are difficult to visualize in vivo due to their infrequency and briefness. Studies had been limited to postnatal mouse retina and vascular beds in zebrafish but new tools as advanced microscopy and image analysis are strengthening our understanding of capillary remodeling. In this review we introduce the concept of remodeling of the microvasculature and its relevance in physiology and pathology. We summarize the current knowledge on the mechanisms contributing to capillary regression and to capillary splitting highlighting the key role of blood flow to orchestrate these processes. Finally, we comment the potential and possibilities that microfluidics offers to this field. Since capillary remodeling mechanisms are often reactivated in prevalent pathologies as cancer and cardiovascular disease, all this knowledge could be eventually used to improve the functionality of capillary networks in diseased tissues and promote their repair.
Collapse
Affiliation(s)
- Ricardo Santamaría
- Department of Vascular Pathophysiology, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - María González-Álvarez
- Department of Molecular Biomedicine, Centro de Investigaciones Biológicas Margarita Salas (CIB-CSIC), Madrid, Spain
| | - Raquel Delgado
- Department of Vascular Pathophysiology, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Sergio Esteban
- Department of Vascular Pathophysiology, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Alicia G. Arroyo
- Department of Vascular Pathophysiology, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Department of Molecular Biomedicine, Centro de Investigaciones Biológicas Margarita Salas (CIB-CSIC), Madrid, Spain
| |
Collapse
|
12
|
The effect of flow on swimming bacteria controls the initial colonization of curved surfaces. Nat Commun 2020; 11:2851. [PMID: 32503979 PMCID: PMC7275075 DOI: 10.1038/s41467-020-16620-y] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 05/15/2020] [Indexed: 01/17/2023] Open
Abstract
The colonization of surfaces by bacteria is a widespread phenomenon with consequences on environmental processes and human health. While much is known about the molecular mechanisms of surface colonization, the influence of the physical environment remains poorly understood. Here we show that the colonization of non-planar surfaces by motile bacteria is largely controlled by flow. Using microfluidic experiments with Pseudomonas aeruginosa and Escherichia coli, we demonstrate that the velocity gradients created by a curved surface drive preferential attachment to specific regions of the collecting surface, namely the leeward side of cylinders and immediately downstream of apexes on corrugated surfaces, in stark contrast to where nonmotile cells attach. Attachment location and rate depend on the local hydrodynamics and, as revealed by a mathematical model benchmarked on the observations, on cell morphology and swimming traits. These results highlight the importance of flow on the magnitude and location of bacterial colonization of surfaces. Bacterial colonization of surfaces has a profound environmental, technological and medical impact. Here, Secchi et al. show how fluid flow affects the magnitude and location of bacterial colonization on curved surfaces through its coupling with cell morphology and motility.
Collapse
|
13
|
Campinho P, Vilfan A, Vermot J. Blood Flow Forces in Shaping the Vascular System: A Focus on Endothelial Cell Behavior. Front Physiol 2020; 11:552. [PMID: 32581842 PMCID: PMC7291788 DOI: 10.3389/fphys.2020.00552] [Citation(s) in RCA: 128] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 04/30/2020] [Indexed: 01/16/2023] Open
Abstract
The endothelium is the cell monolayer that lines the interior of the blood vessels separating the vessel lumen where blood circulates, from the surrounding tissues. During embryonic development, endothelial cells (ECs) must ensure that a tight barrier function is maintained whilst dynamically adapting to the growing vascular tree that is being formed and remodeled. Blood circulation generates mechanical forces, such as shear stress and circumferential stretch that are directly acting on the endothelium. ECs actively respond to flow-derived mechanical cues by becoming polarized, migrating and changing neighbors, undergoing shape changes, proliferating or even leaving the tissue and changing identity. It is now accepted that coordinated changes at the single cell level drive fundamental processes governing vascular network morphogenesis such as angiogenic sprouting, network pruning, lumen formation, regulation of vessel caliber and stability or cell fate transitions. Here we summarize the cell biology and mechanics of ECs in response to flow-derived forces, discuss the latest advances made at the single cell level with particular emphasis on in vivo studies and highlight potential implications for vascular pathologies.
Collapse
Affiliation(s)
- Pedro Campinho
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
- Centre National de la Recherche Scientifique, UMR 7104, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France
- Department of Development and Stem Cells, Université de Strasbourg, Illkirch, France
| | - Andrej Vilfan
- Department of Living Matter Physics, Max Planck Institute for Dynamics and Self-Organization, Göttingen, Germany
- Department of Condensed Matter Physics, J. Stefan Institute, Ljubljana, Slovenia
| | - Julien Vermot
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
- Centre National de la Recherche Scientifique, UMR 7104, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France
- Department of Development and Stem Cells, Université de Strasbourg, Illkirch, France
- Department of Bioengineering, Imperial College London, London, United Kingdom
| |
Collapse
|
14
|
Díaz-Flores L, Gutiérrez R, Gayoso S, García MP, González-Gómez M, Díaz-Flores L, Sánchez R, Carrasco JL, Madrid JF. Intussusceptive angiogenesis and its counterpart intussusceptive lymphangiogenesis. Histol Histopathol 2020; 35:1083-1103. [PMID: 32329808 DOI: 10.14670/hh-18-222] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Intussusceptive angiogenesis (IA) is currently considered an important alternative and complementary form of sprouting angiogenesis (SA). Conversely, intussusceptive lymphangiogenesis (IL) is in an initial phase of study. We compare their morphofunctional characteristics, since many can be shared by both processes. To that end, the following aspects are considered: A) The concept of IA and IL as the mechanism by which blood and lymphatic vessels split, expand and remodel through transluminal pillar formations (hallmarks of intussusception). B) Terminology and historical background, with particular reference to the group of Burri, including Djonov and Patan, who initiated and developed the vessel intussusceptive concept in blood vessels. C) Incidence in normal (e.g. in the sinuses of developing lymph nodes) and pathologic conditions, above all in vessel diseases, such as dilated veins in hemorrhoidal disease, intravascular papillary endothelial hyperplasia (IPEH), sinusoidal hemangioma, lobular capillary hemangioma, lymphangiomas/lymphatic malformations and vascular transformation of lymph nodes. D) Differences and complementarity between vessel sprouting and intussusception. E) Characteristics of the cover (endothelial cells) and core (connective tissue components) of pillars and requirements for pillar identification. F) Structures involved in pillar formation, including endothelial contacts of opposite vessel walls, interendothelial bridges, merged adjacent capillaries, vessel loops and spilt pillars. G) Structures resulting from pillars with intussusceptive microvascular growth, arborization, remodeling and segmentation (compartmentalization). H) Influence of intussusception in the morphogenesis of vessel tumors/ pseudotumors; and I) Hemodynamic and molecular control of vessel intussusception, including VEGF, PDGF BB, Hypoxia, Notch, Endoglobin and Nitric oxide.
Collapse
Affiliation(s)
- L Díaz-Flores
- Department of Basic Medical Sciences, Faculty of Medicine, University of La Laguna, Tenerife, Spain.
| | - R Gutiérrez
- Department of Basic Medical Sciences, Faculty of Medicine, University of La Laguna, Tenerife, Spain
| | - S Gayoso
- Department of Basic Medical Sciences, Faculty of Medicine, University of La Laguna, Tenerife, Spain
| | - M P García
- Department of Pathology, Eurofins® Megalab-Hospiten Hospitals, Tenerife, Spain
| | - M González-Gómez
- Department of Basic Medical Sciences, Faculty of Medicine, University of La Laguna, Tenerife, Spain
| | - L Díaz-Flores
- Department of Basic Medical Sciences, Faculty of Medicine, University of La Laguna, Tenerife, Spain
| | - R Sánchez
- Department of Internal Medicine, Dermatology and Psychiatry, Faculty of Medicine, University of La Laguna, Tenerife, Spain
| | - J L Carrasco
- Department of Basic Medical Sciences, Faculty of Medicine, University of La Laguna, Tenerife, Spain
| | - J F Madrid
- Department of Cell Biology and Histology, School of Medicine, Campus of International Excellence "Campus Mare Nostrum", IMIB-Arrixaca, University of Murcia, Murcia, Spain
| |
Collapse
|
15
|
Gianni-Barrera R, Butschkau A, Uccelli A, Certelli A, Valente P, Bartolomeo M, Groppa E, Burger MG, Hlushchuk R, Heberer M, Schaefer DJ, Gürke L, Djonov V, Vollmar B, Banfi A. PDGF-BB regulates splitting angiogenesis in skeletal muscle by limiting VEGF-induced endothelial proliferation. Angiogenesis 2018; 21:883-900. [PMID: 30014172 PMCID: PMC6208885 DOI: 10.1007/s10456-018-9634-5] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 07/01/2018] [Indexed: 12/11/2022]
Abstract
VEGF induces normal or aberrant angiogenesis depending on its dose in the microenvironment around each producing cell in vivo. This transition depends on the balance between VEGF-induced endothelial stimulation and PDGF-BB-mediated pericyte recruitment, and co-expression of PDGF-BB normalizes aberrant angiogenesis despite high VEGF doses. We recently found that VEGF over-expression induces angiogenesis in skeletal muscle through an initial circumferential vascular enlargement followed by longitudinal splitting, rather than sprouting. Here we investigated the cellular mechanism by which PDGF-BB co-expression normalizes VEGF-induced aberrant angiogenesis. Monoclonal populations of transduced myoblasts, expressing similarly high levels of VEGF alone or with PDGF-BB, were implanted in mouse skeletal muscles. PDGF-BB co-expression did not promote sprouting and angiogenesis that occurred through vascular enlargement and splitting. However, enlargements were significantly smaller in diameter, due to a significant reduction in endothelial proliferation, and retained pericytes, which were otherwise lost with high VEGF alone. A time-course of histological analyses and repetitive intravital imaging showed that PDGF-BB co-expression anticipated the initiation of vascular enlargement and markedly accelerated the splitting process. Interestingly, quantification during in vivo imaging suggested that a global reduction in shear stress favored the initiation of transluminal pillar formation during VEGF-induced splitting angiogenesis. Quantification of target gene expression showed that VEGF-R2 signaling output was significantly reduced by PDGF-BB co-expression compared to VEGF alone. In conclusion, PDGF-BB co-expression prevents VEGF-induced aberrant angiogenesis by modulating VEGF-R2 signaling and endothelial proliferation, thereby limiting the degree of circumferential enlargement and enabling efficient completion of vascular splitting into normal capillary networks despite high VEGF doses.
Collapse
Affiliation(s)
- R Gianni-Barrera
- Department of Biomedicine, Basel University Hospital, University of Basel, Hebelstrasse 20, 4031, Basel, Switzerland.
- Department of Surgery, University Hospital, Basel, Switzerland.
- Institute for Experimental Surgery, University of Rostock, Rostock, Germany.
| | - A Butschkau
- Institute for Experimental Surgery, University of Rostock, Rostock, Germany
| | - A Uccelli
- Department of Biomedicine, Basel University Hospital, University of Basel, Hebelstrasse 20, 4031, Basel, Switzerland
- Department of Surgery, University Hospital, Basel, Switzerland
| | - A Certelli
- Department of Biomedicine, Basel University Hospital, University of Basel, Hebelstrasse 20, 4031, Basel, Switzerland
- Department of Surgery, University Hospital, Basel, Switzerland
| | - P Valente
- Department of Biomedicine, Basel University Hospital, University of Basel, Hebelstrasse 20, 4031, Basel, Switzerland
- Department of Surgery, University Hospital, Basel, Switzerland
| | - M Bartolomeo
- Department of Biomedicine, Basel University Hospital, University of Basel, Hebelstrasse 20, 4031, Basel, Switzerland
- Department of Surgery, University Hospital, Basel, Switzerland
| | - E Groppa
- Department of Biomedicine, Basel University Hospital, University of Basel, Hebelstrasse 20, 4031, Basel, Switzerland
- Department of Surgery, University Hospital, Basel, Switzerland
- The Biomedical Research Centre, The University of British Columbia, Vancouver, Canada
| | - M G Burger
- Department of Biomedicine, Basel University Hospital, University of Basel, Hebelstrasse 20, 4031, Basel, Switzerland
- Department of Surgery, University Hospital, Basel, Switzerland
| | - R Hlushchuk
- Institute of Anatomy, University of Bern, Bern, Switzerland
| | - M Heberer
- Department of Biomedicine, Basel University Hospital, University of Basel, Hebelstrasse 20, 4031, Basel, Switzerland
- Department of Surgery, University Hospital, Basel, Switzerland
| | - D J Schaefer
- Department of Surgery, University Hospital, Basel, Switzerland
| | - L Gürke
- Department of Surgery, University Hospital, Basel, Switzerland
| | - V Djonov
- Institute of Anatomy, University of Bern, Bern, Switzerland
| | - B Vollmar
- Institute for Experimental Surgery, University of Rostock, Rostock, Germany
| | - A Banfi
- Department of Biomedicine, Basel University Hospital, University of Basel, Hebelstrasse 20, 4031, Basel, Switzerland.
- Department of Surgery, University Hospital, Basel, Switzerland.
| |
Collapse
|
16
|
Synergistic interaction of sprouting and intussusceptive angiogenesis during zebrafish caudal vein plexus development. Sci Rep 2018; 8:9840. [PMID: 29959335 PMCID: PMC6026200 DOI: 10.1038/s41598-018-27791-6] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 05/24/2018] [Indexed: 01/19/2023] Open
Abstract
Intussusceptive angiogenesis (IA) is a complementary method to sprouting angiogenesis (SA). The hallmark of IA is formation of trans-capillary tissue pillars, their fusion and remodeling of the vascular plexus. In this study, we investigate the formation of the zebrafish caudal vein plexus (CVP) in Tg(fli1a:eGFP)y7 and the synergistic interaction of IA and SA in crafting the archetypical angio-architecture of the CVP. Dynamic in vivo observations and quantitative analyses revealed that the primitive CVP during development was initiated through SA. Further vascular growth and remodeling occurred by IA. Intussusception contributed to the expansion of the CVP by formation of new pillars. Those pillars arose in front of the already existing ones; and in a subsequent step the serried pillars elongated and fused together. This resulted in segregation of larger vascular segments and remodelling of the disorganized vascular meshwork into hierarchical tree-like arrangement. Blood flow was the main driving force for IA, particularly shear stress geometry at the site of pillar formation and fusion. Computational simulations based on hemodynamics showed drop in shear stress levels at locations of new pillar formation, pillar elongation and fusion. Correlative 3D serial block face scanning electron microscopy confirmed the morphological substrate of the phenomena of the pillar formation observed in vivo. The data obtained demonstrates that after the sprouting phase and formation of the primitive capillary meshwork, the hemodynamic conditions enhance intussusceptive segregation of hierarchical vascular tree i.e. intussusceptive arborization resulting in complex vascular structures with specific angio-architecture.
Collapse
|
17
|
Smith AF, Nitzsche B, Maibier M, Pries AR, Secomb TW. Microvascular hemodynamics in the chick chorioallantoic membrane. Microcirculation 2018; 23:512-522. [PMID: 27510444 DOI: 10.1111/micc.12301] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 08/08/2016] [Indexed: 01/21/2023]
Abstract
OBJECTIVE The microvasculature of the CAM in the developing chick embryo is characterized by interdigitating arteriolar and venular trees, connected at multiple points along their lengths to a mesh-like capillary plexus. Theoretical modeling techniques were employed to investigate the resulting hemodynamic characteristics of the CAM. METHODS Based on previously obtained anatomical data, a model was developed in which the capillary plexus was treated as a porous medium. Supply of blood from arterioles and drainage into venules were represented by distributions of flow sources and sinks. Predicted flow velocities were compared with measurements in arterioles and venules obtained via video microscopy. RESULTS If it was assumed that blood flowed into and out of the capillary plexus only at the ends of terminal arterioles and venules, the predicted velocities increased with decreasing diameter in vessels below 50 μm in diameter, contrary to the observations. Distributing sources/sinks along arterioles/venules led to velocities consistent with the data. CONCLUSIONS These results imply that connections to the capillary plexus distributed along the arterioles and venules strongly affect the hemodynamic characteristics of the CAM. The theoretical model provides a basis for quantitative simulations of structural adaptation in CAM networks in response to hemodynamic stimuli.
Collapse
Affiliation(s)
- Amy F Smith
- Microcirculation Division, University of Arizona, Tucson, AZ, USA
| | | | - Martin Maibier
- Department of Physiology, Charité Berlin, Berlin, Germany
| | - Axel R Pries
- Department of Physiology, Charité Berlin, Berlin, Germany
| | - Timothy W Secomb
- Microcirculation Division, University of Arizona, Tucson, AZ, USA. .,Department of Physiology, University of Arizona, Tucson, AZ, USA.
| |
Collapse
|
18
|
Williams KC, Wong E, Leong HS, Jackson DN, Allan AL, Chambers AF. Cancer dissemination from a physical sciences perspective. CONVERGENT SCIENCE PHYSICAL ONCOLOGY 2016. [DOI: 10.1088/2057-1739/2/2/023001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
19
|
Nam KH, Kim J, Ra G, Lee CH, Paeng DG. Feasibility Study of Ex Ovo Chick Chorioallantoic Artery Model for Investigating Pulsatile Variation of Arterial Geometry. PLoS One 2015; 10:e0145969. [PMID: 26717244 PMCID: PMC4696805 DOI: 10.1371/journal.pone.0145969] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 12/10/2015] [Indexed: 11/19/2022] Open
Abstract
Despite considerable research efforts on the relationship between arterial geometry and cardiovascular pathology, information is lacking on the pulsatile geometrical variation caused by arterial distensibility and cardiomotility because of the lack of suitable in vivo experimental models and the methodological difficulties in examining the arterial dynamics. We aimed to investigate the feasibility of using a chick embryo system as an experimental model for basic research on the pulsatile variation of arterial geometry. Optical microscope video images of various arterial shapes in chick chorioallantoic circulation were recorded from different locations and different embryo samples. The high optical transparency of the chorioallantoic membrane (CAM) allowed clear observation of tiny vessels and their movements. Systolic and diastolic changes in arterial geometry were visualized by detecting the wall boundaries from binary images. Several to hundreds of microns of wall displacement variations were recognized during a pulsatile cycle. The spatial maps of the wall motion harmonics and magnitude ratio of harmonic components were obtained by analyzing the temporal brightness variation at each pixel in sequential grayscale images using spectral analysis techniques. The local variations in the spectral characteristics of the arterial wall motion were reflected well in the analysis results. In addition, mapping the phase angle of the fundamental frequency identified the regional variations in the wall motion directivity and phase shift. Regional variations in wall motion phase angle and fundamental-to-second harmonic ratio were remarkable near the bifurcation area. In summary, wall motion in various arterial geometry including straight, curved and bifurcated shapes was well observed in the CAM artery model, and their local and cyclic variations could be characterized by Fourier and wavelet transforms of the acquired video images. The CAM artery model with the spectral analysis method is a useful in vivo experimental model for studying pulsatile variation in arterial geometry.
Collapse
Affiliation(s)
- Kweon-Ho Nam
- Interdisciplinary Postgraduate Program in Biomedical Engineering, Jeju National University, Jeju, South Korea
- Department of Ocean System Engineering, Jeju National University, Jeju, South Korea
| | - Juho Kim
- Department of Ocean System Engineering, Jeju National University, Jeju, South Korea
| | - Gicheol Ra
- Department of Ocean System Engineering, Jeju National University, Jeju, South Korea
| | - Chong Hyun Lee
- Department of Ocean System Engineering, Jeju National University, Jeju, South Korea
| | - Dong-Guk Paeng
- Interdisciplinary Postgraduate Program in Biomedical Engineering, Jeju National University, Jeju, South Korea
- Department of Ocean System Engineering, Jeju National University, Jeju, South Korea
- * E-mail:
| |
Collapse
|
20
|
Split for the cure: VEGF, PDGF-BB and intussusception in therapeutic angiogenesis. Biochem Soc Trans 2015; 42:1637-42. [PMID: 25399582 DOI: 10.1042/bst20140234] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Therapeutic angiogenesis is an attractive strategy to treat patients suffering from ischaemic conditions and vascular endothelial growth factor-A (VEGF) is the master regulator of blood vessel growth. However, VEGF can induce either normal or aberrant angiogenesis depending on its dose localized in the microenvironment around each producing cell in vivo and on the balanced stimulation of platelet-derived growth factor-BB (PDGF-BB) signalling, responsible for pericyte recruitment. At the doses required to induce therapeutic benefit, VEGF causes new vascular growth essentially without sprouting, but rather through the alternative process of intussusception, or vascular splitting. In the present article, we briefly review the therapeutic implications of controlling VEGF dose on one hand and pericyte recruitment on the other, as well as the key features of intussusceptive angiogenesis and its regulation.
Collapse
|
21
|
Abstract
The vascular network carries blood throughout the body, delivering oxygen to tissues and providing a pathway for communication between distant organs. The network is hierarchical and structured, but also dynamic, especially at the smaller scales. Remodeling of the microvasculature occurs in response to local changes in oxygen, gene expression, cell-cell communication, and chemical and mechanical stimuli from the microenvironment. These local changes occur as a result of physiological processes such as growth and exercise, as well as acute and chronic diseases including stroke, cancer, and diabetes, and pharmacological intervention. While the vasculature is an important therapeutic target in many diseases, drugs designed to inhibit vascular growth have achieved only limited success, and no drug has yet been approved to promote therapeutic vascular remodeling. This highlights the challenges involved in identifying appropriate therapeutic targets in a system as complex as the vasculature. Systems biology approaches provide a means to bridge current understanding of the vascular system, from detailed signaling dynamics measured in vitro and pre-clinical animal models of vascular disease, to a more complete picture of vascular regulation in vivo. This will translate to an improved ability to identify multi-component biomarkers for diagnosis, prognosis, and monitoring of therapy that are easy to measure in vivo, as well as better drug targets for specific disease states. In this review, we summarize systems biology approaches that have advanced our understanding of vascular function and dysfunction in vivo, with a focus on computational modeling.
Collapse
Affiliation(s)
- Lindsay E Clegg
- Institute for Computational Medicine and Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA.
| | | |
Collapse
|
22
|
Abstract
Microvascularity and angiogenesis play a pivotal role during normal growth and in a variety of pathological conditions such as inflammation, tumor growth, macular degeneration, and tissue regeneration. Vascular corrosion casting has been established as a method to analyze and evaluate two- and three-dimensionally the morphology and architecture of blood vessels of organs and tissues, such as tumors, brains, embryos, or the chorioallantoic membrane. Microvascular casts may be further dissected for visualizing and quantifying vascular morphology using scanning electron microscopy (SEM), micro computed tomographic (μCT) imaging, or synchrotron radiation-based micro computed tomographic (SRμCT) imaging.
Collapse
Affiliation(s)
- Maximilian Ackermann
- Department of Oral and Maxillofacial Surgery, Institute of Functional and Clinical Anatomy, University Medical Center Mainz, Mainz, Germany
| | | |
Collapse
|
23
|
Belle J, Ysasi A, Bennett RD, Filipovic N, Nejad MI, Trumper DL, Ackermann M, Wagner W, Tsuda A, Konerding MA, Mentzer SJ. Stretch-induced intussuceptive and sprouting angiogenesis in the chick chorioallantoic membrane. Microvasc Res 2014; 95:60-7. [PMID: 24984292 PMCID: PMC4188740 DOI: 10.1016/j.mvr.2014.06.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Revised: 05/30/2014] [Accepted: 06/21/2014] [Indexed: 01/10/2023]
Abstract
Vascular systems grow and remodel in response to not only metabolic needs, but also mechanical influences as well. Here, we investigated the influence of tissue-level mechanical forces on the patterning and structure of the chick chorioallantoic membrane (CAM) microcirculation. A dipole stretch field was applied to the CAM using custom computer-controlled servomotors. The topography of the stretch field was mapped using finite element models. After 3days of stretch, Sholl analysis of the CAM demonstrated a 7-fold increase in conducting vessel intersections within the stretch field (p<0.01). The morphometric analysis of intravital microscopy and scanning electron microscopy (SEM) images demonstrated that the increase vessel density was a result of an increase in interbranch distance (p<0.01) and a decrease in bifurcation angles (p<0.01); there was no significant increase in conducting vessel number (p>0.05). In contrast, corrosion casting and SEM of the stretch field capillary meshwork demonstrated intense sprouting and intussusceptive angiogenesis. Both planar surface area (p<0.05) and pillar density (p<0.01) were significantly increased relative to control regions of the CAM. We conclude that a uniaxial stretch field stimulates the axial growth and realignment of conducting vessels as well as intussusceptive and sprouting angiogenesis within the gas exchange capillaries of the ex ovo CAM.
Collapse
Affiliation(s)
- Janeil Belle
- Laboratory of Adaptive and Regenerative Biology, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Alexandra Ysasi
- Laboratory of Adaptive and Regenerative Biology, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Robert D Bennett
- Laboratory of Adaptive and Regenerative Biology, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Nenad Filipovic
- Faculty of Mechanical Engineering, University of Kragujevac, Serbia
| | - Mohammad Imani Nejad
- Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - David L Trumper
- Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Maximilian Ackermann
- Institute of Functional and Clinical Anatomy, University Medical Center of Johannes Gutenberg-University, Mainz, Germany
| | - Willi Wagner
- Institute of Functional and Clinical Anatomy, University Medical Center of Johannes Gutenberg-University, Mainz, Germany
| | - Akira Tsuda
- Molecular and Integrative Physiological Sciences, Harvard School of Public Health, Boston, MA, USA
| | - Moritz A Konerding
- Institute of Functional and Clinical Anatomy, University Medical Center of Johannes Gutenberg-University, Mainz, Germany
| | - Steven J Mentzer
- Laboratory of Adaptive and Regenerative Biology, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
24
|
The chicken chorioallantoic membrane model in biology, medicine and bioengineering. Angiogenesis 2014; 17:779-804. [PMID: 25138280 DOI: 10.1007/s10456-014-9440-7] [Citation(s) in RCA: 308] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Accepted: 08/13/2014] [Indexed: 01/16/2023]
Abstract
The chicken chorioallantoic membrane (CAM) is a simple, highly vascularized extraembryonic membrane, which performs multiple functions during embryonic development, including but not restricted to gas exchange. Over the last two decades, interest in the CAM as a robust experimental platform to study blood vessels has been shared by specialists working in bioengineering, development, morphology, biochemistry, transplant biology, cancer research and drug development. The tissue composition and accessibility of the CAM for experimental manipulation, makes it an attractive preclinical in vivo model for drug screening and/or for studies of vascular growth. In this article we provide a detailed review of the use of the CAM to study vascular biology and response of blood vessels to a variety of agonists. We also present distinct cultivation protocols discussing their advantages and limitations and provide a summarized update on the use of the CAM in vascular imaging, drug delivery, pharmacokinetics and toxicology.
Collapse
|
25
|
Intussusceptive angiogenesis: expansion and remodeling of microvascular networks. Angiogenesis 2014; 17:499-509. [PMID: 24668225 DOI: 10.1007/s10456-014-9428-3] [Citation(s) in RCA: 150] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2013] [Accepted: 03/20/2014] [Indexed: 01/25/2023]
Abstract
Intussusceptive angiogenesis is a dynamic intravascular process capable of dramatically modifying the structure of the microcirculation. The distinctive structural feature of intussusceptive angiogenesis is the intussusceptive pillar--a cylindrical microstructure that spans the lumen of small vessels and capillaries. The extension of the intussusceptive pillar appears to be a mechanism for pruning redundant or inefficient vessels, modifying the branch angle of bifurcating vessels and duplicating existing vessels. Despite the biological importance and therapeutic potential, intussusceptive angiogenesis remains a mystery, in part, because it is an intravascular process that is unseen by conventional light microscopy. Here, we review several fundamental questions in the context of our current understanding of both intussusceptive and sprouting angiogenesis. (1) What are the physiologic signals that trigger pillar formation? (2) What endothelial and blood flow conditions specify pillar location? (3) How do pillars respond to the mechanical influence of blood flow? (4) What biological influences contribute to pillar extension? The answers to these questions are likely to provide important insights into the structure and function of microvascular networks.
Collapse
|
26
|
Logsdon EA, Finley SD, Popel AS, Mac Gabhann F. A systems biology view of blood vessel growth and remodelling. J Cell Mol Med 2013; 18:1491-508. [PMID: 24237862 PMCID: PMC4190897 DOI: 10.1111/jcmm.12164] [Citation(s) in RCA: 101] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Accepted: 09/16/2013] [Indexed: 12/29/2022] Open
Abstract
Blood travels throughout the body in an extensive network of vessels – arteries, veins and capillaries. This vascular network is not static, but instead dynamically remodels in response to stimuli from cells in the nearby tissue. In particular, the smallest vessels – arterioles, venules and capillaries – can be extended, expanded or pruned, in response to exercise, ischaemic events, pharmacological interventions, or other physiological and pathophysiological events. In this review, we describe the multi-step morphogenic process of angiogenesis – the sprouting of new blood vessels – and the stability of vascular networks in vivo. In particular, we review the known interactions between endothelial cells and the various blood cells and plasma components they convey. We describe progress that has been made in applying computational modelling, quantitative biology and high-throughput experimentation to the angiogenesis process.
Collapse
Affiliation(s)
- Elizabeth A Logsdon
- Institute for Computational Medicine and Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | | | | | | |
Collapse
|
27
|
Ackermann M, Tsuda A, Secomb TW, Mentzer SJ, Konerding MA. Intussusceptive remodeling of vascular branch angles in chemically-induced murine colitis. Microvasc Res 2013; 87:75-82. [PMID: 23485588 DOI: 10.1016/j.mvr.2013.02.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Revised: 01/14/2013] [Accepted: 02/14/2013] [Indexed: 01/17/2023]
Abstract
Intussusceptive angiogenesis is a developmental process linked to both blood vessel replication and remodeling in development. To investigate the prediction that the process of intussusceptive angiogenesis is associated with vessel angle remodeling in adult mice, we systematically evaluated corrosion casts of the mucosal plexus in mice with trinitrobenzesulfonic acid (TNBS)-induced and dextran sodium sulfate (DSS)-induced colitis. The mice demonstrated a significant decrease in vessel angles in both TNBS-induced and DSS-induced colitis within 4 weeks of the onset of colitis (p<.001). Corrosion casts 28-30 days after DSS treatment were studied for a variety of detailed morphometric changes. The vessel diameter and interbranch distance were significantly increased in the descending colon (p<.05). Also consistent with vessel growth, intervascular distance was decreased in the descending colon (p<.05). In contrast, no statistically significant morphometric changes were noted in the ascending colon. The morphometry of the corrosion casts also demonstrated 1) a similar orientation of the remodeled angles within the XY coordinate plane of the mucosal plexus, and 2) alternating periodicity of remodeled and unremodeled vessel angles. We conclude that inflammation-associated intussusceptive angiogenesis in adult mice is associated with vessel angle remodeling. Further, the morphometry of the vessel angles suggests the influence of blood flow on the location and orientation of remodeled vessels.
Collapse
Affiliation(s)
- Maximilian Ackermann
- Institute of Functional and Clinical Anatomy, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | | | | | | | | |
Collapse
|
28
|
Directed glia-assisted angiogenesis in a mature neurosensory structure: Pericytes mediate an adaptive response in human dental pulp that maintains blood-barrier function. J Comp Neurol 2012; 520:3803-26. [DOI: 10.1002/cne.23162] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
29
|
Chouinard-Pelletier G, Jahnsen ED, Jones EAV. Increased shear stress inhibits angiogenesis in veins and not arteries during vascular development. Angiogenesis 2012; 16:71-83. [PMID: 22941228 DOI: 10.1007/s10456-012-9300-2] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2012] [Accepted: 08/22/2012] [Indexed: 01/16/2023]
Abstract
Vascular development is believed to occur first by vasculogenesis followed by angiogenesis. Though angiogenesis is the formation of new vessels, we found that vascular density actually decreases during this second stage. The onset of the decrease coincided with the entry of erythroblasts into circulation. We therefore measured the level of shear stress at various developmental stages and found that it was inversely proportional to vascular density. To investigate whether shear stress was inhibitory to angiogenesis, we altered shear stress levels either by preventing erythroblasts from entering circulation ("low" shear stress) or by injection of a starch solution to increase the blood plasma viscosity ("high" shear stress). By time-lapse microscopy, we show that reverse intussusception (merging of two vessels) is inversely proportional to the level of shear stress. We also found that angiogenesis (both sprouting and splitting) was inversely proportional to shear stress levels. These effects were specific to the arterial or venous plexus however, such that the effect on reverse intussusception was present only in the arterial plexus and the effect on sprouting only in the venous plexus. We cultured embryos under altered shear stress in the presence of either DAPT, a Notch inhibitor, or DMH1, an inhibitor of the bone morphogenetic protein (BMP) pathway. DAPT treatment phenocopied the inhibition of erythroblast circulation ("low" shear stress) and the effect of DAPT treatment could be partially rescued by injection of starch. Inhibition of the BMP signaling prevented the reduction in vascular density that was observed when starch was injected to increase shear stress levels.
Collapse
|
30
|
De Spiegelaere W, Casteleyn C, Van den Broeck W, Plendl J, Bahramsoltani M, Simoens P, Djonov V, Cornillie P. Intussusceptive Angiogenesis: A Biologically Relevant Form of Angiogenesis. J Vasc Res 2012; 49:390-404. [DOI: 10.1159/000338278] [Citation(s) in RCA: 123] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Accepted: 03/13/2012] [Indexed: 12/11/2022] Open
|
31
|
Styp-Rekowska B, Hlushchuk R, Pries AR, Djonov V. Intussusceptive angiogenesis: pillars against the blood flow. Acta Physiol (Oxf) 2011; 202:213-23. [PMID: 21535415 DOI: 10.1111/j.1748-1716.2011.02321.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Adaptation of vascular networks to functional demands needs vessel growth, vessel regression and vascular remodelling. Biomechanical forces resulting from blood flow play a key role in these processes. It is well-known that metabolic stimuli, mechanical forces and flow patterns can affect gene expression and remodelling of vascular networks in different ways. For instance, in the sprouting type of angiogenesis related to hypoxia, there is no blood flow in the rising capillary sprout. In contrast, it has been shown that an increase of wall shear stress initiates the splitting type of angiogenesis in skeletal muscle. Otherwise, during development, both sprouting and intussusception act in parallel in building the vascular network, although with differences in spatiotemporal distribution. Thereby, in addition to regulatory molecules, flow dynamics support the patterning and remodelling of the rising vascular tree. Herewith, we present an overview of angiogenic processes with respect to intussusceptive angiogenesis as related to local haemodynamics.
Collapse
|
32
|
Lee GS, Filipovic N, Lin M, Gibney BC, Simpson DC, Konerding MA, Tsuda A, Mentzer SJ. Intravascular pillars and pruning in the extraembryonic vessels of chick embryos. Dev Dyn 2011; 240:1335-43. [PMID: 21448976 DOI: 10.1002/dvdy.22618] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/13/2010] [Indexed: 11/07/2022] Open
Abstract
To investigate the local mechanical forces associated with intravascular pillars and vessel pruning, we studied the conducting vessels in the extraembryonic circulation of the chick embryo. During the development days 13-17, intravascular pillars and blood flow parameters were identified using fluorescent vascular tracers and digital time-series video reconstructions. The geometry of selected vessels was confirmed by corrosion casting and scanning electron microscopy. Computational simulations of pruning vessels suggested that serial pillars form along pre-existing velocity streamlines; blood pressure demonstrated no obvious spatial relationship with the intravascular pillars. Modeling a Reynolds number of 0.03 produced 4 pillars at approximately 20-μm intervals matching the observed periodicity. In contrast, a Reynolds number of 0.06 produced only 2 pillars at approximately 63-μm intervals. Our modeling data indicated that the combination of wall shear stress and gradient of shear predicted the location, direction, and periodicity of developing pillars.
Collapse
Affiliation(s)
- Grace S Lee
- Laboratory of Adaptive and Regenerative Biology, Brigham & Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | |
Collapse
|