1
|
Porsch F, Binder CJ. Autoimmune diseases and atherosclerotic cardiovascular disease. Nat Rev Cardiol 2024; 21:780-807. [PMID: 38937626 DOI: 10.1038/s41569-024-01045-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/28/2024] [Indexed: 06/29/2024]
Abstract
Autoimmune diseases are associated with a dramatically increased risk of atherosclerotic cardiovascular disease and its clinical manifestations. The increased risk is consistent with the notion that atherogenesis is modulated by both protective and disease-promoting immune mechanisms. Notably, traditional cardiovascular risk factors such as dyslipidaemia and hypertension alone do not explain the increased risk of cardiovascular disease associated with autoimmune diseases. Several mechanisms have been implicated in mediating the autoimmunity-associated cardiovascular risk, either directly or by modulating the effect of other risk factors in a complex interplay. Aberrant leukocyte function and pro-inflammatory cytokines are central to both disease entities, resulting in vascular dysfunction, impaired resolution of inflammation and promotion of chronic inflammation. Similarly, loss of tolerance to self-antigens and the generation of autoantibodies are key features of autoimmunity but are also implicated in the maladaptive inflammatory response during atherosclerotic cardiovascular disease. Therefore, immunomodulatory therapies are potential efficacious interventions to directly reduce the risk of cardiovascular disease, and biomarkers of autoimmune disease activity could be relevant tools to stratify patients with autoimmunity according to their cardiovascular risk. In this Review, we discuss the pathophysiological aspects of the increased cardiovascular risk associated with autoimmunity and highlight the many open questions that need to be answered to develop novel therapies that specifically address this unmet clinical need.
Collapse
Affiliation(s)
- Florentina Porsch
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Christoph J Binder
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
2
|
Su X, Yu H, Lei Q, Chen X, Tong Y, Zhang Z, Yang W, Guo Y, Lin L. Systemic lupus erythematosus: pathogenesis and targeted therapy. MOLECULAR BIOMEDICINE 2024; 5:54. [PMID: 39472388 PMCID: PMC11522254 DOI: 10.1186/s43556-024-00217-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 10/16/2024] [Indexed: 11/02/2024] Open
Abstract
Systemic lupus erythematosus (SLE) is a multifaceted autoimmune disorder characterized by dysregulated immune responses and autoantibody production, which affects multiple organs and varies in clinical presentation and disease severity. The development of SLE is intricate, encompassing dysregulation within the immune system, a collapse of immunological tolerance, genetic susceptibilities to the disease, and a variety of environmental factors that can act as triggers. This review provides a comprehensive discussion of the pathogenesis and treatment strategies of SLE and focuses on the progress and status of traditional and emerging treatment strategies for SLE. Traditional treatment strategies for SLE have mainly employed non-specific approaches, including cytotoxic and immunosuppressive drugs, antimalarials, glucocorticoids, and NSAIDs. These strategies are effective in mitigating the effects of the disease, but they are not a complete cure and are often accompanied by adverse reactions. Emerging targeted therapeutic drugs, on the other hand, aim to control and treat SLE by targeting B and T cells, inhibiting their activation and function, as well as the abnormal activation of the immune system. A deeper understanding of the pathogenesis of SLE and the exploration of new targeted treatment strategies are essential to advance the treatment of this complex autoimmune disease.
Collapse
Affiliation(s)
- Xu Su
- Medical Research Center, College of Medicine, The Third People's Hospital of Chengdu (Affiliated Hospital of Southwest Jiaotong University, Southwest Jiaotong University, Chengdu, 610031, Sichuan, China
| | - Hui Yu
- Department of Urology, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, Chengdu, 610014, China
| | - Qingqiang Lei
- Center of Bone Metabolism and Repair, Department of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, 400000, China
| | - Xuerui Chen
- Medical Research Center, College of Medicine, The Third People's Hospital of Chengdu (Affiliated Hospital of Southwest Jiaotong University, Southwest Jiaotong University, Chengdu, 610031, Sichuan, China
| | - Yanli Tong
- Université Paris Cité, INSERM U1151, CNRS UMR8253, Institut Necker Enfants Malades, Paris, F-75015, France
| | - Zhongyang Zhang
- Department of Health Technology, The Danish National Research Foundation and Villum Foundation's Center IDUN, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Wenyong Yang
- Medical Research Center, College of Medicine, The Third People's Hospital of Chengdu (Affiliated Hospital of Southwest Jiaotong University, Southwest Jiaotong University, Chengdu, 610031, Sichuan, China.
- Department of Neurosurgery, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, Chengdu, 610014, China.
| | - Yuanbiao Guo
- Medical Research Center, College of Medicine, The Third People's Hospital of Chengdu (Affiliated Hospital of Southwest Jiaotong University, Southwest Jiaotong University, Chengdu, 610031, Sichuan, China.
| | - Liangbin Lin
- Medical Research Center, College of Medicine, The Third People's Hospital of Chengdu (Affiliated Hospital of Southwest Jiaotong University, Southwest Jiaotong University, Chengdu, 610031, Sichuan, China.
- Obesity and Metabolism Medicine-Engineering Integration Laboratory, Department of General Surgery, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, Chengdu, 610031, China.
- The Center of Gastrointestinal and Minimally Invasive Surgery, Department of General Surgery, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, Chengdu, 610031, China.
| |
Collapse
|
3
|
Bulusu SN, Mariaselvam CM, Shah S, Kommoju V, Kavadichanda C, Harichandrakumar KT, Thabah M, Negi VS. Type I interferon gene expression signature as a marker to predict response to cyclophosphamide based treatment in proliferative lupus nephritis. Lupus 2024; 33:1069-1081. [PMID: 39033304 DOI: 10.1177/09612033241266779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
OBJECTIVES To assess the longitudinal effect of cyclophosphamide (CYC) treatment on type-I interferon (IFN) signature in proliferative lupus nephritis (LN) and its role in predicting treatment response. METHODS Fifty-four biopsy proven proliferative LN patients scheduled to receive high-dose (HD) or low-dose (LD) CYC were recruited and followed up for six months. At six months, patients were classified as clinical responders (CR) or non-responders (NR) to treatment, using the EULAR/EDTA criteria. An IFN-gene based score (IGS) was developed from the mean log-transformed gene expression of MX1, OAS1, IFIT1, OASL, IFIT4, LY6E, IRF7 at baseline, three and six months. Longitudinal changes of IGS within and between groups were assessed and ΔIGS, which is the difference in IGS between baseline and three months was calculated. Independent predictors of non-response were identified and an ROC analysis was performed to evaluate their utility to predict NR. RESULTS There was a dynamic change in IGS within the HD, LD, CR, and NR groups. Compared to baseline, there was a significant decrease in IGS at three months in HD and LD groups (HD group: 2.01 to 1.14, p = .001; LD group = 2.01 to 0.81, p < .001), followed by a significant increase from three to six months in LD group (LD: 0.81 to 1.51, p = .03; HD: 1.14 to 1.54, p = .300). A decrease in IGS from baseline to three months was seen in both CR (2.13 to 0.79, p < .001) and NR groups (1.83 to 1.27, p = .046), and a significant increase from three to six months was observed only in the CR group (CR: 0.79 to 1.57, p = .006; NR: 1.27 to 1.46, p = 1). ΔIGS (baseline to three months) was higher in CR compared to NR group (-1.339 vs -0.563, p = .017). ROC analysis showed that the model comprising of 0.81 fold decrease in IGS from baseline to three months, endocapillary hypercellularity and interstitial inflammation on renal histopathology predicted non-response with a sensitivity of 83.3% and specificity of 71.4%. CONCLUSION In proliferative LN, treated with HD or LD-CYC, combined model comprising of decrease in IGS score by 0.81 fold from baseline to three months, along with important histopathological features such as endocapillary hypercellularity and interstitial inflammation had better predictive capability for non-response.
Collapse
Affiliation(s)
- Sree Nethra Bulusu
- Department of Clinical Immunology, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Puducherry, India
| | - Christina Mary Mariaselvam
- Department of Clinical Immunology, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Puducherry, India
| | - Sanket Shah
- Department of Clinical Immunology, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Puducherry, India
| | - Vallayyachari Kommoju
- Department of Clinical Immunology, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Puducherry, India
| | - Chengappa Kavadichanda
- Department of Clinical Immunology, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Puducherry, India
| | | | - Molly Thabah
- Department of Clinical Immunology, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Puducherry, India
| | - Vir Singh Negi
- Department of Clinical Immunology, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Puducherry, India
| |
Collapse
|
4
|
Gupta S, Yamada E, Nakamura H, Perez P, Pranzatelli TJ, Dominick K, Jang SI, Abed M, Martin D, Burbelo P, Zheng C, French B, Alevizos I, Khavandgar Z, Beach M, Pelayo E, Walitt B, Hasni S, Kaplan MJ, Tandon M, Magone MT, Kleiner DE, Chiorini JA, Baer A, Warner BM. Inhibition of JAK-STAT pathway corrects salivary gland inflammation and interferon driven immune activation in Sjögren's disease. Ann Rheum Dis 2024; 83:1034-1047. [PMID: 38527764 PMCID: PMC11250564 DOI: 10.1136/ard-2023-224842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 03/13/2024] [Indexed: 03/27/2024]
Abstract
OBJECTIVES Inflammatory cytokines that signal through the Janus kinases-signal transducer and activator of transcription (JAK-STAT) pathway, especially interferons (IFNs), are implicated in Sjögren's disease (SjD). Although inhibition of JAKs is effective in other autoimmune diseases, a systematic investigation of IFN-JAK-STAT signalling and the effect of JAK inhibitor (JAKi) therapy in SjD-affected human tissues has not been fully investigated. METHODS Human minor salivary glands (MSGs) and peripheral blood mononuclear cells (PBMCs) were investigated using bulk or single-cell (sc) RNA sequencing (RNAseq), immunofluorescence (IF) microscopy and flow cytometry. Ex vivo culture assays on PBMCs and primary salivary gland epithelial cell (pSGEC) lines were performed to model changes in target tissues before and after JAKi. RESULTS RNAseq and IF showed activated JAK-STAT pathway in SjD MSGs. Elevated IFN-stimulated gene (ISGs) expression associated with clinical variables (eg, focus scores, anti-SSA positivity). scRNAseq of MSGs exhibited cell type-specific upregulation of JAK-STAT and ISGs; PBMCs showed similar trends, including markedly upregulated ISGs in monocytes. Ex vivo studies showed elevated basal pSTAT levels in SjD MSGs and PBMCs that were corrected with JAKi. SjD-derived pSGECs exhibited higher basal ISG expressions and exaggerated responses to IFN-β, which were normalised by JAKi without cytotoxicity. CONCLUSIONS SjD patients' tissues exhibit increased expression of ISGs and activation of the JAK-STAT pathway in a cell type-dependent manner. JAKi normalises this aberrant signalling at the tissue level and in PBMCs, suggesting a putative viable therapy for SjD, targeting both glandular and extraglandular symptoms. Predicated on these data, a phase Ib/IIa randomised controlled trial to treat SjD with tofacitinib was initiated.
Collapse
Affiliation(s)
- Sarthak Gupta
- Lupus Clinical Trials Unit, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Eiko Yamada
- Salivary Disorder Unit, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, USA
| | - Hiroyuki Nakamura
- Adeno-Associated Virus Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, USA
| | - Paola Perez
- Salivary Disorder Unit, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, USA
| | - Thomas Jf Pranzatelli
- Adeno-Associated Virus Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, USA
| | - Kalie Dominick
- Salivary Disorder Unit, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, USA
| | - Shyh-Ing Jang
- Salivary Disorder Unit, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, USA
| | - Mehdi Abed
- Salivary Disorder Unit, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, USA
| | - Daniel Martin
- Genomics and Computational Biology Core, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, USA
| | - Peter Burbelo
- Genomics and Computational Biology Core, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, USA
| | - ChangYu Zheng
- Genomics and Computational Biology Core, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, USA
| | - Ben French
- Adeno-Associated Virus Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, USA
| | - Ilias Alevizos
- Salivary Disorder Unit, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, USA
| | - Zohreh Khavandgar
- Salivary Disorder Unit, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, USA
- NIDCR Sjögren's Disease Clinic, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, USA
| | - Margaret Beach
- NIDCR Sjögren's Disease Clinic, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, USA
| | - Eileen Pelayo
- NIDCR Sjögren's Disease Clinic, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, USA
| | - Brian Walitt
- NIDCR Sjögren's Disease Clinic, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, USA
| | - Sarfaraz Hasni
- Lupus Clinical Trials Unit, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Mariana J Kaplan
- Lupus Clinical Trials Unit, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland, USA
- Systemic Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Mayank Tandon
- Salivary Disorder Unit, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, USA
| | - Maria Teresa Magone
- Consult Services Section, National Eye Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - David E Kleiner
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - John A Chiorini
- Adeno-Associated Virus Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, USA
| | - Alan Baer
- NIDCR Sjögren's Disease Clinic, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, USA
| | - Blake M Warner
- Salivary Disorder Unit, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, USA
- NIDCR Sjögren's Disease Clinic, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
5
|
Sun HW, Zhang X, Shen CC. The shared circulating diagnostic biomarkers and molecular mechanisms of systemic lupus erythematosus and inflammatory bowel disease. Front Immunol 2024; 15:1354348. [PMID: 38774864 PMCID: PMC11106441 DOI: 10.3389/fimmu.2024.1354348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 04/22/2024] [Indexed: 05/24/2024] Open
Abstract
Background Systemic lupus erythematosus (SLE) is a multi-organ chronic autoimmune disease. Inflammatory bowel disease (IBD) is a common chronic inflammatory disease of the gastrointestinal tract. Previous studies have shown that SLE and IBD share common pathogenic pathways and genetic susceptibility, but the specific pathogenic mechanisms remain unclear. Methods The datasets of SLE and IBD were downloaded from the Gene Expression Omnibus (GEO). Differentially expressed genes (DEGs) were identified using the Limma package. Weighted gene coexpression network analysis (WGCNA) was used to determine co-expression modules related to SLE and IBD. Pathway enrichment was performed using Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis for co-driver genes. Using the Least AbsoluteShrinkage and Selection Operator (Lasso) regressionand Support Vector Machine-Recursive Feature Elimination (SVM-RFE), common diagnostic markers for both diseases were further evaluated. Then, we utilizedthe CIBERSORT method to assess the abundance of immune cell infiltration. Finally,we used the single-cell analysis to obtain the location of common diagnostic markers. Results 71 common driver genes were identified in the SLE and IBD cohorts based on the DEGs and module genes. KEGG and GO enrichment results showed that these genes were closely associated with positive regulation of programmed cell death and inflammatory responses. By using LASSO regression and SVM, five hub genes (KLRF1, GZMK, KLRB1, CD40LG, and IL-7R) were ultimately determined as common diagnostic markers for SLE and IBD. ROC curve analysis also showed good diagnostic performance. The outcomes of immune cell infiltration demonstrated that SLE and IBD shared almost identical immune infiltration patterns. Furthermore, the majority of the hub genes were commonly expressed in NK cells by single-cell analysis. Conclusion This study demonstrates that SLE and IBD share common diagnostic markers and pathogenic pathways. In addition, SLE and IBD show similar immune cellinfiltration microenvironments which provides newperspectives for future treatment.
Collapse
Affiliation(s)
- Hao-Wen Sun
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
| | - Xin Zhang
- Department of Dermatology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
| | - Cong-Cong Shen
- Department of Dermatology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
| |
Collapse
|
6
|
Liu W, Wu Y, Zhang T, Sun X, Guo D, Yang Z. The role of dsRNA A-to-I editing catalyzed by ADAR family enzymes in the pathogeneses. RNA Biol 2024; 21:52-69. [PMID: 39449182 PMCID: PMC11520539 DOI: 10.1080/15476286.2024.2414156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 09/29/2024] [Accepted: 10/01/2024] [Indexed: 10/26/2024] Open
Abstract
The process of adenosine deaminase (ADAR)-catalyzed double-stranded RNA (dsRNA) Adenosine-to-Inosine (A-to-I) editing is essential for the correction of pathogenic mutagenesis, as well as the regulation of gene expression and protein function in mammals. The significance of dsRNA A-to-I editing in disease development and occurrence is explored using inferential statistics and cluster analyses to investigate the enzymes involved in dsRNA editing that can catalyze editing sites across multiple biomarkers. This editing process, which occurs in coding or non-coding regions, has the potential to activate abnormal signalling pathways that contributes to disease pathogenesis. Notably, the ADAR family enzymes play a crucial role in initiating the editing process. ADAR1 is upregulated in most diseases as an oncogene during tumorigenesis, whereas ADAR2 typically acts as a tumour suppressor. Furthermore, this review also provides an overview of small molecular inhibitors that disrupt the expression of ADAR enzymes. These inhibitors not only counteract tumorigenicity but also alleviate autoimmune disorders, neurological neurodegenerative symptoms, and metabolic diseases associated with aberrant dsRNA A-to-I editing processes. In summary, this comprehensive review offers detailed insights into the involvement of dsRNA A-to-I editing in disease pathogenesis and highlights the potential therapeutic roles for related small molecular inhibitors. These scientific findings will undoubtedly contribute to the advancement of personalized medicine based on dsRNA A-to-I editing.
Collapse
Affiliation(s)
- Wanqing Liu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yufan Wu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Tong Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaobo Sun
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China
- Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Institue of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- NMPA Key Laboratory for Research and Evaluation of Pharmacovigilance, Beijing, China
| | - Dean Guo
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- School of Pharmaceutical Sciences, University of Chinese Academy of Sciences, Beijing, China
- NMPA Key Laboratory for Quality Control of Traditional Chinese Medicine, Shanghai Institue of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Zizhao Yang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China
- Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Institue of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- NMPA Key Laboratory for Research and Evaluation of Pharmacovigilance, Beijing, China
- Department of General Surgery, Seventh People’s Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
7
|
Gupta S, Yamada E, Nakamura H, Perez P, Pranzatelli TJ, Dominick K, Jang SI, Abed M, Martin D, Burbelo P, Zheng C, French B, Alevizos I, Khavandgar Z, Beach M, Pelayo E, Walitt B, Hasni S, Kaplan MJ, Tandon M, Teresa Magone M, Kleiner DE, Chiorini JA, Baer AN, Warner BM. Inhibition of JAK-STAT pathway corrects salivary gland inflammation and interferon driven immune activation in Sjögren's Disease. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.08.16.23294130. [PMID: 37662351 PMCID: PMC10473773 DOI: 10.1101/2023.08.16.23294130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Objectives Inflammatory cytokines that signal through the JAK- STAT pathway, especially interferons (IFNs), are implicated in Sjögren's Disease (SjD). Although inhibition of JAKs is effective in other autoimmune diseases, a systematic investigation of IFN-JAK-STAT signaling and effect of JAK inhibitor (JAKi) therapy in SjD-affected human tissues has not been reported. Methods Human minor salivary glands (MSGs) and peripheral blood mononuclear cells (PBMCs) were investigated using bulk or single cell (sc) RNA sequencing (RNAseq), immunofluorescence microscopy (IF), and flow cytometry. Ex vivo culture assays on PBMCs and primary salivary gland epithelial cell (pSGEC) lines were performed to model changes in target tissues before and after JAKi. Results RNAseq and IF showed activated JAK-STAT pathway in SjD MSGs. Elevated IFN-stimulated gene (ISGs) expression associated with clinical variables (e.g., focus scores, anti-SSA positivity). scRNAseq of MSGs exhibited cell-type specific upregulation of JAK-STAT and ISGs; PBMCs showed similar trends, including markedly upregulated ISGs in monocytes. Ex vivo studies showed elevated basal pSTAT levels in SjD MSGs and PBMCs that were corrected with JAKi. SjD-derived pSGECs exhibited higher basal ISG expressions and exaggerated responses to IFNβ, which were normalized by JAKi without cytotoxicity. Conclusions SjD patients' tissues exhibit increased expression of ISGs and activation of the JAK-STAT pathway in a cell type-dependent manner. JAKi normalizes this aberrant signaling at the tissue level and in PBMCs, suggesting a putative viable therapy for SjD, targeting both glandular and extraglandular symptoms. Predicated on these data, a Phase Ib/IIa randomized controlled trial to treat SjD with tofacitinib was initiated.
Collapse
Affiliation(s)
- Sarthak Gupta
- Lupus Clinical Trials Unit, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda MD, USA
| | - Eiko Yamada
- Salivary Disorder Unit, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - Hiroyuki Nakamura
- Adeno-Associated Virus Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - Paola Perez
- Salivary Disorder Unit, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - Thomas J.F. Pranzatelli
- Adeno-Associated Virus Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - Kalie Dominick
- Salivary Disorder Unit, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - Shyh-Ing Jang
- Salivary Disorder Unit, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - Mehdi Abed
- Salivary Disorder Unit, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - Daniel Martin
- Genomics and Computational Biology Core, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - Peter Burbelo
- Genomics and Computational Biology Core, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - Changyu Zheng
- Genomics and Computational Biology Core, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - Ben French
- Adeno-Associated Virus Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - Ilias Alevizos
- Salivary Disorder Unit, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - Zohreh Khavandgar
- Salivary Disorder Unit, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
- NIDCR Sjögren’s Disease Clinic, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - Margaret Beach
- NIDCR Sjögren’s Disease Clinic, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - Eileen Pelayo
- NIDCR Sjögren’s Disease Clinic, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - Brian Walitt
- NIDCR Sjögren’s Disease Clinic, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - Sarfaraz Hasni
- Lupus Clinical Trials Unit, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda MD, USA
| | - Mariana J. Kaplan
- Lupus Clinical Trials Unit, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda MD, USA
- Systemic Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda MD, USA
| | - Mayank Tandon
- Salivary Disorder Unit, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - M. Teresa Magone
- Consult Services Section, National Eye Institute, National Institutes of Health, Bethesda MD, USA
| | - David E. Kleiner
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda MD, USA
| | - John A. Chiorini
- Adeno-Associated Virus Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - Alan N. Baer
- NIDCR Sjögren’s Disease Clinic, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - Blake M. Warner
- Salivary Disorder Unit, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
- NIDCR Sjögren’s Disease Clinic, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
8
|
Accapezzato D, Caccavale R, Paroli MP, Gioia C, Nguyen BL, Spadea L, Paroli M. Advances in the Pathogenesis and Treatment of Systemic Lupus Erythematosus. Int J Mol Sci 2023; 24:6578. [PMID: 37047548 PMCID: PMC10095030 DOI: 10.3390/ijms24076578] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 03/24/2023] [Accepted: 03/28/2023] [Indexed: 04/05/2023] Open
Abstract
Systemic lupus erythematosus (SLE) is a genetically predisposed, female-predominant disease, characterized by multiple organ damage, that in its most severe forms can be life-threatening. The pathogenesis of SLE is complex and involves cells of both innate and adaptive immunity. The distinguishing feature of SLE is the production of autoantibodies, with the formation of immune complexes that precipitate at the vascular level, causing organ damage. Although progress in understanding the pathogenesis of SLE has been slower than in other rheumatic diseases, new knowledge has recently led to the development of effective targeted therapies, that hold out hope for personalized therapy. However, the new drugs available to date are still an adjunct to conventional therapy, which is known to be toxic in the short and long term. The purpose of this review is to summarize recent advances in understanding the pathogenesis of the disease and discuss the results obtained from the use of new targeted drugs, with a look at future therapies that may be used in the absence of the current standard of care or may even cure this serious systemic autoimmune disease.
Collapse
Affiliation(s)
- Daniele Accapezzato
- Division of Clinical Immunology, Department of Clinical, Anesthesiologic and Cardiovascular Sciences, Sapienza University of Rome, 00185 Rome, Italy
| | - Rosalba Caccavale
- Division of Clinical Immunology, Department of Clinical, Anesthesiologic and Cardiovascular Sciences, Sapienza University of Rome, 00185 Rome, Italy
| | - Maria Pia Paroli
- Eye Clinic, Department of Sense Organs, Sapienza University of Rome, 00185 Rome, Italy
| | - Chiara Gioia
- Division of Clinical Immunology, Department of Clinical, Anesthesiologic and Cardiovascular Sciences, Sapienza University of Rome, 00185 Rome, Italy
| | - Bich Lien Nguyen
- Division of Clinical Immunology, Department of Clinical, Anesthesiologic and Cardiovascular Sciences, Sapienza University of Rome, 00185 Rome, Italy
| | - Luca Spadea
- Post Graduate School of Public Health, University of Siena, 53100 Siena, Italy
| | - Marino Paroli
- Division of Clinical Immunology, Department of Clinical, Anesthesiologic and Cardiovascular Sciences, Sapienza University of Rome, 00185 Rome, Italy
| |
Collapse
|
9
|
Miyamoto T, Honda Y, Izawa K, Kanazawa N, Kadowaki S, Ohnishi H, Fujimoto M, Kambe N, Kase N, Shiba T, Nakagishi Y, Akizuki S, Murakami K, Bamba M, Nishida Y, Inui A, Fujisawa T, Nishida D, Iwata N, Otsubo Y, Ishimori S, Nishikori M, Tanizawa K, Nakamura T, Ueda T, Ohwada Y, Tsuyusaki Y, Shimizu M, Ebato T, Iwao K, Kubo A, Kawai T, Matsubayashi T, Miyazaki T, Kanayama T, Nishitani-Isa M, Nihira H, Abe J, Tanaka T, Hiejima E, Okada S, Ohara O, Saito MK, Takita J, Nishikomori R, Yasumi T. Assessment of type I interferon signatures in undifferentiated inflammatory diseases: A Japanese multicenter experience. Front Immunol 2022; 13:905960. [PMID: 36211342 PMCID: PMC9541620 DOI: 10.3389/fimmu.2022.905960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 09/01/2022] [Indexed: 11/28/2022] Open
Abstract
Purpose Upregulation of type I interferon (IFN) signaling has been increasingly detected in inflammatory diseases. Recently, upregulation of the IFN signature has been suggested as a potential biomarker of IFN-driven inflammatory diseases. Yet, it remains unclear to what extent type I IFN is involved in the pathogenesis of undifferentiated inflammatory diseases. This study aimed to quantify the type I IFN signature in clinically undiagnosed patients and assess clinical characteristics in those with a high IFN signature. Methods The type I IFN signature was measured in patients' whole blood cells. Clinical and biological data were collected retrospectively, and an intensive genetic analysis was performed in undiagnosed patients with a high IFN signature. Results A total of 117 samples from 94 patients with inflammatory diseases, including 37 undiagnosed cases, were analyzed. Increased IFN signaling was observed in 19 undiagnosed patients, with 10 exhibiting clinical features commonly found in type I interferonopathies. Skin manifestations, observed in eight patients, were macroscopically and histologically similar to those found in proteasome-associated autoinflammatory syndrome. Genetic analysis identified novel mutations in the PSMB8 gene of one patient, and rare variants of unknown significance in genes linked to type I IFN signaling in four patients. A JAK inhibitor effectively treated the patient with the PSMB8 mutations. Patients with clinically quiescent idiopathic pulmonary hemosiderosis and A20 haploinsufficiency showed enhanced IFN signaling. Conclusions Half of the patients examined in this study, with undifferentiated inflammatory diseases, clinically quiescent A20 haploinsufficiency, or idiopathic pulmonary hemosiderosis, had an elevated type I IFN signature.
Collapse
Affiliation(s)
- Takayuki Miyamoto
- Department of Pediatrics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yoshitaka Honda
- Department of Pediatrics, Kyoto University Graduate School of Medicine, Kyoto, Japan
- Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Kyoto, Japan
- Department of Immunology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Kazushi Izawa
- Department of Pediatrics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Nobuo Kanazawa
- Department of Dermatology, Hyogo Medical University, Nishinomiya, Japan
| | - Saori Kadowaki
- Department of Pediatrics, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Hidenori Ohnishi
- Department of Pediatrics, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Masakazu Fujimoto
- Department of Diagnostic Pathology, Kyoto University Hospital, Kyoto, Japan
| | - Naotomo Kambe
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Naoya Kase
- Department of Clinical Application, Center for iPS cell (Induced pluripotent stem cell) Research and Application, Kyoto University, Kyoto, Japan
| | - Takeshi Shiba
- Department of Pediatrics, Tenri Hospital, Tenri, Japan
| | - Yasuo Nakagishi
- Department of Pediatric Rheumatology, Hyogo Prefectural Kobe Children’s Hospital, Kobe, Japan
| | - Shuji Akizuki
- Division of Clinical Immunology and Cancer Immunotherapy, Center for Cancer Immunotherapy and Immunobiology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kosaku Murakami
- Division of Clinical Immunology and Cancer Immunotherapy, Center for Cancer Immunotherapy and Immunobiology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Masahiro Bamba
- Department of Pediatrics, Kawasaki Municipal Hospital, Kawasaki, Japan
| | - Yutaka Nishida
- Department of Pediatrics, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Ayano Inui
- Department of Pediatric Hepatology and Gastroenterology, Saiseikai Yokohamashi Tobu Hospital, Yokohama, Japan
| | - Tomoo Fujisawa
- Department of Pediatric Hepatology and Gastroenterology, Saiseikai Yokohamashi Tobu Hospital, Yokohama, Japan
| | - Daisuke Nishida
- Department of Infection and Immunology, Aichi Children’s Health and Medical Center, Aichi, Japan
| | - Naomi Iwata
- Department of Infection and Immunology, Aichi Children’s Health and Medical Center, Aichi, Japan
| | - Yoshikazu Otsubo
- Department of Pediatrics, Sasebo City General Hospital, Sasebo, Japan
| | - Shingo Ishimori
- Department of Pediatrics, Takatsuki General Hospital, Takatsuki, Japan
| | - Momoko Nishikori
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kiminobu Tanizawa
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Tomoyuki Nakamura
- Department of General Medicine, Osaka City Hospital Organization Osaka City General Hospital, Osaka, Japan
| | - Takeshi Ueda
- Department of Emergency and General Internal Medicine, Rakuwakai Marutamachi Hospital, Kyoto, Japan
| | - Yoko Ohwada
- Department of Pediatrics, Dokkyo Medical University School of Medicine, Tochigi, Japan
| | - Yu Tsuyusaki
- Department of Neurology, Kanagawa Children’s Medical Center, Yokohama, Japan
| | - Masaki Shimizu
- Department of Pediatrics and Developmental Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Takasuke Ebato
- Department of Pediatrics, Kitasato University, School of Medicine, Kanagawa, Japan
| | - Kousho Iwao
- Department of Internal Medicine, Division of Rheumatology, Infectious Diseases and Laboratory Medicine, University of Miyazaki, Miyazaki, Japan
| | - Akiharu Kubo
- Department of Dermatology, Keio University School of Medicine, Tokyo, Japan
| | - Toshinao Kawai
- Division of Immunology, National Center for Child Health and Development, Tokyo, Japan
| | | | | | | | | | - Hiroshi Nihira
- Department of Pediatrics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Junya Abe
- Department of Pediatrics, Kyoto University Graduate School of Medicine, Kyoto, Japan
- Department of Pediatrics, Kitano Hospital, Tazuke Kofukai Medical Research Institute, Osaka, Japan
| | - Takayuki Tanaka
- Department of Pediatrics, Kyoto University Graduate School of Medicine, Kyoto, Japan
- Department of Pediatrics, Otsu Red Cross Hospital, Otsu, Japan
| | - Eitaro Hiejima
- Department of Pediatrics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Satoshi Okada
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Osamu Ohara
- Department of Applied Genomics, Kazusa DNA Research Institute, Kisarazu, Japan
| | - Megumu K. Saito
- Department of Clinical Application, Center for iPS cell (Induced pluripotent stem cell) Research and Application, Kyoto University, Kyoto, Japan
| | - Junko Takita
- Department of Pediatrics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Ryuta Nishikomori
- Department of Pediatrics and Child Health, Kurume University School of Medicine, Kurume, Japan
| | - Takahiro Yasumi
- Department of Pediatrics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| |
Collapse
|
10
|
Rosa TLSA, Mendes MA, Linhares NRC, Rodrigues TF, Dias AA, Leal-Calvo T, Gandini M, Ferreira H, Costa FDMR, Sales AM, Amadeu TP, Schmitz V, Pinheiro RO, Rodrigues LS, Moraes MO, Pessolani MCV. The Type I Interferon Pathway Is Upregulated in the Cutaneous Lesions and Blood of Multibacillary Leprosy Patients With Erythema Nodosum Leprosum. Front Med (Lausanne) 2022; 9:899998. [PMID: 35733868 PMCID: PMC9208291 DOI: 10.3389/fmed.2022.899998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 05/16/2022] [Indexed: 11/16/2022] Open
Abstract
In leprosy patients, acute inflammatory episodes, known as erythema nodosum leprosum (ENL), are responsible for high morbidity and tissue damage that occur during the course of Mycobacterium leprae infection. In a previous study, we showed evidence implicating DNA-sensing via TLR9 as an important inflammatory pathway in ENL. A likely important consequence of TLR9 pathway activation is the production of type I interferons (IFN-I) by plasmacytoid dendritic cells (pDCs), also implicated in the pathogenesis of several chronic inflammatory diseases. In this study, we investigated whether the IFN-I pathway is activated during ENL. Blood samples and skin lesions from multibacillary patients diagnosed with ENL were collected and the expression of genes of the IFN-I pathway and interferon-stimulated genes were compared with samples collected from non-reactional multibacillary (NR) patients. Whole blood RNAseq analysis suggested higher activation of the IFN-I pathway in ENL patients, confirmed by RT-qPCR. Likewise, significantly higher mRNA levels of IFN-I-related genes were detected in ENL skin biopsies when compared to NR patient lesions. During thalidomide administration, the drug of choice for ENL treatment, a decrease in the mRNA and protein levels of some of these genes both in the skin and blood was observed. Indeed, in vitro assays showed that thalidomide was able to block the secretion of IFN-I by peripheral blood mononuclear cells in response to M. leprae sonicate or CpG-A, a TLR9 ligand. Finally, the decreased frequencies of peripheral pDCs in ENL patients, along with the higher TLR9 expression in ENL pDCs and the enrichment of CD123+ cells in ENL skin lesions, suggest the involvement of these cells as IFN-I producers in this type of reaction. Taken together, our data point to the involvement of the pDC/type I IFN pathway in the pathogenesis of ENL, opening new avenues in identifying biomarkers for early diagnosis and new therapeutic targets for the better management of this reactional episode.
Collapse
Affiliation(s)
| | - Mayara Abud Mendes
- Laboratory of Leprosy, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Natasha Ribeiro Cardoso Linhares
- Laboratory of Cellular Microbiology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- Laboratory of Immunopathology, Medical Science Faculty, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Thais Fernanda Rodrigues
- Laboratory of Cellular Microbiology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - André Alves Dias
- Laboratory of Cellular Microbiology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Thyago Leal-Calvo
- Laboratory of Leprosy, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Mariana Gandini
- Laboratory of Cellular Microbiology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Helen Ferreira
- Laboratory of Leprosy, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | | | - Anna Maria Sales
- Laboratory of Leprosy, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Thaís Porto Amadeu
- Laboratory of Immunopathology, Medical Science Faculty, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Veronica Schmitz
- Laboratory of Leprosy, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Roberta Olmo Pinheiro
- Laboratory of Leprosy, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Luciana Silva Rodrigues
- Laboratory of Immunopathology, Medical Science Faculty, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Milton Ozório Moraes
- Laboratory of Leprosy, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Maria Cristina Vidal Pessolani
- Laboratory of Cellular Microbiology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- *Correspondence: Maria Cristina Vidal Pessolani,
| |
Collapse
|
11
|
Sphingosine 1-phosphate receptor-targeted therapeutics in rheumatic diseases. Nat Rev Rheumatol 2022; 18:335-351. [PMID: 35508810 DOI: 10.1038/s41584-022-00784-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/07/2022] [Indexed: 02/07/2023]
Abstract
Sphingosine 1-phosphate (S1P), which acts via G protein-coupled S1P receptors (S1PRs), is a bioactive lipid essential for vascular integrity and lymphocyte trafficking. The S1P-S1PR signalling axis is a key component of the inflammatory response in autoimmune rheumatic diseases. Several drugs that target S1PRs have been approved for the treatment of multiple sclerosis and inflammatory bowel disease and are under clinical testing for patients with systemic lupus erythematosus (SLE). Preclinical studies support the hypothesis that targeting the S1P-S1PR axis would be beneficial to patients with SLE, rheumatoid arthritis (RA) and systemic sclerosis (SSc) by reducing pathological inflammation. Whereas most preclinical research and development efforts are focused on reducing lymphocyte trafficking, protective effects of circulating S1P on endothelial S1PRs, which maintain the vascular barrier and enable blood circulation while dampening leukocyte extravasation, have been largely overlooked. In this Review, we take a holistic view of S1P-S1PR signalling in lymphocyte and vascular pathobiology. We focus on the potential of S1PR modulators for the treatment of SLE, RA and SSc and summarize the rationale, pathobiology and evidence from preclinical models and clinical studies. Improved understanding of S1P pathobiology in autoimmune rheumatic diseases and S1PR therapeutic modulation is anticipated to lead to efficacious and safer management of these diseases.
Collapse
|
12
|
Dutta N, Deb I, Sarzynska J, Lahiri A. Inosine and its methyl derivatives: Occurrence, biogenesis, and function in RNA. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2022; 169-170:21-52. [PMID: 35065168 DOI: 10.1016/j.pbiomolbio.2022.01.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 12/11/2021] [Accepted: 01/11/2022] [Indexed: 05/21/2023]
Abstract
Inosine is one of the most common post-transcriptional modifications. Since its discovery, it has been noted for its ability to contribute to non-Watson-Crick interactions within RNA. Rapidly accumulating evidence points to the widespread generation of inosine through hydrolytic deamination of adenosine to inosine by different classes of adenosine deaminases. Three naturally occurring methyl derivatives of inosine, i.e., 1-methylinosine, 2'-O-methylinosine and 1,2'-O-dimethylinosine are currently reported in RNA modification databases. These modifications are expected to lead to changes in the structure, folding, dynamics, stability and functions of RNA. The importance of the modifications is indicated by the strong conservation of the modifying enzymes across organisms. The structure, binding and catalytic mechanism of the adenosine deaminases have been well-studied, but the underlying mechanism of the catalytic reaction is not very clear yet. Here we extensively review the existing data on the occurrence, biogenesis and functions of inosine and its methyl derivatives in RNA. We also included the structural and thermodynamic aspects of these modifications in our review to provide a detailed and integrated discussion on the consequences of A-to-I editing in RNA and the contribution of different structural and thermodynamic studies in understanding its role in RNA. We also highlight the importance of further studies for a better understanding of the mechanisms of the different classes of deamination reactions. Further investigation of the structural and thermodynamic consequences and functions of these modifications in RNA should provide more useful information about their role in different diseases.
Collapse
Affiliation(s)
- Nivedita Dutta
- Department of Biophysics, Molecular Biology and Bioinformatics, University of Calcutta, 92, Acharya Prafulla Chandra Road, Kolkata, 700009, West Bengal, India
| | - Indrajit Deb
- Department of Biophysics, Molecular Biology and Bioinformatics, University of Calcutta, 92, Acharya Prafulla Chandra Road, Kolkata, 700009, West Bengal, India
| | - Joanna Sarzynska
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704, Poznan, Poland
| | - Ansuman Lahiri
- Department of Biophysics, Molecular Biology and Bioinformatics, University of Calcutta, 92, Acharya Prafulla Chandra Road, Kolkata, 700009, West Bengal, India.
| |
Collapse
|
13
|
Sim TM, Ong SJ, Mak A, Tay SH. Type I Interferons in Systemic Lupus Erythematosus: A Journey from Bench to Bedside. Int J Mol Sci 2022; 23:2505. [PMID: 35269647 PMCID: PMC8910773 DOI: 10.3390/ijms23052505] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 02/21/2022] [Accepted: 02/21/2022] [Indexed: 01/15/2023] Open
Abstract
Dysregulation of type I interferons (IFNs) has been implicated in the pathogenesis of systemic lupus erythematosus (SLE) since the late 1970s. The majority of SLE patients demonstrate evidence of type I IFN pathway activation; however, studies attempting to address the relationship between type I IFN signature and SLE disease activity have yielded conflicting results. In addition to type I IFNs, type II and III IFNs may overlap and also contribute to the IFN signature. Different genetic backgrounds lead to overproduction of type I IFNs in SLE and contribute to the breakdown of peripheral tolerance by activation of antigen-presenting myeloid dendritic cells, thus triggering the expansion and differentiation of autoreactive lymphocytes. The consequence of the continuous stimulation of the immune system is manifested in different organ systems typical of SLE (e.g., mucocutaneous and cardiovascular involvement). After the discovery of the type I IFN signature, a number of different strategies have been developed to downregulate the IFN system in SLE patients, finally leading to the successful trial of anifrolumab, the second biologic to be approved for the treatment of SLE in 10 years. In this review, we will discuss the bench to bedside translation of the type I IFN pathway and put forward some issues that remain unresolved when selecting SLE patients for treatment with biologics targeting type I IFNs.
Collapse
Affiliation(s)
- Tao Ming Sim
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore; (T.M.S.); (A.M.)
| | - Siying Jane Ong
- Division of Rheumatology, Department of Medicine, National University Hospital, Singapore 119074, Singapore;
| | - Anselm Mak
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore; (T.M.S.); (A.M.)
- Division of Rheumatology, Department of Medicine, National University Hospital, Singapore 119074, Singapore;
| | - Sen Hee Tay
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore; (T.M.S.); (A.M.)
- Division of Rheumatology, Department of Medicine, National University Hospital, Singapore 119074, Singapore;
| |
Collapse
|
14
|
Abstract
Epigenetic modifications have gained attention since they can be potentially changed with environmental stimuli and can be associated with adverse health outcomes. Epitranscriptome field has begun to attract attention with several aspects since RNA modifications have been linked with critical biological processes and implicated in diseases. Several RNA modifications have been identified as reversible indicating the dynamic features of modification which can be altered by environmental cues. Currently, we know more than 150 RNA modifications in different organisms and on different bases which are modified by various chemical groups. RNA editing, which is one of the RNA modifications, occurs after transcription, which results in RNA sequence different from its corresponding DNA sequence. Emerging evidence reveals the functions of RNA editing as well as the association between RNA editing and diseases. However, the RNA editing field is beginning to grow up and needs more empirical evidence in regard to disease and toxicology. Thus, this review aims to provide the current evidence-based studies on RNA editing modifying genes for genotoxicity and cancer. The review presented the association between environmental xenobiotics exposure and RNA editing modifying genes and focused on the association between the expression of RNA editing modifying genes and cancer. Furthermore, we discussed the future directions of scientific studies in the area of RNA modifications, especially in the RNA editing field, and provided a knowledge-based framework for further studies.
Collapse
Affiliation(s)
- Akin Cayir
- Vocational Health College, Canakkale Onsekiz Mart University, Canakkale, Turkey
| |
Collapse
|
15
|
Application of Weighted Gene Coexpression Network Analysis to Identify Key Modules and Hub Genes in Systemic Juvenile Idiopathic Arthritis. BIOMED RESEARCH INTERNATIONAL 2021; 2021:9957569. [PMID: 34435051 PMCID: PMC8382540 DOI: 10.1155/2021/9957569] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 07/22/2021] [Indexed: 12/14/2022]
Abstract
Systemic juvenile idiopathic arthritis (sJIA) is a severe autoinflammatory disorder with a still not clearly defined molecular mechanism. To better understand the disease, we used scattered datasets from public domains and performed a weighted gene coexpression network analysis (WGCNA) to identify key modules and hub genes underlying sJIA pathogenesis. Two gene expression datasets, GSE7753 and GSE13501, were used to construct the WGCNA. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were applied to the genes and hub genes in the sJIA modules. Cytoscape was used to screen and visualize the hub genes. We further compared the hub genes with the genome-wide association study (GWAS) genes and used a consensus WGCNA to verify that our conclusions were conservative and reproducible across multiple independent datasets. A total of 5,414 genes were obtained for WGCNA, from which highly correlated genes were divided into 17 modules. The red module demonstrated the highest correlation with the sJIA module (r = 0.8, p = 3e−29), whereas the green-yellow module was found to be closely related to the non-sJIA module (r = 0.62, p = 1e−14). Functional enrichment analysis demonstrated that the red module was mostly enriched in the activation of immune responses, infection, nucleosomes, and erythrocytes, and the green-yellow module was mostly enriched in immune responses and inflammation. Additionally, the hub genes in the red module were highly enriched in erythrocyte differentiation, including ALAS2, AHSP, TRIM10, TRIM58, and KLF1. The hub genes from the green-yellow module were mainly associated with immune responses, as exemplified by the genes KLRB1, KLRF1, CD160, and KIRs. We identified sJIA-related modules and several hub genes that might be associated with the development of sJIA. Particularly, the modules may help understand the mechanisms of sJIA, and the hub genes may become biomarkers and therapeutic targets of sJIA in the future.
Collapse
|
16
|
Abstract
Skewing of type I interferon (IFN) production and responses is a hallmark of systemic lupus erythematosus (SLE). Genetic and environmental contributions to IFN production lead to aberrant innate and adaptive immune activation even before clinical development of disease. Basic and translational research in this arena continues to identify contributions of IFNs to disease pathogenesis, and several promising therapeutic options for targeting of type I IFNs and their signaling pathways are in development for treatment of SLE patients.
Collapse
Affiliation(s)
- Sirisha Sirobhushanam
- Department of Internal Medicine, Division of Rheumatology, University of Michigan, 5568 MSRB 2, 1150 West Medical Center Drive, Ann Arbor, MI 49109, USA
| | - Stephanie Lazar
- Department of Internal Medicine, Division of Rheumatology, University of Michigan, 5568 MSRB 2, 1150 West Medical Center Drive, Ann Arbor, MI 49109, USA
| | - J Michelle Kahlenberg
- Department of Internal Medicine, Division of Rheumatology, University of Michigan, 5570A MSRB 2, 1150 West Medical Center Drive, Ann Arbor, MI 49109, USA; Department of Dermatology, University of Michigan, 5570A MSRB 2, 1150 West Medical Center Drive, Ann Arbor, MI 49109, USA.
| |
Collapse
|
17
|
Chasset F, Dayer JM, Chizzolini C. Type I Interferons in Systemic Autoimmune Diseases: Distinguishing Between Afferent and Efferent Functions for Precision Medicine and Individualized Treatment. Front Pharmacol 2021; 12:633821. [PMID: 33986670 PMCID: PMC8112244 DOI: 10.3389/fphar.2021.633821] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 03/03/2021] [Indexed: 12/19/2022] Open
Abstract
A sustained increase in type I interferon (IFN-I) may accompany clinical manifestations and disease activity in systemic autoimmune diseases (SADs). Despite the very frequent presence of IFN-I in SADs, clinical manifestations are extremely varied between and within SADs. The present short review will address the following key questions associated with high IFN-I in SADs in the perspective of precision medicine. 1) What are the mechanisms leading to high IFN-I? 2) What are the predisposing conditions favoring high IFN-I production? 3) What is the role of IFN-I in the development of distinct clinical manifestations within SADs? 4) Would therapeutic strategies targeting IFN-I be helpful in controlling or even preventing SADs? In answering these questions, we will underlie areas of incertitude and the intertwined role of autoantibodies, immune complexes, and neutrophils.
Collapse
Affiliation(s)
- François Chasset
- Department of Dermatology and Allergology, Faculty of Medicine, AP-HP, Tenon Hospital, Sorbonne University, Paris, France
| | - Jean-Michel Dayer
- Emeritus Professor of Medicine, School of Medicine, Geneva University, Geneva, Switzerland
| | - Carlo Chizzolini
- Department of Pathology and Immunology, School of Medicine, Geneva University, Geneva, Switzerland
| |
Collapse
|
18
|
Rasmussen NS, Nielsen CT, Nielsen CH, Jacobsen S. Microvesicles in active lupus nephritis show Toll-like receptor 9-dependent co-expression of galectin-3 binding protein and double-stranded DNA. Clin Exp Immunol 2021; 204:64-77. [PMID: 33354779 DOI: 10.1111/cei.13569] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 12/16/2020] [Accepted: 12/16/2020] [Indexed: 12/13/2022] Open
Abstract
Circulating microvesicles (MVs) from patients with systemic lupus erythematosus (SLE) express the type 1 interferon (IFN)-inducible protein galectin-3 binding protein (G3BP), which may enhance their deposition in the glomerular basement membrane. The release of G3BP-expressing MVs from normal peripheral blood mononuclear cells (PBMCs) is induced by Toll-like receptor 9 (TLR-9) ligands, and these vesicles contain autoantibody-accessible double-stranded DNA (dsDNA). This study compares the release of MVs expressing G3BP and dsDNA from PBMCs derived from SLE patients with or without active lupus nephritis (LN) and from healthy donors, and taps further into the potential dependency on IFN-α for their generation and impacts of TLR-7/TLR-9 co-stimulation. PBMCs from 10 healthy donors and 12 SLE patients, six of whom had active LN at study inclusion, were stimulated in-vitro with recombinant human IFN-α and the TLR-9 agonists oligodeoxynucleotide (ODN)2216 or ODN2395 alone or in combination with the TLR-7 agonist gardiquimod. MVs in the supernatants were subsequently isolated by differential centrifugation and their expression of G3BP and dsDNA was quantified by flow cytometry. Stimulation with ODN2395 significantly increased the release of MVs co-expressing G3BP and dsDNA from PBMCs isolated from healthy donors and SLE patients. The expression of G3BP on individual MVs and the proportion of G3BP and dsDNA double-positive MVs released were increased in active LN patients. Neither co-stimulation with gardiquimod nor with the IFN-α inhibitor IN-1 had any effect on the MV release induced by ODN2395. In conclusion, the TLR-9-mediated inducibility of MVs co-expressing G3BP and dsDNA is increased in SLE patients with active LN.
Collapse
Affiliation(s)
- N S Rasmussen
- Institute for Inflammation Research, Center for Rheumatology and Spine Diseases, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark.,Copenhagen Lupus and Vasculitis Clinic, Center for Rheumatology and Spine Diseases, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - C T Nielsen
- Copenhagen Lupus and Vasculitis Clinic, Center for Rheumatology and Spine Diseases, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - C H Nielsen
- Institute for Inflammation Research, Center for Rheumatology and Spine Diseases, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - S Jacobsen
- Copenhagen Lupus and Vasculitis Clinic, Center for Rheumatology and Spine Diseases, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark.,Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
19
|
Keller EJ, Patel NB, Patt M, Nguyen JK, Jørgensen TN. Partial Protection From Lupus-Like Disease by B-Cell Specific Type I Interferon Receptor Deficiency. Front Immunol 2021; 11:616064. [PMID: 33488628 PMCID: PMC7821742 DOI: 10.3389/fimmu.2020.616064] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 11/20/2020] [Indexed: 12/13/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disease that can present with many different permutations of symptom presentation. A large subset of SLE patients have been shown to present with elevated interferon stimulated gene (ISG) expression, and Type I IFNs (IFNαβ) have been shown to drive disease in murine models through global IFNα Receptor (IFNAR) knockouts. However, the disease contribution of distinct immune cell subsets in response to constitutively increased levels of IFNαβ is not fully understood. We utilized a B-cell specific IFNAR knockout (BΔIFNAR) on the B6.Nba2 spontaneous-lupus background to determine the contribution of IFNαβ stimulated B cells in disease. We found that IFNαβ signaling in B cells is driving increased splenomegaly, increased populations of activated B cells, and increased populations of germinal center (GC) B cells, memory B cells, and plasma blasts/cells, but did not affect the development of glomerulonephritis and immune-complex deposition. IFNAR expression by B cells also drove production of anti-chromatin IgG, and anti-dsDNA and -nRNP IgG and IgG2C auto-antibody levels, as well as increased Bcl2 expression, affecting GC B cell survival in B6.Nba2 mice.
Collapse
Affiliation(s)
- Emma J. Keller
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, United States,Cleveland Clinic Lerner College of Medicine, Dept. of Molecular Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - Neeva B. Patel
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, United States
| | - Madeline Patt
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, United States
| | - Jane K. Nguyen
- Robert J. Tomsich Pathology and Laboratory Medicine Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Trine N. Jørgensen
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, United States,*Correspondence: Trine N. Jørgensen,
| |
Collapse
|
20
|
Shirani F, Baghi M, Rostamian Delavar M, Shoaraye Nejati A, Eshaghiyan A, Nasr‐Esfahani MH, Peymani M, Ghaedi K. Upregulation of miR-9 and miR-193b over human Th17 cell differentiation. Mol Genet Genomic Med 2020; 8:e1538. [PMID: 33128433 PMCID: PMC7767567 DOI: 10.1002/mgg3.1538] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 09/24/2020] [Accepted: 10/01/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Th17 cells are a newly discovered subset of CD4+ T cells known as key participants in various immune responses and inflammatory conditions including autoimmune diseases. Mi(cro)RNAs are a family of non-coding RNAs that regulate numerous critical immune functions. Immuno-miRNAs modulate cell biological processes in T cells, such as differentiation and function of Th17 cells. The aim of the present study is to investigate the expression of miR-9-5p, miR-193b-3p, and autoimmunity-related genes during human Th17 cells differentiation. METHODS Human naïve CD4+ T cells were purified from peripheral blood mononuclear cells (PBMCs) by magnetic cell sorting system (MACS) and their purity was checked by flow-cytometric analysis. Naïve CD4+ T cells were cultured under Th17-polarizing condition for 6 days. IL- 17 secretion was determined by means of enzyme-linked immunosorbent assay (ELISA). Next, the expression levels of miRNAs and putative targets genes were assessed by qRT-PCR at different time points of differentiation. RESULTS Our result showed dramatic downregulation of TCF7, MAP3K1, ENTPD1, and NT5E genes during human Th17 differentiation. Polarization also had a significant inducible effect on the expression of miR-9 and miR-193b over differentiation of human Th17 cells. According to our results, miR-9-5p and miR-193b-3p may contribute to Th17 differentiation probably by inhibiting the expression of negative regulators of Th17 differentiation. CONCLUSION This study confirmed deregulation of TCF7, MAP3K1, ENTPD1, and NT5E genes in Th17 differentiation process and introduced miR-9 and miR-193b as Th17 cell-associated miRNAs, making them good candidates for further investigations.
Collapse
Affiliation(s)
- Fahimeh Shirani
- Department of Animal BiotechnologyCell Science Research CenterRoyan Institute for BiotechnologyACECRIsfahanIran
| | - Masoud Baghi
- Department of Animal BiotechnologyCell Science Research CenterRoyan Institute for BiotechnologyACECRIsfahanIran
- Department of Cell and Molecular Biology and MicrobiologyFaculty of Biological Science and TechnologyUniversity of IsfahanIsfahanIran
| | - Mahsa Rostamian Delavar
- Department of Cell and Molecular Biology and MicrobiologyFaculty of Biological Science and TechnologyUniversity of IsfahanIsfahanIran
| | - Alireza Shoaraye Nejati
- Department of Animal BiotechnologyCell Science Research CenterRoyan Institute for BiotechnologyACECRIsfahanIran
| | - Amir Eshaghiyan
- Department of GeneticsArsanjan BranchIslamic Azad UniversityArsanjan, ShirazIran
| | | | - Maryam Peymani
- Department of Animal BiotechnologyCell Science Research CenterRoyan Institute for BiotechnologyACECRIsfahanIran
- Department of BiologyFaculty of Basic SciencesShahrekord BranchIslamic Azad UniversityShahrekordIran
| | - Kamran Ghaedi
- Department of Cell and Molecular Biology and MicrobiologyFaculty of Biological Science and TechnologyUniversity of IsfahanIsfahanIran
| |
Collapse
|
21
|
Song W, Tang D, Chen D, Zheng F, Huang S, Xu Y, Yu H, He J, Hong X, Yin L, Liu D, Dai W, Dai Y. Advances in applying of multi-omics approaches in the research of systemic lupus erythematosus. Int Rev Immunol 2020; 39:163-173. [PMID: 32138562 DOI: 10.1080/08830185.2020.1736058] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Wencong Song
- Department of Clinical Medical Research Center, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital Southern University of Science and Technology, Shenzhen People’s Hospital, Shenzhen, Guangdong, China
| | - Donge Tang
- Department of Clinical Medical Research Center, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital Southern University of Science and Technology, Shenzhen People’s Hospital, Shenzhen, Guangdong, China
| | - Deheng Chen
- Department of Clinical Medical Research Center, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital Southern University of Science and Technology, Shenzhen People’s Hospital, Shenzhen, Guangdong, China
| | - Fengping Zheng
- Department of Clinical Medical Research Center, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital Southern University of Science and Technology, Shenzhen People’s Hospital, Shenzhen, Guangdong, China
| | - Shaoying Huang
- Department of Clinical Medical Research Center, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital Southern University of Science and Technology, Shenzhen People’s Hospital, Shenzhen, Guangdong, China
| | - Yong Xu
- Department of Clinical Medical Research Center, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital Southern University of Science and Technology, Shenzhen People’s Hospital, Shenzhen, Guangdong, China
| | - Haiyan Yu
- Department of Clinical Medical Research Center, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital Southern University of Science and Technology, Shenzhen People’s Hospital, Shenzhen, Guangdong, China
| | - Jingquan He
- Department of Clinical Medical Research Center, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital Southern University of Science and Technology, Shenzhen People’s Hospital, Shenzhen, Guangdong, China
| | - Xiaoping Hong
- Department of Clinical Medical Research Center, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital Southern University of Science and Technology, Shenzhen People’s Hospital, Shenzhen, Guangdong, China
| | - Lianghong Yin
- Department of Nephrology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Dongzhou Liu
- Department of Clinical Medical Research Center, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital Southern University of Science and Technology, Shenzhen People’s Hospital, Shenzhen, Guangdong, China
| | - Weier Dai
- College of Natural Science, University of Texas at Austin, Austin, TX, USA
| | - Yong Dai
- Department of Clinical Medical Research Center, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital Southern University of Science and Technology, Shenzhen People’s Hospital, Shenzhen, Guangdong, China
| |
Collapse
|
22
|
Haynes WA, Haddon DJ, Diep VK, Khatri A, Bongen E, Yiu G, Balboni I, Bolen CR, Mao R, Utz PJ, Khatri P. Integrated, multicohort analysis reveals unified signature of systemic lupus erythematosus. JCI Insight 2020; 5:122312. [PMID: 31971918 DOI: 10.1172/jci.insight.122312] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 01/17/2020] [Indexed: 12/27/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is a complex autoimmune disease that follows an unpredictable disease course and affects multiple organs and tissues. We performed an integrated, multicohort analysis of 7,471 transcriptomic profiles from 40 independent studies to identify robust gene expression changes associated with SLE. We identified a 93-gene signature (SLE MetaSignature) that is differentially expressed in the blood of patients with SLE compared with healthy volunteers; distinguishes SLE from other autoimmune, inflammatory, and infectious diseases; and persists across diverse tissues and cell types. The SLE MetaSignature correlated significantly with disease activity and other clinical measures of inflammation. We prospectively validated the SLE MetaSignature in an independent cohort of pediatric patients with SLE using a microfluidic quantitative PCR (qPCR) array. We found that 14 of the 93 genes in the SLE MetaSignature were independent of IFN-induced and neutrophil-related transcriptional profiles that have previously been associated with SLE. Pathway analysis revealed dysregulation associated with nucleic acid biosynthesis and immunometabolism in SLE. We further refined a neutropoiesis signature and identified underappreciated transcripts related to immune cells and oxidative stress. In our multicohort, transcriptomic analysis has uncovered underappreciated genes and pathways associated with SLE pathogenesis, with the potential to advance clinical diagnosis, biomarker development, and targeted therapeutics for SLE.
Collapse
Affiliation(s)
- Winston A Haynes
- Institute for Immunity, Transplantation and Infection.,Division of Biomedical Informatics Research
| | - D James Haddon
- Institute for Immunity, Transplantation and Infection.,Division of Immunology and Rheumatology, Department of Medicine, and
| | - Vivian K Diep
- Institute for Immunity, Transplantation and Infection.,Division of Immunology and Rheumatology, Department of Medicine, and
| | - Avani Khatri
- Institute for Immunity, Transplantation and Infection.,Division of Immunology and Rheumatology, Department of Medicine, and
| | - Erika Bongen
- Institute for Immunity, Transplantation and Infection.,Division of Immunology and Rheumatology, Department of Medicine, and
| | - Gloria Yiu
- Institute for Immunity, Transplantation and Infection.,Division of Immunology and Rheumatology, Department of Medicine, and
| | - Imelda Balboni
- Division of Allergy, Immunology and Rheumatology, Department of Pediatrics, Stanford University School of Medicine, Stanford, California, USA
| | | | - Rong Mao
- Institute for Immunity, Transplantation and Infection.,Division of Immunology and Rheumatology, Department of Medicine, and
| | - Paul J Utz
- Institute for Immunity, Transplantation and Infection.,Division of Immunology and Rheumatology, Department of Medicine, and
| | - Purvesh Khatri
- Institute for Immunity, Transplantation and Infection.,Division of Biomedical Informatics Research
| |
Collapse
|
23
|
Vlachogiannis NI, Gatsiou A, Silvestris DA, Stamatelopoulos K, Tektonidou MG, Gallo A, Sfikakis PP, Stellos K. Increased adenosine-to-inosine RNA editing in rheumatoid arthritis. J Autoimmun 2020; 106:102329. [PMID: 31493964 PMCID: PMC7479519 DOI: 10.1016/j.jaut.2019.102329] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Revised: 08/20/2019] [Accepted: 08/21/2019] [Indexed: 12/11/2022]
Abstract
OBJECTIVE Adenosine-to-inosine (A-to-I) RNA editing of Alu retroelements is a primate-specific mechanism mediated by adenosine deaminases acting on RNA (ADARs) that diversifies transcriptome by changing selected nucleotides in RNA molecules. We tested the hypothesis that A-to-I RNA editing is altered in rheumatoid arthritis (RA). METHODS Synovium expression analysis of ADAR1 was investigated in 152 RA patients and 50 controls. Peripheral blood mononuclear cells derived from 14 healthy subjects and 19 patients with active RA at baseline and after 12-week treatment were examined for ADAR1p150 and ADAR1p110 isoform expression by RT-qPCR. RNA editing activity was analysed by AluSx+ Sanger-sequencing of cathepsin S, an extracellular matrix degradation enzyme involved in antigen presentation. RESULTS ADAR1 was significantly over-expressed in RA synovium regardless of disease duration. Similarly, ADAR1p150 isoform expression was significantly increased in the blood of active RA patients. Individual nucleotide analysis revealed that A-to-I RNA editing rate was also significantly increased in RA patients. Both baseline ADAR1p150 expression and individual adenosine RNA editing rate of cathepsin S AluSx+ decreased after treatment only in those patients with good clinical response. Upregulation of the expression and/or activity of the RNA editing machinery were associated with a higher expression of edited Alu-enriched genes including cathepsin S and TNF receptor-associated factors 1,2,3 and 5. CONCLUSION A previously unrecognized regulation and role of ADAR1p150-mediated A-to-I RNA editing in post-transcriptional control in RA underpins therapeutic response and fuels inflammatory gene expression, thus representing an interesting therapeutic target.
Collapse
Affiliation(s)
- Nikolaos I Vlachogiannis
- First Department of Propaedeutic Internal Medicine and Joint Rheumatology Program, School of Medicine, National & Kapodistrian University of Athens, Athens, Greece; Cardiovascular Disease Prevention Hub, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, UK
| | - Aikaterini Gatsiou
- Cardiovascular Disease Prevention Hub, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, UK
| | | | - Kimon Stamatelopoulos
- Department of Clinical Therapeutics, Alexandra Hospital, National & Kapodistrian University of Athens, Athens, Greece
| | - Maria G Tektonidou
- First Department of Propaedeutic Internal Medicine and Joint Rheumatology Program, School of Medicine, National & Kapodistrian University of Athens, Athens, Greece
| | - Angela Gallo
- RNA Editing Lab, Oncohaematology Dept., Children Hospital Bambino Gesù IRCCS, Rome, Italy
| | - Petros P Sfikakis
- First Department of Propaedeutic Internal Medicine and Joint Rheumatology Program, School of Medicine, National & Kapodistrian University of Athens, Athens, Greece
| | - Konstantinos Stellos
- Cardiovascular Disease Prevention Hub, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, UK; Freeman Hospital, Newcastle Upon Tyne Hospitals NHS Foundation Trust, Newcastle Upon Tyne, UK.
| |
Collapse
|
24
|
Barrat FJ, Crow MK, Ivashkiv LB. Interferon target-gene expression and epigenomic signatures in health and disease. Nat Immunol 2019; 20:1574-1583. [PMID: 31745335 PMCID: PMC7024546 DOI: 10.1038/s41590-019-0466-2] [Citation(s) in RCA: 309] [Impact Index Per Article: 61.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Accepted: 07/10/2019] [Indexed: 02/06/2023]
Abstract
Multiple type I interferons and interferon-γ (IFN-γ) are expressed under physiological conditions and are increased by stress and infections, and in autoinflammatory and autoimmune diseases. Interferons activate the Jak-STAT signaling pathway and induce overlapping patterns of expression, called 'interferon signatures', of canonical interferon-stimulated genes (ISGs) encoding molecules important for antiviral responses, antigen presentation, autoimmunity and inflammation. It has now become clear that interferons also induce an 'interferon epigenomic signature' by activating latent enhancers and 'bookmarking' chromatin, thus reprogramming cell responses to environmental cues. The interferon epigenomic signature affects ISGs and other gene sets, including canonical targets of the transcription factor NF-κB that encode inflammatory molecules, and is involved in the priming of immune cells, tolerance and the training of innate immune memory. Here we review the mechanisms through which interferon signatures and interferon epigenomic signatures are generated, as well as the expression and functional consequences of these signatures in homeostasis and autoimmune diseases, including systemic lupus erythematosus, rheumatoid arthritis and systemic sclerosis.
Collapse
Affiliation(s)
- Franck J Barrat
- Research Institute and David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, NY, USA
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY, USA
- Immunology and Microbial Pathogenesis Program, Weill Cornell Medicine, New York, NY, USA
| | - Mary K Crow
- Research Institute and David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, NY, USA
- Immunology and Microbial Pathogenesis Program, Weill Cornell Medicine, New York, NY, USA
- Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Lionel B Ivashkiv
- Research Institute and David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, NY, USA.
- Immunology and Microbial Pathogenesis Program, Weill Cornell Medicine, New York, NY, USA.
- Department of Medicine, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
25
|
Mandhana R, Qian LK, Horvath CM. Constitutively Active MDA5 Proteins Are Inhibited by Paramyxovirus V Proteins. J Interferon Cytokine Res 2019; 38:319-332. [PMID: 30130154 DOI: 10.1089/jir.2018.0049] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Excessive interferon (IFN) production and signaling can lead to immunological and developmental defects giving rise to autoimmune diseases referred to collectively as "type I interferonopathies." A subset of these diseases is caused by monogenic mutations affecting proteins involved in nucleic acid sensing, homeostasis, and metabolism. Interferonopathic mutations in the cytosolic antiviral sensor MDA5 render it constitutively hyperactive, resulting in chronic IFN production and IFN-stimulated gene expression. Few therapeutic options are available for patients with interferonopathic diseases, but a large number of IFN evasion and antagonism strategies have evolved in viral pathogens that can counteract IFN production and signaling to enhance virus replication. To test the hypothesis that these natural IFN suppressors could be used to subdue the activity of interferonopathic signaling proteins, hyperactive MDA5 variants were assessed for susceptibility to a family of viral MDA5 inhibitors. In this study, Paramyxovirus V proteins were tested for their ability to counteract constitutively active MDA5 proteins. Results indicate that the V proteins are able to bind to and disrupt the signaling activity of these MDA5 proteins, irrespective of their specific mutations, reducing IFN production and IFN-stimulated gene expression to effectively suppress the hyperactive antiviral response.
Collapse
Affiliation(s)
- Roli Mandhana
- Department of Molecular Biosciences, Northwestern University , Evanston, Illinois
| | - Lily K Qian
- Department of Molecular Biosciences, Northwestern University , Evanston, Illinois
| | - Curt M Horvath
- Department of Molecular Biosciences, Northwestern University , Evanston, Illinois
| |
Collapse
|
26
|
Gatsiou A, Stellos K. Dawn of Epitranscriptomic Medicine. CIRCULATION-GENOMIC AND PRECISION MEDICINE 2019; 11:e001927. [PMID: 30354331 DOI: 10.1161/circgen.118.001927] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Medicine is at the crossroads of expanding disciplines. Prompt adaptation of medicine to each rapidly advancing research field, bridging bench to bedside, is a key step toward health improvement. Cardiovascular disease still ranks first among the mortality causes in the Western world, indicating a poor adaptation rate of cardiovascular medicine, albeit the gigantic scientific breakthroughs of this century. This urges the cardiovascular research field to explore novel concepts with promising prognostic and therapeutic potential. This review attempts to introduce the newly emerging field of epitranscriptome (or else known as RNA epigenetics) to cardiovascular researchers and clinicians summarizing its applications on health and disease. The traditionally perceived, intermediate carrier of genetic information or as contemporary revised as, occasionally, even the final product of gene expression, RNA, is dynamically subjected to >140 different kinds of chemical modifications determining its fate, which may profoundly impact the cellular responses and thus both health and disease course. Which are the most prevalent types of these RNA modifications, how are they catalyzed, how are they regulated, which role may they play in health and disease, and which are the implications for the cardiovascular medicine are few important questions that are discussed in the present review.
Collapse
Affiliation(s)
- Aikaterini Gatsiou
- Institute of Cardiovascular Regeneration, Center of Molecular Medicine, Goethe University Frankfurt, Frankfurt am Main, Germany (A.G., K.S.).,Department of Cardiology, Center of Internal Medicine, Goethe University Frankfurt, Germany (A.G., K.S.).,German Center of Cardiovascular Research, Rhein-Main Partner Site, Frankfurt (A.G., K.S.)
| | - Konstantinos Stellos
- Institute of Cardiovascular Regeneration, Center of Molecular Medicine, Goethe University Frankfurt, Frankfurt am Main, Germany (A.G., K.S.).,Department of Cardiology, Center of Internal Medicine, Goethe University Frankfurt, Germany (A.G., K.S.).,German Center of Cardiovascular Research, Rhein-Main Partner Site, Frankfurt (A.G., K.S.).,Cardiovascular Research Centre, Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom (K.S.).,Department of Cardiology, Freeman Hospital, Newcastle upon Tyne Hospitals National Health System Foundation Trust, United Kingdom (K.S.)
| |
Collapse
|
27
|
Tay SH, Yaung KN, Leong JY, Yeo JG, Arkachaisri T, Albani S. Immunomics in Pediatric Rheumatic Diseases. Front Med (Lausanne) 2019; 6:111. [PMID: 31231652 PMCID: PMC6558393 DOI: 10.3389/fmed.2019.00111] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 05/03/2019] [Indexed: 02/04/2023] Open
Abstract
The inherent complexity in the immune landscape of pediatric rheumatic disease necessitates a holistic system approach. Uncertainty in the mechanistic workings and etiological driving forces presents difficulty in personalized treatments. The development and progression of immunomics are well suited to deal with this complexity. Immunomics encompasses a spectrum of biological processes that entail genomics, transcriptomics, epigenomics, proteomics, and cytomics. In this review, we will discuss how various high dimensional technologies in immunomics have helped to grow a wealth of data that provide salient clues and biological insights into the pathogenesis of autoimmunity. Interfaced with critical unresolved clinical questions and unmet medical needs, these platforms have helped to identify candidate immune targets, refine patient stratification, and understand treatment response or resistance. Yet the unprecedented growth in data has presented both opportunities and challenges. Researchers are now facing huge heterogeneous data sets from different origins that need to be integrated and exploited for further data mining. We believe that the utilization and integration of these platforms will help unravel the complexities and expedite both discovery and validation of clinical targets.
Collapse
Affiliation(s)
| | | | - Jing Yao Leong
- Translational Immunology Institute, SingHealth Duke-NUS Academic Medical Centre, Singapore, Singapore
| | - Joo Guan Yeo
- Duke-NUS Medical School, Singapore, Singapore.,Translational Immunology Institute, SingHealth Duke-NUS Academic Medical Centre, Singapore, Singapore.,Rheumatology and Immunology Service, Department of Pediatric Subspecialties, KK Women's and Children's Hospital, Singapore, Singapore
| | - Thaschawee Arkachaisri
- Duke-NUS Medical School, Singapore, Singapore.,Rheumatology and Immunology Service, Department of Pediatric Subspecialties, KK Women's and Children's Hospital, Singapore, Singapore
| | - Salvatore Albani
- Duke-NUS Medical School, Singapore, Singapore.,Translational Immunology Institute, SingHealth Duke-NUS Academic Medical Centre, Singapore, Singapore.,Rheumatology and Immunology Service, Department of Pediatric Subspecialties, KK Women's and Children's Hospital, Singapore, Singapore
| |
Collapse
|
28
|
Abstract
Checkpoint inhibitors (CI) have revolutionized the management of many cancers but can result in immune-related adverse events (IRAE). In this chapter, we review the clinical manifestations and management of the most common IRAE, plus less common IRAE, such as inflammatory arthritis, of particular interest to rheumatologists. We review the mechanism of action of CI, predictors of IRAE, and the impact of IRAE on cancer outcomes. The study of IRAE is in its infancy; there are very few prospective studies and virtually no treatment trials. Where possible, we have drawn estimates of IRAE incidence from meta-analyses of randomized controlled trials. Clinical descriptions are derived from case series and case reports. Readers are encouraged to refer to consensus guidelines for IRAE management published by the American Society of Clinical Oncology and the Society for Immunotherapy of Cancer.
Collapse
|
29
|
Crow MK, Olferiev M, Kirou KA. Type I Interferons in Autoimmune Disease. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2018; 14:369-393. [PMID: 30332560 DOI: 10.1146/annurev-pathol-020117-043952] [Citation(s) in RCA: 167] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Type I interferons, which make up the first cytokine family to be described and are the essential mediators of antivirus host defense, have emerged as central elements in the immunopathology of systemic autoimmune diseases, with systemic lupus erythematosus as the prototype. Lessons from investigation of interferon regulation following virus infection can be applied to lupus, with the conclusion that sustained production of type I interferon shifts nearly all components of the immune system toward pathologic functions that result in tissue damage and disease. We review recent data, mainly from studies of patients with systemic lupus erythematosus, that provide new insights into the mechanisms of induction and the immunologic consequences of chronic activation of the type I interferon pathway. Current concepts implicate endogenous nucleic acids, driving both cytosolic sensors and endosomal Toll-like receptors, in interferon pathway activation and suggest targets for development of novel therapeutics that may restore the immune system to health.
Collapse
Affiliation(s)
- Mary K Crow
- Mary Kirkland Center for Lupus Research, Hospital for Special Surgery, New York, New York 10021, USA;
| | - Mikhail Olferiev
- Mary Kirkland Center for Lupus Research, Hospital for Special Surgery, New York, New York 10021, USA;
| | - Kyriakos A Kirou
- Mary Kirkland Center for Lupus Research, Hospital for Special Surgery, New York, New York 10021, USA;
| |
Collapse
|
30
|
Gatsiou A, Vlachogiannis N, Lunella FF, Sachse M, Stellos K. Adenosine-to-Inosine RNA Editing in Health and Disease. Antioxid Redox Signal 2018; 29:846-863. [PMID: 28762759 DOI: 10.1089/ars.2017.7295] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
SIGNIFICANCE Adenosine deamination in transcriptome results in the formation of inosine, a process that is called A-to-I RNA editing. Adenosine deamination is one of the more than 140 described RNA modifications. A-to-I RNA editing is catalyzed by adenosine deaminase acting on RNA (ADAR) enzymes and is essential for life. Recent Advances: Accumulating evidence supports a critical role of RNA editing in all aspects of RNA metabolism, including mRNA stability, splicing, nuclear export, and localization, as well as in recoding of proteins. These advances have significantly enhanced the understanding of mechanisms involved in development and in homeostasis. Furthermore, recent studies have indicated that RNA editing may be critically involved in cancer, aging, neurological, autoimmune, or cardiovascular diseases. CRITICAL ISSUES This review summarizes recent and significant achievements in the field of A-to-I RNA editing and discusses the importance and translational value of this RNA modification for gene expression, cellular, and organ function, as well as for disease development. FUTURE DIRECTIONS Elucidation of the exact RNA editing-dependent mechanisms in a single-nucleotide level may pave the path toward the development of novel therapeutic strategies focusing on modulation of ADAR function in the disease context. Antioxid. Redox Signal. 29, 846-863.
Collapse
Affiliation(s)
- Aikaterini Gatsiou
- 1 Institute of Cardiovascular Regeneration, Center of Molecular Medicine, JW Goethe University Frankfurt , Frankfurt, Germany .,2 Department of Biosciences, JW Goethe University Frankfurt , Frankfurt, Germany .,3 Department of Cardiology, Center of Internal Medicine, JW Goethe University Frankfurt , Frankfurt, Germany .,4 German Center of Cardiovascular Research (DZHK) , Rhein-Main Partner Site, Frankfurt, Germany
| | - Nikolaos Vlachogiannis
- 5 Rheumatology Unit, First Department of Propaedeutic Internal Medicine and Joint Rheumatology Academic Program, School of Medicine, National and Kapodistrian University of Athens , Athens, Greece
| | - Federica Francesca Lunella
- 1 Institute of Cardiovascular Regeneration, Center of Molecular Medicine, JW Goethe University Frankfurt , Frankfurt, Germany .,2 Department of Biosciences, JW Goethe University Frankfurt , Frankfurt, Germany .,3 Department of Cardiology, Center of Internal Medicine, JW Goethe University Frankfurt , Frankfurt, Germany .,4 German Center of Cardiovascular Research (DZHK) , Rhein-Main Partner Site, Frankfurt, Germany
| | - Marco Sachse
- 1 Institute of Cardiovascular Regeneration, Center of Molecular Medicine, JW Goethe University Frankfurt , Frankfurt, Germany .,3 Department of Cardiology, Center of Internal Medicine, JW Goethe University Frankfurt , Frankfurt, Germany .,4 German Center of Cardiovascular Research (DZHK) , Rhein-Main Partner Site, Frankfurt, Germany
| | - Konstantinos Stellos
- 1 Institute of Cardiovascular Regeneration, Center of Molecular Medicine, JW Goethe University Frankfurt , Frankfurt, Germany .,3 Department of Cardiology, Center of Internal Medicine, JW Goethe University Frankfurt , Frankfurt, Germany .,4 German Center of Cardiovascular Research (DZHK) , Rhein-Main Partner Site, Frankfurt, Germany
| |
Collapse
|
31
|
Abstract
The type I interferon pathway has been implicated in the pathogenesis of a number of rheumatic diseases, including systemic lupus erythematosus, Sjögren syndrome, myositis, systemic sclerosis, and rheumatoid arthritis. In normal immune responses, type I interferons have a critical role in the defence against viruses, yet in many rheumatic diseases, large subgroups of patients demonstrate persistent activation of the type I interferon pathway. Genetic variations in type I interferon-related genes are risk factors for some rheumatic diseases, and can explain some of the heterogeneity in type I interferon responses seen between patients within a given disease. Inappropriate activation of the immune response via Toll-like receptors and other nucleic acid sensors also contributes to the dysregulation of the type I interferon pathway in a number of rheumatic diseases. Theoretically, differences in type I interferon activity between patients might predict response to immune-based therapies, as has been demonstrated for rheumatoid arthritis. A number of type I interferon and type I interferon pathway blocking therapies are currently in clinical trials, the results of which are promising thus far. This Review provides an overview of the many ways in which the type I interferon system affects rheumatic diseases.
Collapse
Affiliation(s)
- Theresa L. Wampler Muskardin
- Colton Center for Autoimmunity, Department of Medicine, New York University School of Medicine, New York, NY, USA
- Department of Pathology, New York University School of Medicine, New York, NY, USA
| | - Timothy B. Niewold
- Colton Center for Autoimmunity, Department of Medicine, New York University School of Medicine, New York, NY, USA
- Division of Rheumatology, Department of Medicine and Pediatrics, New York University School of Medicine, New York, NY, USA
| |
Collapse
|
32
|
Shimizu Y, Yasuda S, Kimura T, Nishio S, Kono M, Ohmura K, Shimamura S, Kono M, Fujieda Y, Kato M, Oku K, Bohgaki T, Fukasawa Y, Tanaka S, Atsumi T. Interferon-inducible Mx1 protein is highly expressed in renal tissues from treatment-naïve lupus nephritis, but not in those under immunosuppressive treatment. Mod Rheumatol 2017; 28:661-669. [PMID: 29189089 DOI: 10.1080/14397595.2017.1404711] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
OBJECTIVES The aim of this study was to clarify the consequences of Mx1, one of the IFN-inducible proteins, in the peripheral blood as well as in renal tissues in patients with systemic lupus erythematosus (SLE). PATIENTS AND METHODS Mx1 protein concentrations in (PBMCs) from 18 SLE patients mostly in their stable disease status, 11 IgA nephropathy (IgAN) patients, 5 ANCA-associated vasculitis (AAV) patients and 16 healthy controls were measured using enzyme-linked immunosorbent assay (ELISA). Mx1 expression in renal specimens from 18 patients with lupus nephritis (LN), 18 with IgAN and 10 with AAV were evaluated using immunohistochemistry. RESULTS Mx1 protein concentrations in lysates of PBMCs were significantly higher in SLE patients compared with those in other three groups. Mx1-positive area in renal tissues was significantly dominant in both glomeruli and renal tubules of LN compared with other renal diseases. Renal Mx1 protein levels were lower in LN after immunosuppressive treatment, compared with those from immunosuppressant-naïve patients. CONCLUSION Mx1 levels were upregulated in lupus peripheral blood even when their disease activities were stable. On the other hand, Mx1 was highly expressed in kidneys from patients with LN before treatment, which was decreased after immunosuppressive treatment. These results suggest that Mx1 is a potential marker for the diagnosis of SLE in the peripheral blood and also for the activity of lupus nephritis in the kidney.
Collapse
Affiliation(s)
- Yuka Shimizu
- a Department of Rheumatology, Endocrinology and Nephrology, Faculty of Medicine and Graduate School of Medicine , Hokkaido University , Sapporo , Japan
| | - Shinsuke Yasuda
- a Department of Rheumatology, Endocrinology and Nephrology, Faculty of Medicine and Graduate School of Medicine , Hokkaido University , Sapporo , Japan
| | - Taichi Kimura
- b Department of Translational Pathology, Faculty of Medicine , Hokkaido University , Sapporo , Japan.,c Department of Pathology , Hokkaido Medical Center , Sapporo , Japan
| | - Saori Nishio
- a Department of Rheumatology, Endocrinology and Nephrology, Faculty of Medicine and Graduate School of Medicine , Hokkaido University , Sapporo , Japan
| | - Michihiro Kono
- a Department of Rheumatology, Endocrinology and Nephrology, Faculty of Medicine and Graduate School of Medicine , Hokkaido University , Sapporo , Japan
| | - Kazumasa Ohmura
- a Department of Rheumatology, Endocrinology and Nephrology, Faculty of Medicine and Graduate School of Medicine , Hokkaido University , Sapporo , Japan
| | - Sanae Shimamura
- a Department of Rheumatology, Endocrinology and Nephrology, Faculty of Medicine and Graduate School of Medicine , Hokkaido University , Sapporo , Japan
| | - Michihito Kono
- a Department of Rheumatology, Endocrinology and Nephrology, Faculty of Medicine and Graduate School of Medicine , Hokkaido University , Sapporo , Japan
| | - Yuichiro Fujieda
- a Department of Rheumatology, Endocrinology and Nephrology, Faculty of Medicine and Graduate School of Medicine , Hokkaido University , Sapporo , Japan
| | - Masaru Kato
- a Department of Rheumatology, Endocrinology and Nephrology, Faculty of Medicine and Graduate School of Medicine , Hokkaido University , Sapporo , Japan
| | - Kenji Oku
- a Department of Rheumatology, Endocrinology and Nephrology, Faculty of Medicine and Graduate School of Medicine , Hokkaido University , Sapporo , Japan
| | - Toshiyuki Bohgaki
- a Department of Rheumatology, Endocrinology and Nephrology, Faculty of Medicine and Graduate School of Medicine , Hokkaido University , Sapporo , Japan
| | - Yuichiro Fukasawa
- d Department of Pathology , Sapporo City General Hospital , Sapporo , Japan
| | - Shinya Tanaka
- b Department of Translational Pathology, Faculty of Medicine , Hokkaido University , Sapporo , Japan.,e Department of Cancer Pathology, Faculty of Medicine , Hokkaido University , Sapporo , Japan
| | - Tatsuya Atsumi
- a Department of Rheumatology, Endocrinology and Nephrology, Faculty of Medicine and Graduate School of Medicine , Hokkaido University , Sapporo , Japan
| |
Collapse
|
33
|
Kalogirou EM, Piperi EP, Tosios KI, Tsiambas E, Fanourakis G, Sklavounou A. Ductal cells of minor salivary glands in Sjögren's syndrome express LINE-1 ORF2p and APOBEC3B. J Oral Pathol Med 2017; 47:179-185. [PMID: 29057505 DOI: 10.1111/jop.12656] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/17/2017] [Indexed: 01/29/2023]
Abstract
BACKGROUND Type I interferon activation is a hallmark event in Sjögren's syndrome. L1 retroelements stimulate plasmacytoid dendritic cells, activating the type I interferons, and are regulated by various mechanisms, including the APOBEC3 deaminases. As L1s are potential trigger factors in autoimmunity, we aimed to investigate the immunohistochemical localization of L1 ORF2p and its inhibitor APOBEC3B protein in minor salivary glands of Sjögren's syndrome patients. METHODS Twenty minor salivary gland-tissue samples from 20 Sjögren's syndrome patients, classified according to Tarpley's histological criteria, and 10 controls were evaluated for L1 ORF2p and APOBEC3B expression via immunohistochemistry. RESULTS L1 ORF2p was expressed in 17/20 SS patients and all controls. APOBEC3B expression was observed in 15/20 Sjögren's syndrome patients, 5/5 chronic sialadenitis, and 3/5 normal minor salivary glands. Both antibodies stained the cytoplasm of the ductal epithelial cells. Negative staining was observed in the acinar cells. L1 ORF2p-positive immunostaining was significantly lower in Tarpley IV Sjögren's syndrome patients than controls (P = .039), and APOBEC3B-positive staining was significantly lower in Tarpley I compared to Tarpley II Sjögren's syndrome patients (P = .008) and controls (P = .035). CONCLUSIONS L1 ORF2p and APOBEC3B are expressed in the ductal epithelial cells of minor salivary glands that are among the key targets in Sjögren's syndrome. L1 ORF2p expression may promote the L1 ability to act as an intrinsic antigen in Sjögren's syndrome. The potential future use of L1 ORF2-reverse transcriptase inhibitors in autoimmunity supports further investigation of L1 epigenetic regulation by APOBEC3 enzymes.
Collapse
Affiliation(s)
- Eleni-Marina Kalogirou
- Department of Oral Medicine and Pathology, Faculty of Dentistry, National and Kapodistrian University of Athens, Athens, Greece
| | - Evangelia P Piperi
- Department of Oral Medicine and Pathology, Faculty of Dentistry, National and Kapodistrian University of Athens, Athens, Greece
| | - Konstantinos I Tosios
- Department of Oral Medicine and Pathology, Faculty of Dentistry, National and Kapodistrian University of Athens, Athens, Greece
| | - Evangelos Tsiambas
- Department of Immunohistochemistry & Molecular Biology, 401 Military Hospital of Athens, Athens, Greece
| | - Galinos Fanourakis
- Department of Oral Biology, Faculty of Dentistry, National and Kapodistrian University of Athens, Athens, Greece
| | - Alexandra Sklavounou
- Department of Oral Medicine and Pathology, Faculty of Dentistry, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
34
|
Defective regulation of L1 endogenous retroelements in primary Sjogren's syndrome and systemic lupus erythematosus: Role of methylating enzymes. J Autoimmun 2017; 88:75-82. [PMID: 29074164 DOI: 10.1016/j.jaut.2017.10.004] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 10/07/2017] [Accepted: 10/08/2017] [Indexed: 12/19/2022]
Abstract
OBJECTIVE To investigate whether altered DNA methylation contributes to the inappropriate expression of LINE-1 (L1) retroelements in primary Sjogren's syndrome (SS) and systemic lupus erythematosus (SLE). METHODS Minor salivary glands (MSG) were obtained from 42 patients with primary SS [23 without adverse predictors for lymphoma development (SS-low risk), 7 SS-high risk and 12 complicated by B-cell lymphoma (SS-lymphoma)] and 17 sicca controls (SC). Additionally, kidney biopsy specimens and PBMCs were obtained from 23 and 73 lupus patients, respectively. Relative mRNA expression was quantified for full-length L1 transcripts, along with mediators of methylation. In an independent set of 44 MSG samples (11 SS-low risk, 10 SS-high risk, 15 SS-lymphoma and 8 SC), methylation levels of the L1 promoter were determined by bisulphite pyrosequencing. RESULTS A strong positive correlation was demonstrated between L1 transcripts and gene products that mediate de novo and constitutive DNA methylation, DNA methyltransferase (DNMT)3B, DNMT1, and methyl CpG binding protein 2 (MeCP2), in both SS MSG and lupus renal tissues. A significant negative correlation was observed between expression of L1 and lymphoid-specific helicase (LSH, encoded by HELLS) in both SS MSG and SLE kidney tissues, as well as between DNMT3A transcripts and L1 expression in SLE kidney tissues and PBMCs. Reduced levels of L1 promoter methylation along with increased DNMT3B, DNMT1, and MeCP2, but reduced LSH levels were detected in SS-low risk patients compared to both SS-lymphoma and SC. The SS-lymphoma group was also characterized by a profound decrease of MeCP2 and DNMT3B compared to SC. CONCLUSION Our data support a contributory role of altered methylation mechanisms in the pathogenesis of systemic autoimmune disorders and related lymphoproliferative processes and suggest that LSH and DNMT3A should be investigated as candidate upstream mediators of decreased L1 promoter methylation and increased L1 expression.
Collapse
|
35
|
Mavragani CP, Sagalovskiy I, Guo Q, Nezos A, Kapsogeorgou EK, Lu P, Liang Zhou J, Kirou KA, Seshan SV, Moutsopoulos HM, Crow MK. Expression of Long Interspersed Nuclear Element 1 Retroelements and Induction of Type I Interferon in Patients With Systemic Autoimmune Disease. Arthritis Rheumatol 2017; 68:2686-2696. [PMID: 27338297 DOI: 10.1002/art.39795] [Citation(s) in RCA: 121] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 06/16/2016] [Indexed: 12/14/2022]
Abstract
OBJECTIVE Increased expression of type I interferon (IFN) and a broad signature of type I IFN-induced gene transcripts are observed in patients with systemic lupus erythematosus (SLE) and other systemic autoimmune diseases. To identify disease-relevant triggers of the type I IFN pathway, this study sought to investigate whether endogenous virus-like genomic repeat elements, normally silent, are expressed in patients with systemic autoimmune disease, and whether these retroelements could activate an innate immune response and induce type I IFN. METHODS Expression of type I IFN and long interspersed nuclear element 1 (LINE-1; L1) was studied by polymerase chain reaction, Western blotting, and immunohistochemistry in samples of kidney tissue from patients with lupus nephritis and minor salivary gland (MSG) tissue from patients with primary Sjögren's syndrome (SS). Induction of type I IFN by L1 was investigated by transfection of plasmacytoid dendritic cells (PDCs) or monocytes with an L1-encoding plasmid or L1 RNA. Involvement of innate immune pathways and altered L1 methylation were assessed. RESULTS Levels of L1 messenger RNA transcripts were increased in lupus nephritis kidneys and in MSG tissue from patients with SS. Transcript expression correlated with the expression of type I IFN and L1 DNA demethylation. L1 open-reading frame 1/p40 protein and IFNβ were expressed in MSG ductal epithelial cells and in lupus nephritis kidneys, and IFNα was detected in infiltrating PDCs. Transfection of PDCs or monocytes with L1-encoding DNA or RNA induced type I IFN. Inhibition of Toll-like receptor 7 (TLR-7)/TLR-8 reduced the induction of IFNα by L1 in PDCs, and an inhibitor of IKKε/TANK-binding kinase 1 abrogated the induction of type I IFN by L1 RNA in monocytes. CONCLUSION L1 genomic repeat elements represent endogenous nucleic acid triggers of the type I IFN pathway in SLE and SS and may contribute to initiation or amplification of autoimmune disease.
Collapse
Affiliation(s)
- Clio P Mavragani
- Hospital for Special Surgery, New York, New York, and National and Kapodistrian University of Athens, Athens, Greece
| | | | - Qiu Guo
- Hospital for Special Surgery, New York, New York
| | - Adrianos Nezos
- National and Kapodistrian University of Athens, Athens, Greece
| | | | - Pin Lu
- Hospital for Special Surgery, New York, New York
| | | | | | | | | | - Mary K Crow
- Hospital for Special Surgery, New York, New York.
| |
Collapse
|
36
|
Gupta S, Tatouli IP, Rosen LB, Hasni S, Alevizos I, Manna ZG, Rivera J, Jiang C, Siegel RM, Holland SM, Moutsopoulos HM, Browne SK. Distinct Functions of Autoantibodies Against Interferon in Systemic Lupus Erythematosus: A Comprehensive Analysis of Anticytokine Autoantibodies in Common Rheumatic Diseases. Arthritis Rheumatol 2017; 68:1677-87. [PMID: 26815287 DOI: 10.1002/art.39607] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 01/19/2016] [Indexed: 02/06/2023]
Abstract
OBJECTIVE Anticytokine autoantibodies occur across a range of hematologic, pulmonary, and infectious diseases. However, systematic investigation of their presence and significance in autoimmune diseases is lacking. This study was undertaken to examine the distinct functions of anticytokine autoantibodies in patients with systemic lupus erythematosus (SLE) compared to patients with other rheumatic diseases and healthy controls. METHODS Serum samples from patients with SLE (n = 199), patients with primary Sjögren's syndrome (SS) (n = 150), patients with rheumatoid arthritis (RA) (n = 149), and healthy controls (n = 200) were screened for 24 anticytokine autoantibodies using a multiplex bead-based assay. To evaluate the biologic activity of anticytokine autoantibodies, their ability to block cytokine-induced signal transduction or protein expression was measured. RNA sequencing was performed on whole blood in a subset of healthy controls and patients with SLE. RESULTS Patients with SLE and those with SS had a striking excess of autoantibodies against interferons and the interferon-responsive chemokine interferon-inducible protein 10 (IP-10). Only autoantibodies against type I interferon, interleukin-12 (IL-12), and IL-22 exhibited neutralizing activity. In SLE, the presence of anti-interferon-γ autoantibodies was correlated with more severe disease activity, higher levels of anti-double-stranded DNA antibodies, and elevated expression of interferon-α/β-inducible genes. Conversely, in SLE patients with blocking anti-interferon-α autoantibodies, the type I interferon gene expression signature was normalized. Anti-type III interferon autoantibodies (λ2, λ3) and anti-IP-10 autoantibodies were newly recognized in SLE patient serum, and autoantibodies against macrophage-colony stimulating factor, IL-4, IL-7, IL-17, and IL-22, none of which have been previously identified in rheumatic conditions, were discovered. CONCLUSION Anticytokine autoantibodies are associated with distinct patterns of disease in SLE, SS, and RA. Anti-interferon autoantibodies are overrepresented in patients with SLE and those with SS, and fall into distinct functional classes, with only a subset of anti-type I interferon antibodies exhibiting neutralizing activity. Anti-interferon-γ autoantibodies are correlated with increased disease activity and interferon-related gene expression, suggesting that such autoantibodies may contribute to the pathogenesis of SLE.
Collapse
Affiliation(s)
- Sarthak Gupta
- National Institute of Allergy and Infectious Diseases and National Institute of Arthritis and Musculoskeletal and Skin Diseases, NIH, Bethesda, Maryland
| | | | - Lindsey B Rosen
- National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland
| | - Sarfaraz Hasni
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, NIH, Bethesda, Maryland
| | - Ilias Alevizos
- National Institute of Dental and Craniofacial Research, NIH, Bethesda, Maryland
| | - Zerai G Manna
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, NIH, Bethesda, Maryland
| | - Juan Rivera
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, NIH, Bethesda, Maryland
| | - Chao Jiang
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, NIH, Bethesda, Maryland
| | - Richard M Siegel
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, NIH, Bethesda, Maryland
| | - Steven M Holland
- National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland
| | | | - Sarah K Browne
- National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland
| |
Collapse
|
37
|
Immune system activation in the pathogenesis of posterior reversible encephalopathy syndrome. Brain Res Bull 2017; 131:93-99. [PMID: 28373149 DOI: 10.1016/j.brainresbull.2017.03.012] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 03/24/2017] [Accepted: 03/29/2017] [Indexed: 11/21/2022]
Abstract
Posterior reversible encephalopathy syndrome (PRES) is a clinical-radiological syndrome characterized by a variable combination of headaches, seizures, altered mental status, visual impairment, focal neurological signs and symmetric vasogenic edema in bilateral posterior cerebral circulation territory. The pathogenesis of PRES is still controversial. Most of the clinical conditions associated with PRES involve a systemic toxicity response in the entire organism with activation of the cells of the immune system and cytokines. These PRES related conditions induce T cell activation, cytokine release, and subsequent leukocyte adhesion and activation, resulting in endothelial damage and fluid leakage. This potential mechanism of immune system activation and endothelial dysfunction may play a critical role in the pathogenesis of PRES. In this review, the role of immune system activation and endothelial dysfunction in the pathogenesis of PRES is discussed, with the aim to improve our understanding of this disorder.
Collapse
|
38
|
Özdemir FT, Demiralp EE, Aydın SZ, Atagündüz P, Ergun T, Direskeneli H. Immune and inflammatory gene expressions are different in Behçet's disease compared to those in Familial Mediterranean Fever. Eur J Rheumatol 2017; 3:146-152. [PMID: 28149656 DOI: 10.5152/eurjrheum.2016.15099] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 07/15/2016] [Indexed: 01/02/2023] Open
Abstract
OBJECTIVE The immune classification of Behçet's disease (BD) is still controversial. In this study, we aimed to compare the immune/inflammatory gene expressions in BD with those in familial Mediterranean fever (FMF), an autoinflammatory disorder with innate immune activation. MATERIAL AND METHODS CD4+ T cells and CD14+ monocytes were isolated from the peripheral blood mononuclear cells of Behçet's disease patients (n=10), FMF (n=6) patients, and healthy controls (n=4) with microbeads, and then, the mRNA was isolated. The expressions of 440 genes associated with immune and inflammatory responses were studied with a focused DNA microarray using a chemiluminescent tagging system. Changes above 1.5-fold and below 0.8-fold were accepted to be significant. RESULTS In BD patients, in the CD4+ T-lymphocyte subset, interleukin 18 receptor accessory protein (1.7-fold), IL-7 receptor (1.9-fold), and prokineticin 2 (2.5-fold) were all increased compared to those in FMF patients, whereas chemokine (C-X3-C motif ) receptor-1 (CX3CR1) (0.7-fold) and endothelial cell growth factor-1 (0.6-fold) were decreased. In the CD14+ monocyte population, the V-fos FBJ murine osteosarcoma viral oncogene homolog (1.5-fold), Interleukin-8 (IL-8) (2.1-fold), and Tumor Necrosis Factor alpha (TNF-α) (1.8-fold) were all increased, whereas the chemokine (C-C motif ) ligand 5 (CCL5) (0.6-fold), C-C chemokine receptor type 7 (0.6-fold), and CX3CR1 (0.7-fold) were decreased, again when compared to those in FMF. Compared to healthy controls in the CD4+ T-lymphocyte population, in both BD and FMF patients, pro-platelet basic protein and CD27 had elevated expression. In BD and FMF patients, 24 and 19 genes, respectively, were downregulated, with 15 overlapping genes between both disorders. In the CD14+ monocytes population, chemokine (C-C motif ) receptor-1 (CCR1) was upregulated both in BD and FMF patients compared to that in the controls, whereas CCL5 was downregulated. CONCLUSION Immune and inflammatory gene expressions seem to be variable in both the innate (CD14+) and adaptive (CD4+) immune responses in BD and FMF patients compared to those in controls, suggesting differences in immune regulation between the two disorders.
Collapse
Affiliation(s)
- Filiz Türe Özdemir
- Department of Immunology, Marmara University School of Medicine, İstanbul, Turkey
| | - Emel Ekşioğlu Demiralp
- Department of Immunology, Marmara University School of Medicine, İstanbul, Turkey; Department of Immunology, Memorial Şişli Hospital, İstanbul, Turkey
| | - Sibel Z Aydın
- Department of Rheumatology, Marmara University School of Medicine, İstanbul, Turkey; Department of Rheumatology, Ottawa University School of Medicine, Ottawa, Canada
| | - Pamir Atagündüz
- Department of Rheumatology, Marmara University School of Medicine, İstanbul, Turkey
| | - Tülin Ergun
- Department of Dermatology, Marmara University School of Medicine, İstanbul, Turkey
| | - Haner Direskeneli
- Department of Rheumatology, Marmara University School of Medicine, İstanbul, Turkey
| |
Collapse
|
39
|
Dey-Rao R, Sinha AA. Vitiligo blood transcriptomics provides new insights into disease mechanisms and identifies potential novel therapeutic targets. BMC Genomics 2017; 18:109. [PMID: 28129744 PMCID: PMC5273810 DOI: 10.1186/s12864-017-3510-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 01/19/2017] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Significant gaps remain regarding the pathomechanisms underlying the autoimmune response in vitiligo (VL), where the loss of self-tolerance leads to the targeted killing of melanocytes. Specifically, there is incomplete information regarding alterations in the systemic environment that are relevant to the disease state. METHODS We undertook a genome-wide profiling approach to examine gene expression in the peripheral blood of VL patients and healthy controls in the context of our previously published VL-skin gene expression profile. We used several in silico bioinformatics-based analyses to provide new insights into disease mechanisms and suggest novel targets for future therapy. RESULTS Unsupervised clustering methods of the VL-blood dataset demonstrate a "disease-state"-specific set of co-expressed genes. Ontology enrichment analysis of 99 differentially expressed genes (DEGs) uncovers a down-regulated immune/inflammatory response, B-Cell antigen receptor (BCR) pathways, apoptosis and catabolic processes in VL-blood. There is evidence for both type I and II interferon (IFN) playing a role in VL pathogenesis. We used interactome analysis to identify several key blood associated transcriptional factors (TFs) from within (STAT1, STAT6 and NF-kB), as well as "hidden" (CREB1, MYC, IRF4, IRF1, and TP53) from the dataset that potentially affect disease pathogenesis. The TFs overlap with our reported lesional-skin transcriptional circuitry, underscoring their potential importance to the disease. We also identify a shared VL-blood and -skin transcriptional "hot spot" that maps to chromosome 6, and includes three VL-blood dysregulated genes (PSMB8, PSMB9 and TAP1) described as potential VL-associated genetic susceptibility loci. Finally, we provide bioinformatics-based support for prioritizing dysregulated genes in VL-blood or skin as potential therapeutic targets. CONCLUSIONS We examined the VL-blood transcriptome in context with our (previously published) VL-skin transcriptional profile to address a major gap in knowledge regarding the systemic changes underlying skin-specific manifestation of vitiligo. Several transcriptional "hot spots" observed in both environments offer prioritized targets for identifying disease risk genes. Finally, within the transcriptional framework of VL, we identify five novel molecules (STAT1, PRKCD, PTPN6, MYC and FGFR2) that lend themselves to being targeted by drugs for future potential VL-therapy.
Collapse
Affiliation(s)
- Rama Dey-Rao
- Department of Dermatology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, 6078 Clinical and Translational Research Center, 875 Ellicott Street, Buffalo, NY, 14203, USA
| | - Animesh A Sinha
- Department of Dermatology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, 6078 Clinical and Translational Research Center, 875 Ellicott Street, Buffalo, NY, 14203, USA.
| |
Collapse
|
40
|
Olferiev M, Jacek E, Kirou KA, Crow MK. Novel molecular signatures in mononuclear cell populations from patients with systemic lupus erythematosus. Clin Immunol 2016; 172:34-43. [PMID: 27576056 DOI: 10.1016/j.clim.2016.08.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 08/22/2016] [Indexed: 12/12/2022]
Abstract
To gain novel insights into the immunopathogenesis of systemic lupus erythematosus we have analyzed gene expression data from isolated CD4+ T cells, CD8+ T cells, CD19+ B cells, and CD56+ NK-cell enriched peripheral blood cell fractions from patients and healthy donors. As predicted, type I interferon-inducible gene transcripts are overexpressed in all populations. Transcripts preferentially expressed in SLE CD4+ and CD8+ T cells include those associated with Tregulatory and Th17 effector cell programs, respectively, but in each case additional transcripts predicted to limit differentiation of those effector cells are detected. Evidence for involvement of the Wnt/β-catenin pathway was observed in both B and T cell fractions, and novel transcripts were identified in each cell population. These data point to disrupted T effector cell differentiation and the Wnt/β-catenin pathway as contributors to immune dysfunction in SLE while further supporting a central role for the type I interferon pathway in lupus.
Collapse
Affiliation(s)
- Mikhail Olferiev
- Mary Kirkland Center for Lupus Research, Hospital for Special Surgery, 535 East 70th Street, New York, NY 10021, USA
| | - Elzbieta Jacek
- Mary Kirkland Center for Lupus Research, Hospital for Special Surgery, 535 East 70th Street, New York, NY 10021, USA
| | - Kyriakos A Kirou
- Mary Kirkland Center for Lupus Research, Hospital for Special Surgery, 535 East 70th Street, New York, NY 10021, USA
| | - Mary K Crow
- Mary Kirkland Center for Lupus Research, Hospital for Special Surgery, 535 East 70th Street, New York, NY 10021, USA.
| |
Collapse
|
41
|
Abstract
In a single assay, gene microarrays generate tens of thousands of measurements for the relative levels of messenger RNA expression, and thus hold promise to uncover the regulation of transcriptional responses behind clinical phenotypes of various diseases. Systemic lupus erythematosus (SLE) offers a unique opportunity to study gene expression both systemically and organ specific, as the tissues involved and specifically peripheral blood cells are readily accessible for molecular analysis. In the current review we highlight the current knowledge related to gene microarray in SLE. We approached the following questions: 1) Can gene microarray technology be used to translate molecular profiles into meaningful and applicable clinical information? 2) Does the assessment of differential gene expression provide specific signatures that may contribute to diagnostic and prognostic markers of SLE? 3) Can clinicians be helped in monitoring disease activity by identification of drug response gene profile? 4) Does evaluation of differential gene expression provide clues to detect previously unrecognized genes associated with the disease? It is evident that though not all questions can be currently answered appropriately, gene expression studies in SLE have important implications and will not only be beneficial for SLE patients, but will also lead to a better understanding of other autoimmune inflammatory diseases, thereby leading to novel diagnostic and therapeutic strategies in autoimmunity.
Collapse
Affiliation(s)
- M Mandel
- Blood Center, Sheba Medical Center, Tel-Hashomer, Israel
| | | |
Collapse
|
42
|
AlFadhli S, Al-Mutairi M, Al Tameemi B, Nizam R. Influence of MX1 promoter rs2071430 G/T polymorphism on susceptibility to systemic lupus erythematosus. Clin Rheumatol 2016; 35:623-9. [DOI: 10.1007/s10067-016-3179-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2015] [Revised: 01/09/2016] [Accepted: 01/10/2016] [Indexed: 10/22/2022]
|
43
|
Jordan N, Lutalo PM, D'Cruz DP. Progress with the use of monoclonal antibodies for the treatment of systemic lupus erythematosus. Immunotherapy 2016; 7:255-70. [PMID: 25804478 DOI: 10.2217/imt.14.118] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
In recent years, significant progress has been made in the use of monoclonal antibodies in the treatment of systemic lupus erythematosus (SLE). Advances in our understanding of the complexity of SLE immunopathogenesis have led to the testing of several biologic agents in clinical trials. Monoclonal therapies currently emerging or under development include B-cell depletion therapies, agents targeting B-cell survival factors, blockade of T-cell co-stimulation and anticytokine therapies. Issues remain, however, regarding clinical trial design and outcome measures in SLE which need to be addressed to optimize translation of these promising therapies into clinical practice.
Collapse
Affiliation(s)
- Natasha Jordan
- Louise Coote Lupus Unit St Thomas' Hospital, Westminster Bridge Road, London, SE1 7EH, UK
| | | | | |
Collapse
|
44
|
Punaro M. Use of microarrays in the clinical practice of pediatric rheumatology: the future is now? Curr Opin Rheumatol 2015; 26:585-91. [PMID: 25014037 DOI: 10.1097/bor.0000000000000095] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
PURPOSE OF REVIEW Systems immunology is an integrative approach that leverages high throughput technologies as well as mathematical and computational tools to investigate complex immunologic diseases by looking at the state of a system on a comprehensive scale. Gene expression profiling, also known as transcriptomics, measures the expression level of mRNAs (transcripts) in a given cell population at a specific time. Over the past decade, several major gene expression discoveries have been made in pediatric rheumatology, most notably the alpha interferon signature of systemic lupus erythematosus and the interleukin-1 signature in systemic onset juvenile idiopathic arthritis. This article reviews these discoveries, their clinical implications and the recent associated literature. RECENT FINDINGS Interferon-α has been exploited as a therapeutic target in lupus. Interleukin-1 blockade has been utilized to treat systemic onset juvenile idiopathic arthritis and related autoinflammatory diseases. SUMMARY Current gene expression studies extend our understanding of the disease pathogenesis of lupus and systemic onset juvenile idiopathic arthritis as well as related conditions. This knowledge has translated to the bedside with implications for clinical practice and direct therapeutic targeting.
Collapse
Affiliation(s)
- Marilynn Punaro
- Texas Scottish Rite Hospital, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
45
|
Lood C, Tydén H, Gullstrand B, Klint C, Wenglén C, Nielsen CT, Heegaard NHH, Jönsen A, Kahn R, Bengtsson AA. Type I interferon-mediated skewing of the serotonin synthesis is associated with severe disease in systemic lupus erythematosus. PLoS One 2015; 10:e0125109. [PMID: 25897671 PMCID: PMC4405357 DOI: 10.1371/journal.pone.0125109] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 03/20/2015] [Indexed: 01/09/2023] Open
Abstract
Serotonin, a highly pro-inflammatory molecule released by activated platelets, is formed by tryptophan. Tryptophan is also needed in the production of kynurenine, a process mediated by the type I interferon (IFN)-regulated rate-limiting enzyme indoleamine 2,3-dioxygenase (IDO). The aim of this study was to investigate levels of serotonin in patients with the autoimmune disease systemic lupus erythematosus (SLE), association to clinical phenotype and possible involvement of IDO in regulation of serotonin synthesis. Serotonin levels were measured in serum and plasma from patients with SLE (n=148) and healthy volunteers (n=79) by liquid chromatography and ELISA, as well as intracellularly in platelets by flow cytometry. We found that SLE patients had decreased serotonin levels in serum (p=0.01) and platelets (p<0.0001) as compared to healthy individuals. SLE patients with ongoing type I IFN activity, as determined by an in-house reporter assay, had decreased serum levels of serotonin (p=0.0008) as well as increased IDO activity (p<0.0001), as determined by the kynurenine/tryptophan ratio measured by liquid chromatography. Furthermore, SLE sera induced IDO expression in WISH cells in a type I IFN-dependent manner (p=0.008). Also platelet activation contributed to reduce overall availability of serotonin levels in platelets and serum (p<0.05). Decreased serum serotonin levels were associated with severe SLE with presence of anti-dsDNA antibodies and nephritis. In all, reduced serum serotonin levels in SLE patients were related to severe disease phenotype, including nephritis, suggesting involvement of important immunopathological processes. Further, our data suggest that type I IFNs, present in SLE sera, are able to up-regulate IDO expression, which may lead to decreased serum serotonin levels.
Collapse
Affiliation(s)
- Christian Lood
- Department of Clinical Sciences Lund, Section of Rheumatology, Lund University and Skåne University Hospital, Lund, Sweden
- * E-mail:
| | - Helena Tydén
- Department of Clinical Sciences Lund, Section of Rheumatology, Lund University and Skåne University Hospital, Lund, Sweden
| | - Birgitta Gullstrand
- Department of Laboratory Medicine Lund, Section of Microbiology, Immunology and Glycobiology, Lund University, Lund, Sweden
| | | | | | - Christoffer T. Nielsen
- Department of Clinical Biochemistry, Immunology and Genetics, Statens Serum Institut, Copenhagen, Denmark
| | - Niels H. H. Heegaard
- Department of Clinical Biochemistry, Immunology and Genetics, Statens Serum Institut, Copenhagen, Denmark
| | - Andreas Jönsen
- Department of Clinical Sciences Lund, Section of Rheumatology, Lund University and Skåne University Hospital, Lund, Sweden
| | - Robin Kahn
- Department of Pediatrics, Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Anders A. Bengtsson
- Department of Clinical Sciences Lund, Section of Rheumatology, Lund University and Skåne University Hospital, Lund, Sweden
| |
Collapse
|
46
|
Targeting of type I interferon in systemic autoimmune diseases. Transl Res 2015; 165:296-305. [PMID: 25468480 PMCID: PMC4306610 DOI: 10.1016/j.trsl.2014.10.005] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2014] [Revised: 10/07/2014] [Accepted: 10/09/2014] [Indexed: 12/12/2022]
Abstract
Increased blood levels of type I interferon (IFN-I) and expression of a broad signature of gene transcripts that reflect induction by IFN-I are observed in many patients with systemic autoimmune diseases, and that pattern is most striking in systemic lupus erythematosus (SLE). Persistent production of IFN-α, the most abundant subtype measured in these patients, is an important feature of the immunopathogenesis of lupus and has stimulated current efforts to develop and test therapeutics that either block IFN-I or its receptor directly or target components of the IFN-I pathway involved in induction of or response to IFN-I. In this review data from animal models of chronic viral infection, examples of lupus-like syndromes associated with single-gene mutations that impact the IFN-I pathway, and longitudinal studies of patients with lupus are described and support the rationale for therapeutic targeting of the IFN-I pathway. However, the complexity of IFN-I regulation and the diversity of its effects on immune system function suggest that the definitive demonstration of that pathway as a valid and productive therapeutic target will only come from clinical trials of agents tested in patients with systemic autoimmune disease, with patients with lupus likely to be the most informative.
Collapse
|
47
|
Crow MK, Olferiev M, Kirou KA. Identification of Candidate Predictors of Lupus Flare. TRANSACTIONS OF THE AMERICAN CLINICAL AND CLIMATOLOGICAL ASSOCIATION 2015; 126:184-96. [PMID: 26330673 PMCID: PMC4530671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Systemic lupus erythematosus, the prototype systemic autoimmune disease, is characterized by extensive self-reactivity, inflammation, and organ system damage. Sustained production of type I interferon is seen in many patients and contributes to immune dysregulation. Disease activity fluctuates with periods of relative quiescence or effective management by immunosuppressive drugs, followed by disease flares. Tissue damage accumulates over time, with kidneys and cardiovascular system particularly affected. Identification of the underlying molecular mechanisms that precede clinical exacerbations, allowing prediction of future flare, could lead to therapeutic interventions that prevent severe disease. We generated gene expression data from a longitudinal cohort of lupus patients, some showing at least one period of severe flare and others with relatively stable disease over the period of study. Candidate predictors of future clinical flare were identified based on analysis of differentially expressed gene transcripts between the flare and non-flare groups at a time when all patients had relatively quiescent clinical disease activity. Our results suggest the hypothesis that altered regulation of genome stability and nucleic acid fidelity may be important molecular precursors of future clinical flare, generating endogenous nucleic acid triggers that engage intracellular mechanisms that mimic a chronic host response to viral infection.
Collapse
Affiliation(s)
- Mary K. Crow
- Correspondence and reprint requests: Mary K. Crow, MD,
Hospital for Special Surgery, 535 East 70th Street, New York, NY 10021
| | | | | |
Collapse
|
48
|
Dey-Rao R, Sinha AA. Genome-wide transcriptional profiling of chronic cutaneous lupus erythematosus (CCLE) peripheral blood identifies systemic alterations relevant to the skin manifestation. Genomics 2014; 105:90-100. [PMID: 25451738 DOI: 10.1016/j.ygeno.2014.11.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Revised: 10/24/2014] [Accepted: 11/11/2014] [Indexed: 12/15/2022]
Abstract
Major gaps remain regarding pathogenetic mechanisms underlying clinical heterogeneity in lupus erythematosus (LE). As systemic changes are likely to underlie skin specific manifestation, we analyzed global gene expression in peripheral blood of a small cohort of chronic cutaneous LE (CCLE) patients and healthy individuals. Unbiased hierarchical clustering distinguished patients from controls revealing a "disease" based signature. Functional annotation of the differentially expressed genes (DEGs) highlight enrichment of interferon related immune response and apoptosis signatures, along with other key pathways. There is a 26% overlap of the blood and lesional skin transcriptional profile from a previous analysis by our group. We identified four transcriptional "hot spots" at chromosomal regions harboring statistically increased numbers of DEGs which offer prioritized potential loci for downstream fine mapping studies in the search for CCLE specific susceptibility loci. Additionally, we uncover evidence to support both shared and distinct mechanisms for cutaneous and systemic manifestations of lupus.
Collapse
Affiliation(s)
- R Dey-Rao
- Department of Dermatology, University at Buffalo, Buffalo, NY, USA
| | - A A Sinha
- Department of Dermatology, University at Buffalo, Buffalo, NY, USA.
| |
Collapse
|
49
|
Miceli-Richard C, Criswell LA. Genetic, genomic and epigenetic studies as tools for elucidating disease pathogenesis in primary Sjögren's syndrome. Expert Rev Clin Immunol 2014; 10:437-44. [PMID: 24646085 DOI: 10.1586/1744666x.2014.901888] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Primary Sjögren's syndrome (pSS) is characterized by lymphoid infiltration of lacrimal and salivary glands leading to xerophthalmia and xerostomia. pSS is a complex disease involving both genetic and environmental risk factors. Technological advances over the past 10 years have revolutionized genetics and genomics research enabling high-throughput characterization and analysis of DNA and RNA in patient samples on a genome-wide scale. Further, application of high-throughput methods for characterization of epigenetic variation, such as DNA methylation status, is increasingly being applied to AID populations and will likely further define additional risk factors for disease risk and outcome. Main results obtain in pSS through these various approaches are reviewed here.
Collapse
|
50
|
Feng X, Huang J, Liu Y, Xiao L, Wang D, Hua B, Tsao BP, Sun L. Identification of interferon-inducible genes as diagnostic biomarker for systemic lupus erythematosus. Clin Rheumatol 2014; 34:71-9. [PMID: 25344775 DOI: 10.1007/s10067-014-2799-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Revised: 08/06/2014] [Accepted: 10/10/2014] [Indexed: 12/16/2022]
Abstract
The identification of biomarkers helps to perform early diagnosis, thus benefits the outcome of patients with systemic lupus erythematosus (SLE), in which delayed treatment has been proposed as an independent adverse prognostic factor. In this study, we assessed the values of expression levels of five type I interferon (IFN)-inducible genes (LY6E, OAS1, OASL, MX1, and ISG15) and total IFN score for the diagnosis of SLE. Quantitative real-time PCR was applied to determine gene expressions at transcription level in peripheral blood from 69 SLE patients, 42 patients with other connective tissue diseases, and 26 normal controls. Expressions of five genes and IFN score, calculated according to the expressions of IFN-inducible genes, were all significantly increased in SLE patients compared to those in normal subjects and disease controls. IFN score was not related to age, gender, and the dose of steroids, but weakly correlated with SLE disease activity index. None of the gene expression was associated with concomitant infection status or elevated antibodies against Epstein-Barr (EB) virus in SLE. Both modified IFN score (calculated by the expression of three major IFN-inducible genes) and LY6E level showed good diagnostic accuracy in discriminating between SLE patients and disease controls as well as normal subjects (area under the receiver operating characteristic curve was 0.812 and 0.815, respectively), with 70-80 % specificity and 70-80 % sensitivity at the cutoff of 2.37 and 3.23. In conclusion, high IFN-inducible gene expression is constitutional for SLE patients. The modified IFN score or the LY6E level alone may serve as good biomarkers for SLE diagnosis.
Collapse
Affiliation(s)
- Xuebing Feng
- Department of Rheumatology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, Jiangsu, 210008, China,
| | | | | | | | | | | | | | | |
Collapse
|