1
|
Wang J, Li Y, Xu F, Xu H, Han Z, Liu L, Song Y. Candidate powdery mildew resistance gene in wheat landrace cultivar Hongyoumai discovered using SLAF and BSR-seq. BMC PLANT BIOLOGY 2022; 22:83. [PMID: 35196978 PMCID: PMC8864798 DOI: 10.1186/s12870-022-03448-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 01/27/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Wheat powdery mildew, caused by Blumeria graminis f. sp. tritici (Bgt), is an important disease affecting wheat production. Planting resistant cultivars is an effective, safe, and economical method to control the disease. Map construction using next-generation sequencing facilitates gene cloning based on genetic maps and high-throughput gene expression studies. In this study, specific-locus amplified fragment sequencing (SLAF) was used to analyze Huixianhong (female parent), Hongyoumai (male parent) and two bulks (50 homozygous resistant and 50 susceptible F2:3 segregating population derived from Huixianhong × Hongyoumai to determine a candidate gene region for resistance to powdery mildew on the long arm of chromosome 7B in wheat landrace Hongyoumai. Gene expressions of candidate regions were obtained using bulked segregant RNA-seq in 10 homozygous resistant and 10 susceptible progeny inoculated by Bgt.. Candidate genes were obtained using homology-based cloning in two parents. RESULTS A 12.95 Mb long candidate region in chromosome 7BL was identified, and five blocks in SLAF matched the scaffold of the existing co-segregation marker Xmp1207. In the candidate region, 39 differentially expressed genes were identified using RNA-seq, including RGA4 (Wheat_Chr_Trans_newGene_16173)-a disease resistance protein whose expression was upregulated in the resistant pool at 16 h post inoculation with Bgt. Quantitative reverse transcription (qRT)-PCR was used to further verify the expression patterns in Wheat_Chr_Trans_newGene_16173 that were significantly different in the two parents Hongyoumai and Huixianhong. Two RGA4 genes were cloned based on the sequence of Wheat_Chr_Trans_newGene_16173, respectively from two parent and there was one amino acid mutation: S to G in Huixianhong on 510 loci. CONCLUSION The combination of SLAF and BSR-seq methods identified a candidate region of pmHYM in the chromosome 7BL of wheat landrace cultivar Hongyoumai. Comparative analysis between the scaffold of co-segregating marker Xmp1207 and SLAF-seq showed five matching blocks. qRT-PCR showed that only the resistant gene Wheat_Chr_Trans_newGene_16173 was significantly upregulated in the resistant parent Hongyoumai after inoculation with Bgt, and gene cloning revealed a difference in one amino acid between the two parent genes, indicating it was involved in the resistance response and may be the candidate resistance gene pmHYM.
Collapse
Affiliation(s)
- Junmei Wang
- Institute of Plant Protection, Henan Academy of Agricultural Sciences; Key Laboratory of Crop Integrated Pest Management of the Southern of North China, Ministry of Agriculture of the People's Republic of China, Zhengzhou, 450002, China
| | - Yahong Li
- Institute of Plant Protection, Henan Academy of Agricultural Sciences; Key Laboratory of Crop Integrated Pest Management of the Southern of North China, Ministry of Agriculture of the People's Republic of China, Zhengzhou, 450002, China
| | - Fei Xu
- Institute of Plant Protection, Henan Academy of Agricultural Sciences; Key Laboratory of Crop Integrated Pest Management of the Southern of North China, Ministry of Agriculture of the People's Republic of China, Zhengzhou, 450002, China
| | - Hongxing Xu
- School of Life Sciences, Henan University, Kaifeng, 475001, China
| | - Zihang Han
- Institute of Plant Protection, Henan Academy of Agricultural Sciences; Key Laboratory of Crop Integrated Pest Management of the Southern of North China, Ministry of Agriculture of the People's Republic of China, Zhengzhou, 450002, China
| | - Lulu Liu
- Institute of Plant Protection, Henan Academy of Agricultural Sciences; Key Laboratory of Crop Integrated Pest Management of the Southern of North China, Ministry of Agriculture of the People's Republic of China, Zhengzhou, 450002, China
| | - Yuli Song
- Institute of Plant Protection, Henan Academy of Agricultural Sciences; Key Laboratory of Crop Integrated Pest Management of the Southern of North China, Ministry of Agriculture of the People's Republic of China, Zhengzhou, 450002, China.
| |
Collapse
|
2
|
Islam MA, Rony SA, Rahman MB, Cinar MU, Villena J, Uddin MJ, Kitazawa H. Improvement of Disease Resistance in Livestock: Application of Immunogenomics and CRISPR/Cas9 Technology. Animals (Basel) 2020; 10:E2236. [PMID: 33260762 PMCID: PMC7761152 DOI: 10.3390/ani10122236] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/18/2020] [Accepted: 11/26/2020] [Indexed: 01/09/2023] Open
Abstract
Disease occurrence adversely affects livestock production and animal welfare, and have an impact on both human health and public perception of food-animals production. Combined efforts from farmers, animal scientists, and veterinarians have been continuing to explore the effective disease control approaches for the production of safe animal-originated food. Implementing the immunogenomics, along with genome editing technology, has been considering as the key approach for safe food-animal production through the improvement of the host genetic resistance. Next-generation sequencing, as a cutting-edge technique, enables the production of high throughput transcriptomic and genomic profiles resulted from host-pathogen interactions. Immunogenomics combine the transcriptomic and genomic data that links to host resistance to disease, and predict the potential candidate genes and their genomic locations. Genome editing, which involves insertion, deletion, or modification of one or more genes in the DNA sequence, is advancing rapidly and may be poised to become a commercial reality faster than it has thought. The clustered regulatory interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) [CRISPR/Cas9] system has recently emerged as a powerful tool for genome editing in agricultural food production including livestock disease management. CRISPR/Cas9 mediated insertion of NRAMP1 gene for producing tuberculosis resistant cattle, and deletion of CD163 gene for producing porcine reproductive and respiratory syndrome (PRRS) resistant pigs are two groundbreaking applications of genome editing in livestock. In this review, we have highlighted the technological advances of livestock immunogenomics and the principles and scopes of application of CRISPR/Cas9-mediated targeted genome editing in animal breeding for disease resistance.
Collapse
Affiliation(s)
- Md. Aminul Islam
- Department of Medicine, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh;
- Food and Feed Immunology Group, Graduate School of Agricultural University Science, Tohoku University, Sendai 980-8572, Japan;
- Livestock Immunology Unit, International Research and Education Centre for Food and Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
| | - Sharmin Aqter Rony
- Department of Parasitology, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh;
| | - Mohammad Bozlur Rahman
- Department of Livestock Services, Krishi Khamar Sarak, Farmgate, Dhaka 1215, Bangladesh;
| | - Mehmet Ulas Cinar
- Department of Animal Science, Faculty of Agriculture, Erciyes University, 38039 Kayseri, Turkey;
- Department of Veterinary Microbiology & Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA 99164, USA
| | - Julio Villena
- Food and Feed Immunology Group, Graduate School of Agricultural University Science, Tohoku University, Sendai 980-8572, Japan;
- Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli, (CERELA), Tucuman 4000, Argentina
| | - Muhammad Jasim Uddin
- Department of Medicine, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh;
- School of Veterinary Science, Gatton Campus, The University of Queensland, Brisbane 4072, Australia
| | - Haruki Kitazawa
- Food and Feed Immunology Group, Graduate School of Agricultural University Science, Tohoku University, Sendai 980-8572, Japan;
- Livestock Immunology Unit, International Research and Education Centre for Food and Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
| |
Collapse
|
3
|
Schut CH, Farzan A, Fraser RS, Ainslie-Garcia MH, Friendship RM, Lillie BN. Identification of single-nucleotide variants associated with susceptibility to Salmonella in pigs using a genome-wide association approach. BMC Vet Res 2020; 16:138. [PMID: 32414370 PMCID: PMC7227190 DOI: 10.1186/s12917-020-02344-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 04/29/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Salmonella enterica serovars are a major cause of foodborne illness and have a substantial impact on global human health. In Canada, Salmonella is commonly found on swine farms and the increasing concern about drug use and antimicrobial resistance associated with Salmonella has promoted research into alternative control methods, including selecting for pig genotypes associated with resistance to Salmonella. The objective of this study was to identify single-nucleotide variants in the pig genome associated with Salmonella susceptibility using a genome-wide association approach. Repeated blood and fecal samples were collected from 809 pigs in 14 groups on farms and tonsils and lymph nodes were collected at slaughter. Sera were analyzed for Salmonella IgG antibodies by ELISA and feces and tissues were cultured for Salmonella. Pig DNA was genotyped using a custom 54 K single-nucleotide variant oligo array and logistic mixed-models used to identify SNVs associated with IgG seropositivity, shedding, and tissue colonization. RESULTS Variants in/near PTPRJ (p = 0.0000066), ST6GALNAC3 (p = 0.0000099), and DCDC2C (n = 3, p < 0.0000086) were associated with susceptibility to Salmonella, while variants near AKAP12 (n = 3, p < 0.0000358) and in RALGAPA2 (p = 0.0000760) may be associated with susceptibility. CONCLUSIONS Further study of the variants and genes identified may improve our understanding of neutrophil recruitment, intracellular killing of bacteria, and/or susceptibility to Salmonella and may help future efforts to reduce Salmonella on-farm through genetic approaches.
Collapse
Affiliation(s)
- Corinne H Schut
- Department of Pathobiology, University of Guelph, 50 Stone Rd E, Guelph, ON, N1G 2W1, Canada
| | - Abdolvahab Farzan
- Department of Pathobiology, University of Guelph, 50 Stone Rd E, Guelph, ON, N1G 2W1, Canada
- Department of Population Medicine, University of Guelph, Guelph, Ontario, Canada
| | - Russell S Fraser
- Department of Pathobiology, University of Guelph, 50 Stone Rd E, Guelph, ON, N1G 2W1, Canada
- Present address: Department of Pathology and Microbiology, Atlantic Veterinary College, University of PEI, Charlottetown, Prince Edward Island, Canada
| | | | - Robert M Friendship
- Department of Population Medicine, University of Guelph, Guelph, Ontario, Canada
| | - Brandon N Lillie
- Department of Pathobiology, University of Guelph, 50 Stone Rd E, Guelph, ON, N1G 2W1, Canada.
| |
Collapse
|
4
|
Ni D, Huang X, Wang Z, Deng L, Zeng L, Zhang Y, Lu D, Zou X. Expression characterization and transcription regulation analysis of porcine Yip1 domain family member 3 gene. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2019; 33:398-407. [PMID: 31480180 PMCID: PMC7054614 DOI: 10.5713/ajas.19.0076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 06/20/2019] [Indexed: 01/17/2023]
Abstract
Objective The Yip1 domain family (YIPF) proteins were proposed to function in endoplasmic reticulum (ER) to Golgi transport and maintenance of the morphology of the Golgi, which were homologues of yeast Yip1p and Yif1p. YIPF3, the member 3 of YIPF family was a homolog of Yif1p. The aim of present study was to investigate the expression and regulation mechanism of porcine YIPF3. Methods Quantitative realtime polymerase chain reaction (qPCR) was used to analyze porcine YIPF3 mRNA expression pattern in different tissues and pig kidney epithelial (PK15) cells stimulated by polyinosine-polycytidylic acid (poly [I:C]). Site-directed mutations combined with dual luciferase reporter assays and electrophoretic mobility shift assay (EMSA) were employed to reveal transcription regulation mechanism of porcine YIPF3. Results Results showed that the mRNA of porcine YIPF3 (pYIPF3) was widely expressed with the highest levels in lymph and lung followed by spleen and liver, while weak in heart and skeletal muscle. Subcellular localization results indicated that it expressed in Golgi apparatus and plasma membranes. Upon stimulation with poly (I:C), the level of this gene was dramatically up-regulated in a time- and concentration-dependent manner. pYIPF3 core promoter region harbored three cis-acting elements which were bound by ETS proto-oncogene 2 (ETS2), zinc finger and BTB domain containing 4 (ZBTB4), and zinc finger and BTB domain containing 14 (ZBTB14), respectively. In which, ETS2 and ZBTB4 both promoted pYIPF3 transcription activity while ZBTB14 inhibited it, and these three transcription factors all played important regulation roles in tumorigenesis and apoptosis. Conclusion The pYIPF3 mRNA expression was regulated by ETS2, ZBTB4, and ZBTB14, and its higher expression in immune organs might contribute to enhancing ER to Golgi transport of proteins, thus adapting to the immune response.
Collapse
Affiliation(s)
- Dongjiao Ni
- Key Laboratory of Biological Feed of Ministry of Agriculture and Rural Affairs, Boen Biotechnology Co. Ltd, Guangzhou 511400, China
| | - Xiang Huang
- Key Laboratory of Biological Feed of Ministry of Agriculture and Rural Affairs, Boen Biotechnology Co. Ltd, Guangzhou 511400, China
| | - Zhibo Wang
- Key Laboratory of Biological Feed of Ministry of Agriculture and Rural Affairs, Boen Biotechnology Co. Ltd, Guangzhou 511400, China
| | - Lin Deng
- Key Laboratory of Biological Feed of Ministry of Agriculture and Rural Affairs, Boen Biotechnology Co. Ltd, Guangzhou 511400, China
| | - Li Zeng
- Key Laboratory of Biological Feed of Ministry of Agriculture and Rural Affairs, Boen Biotechnology Co. Ltd, Guangzhou 511400, China
| | - Yiwei Zhang
- Key Laboratory of Biological Feed of Ministry of Agriculture and Rural Affairs, Boen Biotechnology Co. Ltd, Guangzhou 511400, China
| | - Dongdong Lu
- Key Laboratory of Biological Feed of Ministry of Agriculture and Rural Affairs, Boen Biotechnology Co. Ltd, Guangzhou 511400, China
| | - Xinhua Zou
- Key Laboratory of Biological Feed of Ministry of Agriculture and Rural Affairs, Boen Biotechnology Co. Ltd, Guangzhou 511400, China
| |
Collapse
|
5
|
Giles TA, Belkhiri A, Barrow PA, Foster N. Molecular approaches to the diagnosis and monitoring of production diseases in pigs. Res Vet Sci 2017; 114:266-272. [PMID: 28535467 PMCID: PMC7118804 DOI: 10.1016/j.rvsc.2017.05.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 04/10/2017] [Accepted: 05/12/2017] [Indexed: 12/31/2022]
Abstract
Production disease in pigs is caused by a variety of different pathogens, mainly enteric and respiratory and can result in significant economic loss. Other factors such as stress, poor husbandry and nutrition can also contribute to an animal's susceptibility to disease. Molecular biomarkers of production disease could be of immense value by improving diagnosis and risk analysis to determine best practice with an impact on increased economic output and animal welfare. In addition to the use of multiplex PCR or microarrays to detect individual or mixed pathogens during infection, these technologies can also be used to monitor the host response to infection via gene expression. The patterns of gene expression associated with cellular damage or initiation of the early immune response may indicate the type of pathology and, by extension the types of pathogen involved. Molecular methods can therefore be used to monitor both the presence of a pathogen and the host response to it during production disease. The field of biomarker discovery and implementation is expanding as technologies such as microarrays and next generation sequencing become more common. Whilst a large number of studies have been carried out in human medicine, further work is needed to identify molecular biomarkers in veterinary medicine and in particular those associated with production disease in the pig industry. The pig transcriptome is highly complex and still not fully understood. Further gene expression studies are needed to identify molecular biomarkers which may have predictive value in identifying the environmental, nutritional and other risk factors which are associated with production diseases in pigs.
Collapse
Affiliation(s)
- Timothy A Giles
- School of Veterinary Medicine and Science, University of Nottingham, Leicestershire LE125RD, United Kingdom.
| | - Aouatif Belkhiri
- School of Veterinary Medicine and Science, University of Nottingham, Leicestershire LE125RD, United Kingdom.
| | - Paul A Barrow
- School of Veterinary Medicine and Science, University of Nottingham, Leicestershire LE125RD, United Kingdom.
| | - Neil Foster
- School of Veterinary Medicine and Science, University of Nottingham, Leicestershire LE125RD, United Kingdom.
| |
Collapse
|
6
|
Ye MH, Bao H, Meng Y, Guan LL, Stothard P, Plastow G. Comparative transcriptomic analysis of porcine peripheral blood reveals differentially expressed genes from the cytokine-cytokine receptor interaction pathway related to health status. Genome 2017; 60:1021-1028. [PMID: 28763624 DOI: 10.1139/gen-2017-0074] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
While some research has looked into the host genetic response in pigs challenged with specific viruses or bacteria, few studies have explored the expression changes of transcripts in the peripheral blood of sick pigs that may be infected with multiple pathogens on farms. In this study, the architecture of the peripheral blood transcriptome of 64 Duroc sired commercial pigs, including 18 healthy animals at entry to a growing facility (set as a control) and 23 pairs of samples from healthy and sick pen mates, was generated using RNA-Seq technology. In total, 246 differentially expressed genes were identified to be specific to the sick animals. Functional enrichment analysis for those genes revealed that the over-represented gene ontology terms for the biological processes category were exclusively immune activity related. The cytokine-cytokine receptor interaction pathway was significantly enriched. Nine functional genes from this pathway encoding members (as well as their receptors) of the interleukins, chemokines, tumor necrosis factors, colony stimulating factors, activins, and interferons exhibited significant transcriptional alteration in sick animals. Our results suggest a subset of novel marker genes that may be useful candidate genes in the evaluation and prediction of health status in pigs under commercial production conditions.
Collapse
Affiliation(s)
- M H Ye
- a Department of Agricultural, Food and Nutritional Science, University of Alberta, 1400 College Plaza, 8215 112 Street, Edmonton, AB T6G 2C8, Canada.,b College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, China
| | - H Bao
- a Department of Agricultural, Food and Nutritional Science, University of Alberta, 1400 College Plaza, 8215 112 Street, Edmonton, AB T6G 2C8, Canada
| | - Y Meng
- a Department of Agricultural, Food and Nutritional Science, University of Alberta, 1400 College Plaza, 8215 112 Street, Edmonton, AB T6G 2C8, Canada
| | - L L Guan
- a Department of Agricultural, Food and Nutritional Science, University of Alberta, 1400 College Plaza, 8215 112 Street, Edmonton, AB T6G 2C8, Canada
| | - P Stothard
- a Department of Agricultural, Food and Nutritional Science, University of Alberta, 1400 College Plaza, 8215 112 Street, Edmonton, AB T6G 2C8, Canada
| | - G Plastow
- a Department of Agricultural, Food and Nutritional Science, University of Alberta, 1400 College Plaza, 8215 112 Street, Edmonton, AB T6G 2C8, Canada
| |
Collapse
|
7
|
Koltes DA, Gabler NK. Characterization of porcine intestinal enteroid cultures under a lipopolysaccharide challenge1. J Anim Sci 2016. [DOI: 10.2527/jas.2015-9793] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Affiliation(s)
- D. A. Koltes
- Department of Animal Science, Iowa State University, Ames 50011
- Department of Poultry Science, University of Arkansas Division of Agriculture, Fayetteville 72701
| | - N. K. Gabler
- Department of Animal Science, Iowa State University, Ames 50011
| |
Collapse
|
8
|
Identification of pleiotropic genes and gene sets underlying growth and immunity traits: a case study on Meishan pigs. Animal 2015; 10:550-7. [PMID: 26689779 DOI: 10.1017/s1751731115002761] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Both growth and immune capacity are important traits in animal breeding. The animal quantitative trait loci (QTL) database is a valuable resource and can be used for interpreting the genetic mechanisms that underlie growth and immune traits. However, QTL intervals often involve too many candidate genes to find the true causal genes. Therefore, the aim of this study was to provide an effective annotation pipeline that can make full use of the information of Gene Ontology terms annotation, linkage gene blocks and pathways to further identify pleiotropic genes and gene sets in the overlapping intervals of growth-related and immunity-related QTLs. In total, 55 non-redundant QTL overlapping intervals were identified, 1893 growth-related genes and 713 immunity-related genes were further classified into overlapping intervals and 405 pleiotropic genes shared by the two gene sets were determined. In addition, 19 pleiotropic gene linkage blocks and 67 pathways related to immunity and growth traits were discovered. A total of 343 growth-related genes and 144 immunity-related genes involved in pleiotropic pathways were also identified, respectively. We also sequenced and genotyped 284 individuals from Chinese Meishan pigs and European pigs and mapped the single nucleotide polymorphisms (SNPs) to the pleiotropic genes and gene sets that we identified. A total of 971 high-confidence SNPs were mapped to the pleiotropic genes and gene sets that we identified, and among them 743 SNPs were statistically significant in allele frequency between Meishan and European pigs. This study explores the relationship between growth and immunity traits from the view of QTL overlapping intervals and can be generalized to explore the relationships between other traits.
Collapse
|
9
|
Callol A, Reyes-López FE, Roig FJ, Goetz G, Goetz FW, Amaro C, MacKenzie SA. An Enriched European Eel Transcriptome Sheds Light upon Host-Pathogen Interactions with Vibrio vulnificus. PLoS One 2015. [PMID: 26207370 PMCID: PMC4514713 DOI: 10.1371/journal.pone.0133328] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Infectious diseases are one of the principal bottlenecks for the European eel recovery. The aim of this study was to develop a new molecular tool to be used in host-pathogen interaction experiments in the eel. To this end, we first stimulated adult eels with different pathogen-associated molecular patterns (PAMPs), extracted RNA from the immune-related tissues and sequenced the transcriptome. We obtained more than 2x106 reads that were assembled and annotated into 45,067 new descriptions with a notable representation of novel transcripts related with pathogen recognition, signal transduction and the immune response. Then, we designed a DNA-microarray that was used to analyze the early immune response against Vibrio vulnificus, a septicemic pathogen that uses the gills as the portal of entry into the blood, as well as the role of the main toxin of this species (RtxA13) on this early interaction. The gill transcriptomic profiles obtained after bath infecting eels with the wild type strain or with a mutant deficient in rtxA13 were analyzed and compared. Results demonstrate that eels react rapidly and locally against the pathogen and that this immune-response is rtxA13-dependent as transcripts related with cell destruction were highly up-regulated only in the gills from eels infected with the wild-type strain. Furthermore, significant differences in the immune response against the wild type and the mutant strain also suggest that host survival after V. vulnificus infection could depend on an efficient local phagocytic activity. Finally, we also found evidence of the presence of an interbranchial lymphoid tissue in European eel gills although further experiments will be necessary to identify such tissue.
Collapse
Affiliation(s)
- Agnès Callol
- Departament de Microbiologia i Ecologia, Universitat de Valencia, Burjassot, Spain
- Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Felipe E. Reyes-López
- Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, Spain
- Department de Biologia cel·lular, Fisiologia Animal i Immunologia, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Francisco J. Roig
- Departament de Microbiologia i Ecologia, Universitat de Valencia, Burjassot, Spain
| | - Giles Goetz
- Northwest Fisheries Science Center, Seattle, United States of America
| | | | - Carmen Amaro
- Departament de Microbiologia i Ecologia, Universitat de Valencia, Burjassot, Spain
| | - Simon A. MacKenzie
- Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, Spain
- Institute of Aquaculture, University of Stirling, Stirling, United Kingdom
- * E-mail:
| |
Collapse
|
10
|
Infection dynamics and acute phase response of an Actinobacillus pleuropneumoniae field isolate of moderate virulence in pigs. Vet Microbiol 2014; 173:332-9. [DOI: 10.1016/j.vetmic.2014.08.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2014] [Revised: 07/31/2014] [Accepted: 08/14/2014] [Indexed: 11/18/2022]
|
11
|
Wang R, Sun L, Bao L, Zhang J, Jiang Y, Yao J, Song L, Feng J, Liu S, Liu Z. Bulk segregant RNA-seq reveals expression and positional candidate genes and allele-specific expression for disease resistance against enteric septicemia of catfish. BMC Genomics 2013; 14:929. [PMID: 24373586 PMCID: PMC3890627 DOI: 10.1186/1471-2164-14-929] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Accepted: 12/18/2013] [Indexed: 01/10/2023] Open
Abstract
Background The application of RNA-seq has accelerated gene expression profiling and identification of gene-associated SNPs in many species. However, the integrated studies of gene expression along with SNP mapping have been lacking. Coupling of RNA-seq with bulked segregant analysis (BSA) should allow correlation of expression patterns and associated SNPs with the phenotypes. Results In this study, we demonstrated the use of bulked segregant RNA-seq (BSR-Seq) for the analysis of differentially expressed genes and associated SNPs with disease resistance against enteric septicemia of catfish (ESC). A total of 1,255 differentially expressed genes were found between resistant and susceptible fish. In addition, 56,419 SNPs residing on 4,304 unique genes were identified as significant SNPs between susceptible and resistant fish. Detailed analysis of these significant SNPs allowed differentiation of significant SNPs caused by genetic segregation and those caused by allele-specific expression. Mapping of the significant SNPs, along with analysis of differentially expressed genes, allowed identification of candidate genes underlining disease resistance against ESC disease. Conclusions This study demonstrated the use of BSR-Seq for the identification of genes involved in disease resistance against ESC through expression profiling and mapping of significantly associated SNPs. BSR-Seq is applicable to analysis of genes underlining various performance and production traits without significant investment in the development of large genotyping platforms such as SNP arrays.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Zhanjiang Liu
- The Fish Molecular Genetics and Biotechnology Laboratory, Department of Fisheries and Allied Aquacultures and Program of Cell and Molecular Biosciences, Aquatic Genomics Unit, Auburn University, 203 Swingle Hall, Auburn, AL 36849, USA.
| |
Collapse
|
12
|
Abstract
The gastrointestinal tract (GIT) microbiomes of production animals are now firmly established as a key feature underscoring animal health, development, and productivity. In particular, early gut colonization is critically important to the morphological and immunological development of the GIT, development of a functional fermentative environment, and neonatal resistance to pathogenic challenge. Although perturbations of an animal's GIT microbiome at any age can have profound consequences, perturbations during early GIT development can be particularly severe and result in significant and long-lasting sequelae. As the GIT microbiome matures, it exhibits significant diversity, ostensibly an important indicator of ecosystem health. Recognition of the immense importance of the GIT microbiota to the host has led to the development of probiotic and prebiotic feedstuffs with the express aim of ensuring animal health. We herein review the current collective understanding of the GIT microbiota of production animals.
Collapse
Affiliation(s)
- Carl J Yeoman
- Department of Animal and Range Sciences, Montana State University, Bozeman, Montana 59717-2900;
| | | |
Collapse
|