1
|
Takahashi K, Sudharsan R, Beltran WA. Mapping protein distribution in the canine photoreceptor sensory cilium and calyceal processes by ultrastructure expansion microscopy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.27.600953. [PMID: 38979372 PMCID: PMC11230445 DOI: 10.1101/2024.06.27.600953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Photoreceptors are highly polarized sensory neurons, possessing a unique ciliary structure known as the photoreceptor sensory cilium (PSC). Vertebrates have two subtypes of photoreceptors: rods, which are responsible for night vision, and cones, which support daylight vision and color perception. Despite identifying functional and morphological differences between these subtypes, ultrastructural analyses of the PSC molecular architecture in rods and cones are still lacking. In this study, we employed ultrastructure expansion microscopy (U-ExM) to characterize the molecular architecture of the PSC in canine retina. We demonstrated that U-ExM is applicable to both non-frozen and cryopreserved retinal tissues with standard paraformaldehyde fixation. Using this validated U-ExM protocol, we revealed the molecular localization of numerous ciliopathy-related proteins in canine photoreceptors. Furthermore, we identified significant architectural differences in the PSC, ciliary rootlet, and calyceal processes between canine rods and cones. These findings pave the way for a better understanding of alterations in the molecular architecture of the PSC in canine models of retinal ciliopathies.
Collapse
Affiliation(s)
- Kei Takahashi
- Division of Experimental Retinal Therapies, Department of Clinical Sciences & Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Raghavi Sudharsan
- Division of Experimental Retinal Therapies, Department of Clinical Sciences & Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - William A. Beltran
- Division of Experimental Retinal Therapies, Department of Clinical Sciences & Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104
| |
Collapse
|
2
|
Tingey M, Ruba A, Jiang Z, Yang W. Deciphering vesicle-assisted transport mechanisms in cytoplasm to cilium trafficking. Front Cell Neurosci 2024; 18:1379976. [PMID: 38860265 PMCID: PMC11163138 DOI: 10.3389/fncel.2024.1379976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 05/13/2024] [Indexed: 06/12/2024] Open
Abstract
The cilium, a pivotal organelle crucial for cell signaling and proper cell function, relies on meticulous macromolecular transport from the cytoplasm for its formation and maintenance. While the intraflagellar transport (IFT) pathway has traditionally been the focus of extensive study concerning ciliogenesis and ciliary maintenance, recent research highlights a complementary and alternative mechanism-vesicle-assisted transport (VAT) in cytoplasm to cilium trafficking. Despite its potential significance, the VAT pathway remains largely uncharacterized. This review explores recent studies providing evidence for the dynamics of vesicle-related diffusion and transport within the live primary cilium, employing high-speed super-resolution light microscopy. Additionally, we analyze the spatial distribution of vesicles in the cilium, mainly relying on electron microscopy data. By scrutinizing the VAT pathways that facilitate cargo transport into the cilium, with a specific emphasis on recent advancements and imaging data, our objective is to synthesize a comprehensive model of ciliary transport through the integration of IFT-VAT mechanisms.
Collapse
Affiliation(s)
| | | | | | - Weidong Yang
- Department of Biology, Temple University, Philadelphia, PA, United States
| |
Collapse
|
3
|
Yang E, Fan X, Ye H, Sun X, Ji Q, Ding Q, Zhong S, Zhao S, Xuan C, Fang M, Ding X, Cao J. Exploring the role of ubiquitin regulatory X domain family proteins in cancers: bioinformatics insights, mechanisms, and implications for therapy. J Transl Med 2024; 22:157. [PMID: 38365777 PMCID: PMC10870615 DOI: 10.1186/s12967-024-04890-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 01/13/2024] [Indexed: 02/18/2024] Open
Abstract
UBXD family (UBXDF), a group of proteins containing ubiquitin regulatory X (UBX) domains, play a crucial role in the imbalance of proliferation and apoptotic in cancer. In this study, we summarised bioinformatics proof on multi-omics databases and literature on UBXDF's effects on cancer. Bioinformatics analysis revealed that Fas-associated factor 1 (FAF1) has the largest number of gene alterations in the UBXD family and has been linked to survival and cancer progression in many cancers. UBXDF may affect tumour microenvironment (TME) and drugtherapy and should be investigated in the future. We also summarised the experimental evidence of the mechanism of UBXDF in cancer, both in vitro and in vivo, as well as its application in clinical and targeted drugs. We compared bioinformatics and literature to provide a multi-omics insight into UBXDF in cancers, review proof and mechanism of UBXDF effects on cancers, and prospect future research directions in-depth. We hope that this paper will be helpful for direct cancer-related UBXDF studies.
Collapse
Affiliation(s)
- Enyu Yang
- School of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Xiaowei Fan
- School of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Haihan Ye
- School of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Xiaoyang Sun
- School of Biological Sciences, The University of Hong Kong, Hong Kong , 999077, Special Administrative Region, China
| | - Qing Ji
- Key Laboratory of Head & Neck Cancer Translational Research of Zhejiang Province, Department of Head and Neck and Rare Oncology, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, China
| | - Qianyun Ding
- Department of 'A', The Children's Hospital, National Clinical Research Center for Child Health, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Shulian Zhong
- Zhejiang Sci-Tech University Hospital, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Shuo Zhao
- School of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Cheng Xuan
- School of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Meiyu Fang
- Key Laboratory of Head & Neck Cancer Translational Research of Zhejiang Province, Department of Head and Neck and Rare Oncology, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, China.
| | - Xianfeng Ding
- School of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China.
| | - Jun Cao
- Key Laboratory of Head & Neck Cancer Translational Research of Zhejiang Province, Department of Head and Neck and Rare Oncology, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, China.
| |
Collapse
|
4
|
Udupa P, Ghosh DK. The emerging functions of intraflagellar transport 52 in ciliary transport and ciliopathies. Traffic 2024; 25:e12929. [PMID: 38272449 DOI: 10.1111/tra.12929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/31/2023] [Accepted: 12/26/2023] [Indexed: 01/27/2024]
Abstract
Ciliary transport in eukaryotic cells is an intricate and conserved process involving the coordinated assembly and functioning of a multiprotein intraflagellar transport (IFT) complex. Among the various IFT proteins, intraflagellar transport 52 (IFT52) plays a crucial role in ciliary transport and is implicated in various ciliopathies. IFT52 is a core component of the IFT-B complex that facilitates movement of cargoes along the ciliary axoneme. Stable binding of the IFT-B1 and IFT-B2 subcomplexes by IFT52 in the IFT-B complex regulates recycling of ciliary components and maintenance of ciliary functions such as signal transduction and molecular movement. Mutations in the IFT52 gene can disrupt ciliary trafficking, resulting in dysfunctional cilia and affecting cellular processes in ciliopathies. Such ciliopathies caused by IFT52 mutations exhibit a wide range of clinical features, including skeletal developmental abnormalities, retinal degeneration, respiratory failure and neurological abnormalities in affected individuals. Therefore, IFT52 serves as a promising biomarker for the diagnosis of various ciliopathies, including short-rib thoracic dysplasia 16 with or without polydactyly. Here, we provide an overview of the IFT52-mediated molecular mechanisms underlying ciliary transport and describe the IFT52 mutations that cause different disorders associated with cilia dysfunction.
Collapse
Affiliation(s)
- Prajna Udupa
- Kasturba Medical College, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Debasish Kumar Ghosh
- Kasturba Medical College, Manipal Academy of Higher Education, Manipal, Karnataka, India
| |
Collapse
|
5
|
Boegholm N, Petriman NA, Loureiro‐López M, Wang J, Vela MIS, Liu B, Kanie T, Ng R, Jackson PK, Andersen JS, Lorentzen E. The IFT81-IFT74 complex acts as an unconventional RabL2 GTPase-activating protein during intraflagellar transport. EMBO J 2023; 42:e111807. [PMID: 37606072 PMCID: PMC10505919 DOI: 10.15252/embj.2022111807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 07/24/2023] [Accepted: 08/03/2023] [Indexed: 08/23/2023] Open
Abstract
Cilia are important cellular organelles for signaling and motility and are constructed via intraflagellar transport (IFT). RabL2 is a small GTPase that localizes to the basal body of cilia via an interaction with the centriolar protein CEP19 before downstream association with the IFT machinery, which is followed by initiation of IFT. We reconstituted and purified RabL2 with CEP19 or IFT proteins to show that a reconstituted pentameric IFT complex containing IFT81/74 enhances the GTP hydrolysis rate of RabL2. The binding site on IFT81/74 that promotes GTP hydrolysis in RabL2 was mapped to a 70-amino-acid-long coiled-coil region of IFT81/74. We present structural models for RabL2-containing IFT complexes that we validate in vitro and in cellulo and demonstrate that Chlamydomonas IFT81/74 enhances GTP hydrolysis of human RabL2, suggesting an ancient evolutionarily conserved activity. Our results provide an architectural understanding of how RabL2 is incorporated into the IFT complex and a molecular rationale for why RabL2 dissociates from anterograde IFT trains soon after departure from the ciliary base.
Collapse
Affiliation(s)
- Niels Boegholm
- Department of Molecular Biology and GeneticsAarhus UniversityAarhus CDenmark
| | - Narcis A Petriman
- Department of Molecular Biology and GeneticsAarhus UniversityAarhus CDenmark
| | - Marta Loureiro‐López
- Department for Biochemistry and Molecular BiologyUniversity of Southern DenmarkOdense MDenmark
| | - Jiaolong Wang
- Department of Molecular Biology and GeneticsAarhus UniversityAarhus CDenmark
| | | | - Beibei Liu
- Department of Cell BiologyUniversity of Oklahoma Health Science CenterOklahomaOKUSA
| | - Tomoharu Kanie
- Department of Cell BiologyUniversity of Oklahoma Health Science CenterOklahomaOKUSA
- Baxter Laboratory, Department of Microbiology & ImmunologyStanford University School of MedicineStanfordCAUSA
| | - Roy Ng
- Baxter Laboratory, Department of Microbiology & ImmunologyStanford University School of MedicineStanfordCAUSA
| | - Peter K Jackson
- Baxter Laboratory, Department of Microbiology & ImmunologyStanford University School of MedicineStanfordCAUSA
- Department of PathologyStanford University School of MedicineStanfordCAUSA
| | - Jens S Andersen
- Department for Biochemistry and Molecular BiologyUniversity of Southern DenmarkOdense MDenmark
| | - Esben Lorentzen
- Department of Molecular Biology and GeneticsAarhus UniversityAarhus CDenmark
| |
Collapse
|
6
|
Jeong J, Kang I, Kim Y, Ku KB, Park JH, Kim HJ, Kim CW, La J, Jung HE, Kim HC, Choi YJ, Kim J, Kim J, Lee HK. Regulation of c-SMAC formation and AKT-mTOR signaling by the TSG101-IFT20 axis in CD4 + T cells. Cell Mol Immunol 2023; 20:525-539. [PMID: 37029318 DOI: 10.1038/s41423-023-01008-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 03/14/2023] [Indexed: 04/09/2023] Open
Abstract
CD4+ T cells play major roles in the adaptive immune system, which requires antigen recognition, costimulation, and cytokines for its elaborate orchestration. Recent studies have provided new insight into the importance of the supramolecular activation cluster (SMAC), which comprises concentric circles and is involved in the amplification of CD4+ T cell activation. However, the underlying mechanism of SMAC formation remains poorly understood. Here, we performed single-cell RNA sequencing of CD4+ T cells left unstimulated and stimulated with anti-CD3 and anti-CD28 antibodies to identify novel proteins involved in their regulation. We found that intraflagellar transport 20 (IFT20), previously known as cilia-forming protein, was upregulated in antibody-stimulated CD4+ T cells compared to unstimulated CD4+ T cells. We also found that IFT20 interacted with tumor susceptibility gene 101 (TSG101), a protein that endocytoses ubiquitinated T-cell receptors. The interaction between IFT20 and TSG101 promoted SMAC formation, which led to amplification of AKT-mTOR signaling. However, IFT20-deficient CD4+ T cells showed SMAC malformation, resulting in reduced CD4+ T cell proliferation, aerobic glycolysis, and cellular respiration. Finally, mice with T-cell-specific IFT20 deficiency exhibited reduced allergen-induced airway inflammation. Thus, our data suggest that the IFT20-TSG101 axis regulates AKT-mTOR signaling via SMAC formation.
Collapse
Affiliation(s)
- Jiung Jeong
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
- Department of Internal Medicine, Seoul National University Hospital, Seoul, 03080, Republic of Korea
| | - In Kang
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Yumin Kim
- Department of Biological Sciences, KAIST, Daejeon, 34141, Republic of Korea
| | - Keun Bon Ku
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
- Department of Convergent Research of Emerging Virus Infection, Korea Research Institute of Chemical Technology, Daejeon, 34114, Republic of Korea
| | - Jang Hyun Park
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Hyun-Jin Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Chae Won Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Jeongwoo La
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Hi Eun Jung
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Hyeon Cheol Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Young Joon Choi
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Jaeho Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Joon Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Heung Kyu Lee
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.
- Department of Biological Sciences, KAIST, Daejeon, 34141, Republic of Korea.
| |
Collapse
|
7
|
Stevenson NL. The factory, the antenna and the scaffold: the three-way interplay between the Golgi, cilium and extracellular matrix underlying tissue function. Biol Open 2023; 12:287059. [PMID: 36802341 PMCID: PMC9986613 DOI: 10.1242/bio.059719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023] Open
Abstract
The growth and development of healthy tissues is dependent on the construction of a highly specialised extracellular matrix (ECM) to provide support for cell growth and migration and to determine the biomechanical properties of the tissue. These scaffolds are composed of extensively glycosylated proteins which are secreted and assembled into well-ordered structures that can hydrate, mineralise, and store growth factors as required. The proteolytic processing and glycosylation of ECM components is vital to their function. These modifications are under the control of the Golgi apparatus, an intracellular factory hosting spatially organised, protein-modifying enzymes. Regulation also requires a cellular antenna, the cilium, which integrates extracellular growth signals and mechanical cues to inform ECM production. Consequently, mutations in either Golgi or ciliary genes frequently lead to connective tissue disorders. The individual importance of each of these organelles to ECM function is well-studied. However, emerging evidence points towards a more tightly linked system of interdependence between the Golgi, cilium and ECM. This review examines how the interplay between all three compartments underpins healthy tissue. As an example, it will look at several members of the golgin family of Golgi-resident proteins whose loss is detrimental to connective tissue function. This perspective will be important for many future studies looking to dissect the cause and effect of mutations impacting tissue integrity.
Collapse
Affiliation(s)
- Nicola L Stevenson
- Cell Biology Laboratories, School of Biochemistry, Faculty of Biomedical Sciences University of Bristol, Biomedical Sciences Building, University Walk, Bristol BS8 1TD, UK
| |
Collapse
|
8
|
Marshall WF. The flagellar length control system: exploring the physical biology of organelle size. Phys Biol 2023; 20:10.1088/1478-3975/acb18d. [PMID: 36623317 PMCID: PMC9877179 DOI: 10.1088/1478-3975/acb18d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 01/09/2023] [Indexed: 01/11/2023]
Abstract
How cells build and maintain dynamic structures of defined size is currently an important unsolved problem in quantitative cell biology. The flagella of the unicellular green algaChlamydomonasprovide a highly tractable model system to investigate this general question, but while the powerful genetics of this organism have revealed numerous genes required for proper flagellar length, in most cases we do not understand their mechanistic role in length control. Flagellar length can be viewed as the steady state solution of a dynamical system involving assembly and disassembly of axonemal microtubules, with assembly depending on an active transport process known as intraflagellar transport (IFT). The inherent length dependence of IFT gives rise to a family of simple models for length regulation that can account for many previously described phenomena such as the ability of flagella to maintain equal lengths. But these models requires that the cell has a way to measure flagellar length in order to adjust IFT rates accordingly. Several models for length sensing have been modeled theoretically and evaluated experimentally, allowing them to be ruled out. Current data support a model in which the diffusive return of the kinesin motor driving IFT provides a length dependence that ultimately is the basis for length regulation. By combining models of length sensing with a more detailed representation of cargo transport and availability, it is now becoming possible to formulate concrete hypotheses to explain length altering mutants.
Collapse
Affiliation(s)
- Wallace F Marshall
- Department Biochemistry & Biophysics, University of California San Francisco, San Francisco, CA, United States of America
| |
Collapse
|
9
|
Abstract
The assembly and maintenance of most cilia and eukaryotic flagella depends on intraflagellar transport (IFT), the bidirectional movement of multi-megadalton IFT trains along the axonemal microtubules. These IFT trains function as carriers, moving ciliary proteins between the cell body and the organelle. Whereas tubulin, the principal protein of cilia, binds directly to IFT particle proteins, the transport of other ciliary proteins and complexes requires adapters that link them to the trains. Large axonemal substructures, such as radial spokes, outer dynein arms and inner dynein arms, assemble in the cell body before attaching to IFT trains, using the adapters ARMC2, ODA16 and IDA3, respectively. Ciliary import of several membrane proteins involves the putative adapter tubby-like protein 3 (TULP3), whereas membrane protein export involves the BBSome, an octameric complex that co-migrates with IFT particles. Thus, cells employ a variety of adapters, each of which is substoichiometric to the core IFT machinery, to expand the cargo range of the IFT trains. This Review summarizes the individual and shared features of the known cargo adapters and discusses their possible role in regulating the transport capacity of the IFT pathway.
Collapse
Affiliation(s)
- Karl Lechtreck
- Department of Cellular Biology, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
10
|
McCafferty CL, Papoulas O, Jordan MA, Hoogerbrugge G, Nichols C, Pigino G, Taylor DW, Wallingford JB, Marcotte EM. Integrative modeling reveals the molecular architecture of the intraflagellar transport A (IFT-A) complex. eLife 2022; 11:e81977. [PMID: 36346217 PMCID: PMC9674347 DOI: 10.7554/elife.81977] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 11/07/2022] [Indexed: 11/10/2022] Open
Abstract
Intraflagellar transport (IFT) is a conserved process of cargo transport in cilia that is essential for development and homeostasis in organisms ranging from algae to vertebrates. In humans, variants in genes encoding subunits of the cargo-adapting IFT-A and IFT-B protein complexes are a common cause of genetic diseases known as ciliopathies. While recent progress has been made in determining the atomic structure of IFT-B, little is known of the structural biology of IFT-A. Here, we combined chemical cross-linking mass spectrometry and cryo-electron tomography with AlphaFold2-based prediction of both protein structures and interaction interfaces to model the overall architecture of the monomeric six-subunit IFT-A complex, as well as its polymeric assembly within cilia. We define monomer-monomer contacts and membrane-associated regions available for association with transported cargo, and we also use this model to provide insights into the pleiotropic nature of human ciliopathy-associated genetic variants in genes encoding IFT-A subunits. Our work demonstrates the power of integration of experimental and computational strategies both for multi-protein structure determination and for understanding the etiology of human genetic disease.
Collapse
Affiliation(s)
- Caitlyn L McCafferty
- Department of Molecular Biosciences, Center for Systems and Synthetic Biology, University of TexasAustinUnited States
| | - Ophelia Papoulas
- Department of Molecular Biosciences, Center for Systems and Synthetic Biology, University of TexasAustinUnited States
| | - Mareike A Jordan
- Max Planck Institute of Molecular Cell Biology and GeneticsDresdenGermany
| | - Gabriel Hoogerbrugge
- Department of Molecular Biosciences, Center for Systems and Synthetic Biology, University of TexasAustinUnited States
| | - Candice Nichols
- Department of Molecular Biosciences, Center for Systems and Synthetic Biology, University of TexasAustinUnited States
| | | | - David W Taylor
- Department of Molecular Biosciences, Center for Systems and Synthetic Biology, University of TexasAustinUnited States
| | - John B Wallingford
- Department of Molecular Biosciences, Center for Systems and Synthetic Biology, University of TexasAustinUnited States
| | - Edward M Marcotte
- Department of Molecular Biosciences, Center for Systems and Synthetic Biology, University of TexasAustinUnited States
| |
Collapse
|
11
|
Hou YN, Zhang YY, Wang YR, Wu ZM, Luan YX, Wei Q. IFT52 plays an essential role in sensory cilia formation and neuronal sensory function in Drosophila. INSECT SCIENCE 2022. [PMID: 36326027 DOI: 10.1111/1744-7917.13140] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 10/20/2022] [Accepted: 10/24/2022] [Indexed: 06/16/2023]
Abstract
Cilia are microtubule-based, hair-like organelles involved in sensory function or motility, playing critical roles in many physiological processes such as reproduction, organ development, and sensory perception. In insects, cilia are restricted to certain sensory neurons and sperms, being important for chemical and mechanical sensing, and fertility. Although great progress has been made regarding the mechanism of cilia assembly, the formation of insect cilia remains poorly understand, even in the insect model organism Drosophila. Intraflagellar transport (IFT) is a cilia-specific complex that traffics protein cargos bidirectionally along the ciliary axoneme and is essential for most cilia. Here we investigated the role of IFT52, a core component of IFT-B, in cilia/flagellar formation in Drosophila. We show that Drosophila IFT52 is distributed along the sensory neuronal cilia, and is essential for sensory cilia formation. Deletion of Ift52 results in severe defects in cilia-related sensory behaviors. It should be noted that IFT52 is not detected in spermatocyte cilia or sperm flagella of Drosophila. Accordingly, ift52 mutants can produce sperms with normal motility, supporting a dispensable role of IFT in Drosophila sperm flagella formation. Altogether, IFT52 is a conserved protein essential for sensory cilia formation and sensory neuronal function in insects.
Collapse
Affiliation(s)
- Ya-Nan Hou
- Center for Energy Metabolism and Reproduction, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong Province, China
- Shenzhen Key Laboratory of Metabolic Health, Shenzhen, Guangdong Province, China
| | - Ying-Ying Zhang
- Center for Energy Metabolism and Reproduction, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong Province, China
- Shenzhen Key Laboratory of Metabolic Health, Shenzhen, Guangdong Province, China
| | - Ya-Ru Wang
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan, China
| | - Zhi-Mao Wu
- Center for Energy Metabolism and Reproduction, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong Province, China
- Shenzhen Key Laboratory of Metabolic Health, Shenzhen, Guangdong Province, China
| | - Yun-Xia Luan
- Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, Guangdong, China
| | - Qing Wei
- Center for Energy Metabolism and Reproduction, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong Province, China
- Shenzhen Key Laboratory of Metabolic Health, Shenzhen, Guangdong Province, China
| |
Collapse
|
12
|
Rah G, Cha H, Kim J, Song J, Kim H, Oh YK, Ahn C, Kang M, Kim J, Yoo KH, Kim MJ, Ko HW, Ko JY, Park JH. KLC3 Regulates Ciliary Trafficking and Cyst Progression in CILK1 Deficiency-Related Polycystic Kidney Disease. J Am Soc Nephrol 2022; 33:1726-1741. [PMID: 35961787 PMCID: PMC9529174 DOI: 10.1681/asn.2021111455] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 05/23/2022] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Ciliogenesis-associated kinase 1 (CILK1) is a ciliary gene that localizes in primary cilia and regulates ciliary transport. Mutations in CILK1 cause various ciliopathies. However, the pathogenesis of CILK1-deficient kidney disease is unknown. METHODS To examine whether CILK1 deficiency causes PKD accompanied by abnormal cilia, we generated mice with deletion of Cilk1 in cells of the renal collecting duct. A yeast two-hybrid system and coimmunoprecipitation (co-IP) were used to identify a novel regulator, kinesin light chain-3 (KLC3), of ciliary trafficking and cyst progression in the Cilk1-deficient model. Immunocytochemistry and co-IP were used to examine the effect of KLC3 on ciliary trafficking of the IFT-B complex and EGFR. We evaluated the effects of these genes on ciliary trafficking and cyst progression by modulating CILK1 and KLC3 expression levels. RESULTS CILK1 deficiency leads to PKD accompanied by abnormal ciliary trafficking. KLC3 interacts with CILK1 at cilia bases and is increased in cyst-lining cells of CILK1-deficient mice. KLC3 overexpression promotes ciliary recruitment of IFT-B and EGFR in the CILK1 deficiency condition, which contributes to the ciliary defect in cystogenesis. Reduction in KLC3 rescued the ciliary defects and inhibited cyst progression caused by CILK1 deficiency. CONCLUSIONS Our findings suggest that CILK1 deficiency in renal collecting ducts leads to PKD and promotes ciliary trafficking via increased KLC3.
Collapse
Affiliation(s)
- Gyuyeong Rah
- Department of Biological Science, Sookmyung Women’s University, Seoul, Korea
| | - Hwayeon Cha
- Department of Biological Science, Sookmyung Women’s University, Seoul, Korea
| | - Joohee Kim
- Department of Biological Science, Sookmyung Women’s University, Seoul, Korea
| | - Jieun Song
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, Korea
| | - Hyunho Kim
- Center for Medical Innovation, Biomedical Research Institute, Seoul National University Hospital, Seoul, Korea
| | - Yun Kyu Oh
- Department of Internal Medicine, Seoul National University Boramae Medical Center, Seoul, Korea
| | - Curie Ahn
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Minyong Kang
- Department of Urology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Jongmin Kim
- Department of Biological Science, Sookmyung Women’s University, Seoul, Korea
| | - Kyung Hyun Yoo
- Department of Biological Science, Sookmyung Women’s University, Seoul, Korea
| | - Min Jung Kim
- Department of Biological Science, Sookmyung Women’s University, Seoul, Korea
| | - Hyuk Wan Ko
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, Korea
| | - Je Yeong Ko
- Department of Biological Science, Sookmyung Women’s University, Seoul, Korea
| | - Jong Hoon Park
- Department of Biological Science, Sookmyung Women’s University, Seoul, Korea
| |
Collapse
|
13
|
Ge R, Cao M, Chen M, Liu M, Xie S. Cytoskeletal networks in primary cilia: Current knowledge and perspectives. J Cell Physiol 2022; 237:3975-3983. [PMID: 36000703 DOI: 10.1002/jcp.30865] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 07/08/2022] [Accepted: 08/11/2022] [Indexed: 11/12/2022]
Abstract
Primary cilia, microtubule-based protrusions present on the surface of most mammalian cells, function as sensory organelles that monitor extracellular signals and transduce them into intracellular biochemical responses. There is renewed research interest in primary cilia due to their essential roles in development, tissue homeostasis, and human diseases. Primary cilia dysfunction causes a large spectrum of human diseases, collectively known as ciliopathies. Despite significant advances in our understanding of primary cilia, there are still no effective agents for treating ciliopathies. Primary ciliogenesis is a highly ordered process involving membrane trafficking, basal body maturation, vesicle docking and fusion, transition zone assembly, and axoneme extension, in which actin and microtubule networks play critical and multiple roles. Actin and microtubule network architecture, isotropy, and dynamics are tightly controlled by cytoskeleton-associated proteins, a growing number of which are now recognized as responsible for cilium formation and maintenance. Here we summarize the roles of actin and microtubules and their associated proteins in primary ciliogenesis and maintenance. In doing so, we highlight that targeting cytoskeleton-associated proteins may be a promising therapeutic strategy for the treatment of ciliopathies.
Collapse
Affiliation(s)
- Ruixin Ge
- Department of Cell Biology, College of Life Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Institute of Biomedical Sciences, Shandong Normal University, Jinan, China
| | - Minghui Cao
- Department of Cell Biology, College of Life Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Institute of Biomedical Sciences, Shandong Normal University, Jinan, China
| | - Miao Chen
- Department of Bioscience, School of Life Sciences and Medicine, Shandong University of Technology, Zibo, China
| | - Min Liu
- Department of Cell Biology, College of Life Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Institute of Biomedical Sciences, Shandong Normal University, Jinan, China
| | - Songbo Xie
- Department of Cell Biology, College of Life Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Institute of Biomedical Sciences, Shandong Normal University, Jinan, China.,Department of Bioscience, School of Life Sciences and Medicine, Shandong University of Technology, Zibo, China
| |
Collapse
|
14
|
Perlaza K, Mirvis M, Ishikawa H, Marshall W. The short flagella 1 (SHF1) gene in Chlamydomonas encodes a Crescerin TOG-domain protein required for late stages of flagellar growth. Mol Biol Cell 2021; 33:ar12. [PMID: 34818077 PMCID: PMC9236146 DOI: 10.1091/mbc.e21-09-0472] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Length control of flagella represents a simple and tractable system to investigate the dynamics of organelle size. Models for flagellar length control in the model organism, Chlamydomonas reinhardtii have focused on the length-dependence of the intraflagellar transport (IFT) system which manages the delivery and removal of axonemal subunits at the tip of the flagella. One of these cargoes, tubulin, is the major axonemal subunit, and its frequency of arrival at the tip plays a central role in size control models. However, the mechanisms determining tubulin dynamics at the tip are still poorly understood. We discovered a loss-of-function mutation that leads to shortened flagella, and found that this was an allele of a previously described gene, SHF1, whose molecular identity had not previously been determined. We found that SHF1 encodes a Chlamydomonas ortholog of Crescerin, previously identified as a cilia-specific TOG-domain array protein that can bind tubulin via its TOG domains and increase tubulin polymerization rates. In this mutant, flagellar regeneration occurs with the same initial kinetics as wild-type cells, but plateaus at a shorter length. Using a computational model in which the flagellar microtubules are represented by a differential equation for flagellar length combined with a stochastic model for cytoplasmic microtubule dynamics, we found that our experimental results are best described by a model in which Crescerin/SHF1 binds tubulin dimers in the cytoplasm and transports them into the flagellum. We suggest that this TOG-domain protein is necessary to efficiently and preemptively increase intra-flagella tubulin levels to offset decreasing IFT cargo at the tip as flagellar assembly progresses.
Collapse
Affiliation(s)
- Karina Perlaza
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94143
| | - Mary Mirvis
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94143
| | - Hiroaki Ishikawa
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94143
| | - Wallace Marshall
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94143
| |
Collapse
|
15
|
Focșa IO, Budișteanu M, Burloiu C, Khan S, Sadeghpour A, Bohîlțea LC, Davis EE, Bălgrădean M. A case of Bardet-Biedl syndrome caused by a recurrent variant in BBS12: A case report. Biomed Rep 2021; 15:103. [PMID: 34760276 PMCID: PMC8567465 DOI: 10.3892/br.2021.1479] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 09/29/2021] [Indexed: 12/30/2022] Open
Abstract
Bardet-Biedl syndrome (BBS) is a clinically and genetically heterogenous disorder that manifests as a result of primary cilia impairment. Cilia are present on most cell types, thus BBS is a multisystemic condition involving the majority of organ systems. The core features of the syndrome include retinal degeneration, obesity, polydactyly, cognitive impairment, renal anomalies and urogenital malformations. To date, pathogenic variants in 26 genes have been shown to be involved in the molecular basis of this rare ciliopathy. Of these causal loci, BBS12 accounts for ~8% of all cases. In this case report, an individual with BBS caused by a rare recurrent variant in BBS12 (NM_152618.3: c.1063C>T; p.Arg355*) is described and compared with others with the same DNA variant, placing this finding in the context of the current literature.
Collapse
Affiliation(s)
- Ina Ofelia Focșa
- Department of Medical Genetics, University of Medicine and Pharmacy 'Carol Davila', 021901 Bucharest, Romania
| | - Magdalena Budișteanu
- Department of Pediatric Neurology, 'Prof. Dr. Alexandru Obregia' Clinical Hospital of Psychiatry, 041914 Bucharest, Romania.,Medical Genetic Laboratory, 'Victor Babeș' National Institute of Pathology, 050096 Bucharest, Romania.,Department of Medical Genetics, Titu Maiorescu University, 040441 Bucharest, Romania
| | - Carmen Burloiu
- Department of Pediatric Neurology, 'Prof. Dr. Alexandru Obregia' Clinical Hospital of Psychiatry, 041914 Bucharest, Romania
| | - Sheraz Khan
- National Institute for Biotechnology and Genetic Engineering (NIBGE-C), Faisalabad, Pakistan Institute of Engineering and Applied Sciences, Islamabad 38000, Pakistan.,Advanced Center for Translational and Genetic Medicine, Stanley Manne Children's Research Institute, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, IL 60611, USA
| | - Azita Sadeghpour
- Center for Human Disease Modeling, Duke University Medical Center, Durham, NC 27701, USA.,Duke Center for Applied Genomics and Precision Medicine, Duke University, Durham, NC 27708, USA
| | - Laurențiu C Bohîlțea
- Department of Medical Genetics, University of Medicine and Pharmacy 'Carol Davila', 021901 Bucharest, Romania
| | - Erica E Davis
- Advanced Center for Translational and Genetic Medicine, Stanley Manne Children's Research Institute, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, IL 60611, USA.,Departments of Pediatrics and Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Mihaela Bălgrădean
- Department of Pediatrics and Pediatric Nephrology, Emergency Clinical Hospital for Children 'Maria Skłodowska Curie', 077120 Bucharest, Romania.,Department of Pediatrics, University of Medicine and Pharmacy 'Carol Davila', 077120 Bucharest, Romania
| |
Collapse
|
16
|
Hazime KS, Zhou Z, Joachimiak E, Bulgakova NA, Wloga D, Malicki JJ. STORM imaging reveals the spatial arrangement of transition zone components and IFT particles at the ciliary base in Tetrahymena. Sci Rep 2021; 11:7899. [PMID: 33846423 PMCID: PMC8041816 DOI: 10.1038/s41598-021-86909-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Accepted: 03/22/2021] [Indexed: 11/17/2022] Open
Abstract
The base of the cilium comprising the transition zone (TZ) and transition fibers (TF) acts as a selecting gate to regulate the intraflagellar transport (IFT)-dependent trafficking of proteins to and from cilia. Before entering the ciliary compartment, IFT complexes and transported cargoes accumulate at or near the base of the cilium. The spatial organization of IFT proteins at the cilia base is key for understanding cilia formation and function. Using stochastic optical reconstruction microscopy (STORM) and computational averaging, we show that seven TZ, nine IFT, three Bardet–Biedl syndrome (BBS), and one centrosomal protein, form 9-clustered rings at the cilium base of a ciliate Tetrahymena thermophila. In the axial dimension, analyzed TZ proteins localize to a narrow region of about 30 nm while IFT proteins dock approximately 80 nm proximal to TZ. Moreover, the IFT-A subcomplex is positioned peripheral to the IFT-B subcomplex and the investigated BBS proteins localize near the ciliary membrane. The positioning of the HA-tagged N- and C-termini of the selected proteins enabled the prediction of the spatial orientation of protein particles and likely cargo interaction sites. Based on the obtained data, we built a comprehensive 3D-model showing the arrangement of the investigated ciliary proteins.
Collapse
Affiliation(s)
- Khodor S Hazime
- Bateson Centre and the Department of Biomedical Science, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK.
| | - Zhu Zhou
- Bateson Centre and the Department of Biomedical Science, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK
| | - Ewa Joachimiak
- Laboratory of Cytoskeleton and Cilia Biology, 3 Pasteur Street, 02-093, Warsaw, Poland
| | - Natalia A Bulgakova
- Bateson Centre and the Department of Biomedical Science, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK.
| | - Dorota Wloga
- Laboratory of Cytoskeleton and Cilia Biology, 3 Pasteur Street, 02-093, Warsaw, Poland.
| | - Jarema J Malicki
- Bateson Centre and the Department of Biomedical Science, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK
| |
Collapse
|
17
|
Aprea I, Raidt J, Höben IM, Loges NT, Nöthe-Menchen T, Pennekamp P, Olbrich H, Kaiser T, Biebach L, Tüttelmann F, Horvath J, Schubert M, Krallmann C, Kliesch S, Omran H. Defects in the cytoplasmic assembly of axonemal dynein arms cause morphological abnormalities and dysmotility in sperm cells leading to male infertility. PLoS Genet 2021; 17:e1009306. [PMID: 33635866 PMCID: PMC7909641 DOI: 10.1371/journal.pgen.1009306] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 12/10/2020] [Indexed: 12/14/2022] Open
Abstract
Axonemal protein complexes, such as outer (ODA) and inner (IDA) dynein arms, are responsible for the generation and regulation of flagellar and ciliary beating. Studies in various ciliated model organisms have shown that axonemal dynein arms are first assembled in the cell cytoplasm and then delivered into axonemes during ciliogenesis. In humans, mutations in genes encoding for factors involved in this process cause structural and functional defects of motile cilia in various organs such as the airways and result in the hereditary disorder primary ciliary dyskinesia (PCD). Despite extensive knowledge about the cytoplasmic assembly of axonemal dynein arms in respiratory cilia, this process is still poorly understood in sperm flagella. To better define its clinical relevance on sperm structure and function, and thus male fertility, further investigations are required. Here we report the fertility status in different axonemal dynein preassembly mutant males (DNAAF2/ KTU, DNAAF4/ DYX1C1, DNAAF6/ PIH1D3, DNAAF7/ZMYND10, CFAP300/C11orf70 and LRRC6). Besides andrological examinations, we functionally and structurally analyzed sperm flagella of affected individuals by high-speed video- and transmission electron microscopy as well as systematically compared the composition of dynein arms in sperm flagella and respiratory cilia by immunofluorescence microscopy. Furthermore, we analyzed the flagellar length in dynein preassembly mutant sperm. We found that the process of axonemal dynein preassembly is also critical in sperm, by identifying defects of ODAs and IDAs in dysmotile sperm of these individuals. Interestingly, these mutant sperm consistently show a complete loss of ODAs, while some respiratory cilia from the same individual can retain ODAs in the proximal ciliary compartment. This agrees with reports of solely one distinct ODA type in sperm, compared to two different ODA types in proximal and distal respiratory ciliary axonemes. Consistent with observations in model organisms, we also determined a significant reduction of sperm flagellar length in these individuals. These findings are relevant to subsequent studies on the function and composition of sperm flagella in PCD patients and non-syndromic infertile males. Our study contributes to a better understanding of the fertility status in PCD-affected males and should help guide genetic and andrological counselling for affected males and their families. Impaired male fertility is a major issue and affects several men worldwide. Patients may present with reduced number or complete absence of sperm in the ejaculate, as well as functional and/or morphological sperm defects compromising sperm motility. Despite several diagnostic efforts, the underlying causes of these defects often remain unknown („idiopathic“). The beating of sperm flagella as well as motile cilia, such as those of the respiratory tract, is driven by dynein-based motor protein complexes, namely outer and inner dynein arms. In motile cilia these protein complexes are known to be first assembled in the cytoplasm and then delivered into the cilium. In sperm, this process is still poorly understood. Here we analyze sperm cells of male individuals with mutations in distinct genes encoding factors involved in the preassembly of these motor protein complexes. Consistent with defects in their respiratory ciliated cells, these individuals also demonstrate defects in sperm flagella that cause male infertility due to immotile sperm, with a reduction of flagellar length. Our results strengthen the assumption that the preassembly process of outer and inner dynein arms is clinically relevant also in sperm and provide knowledge that should guide genetic and andrological counselling for a subgroup of men with idiopathic infertility.
Collapse
Affiliation(s)
- Isabella Aprea
- Department of General Pediatrics, University Hospital Muenster, Muenster, Germany
| | - Johanna Raidt
- Department of General Pediatrics, University Hospital Muenster, Muenster, Germany
| | - Inga Marlena Höben
- Department of General Pediatrics, University Hospital Muenster, Muenster, Germany
| | - Niki Tomas Loges
- Department of General Pediatrics, University Hospital Muenster, Muenster, Germany
| | - Tabea Nöthe-Menchen
- Department of General Pediatrics, University Hospital Muenster, Muenster, Germany
| | - Petra Pennekamp
- Department of General Pediatrics, University Hospital Muenster, Muenster, Germany
| | - Heike Olbrich
- Department of General Pediatrics, University Hospital Muenster, Muenster, Germany
| | - Thomas Kaiser
- Department of General Pediatrics, University Hospital Muenster, Muenster, Germany
| | - Luisa Biebach
- Department of General Pediatrics, University Hospital Muenster, Muenster, Germany
| | - Frank Tüttelmann
- Institute of Reproductive Genetics, University of Muenster, Muenster, Germany
| | - Judit Horvath
- Institute of Human Genetics, University Hospital Muenster, Muenster, Germany
| | - Maria Schubert
- Department of Clinical and Surgical Andrology, Centre of Reproductive Medicine and Andrology, University Hospital Muenster, Muenster, Germany
| | - Claudia Krallmann
- Department of Clinical and Surgical Andrology, Centre of Reproductive Medicine and Andrology, University Hospital Muenster, Muenster, Germany
| | - Sabine Kliesch
- Institute of Human Genetics, University Hospital Muenster, Muenster, Germany
| | - Heymut Omran
- Department of General Pediatrics, University Hospital Muenster, Muenster, Germany
- * E-mail:
| |
Collapse
|
18
|
Liu YX, Xue B, Sun WY, Wingfield JL, Sun J, Wu M, Lechtreck KF, Wu Z, Fan ZC. Bardet-Biedl syndrome 3 protein promotes ciliary exit of the signaling protein phospholipase D via the BBSome. eLife 2021; 10:59119. [PMID: 33587040 PMCID: PMC7963478 DOI: 10.7554/elife.59119] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 02/13/2021] [Indexed: 12/13/2022] Open
Abstract
Certain ciliary signaling proteins couple with the BBSome, a conserved complex of Bardet–Biedl syndrome (BBS) proteins, to load onto retrograde intraflagellar transport (IFT) trains for their removal out of cilia in Chlamydomonas reinhardtii. Here, we show that loss of the Arf-like 6 (ARL6) GTPase BBS3 causes the signaling protein phospholipase D (PLD) to accumulate in cilia. Upon targeting to the basal body, BBSomes enter and cycle through cilia via IFT, while BBS3 in a GTP-bound state separates from BBSomes, associates with the membrane, and translocates from the basal body to cilia by diffusion. Upon arriving at the ciliary tip, GTP-bound BBS3 binds and recruits BBSomes to the ciliary membrane for interacting with PLD, thus making the PLD-laden BBSomes available to load onto retrograde IFT trains for ciliary exit. Therefore, BBS3 promotes PLD exit from cilia via the BBSome, providing a regulatory mechanism for ciliary signaling protein removal out of cilia.
Collapse
Affiliation(s)
- Yan-Xia Liu
- State Key Laboratory of Food Nutrition and Safety, Institute of Health Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Bin Xue
- State Key Laboratory of Food Nutrition and Safety, Institute of Health Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Wei-Yue Sun
- State Key Laboratory of Food Nutrition and Safety, Institute of Health Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Jenna L Wingfield
- Department of Cellular Biology, University of Georgia, Athens, United States
| | - Jun Sun
- State Key Laboratory of Food Nutrition and Safety, Institute of Health Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Mingfu Wu
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, United States
| | - Karl F Lechtreck
- Department of Cellular Biology, University of Georgia, Athens, United States
| | - Zhenlong Wu
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, China
| | - Zhen-Chuan Fan
- State Key Laboratory of Food Nutrition and Safety, Institute of Health Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| |
Collapse
|
19
|
Fort C, Collingridge P, Brownlee C, Wheeler G. Ca 2+ elevations disrupt interactions between intraflagellar transport and the flagella membrane in Chlamydomonas. J Cell Sci 2021; 134:jcs.253492. [PMID: 33495279 DOI: 10.1242/jcs.253492] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 01/05/2021] [Indexed: 01/29/2023] Open
Abstract
The movement of ciliary membrane proteins is directed by transient interactions with intraflagellar transport (IFT) trains. The green alga Chlamydomonas has adapted this process for gliding motility, using retrograde IFT motors to move adhesive glycoproteins in the flagella membrane. Ca2+ signalling contributes directly to the gliding process, although uncertainty remains over the mechanism through which it acts. Here, we show that flagella Ca2+ elevations initiate the movement of paused retrograde IFT trains, which accumulate at the distal end of adherent flagella, but do not influence other IFT processes. On highly adherent surfaces, flagella exhibit high-frequency Ca2+ elevations that prevent the accumulation of paused retrograde IFT trains. Flagella Ca2+ elevations disrupt the IFT-dependent movement of microspheres along the flagella membrane, suggesting that Ca2+ acts by directly disrupting an interaction between retrograde IFT trains and flagella membrane glycoproteins. By regulating the extent to which glycoproteins on the flagella surface interact with IFT motor proteins on the axoneme, this signalling mechanism allows precise control of traction force and gliding motility in adherent flagella.
Collapse
Affiliation(s)
- Cecile Fort
- Marine Biological Association, The Laboratory, Citadel Hill, Plymouth PL1 2PB, UK
| | - Peter Collingridge
- Marine Biological Association, The Laboratory, Citadel Hill, Plymouth PL1 2PB, UK
| | - Colin Brownlee
- Marine Biological Association, The Laboratory, Citadel Hill, Plymouth PL1 2PB, UK.,School of Ocean and Earth Science, University of Southampton, Southampton SO14 3ZH, UK
| | - Glen Wheeler
- Marine Biological Association, The Laboratory, Citadel Hill, Plymouth PL1 2PB, UK
| |
Collapse
|
20
|
Wang J, Taschner M, Petriman NA, Andersen MB, Basquin J, Bhogaraju S, Vetter M, Wachter S, Lorentzen A, Lorentzen E. Purification and crystal structure of human ODA16: Implications for ciliary import of outer dynein arms by the intraflagellar transport machinery. Protein Sci 2020; 29:1502-1510. [PMID: 32239748 DOI: 10.1002/pro.3864] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 03/27/2020] [Accepted: 03/27/2020] [Indexed: 12/11/2022]
Abstract
Motile cilia protrude from cell surfaces and are necessary to create movement of cells and fluids in the body. At the molecular level, cilia contain several dynein molecular motor complexes including outer dynein arms (ODAs) that are attached periodically to the ciliary axoneme, where they hydrolyse ATP to create the force required for bending and motility of the cilium. ODAs are preassembled in the cytoplasm and subsequently trafficked into the cilium by the intraflagellar transport (IFT) system. In the case of the green alga Chlamydomonas reinhardtii, the adaptor protein ODA16 binds to ODAs and directly to the IFT complex component IFT46 to facilitate the ciliary import of ODAs. Here, we purified recombinant human IFT46 and ODA16, determined the high-resolution crystal structure of the ODA16 protein, and carried out direct interaction studies of IFT46 and ODA16. The human ODA16 C-terminal 320 residues adopt the fold of an eight-bladed β-propeller with high overall structural similarity to the Chlamydomonas ODA16. However, the small 80 residue N-terminal domain, which in Chlamydomonas ODA16 is located on top of the β-propeller and is required to form the binding cleft for IFT46, has no visible electron density in case of the human ODA16 structure. Furthermore, size exclusion chromatography and pull-down experiments failed to detect a direct interaction between human ODA16 and IFT46. These data suggest that additional factors may be required for the ciliary import of ODAs in human cells with motile cilia.
Collapse
Affiliation(s)
- Jiaolong Wang
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus C, Denmark
| | - Michael Taschner
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Narcis A Petriman
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus C, Denmark
| | - Marie B Andersen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus C, Denmark
| | - Jerome Basquin
- Department of Structural Cell Biology, Max-Planck-Institute of Biochemistry, Planegg, Germany
| | | | - Melanie Vetter
- Department of Structural Cell Biology, Max-Planck-Institute of Biochemistry, Planegg, Germany
| | - Stefanie Wachter
- Department of Structural Cell Biology, Max-Planck-Institute of Biochemistry, Planegg, Germany
| | - Anna Lorentzen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus C, Denmark
| | - Esben Lorentzen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus C, Denmark
| |
Collapse
|
21
|
Intraflagellar transport protein RABL5/IFT22 recruits the BBSome to the basal body through the GTPase ARL6/BBS3. Proc Natl Acad Sci U S A 2020; 117:2496-2505. [PMID: 31953262 DOI: 10.1073/pnas.1901665117] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Bardet-Biedl syndrome (BBS) is a ciliopathy caused by defects in the assembly or distribution of the BBSome, a conserved protein complex. The BBSome cycles via intraflagellar transport (IFT) through cilia to transport signaling proteins. How the BBSome is recruited to the basal body for binding to IFT trains for ciliary entry remains unknown. Here, we show that the Rab-like 5 GTPase IFT22 regulates basal body targeting of the BBSome in Chlamydomonas reinhardtii Our functional, biochemical and single particle in vivo imaging assays show that IFT22 is an active GTPase with low intrinsic GTPase activity. IFT22 is part of the IFT-B1 subcomplex but is not required for ciliary assembly. Independent of its association to IFT-B1, IFT22 binds and stabilizes the Arf-like 6 GTPase BBS3, a BBS protein that is not part of the BBSome. IFT22/BBS3 associates with the BBSome through an interaction between BBS3 and the BBSome. When both IFT22 and BBS3 are in their guanosine triphosphate (GTP)-bound states they recruit the BBSome to the basal body for coupling with the IFT-B1 subcomplex. The GTP-bound BBS3 likely remains to be associated with the BBSome upon ciliary entry. In contrast, IFT22 is not required for the transport of BBSomes in cilia, indicating that the BBSome is transferred from IFT22 to the IFT trains at the ciliary base. In summary, our data propose that nucleotide-dependent recruitment of the BBSome to the basal body by IFT22 regulates BBSome entry into cilia.
Collapse
|
22
|
Klink BU, Gatsogiannis C, Hofnagel O, Wittinghofer A, Raunser S. Structure of the human BBSome core complex. eLife 2020; 9:53910. [PMID: 31951201 PMCID: PMC7018512 DOI: 10.7554/elife.53910] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 01/15/2020] [Indexed: 01/09/2023] Open
Abstract
The BBSome is a heterooctameric protein complex that plays a central role in primary cilia homeostasis. Its malfunction causes the severe ciliopathy Bardet-Biedl syndrome (BBS). The complex acts as a cargo adapter that recognizes signaling proteins such as GPCRs and links them to the intraflagellar transport machinery. The underlying mechanism is poorly understood. Here we present a high-resolution cryo-EM structure of a human heterohexameric core subcomplex of the BBSome. The structure reveals the architecture of the complex in atomic detail. It explains how the subunits interact with each other and how disease-causing mutations hamper this interaction. The complex adopts a conformation that is open for binding to membrane-associated GTPase Arl6 and a large positively charged patch likely strengthens the interaction with the membrane. A prominent negatively charged cleft at the center of the complex is likely involved in binding of positively charged signaling sequences of cargo proteins.
Collapse
Affiliation(s)
- Björn Udo Klink
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Christos Gatsogiannis
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Oliver Hofnagel
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Alfred Wittinghofer
- Structural Biology Group, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Stefan Raunser
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| |
Collapse
|
23
|
Oswald F, Prevo B, Acar S, Peterman EJG. Interplay between Ciliary Ultrastructure and IFT-Train Dynamics Revealed by Single-Molecule Super-resolution Imaging. Cell Rep 2020; 25:224-235. [PMID: 30282031 DOI: 10.1016/j.celrep.2018.09.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 08/08/2018] [Accepted: 09/07/2018] [Indexed: 01/10/2023] Open
Abstract
Cilia are built and maintained by intraflagellar transport (IFT), driving IFT trains back and forth along the ciliary axoneme. How IFT brings about the intricate ciliary structure and how this structure affects IFT are not well understood. We identify, using single-molecule super-resolution imaging of IFT components in living C. elegans, ciliary subdomains, enabling correlation of IFT-train dynamics to ciliary ultra-structure. In the transition zone, IFT dynamics are impaired, resulting in frequent pauses. At the ciliary base and tip, IFT trains show intriguing turnaround dynamics. Surprisingly, deletion of IFT motor kinesin-II not only affects IFT-train dynamics but also alters ciliary structure. Super-resolution imaging in these mutant animals suggests that the arrangement of IFT trains with respect to the axonemal microtubules is different than in wild-type animals. Our results reveal a complex, mutual interplay between ciliary ultrastructure and IFT-train dynamics, highlighting the importance of physical cues in the control of IFT dynamics.
Collapse
Affiliation(s)
- Felix Oswald
- Department of Physics and LaserLaB Amsterdam, Vrije Universiteit Amsterdam, Amsterdam, 1081HV, the Netherlands
| | - Bram Prevo
- Department of Physics and LaserLaB Amsterdam, Vrije Universiteit Amsterdam, Amsterdam, 1081HV, the Netherlands
| | - Seyda Acar
- Department of Physics and LaserLaB Amsterdam, Vrije Universiteit Amsterdam, Amsterdam, 1081HV, the Netherlands
| | - Erwin J G Peterman
- Department of Physics and LaserLaB Amsterdam, Vrije Universiteit Amsterdam, Amsterdam, 1081HV, the Netherlands.
| |
Collapse
|
24
|
Komarynets O, Chassot A, Bernabeu E, Czogalla J, Roth I, Liaudet N, Prodon F, Loffing J, Feraille E. Aldosterone controls primary cilium length and cell size in renal collecting duct principal cells. FASEB J 2019; 34:2625-2640. [PMID: 31908048 DOI: 10.1096/fj.201901947r] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 11/20/2019] [Accepted: 12/05/2019] [Indexed: 12/12/2022]
Abstract
Primary cilia are nonmotile sensory organelles found on the surface of almost all kidney tubule epithelial cells. Being exposed to the tubular lumen, primary cilia are thought to be chemo- and mechanosensors of luminal composition and flux, respectively. We hypothesized that, Na+ transport and primary cilia exist in a sensory functional connection in mature renal tubule epithelial cells. Our results demonstrate that primary cilium length is reduced in mineralocorticoid receptor (MR) knockout (KO) mice in a cell autonomous manner along the aldosterone-sensitive distal nephron (ADSN) compared with wild type (as µm ± SEM; 3.1 ± 0.2 vs 4.0 ± 0.1). In mouse cortical collecting duct (mCCD)cl1 cells, which are a model of collecting duct (CD) principal cells, changes in Na+ transport intensity were found to mediate primary cilium length in response to aldosterone (as µm ± SEM: control: 2.7 ± 0.9 vs aldosterone treated: 3.8 ± 0.8). Cilium length was positively correlated with the availability of IFT88, a major intraflagellar anterograde transport complex B component, which is stabilized in response to exposure to aldosterone treatment. This suggests that the abundance of IFT88 is a regulated, rate limiting factor in the elongation of primary cilia. As previously observed in vivo, aldosterone treatment increased cell volume of cultured CD principal cells. Knockdown of IFT88 prevents ciliogenesis and inhibits the adaptive increase in cell size that was observed in response to aldosterone treatment. In conclusion, our results reveal a functional connection between Na+ transport, primary cilia, and cell size, which may play a key role in the morphological and functional adaptation of the CD to sustained changes in active Na+ reabsorption due to variations in aldosterone secretion.
Collapse
Affiliation(s)
- Olga Komarynets
- Department of Cell Physiology and Metabolism, Faculty of Medicine of Geneva, University Medical Center, University of Geneva, Geneva, Switzerland
| | - Alexandra Chassot
- Department of Cell Physiology and Metabolism, Faculty of Medicine of Geneva, University Medical Center, University of Geneva, Geneva, Switzerland
| | - Eva Bernabeu
- Department of Cell Physiology and Metabolism, Faculty of Medicine of Geneva, University Medical Center, University of Geneva, Geneva, Switzerland
| | - Jan Czogalla
- Institute of Anatomy, University of Zürich, Zürich, Switzerland
| | - Isabelle Roth
- Department of Cell Physiology and Metabolism, Faculty of Medicine of Geneva, University Medical Center, University of Geneva, Geneva, Switzerland
| | - Nicolas Liaudet
- Service of Bioimaging, University of Geneva, Geneva, Switzerland
| | - François Prodon
- Service of Bioimaging, University of Geneva, Geneva, Switzerland
| | | | - Eric Feraille
- Department of Cell Physiology and Metabolism, Faculty of Medicine of Geneva, University Medical Center, University of Geneva, Geneva, Switzerland
| |
Collapse
|
25
|
Abstract
Primary cilia project in a single copy from the surface of most vertebrate cell types; they detect and transmit extracellular cues to regulate diverse cellular processes during development and to maintain tissue homeostasis. The sensory capacity of primary cilia relies on the coordinated trafficking and temporal localization of specific receptors and associated signal transduction modules in the cilium. The canonical Hedgehog (HH) pathway, for example, is a bona fide ciliary signalling system that regulates cell fate and self-renewal in development and tissue homeostasis. Specific receptors and associated signal transduction proteins can also localize to primary cilia in a cell type-dependent manner; available evidence suggests that the ciliary constellation of these proteins can temporally change to allow the cell to adapt to specific developmental and homeostatic cues. Consistent with important roles for primary cilia in signalling, mutations that lead to their dysfunction underlie a pleiotropic group of diseases and syndromic disorders termed ciliopathies, which affect many different tissues and organs of the body. In this Review, we highlight central mechanisms by which primary cilia coordinate HH, G protein-coupled receptor, WNT, receptor tyrosine kinase and transforming growth factor-β (TGFβ)/bone morphogenetic protein (BMP) signalling and illustrate how defects in the balanced output of ciliary signalling events are coupled to developmental disorders and disease progression.
Collapse
|
26
|
Wachter S, Jung J, Shafiq S, Basquin J, Fort C, Bastin P, Lorentzen E. Binding of IFT22 to the intraflagellar transport complex is essential for flagellum assembly. EMBO J 2019; 38:e101251. [PMID: 30940671 PMCID: PMC6484408 DOI: 10.15252/embj.2018101251] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 02/28/2019] [Accepted: 03/04/2019] [Indexed: 01/08/2023] Open
Abstract
Intraflagellar transport (IFT) relies on motor proteins and the IFT complex to construct cilia and flagella. The IFT complex subunit IFT22/RabL5 has sequence similarity with small GTPases although the nucleotide specificity is unclear because of non-conserved G4/G5 motifs. We show that IFT22 specifically associates with G-nucleotides and present crystal structures of IFT22 in complex with GDP, GTP, and with IFT74/81. Our structural analysis unravels an unusual GTP/GDP-binding mode of IFT22 bypassing the classical G4 motif. The GTPase switch regions of IFT22 become ordered upon complex formation with IFT74/81 and mediate most of the IFT22-74/81 interactions. Structure-based mutagenesis reveals that association of IFT22 with the IFT complex is essential for flagellum construction in Trypanosoma brucei although IFT22 GTP-loading is not strictly required.
Collapse
Affiliation(s)
- Stefanie Wachter
- Department of Structural Cell Biology, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Jamin Jung
- Trypanosome Cell Biology Unit, Institut Pasteur & INSERM U1201, Paris, France
| | - Shahaan Shafiq
- Trypanosome Cell Biology Unit, Institut Pasteur & INSERM U1201, Paris, France
| | - Jerome Basquin
- Department of Structural Cell Biology, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Cécile Fort
- Trypanosome Cell Biology Unit, Institut Pasteur & INSERM U1201, Paris, France
| | - Philippe Bastin
- Trypanosome Cell Biology Unit, Institut Pasteur & INSERM U1201, Paris, France
| | - Esben Lorentzen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus C, Denmark
| |
Collapse
|
27
|
Tiosano D, Baris HN, Chen A, Hitzert MM, Schueler M, Gulluni F, Wiesener A, Bergua A, Mory A, Copeland B, Gleeson JG, Rump P, van Meer H, Sival DA, Haucke V, Kriwinsky J, Knaup KX, Reis A, Hauer NN, Hirsch E, Roepman R, Pfundt R, Thiel CT, Wiesener MS, Aslanyan MG, Buchner DA. Mutations in PIK3C2A cause syndromic short stature, skeletal abnormalities, and cataracts associated with ciliary dysfunction. PLoS Genet 2019; 15:e1008088. [PMID: 31034465 PMCID: PMC6508738 DOI: 10.1371/journal.pgen.1008088] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 05/09/2019] [Accepted: 03/12/2019] [Indexed: 02/07/2023] Open
Abstract
PIK3C2A is a class II member of the phosphoinositide 3-kinase (PI3K) family that catalyzes the phosphorylation of phosphatidylinositol (PI) into PI(3)P and the phosphorylation of PI(4)P into PI(3,4)P2. At the cellular level, PIK3C2A is critical for the formation of cilia and for receptor mediated endocytosis, among other biological functions. We identified homozygous loss-of-function mutations in PIK3C2A in children from three independent consanguineous families with short stature, coarse facial features, cataracts with secondary glaucoma, multiple skeletal abnormalities, neurological manifestations, among other findings. Cellular studies of patient-derived fibroblasts found that they lacked PIK3C2A protein, had impaired cilia formation and function, and demonstrated reduced proliferative capacity. Collectively, the genetic and molecular data implicate mutations in PIK3C2A in a new Mendelian disorder of PI metabolism, thereby shedding light on the critical role of a class II PI3K in growth, vision, skeletal formation and neurological development. In particular, the considerable phenotypic overlap, yet distinct features, between this syndrome and Lowe’s syndrome, which is caused by mutations in the PI-5-phosphatase OCRL, highlight the key role of PI metabolizing enzymes in specific developmental processes and demonstrate the unique non-redundant functions of each enzyme. This discovery expands what is known about disorders of PI metabolism and helps unravel the role of PIK3C2A and class II PI3Ks in health and disease. Identifying the genetic basis of rare disorders can provide insight into gene function, susceptibility to disease, guide the development of new therapeutics, improve opportunities for genetic counseling, and help clinicians evaluate and potentially treat complicated clinical presentations. However, it is estimated that the genetic basis of approximately one-half of all rare genetic disorders remains unknown. We describe one such rare disorder based on genetic and clinical evaluations of individuals from 3 unrelated consanguineous families with a similar constellation of features including short stature, coarse facial features, cataracts with secondary glaucoma, multiple skeletal abnormalities, neurological manifestations including stroke, among other findings. We discovered that these features were due to deficiency of the PIK3C2A enzyme. PIK3C2A is a class II member of the phosphoinositide 3-kinase (PI3K) family that catalyzes the phosphorylation of the lipids phosphatidylinositol (PI) into PI(3)P and the phosphorylation of PI(4)P into PI(3,4)P2 that are essential for a variety of cellular processes including cilia formation and vesicle trafficking. This syndrome is the first monogenic disorder caused by mutations in a class II PI3K family member and thus sheds new light on their role in human development.
Collapse
Affiliation(s)
- Dov Tiosano
- Division of Pediatric Endocrinology, Ruth Children's Hospital, Rambam Medical Center, Haifa, Israel
- Rappaport Family Faculty of Medicine, Technion—Israel Institute of Technology, Haifa, Israel
| | - Hagit N. Baris
- Rappaport Family Faculty of Medicine, Technion—Israel Institute of Technology, Haifa, Israel
- The Genetics Institute, Rambam Health Care Campus, Haifa, Israel
| | - Anlu Chen
- Department of Biochemistry, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Marrit M. Hitzert
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Markus Schueler
- Department of Nephrology and Hypertension, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Federico Gulluni
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Turin, Torino, Italy
| | - Antje Wiesener
- Institute of Human Genetics, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Antonio Bergua
- Department of Ophthalmology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Adi Mory
- The Genetics Institute, Rambam Health Care Campus, Haifa, Israel
| | - Brett Copeland
- Laboratory of Pediatric Brain Diseases, Rockefeller University, New York, New York, United States of America
| | - Joseph G. Gleeson
- Laboratory of Pediatric Brain Diseases, Rockefeller University, New York, New York, United States of America
- Department of Neurosciences, University of California, San Diego, La Jolla, California, United States of America
| | - Patrick Rump
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Hester van Meer
- Department of Pediatrics, Beatrix Children’s Hospital, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Deborah A. Sival
- Department of Pediatrics, Beatrix Children’s Hospital, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Volker Haucke
- Leibniz-Institut für Molekulare Pharmakologie, Berlin Faculty of Biology, Chemistry, and Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Josh Kriwinsky
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Karl X. Knaup
- Department of Nephrology and Hypertension, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - André Reis
- Institute of Human Genetics, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Nadine N. Hauer
- Institute of Human Genetics, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Emilio Hirsch
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Turin, Torino, Italy
| | - Ronald Roepman
- Department of Human Genetics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Rolph Pfundt
- Department of Human Genetics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Christian T. Thiel
- Institute of Human Genetics, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Michael S. Wiesener
- Department of Nephrology and Hypertension, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Mariam G. Aslanyan
- Department of Human Genetics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - David A. Buchner
- Department of Biochemistry, Case Western Reserve University, Cleveland, Ohio, United States of America
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio, United States of America
- Research Institute for Children’s Health, Case Western Reserve University, Cleveland, Ohio, United States of America
- * E-mail:
| |
Collapse
|
28
|
Hu R, Huang W, Liu J, Jin M, Wu Y, Li J, Wang J, Yu Z, Wang H, Cao Y. Mutagenesis of putative ciliary genes with the CRISPR/Cas9 system in zebrafish identifies genes required for retinal development. FASEB J 2019; 33:5248-5256. [PMID: 30624971 DOI: 10.1096/fj.201802140r] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Cilia are conserved microtubule-based organelles that function as mechanical and chemical sensors in various cell types. By bioinformatic, genomic, and proteomic studies, more than 2000 proteins have been identified as cilium-associated proteins or putative ciliary proteins; these proteins are referred to as the ciliary proteome or the ciliome. However, little is known about the function of these numerous putative ciliary proteins in cilia. To identify the possible new functional proteins or pathways in cilia, we carried out a small-scale genetic screen targeting 54 putative ciliary genes by using the clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9 (CRISPR/Cas9) system. We successfully constructed 54 zebrafish mutants, and 8 of them displayed microphthalmias. Three of these 8 genes encode proteins for protein transport, suggesting the important roles of protein transport in retinal development. In situ hybridization revealed that all these genes are expressed in zebrafish eyes. Furthermore, polo-like kinase 1 was required for ciliogenesis in neural tube. We uncovered the potential function of the ciliary genes for the retinal development of zebrafish.-Hu, R., Huang, W., Liu, J., Jin, M., Wu, Y., Li, J., Wang, J., Yu, Z., Wang, H., Cao, Y. Mutagenesis of putative ciliary genes with the CRISPR/Cas9 system in zebrafish identifies genes required for retinal development.
Collapse
Affiliation(s)
- Ruikun Hu
- Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Weilai Huang
- Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Jiangfang Liu
- Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Miaomiao Jin
- Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Yue Wu
- Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Jingyu Li
- Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Jingyi Wang
- Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Zehao Yu
- Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Hong Wang
- Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Ying Cao
- Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| |
Collapse
|
29
|
Vuong LT, Iomini C, Balmer S, Esposito D, Aaronson SA, Mlodzik M. Kinesin-2 and IFT-A act as a complex promoting nuclear localization of β-catenin during Wnt signalling. Nat Commun 2018; 9:5304. [PMID: 30546012 PMCID: PMC6294004 DOI: 10.1038/s41467-018-07605-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 11/13/2018] [Indexed: 12/20/2022] Open
Abstract
Wnt/Wg-signalling is critical signalling in all metazoans. Recent studies suggest that IFT-A proteins and Kinesin-2 modulate canonical Wnt/Wg-signalling independently of their ciliary role. Whether they function together in Wnt-signalling and their mechanistic role in the pathway remained unresolved. Here we demonstrate that Kinesin-2 and IFT-A proteins act as a complex during Drosophila Wg-signalling, affecting pathway activity in the same manner, interacting genetically and physically, and co-localizing with β-catenin, the mediator of Wnt/Wg-signalling on microtubules. Following pathway activation, Kinesin-2/IFT-A mutant cells exhibit high cytoplasmic β-catenin levels, yet fail to activate Wg-targets. In mutant tissues in both, Drosophila and mouse/MEFs, nuclear localization of β-catenin is markedly reduced. We demonstrate a conserved, motor-domain dependent function of the Kinesin-2/IFT-A complex in promoting nuclear translocation of β-catenin. We show that this is mediated by protecting β-catenin from a conserved cytoplasmic retention process, thus identifying a mechanism for Kinesin-2/IFT-A in Wnt-signalling that is independent of their ciliary role. IFT-A proteins and Kinesin-2 modulate canonical Wnt/Wg-signalling independent of their ciliary role, but how is unclear. Here, the authors show that Kinesin-2 and IFT-A act as a complex to promote nuclear translocation of β-catenin in Drosophila and mouse MEF Wnt signalling independent of its ciliary role.
Collapse
Affiliation(s)
- Linh T Vuong
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA
| | - Carlo Iomini
- Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA. .,Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA.
| | - Sophie Balmer
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA.,Sloan Kettering Institute, New York, NY, 10029, USA
| | - Davide Esposito
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA
| | - Stuart A Aaronson
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA.,Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA.,Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA
| | - Marek Mlodzik
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA. .,Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA. .,Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA.
| |
Collapse
|
30
|
The complexity of the cilium: spatiotemporal diversity of an ancient organelle. Curr Opin Cell Biol 2018; 55:139-149. [PMID: 30138887 DOI: 10.1016/j.ceb.2018.08.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 07/31/2018] [Accepted: 08/02/2018] [Indexed: 02/06/2023]
Abstract
Cilia are microtubule-based appendages present on almost all vertebrate cell types where they mediate a myriad of cellular processes critical for development and homeostasis. In humans, impaired ciliary function is associated with an ever-expanding repertoire of phenotypically-overlapping yet highly variable genetic disorders, the ciliopathies. Extensive work to elucidate the structure, function, and composition of the cilium is offering hints that the `static' representation of the cilium is a gross oversimplification of a highly dynamic organelle whose functions are choreographed dynamically across cell types, developmental, and homeostatic contexts. Understanding this diversity will require discerning ciliary versus non-ciliary roles for classically-defined `ciliary' proteins; defining ciliary protein-protein interaction networks within and beyond the cilium; and resolving the spatiotemporal diversity of ciliary structure and function. Here, focusing on one evolutionarily conserved ciliary module, the intraflagellar transport system, we explore these ideas and propose potential future studies that will improve our knowledge gaps of the oversimplified cilium and, by extension, inform the reasons that underscore the striking range of clinical pathologies associated with ciliary dysfunction.
Collapse
|
31
|
Chekuri A, Guru AA, Biswas P, Branham K, Borooah S, Soto-Hermida A, Hicks M, Khan NW, Matsui H, Alapati A, Raghavendra PB, Roosing S, Sarangapani S, Mathavan S, Telenti A, Heckenlively JR, Riazuddin SA, Frazer KA, Sieving PA, Ayyagari R. IFT88 mutations identified in individuals with non-syndromic recessive retinal degeneration result in abnormal ciliogenesis. Hum Genet 2018; 137:447-458. [PMID: 29978320 DOI: 10.1007/s00439-018-1897-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 06/21/2018] [Indexed: 12/26/2022]
Abstract
Whole genome sequencing (WGS) was performed to identify the variants responsible for inherited retinal degeneration (IRD) in a Caucasian family. Segregation analysis of selected rare variants with pathogenic potential identified a set of compound heterozygous changes p.Arg266*:c.796C>T and p.Ala568Thr:c.1702G>A in the intraflagellar transport protein-88 (IFT88) gene segregating with IRD. Expression of IFT88 with the p.Arg266* and p.Ala568Thr mutations in mIMDC3 cells by transient transfection and in HeLa cells by introducing the mutations using CRISPR-cas9 system suggested that both mutations result in the formation of abnormal ciliary structures. The introduction of the IFT88 p.Arg266* variant in the homozygous state in HeLa cells by CRISPR-Cas9 genome-editing revealed that the mutant transcript undergoes nonsense-mediated decay leading to a significant depletion of IFT88 transcript. Additionally, abnormal ciliogenesis was observed in these cells. These observations suggest that the rare and unique combination of IFT88 alleles observed in this study provide insight into the physiological role of IFT88 in humans and the likely mechanism underlying retinal pathology in the pedigree with IRD.
Collapse
Affiliation(s)
- Anil Chekuri
- Shiley Eye Institute, University of California San Diego, 9415 Campus Point Drive, JRC 206, La Jolla, CA, 92093, USA
| | - Aditya A Guru
- Shiley Eye Institute, University of California San Diego, 9415 Campus Point Drive, JRC 206, La Jolla, CA, 92093, USA
| | - Pooja Biswas
- Shiley Eye Institute, University of California San Diego, 9415 Campus Point Drive, JRC 206, La Jolla, CA, 92093, USA.,School of Biotechnology, REVA University, Bengaluru, Karnataka, India
| | - Kari Branham
- Ophthalmology and Visual Science, University of Michigan Kellogg Eye Center, Ann Arbor, MI, USA
| | - Shyamanga Borooah
- Shiley Eye Institute, University of California San Diego, 9415 Campus Point Drive, JRC 206, La Jolla, CA, 92093, USA
| | - Angel Soto-Hermida
- Shiley Eye Institute, University of California San Diego, 9415 Campus Point Drive, JRC 206, La Jolla, CA, 92093, USA
| | | | - Naheed W Khan
- Ophthalmology and Visual Science, University of Michigan Kellogg Eye Center, Ann Arbor, MI, USA
| | - Hiroko Matsui
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA
| | - Akhila Alapati
- Shiley Eye Institute, University of California San Diego, 9415 Campus Point Drive, JRC 206, La Jolla, CA, 92093, USA
| | - Pongali B Raghavendra
- School of Biotechnology, REVA University, Bengaluru, Karnataka, India.,School of Regenerative Medicine, Manipal University-MAHE, Bangalore, India
| | - Susanne Roosing
- Department of Human Genetics, Radboud University Nijmegen Medical Center, PO Box 9101, 6500 HB, Nijmegen, The Netherlands
| | | | | | | | - John R Heckenlively
- Ophthalmology and Visual Science, University of Michigan Kellogg Eye Center, Ann Arbor, MI, USA
| | - S Amer Riazuddin
- The Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kelly A Frazer
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA.,Division of Genome Information Sciences, Department of Pediatrics, Rady Children's Hospital, San Diego, CA, USA
| | - Paul A Sieving
- National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Radha Ayyagari
- Shiley Eye Institute, University of California San Diego, 9415 Campus Point Drive, JRC 206, La Jolla, CA, 92093, USA.
| |
Collapse
|
32
|
Morthorst SK, Christensen ST, Pedersen LB. Regulation of ciliary membrane protein trafficking and signalling by kinesin motor proteins. FEBS J 2018; 285:4535-4564. [PMID: 29894023 DOI: 10.1111/febs.14583] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 05/09/2018] [Accepted: 06/11/2018] [Indexed: 12/14/2022]
Abstract
Primary cilia are antenna-like sensory organelles that regulate a substantial number of cellular signalling pathways in vertebrates, both during embryonic development as well as in adulthood, and mutations in genes coding for ciliary proteins are causative of an expanding group of pleiotropic diseases known as ciliopathies. Cilia consist of a microtubule-based axoneme core, which is subtended by a basal body and covered by a bilayer lipid membrane of unique protein and lipid composition. Cilia are dynamic organelles, and the ability of cells to regulate ciliary protein and lipid content in response to specific cellular and environmental cues is crucial for balancing ciliary signalling output. Here we discuss mechanisms involved in regulation of ciliary membrane protein trafficking and signalling, with main focus on kinesin-2 and kinesin-3 family members.
Collapse
|
33
|
Verbakel SK, van Huet RAC, Boon CJF, den Hollander AI, Collin RWJ, Klaver CCW, Hoyng CB, Roepman R, Klevering BJ. Non-syndromic retinitis pigmentosa. Prog Retin Eye Res 2018; 66:157-186. [PMID: 29597005 DOI: 10.1016/j.preteyeres.2018.03.005] [Citation(s) in RCA: 523] [Impact Index Per Article: 87.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 03/20/2018] [Accepted: 03/22/2018] [Indexed: 12/23/2022]
Abstract
Retinitis pigmentosa (RP) encompasses a group of inherited retinal dystrophies characterized by the primary degeneration of rod and cone photoreceptors. RP is a leading cause of visual disability, with a worldwide prevalence of 1:4000. Although the majority of RP cases are non-syndromic, 20-30% of patients with RP also have an associated non-ocular condition. RP typically manifests with night blindness in adolescence, followed by concentric visual field loss, reflecting the principal dysfunction of rod photoreceptors; central vision loss occurs later in life due to cone dysfunction. Photoreceptor function measured with an electroretinogram is markedly reduced or even absent. Optical coherence tomography (OCT) and fundus autofluorescence (FAF) imaging show a progressive loss of outer retinal layers and altered lipofuscin distribution in a characteristic pattern. Over the past three decades, a vast number of disease-causing variants in more than 80 genes have been associated with non-syndromic RP. The wide heterogeneity of RP makes it challenging to describe the clinical findings and pathogenesis. In this review, we provide a comprehensive overview of the clinical characteristics of RP specific to genetically defined patient subsets. We supply a unique atlas with color fundus photographs of most RP subtypes, and we discuss the relevant considerations with respect to differential diagnoses. In addition, we discuss the genes involved in the pathogenesis of RP, as well as the retinal processes that are affected by pathogenic mutations in these genes. Finally, we review management strategies for patients with RP, including counseling, visual rehabilitation, and current and emerging therapeutic options.
Collapse
Affiliation(s)
- Sanne K Verbakel
- Department of Ophthalmology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Ramon A C van Huet
- Department of Ophthalmology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Camiel J F Boon
- Department of Ophthalmology, Leiden University Medical Center, Leiden, The Netherlands; Department of Ophthalmology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Anneke I den Hollander
- Department of Ophthalmology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands; Department of Human Genetics, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Rob W J Collin
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Caroline C W Klaver
- Department of Ophthalmology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands; Department of Ophthalmology, Erasmus Medical Center, Rotterdam, The Netherlands; Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Carel B Hoyng
- Department of Ophthalmology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Ronald Roepman
- Department of Human Genetics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - B Jeroen Klevering
- Department of Ophthalmology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands.
| |
Collapse
|
34
|
Nevers Y, Prasad MK, Poidevin L, Chennen K, Allot A, Kress A, Ripp R, Thompson JD, Dollfus H, Poch O, Lecompte O. Insights into Ciliary Genes and Evolution from Multi-Level Phylogenetic Profiling. Mol Biol Evol 2018; 34:2016-2034. [PMID: 28460059 PMCID: PMC5850483 DOI: 10.1093/molbev/msx146] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Cilia (flagella) are important eukaryotic organelles, present in the Last Eukaryotic Common Ancestor, and are involved in cell motility and integration of extracellular signals. Ciliary dysfunction causes a class of genetic diseases, known as ciliopathies, however current knowledge of the underlying mechanisms is still limited and a better characterization of genes is needed. As cilia have been lost independently several times during evolution and they are subject to important functional variation between species, ciliary genes can be investigated through comparative genomics. We performed phylogenetic profiling by predicting orthologs of human protein-coding genes in 100 eukaryotic species. The analysis integrated three independent methods to predict a consensus set of 274 ciliary genes, including 87 new promising candidates. A fine-grained analysis of the phylogenetic profiles allowed a partitioning of ciliary genes into modules with distinct evolutionary histories and ciliary functions (assembly, movement, centriole, etc.) and thus propagation of potential annotations to previously undocumented genes. The cilia/basal body localization was experimentally confirmed for five of these previously unannotated proteins (LRRC23, LRRC34, TEX9, WDR27, and BIVM), validating the relevance of our approach. Furthermore, our multi-level analysis sheds light on the core gene sets retained in gamete-only flagellates or Ecdysozoa for instance. By combining gene-centric and species-oriented analyses, this work reveals new ciliary and ciliopathy gene candidates and provides clues about the evolution of ciliary processes in the eukaryotic domain. Additionally, the positive and negative reference gene sets and the phylogenetic profile of human genes constructed during this study can be exploited in future work.
Collapse
Affiliation(s)
- Yannis Nevers
- Complex Systems and Translational Bioinformatics, ICube UMR 7357, Université de Strasbourg, Fédération de Médecine Translationnelle, Strasbourg, France
| | - Megana K Prasad
- Laboratoire de Génétique Médicale, Institut de Génétique Médicale d'Alsace, INSERM U1112, Université de Strasbourg, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
| | - Laetitia Poidevin
- Complex Systems and Translational Bioinformatics, ICube UMR 7357, Université de Strasbourg, Fédération de Médecine Translationnelle, Strasbourg, France
| | - Kirsley Chennen
- Complex Systems and Translational Bioinformatics, ICube UMR 7357, Université de Strasbourg, Fédération de Médecine Translationnelle, Strasbourg, France
| | - Alexis Allot
- Complex Systems and Translational Bioinformatics, ICube UMR 7357, Université de Strasbourg, Fédération de Médecine Translationnelle, Strasbourg, France
| | - Arnaud Kress
- Complex Systems and Translational Bioinformatics, ICube UMR 7357, Université de Strasbourg, Fédération de Médecine Translationnelle, Strasbourg, France
| | - Raymond Ripp
- Complex Systems and Translational Bioinformatics, ICube UMR 7357, Université de Strasbourg, Fédération de Médecine Translationnelle, Strasbourg, France
| | - Julie D Thompson
- Complex Systems and Translational Bioinformatics, ICube UMR 7357, Université de Strasbourg, Fédération de Médecine Translationnelle, Strasbourg, France
| | - Hélène Dollfus
- Laboratoire de Génétique Médicale, Institut de Génétique Médicale d'Alsace, INSERM U1112, Université de Strasbourg, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France.,Centre de Référence pour les Affections Rares en Génétique Ophtalmologique, Service de Génétique Médicale, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Olivier Poch
- Complex Systems and Translational Bioinformatics, ICube UMR 7357, Université de Strasbourg, Fédération de Médecine Translationnelle, Strasbourg, France
| | - Odile Lecompte
- Complex Systems and Translational Bioinformatics, ICube UMR 7357, Université de Strasbourg, Fédération de Médecine Translationnelle, Strasbourg, France
| |
Collapse
|
35
|
Shi Y, Su Y, Lipschutz JH, Lobo GP. Zebrafish as models to study ciliopathies of the eye and kidney. CLINICAL NEPHROLOGY AND RESEARCH 2017; 1:6-9. [PMID: 29553143 PMCID: PMC5851006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cilia are highly-conserved organelles projecting from the cell surface of nearly every cell type in vertebrates. Ciliary proteins have essential functions in human physiology, particularly in signaling and organ development. As cilia are a component of almost all vertebrate cells, cilia dysfunction can manifest as a constellation of features that characteristically include, retinal degeneration, renal disease and cerebral anomalies. The terminology "Ciliopathies" refers to inherited human disorders caused by genetic mutations in ciliary genes, leading to cilia dysfunctions that form an important and ever expanding multi-organ disease spectrum. Ciliopathies are a diverse class of congenital diseases, with twenty-four recognized syndromes caused by mutations in at least ninety different genes. In order to start to dissect the phenotypes of each disease associated with ciliary dysfunction it is necessary to understand the mechanisms underlying the phenotype using suitable animal models. Here, we review the advantages of the zebrafish as a vertebrate model for human ciliopathies, with a focus on ciliopathies affecting the eye and the kidney.
Collapse
Affiliation(s)
- Yi Shi
- Department of Medicine, Medical University of South Carolina, Charleston, SC, 29425, USA,Eye Hospital, Tianjin Medical University, Tianjin, 300384, China
| | - Yanhui Su
- Department of Medicine, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Joshua H. Lipschutz
- Department of Medicine, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Glenn P. Lobo
- Department of Medicine, Medical University of South Carolina, Charleston, SC, 29425, USA,Department of Ophthalmology, Medical University of South Carolina, Charleston, SC, 29425, USA,Correspondence: Glenn P Lobo, Department of Medicine, Medical University of South Carolina, Charleston, SC, 29425, USA, Tel: 843-876-2371;
| |
Collapse
|
36
|
Fu W, Wang L, Kim S, Li J, Dynlacht BD. Role for the IFT-A Complex in Selective Transport to the Primary Cilium. Cell Rep 2017; 17:1505-1517. [PMID: 27806291 DOI: 10.1016/j.celrep.2016.10.018] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 09/05/2016] [Accepted: 10/05/2016] [Indexed: 11/27/2022] Open
Abstract
Intraflagellar transport sub-complex A (IFT-A) is known to regulate retrograde IFT in the cilium. To rigorously assess its other possible roles, we knocked out an IFT-A subunit, IFT121/WDR35, in mammalian cells and screened the localization of more than 50 proteins. We found that Wdr35 regulates cilium assembly by selectively regulating transport of distinct cargoes. Beyond its role in retrograde transport, we show that Wdr35 functions in fusion of Rab8 vesicles at the nascent cilium, protein exit from the cilium, and centriolar satellite organization. Furthermore, we show that Wdr35 is essential for entry of many membrane proteins into the cilium through robust interactions with cargoes and other IFT-A subunits, but the actin network functions to dampen this transport. Wdr35 is mutated in several ciliopathies, and we find that certain disease mutations impair interactions with cargo and other IFT-A subunits. Together, our data link defects in IFT-A mediated cargo transport with disease.
Collapse
Affiliation(s)
- Wenxiang Fu
- Department of Pathology and Perlmutter Cancer Center, NYU School of Medicine, Smilow Research Building, 522 First Avenue, New York, NY 10016, USA
| | - Lei Wang
- Department of Pathology and Perlmutter Cancer Center, NYU School of Medicine, Smilow Research Building, 522 First Avenue, New York, NY 10016, USA
| | - Sehyun Kim
- Department of Pathology and Perlmutter Cancer Center, NYU School of Medicine, Smilow Research Building, 522 First Avenue, New York, NY 10016, USA
| | - Ji Li
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA; Broad Institute, Cambridge, MA 02142, USA
| | - Brian David Dynlacht
- Department of Pathology and Perlmutter Cancer Center, NYU School of Medicine, Smilow Research Building, 522 First Avenue, New York, NY 10016, USA.
| |
Collapse
|
37
|
Klink BU, Zent E, Juneja P, Kuhlee A, Raunser S, Wittinghofer A. A recombinant BBSome core complex and how it interacts with ciliary cargo. eLife 2017; 6. [PMID: 29168691 PMCID: PMC5700813 DOI: 10.7554/elife.27434] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 11/03/2017] [Indexed: 01/07/2023] Open
Abstract
Cilia are small, antenna-like structures on the surface of eukaryotic cells that harbor a unique set of sensory proteins, including GPCRs and other membrane proteins. The transport of these proteins involves the BBSome, an eight-membered protein complex that is recruited to ciliary membranes by the G-protein Arl6. BBSome malfunction leads to Bardet-Biedl syndrome, a ciliopathy with severe consequences. Short ciliary targeting sequences (CTS) have been identified that trigger the transport of ciliary proteins. However, mechanistic studies that relate ciliary targeting to BBSome binding are missing. Here we used heterologously expressed BBSome subcomplexes to analyze the complex architecture and to investigate the binding of GPCRs and other receptors to the BBSome. A stable heterohexameric complex was identified that binds to GPCRs with interactions that only partially overlap with previously described CTS, indicating a more complex recognition than anticipated. Arl6•GTP does not affect these interactions, suggesting no direct involvement in cargo loading/unloading.
Collapse
Affiliation(s)
- Björn Udo Klink
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, Dortmund, Germany.,Structural Biology Group, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Eldar Zent
- Structural Biology Group, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Puneet Juneja
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Anne Kuhlee
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Stefan Raunser
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Alfred Wittinghofer
- Structural Biology Group, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| |
Collapse
|
38
|
Bernabé-Rubio M, Alonso MA. Routes and machinery of primary cilium biogenesis. Cell Mol Life Sci 2017; 74:4077-4095. [PMID: 28624967 PMCID: PMC11107551 DOI: 10.1007/s00018-017-2570-5] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 06/01/2017] [Accepted: 06/13/2017] [Indexed: 02/06/2023]
Abstract
Primary cilia are solitary, microtubule-based protrusions of the cell surface that play fundamental roles as photosensors, mechanosensors and biochemical sensors. Primary cilia dysfunction results in a long list of developmental and degenerative disorders that combine to give rise to a large spectrum of human diseases affecting almost any major body organ. Depending on the cell type, primary ciliogenesis is initiated intracellularly, as in fibroblasts, or at the cell surface, as in renal polarized epithelial cells. In this review, we have focused on the routes of primary ciliogenesis placing particular emphasis on the recently described pathway in renal polarized epithelial cells by which the midbody remnant resulting from a previous cell division event enables the centrosome for initiation of primary cilium assembly. The protein machinery implicated in primary cilium formation in epithelial cells, including the machinery best known for its involvement in establishing cell polarity and polarized membrane trafficking, is also discussed.
Collapse
Affiliation(s)
- Miguel Bernabé-Rubio
- Department of Cell Biology and Immunology, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Nicolás Cabrera 1, Cantoblanco, 28049, Madrid, Spain
| | - Miguel A Alonso
- Department of Cell Biology and Immunology, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Nicolás Cabrera 1, Cantoblanco, 28049, Madrid, Spain.
| |
Collapse
|
39
|
Bachor TP, Karbanová J, Büttner E, Bermúdez V, Marquioni-Ramella M, Carmeliet P, Corbeil D, Suburo AM. Early ciliary and prominin-1 dysfunctions precede neurogenesis impairment in a mouse model of type 2 diabetes. Neurobiol Dis 2017; 108:13-28. [PMID: 28743634 DOI: 10.1016/j.nbd.2017.07.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2017] [Revised: 06/19/2017] [Accepted: 07/10/2017] [Indexed: 01/10/2023] Open
Abstract
Diabetes mellitus (DM) is reaching epidemic conditions worldwide and increases the risk for cognition impairment and dementia. Here, we postulated that progenitors in adult neurogenic niches might be particularly vulnerable. Therefore, we evaluated the different components of the mouse subventricular zone (SVZ) during the first week after chemical induction of type 1 and type 2 diabetes-like (T1DM and T2DM) conditions. Surprisingly, only T2DM mice showed SVZ damage. The initial lesions were localized to ependymal cilia, which appeared disorientated and clumped together. In addition, they showed delocalization of the ciliary membrane protein prominin-1. Impairment of neuroprogenitor proliferation, neurogenic marker abnormalities and ectopic migration of neuroblasts were found at a later stage. To our knowledge, our data describe for the first time such an early impact of T2DM on the SVZ. This is consistent with clinical data indicating that brain damage in T2DM patients differs from that in T1DM patients.
Collapse
Affiliation(s)
- Tomás P Bachor
- Instituto de Investigaciones en Medicina Traslacional (IIMT), Universidad Austral-CONICET, B1629AHJ, Pilar, Argentina
| | - Jana Karbanová
- Tissue Engineering Laboratories, Biotechnology Center (BIOTEC) and DFG Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, 01307 Dresden, Germany
| | - Edgar Büttner
- Tissue Engineering Laboratories, Biotechnology Center (BIOTEC) and DFG Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, 01307 Dresden, Germany
| | - Vicente Bermúdez
- Instituto de Investigaciones en Medicina Traslacional (IIMT), Universidad Austral-CONICET, B1629AHJ, Pilar, Argentina; Tissue Engineering Laboratories, Biotechnology Center (BIOTEC) and DFG Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, 01307 Dresden, Germany
| | - Melisa Marquioni-Ramella
- Instituto de Investigaciones en Medicina Traslacional (IIMT), Universidad Austral-CONICET, B1629AHJ, Pilar, Argentina
| | - Peter Carmeliet
- Lab of Angiogenesis and Vascular Metabolism, Center for Cancer Biology, VIB, Leuven, Belgium; Lab of Angiogenesis and Vascular Metabolism, Dept. of Oncology, KU Leuven, Leuven, Belgium
| | - Denis Corbeil
- Tissue Engineering Laboratories, Biotechnology Center (BIOTEC) and DFG Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, 01307 Dresden, Germany.
| | - Angela M Suburo
- Instituto de Investigaciones en Medicina Traslacional (IIMT), Universidad Austral-CONICET, B1629AHJ, Pilar, Argentina.
| |
Collapse
|
40
|
Lobo GP, Fulmer D, Guo L, Zuo X, Dang Y, Kim SH, Su Y, George K, Obert E, Fogelgren B, Nihalani D, Norris RA, Rohrer B, Lipschutz JH. The exocyst is required for photoreceptor ciliogenesis and retinal development. J Biol Chem 2017; 292:14814-14826. [PMID: 28729419 DOI: 10.1074/jbc.m117.795674] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 07/10/2017] [Indexed: 11/06/2022] Open
Abstract
We previously have shown that the highly conserved eight-protein exocyst trafficking complex is required for ciliogenesis in kidney tubule cells. We hypothesized here that ciliogenic programs are conserved across organs and species. To determine whether renal primary ciliogenic programs are conserved in the eye, and to characterize the function and mechanisms by which the exocyst regulates eye development in zebrafish, we focused on exoc5, a central component of the exocyst complex, by analyzing both exoc5 zebrafish mutants, and photoreceptor-specific Exoc5 knock-out mice. Two separate exoc5 mutant zebrafish lines phenocopied exoc5 morphants and, strikingly, exhibited a virtual absence of photoreceptors, along with abnormal retinal development and cell death. Because the zebrafish mutant was a global knockout, we also observed defects in several ciliated organs, including the brain (hydrocephalus), heart (cardiac edema), and kidney (disordered and shorter cilia). exoc5 knockout increased phosphorylation of the regulatory protein Mob1, consistent with Hippo pathway activation. exoc5 mutant zebrafish rescue with human EXOC5 mRNA completely reversed the mutant phenotype. We accomplished photoreceptor-specific knockout of Exoc5 with our Exoc5 fl/fl mouse line crossed with a rhodopsin-Cre driver line. In Exoc5 photoreceptor-specific knock-out mice, the photoreceptor outer segment structure was severely impaired at 4 weeks of age, although a full-field electroretinogram indicated a visual response was still present. However, by 6 weeks, visual responses were eliminated. In summary, we show that ciliogenesis programs are conserved in the kidneys and eyes of zebrafish and mice and that the exocyst is necessary for photoreceptor ciliogenesis and retinal development, most likely by trafficking cilia and outer-segment proteins.
Collapse
Affiliation(s)
- Glenn P Lobo
- From the Departments of Medicine.,Ophthalmology, and
| | - Diana Fulmer
- From the Departments of Medicine.,Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, South Carolina 29425
| | - Lilong Guo
- From the Departments of Medicine.,Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, South Carolina 29425
| | | | | | | | | | | | | | - Ben Fogelgren
- the Department of Anatomy, Biochemistry, and Physiology, University of Hawaii at Manoa, Honolulu, Hawaii 96813
| | | | - Russell A Norris
- Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, South Carolina 29425
| | - Bärbel Rohrer
- Ophthalmology, and.,the Division of Research, Ralph H. Johnson Veterans Affairs Medical Center, Charleston, South Carolina 29401, and
| | - Joshua H Lipschutz
- From the Departments of Medicine, .,the Department of Medicine, Ralph H. Johnson Veterans Affairs Medical Center, Charleston, South Carolina 29425
| |
Collapse
|
41
|
Abstract
Motile and non-motile (primary) cilia are nearly ubiquitous cellular organelles. The dysfunction of cilia causes diseases known as ciliopathies. The number of reported ciliopathies (currently 35) is increasing, as is the number of established (187) and candidate (241) ciliopathy-associated genes. The characterization of ciliopathy-associated proteins and phenotypes has improved our knowledge of ciliary functions. In particular, investigating ciliopathies has helped us to understand the molecular mechanisms by which the cilium-associated basal body functions in early ciliogenesis, as well as how the transition zone functions in ciliary gating, and how intraflagellar transport enables cargo trafficking and signalling. Both basic biological and clinical studies are uncovering novel ciliopathies and the ciliary proteins involved. The assignment of these proteins to different ciliary structures, processes and ciliopathy subclasses (first order and second order) provides insights into how this versatile organelle is built, compartmentalized and functions in diverse ways that are essential for human health.
Collapse
|
42
|
Christensen ST, Morthorst SK, Mogensen JB, Pedersen LB. Primary Cilia and Coordination of Receptor Tyrosine Kinase (RTK) and Transforming Growth Factor β (TGF-β) Signaling. Cold Spring Harb Perspect Biol 2017; 9:cshperspect.a028167. [PMID: 27638178 DOI: 10.1101/cshperspect.a028167] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Since the beginning of the millennium, research in primary cilia has revolutionized our way of understanding how cells integrate and organize diverse signaling pathways during vertebrate development and in tissue homeostasis. Primary cilia are unique sensory organelles that detect changes in their extracellular environment and integrate and transmit signaling information to the cell to regulate various cellular, developmental, and physiological processes. Many different signaling pathways have now been shown to rely on primary cilia to function properly, and mutations that lead to ciliary dysfunction are at the root of a pleiotropic group of diseases and syndromic disorders called ciliopathies. In this review, we present an overview of primary cilia-mediated regulation of receptor tyrosine kinase (RTK) and transforming growth factor β (TGF-β) signaling. Further, we discuss how defects in the coordination of these pathways may be linked to ciliopathies.
Collapse
Affiliation(s)
- Søren T Christensen
- Department of Biology, University of Copenhagen, DK-2100 Copenhagen OE, Denmark
| | - Stine K Morthorst
- Department of Biology, University of Copenhagen, DK-2100 Copenhagen OE, Denmark
| | - Johanne B Mogensen
- Department of Biology, University of Copenhagen, DK-2100 Copenhagen OE, Denmark
| | - Lotte B Pedersen
- Department of Biology, University of Copenhagen, DK-2100 Copenhagen OE, Denmark
| |
Collapse
|
43
|
Lv B, Wan L, Taschner M, Cheng X, Lorentzen E, Huang K. Intraflagellar transport protein IFT52 recruits IFT46 to the basal body and flagella. J Cell Sci 2017; 130:1662-1674. [PMID: 28302912 DOI: 10.1242/jcs.200758] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 03/14/2017] [Indexed: 12/17/2022] Open
Abstract
Cilia are microtubule-based organelles and perform motile, sensing and signaling functions. The assembly and maintenance of cilia depend on intraflagellar transport (IFT). Besides ciliary localization, most IFT proteins accumulate at basal bodies. However, little is known about the molecular mechanism of basal body targeting of IFT proteins. We first identified the possible basal body-targeting sequence in IFT46 by expressing IFT46 truncation constructs in an ift46-1 mutant. The C-terminal sequence between residues 246-321, termed BBTS3, was sufficient to target YFP to basal bodies in the ift46-1 strain. Interestingly, BBTS3 is also responsible for the ciliary targeting of IFT46. BBTS3::YFP moves bidirectionally in flagella and interacts with other IFT complex B (IFT-B) proteins. Using IFT and motor mutants, we show that the basal body localization of IFT46 depends on IFT52, but not on IFT81, IFT88, IFT122, FLA10 or DHC1b. IFT52 interacts with IFT46 through residues L285 and L286 of IFT46 and recruits it to basal bodies. Ectopic expression of the C-terminal domain of IFT52 in the nucleus resulted in accumulation of IFT46 in nuclei. These data suggest that IFT52 and IFT46 can preassemble as a complex in the cytoplasm, which is then targeted to basal bodies.
Collapse
Affiliation(s)
- Bo Lv
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072, China.,University of Chinese Academy of Sciences, Beijing 100039, China
| | - Lei Wan
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072, China
| | - Michael Taschner
- Department of Structural Cell Biology, Max-Planck-Institute of Biochemistry, Martinsried D-82152, Germany
| | - Xi Cheng
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072, China.,University of Chinese Academy of Sciences, Beijing 100039, China
| | - Esben Lorentzen
- Department of Structural Cell Biology, Max-Planck-Institute of Biochemistry, Martinsried D-82152, Germany
| | - Kaiyao Huang
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072, China
| |
Collapse
|
44
|
Taschner M, Mourão A, Awasthi M, Basquin J, Lorentzen E. Structural basis of outer dynein arm intraflagellar transport by the transport adaptor protein ODA16 and the intraflagellar transport protein IFT46. J Biol Chem 2017; 292:7462-7473. [PMID: 28298440 DOI: 10.1074/jbc.m117.780155] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 03/03/2017] [Indexed: 11/06/2022] Open
Abstract
Motile cilia are found on unicellular organisms such as the green alga Chlamydomonas reinhardtii, on sperm cells, and on cells that line the trachea and fallopian tubes in mammals. The motility of cilia relies on a number of large protein complexes including the force-generating outer dynein arms (ODAs). The transport of ODAs into cilia has been previously shown to require the transport adaptor ODA16, as well as the intraflagellar transport (IFT) protein IFT46, but the molecular mechanism by which ODAs are recognized and transported into motile cilia is still unclear. Here, we determined the high-resolution crystal structure of C. reinhardtii ODA16 (CrODA16) and mapped the binding to IFT46 and ODAs. The CrODA16 structure revealed a small 80-residue N-terminal domain and a C-terminal 8-bladed β-propeller domain that are both required for the association with the N-terminal 147 residues of IFT46. The dissociation constant of the IFT46-ODA16 complex was 200 nm, demonstrating that CrODA16 associates with the IFT complex with an affinity comparable with that of the individual IFT subunits. Furthermore, we show, using ODAs extracted from the axonemes of C. reinhardtii, that the C-terminal β-propeller but not the N-terminal domain of CrODA16 is required for the interaction with ODAs. These data allowed us to present an architectural model for ODA16-mediated IFT of ODAs.
Collapse
Affiliation(s)
- Michael Taschner
- From the Department of Molecular Biology and Genetics, Aarhus University, DK-8000 Aarhus C, Denmark
| | - André Mourão
- the Institute of Structural Biology, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Mayanka Awasthi
- the Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland 20742, and
| | - Jerome Basquin
- the Department of Structural Cell Biology, Max-Planck-Institute of Biochemistry, D-82152 Martinsried, Germany
| | - Esben Lorentzen
- From the Department of Molecular Biology and Genetics, Aarhus University, DK-8000 Aarhus C, Denmark,
| |
Collapse
|
45
|
Badiner N, Taylor SP, Forlenza K, Lachman RS, Bamshad M, Nickerson D, Cohn DH, Krakow D. Mutations in DYNC2H1, the cytoplasmic dynein 2, heavy chain 1 motor protein gene, cause short-rib polydactyly type I, Saldino-Noonan type. Clin Genet 2017; 92:158-165. [PMID: 27925158 DOI: 10.1111/cge.12947] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 10/31/2016] [Accepted: 11/27/2016] [Indexed: 01/16/2023]
Abstract
The short-rib polydactyly syndromes (SRPS) are autosomal recessively inherited, genetically heterogeneous skeletal ciliopathies. SRPS phenotypes were historically categorized as types I-IV, with type I first delineated by Saldino and Noonan in 1972. Characteristic findings among all forms of SRP include short horizontal ribs, short limbs and polydactyly. The SRP type I phenotype is characterized by a very small thorax, extreme micromelia, very short, poorly mineralized long bones, and multiple organ system anomalies. To date, the molecular basis of this most severe type of SRP, also known as Saldino-Noonan syndrome, has not been determined. We identified three SRP cases that fit the original phenotypic description of SRP type I. In all three cases, exome sequence analysis revealed compound heterozygosity for mutations in DYNC2H1, which encodes the main component of the retrograde IFT A motor, cytoplasmic dynein 2 heavy chain 1. Thus SRP type I, II, III and asphyxiating thoracic dystrophy (ATD), which also result from DYNC2H1 mutations. Herein we describe the phenotypic features, radiographic findings, and molecular basis of SRP type I.
Collapse
Affiliation(s)
- N Badiner
- David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - S P Taylor
- Department of Human Genetics, Los Angeles, CA, USA
| | - K Forlenza
- Department of Orthopaedic Surgery, Los Angeles, CA, USA
| | - R S Lachman
- International Skeletal Dysplasia Registry at UCLA, Los Angeles, CA, USA
| | -
- University of Washington Center for Mendelian Genomics, Seattle, WA, USA
| | - M Bamshad
- University of Washington Center for Mendelian Genomics, Seattle, WA, USA.,Department of Genome Sciences, Seattle, WA, USA.,Department of Pediatrics, University of Washington, Seattle, WA, USA.,Division of Genetic Medicine, Seattle Children's Hospital, Seattle, WA, USA
| | - D Nickerson
- University of Washington Center for Mendelian Genomics, Seattle, WA, USA.,Department of Genome Sciences, Seattle, WA, USA
| | - D H Cohn
- Department of Orthopaedic Surgery, Los Angeles, CA, USA.,International Skeletal Dysplasia Registry at UCLA, Los Angeles, CA, USA.,Department of Developmental Cell and Molecular Biology, University of California at Los Angeles, Los Angeles, CA, USA
| | - D Krakow
- Department of Human Genetics, Los Angeles, CA, USA.,Department of Orthopaedic Surgery, Los Angeles, CA, USA.,International Skeletal Dysplasia Registry at UCLA, Los Angeles, CA, USA.,Department of Obstetrics and Gynecology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| |
Collapse
|
46
|
Mijalkovic J, Prevo B, Oswald F, Mangeol P, Peterman EJG. Ensemble and single-molecule dynamics of IFT dynein in Caenorhabditis elegans cilia. Nat Commun 2017; 8:14591. [PMID: 28230057 PMCID: PMC5331336 DOI: 10.1038/ncomms14591] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 01/13/2017] [Indexed: 12/14/2022] Open
Abstract
Cytoplasmic dyneins drive microtubule-based, minus-end directed transport in eukaryotic cells. Whereas cytoplasmic dynein 1 has been widely studied, IFT dynein has received far less attention. Here, we use fluorescence microscopy of labelled motors in living Caenorhabditis elegans to investigate IFT-dynein motility at the ensemble and single-molecule level. We find that while the kinesin composition of motor ensembles varies along the track, the amount of dynein remains relatively constant. Remarkably, this does not result in directionality changes of cargo along the track, as has been reported for other opposite-polarity, tug-of-war motility systems. At the single-molecule level, IFT-dynein trajectories reveal unexpected dynamics, including diffusion at the base, and pausing and directional switches along the cilium. Stochastic simulations show that the ensemble IFT-dynein distribution depends upon the probability of single-motor directional switches. Our results provide quantitative insight into IFT-dynein dynamics in vivo, shedding light on the complex functioning of dynein motors in general.
Collapse
Affiliation(s)
- Jona Mijalkovic
- Department of Physics and LaserLaB Amsterdam, Vrije Universiteit Amsterdam, De Boelelaan 1081, Amsterdam 1081 HV, The Netherlands
| | - Bram Prevo
- Department of Physics and LaserLaB Amsterdam, Vrije Universiteit Amsterdam, De Boelelaan 1081, Amsterdam 1081 HV, The Netherlands
| | - Felix Oswald
- Department of Physics and LaserLaB Amsterdam, Vrije Universiteit Amsterdam, De Boelelaan 1081, Amsterdam 1081 HV, The Netherlands
| | - Pierre Mangeol
- Department of Physics and LaserLaB Amsterdam, Vrije Universiteit Amsterdam, De Boelelaan 1081, Amsterdam 1081 HV, The Netherlands
| | - Erwin J. G. Peterman
- Department of Physics and LaserLaB Amsterdam, Vrije Universiteit Amsterdam, De Boelelaan 1081, Amsterdam 1081 HV, The Netherlands
| |
Collapse
|
47
|
Girotra M, Srivastava S, Kulkarni A, Barbora A, Bobra K, Ghosal D, Devan P, Aher A, Jain A, Panda D, Ray K. The C-terminal tails of heterotrimeric kinesin-2 motor subunits directly bind to α-tubulin1: Possible implications for cilia-specific tubulin entry. Traffic 2017; 18:123-133. [PMID: 27976831 DOI: 10.1111/tra.12461] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Revised: 12/06/2016] [Accepted: 12/06/2016] [Indexed: 01/02/2023]
Abstract
The assembly of microtubule-based cytoskeleton propels the cilia and flagella growth. Previous studies have indicated that the kinesin-2 family motors transport tubulin into the cilia through intraflagellar transport. Here, we report a direct interaction between the C-terminal tail fragments of heterotrimeric kinesin-2 and α-tubulin1 isoforms in vitro. Blot overlay screen, affinity purification from tissue extracts, cosedimentation with subtilisin-treated microtubule and LC-ESI-MS/MS characterization of the tail-fragment-associated tubulin identified an association between the tail domains and α-tubulin1A/D isotype. The interaction was confirmed by Forster's resonance energy transfer assay in tissue-cultured cells. The overexpression of the recombinant tails in NIH3T3 cells affected the primary cilia growth, which was rescued by coexpression of a α-tubulin1 transgene. Furthermore, fluorescent recovery after photobleach analysis in the olfactory cilia of Drosophila indicated that tubulin is transported in a non-particulate form requiring kinesin-2. These results provide additional new insight into the mechanisms underlying selective tubulin isoform enrichment in the cilia.
Collapse
Affiliation(s)
- Mukul Girotra
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | - Shalini Srivastava
- Department of Biosciences and Biotechnology, Indian Institute of Technology Bombay, Mumbai, India
| | - Anuttama Kulkarni
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | - Ayan Barbora
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | - Kratika Bobra
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | - Debnath Ghosal
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | - Pavithra Devan
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | - Amol Aher
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | - Akanksha Jain
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | - Dulal Panda
- Department of Biosciences and Biotechnology, Indian Institute of Technology Bombay, Mumbai, India
| | - Krishanu Ray
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| |
Collapse
|
48
|
Jiang X, Hernandez D, Hernandez C, Ding Z, Nan B, Aufderheide K, Qin H. IFT57 stabilizes assembled intraflagellar transport complex and mediates transport of motility-related flagellar cargo. J Cell Sci 2017; 130:879-891. [DOI: 10.1242/jcs.199117] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 01/11/2017] [Indexed: 11/20/2022] Open
Abstract
Intraflagellar Transport (IFT) is essential for flagella/cilia assembly and maintenance. Recent biochemical studies have shown that IFT-B is comprised of two subcomplexes, IFT-B1 and IFT-B2. The IFT-B2 subunit IFT57 lies at the interface between IFT-B1 and IFT-B2. Here, using a Chlamydomonas mutant for IFT57, we tested whether IFT57 is critical for IFT-B complex assembly by bridging IFT-B1 and IFT-B2 together. In the ift57-1 mutant, IFT57 and other IFT-B proteins were greatly reduced at the whole-cell level. Strikingly, in the protease free flagellar compartment, while the level of IFT57 was reduced, other IFT particle proteins were not concomitantly reduced but present at the wild-type level. The IFT movement of the IFT57-deficient-IFT particles was also unchanged. Moreover, IFT57 depletion disrupted the flagellar waveform, leading to cell swimming defects. Analysis of the mutant flagellar protein composition showed that certain axonemal proteins were altered. Taken together, these findings suggest that IFT57 does not play an essential structural role in the IFT particle complex but rather functions to prevent it from degradation. Additionally, IFT57 is involved in transporting specific motility-related proteins.
Collapse
Affiliation(s)
- Xue Jiang
- Department of Biology, Texas A&M University, College Station, Texas 77843-3258, USA
| | - Daniel Hernandez
- Department of Biology, Texas A&M University, College Station, Texas 77843-3258, USA
| | - Catherine Hernandez
- Department of Biology, Texas A&M University, College Station, Texas 77843-3258, USA
| | - Zhaolan Ding
- Department of Biology, Texas A&M University, College Station, Texas 77843-3258, USA
| | - Beiyan Nan
- Department of Biology, Texas A&M University, College Station, Texas 77843-3258, USA
| | - Karl Aufderheide
- Department of Biology, Texas A&M University, College Station, Texas 77843-3258, USA
| | - Hongmin Qin
- Department of Biology, Texas A&M University, College Station, Texas 77843-3258, USA
| |
Collapse
|
49
|
Rezvani K. UBXD Proteins: A Family of Proteins with Diverse Functions in Cancer. Int J Mol Sci 2016; 17:ijms17101724. [PMID: 27754413 PMCID: PMC5085755 DOI: 10.3390/ijms17101724] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 09/24/2016] [Accepted: 10/08/2016] [Indexed: 12/15/2022] Open
Abstract
The UBXD family is a diverse group of UBX (ubiquitin-regulatory X) domain-containing proteins in mammalian cells. Members of this family contain a UBX domain typically located at the carboxyl-terminal of the protein. In contrast to the UBX domain shared by all members of UBXD family, the amino-terminal domains are diverse and appear to carry out different roles in a subcellular localization-dependent manner. UBXD proteins are principally associated with the endoplasmic reticulum (ER), where they positively or negatively regulate the ER-associated degradation machinery (ERAD). The distinct protein interaction networks of UBXD proteins allow them to have specific functions independent of the ERAD pathway in a cell type- and tissue context-dependent manner. Recent reports have illustrated that a number of mammalian members of the UBXD family play critical roles in several proliferation and apoptosis pathways dysregulated in selected types of cancer. This review covers recent advances that elucidate the therapeutic potential of selected members of the UBXD family that can contribute to tumor growth.
Collapse
Affiliation(s)
- Khosrow Rezvani
- Division of Basic Biomedical Sciences, Sanford School of Medicine, The University of South Dakota, 414 E. Clark Street, Lee Medical Building, Vermillion, SD 57069, USA.
| |
Collapse
|
50
|
The trafficking of bacterial type rhodopsins into the Chlamydomonas eyespot and flagella is IFT mediated. Sci Rep 2016; 6:34646. [PMID: 27694882 PMCID: PMC5046144 DOI: 10.1038/srep34646] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 09/14/2016] [Indexed: 11/08/2022] Open
Abstract
The bacterial type rhodopsins are present in all the three domains of life. In contrast to the animal type rhodopsin that performs mainly sensory functions in higher eukaryotes, the bacterial type rhodopsin could function as ion channel, pumps and as sensory proteins. The functioning of rhodopsin in higher eukaryotes requires the transport of rhodopsin from its site of synthesis to the ciliated outer segment of the photoreceptive cells. However, the trafficking of bacterial type rhodopsin from its site of synthesis to the position of action is not characterized. Here we present the first report for the existence of an IFT-interactome mediated trafficking of the bacterial type rhodopsins into eyespot and flagella of the Chlamydomonas. We show that there is a light-dependent, dynamic localization of rhodopsins between flagella and eyespot of Chlamydomonas. The involvement of IFT components in the rhodopsin trafficking was elucidated by the use of conditional IFT mutants. We found that rhodopsin can be co-immunoprecipitated with the components of IFT machinery and with other protein components required for the IFT-cargo complex formation. These findings show that light-regulated localization of rhodopsin is not restricted to animals thereby suggesting that rhodopsin trafficking is an IFT dependent ancient process.
Collapse
|